

Deanship of Graduate Studies

Al-Quds University

Secure Data Sharing Model for Cloud Computing

(SSCC)

Israa Mahmoud Abedelfattah Alqatow

M Sc. Thesis

Jerusalem- Palestine

1438 / 2017

Secure Data Sharing Model for Cloud Computing (SSCC)

Prepared By:

Israa Mahmoud Abedelfattah Alqatow

B.Sc. Computer Systems Engineering Palestine Technical

University-Khadouri/Palestine

Supervisor: Dr. Rushdi Hamamreh

A thesis submitted in partial fulfillment of the requirement for

the degree of Master of Electronics and Computer Engineering,

Faculty of Engineering Al-Quds University.

1438 / 2017

Al-Quds University

Deanship of Graduate Studies

Electronic and Computer Engineering Master Program

Thesis Approval

Secure Data Sharing Model for Cloud Computing (SSCC)

Prepared By: Israa Mahmoud Abedelfattah Alqatow

Registration No: 21411738

Supervisor: Dr. Rushdi Hamamreh

Master thesis submitted and accepted, Date 09/01/2017

The names and signatures of the examining committee members are as follows:

1- Head of Committee : Dr.Rushdi Hamamreh Signature:

2- Internal Examiner : Dr.Nidal Kafri Signature:

3- External Examiner : Dr.Mousa Farajallah Signature:

Jerusalem- Palestine

1438 / 2017

Dedication

I dedicate this work to

My mother………

My father………

My parents……

My brothers……

My sister………

My friends………

Eng. Israa Alqatow

i

Declaration

I Certify that this thesis submitted for the degree of Master is the result of my own

research, except where otherwise acknowledged, and that this study or any part of the

same has not been submitted for a higher degree to any other university or institution.

Signed: …………………

Israa Mahmoud Abdelfattah Alqatow

Date: 09/01/2017

ii

Acknowledgement

I would like to express my sincere gratitude to my supervisor, Dr. Rushdi

Hamamreh. He has offered me great freedom on choosing my favorite research topic

and developing my research interests, and continuously provided me help and

encouragement with extensive knowledge. His ideas have been a source of inspiration

for this work. I also thank the examining committee, all my colleagues and relatives

for their support. Finally, I also thank all lecturers.

Many thanks to my mother for her praying and providing support and to my

father thank you very much.

iii

Abstract

Cloud Computing is considered to be main concerns nowadays. It plays an

important role in providing sources and storing data and its scalability according to the

users' needs. Meanwhile, security of data is one of the problems which face Cloud

Computing taking into consideration the problem of sharing information by users. This

study offers a Secure Data Sharing Model for Cloud Computing (SSCC). It can be

applied on Distributed Systems and aims to protect data from unauthorized access.

Our model uses normal text as an input, and then by using many steps, the text

becomes encrypted by using encryption strategy with Symmetric key which uses one

secret key acquired from trusted third party where every user has his own secret key.

These steps include: Encoding, data compression and Padding then turn the text into

group of blocks. By using the principle of multiplying blocks, it results the Cipher

matrix which contains an output encrypted text.

The data has been collected for the proposed model by doing an experiment on

group of data by using two different ways: SSCC1 that based on a fulfilled matrix and

SSCC2 that use upper triangular matrix in which affects Upload/Download process. It

gave a good impression by comparing it with previous ways where the comparing

results between SSCC and Hill Cipher 6.86% improvement in the encryption time.

While when we compare SSCC and Advance Encryption Standard (AES) the

difference was 3.94% for AES which means that the proposed model has a chance to

compete with AES model.

Beside other comparisons which include both cases for each way, the

comparison included both the compression of data, and without compression of the

same data for both ways in order to find out the effect of compression to do Encryption

Time for these data where we find that the time has been reduced to 96.287% by using

SSCC1 and 67.146% by using SSCC2.

