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ABSTRACT
The features of electroencephalographic (EEG) signals include important information about the function of the brain.

One of the most common EEG signal features is alpha wave, which is indicative of relaxation or mental inactivity. Until

now, the analysis and the feature extraction procedures of these signals have not been well developed. This study

presents a new approach based on an adaptive neuro-fuzzy inference system (ANFIS) for extracting and predicting the
alpha power band of EEG signals during Muslim prayer (Salat). Proposed models can acquire information related to

the alpha power variations during Salat from other physiological parameters such as heart rate variability (HRV)

components, heart rate (HR), and respiration rate (RSP). The models were developed by systematically optimizing the

initial ANFIS model parameters. Receiver operating characteristic (ROC) curves were performed to evaluate the
performance of the optimized ANFIS models. Overall prediction accuracy of the proposed models were achieved of

94.39%, 92.89%, 93.62%, and 94.31% for the alpha power of electrodes positions at O1, O2, P3, and P4, respectively.

These models demonstrated many advantages, including e±ciency, accuracy, and simplicity. Thus, ANFIS could be
considered as a suitable tool for dealing with complex and nonlinear prediction problems.

Keywords: Adaptive Neuro-Fuzzy inference system; Alpha power band; Electroencephalographic (EEG); Muslim

prayer (Salat).
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INTRODUCTION

