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Abstract: The authors employ the conditional moment generating function approach to analyse the performance of orthogonal
space-time block codes over Nakagami-q (Hoyt) multiple-input multiple-output radio frequency identification backscattering
channels. New exact and asymptotic symbol error rate expressions are derived for the case of two and four receiving antennas
N = 2, 4 . The exact expressions are in the form of a sum of infinite series while the asymptotic ones are in the closed form.

The diversity order that the system can achieve is found to be L, where L is the number of tag antennas, and the performance
of this system is found to be more sensitive to the channel condition (the q parameter) of the forward link than that of the
backscattering link. The theoretical results (exact and asymptotic) are verified through comparison with simulation results.

1 Introduction
This radio frequency identification (RFID) is a form of wireless
non-contact communication that uses radio waves to automatically
identify and track objects [1]. A basic RFID system is made up of
three primary components: RFID readers (also known as
interrogators), RFID tags, and RFID software or middleware [2].
The tag contains electronically stored information which can be
read from up to several metres away in response to reader's
interrogating radio waves. Depending on power supplying
methods, RFID tags are divided into three categories passive,
active, and semi-passive tags [3].

Since passive tags are the least expensive of these three types,
they are commonly used in high volumes of applications. For
passive RFID tags that draw energy from the reader and simply
reflect back a modulated signal to it, the channel between the
reader and the tag is the cascade of two fading channels, the
forward and backscatter links [4]. This cascaded channel, which is
characterised as a query-fading–coding-fading structure, causes
deeper and more frequent small-scale fades than the conventional
one-way channel resulting in lower transmission reliability and
shorter reading ranges [3].

One way to reduce fading in the backscatter channel is through
antenna diversity. Ingram et al. [5] brought up the idea of
increasing the range and communication capacity using multiple
radio frequency (RF)-tag and reader antennas. Mi et al. [6] also
agree that the harvested power required to operate the RF tag chip
can be increased by using multiple RF-tag antennas.

Few fading measurements have been conducted and reported in
the literature. Fading on the signal received by the RF tag was the
focus of Mitsugi and Shibao [7, 8] and Polivka et al. [9] studies.
Others have studied fading on the signal received by the reader:
Kim et al. [10] have presented small-scale fading statistics (the
cumulative distribution functions) for short ranges in an indoor
environment at 2.4 GHz, while Banerjee et al. [11, 12] have
presented fading measurements at 915 MHz and demonstrated the
importance of spatial and frequency diversity to effectively
mitigate multipath fading effects.

In an effort to provide a more comprehensive view of the
multiple-input multiple-output (MIMO) RF backscattering
channel's behaviour, extensive analysis was also performed. In
[13–16], researchers provided analytical symbol error rate (SER)
expressions and revealed several interesting properties of the
channel assuming Rayleigh fading. Others studied the behaviour of
the channel under more general fading models. In [17], researchers

analytically investigated the operating range of the MIMO
structure under the Nakagami-m fading. The authors in [18]
presented a general formulation to study orthogonal space–time
block codes (OSTBCs) for RF backscattering with different fading
assumptions and then analytically studied the SER performances
under Rician fading and Nakagami-m fading using the conditional
moment generating function (MGF) approach.

The Nakagami-q model was first introduced by Nakagami [19]
as an approximation for the Nakagami-m fading distribution in the
range of fading that extends from the one-sided Gaussian model to
the Rayleigh model [20]. Recently, this model is being used more
frequently in performance analysis of wireless communication
systems [21–24], and it shows good ability to describe the statistics
of real-world fading channels.

In this study, new exact and asymptotic expressions are derived
for the SER performance of the orthogonal space-time block codes
over Nakagami-q (Hoyt) MIMO RFID backscattering channels by
employing the conditional MGF method. The derived exact
expressions are in the form of a sum of infinite series while the
asymptotic ones are in the closed form.

The rest of the paper is organised as follows. Section 2 briefly
reviews the space–time block code (STBC) system model in a
RFID MIMO channel. In Section 3, we analytically study the SER
performance of OSTBCs over Nakagami-q fading, where SER
expressions are derived. Numerical results are discussed in Section
IV. Finally, we draw our conclusions in Section V.

