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Preface  

 

I have been intrigued by the topic of prodrug design for some time. As a pharmacist, bitter 

tastant drugs have created serious challenges to both pediatric and geriatric patients. 

 

When I started to pursue my Master’s degree of pharmaceutical sciences at AL-Quds 

University, I was fortunate to have the chance to work with Professor Dr. Rafik Karaman 

as a research assistant on a project in the medicinal field, especially prodrugs design and 

synthesis. The importance of improving the bitter taste, stability and bioavailability of 

many of the marketed drugs especially the antibiotics that became evident clinically and in 

the pharmaceutical industry. Fortunately, there are many published studies on this topic. 

Prof. Dr. Karaman guided me and many other students to the new technology 

“computational approach” of prodrugs design. This thesis worked on improving the 

pharmaceutical characteristics of amoxicillin and cephalexin in terms of masking bitter 

taste, improving solubility and stability. 
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Abstract   

Marketed antibacterial drugs suffer several problems, such as bitter taste and low stability 

which lead to patient incompliance. Prodrug technology for solving such problems is 

extremely exciting. Based on previously reported density functional theory calculations, 

amoxicillin ProD 1-2 and cephalexin ProD 1-2 were designed and synthesized. For the 

intraconversion of both antibacterial prodrugs the kobs and t1/2 values in different media 

were calculated from the linear regression equation obtained from the correlation of log 

concentration of the residual prodrug versus time. At constant temperature and pH the 

hydrolysis reaction for the above mentioned prodrugs displayed strict first order kinetics as 

the kobs was quite constant and a straight line was obtained. Kinetic studies in 1N HCl, pH 

2.5 and pH 5 were selected to examine the intraconversion of both prodrugs to their parent 

drugs. The acid-catalyzed hydrolysis of the prodrugs was found to be much higher in 1N 

HCl than in pH 2.5 and pH 5. The experimental t1/2 values of amoxicillin ProD 1 in 1N 

HCl, pH 2.5 and pH 5 were 2.5, 7 and 81 hours respectively and for cephalexin ProD 1 in 

1 N HCl and pH 2.5 were 2 and 14 hours respectively. In contrast, t1/2 values of amoxicillin 

ProD 2 in 1N HCl and pH 2.5 were 8 and 44 hours respectively and for cephalexin ProD 2 

in 1 N HCl was 6 hours. On the other hand, at pH 7.4, the four prodrugs were quite stable 

and no release of the parent drugs was observed. At pH 5 the hydrolysis of the prodrugs 

was too slow. The four antibacterial prodrugs were found to be bitterless. The bitter taste 

masking by the prodrugs is believed to be via altering the ability of the drug to interact 

with bitter taste receptors.  
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Chapter One 
 

Introduction 

 

1.1 Background  

 

The palatability of the active ingredient of a drug is a significant obstacle in developing a 

patient friendly dosage form. Organoleptic properties, such as taste and odor, are an 

important factor when selecting a certain drug from the generic products available in the 

market that have the same active ingredient. It is a key issue for doctors and pharmacists 

administering the drugs and particularly for the pediatric and geriatric populations. 

Nowadays, pharmaceutical companies are recognizing the importance of taste masking and 

a significant number of techniques have been developed for concealing the objectionable 

taste [1].  

 

Several marketed antibacterial drugs suffer several problems, among the various types of 

penicillins and cephalosporins antibiotic medications; we have chosen to study the most 

popular bitter taste antibacterial drugs, amoxicillin and cephalexin. The major drawbacks 

in these two antibacterial drugs their low stability in suspension formulation and mostly 

their bitter tastes which lead to patient incompliance and in acceptance. Bitter tastant 

molecules interact with taste receptors on the tongue to give bitter sensation. Thus, 

modification on their structural features might give a solution to overcome their bitterness. 

Amoxicillin and cephalexin bitter taste sensation is the result of the hydrogen bonding 

between the free amino groups in both drugs with the active site of the bitter taste receptors 

on the tongue. Designing a prodrug promiety with a suitable linker could reduce or 

eliminate their bitterness by altering the ability of the drug to interact with their bitter taste 

receptors; this could be achieved by an appropriate modification of the structure and the 

size of the bitter compound. The new novel chemical approach involves the design of 

prodrugs for masking bitter taste of pharmaceuticals based on intramolecular processes 

using density functional theory (DFT) and ab initio methods and correlations of 

experimental and calculated reactions rates. In this approach no enzyme is needed to 

catalyze the interconversion of a prodrug to its corresponding drug. The rate of drug 

release is controlled by the nature of the linker bound to the bitter drug. The role of the 
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linker is to block the free amine group in the corresponding parental drug and to convert it 

into the more stable amide group, the former is believed to be responsible for the bitterness 

of the drug. 

 

1.1.1 Introduction  

  
Most of the therapeutic drugs have pharmacological and pharmacokinetic barriers in 

clinical drug applications, such as low oral drug absorption, lack of site specifity, chemical 

instability, toxicity and poor patient acceptance (unpleasant taste, odor, pain at injection 

site, etc). Among these various approaches that are used in order to minimize the 

undesirable properties of the drug while retaining the desirable therapeutic activity, the 

prodrug approach. This approach can be useful in the optimization of the clinical 

application of most of the drugs [2]. 

 

Prodrugs are bio-reversible pharmacologically inactive drug molecules that prior to 

exerting the desired pharmacological effect they undergo an enzymatic and or\chemical 

transformation in vivo to release the active parent drugs, to exert their desired 

pharmacological effects. The design of prodrugs is very challenging. Thus, modifying the 

absorption, distribution, metabolism and excretion (ADME) properties of the parent drug 

requires a comprehensive understanding of both biological and physiological properties of 

the drug. The prodrug strategy is more feasible and faster than searching for a new 

biologically active molecule with appropriate ADME properties. The prodrug approach is 

becoming more successful and popular nowadays. To date, prodrugs comprise around 10% 

of the world’s marketed medications and 20% of all small molecular medications approved 

between 2000-2008 [3]. 

 

Recently, computer modeling techniques, which is often referred as computer aided drug 

design using computational chemistry has become increasingly useful in designing drugs 

for the purpose to enhance, study or discover drugs and related biologically active 

molecules [4]. The computational chemistry was also utilized to enhance the solubility, 

stability and bioavailability of drugs and to mask their bitter taste as well. Numerous novel 

prodrugs have been designed and synthesized by Karaman’s group for the treatment of 

various diseases using DFT calculation methods. The design and synthesis of prodrugs 

were based on intramolecular processes utilizing molecular orbital methods and 
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correlations between experimental and calculated values. In this approach no enzyme is 

needed for the interconversion of the prodrug to its parent drug. The designed prodrugs 

have the potential to undergo cleavage reactions in physiological environments in rates that 

are completely dependent on the structural features of the inactive linker attached to the 

parental drug. The rate of drug release is dependent only on the rate limiting step for the 

conversion of its corresponding prodrug.  

 

The most important factor in product performance and the development of different dosage 

are taste, smell and texture. Good flavor and texture are found to significantly increase 

sales of many products. Most oral medications have an unpleasant bitter taste which 

creates a serious challenge in pediatric and geriatric patients, which in turn affects their 

compliance and acceptance.  

 

Several techniques that are based on physiological modifications have been investigated 

and resulted in the development of efficient approaches for masking unpleasant and bitter 

taste of many compound. These approaches include: (1) coating is one of the most efficient 

and commonly used taste masking techniques; (2) microencapsulation used are commonly 

based on the principle of solvent extraction or evaporation; (3) taste masking with flavors, 

sweeteners and amino acids; (4) taste masking with lipophilic vehicles such as lipids, 

lecithin and lecithin-like substances; (5) sweeteners are generally used in combination with 

other taste masking technologies; (6) taste suppressants and potentiators, such as 

Linguagen’s bitter blockers (e.g., adenosine monophosphate), are used for masking the 

bitter taste of various compounds by competing with binding to the G-protein coupled 

receptor sites (GPCR); (7) pH modifiers; (8) adsorbates; (9) resins and (10) inclusion 

complexes [5].  

 

Although the mentioned approaches have helped to improve the taste of some drug 

formulations, the problem of the bitter taste of drugs in pediatric and geriatric formulations 

still creates a serious challenge to pharmacists. Thus, different strategies should be 

developed in order to overcome this serious problem.  

The prodrug approach can be the most effective and useful strategy in masking the 

bitterness in the clinical application of most of the drugs.  
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1.1.2 Bitter taste   

 

The word “medicine” for a child is considered a bad thing to administer because of its 

aversive taste. Medicines dissolve in saliva and bind to taste receptors on the tongue giving 

a bitter, sweet, salty, sour, or umami sensation. Sweet and sour taste receptors are 

concentrated on the tip and lateral borders of the tongue respectively. Bitter taste is sensed 

by the receptors on the posterior part of the tongue and umami taste receptors are located 

all over the tongue. A short period after birth, infants reject bitter tastes and prefer sweet 

and umami tastes [1]. Children have larger number of taste buds than adults which are 

responsible for sensitivity toward taste. These taste buds regenerate every two weeks. Taste 

becomes altered as a function of the aging process, which explains why most children find 

certain flavors to be too strong when adults do not. The American Academy of Pediatrics 

estimates that compliance in children is as low as 53%, indicating that children frequently 

fail to take medications properly. Noncompliance can lead to: (1) persistent symptoms, (2) 

need for additional doctor visits or even hospitalizations, (3) worsening of condition, (4) 

need for additional medications, (5) increased healthcare costs and (6) development of 

drug-resistant organisms in cases of infectious diseases [6]. 

 

In mammals, taste buds are groups of 30-100 individual elongated "neuroepithelial" cells 

which are often embedded in special structure in the surrounding epithelium known as 

papillae. Just below the taste bud apex, taste cells are joined by tight junctional complexes 

that prevent gaps between cells. Food molecules cannot therefore squeeze between taste 

cells and get into the taste bud. Taste papillae located on the tongue appear as little red 

dots, or raised bumps, particularly at the front of the tongue called "fungiform" papillae. 

There are three other kinds of papillae, foliate, circumvallate and the non-gustatory 

filiform. In mammals taste buds are located throughout the oral cavity, in the pharynx, the 

laryngeal epiglottis and at the entrance of the esophagus. Taste perception fades with age; 

on average, people lose half their taste receptors by time they turn 20 [7]. The sensation of 

taste can be categorized into five basic tastes: sweetness, sourness, saltiness, bitterness, 

and umami. Taste buds are able to differentiate among different tastes through detecting 

interaction with different molecules or ions. Sweet, umami, and bitter tastes are triggered 

by the binding of molecules to G protein-coupled receptors on the cell membranes of taste 

buds. Saltiness and sourness are perceived when alkali metal or hydrogen ions enter taste 

buds, respectively [8]. As taste senses both harmful and beneficial things, all basic tastes 
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are classified as either aversive or appetitive, depending upon the effect the things they 

sense have on our bodies [9]. Sweetness helps to identify energy-rich foods, while 

bitterness serves as a warning sign of poisons [10].                                                                                                                                                                        

 

For a long period, it was commonly accepted that there is a finite and small number of 

"basic tastes" of which all seemingly complex tastes are ultimately composed. As of the 

early twentieth century, physiologists and psychologists believed there were four basic 

tastes: sweetness, sourness, saltiness and bitterness. At that time umami was not proposed 

as a fifth taste but now a large number of authorities recognize it as the fifth taste 

[11]. In Asian countries within the sphere of mainly Chinese and Indian cultural 

influence, pungency (piquancy or hotness) had traditionally been considered a sixth basic 

taste.                                                                                                                           

 

Today, the consensus is that sweet, amino acid (umami), and bitter taste converge on a 

common transduction channel, the transient receptor potential channel TRPM5, via PLC. 

TRPM5 is a newly discovered TRP related to other channels in sensory signaling systems. 