iv

List of Tables

2.1 Comparison between Symmetric and Asymmetric Cryptography………..……. 35

2.2 Elements Binary representation according to eqation 2.2……………………… 37

4.1 Character Encoding……………………………………………………………...51

4.2 Secret Key length…………………………………..…………………….………64

5.1 File Sizes in bytes for different compression values (CV) using a set of

matrices………………………………………………………………………………68

5.2 Encryption time for SSCC2 using different file sizes, compression value = 9x15 =

135 byte………………………………………………………………………………69

5.3 The encryption time for different file sizes depends on the 1x1 as a base matrix.

…………………………………………………………………………………….…70

5.4 The encryption time for different file sizes depends on the 2x2 as a base matrix.

…………………………………………………………………………………….…71

5.5 The encryption time for different file sizes depends on the 3x3 as a base matrix

……………………………………………………………………………………….72

5.6 The encryption time for different file sizes depends on the 4x4 as a base matrix.

……………………………………………………………………………………….72

5.7 The encryption time for different file sizes depends on the 5x5 as a base matrix.

……………………………………………………………………………………….73

5.8 The encryption time for different file sizes depends on the 6x6 as a base matrix

……………………………………………………………………………………….74

5.9 The encryption time for different file sizes depends on the 7x7 as a base matrix

……………………………………………………………………………………….75

5.1 The encryption time time for different file sizes depends on the 8x8 as a base

matrix ……………………………………………………………………………….76

5.11 The encryption time for different file sizes depends on the 9x9 as a base matrix

………………………………………………………………………………………76

5.12 The encryption time for different file sizes depends on the 10x10, 11x11 and

12x12 as base matrix …………………………….…………………………………77

5.13 Encryption time for SSCC using different File sizes …………………………80

5.14 The encryption time for different file sizes depends on the 1x1 as a base matrix

………………………………………………………………………………………81

5.15 The encryption time for different file sizes depends on the 2x2 as a base matrix

……………………………………………………………………………………….81

v

5.16 The encryption time for different file sizes depends on the 3x3 as a base matrix

………………………………………………………………………………………82

5.17 The encryption time for different file sizes depends on the 4x4 as a base matrix

……………………………………………………………..………………………..83

5.18 The encryption time for different file sizes depends on the 5x5 as a base matrix

………………………………………………………………………………………84

5.19 The encryption time for different file sizes depends on the 6x6 as a base matrix.

………………………………………………………………………………………85

5.20 The encryption time for different file sizes depends on the 7x7 as a base matrix

………………………………………………………………………………………86

5.21 The encryption time for different file sizes depends on the 8x8 as a base matrix

………………………………………………………………………………………87

5.22 The encryption time for different file sizes depends on the 9x9 as a base matrix

………………………………………………………………………………………87

5.23 The encryption time for different file sizes depends on the 10x10 as a base

matrix ……………………………………………………………………………….88

5.24 Average time for different Algorithms, matrix size 9x9Table ……………….96

4.3 Time needed to break the key with different length for SSCC using different

matrix sizes…………………………………………………………………………..98

vi

List of Figures

1.1 Cloud computing issues .. 2

2.1 A simplified model for the symmetric encryption .. 25

2.2 AES encryption process ... 27

2.3 DES encryption process ... 28

2.4 Triple DES encryption process .. 29

2.5 A simplified model for the asymmetric encryption .. 31

2.6 Comparison between RSA and Diffie-Hellman Key generation 31

3.1 NIST Cloud Architecture design .. 43

3.2 IDA Key exchange .. 44

3.3 LUT Key exchange ... 45

3.4 DNA Key exchange ... 46

3.5 Client-Server User Authentication and Encryption key exchange 47

4.1 SSCC Block diagram ... 55

4.2 Compress phase .. 52

4.3 Encryption process flow chart .. 54

4.4 Decryption process flow chart ... 54

4.5 Block Diagram for Key Exchange process .. 64

4.6 Relationship between n and key length ... 65

5.1 File sizes in a related of matrix size using different compression values 69

5.2 Relationship between the matrix size and the needed encryption time in (ms)

including the compression phase in SSCC model .. 67

5.3 Relationship between the file size in (kB) and the needed encryption time in (ms)

for 1x1 matrix ... 71

5.4 Relationship between the file size in (kB) and the needed encryption time in (ms)

for 2x2 matrix .. 71

5.5 Relationship between the file size in (kB) and the needed encryption time in (ms)

for 3x3 matrix .. 72

5.6 Relationship between the file size in (kB) and the needed encryption time in (ms)

for 4x4 matrix ... 73

file:///C:/Users/pc%20corner/Dropbox/Master/Thesis_4-11-2016.docx%23_Toc467094354
file:///C:/Users/pc%20corner/Dropbox/Master/Thesis_4-11-2016.docx%23_Toc467094354
file:///C:/Users/pc%20corner/Dropbox/Master/Thesis_4-11-2016.docx%23_Toc467094354
file:///C:/Users/pc%20corner/Dropbox/Master/Thesis_4-11-2016.docx%23_Toc467094354
file:///C:/Users/pc%20corner/Dropbox/Master/Thesis_4-11-2016.docx%23_Toc467094354
file:///C:/Users/pc%20corner/Dropbox/Master/Thesis_4-11-2016.docx%23_Toc467094354
file:///C:/Users/pc%20corner/Dropbox/Master/Thesis_4-11-2016.docx%23_Toc467094365