2 Passive tag signalling model
In a passive RFID system, a tag modulates its antenna (load-
dependent) reflection coefficient Δ t , which carries out the tag ID,
only responsive to receiving an unmodulated RFID signal from the
reader, as illustrated in Fig. 1. The MIMO passive channel was first
described in [13], as an M × L × N dyadic backscatter channel that
represents the propagation of signals in a backscatter radio system
consisting of M transmitters, L RFID tags, and N receiver antennas,
shown in Fig. 2 [15]. 

The received signal from the M × L × N dyadic channel (an
N × 1 vector) is given by

r t = Hb S t H f x t + n t , (1)

Where x t  (an M × 1 vector) is the unmodulated signals
transmitted from the reader, n t  (an N × 1 vector) is the
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corresponding noises at the reader receivers, H f  (an L × M
matrix) is the channel matrix from the reader to the tag, Hb (an
N × L matrix) is the channel matrix from the tag to the reader, and
S t  (an L × L matrix) is the signalling matrix that describes the
time-varying modulation and coding of the carrier signals by the L-
antenna RF tag [25].

In this study, we focus on the case where the tag antennas
modulate backscatter with different signals and none of the
(modulated) backscattered signals are transferred between these
antennas. In this case, the signalling matrix is a diagonal matrix of
the form

S t =
Δ1 t

⋱
ΔL t

, (2)

where Δl t  denotes the load reflection coefficient of the lth tag
antenna [13]. This matrix with unequal load reflection coefficients
can result in space-time codes at the tag end [15].

For our passive RFID system, considering the fact that the
reader transmitting-antennas transmit the same query signal from
the M antennas and that the forward channel gains are independent
Gaussian, if the total transmitted energy is normalised to unity, the
forward channel statistics will be the same for any M. So from this
time on, we will only focus on the 1 × N × L channel and we will
call it the N × L channel for simplicity.

Now, let s = s1, … , sL
T = Δ1 t , …, ΔL t T  denote the L

transmission symbols simultaneously transmitted from L tag

antennas, we can alternatively express the received signal vector at
a particular time point as

r = Hs + w, (3)

where H is the channel matrix of the N × L channel and can be
expressed as

H =
h1

fh1, 1
b h2

fh2, 1
b … hL

f hL, 1
b

⋮ ⋱ ⋱ ⋮
h1

fh1, N
b h2

fh2, N
b … hL

f hL, N
b

, (4)

where hl
f’s l = 1, …, L  represent forward channels of the N × L

channel, hl, n
b ’s l = 1, …, L , n = 1, …, N  represent backscattering

channels, hl
f and hl, n

b  are assumed to be statistically independent of
each other [13]. Sub-channels hl

f and hl, n
b  follow certain fading

distribution depending on the propagation environment.

3 SER performance of OSTBC for MIMO RF
backscattering channels
Among space-time coding schemes, OSTBC is one of the most
attractive ones because it is able to provide full diversity gain
without channel state information at transmission and with very
simple encoding and decoding procedures. Here, a quick review of
the general conditional MGF approach used to study OSTBCs for
the RF backscattering channel [18] is given, before employing it to
analyse the OSTBC over the Hoyt RFID backscattering channel.

3.1 Conditional MGF approach

The probability density function (PDF) approach is a widely used
approach to evaluate the SER performance of different wireless
channels. For the RF backscattering channel case because of its
complex query-fading–coding-fading structure, applying this
approach is not preferable. Alternatively, He and Wang [18]
proposed the conditional MGF approach, as described next.

Due to its orthogonality property, OSTBC can be transformed
from the MIMO fading channel in (3) to the following M parallel
single-input–single-output channels [26]:

ŕ = H F
2 ś + ẃ, (5)

where H F
2 = ∑n = 1

N ∑l = 1
L |hl

fhl, n
b |2  is the Frobenius norm of H,

ś = ś1 , …, śM
T represents the M incoming symbols, and each

element of ẃ = ẃ1, …, ẃM
T is complex Gaussian distributed with

zero mean and unit variance. In addition, ŕ = ŕ , …, ŕM
T

represent the received symbols that can be detected based on a
simple maximum-likelihood method.