Since the discovery of the human electroencephalo-

graphic (EEG) signals by the German psychiatrist, Hans

Berger in 1929, the EEG has been the most commonly

used instrument for clinical evaluation of brain activi-

ty, diagnosis, monitoring, and detecting a number of

neurological diseases.1,2

Alpha wave is one of the prominent EEG waves

found in many brain behavioral studies. It is a dominant

pattern of an adult who is awake but in a relaxed state of

mind with eyes closed.3 The frequency range of this

rhythm is between 8Hz and 13Hz, with the amplitude

ranging from 20�V to 60�V.4 Although alpha wave

activity can be measured in all regions of the brain, the

highest amplitude of the alpha wave was observed in the

occipital and parietal regions, and it completely disappears

during sleep.5,6

The Muslim prayer, known as Salat in Arabic, is a

form of meditation,7 which is an act of worship encom-

passing the physical movements of the body and

Quranic recitations along with other speci¯c supplica-

tions. Salat is one of the ¯ve pillars of Islam which is

obligatory for Muslims to perform prayers ¯ve times a

day at speci¯cally prescribed times.8,9 Religious medita-

tions and prayers have been known to promote relaxation

and provide a healthier, more balanced condition to the

human mind and body.10,11

The increase of alpha band frequency in religious

meditations and prayers was hypothesized to be pro-

moted by changes in Autonomic Nervous System (ANS),

which induce relaxation response in humans.12,13 The

generation of alpha waves is generally associated with

stimulation of parasympathetic activity and reduction of

the sympathetic activity of ANS.14 High levels of alpha

activities were found to be correlated with low levels of

anxiety and feelings of calm and positive a®ect.15,16

One important concept is the ability to compute and

analyze the EEG data, which are often known as

features. In general, feature of EEG signals include

important information about the function of the brain,

but the analysis and the feature extraction procedures of

these signals have not been well developed. There is a

set of traditional methods, which are used to extract

the features from EEG signals. They are fast Fourier

transform (FFT), Autoregressive Model (AR), and

Wavelet Transforms (WT), in addition to neural net-

works and statistical pattern recognition methods. It is

important to highlight that each of these methods has its

own advantages and disadvantages.17 Nevertheless,

there are common challenges and di±culties associated

with these methods. Firstly, the EEG signal has small

amplitude, and is very sensitive to noise. Hence, it is

di±cult to obtain accurate signals because the mea-

surement of the signals on the surface of scalp provides

weak signals with several noises and errors, which may

a®ect the results of the method used to analyze the

signal.18 Secondly, traditional methods of analysis of the

EEG are based on visual analysis of the EEG activity

using strip charts. The analysis is done by considering

the amplitude and frequency of the EEG signals. This

method is quite exhaustive and time consuming and it

needs skilled interpreters. Moreover, the manual EEG

analysis usually fails to detect the subtle features which

may contain important information.19 Thirdly, the EEG

measurements normally have large amount of data with

di®erent categories which is di±cult to be analyzed,

especially if the measurements are done over a longer

period of time.20–22

In order to overcome these di±culties and challenges,

automated tools are needed. They can easily analyze the

EEG signals and reveal important information present

in the signals. In this study, a powerful, non-invasive

system based on adaptive neuro-fuzzy inference system

(ANFIS) was developed for extracting and predicting

the alpha band power of EEG signal during Muslim

prayer (Salat). This system can acquire information

related to the alpha power variations during Salat from

other physiological parameters such as Heart Rate

Variability (HRV) components, Heart Rate (HR), and

Respiration Rate (RSP). Such system would increase

the possibility of getting more accurate value of the

alpha power band of EEG signals. These physiological

signals and parameters were selected due to their high

correlations showed with the sympathetic and para-

sympathetic activity of the ANS.14,23–25

Adaptive Neuro-Fuzzy Inference

System (ANFIS)

Adaptive Neuro-Fuzzy Fuzzy Inference System

(ANFIS) is a Sugeno-type fuzzy system that uses arti-

¯cial neural networks theory to determine its properties

(fuzzy sets and fuzzy rules).26,27 ANFIS can be easily

implemented for a given input/output task, and hence it

is attractive for many application purposes. The math-

ematical properties of ANN used to tune the parameters

in the membership functions are extracted from the

features of the dataset that describes the system

behavior.28,29

ANFIS has been successfully applied in di®erent

biomedical applications such as detection and diagnos-

ing breast cancer,30 diagnosing risk in dengue patients,28

detection of epileptic seizure in the EEG signal,31
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Electromyography (EMG) applications,32 and classi¯-

cation applications.2,33

ANFIS structure

In order to present the ANFIS architecture, let us con-

sider two fuzzy if-then rules based on a ¯rst-order

Sugeno model:

IF x is A1 and y is B1 then f1 ¼ p1xþ q1yþ r1; ð1Þ
IF x is A2 and y is B2 then f2 ¼ p2xþ q2yþ r2; ð2Þ

where, x and y are inputs, Ai and Bi are the fuzzy sets, fi
are the outputs within the fuzzy region speci¯ed by the

fuzzy rule, and pi, qi, and ri are the design parameters

that are determined during the training process. The

architecture of the ANFIS is constructed from ¯ve layers

namely: the input layer, the fuzzi¯cation layer, the rules

layer, the standardization layer and the output layer as

illustrated in Fig. 1, the circle indicates a ¯xed node,

whereas a square indicates an adaptive node, and the

nodes in the same layer have similar functions.2,29

The ¯rst layer is (Input Layer), it contains the input

variables of the model. All the nodes in the ¯rst layer are

adaptive ones, and the output of this layer can be

represented as:

O1
i ¼ �Ai

ðxÞ for i ¼ 1; 2 and O1
i

¼ �Bi�2
ðyÞ for i ¼ 3; 4; ð3Þ

where �Ai
ðxÞ and �Bi�2

ðyÞ can adopt any fuzzy mem-

pership function.

In the second Layer (Fuzzi¯cation Layer), every node

in this layer is ¯xed (not adaptive), labeled �, repre-

senting the ¯re strength of the rule. The output of these

nodes is the multiplication of all input signals:

O2
i ¼ wi ¼ �Ai

ðxÞ�Bi
ðY Þ; i ¼ 1; 2 ð4Þ

In the third layer (Rules Layer), every node in this layer

is also ¯xed, labeled N, calculates the ratio of the ith

rule's ¯ring strength to the sum of all rules' ¯ring

strengths:

O3
i ¼ wi ¼

wi

w1 þ w2

i ¼ 1; 2: ð5Þ

In the fourth Layer (Standardization Layer), the nodes

of this layer are adaptive and each node has the fol-

lowing function:

O4
i ¼ wifi ¼ wiðpixþ qiyþ riÞ; ð6Þ

where, pi, qi, and ri are design parameters (consequent

parameters) since they deal with the then-part of the

fuzzy rule).