It has been shown that PLC, a major signaling effector of G-protein coupled receptors 

(GPCRs), and TRPM5 are co expressed with T1Rs and T2Rs and are vital for sweet, 

amino acid, and bitter taste transduction. Activation of T1R or T2R receptors by their 

respective taste molecules would stimulate G proteins, and in turn PLC (PLC-ß2). The 

activation of PLC generates two intracellular messengers - IP3 and DAG - from the 

hydrolysis of phosphatidylinositol-4, 5-bisphosphate (PIP2) and opens the TRPM5 

channel, resulting in the generation of a depolarizing receptor potential. Other additional 

pathways may modulate sweet, amino acid, or bitter taste reception but would not, 

themselves, trigger a taste response. It is not at present known how PLC activates TRPM5 

or whether DAG is involved [12-22].   

 

Bitter taste: Bitterness is the most sensitive of the tastes, and many perceive it as 

unpleasant, sharp, or disagreeable, but it is sometimes desirable and intentionally added via 

various bittering agents. Common bitter foods and beverages include coffee, unsweetened 

cocoa, south American mate, marmalade, bitter gourd, beer , olives, citrus peel, many 

plants in the Brassicaceae family, dandelion greens, wild chicory, and escarole. Bitterness 

is of interest to those who study evolution, as well as various health researchers [23, 24] 

since a large number of natural bitter compounds are known to be toxic. The ability to 
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detect bitter-tasting, toxic compounds at low thresholds is considered to provide an 

important protective function [23-25]. Plant leaves often contain toxic compounds, yet 

even amongst leaf-eating primates; there is a tendency to prefer immature leaves, which 

tend to be higher in protein and lower in fiber and poisons than mature leaves [26]. For 

humans, various food processing techniques are used worldwide to detoxify them in order 

to make them palatable, otherwise foods can be considered inedible for use [27]. The 

threshold for stimulation of bitter taste by quinine averages a concentration of 0.000008 M 

[23]. The taste thresholds of other bitter substances are rated relative to quinine, which is 

thus given a reference index of 1 [23, 28]. For example, Brucine has an index of 11, is thus 

perceived as intensely more bitter in taste than quinine, and is detected at a much lower 

solution threshold [20]. The most bitter in taste substance known is the synthetic 

chemical denatonium, which has an index of 1,000 [23]. It is used as an aversive 

agent (a bitterant) that is added to toxic substances to prevent accidental ingestion. This 

was discovered in 1958 during research on ligocaine, a local anesthetic, by MacFarlan 

Smith of Gorgie, Edinburgh, Scotland. Research has shown that TAS2Rs (taste receptors, 

type 2, also known as T2Rs) such as TAS2R38 coupled to the G protein gustducin are 

responsible for the human ability to taste bitter substances [12]. They are identified not 

only by their ability to taste for certain "bitter" ligands, but also by the morphology of the 

receptor itself (surface bound, monomeric) [13]. The TAS2R family in humans is thought 

to comprise about 25 different taste receptors, some of which can recognize a wide variety 

of bitter-tasting compounds. Over 550 bitter-tasting compounds have been identified, of 

which about 100 have been assigned to one or more specific receptors [16]. Recently it is 

speculated that the selective constraints on the TAS2R family have been weakened due to 

the relatively high rate of mutation and pseudogenization [29].  

 

Researchers use two synthetic substances, phenylthiocarbamide (PTC) and 6-n-

propylthiouracil (PROP) to study the genetics of bitter perception. These two substances 

taste bitter to some people, but are virtually tasteless to others. Among the tasters, some are 

so-called "supertasters" to whom phenylthiocarbamide (PTC) and 6-n-propylthiouracil 

(PROP) are extremely bitter. The variation in sensitivity is determined by two common 

alleles at the TAS2R38 locus [30]. This genetic variation in the ability to taste a substance 

has been a source of great interest to those who study genetics.    
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Bitter substances bind to the T2R receptors activating the G-protein and causing activation 

of PLC. The second messengers DAG and IP3 are produced (by hydrolysis of 

phosphatidylinositol-4, 5-bisphosphate) activating TRPM5 and mediating release of Ca2+ 

from internal stores. The elevated Ca2+ causes transmitter release and this increases the 

firing of the primary afferent nerve.        

                                                                         

The sensation is the result of signal transduction from taste receptors located in areas 

known as taste buds. The taste buds contain very sensitive nerve endings, which are 

responsible for the production and transmission of electrical impulses via cranial nerves 

VII, IX, and X to certain areas in the brain that are devoted to the perception of taste [6]. 

Bitter taste receptors are believed to have evolved for organism protection against the 

ingestion of poisonous food products. Bitter tastants [31-35] are very diverse in their 

chemical structure and physicochemical properties [14, 22]. In humans, bitter taste 

perception is mediated by 25 G-protein coupled receptors of the hTAS2R gene family [21]. 

The structural basis for hTAS2R’s unique ability to recognize a large number of 

chemically diverse and low-affinity agonists is not fully understood [15-20].  

 

1.1.2.1 Challenges and criteria for pursuing masking bitter taste approaches  

 

The most significant challenges that facing developers when pursuing masking bitter taste 

drugs approaches are: (i) Safety, tolerability and efficacy of the compound which are based 

on non-clinical testing, and physicochemical properties such as solubility, permeability and 

stability, (ii) lack of robust and reliable techniques for early taste screening of compounds 

with limited toxicity data, (iii) structure–taste relationships of pharmaceutically active 

molecules is limited, (iv) The perception of taste of pharmaceuticals has been shown to be 

different between adults and children and it might differ between healthy and patient 

children [8] and (v) ethical concerns to perform taste studies in healthy children unless the 

study is a ‘swill and spit’ one with drugs known to have a good safety profile [31, 34, 36-

38]. 

 

There are numerous pharmaceutical and OTC preparations that contain active ingredients, 

which are bitter in taste; with respect to OTC preparations, such as cough and cold syrups. 

A variety of taste masking approaches has been used to address the patient compliance 
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problem. Conventional taste masking methods such as the use of sweeteners, amino acids 

and flavoring agents alone are often inadequate in masking the taste of highly bitter drugs. 

 

1.1.3 Prodrug background  

 

Physicochemical, pharmacokinetic and pharmacodynamic characteristics of a drug 

molecule have been modified in the past few decades extensively and successfully by the 

most important chemical tools known as prodrug. In 1958, Albert was the first that 

introduced the term of ‘Prodrug’ or ‘Proagent’ [39], which describes compounds that prior 

to exhibiting their pharmacological effects undergo biotransformation process by 

eliminating or minimizing the undesirable properties while retaining the desirable ones. 

The term ‘Prodrug’ signifies a pharmacologically inactive chemical derivative that could 

be used in order to convert the physicochemical properties of drugs in a temporary manner. 

Prodrug is also known as ‘Proagent’, ‘Bioreversible derivative’ or ‘Latentiated drug’. The 

term of prodrug is the mostly used term. Also the term “Drug Latentiation” is referred to 

the prodrug design approach. The introduction of a new drug to the market is very 

expensive and is time consuming, and their use is restricted for many demerits reasons 

such as side-effects, improper organoleptic properties, difficulties in formulation, frequent 

requirements etc [40]. Thus, it is easier to modify the physicochemical parameters of most 

existing drugs, by the many approaches for prodrug design, which can enhance their 

usefulness, reduce their toxicity and alter their duration of action. Such approaches as the 

biological approach, is used to alter the route of administration to a route more acceptable 

to the patient. The physical approach, that involves modification of the design of the 

dosage form such as controlled delivery of drugs. The chemical approach where a 

biologically active compound forms a new compound that emphasizes to minimize toxicity 

in order to enhance the selectivity of most of these desired drugs, upon in vivo enzymatic 

attack will liberate the parent compound. Nowadays, prodrug remains as a promising and 

effective therapeutic tool in the future. Prodrug can be defined as pharmacologically inert 

chemical derivatives that can be converted in vivo either enzymatically or non-

enzymatically to the active drug molecule in order to exert their therapeutic effect. 

Followed by the subsequent rapid elimination of the released derivatizing group as soon as 

the goal is achieved it should be converted to the original drug. 

In order to optimize the drug therapeutics, various chemical means are required such as a 

design and development of [40] 
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1. New drugs with desirable properties: such approach requires screening of thousands of 

molecules for biological activity of which only one may become a clinically useful 

drug. 

2. Hard and soft drugs: which are basically analogs of existing drugs with desirable 

characteristics. 

a) A hard drug is known as a chemical entity resistant to biotransformation and has a 

long biological half-life; it is eliminated in unchanged form by the body through 

excretion. It also avoids generation of potentially harmful metabolites, decreases 

tendency for the possibility of drug-drug interaction and limits inter-subject 

variations. For example; Chlorpropamide, has too long half life which results in 

drug accumulation that leads to subsequent fluctuations in plasma drug 

concentration level on long term therapy. Metabolic stabilization is involved in 

hard drugs, whereas, the introduction of a functional group of predictable 

metabolic reactivity in a pharmacophore moiety is the concept of metabolic 

switching or metabolic promotion that  is used in ‘Soft Drug’ and ‘Prodrug’ 

design.  

b) A soft drug is known as a biologically active compound that is bio-transformed in 

vivo into nontoxic moieties in a rapid and predictable manner. In case of agents 

having very short duration of action such as insulin and adrenaline- natural 

endogenous agent. The design of synthetic soft drugs involves introduction of a 

group or a bond susceptible to rapid metabolic action. For example, the 

replacement of a part of the alkyl side chain of the drug with an ester group that 

can be readily hydrolyzed in vivo. The formation of relatively inert metabolites is 

the most important advantage of soft drugs design.   

3. Prodrug 

The purpose from the design in the latter two approaches, was to develop moieties in 

contrast to conventional new drug development methods by which having predictable 

biotransformation or excretion. 

 

1.1.3.1 Prodrug classification  

 

Prodrugs are classified into two categories: carrier linked and bioprecursor, both depend 

upon the constitution, lipophilicity, method of bioactivation and the catalyst involved in 

bioactivation [40].  
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1.1.3.1.1 Carrier linked prodrug (Simple Prodrug)  

 

Carrier linked prodrug is a compound that contains an active drug linked with a carrier 

group that can be easily removed enzymatically (such as an ester or labile amide). It alters 

the physicochemical or pharmacokinetic properties of the parent drug. The most common 

reaction for activation of carrier linked prodrug is hydrolysis.  

 

Hence, the major drawback of carrier linked prodrugs is that they are linked through 

covalent linkage with specialized nontoxic protective carriers or promoieties in a transient 

manner. This depends upon the nature of the carrier in order to alter or eliminate the 

undesirable properties of the parent molecule. Carrier-linked prodrugs can be further 

subdivided into (a) bipartite which is composed of one carrier (group) attached to the drug, 

(b) tripartite which is a carrier group that is attached via linker to drug and (c) mutual 

prodrugs consisting of two drugs linked together.  

 

1.1.3.1.2 Bioprecursors or metabolic precursors  

 

Bioprecursors are inert molecules that do not contain a carrier and are obtained by 

chemical modification of the active drug. As the parent drug such a moiety has almost the 

same lipophilicity and is bioactivated only enzymatically by redox biotransformation. For 

example, aryl acetic acid NSAID such as fenbufen from aryl propionic acid precursors.  

 

1.1.3.2 Prerequisites of an ideal prodrug  

 

An ideal prodrug should possess the following properties [40]: 

1)  Pharmacological inertness. 

2) Rapid transformation into the active form at the target site, either chemically or 

enzymatically. 

3) Non-toxic metabolic fragments followed by their rapid elimination. 

 

1.1.3.3 Application of prodrug approach  

 

The prodrug approach has been extensively studied not only for correction of 

pharmacokinetic behavior but also pharmaceutical, organoleptic, physical and chemical 
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properties of the parent to enhance the stability and improve the efficacy of therapy for 

more patient compliance and acceptance.  

 

1.1.3.4 Pharmaceutical and pharmacokinetic applications  

 

The undesirable organoleptic properties and physicochemical problems associated with 

drug formulation can be resolved by different strategies such as, taste and odour masking, 

change of the physical form of the drug, reduction of gastrointestinal irritation, reduction 

of pain on injection, enhancement of solubility and dissolution rate (hydrophilicity) of drug 

and enhancement of chemical stability. Pharmacokinetic properties which affect the 

bioavailability and mean residence time of a drug are very important for its 

pharmacodynamic efficacy. The prodrug approach can modulate many of the application 

drawbacks in the body. The most important applications are: 

a) Taste masking 

Bitterness, acidity or causticity of the drug are the major reasons for patient incompliance 

and in acceptance particularly pediatrics. In order to overcome the bad taste of drug, two 

approaches can be utilized:  

1) Reducing drug stability in saliva. 