Let Eb  denotes the average energy per bit and Es  denotes the
average energy per symbol, then Es = Eblog2 K  where K is the
size of the signal constellation. The instantaneous signal-to-noise
ratio (SNR) per symbol is therefore given by
γ = (( H F

2 log2K)/R)(Eb/N0) = (( H F
2 log2K)/R)γ̄ = H F

2 g γ̄,
where R = M /T  means the symbol rate and we define
g = log2K /R.

The SER of OSTBC can be calculated by averaging the density
of H F

2  over Q gγ̄ H F
2  as follows:

POSTBC γ̄ = EH Q gγ̄ H F
2

= 1
π ∫

θ = 0

π /2
G γ= dθ .

(6)

Here, the alternative representation of the Q function as in [27] is
employed, and γ = gγ̄ /sin2θ , G γ = EH exp − gγ̄ H F

2 /sin2θ
means the MGF of H F

2 .

Fig. 1  RFID reader transmits an unmodulated (query) signal to the RF tag
and the RF tag scatters a modulated signal back to the reader, where Zi is
the impedance corresponding to the reflection coefficient Δi t

 

Fig. 2  Illustration of the MIMO RFID channel signalling scheme. In a
passive RFID system, the coding and modulation are done by the tag
circuits on the tag side and the reader transmitting antennas actually act as
charging devices
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To find G γ , we define

H F
2 = ∑

l = 1

L
Hl F

2 = ∑
n = 1

N
αlβl, n (7)

as the squared Frobenius norm of the lth column of H, where
αl = hl

f 2
 and βl, n = hl, n

b 2
. We can see that Hl F

2 ’s are independent
random variables; therefore, the MGF G γ  can be represented as a
multiplication of the MGFs of Hl F

2 ’s

G γ = ∏
l = 1

L
Gl γ . (8)

If we fix αl, the random variable Hl F
2 = αl∑n = 1

N βl, n  is exactly the
same as the gain of an N-branch single-input–multiple-output
system with maximum ratio combining at the receiver, with N
branches hl, n

b = αlβl, n for n = 1, …, N, and each branch has
transmission power αl. Therefore, we have the MGF G γ  as

Gl γ = ∫
0

∞
∏
n = 1

N
Ghl, n |αl

γ f αl αl dαl . (9)

Consequently

G γ = ∏
l = 1

L
∫
0

∞
∏
n = 1

N
Ghl, n |αl

γ f αl αl dαl , (10)

where f αl αl  is the pdf of αl and Ghl, n |αl
γ  is the MGF of the

conditional distribution of hl, n on αl (i.e. the squared magnitude of
the lth forward channel gain). Next, we employ this approach to
find the SER performance under Hoyt fading.

3.2 SER of OSTBC over Hoyt RF backscattering channels

Here, we evaluate the SER of OSTBC for the channel assuming
hl

f’s and hl, n
b ’s are Hoyt fading. For Hoyt fading, the pdf of αl is

f αl αl = 1 + qf
2

2qf
e

− 1 + qf
2 2

αl

4 qf
2 ∑

m = 0

∞ 1
(m!)2

1 − qf
4

8 qf
2 αl

2m

, (11)

where qf is the q factor of the forward channel. In Hoyt fading, the
MGF of βl, n = hl, n

b 2
 is given by [28]

Gβl, n γ = 1 + 2γ + qb
2 2γ 2

1 + qb
2 2

( − 1/2)

. (12)

Therefore, the conditional MGF Ghl, n |α γ  can be obtained by
multiplying the SNR of (12) by αl

Ghl, n |α γ = 1 + 2αlγ + qb
2 2αlγ

2

1 + qb
2 2

( − 1/2)

, (13)

where qb is the q factor of the backscattering channel. Substitute
f αl αl  and Ghl, n |α γ  into (9), the exact form of Gl γ  can be

expressed as in (14) (see Appendix A) (see (14)) where kf = qf
2,

kb = qb
2, k1 = 1 + kb, k2 = 1 + kf, D1 = 1 + kf / 2 kf ,

D2 = 1 − kf
2 / 8 kf , D3 = 4 kb / 1 + kb)2 , and the function

M s, m̀ , Ǹ = ∫t = 0
∞ t m̀ − 1 e−t 1 + s t −Ǹ dt  was well studied in [29]

and has the following form:

M s, m̀ , Ǹ =̇ e
1
s s−Ǹ ∑

k = 0

m̀ − 1 m̀ − 1
k

− 1
s

m̀ − k − 1

× Γ k − Ǹ + 1 , 1
s .