In the ¯fth layer (output layer), every node in this

layer is a ¯xed node, labeled
P

computes the overall

output as the summation of the incoming signals,

O5
i ¼

X

i

wifi ¼
P

i wifiP
i wi

¼ w1f1 þ w2f2
w1 þ w2

: ð7Þ

Hybrid-learning algorithm of ANFIS

The learning algorithm is meant to adjust two sets of

adjustable parameters, namely the antecedent and

consequent parameters to make the ANFIS output

match the training data. During the learning process,

the antecedent parameters in the ¯rst layer and the

consequent parameters in the fourth layer are tuned

until the desired output of the FIS is obtained. If the

antecedent parameters are ¯xed,29 the output of the

network can be represented as:

f ¼ w1

w1 þ w2

f1 þ
w2

w1 þ w2

f2; ð8Þ

f ¼ w1ðp1xþ q1yþ r1Þ þ w2ðp2xþ q2yþ r2Þ; ð9Þ
f ¼ ðw1xÞp1 þ ðw1yÞq1 þ ðw1Þr1 þ ðw2xÞp2

þðw2yÞq2 þ ðw2Þr2: ð10Þ
It is a linear combination of the modi¯able resulting

parameters p1; q1; r1; p2; q2, and r2. To identify the op-

timal values for those parameters, a combination of

gradient descent and the least-squares method can be

used. However, if the antecedent parameters are not

¯xed and are allowed to vary, then the search space

becomes larger and the convergence of training becomes

slower.34 A hybrid learning algorithm which combines

the linear least-squares method and the gradient descent

method was utilized to solve this problem.

The hybrid learning algorithm is composed of two

passes: forward pass and backward pass.34 In the for-

ward pass, the consequent parameters are optimized byFig. 1 The ANFIS architecture.
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the least squares method, while the antecedent para-

meters are ¯xed. After the optimal consequent para-

meters are identi¯ed, the error is calculated for all

training data. In the backward pass, the output error is

propagated backward, and the antecedent parameters

corresponding to the fuzzy sets in the input domain are

optimally adjusted by the gradient descent method.

Accordingly, converges of hybrid approach is much

faster compared with original back-propagation method

since it reduces the dimension of the search space.29,34

METHODOLOGY

A total of 30 healthy Muslim male subjects aged between

20 and 35 years old participated in the study. Their EEG

signal at electrode positions O1, O2, P3, and P4 (i.e.

occipital and parietal regions), electrocardiograms

(ECG), respiration signal (RSP) and oxygen saturation

(SPO2) were continuously recorded during Salat practice

with a computer-based data acquisition system (MP150,

BIOPAC System Inc., California, USA).

Data Analysis

Power spectral analysis was calculated by AR to extract

the HRV components and the alpha power (P�) from se-

ries 5-min epochs of ECG signal, and from the EEG signal,

respectively.35,36While the HR, RSP, and SPO2 level data

were analyzed usingAcqKnowledge 4.0 software.Then the

physiological parameters data underwent a series of sta-

tistical analysis using the Statistical Package for the Social

Sciences (SPSS) version 17 in order to determine the most

signi¯cant parameters that can a®ect alpha band power.

More details about this analysis can be found in Ref. 37.

As a result from the statistical analysis, ¯ve physio-

logical parameters were found to be the most in°uencing

parameters that could be used as the inputs of ANFIS

model for predicting alpha power of EEG signals. The

parameters are: the normalized unit of low-frequency

(LFn.u.) power of HRV, and normalized unit of high-

frequency (HFn.u.) power of HRV, HR, and RSP. A total

of 30 data sample were collected for each input variable.

The data were divided into two parts: 67% of the data

used as train dataset, while 33% of the data used as test

data. The ANFIS model designed utilizing MATLAB

software (MathWorks, 2010) and Fuzzy toolbox.

Developing the ANFIS Model for

Prediction Alpha Band Power

To develop the optimal ANFIS model, there are many

parameters that can be selected. The most common

parameters are: the number and type of membership

function for each input, the output membership function

type (either \linear" or \constant"), the training epoch

number, the initial step size, the step size decrease rate,

and the step size increase rate. ANFIS uses a strategy of

either a back propagation or a mixture of back propaga-

tion and least squares (hybrid learning algorithm) to

identify the membership function parameters of a Sugeno-

type Fuzzy Inference System using the training input/

output data.38–40 Here, the (hybrid learning algorithm)

approach was applied. Performance metric, such as root

mean square error (RMSE), and prediction accuracy of

ANFIS learning has been used as performance index.