2) Lowering the affinity of drug for taste receptors, thus making the bitterness or 

causticity imperceptible. 

 

Nowadays, it is believed that bitter taste is the results of drug interaction with taste 

receptors on the tongue as mentioned earlier. Blocking the interaction ability could reduce 

or eliminate the bitter taste sensation, by designing and synthesizing prodrugs with a 

suitable linker.  

 

Due to the large variation of structural features of bitter tasting molecules, it is difficult to 

generalize the molecular requirements for bitterness. Nevertheless, it was reported that a 

bitter tastant molecule requires a polar group and a hydrophobic moiety. A quantitative 

structure activity relationship (QSAR) model was developed and has been established for 

the prediction of bitterness of several tastant analogues. For example, it was reported that 

the addition of a pyridinium moiety to an amino acid chain of a variety of bitter amino acid 

compounds decreases bitterness, such as in the case of glycine. Other structural 

modifications, such as an increase in the number of amino groups/residues to more than 3 
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and a reduction in the poly-hydroxyl group/ COOH, have been proven to decrease 

bitterness significantly. Moreover, changing the configuration of a bitter tastant molecule 

by making isomer analogues was found to be important for binding affinity to enhance 

bitterness agonist activity (e.g. L-tryptophan is bitter while D-tryptophan is sweet) [41]. 

 

b) Odor masking 

Liquids with low boiling point have a strong odor such as ethyl mercaptan. The odor of 

many compounds depends upon their vapor pressure. For example, the ester form of a 

prodrug can be used for odor masking. 

 

c) Enhancement of solubility and dissolution rate (hydrophilicity) of drugs 

When dissolution is the rate limiting step in the absorption of poorly aqueous soluble 

agents or when parental or ophthalmic formulation of such agents is desired, hydrophilicity 

or water solubility is required. As more than 30% of drug discovery compounds have poor 

aqueous solubility and most of them are hydrophobic in nature and possess poor 

bioavailability. Prodrugs can increase their aqueous solubility by improving dissolution 

rate via ionizable or polar neutral functions attachment such as phosphates, amino acids or 

sugar moieties [42]. 

 

d) Enhancement of chemical stability 

Drugs may be destabilized during its shelf life stability. The prodrug approach can stabilize 

the drugs aqueous solution, for example, against degradation at acidic pH and also enhance 

their water solubility. 

 

e) Enhancing permeability and absorption 

Oral drug delivery is the preferred route of administration for the majority of the drugs but 

most common absorption routes are largely nonspecific, unfacilitated and transported by 

passive mechanism. Absorption and permeability have a significant effect on drug 

efficiency, improving the lipophilicity of the parent drug by masking polar ionized or 

nonionized functional groups will enhance either topical or oral absorption [42].  

 

f) Changing the distribution profile 

In order to achieve site-selective drug delivery as mentioned for many decades, many 

attempts have been made to harness different macromolecular strategies and 
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nanotechnologies, but these methods lack clinical success. Today, the prodrug approach is 

one of the most promising site-selective drug delivery strategies which exploit target cell- 

or tissue- specific endogenous enzymes and transporters. In this prodrug approach many 

great prodrugs have increased their efficacy and safety profiles.  

 

g) Protecting from rapid metabolism and excretion 

The beneficial effects of drugs can be impaired by extensive excretion and\or metabolic 

pathways. First-pass effect problem in the gastrointestinal tract and liver has been bypassed 

by sublingual or buccal administration or by modified or controlled release formulations. A 

prodrug structure by adding a lipophilic promoieties can decrease the solubility of many 

drugs and is one way to prolong the duration of action of very water-soluble drugs.  

There are two major challenges facing the prodrug approach strategy:  

1. Hydrolysis of prodrugs by esterases. 

2. Bioactivation of the prodrug by cytochrome P450 enzymes.  

 

Prodrug has been one of the classical and highly studied topics by researchers in 

pharmaceutical developments. Still, it remains the subject of interest due to the fact that the 

drugs in the developmental pipeline do possess some pharmaceutical or pharmacokinetic 

drawbacks. 

 

1.2 Research problem   

 

The major problems in the administration of amoxicillin and cephalexin antibacterial drugs 

are: 

1) The low stability in suspension formulation. These medications are very labile 

molecules when are exposed to aqueous media. They might undergo hydrolysis when 

they are standing in solutions.  

The main cause of their degradation is the reactivity of the strained lactam ring 

particularly towards hydrolysis, the course of the hydrolysis and the nature of the 

degradation products are influenced by the pH of the solution. The 3-lactam carbonyl 

group in both drugs readily undergo nucleophilic attack by water or especially 

hydroxide ion to form the inactive penecilloic acid in case of amoxicillin which is 

reasonably stable in neutral to alkaline solutions but readily undergoes 

decarboxylation and further hydrolytic reactions in acidic solutions. 
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2) Their bitter tastes which lead to lack of patient compliance and might create a serious 

challenge to the pharmacist in pediatric and geriatric formulations. 

3) The current suspensions of these antibacterial are given three or four times to a patient 

for achieving the desired effect. Synthesis of prodrugs which have the potential to 

release the parental drugs in a controlled manner have a good chance to overcome the 

frequent dosing problem. 

 

1.3 Thesis objective  

 

Based on DFT calculations by Karaman’s group on amine drugs [43-45] four novel 

antibacterial prodrugs of amoxicillin and cephalexin were synthesized. The designed 

prodrugs have the potential to be chemically, and not enzymatically, intraconverted to the 

parent drug in a programmable manner upon exposure to physiological environments. 

 

1.3.1 General objectives: 

 

The main three goals of this research were: (1) increase solution stability of the 

antibacterial drugs (amoxicillin and cephalexin); (2) masking their bitterness, and (3) 

making a sustain release dosage form.  

 

1.3.2 Specific objectives:  

 

� To be relatively stable in aqueous media. 

� To NOT have bitter taste. 

� To release the parental drug in a sustain release manner. 

� To be readily soluble and stable in a physiological environment  

� To have a moderate hydrophilic-lipophilic balance (HLB) value  

� To furnish upon cleavage a safe and non-toxic by-products. 

 

1.4 Research question 

   

This study will provide the answers to the following questions:- 

• Does the prodrug possess superior stability in water with no bitter taste properties? 
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• Would the synthesized prodrugs be capable of releasing the parent drug (amoxicillin 

and cephalexin) in a sustained release manner via the in vivo route? 

• Does the synthesized prodrug have physiochemical properties which could lead to a 

good pharmacokinetic properties and a high bioavailability? 

 

In this study, two linkers were utilized in order to be linked to an amine drug via amide 

bonding. The synthesized amide prodrugs of amoxicillin and cephalexin that were 

synthesized (Scheme 2.1 and 2.2) show a carboxylic acid group as a hydrophilic moiety 

and a hydrocarbon skeleton as a lipophilic moiety. Due to a balanced hydrophilic-

lipophilic value the prodrug entity should have the potential to penetrate tissues in a good 

manner. It was reported that a polar group and a hydrophilic moiety are required for bitter 

tasting molecules. QSAR model was developed and established for the prediction of 

bitterness of several tastant analogues. The role of the linker was to block the free amine 

group in the corresponding parental drug and to convert it into an amide group, the former 

is believed to be responsible for the bitterness of the drug [43, 46-48]. Our strategy was to 

prepare amoxicillin ProD 1-2 and cephalexin ProD 1-2 as sodium or potassium 

carboxylate due to their high stability in neutral aqueous medium. 

 

Based on DFT calculation results obtained by Karaman’s group studies on similar amine 

drugs, design and synthesis of four novel prodrugs for amoxicillin and cephalexin are 

studied and discussed in the course of this work.   
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Chapter Two 
 

Literature Review 

 

2.1 Introduction  

 

Most of the antibacterial drugs used in the market suffer several problems, mostly 

characterized with unpleasant, bitter taste and low stability. Amoxicillin and cephalexin 

have extremely unpleasant and bitter taste which is difficult to mask. This creates a serious 

problem in pediatric and geriatric patients, especially if the patients cannot swallow whole 

tablets or when small doses are required. Even though, the strategies that were used for 

masking bitter taste by the use of sweeteners and flavors may cause a serious problem in 

diabetic pediatrics and geriatrics patients. It is believed that the extremely bitter and 

unpleasant taste of antibiotics is due to the intermolecular forces between these drugs and 

the active site of the bitter taste receptors, most likely either due the hydrogen or ionic 

bonds.  

 

Using the novel prodrug approach based on intramolecular processes we will have a good 

chance to mask the bitter taste of the concerned antibacterial agents. In addition 

overcoming the frequent dosing will be achieved.  

 

2.1.1 Enzyme models utilized for the design of potential bitterless prodrugs for bitter 

drugs such as atenolol, paracetamol, guaifenasin, amoxicillin and cephalexin.  

 

Scholar studies of enzyme mechanisms by several chemists and biochemists, over the past 

five decades, have had a significant contribution for understanding the mode and scope of 

enzymes catalysis.  

 

Nowadays, the scientific community has reached to the conclusion that enzyme catalysis is 

based on the combined effects of the catalysis by functional groups and the ability to 

reroute intermolecular reactions through alternative pathways by which substrates can bind 

to preorganized active sites. It is believed that rate accelerations by enzymes can be 

proceed by (i) covalently enforced proximity, as seen in the case of chymotrypsin, [49] (ii) 

non-covalently enforced proximity, as represented in the catalysis of metallo-enzymes, 
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[50] (iii) covalently enforced strain, [51], and (iv) non-covalently enforced strain, which 

has been extensively studied on models mimicking the lysozyme enzyme which is most 

closely associated with rate acceleration due to this kind of strain [52]. 

 

Rates for the majority of enzymatic reactions ranges between 1010 and 1018 -fold their non-

enzymatic bimolecular counterparts. For instance, biochemical reactions involving the 

catalysis of the enzyme cyclophilin are enhanced by 105 and those by the enzyme orotidine 

monophosphate decarboxylase are accelerated by 1017 [53]. The significant enhancement 

in rate manifested by enzymes is a result of the substrate binding within the confines of the 

enzyme active site. The substrate-enzyme binding energy is the dominant driving force and 

the major contributor to catalysis. A consensus has been reached that in all enzymatic 

processes binding energy is used to overcome physical and thermodynamic factors that 

make barriers to the reaction (free energy). These factors are: (1) the change in entropy 

(∆S˚), in the form of the freedom of motions of the reactants in solution; (2) the hydrogen 

bonding net around bio-molecules in aqueous solution; (3) a proper alignment of catalytic 

functional groups on the enzyme; and (4) the distortion of a substrate that must occur 

before the reaction takes place [54, 55]. 

 

Scholarly studies have been done by Bruice, Cohen, Menger, Kirby and others to design 

enzyme models having the potential to reach rates comparable to rates of biochemical 

reactions catalyzed by enzymes. Examples for such models are those based on rate 

enhancements driven by covalently enforced proximity. The most cited example is the 

intramolecular cyclization of dicarboxylic semi esters to anhydrides advocated by Bruice et 

al. Bruice et al. has demonstrated that a relative rate of anhydride formation can reach 5 x 

107 upon cyclization of a dicarboxylic semi ester when compared to a similar counterpart’s 

bimolecular process [55].  