(15)

As the derived expression of the MGF in (14) is complicated with
the sum of the infinite series form, asymptotic expressions are
usually preferable. Therefore, asymptotically in high (SNR)
regimes, it can be shown that (see Appendix A)

Gl γ =̇

C1_2
f C2_2

b

2g γ −1, N = 2 ,

C1_4
f C2_4

b

g γ −1, N = 4.
(16)

Substituting (16) into (8) and then into (6) can yield asymptotic
expression of SER for OSTBC

POSTBC γ̄, N, L =̇
CL

C1_2
f C2_2

b

2g

L

γ̄−L, N = 2,

CL
C1_4

f C2_4
b

g

L

γ̄−L, N = 4,
(17)

where C1_2
f = 1 + kf / 2 kf , C2_2

b = k1ln kb / kb − 1 ,
C1_4

f = 1 + kf / 2 kf ,
C2_4

b = k1
2/ 2 kb − 1 2 ) − kb k1 ln kb / kb − 1 3  and

CL = Γ L + (1/2) / 2 π Γ L + 1 .
It should be noted that Appendix A presents the systematic

derivation of both the exact and the asymptotic MGF expressions.
It was noticed by experimentations that the infinite series in (14)
converges rapidly by summing up the first few terms, where the
higher terms are negligible. Indeed, it was shown in the derivation
of the asymptotic expressions in Appendix A that the terms of the
infinite series with m > 0 add zero values to the sum when N = 2
whereas the terms with m > 0 can be ignored for high SNR when N 
= 4.

4 Numerical results and discussion
In this section, the results of the exact and asymptotic expressions
for two and four reader-receiving antennas are demonstrated and
are compared with simulation results. Figs. 3–6 show the SER
curves of the OSTBC scheme with binary phase shift keying
(BPSK) modulation in the Hoyt N × L MIMO RFID channel for
two and four receiving antennas, as well as for different values of
the q factor of the forward and backscattering channels. The upper
limit of the infinite series in (14) is set to 5 as higher terms are
negligible. According to Figs. 3–6, the asymptotic results are an
upper bound of the exact expressions with a perfect match at a high
value of SNR. In addition, the simulation results are very close to
the theoretical exact results. Two important properties for this

Gl γ =

∑
m = 0

∞ D1D2
2m

(m!)2
D1

2 − 2m + 1

kb − 1 kb M
2 kbγ
k1D1

2 , 2m + 1 , 1 − M 2γ
k1D1

2 , 2m + 1 , 1

∑
m = 0

∞ D1D2
2m

(m!)2
D1

2 − 2m + 1

kb − 1

(kb − 1)M 2γ
k1D1

2 , 2m + 1 , 2 − kb
2(1 − kb)M

2 kbγ
k1D1

2 , 2m + 1 , 2

+2kbM 2γ
k1D1

2 , 2m + 1 , 1 − kb
2M

2 kbγ
k1D1

2
2 kbγ
k1D1

2 , 2m + 1 , 1 ,

(14)
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RFID channel can be discussed: the achievable diversity order and
the effects of forwarding and backscattering links on the
performance.

(i) Diversity order: The diversity order measures how many
statically independent copies of the same symbol the receiver is
able to separate. When the SNR tends to infinity the slope of bit
error rate versus SNR in log-scale shows the diversity order. For

the asymptotic expressions in (17), the asymptotic diversity orders
for the Hoyt fading MIMO RF backscattering channel with (N = 2
and 4) are

da = lim
γ → ∞

− log P γ
log γ = L . (18)

As also observed in Figs. 3–6, where the slopes of these SER
curves only depend on L, the receiving antennas N does not affect
the diversity gain.
(ii) Impact of forward and backscattering channel conditions:
Another appealing property of the MIMO RF backscattering
channel is that the channel condition of the forward link has a more
noticeable impact on performance than that of the backscattering
link. For Hoyt fading with (N = 2, L = 2), Fig. 7 implies that, with
qf being fixed, changing qb does not have a notable effect on the
SER curves. Contrarily, with qb being fixed, SER curves
significantly change when qf changes. Fig. 8 shows that similar
observations are true for the Hoyt distributed forward and
backscattering links with four reader-receiving antennas (N = 4, L 
= 2).