The methodology used to develop the optimal ANFIS

model for predicting alpha power of EEG signals during

Muslim prayer is shown in Fig. 2. Developing ANFIS

model was executed in two steps: The ¯rst step is to

optimize ANFIS structure by identifying the speci¯ca-

tion of model's parameters such as the type and the

Fig. 2 Developing the optimal ANFIS model for alpha band power prediction.
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number of memberships functions (MF's). To de¯ne the

initial model two approaches were followed, the ¯rst is to

¯xed the output membership function to linear and

changing the input membership function, while the

second is to ¯x the output membership function to a

constant and changing the input membership function.

The second step is to train the model obtained using

the most in°uence parameters data (for each of the

signi¯cant electrodes positions), and modify the initial

membership function parameters so that the error be-

tween the measured and the predicted output can be

minimized. To determine the optimal performance of the

model, two parameters were investigated; the initial step

size and the number of iteration.28

Finally, the performance of the optimal ANFIS model

was evaluated by the computation of the Receiver op-

erating characteristic (ROC) curves. The ROC curves

were calculated to determine the highest sensitivity and

speci¯city values.

RESULTS

In the light of the optimizations results, it can be noted

that the optimal ANFIS model for prediction of P� at

O1 based linear output is determined by Trapezoidal

MFs, 3 2 2 3 2 number of MFs for each input, 0.08 initial

step size and 40 iterations. While the optimal ANFIS

model based constant output is de¯ned by Gaussian

MFs, 3 2 2 3 2 number of MFs for each input, 0.04 initial

step size and 50 iterations.

The performance of the previous two optimized

ANFIS models was evaluated by computation of re-

ceiver operating characteristic (ROC) curves. The ROC

curves were performed for the optimized ANFIS models

to determine the best cut-o® prediction point. ANFIS

model for prediction P� at O1 electrode position with

linear output was found to give better performance more

than the ANFIS model with constant output. The

ANFIS model based linear output achieved 94.39% ac-

curacy, 95.2% sensitivity, and 100% speci¯city, while

the ANFIS model based constant output achieved

92.97% accuracy, 92% sensitivity, and 91.5% speci¯city.

Figure 3 shows the measured and predicted alpha power

at O1 using ANFIS based linear output model.

The same optimization process was used to optimize

the other three ANFIS models parameters at O2, P3,

and P4 electrode positions. Table 1 summarizes the

optimal parameters of ANFIS models for prediction

alpha power at O1, O2, P3, and P4 electrode's positions

after the development process. From the results, it can

be seen that the four models have gone in the same be-

havior, and they have the same tuned parameters. These

occurred because all of the four proposed models had the

same input variables (HF(n.u.), LF(n.u.), LF/HF, HR,

and RSP), and the measured values of alpha power at

these electrode's positions were very close to each other.

Table 2 shows the values of prediction accuracy,

sensitivity, speci¯city, and area under ROC curves for

the four models. The four models showed high sensitiv-

ity, speci¯city, and high prediction accuracy.

DISCUSSIONS

ANFIS Models Optimization

This study aimed to develop robust intelligent systems

for prediction P� for the signi¯cant at electrodes

Fig. 3 The measured and predicted alpha powers at O1 using
ANFIS-based linear output model.

Table 1. The Optimized Parameters of the Four Proposed

ANFIS Models.

Electrodes
Positions

Input
MF's Type

# of Input
MF's

Output
MF's Type

Initial
Step Size

# of
Iterations

O1 Trapezoidal 3 2 2 3 2 linear 0.08 40
O2 Trapezoidal 3 2 2 3 2 linear 0.08 40
P3 Trapezoidal 3 2 2 3 2 linear 0.08 40
P4 Trapezoidal 3 2 2 3 2 linear 0.08 40

Table 2. Evaluation of the Performance for the Optimized

Models.

Model
at

Prediction
Accuracy (%)

Sensitivity
(%)

Speci¯city
(%)

Area Under
ROC Curve

O1 94.39 95.2 100 0.958

O2 92.89 92.2 91.7 0.920
P3 93.62 92.2 92.3 0.925

P4 94.31 94.8 93.6 0.938

ANF is for Predicting Alpha Band Power of EEG
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positions (i.e. O1, O2, P3, and P4), using the most in-

°uential parameters: HF(n.u.) LF(n.u.), LF/HF, HR,

and RSP.