 

Other examples of rate acceleration based on proximity orientation include: (a) acid-

catalyzed lactonization of hydroxy-acids as studied by Cohen et al. and Menger, (b) 

intramolecular SN2-based cyclization reactions as researched by Brown et al. and 

Mandolini’s group, (c) proton transfer between two oxygens in Kirby’s acetals, and proton 

transfer between nitrogen and oxygen in Kirby’s enzyme models, (d) proton transfer 

between two oxygens in rigid systems as investigated by Menger, and (e) proton transfer 

from oxygen to carbon in some of  Kirby’s enol ethers. The conclusions emerged from 
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these studies are (1) the driving force for enhancements in rate for intramolecular processes 

are both entropy and enthalpy effects. In the cases by which enthalpy effects were 

predominant such as ring-closing and proton transfer reactions proximity or/and steric 

effects were the driving force for rate accelerations. (2) The nature of the reaction being 

intermolecular or intramolecular is determined on the distance between the two reacting 

centers. (3) In SN2-based ring-closing reactions leading to three-, four- and five-membered 

rings the gem-dialkyl effect is more dominant in processes involving the formation of an 

unstrained five-membered ring, and the need for directional flexibility decreases as the size 

of the ring being formed increases. (4) Accelerations in the rate for intramolecular 

reactions are a result of both entropy and enthalpy factors. (5) An efficient proton transfer 

between two oxygens and between nitrogen and oxygen in Kirby’s acetal systems were 

affordable when a strong hydrogen bonding was developed in the products and the 

transition states leading to them [55]. 

 

In the past few years some prodrugs based on the trimethyl lock system have been 

reported. Borchardt et al. has shown that the pro–prodrug 3-(2’-acetoxy-4’, 6’-dimethyl 

dimethyl) - phenyl-3, 3-dimethylpropionamide is capable of releasing the biologically 

active amine drug upon acetate hydrolysis by enzyme triggering. Another successful 

example exploiting a stereopopulation control model is the prodrug Taxol which enhances 

the drug water solubility and hence affords it to be administered to the human body via 

intravenous injection. Taxol is the brand name for paclitaxel, a natural diterpene, approved 

in the USA for use to treat cancer [55]. 

 

2.1.2 Computational methods used in the design of bitterless prodrugs for bitter 

tastant drugs  

 

Nearly 65 years ago, organic, bioorganic and medicinal chemists alike have started using 

computational methods for calculating molecular properties of ground and transition states. 

These computational methods use principles of computer science to aid in solving 

chemical problems. Theoretical results emerged from these methods, incorporated into 

efficient computer programs, for calculating the structures and physical and chemical 

properties of molecules.  
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Equilibriums energy-based and reactions rates calculations for systems having medicinal 

interests are of a vast importance to the health community. Today, quantum mechanics 

(QM) such as ab initio, semi-empirical, DFT and molecular mechanics (MM) are 

commonly and increasingly being used and broadly accepted as precise tools for predicting 

structure-energy calculations for drugs and prodrugs alike [55]. 

 

2.1.3 Mechanistic study of the acid-catalyzed hydrolysis of maleamic acids 1-9 used 

for the design of atenolol, amoxicillin and cephalexin prodrugs                             

 

The acid-catalyzed hydrolysis of 1-9 (Figure 2.1) was kinetically investigated by Kirby et 

al. The study demonstrated that the amide bond cleavage is due to intramolecular 

nucleophilic catalysis by the adjacent carboxylic acid group and the rate-limiting step is the 

tetrahedral intermediate breakdown (Figure 2.2) [56]. In 1996, the reaction was 

computationally investigated by Katagi using AM1 semiempirical calculations. In contrast 

to what was suggested by Kirby, Katagi’s study demonstrated that the rate- limiting step is 

the formation of the tetrahedral intermediate and not its dissociation [57]. Later on Kluger 

and Chin have experimentally researched the mechanism of the intramolecular hydrolysis 

process utilizing several N-alkylmaleamic acids derived from aliphatic amines with a wide 

range of basicity [58]. The study findings demonstrated that the identity of the rate-limiting 

step is a function of both the basicity of the leaving group and the solution acidity [55].         

                                                 

In order to utilize Kirby’s enzyme model [56] for the design of prodrugs of the following 

drugs: atenolol, amoxicillin and cephalexin, a mechanistic study using DFT calculation 

methods at B3LYP/6-31G (d,p), B3LYP/311+G (d,p) levels and hybrid GGA (MPW1k) on 

an intramolecular acid catalyzed hydrolysis of maleamic (4-amino-4-oxo-2- butenoic) 

acids (Kirby’s N-alkylmaleamic acids) 1-9 was conducted. The calculations confirmed that 

the reaction involves three steps: (1) proton transfer from the carboxylic group to the 

adjacent amide carbonyl oxygen, (2) nucleophilic attack of the carboxylate anion onto the 

protonated carbonyl carbon; and (3) dissociation of the tetrahedral intermediate to provide 

products (Figure 2.2). Moreover, the calculations demonstrate that the rate-limiting step is 

dependent on the reaction medium. When the calculations were run in the gas phase the 

rate-limiting step was the tetrahedral intermediate formation, whereas when the 

calculations were conducted in the presence of a cluster of water the dissociation of the 

tetrahedral intermediate was the rate-limiting step. When the leaving group (methylamine) 
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in 1-9 was replaced with a group having a low pKa value the rate-limiting step of the 

hydrolysis in water was the formation of the tetrahedral intermediate. In addition, the 

calculations revealed that the efficiency of the intramolecular acid-catalyzed hydrolysis by 

the carboxyl group is remarkably sensitive to the pattern of substitution on the carbon–

carbon double bond; 1) difference between strain energy between intermediate and product 

and strain energy between intermediate and reactant; 2) distance between hydroxyl oxygen 

of the carboxylic group and amide carbonyl carbon and 3) the attack angle. The rate of 

hydrolysis was found to be linearly correlated with the strain energy of the tetrahedral 

intermediate or the product. Systems having strained tetrahedral intermediates or products 

experience low rates and vice versa [45, 59-61]. This acid catalyzed hydrolysis occurs in 

pH ranges between 1-5 [56], as shown in Figure 2.3. 

                                                  

 

Figure (2.1): Acid-catalyzed hydrolysis of maleamic acids 1-9. 
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Figure (2.2): Proposed mechanism for the acid-catalyzed hydrolysis of maleamic acids. 

 

 

Figure (2.3): pH-Rate profiles for the hydrolysis of alkyl-N-methylmaleamic acids at 39 c 

and ionic strength 1-0. In increasing order of reactivity R = H, Me, Et, Pr, and Bu.   
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2.2 Bitterless amoxicillin and cephalexin prodrugs based on Kirby’s 

maleamic acids enzyme model             

 

As mentioned previously, most of the antibacterial agents that are commonly used suffer 

unpleasant taste and a respected number of them are characterized with bitter taste. For 

example, amoxicillin and cephalexin have an extremely unpleasant and bitter taste which is 

difficult to mask. This is a particular problem in geriatric patients who cannot swallow 

whole tablets or when small doses are required. Even the antibacterial suspension is 

difficult for pediatrics to administer due to its better and unpleasant taste [62-67]. It is 

widely assumed that the extremely bitter and unpleasant taste of these antibacterial drugs is 

due to a formation of intermolecular force/s between the drug and the active site of the 

bitter taste receptor/s. The intermolecular bond/s is/are most likely due to formation either 

via hydrogen bond of the amine (in amoxicillin and cephalexin) group to the active site of 

the bitter taste receptors.           

 

Antimicrobial agents are classified according to their specific mode of action against 

bacterial cell. By which these agents may interfere with cell wall synthesis, inhibit protein 

synthesis, interfere with nucleic acid synthesis or inhibit a metabolic pathway. They have a 

broad spectrum of activity against both gram-positive and gram-negative bacteria. Among 

these agents, β-lactams – penicillins, cephalosporins, carbapenems and monobactams, 

which represent 60% of all antimicrobial use by weight. They are preferred because of 

their efficacy, safety, and because their activity can be extended or restored by chemical 

manipulation. Inevitably, however, their usage has been restricted because of their bacterial 

resistance.     

                                                              

2.2.1 Amoxicillin   

                                                                                                    

Amoxicillin is an oral semi-synthetic penicillin, moderate-spectrum, bacteriolytic, β-lactam 

antibiotic used to treat bacterial infections caused by susceptible microorganisms by which 

it  is susceptible to the action of the β-lactamases. Amoxicillin has a bactericidal action and 

acts against both Gram positive and Gram-negative microorganisms by inhibiting the 

biosynthesis and repair of the bacterial mucopeptide wall. It is usually the drug of choice 

within its class because it is well absorbed following oral administration. Amoxicillin 
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presents some outstanding advantages in comparison with other aminopenicillins, such as: 

a better absorption from the intestinal tract, better capacity for reaching effective 

concentrations at the sites of action and a more rapid capacity for penetrating the cellular 

wall of Gram-negative microorganisms. Aminopenicillins are frequently prescribed agents 

for the oral treatment of lower respiratory tract infections and are generally highly effective 

against S. pneumonia and non- β-lactamase-producing H. influenza. Amoxicillin is mostly 

common antibiotics prescribed for children. It has high absorption after oral administration 

which is not altered and affected by the presence of food. Amoxicillin dose reaches Cmax 

about 2 hours after administration and is quickly distributed eliminated by excretion in 

urine (about 60%- 75%). The antibacterial effect of amoxicillin is extended by the presence 

of a benzyl ring in the side chain. Because amoxicillin is susceptible to degradation by β-

lactamase-producing bacteria, which are resistant to a broad spectrum of β-lactam 

antibiotics, such as penicillin, for this reason, it is often combined with clavulanic acid, a 

β-lactamase inhibitor. This increases effectiveness by reducing its susceptibility to β-

lactamase resistance. Amoxicillin has two ionizable groups in the physiological range (the 

amino group in α-position to the amide carbonyl group and the carboxyl group). 

Amoxicillin has a good pharmacokinetic profile with bioavailability of 95% if taken orally, 

its half-life is 61.3 minutes and it is excreted by the renal and less than 30% bio-

transformed in the liver [68-71].    

 

2.2.2 Cephalexin  

                                                                                                                     

Cephalexin is a first-generation cephalosporin antibiotic, which was chosen as the model 

drug candidate to obtain dosage with improved stability, palatability and attractive 

pediatric elegance, cost effective with ease of administration. Cephalosporins are the most 

widely used for treatment of skin infections because of their safety profile and their wide 

range of activity against both gram positive and gram negative microorganism. Cephalexin 

is also used for the treatment of articular infections as a rational first-line treatment for 

cellulitis, it is a useful alternative to penicillins hypersensitivity, and  thought to be safe in 

a patient with penicillin allergy but caution should always be taken, that’s because 

cephalexin and other first-generation cephalosporins are known to have a modest cross-

allergy in patients with penicillin hypersensitivity. In addition, cephalexin is also effective 

and used in the treatment of group A β-hemolytic streptococcal throat infections. 

Cephalexin works by interfering with the bacteria's cell wall formation, causing it to 



 

26 

rupture, and thus killing the bacteria. The compound is zwitterion by which it contains both 

a basic and an acidic group, the isoelectric point of cephalexin in water is approximately 

4.5 to 5.0.  Cephalexin has a good pharmacokinetic profile; it is well absorbed, 80% 

excreted unchanged in urine within 6 hours of administration. Cephalexin’s half-life is 0.5-

1.2 hours and it is excreted via the renal. It is used for the treatment of infections including 

otitis media, streptococcal pharyngitis, bone and joint infections, pneumonia, cellulitis and 

urinary tract infection, and so it may be used to prevent bacterial endocarditis  [72-75].          