A plot of the asymptotic expressions’ coefficients in (17),
shown in Fig. 9, perfectly consists of the findings in Figs. 7 and 8,
where the effect of the forward channel is reflected by coefficients
C1_2

f  and C1_4
f , and that of the backscattering channel is reflected by

C1_2
b  and C1_4

b  for N = 2 and 4, respectively. 

Fig. 3  SER performances of the RFID channel, with q f   =  qb  = 0.5. From
the top to the bottom: L = 1, N = 2 , L = 2, N = 2 , L = 3, N = 2 ,

L = 4, N = 2 , respectively
 

Fig. 4  SER performances of the RFID channel, with q f   =  qb  = 0.5. From
the top to the bottom: L = 1, N = 4 , L = 2, N = 4 , L = 3, N = 4 ,

L = 4, N = 4 , respectively
 

Fig. 5  SER performances of the RFID channel, with q f   =  qb  = 0.9. From
the top to the bottom: L = 1, N = 2 , L = 2, N = 2 , L = 3, N = 2 ,

L = 4, N = 2 , respectively
 

Fig. 6  SER performances of the RFID channel, with q f   =  qb  = 0.9. From
the top to the bottom: L = 1, N = 4 , L = 2, N = 4 , L = 3, N = 4 ,

L = 4, N = 4 , respectively
 

Fig. 7  When q f   = 0.3 is fixed, the variations of qb (0.3, 0.7, and 0.9) do
not affect too much the SER; by contrast, when qb  = 0.3 is fixed, the
variations of q f  (0.3, 0.7, and 0.9) change the SER significantly

 

IET Commun., 2018, Vol. 12 Iss. 9, pp. 1086-1093
© The Institution of Engineering and Technology 2018

1089



5 Conclusion
This study presented a systematic analysis for orthogonal STBCs in
MIMO RFID channels under Hoyt fading. Based on this analysis,
new SER expressions were derived using the conditional moment
generating approach. In particular, exact SER expressions in the
form of the sum of infinite series were obtained for two and four
receiving antennas N = 2 , 4 . In addition, asymptotic closed
form expressions were also derived. Furthermore, the theoretical
exact and asymptotic results are verified with simulation results.
Moreover, several interesting properties of the channel were
observed from our analytical results. First, the diversity order is
solely determined by the number of tag antennas L. Second, the
analytical results reveal that the SER of the MIMO RF channel is
much more sensitive to the channel condition of the forward links
than that of the backscattering links.
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7 Appendix
 
Evaluation of POSTBC γ̄

The PDF of the forward channel that follows the Nakagami-q
distribution (normalised channel energy) is

f αl = 1 + qf
2

2qf
e

− 1 + qf
2 2

αl

4 qf
2 ∑

m = 0

∞ 1
(m!)2

1 − qf
4

8 qf
2 αl

2m

, (19)

where the equality is given by the Taylor expansion of the modified
Bessel function of the first kind (i.e. I0 . ). We can expand the
conditional MGF Gl γ |αl  as

Fig. 8  When q f   = 0.3 is fixed, the variations of qb (0.3, 0.7, and 0.9) do
not affect too much the SER; by contrast, when qb  = 0.3 is fixed, the
variations of q f  (0.3, 0.7, and 0.9) change the SER significantly

 

Fig. 9  C f  and Cb are the coefficients in the asymptotic SER related with
the forward links and the backscattering links, respectively. Cb  is almost
constant as the qb increases, whereas C f  significantly decreases as the q f

increases
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Gl γ |αl = 1 + 2 αlγ + qb
2 2 αl γ 2

1 + qb
2 2

−1
2

N

. (20)