Developing ANFIS model was carried out in two

steps; the ¯rst step is de¯ning the initial ANFIS model

architecture which requires speci¯cation of the model's

parameters, such as the input membership functions

types, the number of membership functions, the number

of rules, and the type of the output membership func-

tions. The second step is training the initial model using

the most in°uential parameters data, and modifying the

initial step size and the number of iterations (see Fig. 2).

To ¯nd the optimal ANFIS model's parameters, there

are two criteria should be selected based on the training

and testing data. The selection criteria from the training

data is the minimum testing root mean squared error

(RMSE) while the selection criteria from the testing data

were high average accuracy The changes in the above

parameters were compared and discussed as follows.

Table 3 shows the results for determining the opti-

mum membership functions (MFs) type at O1 electrode

position. A list of RMSE and average prediction accu-

racy were presented for comparison purposes. It was

found that the P� varied to great extent between the

various MFs; however, the best prediction for P� based

linear output was obtained when using the Trapezoidal

MF. The two sided Gaussian MF, Pi-shaped MF, and

the Product of two sigmoid MF were only slightly poorer

than the Trapezoidal MF. The remaining MFs were still

poorer than the above-mentioned MFs. The poorest MF

was the Triangular MF. On the other hand, the best

prediction for P� based constant output was obtained

when using the Gaussian MF. The Bell MF was only

slightly poorer than the Gaussian MF. The remaining

MFs were still poorer than the above-mentioned MFs.

The poorest MF was the Triangular MF.

Table 4 shows the results for determining the opti-

mum number of the membership functions (MFs).

The ANFIS model is very sensitive to the number of

membership functions. The number of each input was

set to 2, 3, 4, and 5 for Trapezoidal MFs based linear

output, and Gaussian MFs based constant output

(chosen above) separately. Intuitively, one would expect

that additional number of membership functions may

enhance the accuracy of the model. But, in this case

when increasing the number of MFs for each input from

3 to 5, the performances of the ANFIS model decreased

for both linear and constant outputs. This occurred

because the model produced redundancy for the struc-

ture of data; hence the RMSE values increased, and

prediction accuracy decreased. The results show that the

lowest RMSE prediction value of 0.2273 with the highest

average accuracy of 93.03% for the linear output and the

lowest RMSE prediction value of 0.2275 with the highest

average accuracy of 92.33% for the constant output were

achieved with 3 2 2 3 2 membership functions for all inputs.

The proposed ANFIS model structure was shown in Fig. 4.

Table 5 presents the RMSE and average prediction

accuracy of ANFIS based linear and constant output with

di®erent initial step size. It can be seen that by varying

the initial step size it might be possible to achieve a better

RMSE. In general, most of the MFs achieved a suitable

result by adjusting the initial step size, step size decrease

rate, step size increase rate to 0.01, 0.9, and 1.1, respec-

tively. The step size decrease of 0.9 and increase rate of 1.1

were chosen according to the two heuristic rules.41

Table 3. RMSE and Average Prediction Accuracy of ANFIS Based Linear and Constant
Output with Di®erent Types of Membership Functions.

Name of MFs

Linear Output Constant Output

RMSE Accuracy (%) RMSE Accuracy (%)

Triangular (trimf) 0.5075 84.47 0.4406 86.52

Pi-shaped (pimf) 0.2530 92.57 0.2454 91.78
Bell (gbellmf) 0.2865 91.62 0.2541 92.02

Gaussian (gaussmf) 0.3013 90.57 0.2275 92.33

Two-sided Gaussian (gauss2mf) 0.2414 92.83 0.2559 91.53

Trapezoidal (trapmf) 0.2273 93.03 0.2759 91.02
Product of two sigmoid (psigmf) 0.2540 92.34 0.2423 91.63

Di®erence between two sigmoid (dsigmf) 0.2579 92.20 0.2422 91.65

Table 4. RMSE and Average Prediction Accuracy of

ANFIS Based Linear and Constant Output with Di®erent

Numbers of Trapezoidal and Gaussian MFs for Each Input.