 

2.3 Antibacterial drugs history  

 

Amoxicillin and cephalexin as mentioned before suffer low stability and bitter taste 

sensation. In general, several attempts were made in order to enhance antibacterial drugs 

aqueous solubility and bioavailability. Among several research approaches, the prodrug 

approach has been widely used for an improvement of drugs delivery to their site of action 

by physicochemical modulation properties that affect absorption or by targeting to specific 

enzymes or membrane transporters [76, 77]. Generally, enzymatic catalysis is required for 

most of prodrugs that are in clinical use in order to be converted into the parent drug. This 

is mostly particular for those prodrugs designed to liberate the parent drug in the blood 

stream following gastro-intestinal absorption. These prodrugs are typically ester 

derivatives of drugs containing carboxyl or hydroxyl groups which are converted into the 

parent drug by esterase catalyzed hydrolysis. However, a high chemical reactivity that 

precludes either liquid or solid formulation of the prodrug (e.g. some phenol esters) or low 

chemical reactivity, resulting in reduced regeneration of the parent drug due to enzymatic 

activation for other functional groups. Thus, non-enzymatic pathways for some prodrugs 

that can regenerate the parent drug, have emerged as an alternative approach by which 

prodrug activation is not influenced by inter- and intra-individual variability that affects the 

enzymatic activity. In particular, since the middle-1980s, cyclization-activated prodrugs 

have been capturing the attention of medicinal chemists, and reached maturity in prodrug 

design in the late 1990s. Activation of prodrugs via a cyclization pathway allows a fine 

tuning of the rate of drug release through the appropriate choice of the functional groups 

involved in ring closure and stereoelectronic constraints in the course of the cyclization 

step. As noticed from the history of prodrugs mostly in preclinical and clinical 

consideration of prodrug bioconversion, the most common that several hydrolase-activated 

prodrugs of penicillins, cephalosporins, and angiotensin-converting enzyme inhibitors have 
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less than complete absorption which was observed and highlights yet another challenge 

with prodrugs susceptible to esterase hydrolysis. The oral bioavailability of these 

mentioned types of prodrugs is typically around 50% since these prodrugs undergo 

premature hydrolysis during the absorption process in the enterocytes of the 

gastrointestinal tract [78]. Another approach which has been utilized to enhance 

bioavailability of antibacterial drugs in general, is by making the corresponding prodrugs 

with optimum lipophilicity. Some drugs remain poorly absorbed from most of the 

administration routes due to their poor lipophilicity. Two approaches were utilized to 

enhance the bioavailability of antibacterial drugs by increasing their lipophilicity: (a) 

membrane/water partition coefficient of the lipophilic form of a drug has been enhanced as 

compared to the hydrophilic form, thus favoring passive diffusion such as in the cases of 

pivampicillin, bacampicillin and talamipicillin (prodrugs of ampicillin) which are more 

lipophilic and better absorbed than amoxicillin and are rapidly interconverted  and (b) the 

lipophilic prodrugs have poor solubility in gastric fluids and thus greater stability and 

absorption example for such approach is erythromycin esters [79]. Some ampicillin esters 

were prepared for improving the bioavailability of ampicillin. For example, the 

pivaloyloxyethyl (pivampicillin), phthalidyl (talampicillin), and ethoxycarbonyloxyethyl 

(bacampicillin) were found to have two fold the oral bioavailability of their parent drug, 

ampicillin. Complete hydrolysis of these esters was occurred in the gastrointestinal 

mucosa, whereas methoxymethyl ester of ampicillin was partially hydrolyzed by gut and 

hepatic first-pass metabolism and appears in the systemic circulation and tissues as intact 

ester [80, 81].   

 

Amoxicillin and cephalexin antibacterial drugs have good pharmacokinetic properties with 

a good bioavailability. However, to our knowledge there was no report on studies 

involving masking bitter taste of antibacterial agents using the prodrug approach. We 

believe that blocking the amine group in amoxicillin and cephalexin by making the 

proposed prodrugs will result in inhibition of the interaction between the amine group of 

the antibacterial agent and the bitter taste receptors. It is worth noting that bitter sensation 

is a result of  either hydrogen bonding or ionic bonding between these substrate and its 

receptors [47]. 

 

Computational chemistry methods could be useful for the design of innovative prodrugs 

for hydroxyl, phenol, or amine containing drugs. For instance, mechanisms of 
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intramolecular processes for a respected number of enzyme models that were previously 

investigated by others to understand enzyme catalysis have been recently explored by us 

and exploited for a design of some new novel prodrug [38]. Using the DFT, molecular 

mechanics and ab initio at different levels, numerous enzyme model processes were 

calculated for determining the factors governing the synthesized prodrugs rates. According 

to their demonstration, there is a need to further explore the mechanisms for the above 

mentioned processes for assigning the factors affecting the nature and the mode of the 

reaction. Unraveling the reaction mechanism would allow for an accurate design of an 

efficient chemical device to be utilized as a prodrug promoiety that can be covalently 

linked to a parent drug to provide chemically and not enzymatically the parent drug in a 

programmable manner upon exposure to physiological environments. For example, 

exploring the mechanism for proton transfer in Kirby’s acetals has led to a design and 

synthesis of novel prodrugs of aza-nucleosides to treat myelodysplastic syndromes [48], 

statins to treat high cholesterol blood levels [59], paracetamol prodrugs with no bitter taste 

to be administered to children and elderly as antipyretic and pain killer and prodrugs of 

phenylephrine as decongestants [82]. The prodrug moiety was attached to the hydroxyl 

group of the active drug such that the drug promoiety (prodrug) has a potential to degrade 

upon exposure to physiological environment such as stomach, intestine, and/or blood 

circulation, with rates that are solely dependent on the structural features of the 

pharmacologically inactive promoiety (Kirby’s enzyme model). Other different linkers 

such as Kirby’s N-alkylmaleamic acids (enzyme model) were also investigated for the 

design of some prodrugs such as those of tranexamic acid to treat bleeding conditions and 

acyclovir (anti-viral drug) to treat Herpes Simplex. Further, prodrugs for masking the 

bitterness of antibacterial drugs such as cefuroxime were designed and made as well. The 

role of the promoiety in the antibacterial (cefuroxime) and paracetamol prodrugs was to 

block the free amine (cefuroxime) or phenol (paracetamol) which is believed to be 

responsible for the drug bitterness, and to enable the release of the drug in a programmable 

manner. Menger’s Kemp acid enzyme model was also exploited for the design of 

dopamine prodrugs for the treatment of Parkinson’s disease. In addition, dimethyl fumarate 

prodrugs to treat psoriasis have been designed, synthesized and currently under in vitro and 

in vivo kinetic studies [55]. 
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2.3.1 Proposed bitterless antibacterial prodrug  

 

Amoxicillin and cephalexin are antibacterial drugs that have been developed and widely 

used for clinical purposes. They have a relatively narrow spectrum against pathogens and 

are hydrolyzed by various types of β-lactamases. These antibacterial drugs suffer several 

problem, they have a low stability and bitter taste sensation that leads to patient 

incompliance. There are limited studies to improve their clinical profiles and mask their 

bitter taste. Several attempts were made in order to enhance their aqueous solubility, 

potency and bioavailability. According to Karaman work and based on the previously 

reported DFT calculations and on experimental data for the acid catalyzed hydrolysis of 

amine acids 1-9 [56, 61], 4 antibiotic prodrugs were designed and synthesized (Scheme 2.1 

and 2.2): (1) to improve the stability and aqueous solubility of the parent drugs, (2) to 

make a chemical device that is capable for releasing the parent drug in a sustained release 

manner, and 3) to provide drugs without bitter taste. As shown in Scheme 2.1 and 2.2, 

amoxicillin and cephalexin prodrugs are composed of an amide acid linker containing a 

carboxylic acid group (hydrophilic moiety) and the rest of molecule is composed of a 

lipophilic moiety. The combination of both hydrophilic and lipophilic groups provides a 

prodrug moiety with a high permeability (a moderate HLB). This balance of the prodrug 

molecule will be dependent on the pH of the target physiological environment. In the 

stomach (pH 1-2), it is expected that prodrugs of amoxicillin and cephalexin will be in a 

free carboxylic acid form (a relatively high lipophilicity) whereas in the blood stream 

circulation (pH 7.4) a carboxylate anion form with a relatively low lipophilicity is expected 

to be predominant. Prodrugs of amoxicillin and cephalexin (Scheme 2.1 and 2.2) were 

synthesized in the form of sodium or potassium carboxylate due to their high stability in 

neutral aqueous medium. The only difference between the proposed prodrugs and the 

parent drugs is that the former has an amide moiety instead of the free amine group in the 

latter, which makes the prodrug more stable than its corresponding amine parent drug. In 

addition, kinetic studies on amoxicillin and cephalexin revealed that increasing the 

lipophilicity of the drug leads to an increase in the stability of its aqueous solutions. Based 

on the above, it is expected that the four antibacterial proposed prodrugs of amoxicillin and 

cephalexin will be more resistant to hydrolysis when standing in aqueous solutions, in 

addition...  
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In this study, we describe the synthesis, characterization and kinetic study of the 

interconversion of the four proposed antibacterial prodrugs, of amoxicillin ProD 1-2 and 

cephalexin ProD 1-2 in different media such as 1N HCl, buffer pH 2.5, buffer pH 5.0 and 

buffer pH 7.4. This study was performed in order to achieve desirable penicillin derivatives 

prodrugs of both amoxicillin and cephalexin antibacterial agents that are capable of being 

stable in aqueous solutions, more lipophilic, less bitter and have the potential for releasing 

the corresponding drugs in a slow release manner. 

 

Scheme (2.1): Chemical structures for amoxicillin prodrugs. 

 

  

Scheme (2.2): Chemical structures for cephalexin prodrugs.   
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Chapter Three 
 

Experimental Part 

 

This chapter consists of three main parts. Part one is concerned with the identification and 

synthesis of the most popular antibacterial prodrugs that are used worldwide. Part two 

describes all instruments, chemicals and reagents used in this study. Part three describes 

the synthetic methods and analysis of the four antibacterial prodrugs of amoxicillin and 

cephalexin.  

 

3.1 Part One  

 

3.1.1 Identification of the most important and popular antibiotic prodrugs  

 

Numerous novel prodrugs have been designed by Karaman and coworkers for the 

treatment of various diseases using DFT calculation methods. According to the results 

obtained from DFT calculation on similar amine drugs, design and synthesis of four novel 

amoxicillin and cephalexin prodrugs containing two different linkers were studied in the 

course of this work. The main goals of this work were: (1) increase solution stability of the 

two antibacterial drugs, amoxicillin and cephalexin; (2) masking their bitter taste sensation, 

and (3) attempting to make a sustain release dosage forms of the above mentioned 

antibacterial drugs. 

 

3.2 Part Two   

 

3.2.1 Instrumentations  

 

3.2.1.1 pH meter  

 

pH meter model HM-30G: TOA electronics™ was used to measure the pH values for all 

buffers and reaction media involved in this study. 
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3.2.1.2 UV-Spectrophotometer  

 

The concentrations of each sample of the four antibacterial prodrugs and their parental 

drugs were determined spectrophotometerically (UV-spectrophotometer, Model: UV-1601, 

Shimadzu, Japan) by monitoring the absorbance at λmax that was determined from both the 

standard and its prodrug.  

 

3.2.1.3 Fourier Transform Infrared Spectrophotometer (FT-IR)  

 

It is the most useful and preferred method of infrared spectroscopy. In infrared 

spectroscopy, IR radiation is passed through a sample. Some of the infrared radiation is 

transmitted or absorbed by the sample. This will create a molecular fingerprint of the 

sample from the resulting spectrum that corresponds to the frequencies of vibration 

between the bonds. The spectrum represents the molecular absorption and transmission. 

Infrared spectroscopy is useful for several types of analysis, as no two unique molecular 

structures produce the same infrared spectrum.   

 

FT-IR can result in a positive identification of unknown samples that is known as 

quantitative analysis of every different kind of material and can determine the consistency 

or quality of a sample. In addition, the size of the peaks in the spectrum is a direct 

indication of the amount of components in the mixture.  

 

All infrared spectra (FTIR) were obtained from KBr (potassium bromide) matrix (4000–

400 cm-1) using a PerkinElmer Precisely, Spectrum 100, FT-IR spectrometer.  

 

3.2.1.4 Nuclear magnetic resonance spectroscopy (1H -NMR)   

 

 1H NMR is a technique that identifies the carbon-hydrogen framework of any organic 

compound. Its use is related to the other instrumental methods to determine the 

compound’s unique structure and its purity. 1H NMR works by generating a magnetic field 

from the atomic nucleus that is known as a spinning charged particle. The nuclear spins are 

random and spin in random directions when an external applied magnetic field is absent, 

otherwise, the nuclei align themselves either with or against the field of the external 

magnet when an external magnetic field is present.   
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For 1H-NMR, chemical shifts are reported in parts per million (ppm, δ) downfield from 

tetramethylsilane (TMS). Spin multiplicities are described as s (singlet), brs (broad 

singlet), t (triplet), q (quartet), and m (multiplet).  