Therefore, averaging G γ |αl  over the density of αl  gives

Gl γ = ∫
αl = 0

∞
f αl Gl γ |αl dαl

= ∫
αl = 0

∞ 1 + qf
2

2qf
e

− 1 + qf
2 2

αl

4 qf
2 ∑

m = 0

∞ 1
(m!)2

1 − qf
4

8 qf
2 αl

2m

× 1 + 2 αl γ + qb
2 2 αlγ 2

1 + qb
2 2

−N
2

dαl

= ∑
m = 0

∞ D1D2
2m

(m!)2 ∫
αl = 0

∞
e−D1

2αl αl
2m

× 1 + 2 αlγ + D3 αl γ 2 ( − N /2)dαl

=̇ ∑
m = 0

∞ D1D2
2m

(m!)2 F γ ,

(21)

where kf = qf
2, kb = qb

2, k1 = 1 + kb, k2 = 1 + kf,
D1 = 1 + kf / 2 kf , D2 = 1 − kf

2 / 8 kf ,
D3 = 4 kb / 1 + kb)2 , and F γ  is defined as follows.

Case 1: N = 2
(see (22)) , where we use partial fraction expansion to arrive at

the second line, and change of variable to arrive at the fourth line,
y = D1

2αl. By letting m̀ = 2m + 1 and Ǹ = 1 we can make use of
the function M s, m̀ , Ǹ =̇ ∫t = 0

∞ t m̀ − 1 e−t 1 + s t −Ǹ dt that was
well studied in [27] and has a closed form of

M s, m̀ , Ǹ =̇ e(1/s) s−Ǹ ∑
k = 0

m̀ − 1 m̀ − 1
k

− 1
s

m̀ − k − 1

× Γ k − Ǹ + 1 , 1
s ,

(23)

where Γ . , .  is the incomplete gamma function. Substituting
(23) in (22) and (21) we obtain (14) for N = 2.

Proof of the asymptotic form: The asymptotic form can be
obtained when only considering the terms associated with the
lower terms of m in the exact form. This is because the lower order
of the pdf of αl determines the asymptotic performance when SNR
is large. M s, m̀ , Ǹ  has an asymptotic form for large γ  [18]

M s, m̀ , Ǹ =̇

ln s
sm̀ , m̀ = Ǹ,

m̀ − 1 ! a − b − 1 !
a − 1 ! sb , m̀ ≠ Ǹ,

(24)

where a = max m̀, Ǹ  and b = min m̀, Ǹ . With m = 0 , we
have m̀ = Ǹ = 1, and

F γ = D1
2 − 1

kb − 1 kb M
2 kbγ
k1D1

2 , 1 , 1 − M 2γ
k1D1

2 , 1 , 1

=̇ D1
2 −1

kb − 1 kb

ln 2 kb γ
k1D1

2

2 kbγ
k1D1

2

−
ln 2γ

k1D1
2

2γ
k1D1

2

= k1

2γ kb − 1 ln kb .

(25)

Substitute the asymptotic form of F γ  back into (21) we have the
asymptotic form of Gl γ  as

Gl γ , m = 0 = D1 k1ln kb
2 kb − 1 γ −1 . (26)

For m > 0 , we have a = max m̀, Ǹ = m̀,
b = min m̀, Ǹ = Ǹ = 1 and (see equation below). Therefore,
we have Gl γ , m > 0 = 0, and

Gl γ =̇ Gl γ , m = 0 = D1 k1ln kb
2 kb − 1 γ −1 . (27)

Case 2: N = 4
See (28), where we use partial fraction expansion to arrive at

the second line, and change of variable to arrive at the fourth line,
= D1

2αl . By letting m̀ = 2m + 1 and Ǹ = 1 or 2 depending on the
power in each term, we can again make use of the function
M s, m̀ , Ǹ  in (23). Substitute (23) in (28) and (22) we obtain
(14) for N = 4.