Number
Linear Output Constant Output

of MFs RMSE Accuracy (%) RMSE Accuracy (%)

22222 0.5327 83.12 0.4947 78.37
32232 0.2273 93.03 0.2275 92.33

33333 0.9222 77.29 0.6373 81.78

44444 1.2513 68.80 0.7761 76.54
55555 1.4059 62.14 0.7846 75.85

H. Doufesh et al.
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The initial step size value was varying from 0.01 to

0.4. The lowest RMSE of 0.2092 and the highest average

prediction accuracy of 94.39% were obtained with initial

step size 0.08 based on linear output, while the lowest

RMSE of 0.2195 and the highest average prediction ac-

curacy of 92.97% were obtained with initial step size 0.04

based constant output.

Table 6 shows the e®ects of changing the number of

the training iterations on the ANFIS model perfor-

mances. As the training iteration number increased, the

prediction of P� with ANFIS became better; however

after 40 and 50 iterations based linear and constant

output, respectively, there was very small improvement

in the RMSE accuracy of the prediction, as shown in

Figs. 5(A) and 6(A). It can be observed that when the

step size increased, RMSE decreased consistently; when

the step size decreased, RMSE tended to be ¯xed, as

demonstrated in Figs. 5(B) and 6(B). As a practical

consideration, increasing the iteration number would

(A)

(B)

Fig. 5 (A) The RMSE training and testing curves based linear out-

put; (B) The change in step size curve in the training processing-based
linear output.

(A)

(B)

Fig. 6 (A) The RMSE training and testing curves based constant

output; (B) The change in step size curve in the training processing

based constant output.

Table 6. RMSE and Average Prediction Accuracy of ANFIS

Based Linear and Constant Output with Varying the Num-

bers of Iterations.

Numbers of
Linear Output Constant Output

Iterations RMSE Accuracy (%) RMSE Accuracy (%)

10 0.2157 93.82 0.2260 92.23
20 0.2167 93.86 0.2246 92.38

30 0.2147 94.04 0.2229 92.44

40 0.2092 94.39 0.2217 92.58

50 0.2092 94.39 0.2195 92.97
60 0.2092 94.39 0.2195 92.97

100 0.2092 94.39 0.2195 92.97

200 0.2092 94.39 0.2195 92.97
300 0.2092 94.39 0.2195 92.97

400 0.2092 94.39 0.2195 92.97

Fig. 4 The proposed ANFIS model structure.

Table 5. RMSE and Average Prediction Accuracy of

ANFIS Based Linear and Constant Output with Di®erent

Initial Step Size.

Initial
Linear Output Constant Output

Step Size RMSE Accuracy (%) RMSE Accuracy (%)

0.01 0.2273 93.03 0.2275 92.33
0.02 0.2192 93.46 0.2249 92.43

0.04 0.2136 93.56 0.2195 92.97

0.08 0.2092 94.39 0.2212 92.72
0.10 0.2112 93.79 0.2254 92.45

0.20 0.2165 93.37 0.2285 92.27

0.30 0.2219 93.17 0.2311 91.89

0.40 0.2244 93.09 0.2362 91.57

ANF is for Predicting Alpha Band Power of EEG
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consume more time for computation. Therefore, 40

and 50 iterations based linear and constant output, re-

spectively were chosen to be the optimum iteration

number because it is su±cient for training purposes.

CONCLUSIONS AND FUTURE

WORK

The alpha waves of EEG signals include important in-

formation about the function of the brain, but the

analysis and feature extraction procedures of these sig-

nals have not been well developed. This study presented

a novel application of the ANFIS model for the predic-

tion of P� of EEG signals during Muslim prayer (Salat).

This model can acquire information related to the P�

variations during Salat from other physiological para-

meters, such as HRV, HR, and RSP.

The evaluation results for the prediction accuracy of

the four proposed ANFIS models were 94.39%, 92.89%,

93.62%, and 94.31% for O1, O2, P3, and P4, respec-

tively. These models demonstrated many advantages,

including e±ciency, accuracy, and simplicity. Thus,

ANFIS could be considered as a suitable tool for dealing

with complex and nonlinear prediction problems.
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