 

3.2.1.5 High Performance Liquid Chromatography (HPLC)  

 

HPLC is probably the most important and widely used analytical technique for quantitative 

analysis of organic and biomolecules. HPLC is a physical separation technique by which a 

sample of the drug or prodrug dissolved in a liquid and injected into a column packed with 

small particles separated into its constituent components.  

 

All HPLC measurements were carried out using Shimadzu prominence high performance 

liquid chromatography system HPLC-PDA, (Shimadzu corp. Japan). Samples were shaken 

using Big Bill, (Banstaed/ Themolyne, USA). The high pressure liquid chromatography 

system consisted of a model 2695 HPLC from Waters (Israel) equipped with a Waters 

2996 Photodiode array. Data acquisition and control were carried out using Empower ™ 

software (Waters: Israel). Analytes were separated on a 4.6 mm x150 mm C18 XBridge® 

column (5 µm particle size) used in conjunction with a 4.6 mm, 20 µm, XBridge® C18 

guard column was used. Microfilters 0.45 µm porosity was normally used (Acrodisc® 

GHP, Waters). The C-18 (1 gm) cartridges 6cc single use for general laboratory use, were 

purchased form Waters Company (Milford, MA, USA). 

 

3.2.1.6 Liquid Chromatography- Mass Spectroscopy (LC-MS)  

 

LC-MS is a powerful, selective and sensitive technique used to separate a very wide range 

of organic compounds, from small molecule metabolites drug to peptides and proteins. 

This system technique is mostly used for fast and mass directed purification of many 

products and new molecular entities. It is used to detect the molecular weight of many 

products. HPLC–MS/MS measurements were performed employing a Shimadzu 

prominence HPLC system (Shimadzu corp. Japan). 
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3.2.2 Chemicals and reagents  

 

Pure standards (>99%) of amoxicillin and cephalexin were available commercially from 

Sigma Aldrich. Inorganic salts were of analytical grade and were used without further 

purification. Organic buffer components were distilled or recrystallized. Distilled water 

was redistilled twice before use from all-glass apparatus. Maleic anhydride, anhydrous 

potassium dihydrogen phosphate, succinic anhydride and sodium bicarbonate were 

commercially available from Sigma Aldrich. High purity methanol, ethylacetate and water 

(>99%) were used for HPLC grade and purchased from Sigma Aldrich.  

Prodrugs of amoxicillin and cephalexin antibiotic drugs were synthesized by a 

modification of published procedures as mentioned below.  

 

3.3 Part three  

 

3.3.1 Methods (amoxicillin and cephalexin extraction and purification)  

 

3.3.1.1 Preparation of amoxicillin ProD 1-2 (Figure 3.1)  

 

Amoxicillin ProD 1 preparation: In a 250 ml round-bottom flask, 2.12 g of amoxicillin 

trihydrate (5 mmol) was dissolved in H2O (100 ml), 0.45 g of sodium bicarbonate was 

added. The resulting solution was stirred for 30 minutes then 0.50 g of maleic anhydride (5 

mmol) was slowly added to the reaction mixture. The pH of the prepared reaction was 

measured in order to verify that the reaction was neutral (pH = 7). The reaction mixture 

was left to be stirred for 2 hours at room temperature. The reaction was monitored by Thin 

Layer Chromatography (TLC) which was performed on regular basis to check the reactions 

completion. The solvent was evaporated and the resulting precipitate was washed with 

ethyl acetate and filtered. The precipitate was dissolved in methanol, filtered and 

evaporated. The white residue after evaporation was dried at 39 ˚C (2.6 g). The product 

was characterized by melting point (M.P), H-NMR, FTIR and LC-MS. M.P. 170 ˚C. 1H-

NMR δ (ppm) CD3OD: 1.5 (CH3-C-CH3, M), 4.2 (HN-CH-CH-S), D, J=20C MHZ), 4.7 

(N-CH-COOH), S), 5 (HC-CH-S-C), D, J=4 MHZ), 5.4 (NH-CH-C, D. J=6.4 MHZ), 5.5 

(NH-CH-(Ar), D, J=20 MHZ), 6.3 (HOOC-CH=CH-C=O, M), 6.7 (HC-CH=C-CH=C, D, 

J=10.4 MHZ), 6.8 (O=C-NH-C-Ar, D, J=8.8 MHZ), 7.3 (aromatic, M). IR (KBr/νmax cm–1) 



 

36 

1763 (C=O), 1585 (C=C), 1650 (C=O), 1600-1700 (NH), 1369, 1246, 2753, 3355, m/z 

486.1 (M+1). 

 

Amoxicillin ProD 2: we followed the same procedure as for amoxicillin ProD 1 but 

instead of using maleic anhydride linker, 0.50 g succinic anhydride was used (5 mmol) 

(product; 2.8 g as white product). M.P. 140-150 ˚C. 1H-NMR δ (ppm) CD3OD: 1.5 (CH3-

C-CH3, M), 2.5 (COOH-CH2-CH2-C=O, M), 3.4 (HC-CH-S-C, D, J=56 MHZ), 4.2  (N-

CH-COOH), S), 4.9 (HN-(C=O)-CH-Ar), S), 5.4 (NH-CH-C=O, D. J=4 MHZ), 6.9 

(aromatic ((OH)C-HC-HC-C-CH=CH-C(OH)OH), M), 7.3 (aromatic((OH)C-HC-HC-C-

CH=CH-C(OH)OH), M). IR (KBr/νmax cm–1) 1769 (C=O), 1576 (C=C), 1676 (NH), 1576 

amide C=O, 1514, 1402, from 1890-3305, m/z 488.1 (M+1). 

 

Figure (3.1): Synthesis of amoxicillin trihydrate ProD 1-2 from its parent drug, 

amoxicillin trihydrate. 

 

3.3.1.2 Preparation of cephalexin ProD 1-2 (Figure 3.2)  

 

Cephalexin ProD 1 preparation: In a 250 ml round-bottom flask, 1.75 g of pure cephalexin 

standard (5 mmol) was dissolved in H2O (100 ml), 0.45 g of sodium bicarbonate was 

added, the resulting solution was stirred for 30 minutes, then 0.52 g of maleic anhydride (5 

mmol) was slowly added to the reaction mixture. The pH of the reaction was maintained to 

pH=7. The reaction mixture was stirred for 2 hours at room temperature. The reaction was 

monitored by TLC which was done on a regular basis to check the reactions completion. 

The solvent was evaporated and the resulting precipitate was washed with ethyl acetate 
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then filtration. The solid residue was dissolved in methanol, dried over MgSO4, filtered 

and evaporated. The resulting white precipitate was collected and dried at 39 ˚C (2.9 gm). 

The product was characterized by M.P, H-NMR, FTIR, and LC-MS. M.P. 140-160 ˚C. 1H-

NMR δ (ppm) CD3OD: 1.5 (CH3-C=C, S), 3.3 (S-CH2-C=C, S), 4.9 (C-CH-C=O, S), 5.5 

(S-CH-CH-NH, D, J= 12.8 MHZ), 5.6 (NH-CH-CH, D, J= 4.8 MHZ ), 6.3 (O=C-CH=CH-

COOH, M), 7.4 (aromatic, M). IR (KBr/νmax cm–1) 1758 (C=O), 1249 (C-O), 1578 (C=C), 

1600-1700 (NH), 1674 amide C=O, 3222 shifts. m/z 468 (M+1).  

 

Cephalexin ProD 2: we followed the same procedure of cephalexin ProD 1 but instead of 

using maleic anhydride linker, we used 0.52 g succinic anhydride (5 mmol) (product; 2.0 

gm). M.P. 240 ˚C. 1H-NMR δ (ppm) CD3OD: 2 (CH3-C=C, S), 2.5 (COOH-CH2-CH2-

C=O, M), 3 (NH-CH-CH-N-C, D, J=17.6 MHZ), 3.2 (NH-CH-CH-S), D, J=1.6 MHZ), 4.9 

(NH-CH-C=O), S), 5.5 (AR-CH-C=O), S), 7.5 (aromatic, M). IR (KBr/νmax cm–1) 1755 

(C=O), 1586 (C=C), 1643 (NH), 1665 amide C=O, 3627, 2879, 2933 shifts, m/z 470 

(M+1).  

 

 

Figure (3.2): Synthesis of cephalexin ProD 1-2 from its parent drug, cephalexin. 
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3.4 Kinetic Methods  

 

3.4.1 Preparation of  samples and buffer solutions  

 

6.8 gm potassium dihydrogen phosphate was dissolved in 900 ml water for HPLC. The pH 

of buffer 2.5 was adjusted by diluted o- phosphoric acid and water was added to a final 

volume of 1000 ml (0.05 M). The same procedure was repeated for the preparation of 

buffers pH 5.0 and 7.4, however, the required pH was adjusted using 1 N NaOH. 

 

Interconversion of 500 ppm amoxicillin ProD 1-2 solutions, in 1N HCl, buffer pH 2.5, 

buffer pH 5.0 and buffer pH 7.4, to their parent drug, amoxicillin was followed by HPLC 

at a wavelength of 254 for amoxicillin ProD 1 and 230 nm for amoxicillin ProD 2. 

Conversion reactions were run at 37.0 ˚C.  

 

Interconversion of 500 ppm cephalexin ProD 1-2 solution, in 1N HCl, buffer pH 2.5, 

buffer pH 5.0 and buffer pH 7.4, to its parent drug, cephalexin, was followed by HPLC at a 

wavelength of  230 nm. Conversion reactions were run at 37.0 ˚C.  

 

3.4.2 Calibration curve for amoxicillin trihydrate and amoxicillin trihydrate ProD1-2   

 

To construct a calibration curve for amoxicillin trihydrate and amoxicillin ProD1-2, 6 

calibrants (100, 200, 300, 400, 500 and 600 ppm) were prepared. 20 µl of each solution 

was injected into the HPLC and the peak for the pharmaceuticals was recorded using the 

following HPLC conditions: 6 mm x 250 mm, 5 µm C18 XBridge® column using mobile 

phase contains ACN: water (20:80 V\V), a flow rate of 1 ml min-1 and UV detection at a 

wavelength of 230 nm. 

Peak area vs. concentration of the pharmaceutical (ppm) was then plotted, and R2 of the 

plot was recorded. 

 

3.4.2.1 Preparation of amoxicillin trihydrate standard and sample solution  

 

Three samples of amoxicillin were prepared, a standard sample, a linker sample and a 

prodrug sample to detect the retention time for each.  
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1) Amoxicillin trihydrate standard (500 ppm) was prepared by dissolving 50 mg of drug 

in 100 ml of 1N HCl, buffer pH 2.5, buffer pH 5 and buffer pH 7.4, and then each 

sample was injected into HPLC to detect the retention time of amoxicillin trihydrate. 

2) Maleic anhydride linker (500 ppm) was prepared by dissolving 50 mg of drug in 100 

ml of 1N HCl, buffer pH 2.5, buffer pH 5 and buffer pH 7.4, and then each sample 

was injected into HPLC to detect the retention time of maleic anhydride. 

3) Amoxicillin ProD 1-2 (500 ppm) were prepared by dissolving 50 mg of the prodrug in 

100 ml of 1NHCl, buffer pH 2.5, buffer pH 5 and buffer pH 7.4, and then each sample 

was injected into HPLC to detect the retention time. 

 

The progression of reaction was followed by monitoring the disappearance of the prodrug 

and appearance of amoxicillin and the linker attached vs. time. 

 

3.4.3 Calibration curve for cephalexin and cephalexin ProD 1-2   

 

To construct a calibration curve for cephalexin and cephalexin ProD 1-2, 6 calibrants (100, 

200, 300, 400, 500 and 600ppm) were prepared. 20 µl of each solution was injected into 

the HPLC and the peak for them was recorded using the following HPLC conditions: 6 

mm x 250 mm, 5 µm C18 XBridge ® column using mobile phase contains ACN: water 

(20:80 V\V), a flow rate of 1 ml min-1 and UV detection at a wavelength of 230 nm. 

Peak area vs. concentration of the pharmaceutical (ppm) was then plotted, and R2 of the 

plot was recorded. 