Proof of the asymptotic form: For m = 0 , we have m̀ < Ǹ for
the first two terms of F γ , and m̀ = Ǹ for the rest and change of
variable to arrive to the forth line, y = D1

2αl. (see (28)) ,
(see (29)) . Substitute the asymptotic form of F γ  back to (21)

we have the asymptotic form of Gl γ  as

F γ = ∫
αl = 0

∞
e−D1

2αl αl
2m 1 + 2 αlγ + D3 αl γ 2 −1dαl

= ∫
αl = 0

∞
e−D1

2αl αl
2m k1

kb − 1
kb

k1 + 2 kb γ αl
dαl

−∫
αl = 0

∞
e−D1

2αl αl
2m k1

kb − 1
1

k1 + 2γ αl
dαl

= kb
kb − 1 D1

2 − 2m + 1 ∫
y = 0

∞
1 + 2 kb γ

k1D1
2 y

−1

e−y y 2mdy

− 1
kb − 1 D1

2 − 2m + 1 ∫
y = 0

∞
1 + 2γ

k1D1
2 y

−1

e−y y 2mdy

= D1
2 − 2m + 1

kb − 1 kb∫
y = 0

∞
1 + 2 kb γ

k1D1
2 y

−1

e−y y 2mdy

− ∫
y = 0

∞
1 + 2γ

k1D1
2 y

−1

e−y y 2mdy ,

(22)
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Gl γ , m = 0 = D1
k1

2

2 kb − 1 2 − kbk1ln kb
kb − 1 3 γ −1 . (30)

For m > 0 , we have a = max m̀, Ǹ = m̀,
b = min m̀, Ǹ = Ǹ and see (31).

Therefore, we have (see equation below). The terms for m > 0
can be ignored since Gl γ , m = 0 = o γ −1 ≫ o γ −2  for large
SNR.

Therefore (see (31)) .

Gl γ =̇ Gl γ , m = 0

= D1
k1

2

2 kb − 1 2 − kbk1ln kb
kb − 1 3 γ −1 . (32)

F γ = D1
2 − 2m + 1

kb − 1 kb M
2 kb γ
k1D1

2 , 2m + 1 , 1 − M 2 γ
k1D1

2 , 2m + 1 , 1

= D1
2 − 2m + 1

kb − 1 kb
2m − 1 !
2 kb γ
k1D1

2

− 2m − 1 !
2γ

k1D1
2

= 0 .

F γ = ∫
αl = 0

∞
e−D1

2αl αl
2m 1 + 2 αl γ + D3 αl γ 2

−4
2 dαl

= 1
(kb − 1)3∫

αl = 0

∞
e−D1

2αl αl
2m × (kb − 1)k1

2

k1 + 2γ α1
2 − kb

2 1 − kb k1
2

k1 + 2kbγ α1
2 + 2kbk1

k1 + 2γ α1
− 2kb

2k1

k1 + 2kbγ α1
dα1

= 1
(kb − 1)3

∫
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∞
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2αl αl
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2
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2m 2kb
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2
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2 dα1
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αl = 0

∞
e−D1

2αl αl
2m 2kbk1

k1 + 2γ α1
dα1 − ∫

αl = 0

∞
e−D1

2αl αl
2m 2kb

2k1

k1 + 2kbγ α1
dα1

= (D1
2)−(2m + 1)

(kb − 1)3
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∞
(1 + 2γ

k1D1
2 y)

−2

e−yy2mdy − kb
2(1 − kb)∫

y = 0

∞
(1 + 2kbγ

k1D1
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−2

e−yy2mdy

+2kb∫
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∞
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2 y

−1

e−yy2mdy − kb
2∫

y = 0

∞
1 + 2kbγ

k1D1
2 y
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e−yy2mdy
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(28)

F γ = D1
2 − 1

kb − 1 3 kb − 1 M 2γ
k1D1

2 , 1, 2 − kb
2 1 − kb M

2 kbγ
k1D1

2 , 1, 2
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kb − 1 3 kb − 1 1
2γ
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2
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2
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2
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2
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2
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Gl γ , m > 0 = ∑
m = 1

∞ D1D2
2m

(m!)2
D1

2 − 4m

2 kb − 1 2 k1
2 2m − 2 ! γ −2 .
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Fγ = (D1
2)−(2m + 1)

(kb − 1)3 kb − 1 M 2γ
k1D12, 2m + 1, 2 − kb

2(1 − kb)M(2kbγ
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2
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