 

3.4.3.1 Preparation of cephalexin standard and sample solution  

 

Three samples were prepared for cephalexin, a standard sample, a linker sample and a 

prodrug sample to detect the retention time.  

1) Cephalexin standard (500 ppm) was prepared by dissolving 50 mg of drug in 100 ml 

of 1N HCl, buffer pH 3, buffer pH 5.5 and buffer pH 7.4. Each sample was injected 

into HPLC to detect the retention time of cephalexin. 

2) Maleic anhydride linker (500 ppm) was prepared by dissolving 50 mg of drug in 100 

ml of 1N HCl, buffer pH 3, buffer pH 5.5 and buffer pH 7.4, and then each sample 

was injected into HPLC to detect the retention time of maleic anhydride. 
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3) Cephalexin ProD 1-2 (500 ppm) was prepared by dissolving 50 mg of the prodrug in 

100 ml of 1N HCl, buffer pH 3, buffer pH 5.5 or buffer pH 7.4 then each sample was 

injected into HPLC to detect the retention time.  

 

The progression of reaction was followed by monitoring the disappearance of the prodrug 

and appearance of cephalexin and the linker attached vs. time. 

 

Amoxicillin ProD 1-2 and cephalexin ProD 1-2 were left to be monitored on the HPLC 

for several days to detect the interconversion of the four prodrugs to their corresponding 

parental drugs, to calculate the t1/2 of each prodrug.  
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Chapter Four 
 

Results and Discussion part 

 

4.1 Results and discussion  

 

We have successfully obtained four antibacterial prodrugs of amoxicillin and cephalexin 

with two different linkers. They were characterized by M.P, FT-IR, 1H-NMR and LC-MS 

analytical techniques, to guarantee pure antibacterial prodrugs that are bitterless taste, with 

improved stability and solubility and are capable of releasing the parent drugs in a 

sustained release manner as proposed.  

 

4.1.1 Prodrugs characterization using different analytical techniques  

 

4.1.1.1 Melting point, FT-IR, NMR and LC-MS analysis of amoxicillin maleate ProD 

1 

1) Decomposition point of amoxicillin maleate ProD 1 was 170 ˚C.  

2) IR (KBr/νmax cm–1) 1763 (C=O), 1585 (C=C), 1650 (C=O), 1600-1700 (NH), 1369, 

1246, 2753, 3355.  The frequency of the reactant free amine group (NH2) from 3500-

3600 was disappeared and the frequency of the more stable amide product was appeared 

in 1650. In addition carboxylic acid group frequency was changed and appeared in 1686 

as shown in Figures 4.1 and 4.2.  

3) 1H-NMR δ (ppm) CD3OD: 1.5 (CH3-C-CH3, M), 4.2 (HN-CH-CH-S), D, J=20C 

MHZ), 4.7 (N-CH-COOH), S), 5 (HC-CH-S-C), D, J=4 MHZ), 5.4 (NH-CH-C, D. 

J=6.4 MHZ), 5.5 (NH-CH-(Ar), D, J=20 MHZ), 6.3 (HOOC-CH=CH-C=O, M), 6.7 

(HC-CH=C-CH=C, D, J=10.4 MHZ), 6.8 (O=C-NH-C-Ar, D, J=8.8 MHZ), 7.3 

(aromatic, M). 1H-NMR analysis shows that the product has an additional signal in the 

region between 6-6.5 ppm as shown in Figures 4.3 and 4.4.  

4) The product molecular formula is C20H21N3O8S (yield 85%). LC-MS (positive mode) 

m/z 486.1 (M+1) (Figure 4.5).  
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Figure (4.1): FT-IR spectrum of amoxicillin standard. 

 

Figure (4.2): FT-IR spectrum of amoxicillin ProD 1. 

 

Figure (4.3): H-NMR spectrum of amoxicillin standard. 
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Figure (4.4): H-NMR spectrum of amoxicillin maleate ProD 1. 

 

 

Figure (4.5): LC-MS spectrum of amoxicillin maleate ProD 1. 
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4.1.1.2 Melting point, FT-IR, NMR and LC-MS analysis of amoxicillin succinate 

ProD 2  

 

1. Decomposition point of amoxicillin succinate ProD 2 was 140-150 oC.  

2. IR (KBr/νmax cm–1) 1769 (C=O), 1576 (C=C), 1676 (NH), 1576 amide C=O, 1514, 

1402, from 1890-3305. The frequency of the reactant free amine group (NH2) from 

3400-3800 was disappeared and the frequency of the more stable amide product was 

appeared on 1676, in addition carboxylic acid group frequency changed and appeared 

on 1576 as shown in Figure 4.6.  

3. 1H-NMR δ (ppm) CD3OD: 1.5 (CH3-C-CH3, M), 2.5 (COOH-CH2-CH2-C=O, M), 

3.4 (HC-CH-S-C, D, J=56 MHZ), 4.2  (N-CH-COOH), S), 4.9 (HN-(C=O)-CH-Ar), 

S), 5.4 (NH-CH-C=O, D. J=4 MHZ), 6.9 (aromatic ((OH)C-HC-HC-C-CH=CH-

C(OH)OH), M), 7.3 (aromatic((OH)C-HC-HC-C-CH=CH-C(OH)OH), M). 1H-NMR 

analysis shows that the product has an additional signal in the region between 2-2.5 

ppm as shown in Figure 4.7. 

4. The product molecular formula is C20H23N3O8S (yield 90%). LC-MS (positive 

mode) m/z 488.1 (M+\1) (Figure 4.8).  

Figure (4.6): FT-IR spectrum of amoxicillin succinate ProD 2. 

Figure (4.7): H-NMR spectrum of amoxicillin succinate ProD 2. 
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Figure (4.8): LC-MS spectrum of amoxicillin succinate ProD 2. 

 

4.1.1.3 Melting point, FT-IR and NMR analysis of cephalexin maleate ProD 1  

 

1) Decomposition point of cephalexin maleate ProD 1 was 140-160 oC. 

2) IR (KBr/νmax cm–1) 1758 (C=O), 1249 (C-O), 1578 (C=C), 1600-1700 (NH), 1674 

amide C=O, 3222. The reactant frequency of the free amine group (NH2) from 3500-

3700 was disappeared and the frequency of the more stable amide product was 

appeared on 1660, in addition carboxylic acid group frequency changed and appeared 

on 1674 as shown on Figure 4.9 and 4.10.  

3) 1H-NMR δ (ppm) CD3OD: 1.5 (CH3-C=C, S), 3.3 (S-CH2-C=C, S), 4.9 (C-CH-C=O, 

S), 5.5 (S-CH-CH-NH, D, J= 12.8 MHZ), 5.6 (NH-CH-CH, D, J= 4.8 MHZ ), 6.3 

(O=C-CH=CH-COOH, M), 7.4 (aromatic, M). 1H-NMR analysis shows that the 

product has an additional shift region between 6-6.5ppm as shown in Figure 4.11 and 

4.12.  

4) The product formula is C20H18N3NaO7S (yield 100%). LC-MS (positive mode) m/z 

468 (M+\1) as shown in Figure 4.13.   
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Figure (4.9): FT-IR spectrum of cephalexin standard. 

Figure (4.10): FT-IR spectrum of cephalexin ProD 1. 

Figure (4.11): H-NMR spectrum of cephalexin standard. 

 

Figure (4.12): H-NMR spectrum of cephalexin maleate ProD 1. 
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Figure (4.13): LC-MS spectrum of cephalexin maleate ProD 1. 

 

4.1.1.4 Melting point, FT-IR and NMR analysis results of cephalexin succinate ProD 2  

 

1. Melting point of cephalexin succinate ProD 2 was 240 oC. 

2. IR (KBr/νmax cm–1) 1755 (C=O), 1586 (C=C), 1643 (NH), 1665 amide C=O, 3627, 

2879, 2933. The frequency of the reactant free amine group (NH2) from 3500-3700 was 

disappeared and the frequency of the more stable amide product was appeared on 1643, 

in addition carboxylic acid group frequency changed and appeared on 1665 as shown on 

Figure 4.14.  

3.  1H-NMR δ (ppm) CD3OD: 2 (CH3-C=C, S), 2.5 (COOH-CH2-CH2-C=O, M), 3 (NH-

CH-CH-N-C, D, J=17.6 MHZ), 3.2 (NH-CH-CH-S), D, J=1.6 MHZ), 4.9 (NH-CH-

C=O), S), 5.5 (AR-CH-C=O), S), 7.5 (aromatic, M). 1H-NMR analysis shows the 

product has an additional signal in the region between 2-2.5 ppm as shown in Figure 

4.15.  

4. The product formula is C20H20N3NaO7S (yield 90%). LC-MS (positive mode) m/z 

470.1 (M+\1) as shown in Figure 4.16.   
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Figure (4.14): FT-IR spectrum of cephalexin succinate ProD 2. 

Figure (4.15): H-NMR spectrum of cephalexin succinate ProD 2. 
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Figure (4.16):  LC-MS spectrum of cephalexin succinate ProD 2. 

 

The FT-IR, 1H-NMR and LC-MS spectra mentioned before confirm that the predicted 

compounds are the desired ones. 

 

4.2 Hydrolysis studies:  

 

In this part of study, stability of amoxicillin prodrugs and cephalexin prodrugs was 

investigated using high performance liquid chromatography (HPLC). Peaks of standards 

and degradation products were monitored to determine the rate of cleavage of the four 

antibacterial prodrugs. Kinetic studies were performed at constant temperature (37 oC) and 

at ambient pressure in different buffers such as 1N HCl, pH 2.5 (stomach), pH 5 

(intestine), and pH 7.4 (blood) which correspond to the physiological environments in the 

human body.  

Calibration curves were made for the four antibacterial prodrugs. The results show that R² 

values were above 0.95 for all of the prodrugs as indicated in Figure 4.17. The hydrolysis 
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monitoring for the four prodrugs in 1N HCl, pH 2.5, pH 5, and pH 7.4 was conducted and 

the results of the study are summarized in Figures 4.18-4.35.  

 

Figure (4.17): Calibration curves for amoxicillin ProD 1-2 and Cephalexin ProD 1-2. 

 

 

Figure (4.18): Amoxicillin standard. 
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1) Amoxicillin maleate ProD 1 kinetic studies at 1N HCl, pH 2.5, 5.0 and 7.4. 

 

Figure (4.19): Amoxicillin maleate prodrug at 1N HCl at zero time, after 5 and 10 hours, 

respectively. 
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Figure (4.20): Amoxicillin maleate prodrug at pH 2.5 at t = 0, after 5 hr and 10 hr, 

respectively. 
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Figure (4.21): Amoxicillin maleate prodrug at pH 5.0 at t = 0, after 2 days and 4 days, 

respectively. 

 

Figure (4.22): Amoxicillin maleate prodrug at pH 7.4 at t = 0 and after 3 months, 

respectively. 
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2) Amoxicillin succinate ProD 2 kinetic studies at 1N HCl, pH 2.5, 5 and 7.4. 

 

Figure (4.23): Amoxicillin succinate prodrug at 1 N HCl at t = 0, after 5 hours and after 11 

hours, respectively. 
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Figure (4.24): Amoxicillin succinate prodrug at pH 2.5 at t = 0, after 2 days and after 4 

days, respectively. 
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Figure (4.25): Amoxicillin succinate prodrug at pH 5.0 at t = 0 and after 7 days, 

respectively. 

 

Figure (4.26): Amoxicillin succinate prodrug at pH 7.4 at t = 0 and after 7 days, 

respectively.  

 

Figure (4.27): Cephalexin standard. 
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3) Cephalexin maleate ProD 1 kinetic studies at 1N HCl, pH 2.5, 5.0 and 7.4.  

 

Figure (4.28): Cephalexin maleate prodrug at 1N HCl at t = 0, after 5 and 10 hours, 

respectively. 
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Figure (4.29): Cephalexin maleate prodrug at pH 2.5 at t0, after 11hr and 14 hr, 

respectively. 

 

Figure (4.30): Cephalexin prodrug at pH 5.0 at t = 0 and after 4 days respectively. 
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Figure (4.31): Cephalexin prodrug at pH 7.4 at t = 0 and after 1 month, respectively. 

 

4) Cephalexin succinate ProD 2 kinetics at 1N HCl, pH 2.5, 5.0 and 7.4. 

 

Figure (4.32): Cephalexin succinate prodrug at 1N HCl at t = 0, after 4 hours and after 8 

hours, respectively. 
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Figure (4.33): Cephalexin succinate prodrug at pH 2.5 at t = 0 and after 7 days 

respectively. 

 

Figure (4.34): Cephalexin succinate prodrug at pH 5.0 at t = 0 and after 7 days, 

respectively. 

 

 

Figure (4.35): Cephalexin succinate prodrug at pH 7.4 at t = 0 and after 7 days, 

respectively. 
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 4.3 In vitro intraconversion of amoxicillin (ProD 1-2) and cephalexin 

(ProD 1-2) to their parent drugs.     

                                                                                                                     

Based on previously reported DFT calculations and on experimental data for the acid-

catalyzed hydrolysis of amide acids 1-9 (Figure 2.1) [56, 61], four amoxicillin and 

cephalexin prodrugs were proposed utilizing two different linker (Figures 4.36 and 4.37, 

respectively). As shown in Figures 4.36 and 4.37, the antibacterial prodrugs, amoxicillin 

ProD 1-2 and cephalexin ProD 1-2 are composed of a promoiety containing a carboxylic 

acid group (hydrophilic moiety) and the rest of the antibacterial prodrug molecule (a 

lipophilic moiety).                                                                                                                                             

 

Figure (4.36): Acid-catalyzed hydrolysis of amoxicillin ProD 1-2. 

 

The combination of both, the hydrophilic and lipophilic groups provides a prodrug entity 

with a potential to be with a high permeability (a moderate HLB). It should be emphasized, 

that the HLB value of the prodrug entity will be determined upon the pH of the target 

physiological environment. In the stomach where the pH is in the range 1-2, it is expected 

that prodrugs, amoxicillin ProD 1-2 and cephalexin ProD 1-2 will be in a free carboxylic 

acid form (a relatively high hydrophobicity) whereas in the blood stream circulation where 

the pH is 7.4 a carboxylate anion (a relatively low hydrophobicity) is expected to be 

predominant form. Our strategy was to prepare amoxicillin ProD 1-2 and cephalexin ProD 

1-2 as sodium or potassium carboxylates due to their high stability in neutral aqueous 
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medium. It should be indicated that compounds 1-9 undergo a relatively fast hydrolysis in 

acidic aqueous medium whereas they are quite stable at neutral pH.        

                               

Figure (4.37): Acid-catalyzed hydrolysis of cephalexin ProD 1-2. 

 

The hydrolysis kinetic studies for amoxicillin ProD 1-2 and cephalexin ProD 1-2 were 

carried out in aqueous buffers in the same manner to that executed by Kirby et al. on 

maleamic acids 1-9. This is to investigate whether the antibacterial prodrugs undergo 

hydrolysis in aqueous medium and to what extent or not, suggesting the fate of the 

prodrugs in the system. The kinetics for the acid-catalyzed hydrolysis of the synthesized 

amoxicillin ProD 1-2  and cephalexin ProD 1-2 were carried out in four different aqueous 

media: 1 N HCl, buffer pH 2.5, buffer pH 5 and buffer pH 7.4. Under the experimental 

conditions the four antibacterial prodrugs intraconverted to release the parent drugs 

(Figures 4.38-4.41) as was determined by HPLC analysis. For amoxicillin and cephalexin 

prodrugs, at constant temperature and pH the hydrolysis reaction displayed strict first order 

kinetics as the kobs was quite constant and a straight line was obtained on plotting log 

concentration of residual prodrug verves time. kobs and the corresponding t1/2 for 

amoxicillin ProD 1-2 and cephalexin ProD 1-2 in the different media were calculated 

from the linear regression equation obtained from the correlation of log concentration of 

the residual prodrug verses time, log concentration versus time for the four prodrugs were 

obtained from plotting the AUC of each product versus time. The kinetic data for 

amoxicillin ProD 1-2 and cephalexin ProD 1-2 are listed from Tables 4.1, 4.2, 4.3 and 

4.4. It is worth noting that 1N HCl and pH 2.5 were selected to examine the 
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intraconversion of amoxicillin ProD 1-2 and cephalexin ProD 1-2 in the pH as of stomach, 

since the mean fasting stomach pH of adult is approximately 1-2.5. Furthermore, 

environment of buffer pH 5 mimics that of beginning small intestine route, whereas pH 7.4 

was selected to determine the intraconversion of the tested prodrugs in blood circulation 

system. Acid-catalyzed hydrolysis of amoxicillin ProD 1-2 and cephalexin ProD 1-2 was 

found to be much higher in 1N HCl than at pH 2.5 and 5 (Figures 4.38-4.41). At 1N HCl 

the t1/2 values for the intraconversion of amoxicillin ProD 1 and cephalexin ProD 1 were 

about 2.5 hours and that of amoxicillin ProD 2 and cephalexin ProD 2 were about 7 and 6 

hours, respectively. On the other hand, at pH 7.4, both prodrugs amoxicillin ProD 1-2 and 

cephalexin ProD 1-2 were quite stable and no release of the parent drugs was observed. At 

pH 5 the hydrolysis of prodrugs amoxicillin ProD 1-2 and cephalexin ProD 1-2 was too 

slow. This is because the pKa of amoxicillin ProD 1-2 and cephalexin ProD 1-2 is in the 

range of 3-4, it is expected that at pH 5 the anionic form of the prodrug will be dominant 

and the percentage of the free acidic form that undergoes an acid-catalyzed hydrolysis will 

be relatively low. In 1N HCl and pH 2.5 most of the prodrug will exist as the free acid 

form and while at pH 7.4 most of the prodrug will be in the anionic form. Thus, the 

discrepancy in rates between amoxicillin ProD 1 and amoxicillin ProD 2 at the different 

pH buffers is attributed to the strained effects imposed in the case of amoxicillin ProD 1, 

which upon cleavage gives maleic anhydride while in the case of amoxicillin ProD 2, the 

byproduct is the less-strained succinic anhydride. The same picture is also applied for the 

discrepancy between cephalexin ProD 1 and cephalexin ProD 2. It is worth noting that 

previous DFT calculations [61] and experimental data [56] on the acid catalyzed hydrolysis 

of 1-9 revealed that the efficiency of the intramolecular acid-catalyzed hydrolysis by the 

carboxyl group is remarkably sensitive to the pattern of substitution on the carbon–carbon 

double bond. The rate of hydrolysis was found to be linearly correlated with the strain 

energy of the tetrahedral intermediate or the product. Systems having strained tetrahedral 

intermediates or products experience low rates and vice versa. In addition, the difference in 

the rates between amoxicillin ProD 1-2 and cephalexin ProD 1-2  is due to their 

conformational structures, in case of amoxicillin ProD 1-2 the distance between the 

electrophile and nucelophile is less than cephalexin ProD 1-2 hence the higher in rates.  
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Table (4.1). The observed k value and t1/2 of amoxicillin ProD 1 in 1N HCl, pH 2.5, 5.0 

and 7.4 

 

 

 

 

 

 

Table (4.2). The observed k value and t1/2 of amoxicillin ProD 2 in 1N HCl, pH 2.5, 5.0 

and 7.4 

 

 

 

 

 

 

Table (4.3). The observed k value and t1/2 of cephalexin ProD 1 in 1N HCl, pH 2.5, 5.0 

and 7.4 

 

 

 

 

 

 

Table (4.4). The observed k value and t1/2 of cephalexin ProD 2 in 1N HCl, pH 2.5, 5.0 

and 7.4 

 

 

 

 

t 1/2  (h) k obs (h
-1) Medium 

2.5 2.33 x 10 -4 1 N HCl  

7 9.60 x 10 -5 Buffer pH 2.5 

81 7.55 x 10-6 Buffer pH 5.0  

 ---- No reaction Buffer pH 7.4 

t 1/2  (h) k obs (h
-1) Medium 

8.2 8.37 x 10 -5 1 N HCl  

44 1.54 x 10 -5 Buffer pH 2.5 

---- No reaction  Buffer pH 5.0  

 ---- No reaction Buffer pH 7.4 

t 1/2  (h) k obs (h
-1) Medium 

2.4 2.41 x 10 -4 1 N HCl  

14 4.17 x 10 -5 Buffer pH 2.5 

---- No reaction                 Buffer pH 5.0  

 ---- No reaction        Buffer pH 7.4 

t 1/2  (h) k obs (h
-1) Medium 

6 11.38 x 10 -5 1 N HCl  

--- No reaction  Buffer pH 2.5 

--- No reaction                 Buffer pH 5.0  

 ---- No reaction        Buffer pH 7.4 
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Figure (4.38): First order hydrolysis plot of amoxicillin ProD 1 in (a) 1N HCl, (b) buffer 

pH 2.5 and (c) buffer pH 5.0. 

Figure (4.39): First order hydrolysis plot of amoxicillin ProD 2 in (a) 1N HCl, (b) buffer 

pH 2.5 and (c) buffer pH 5.0. 



 

67 

Figure (4.40): First order hydrolysis plot of cephalexin ProD 1 in (a) 1N HCl, (b) buffer 

pH 2.5 and (c) buffer pH 5.0. 

 

Figure (4.41): First order hydrolysis plot of cephalexin ProD 2 in 1N HCl.  
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Conclusions and Future directions 
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Chapter five 
 

Conclusions and Future directions 

 

5.1 Conclusions  

 

The future of prodrug design is forthcoming yet extremely challenging. Progresses must be 

made in better understanding the chemistry of many organic mechanisms that can be 

effectively exploited to push forward the development and advances of even more types of 

prodrugs. The understanding of the organic reactions mechanisms of intramolecular 

processes will be the next major milestone in this field. It is envisioned that the future of 

prodrug design holds the ability to produce safe and efficacious delivery of a wide range of 

active small molecule and biotherapeutics.  

 

Based on Kirby’s enzyme model, we utilized two linkers for making novel prodrugs of 

both antibacterials, amoxicillin and cephalexin with the expectation to have prodrugs 

lacking the bitter sensation of their parent drugs as well as to be cleaved in different rates. 

The quantum mechanics (QM) calculations using different methods revealed that the acid-

catalyzed hydrolysis efficiency of processes 1-9, amoxicillin ProD 1-2 and cephalexin 

ProD 1-2 is significantly sensitive to the pattern of substitution on the carbon-carbon 

double bond and nature of the amine leaving group. According to DFT calculations, the 

four antibacterial prodrugs will exist as a free carboxylic acid form (a relatively high 

lipophilicity) in the stomach, whereas in the blood circulation system, the carboxylate 

anion form (a relatively low lipophilicity) will be predominant. The synthesized amide 

prodrugs of amoxicillin ProD 1-2 and cephalexin ProD 1-2 were found to undergo 

hydrolysis in acidic aqueous medium, whereas they were stable at pH 7.4. The predicted 

t1/2 and kobs of amoxicillin ProD 1-2 and cephalexin ProD 1-2 were calculated. Kinetics 

studies on the interconversion of the newly synthesized amoxicillin and cephalexin 

prodrugs revealed that the t1/2 was largely affected by the pH medium as predicted.  

 

In vitro binding test to bitter taste receptors for the four antibacterial prodrugs, amoxicillin 

ProD1-ProD2 and cephalexin ProD1-ProD2, were found to be bitterless. The bitter taste 

masking is believed to be via altering the ability of the drug to interact with bitter taste 
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receptors. The strategy of the synthesis and kinetic studies of these antibacterial drugs was 

to achieve desirable amoxicillin and cephalexin prodrugs capable of releasing amoxicillin 

and cephalexin parental drugs in a controlled release manner and enhancing their stability 

and solubility with masking their bitter taste sensation. 

 

5.2 Future directions: 
 

In vivo pharmacokinetic studies and in vitro binding to bitter taste receptors for amoxicillin 

ProD 1-2 and cephalexin ProD 1-2 will be done. In vivo pharmacokinetic studies will be 

done in order to determine the bioavailability and the duration of action of the tested 

prodrugs.  
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