vii

5.7 Relationship between the file size in (kB) and the needed encryption time in (ms)

for 5x5 matrix .. 74

5.8 Relationship between the file size in (kB) and the needed encryption time in (ms)

for 6x6 matrix .. 74

5.9 Relationship between the file size in (kB) and the needed encryption time in (ms)

for 7x7 matrix .. 75

5.10 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 8x8 matrix .. 76

5.11 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 9x9 matrix ... 77

5.12 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 10x10 matrix ... 77

5.13 Relationship between the file size in (kB) and the needed encryption time in

(ms) for all matrices and using the SSCC1 technique with compression 78

5.14 Relationship between the file size in (kB) and the needed encryption time in

(ms) for all matrices and using the SSCC2 technique with compression 78

5.15 Relationship between the matrix size and the needed encryption time in (ms)

excluding the compression phase in SSCC model ... 80

5.16 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 1x1 matrix .. 81

5.17 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 2x2 matrix .. 82

5.18 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 3x3 matrix .. 83

5.19 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 4x4 matrix ... 84

5.20 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 5x5 matrix ... 84

5.21 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 6x6 matrix .. 85

5.22 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 7x7 matrix .. 86

5.23 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 8x8 matrix .. 87

5.24 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 9x9 matrix ... 87

viii

5.25 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 10x10 matrix .. 88

5.26 Relationship between the file size in (kB) and the needed encryption time in

(ms) for all matrices and using the SSCC1 technique without compression 89

5.27 Relationship between the file size in (kB) and the needed encryption time in

(ms) for all matrices and using the SSCC2 technique without compression 89

5.28 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 1x1 matrix and using both SSCC1 and SSCC2 techniques with and without

compression .. 90

5.29 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 2x2 matrix and using both SSCC1 and SSCC2 techniques with and without

compression .. 90

5.30 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 3x3 matrix and using both SSCC1 and SSCC2 techniques with and without

compression .. 91

5.31 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 4x4 matrix and using both SSCC1 and SSCC2 techniques with and without

compression ... 91

5.32 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 5x5 matrix and using both SSCC1 and SSCC2 techniques with and without

compression ... 92

5.33 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 6x6 matrix and using both SSCC1 and SSCC2 techniques with and without

compression ... 92

5.34 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 7x7 matrix and using both SSCC1 and SSCC2 techniques with and without

compression ... 93

5.35 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 8x8 matrix and using both SSCC1 and SSCC2 techniques with and without

compression ... 93

5.36 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 9x9 matrix and using both SSCC1 and SSCC2 techniques with and without

compression .. 94

5.37 Relationship between the file size in (kB) and the needed encryption time in

(ms) for 10x10 matrix and using both SSCC1 and SSCC2 techniques with and

without compression .. 94

5.38 Encryption time for different matrix sizes using SSCC2 and File Size 320

Kb……………………………………………………………………………………96

5.39 Encryption time for different algorithms , Compression Value = 135 bytes 96

file:///C:/Users/pc%20corner/Dropbox/Master/Thesis_4-11-2016.docx%23_Toc467094409

ix

List of Algorithms

4.1 Algorithm for encryption process for SSCC1…………………………………..53

4.2 Algorithm for decryption process for SSCC1…………………………………..54

4.3 Algorithm for decryption process for SSCC2…………………………………..63

4.4 Algorithm for matrix key generator (MKG)…………………………………….65

x

Contents

Declaration .. i

Acknowledgement ... ii

Abstract……………………...….…………………………..………………….……. iii

List of Tables .. iv

List of Figures ... vi

List of Algorithms ... ix

1 Introduction 1

1.1 Introduction .. 1

1.2 Motivation ... 4

1.3 Problem Statement .. 5

1.4 Research Methodology .. 5

1.5 Objectives ... 7

1.6 Threat Model ... 8

1.7 Contributions ... 9

1.8 L U Factorization... 10

1.9 Literature Review .. 12

1.10 Thesis Organization .. 21

2 Cryptosystem models 20

2.1 Introduction………...……………………………………………..……….23

2.2 Standard Cipher Algorithms…………………..…………...……………...25

 2.2.1 Advance Encryption Algorithm (AES)……...…………….…26

 2.2.2 Data Encryption Standard Algorithm (DES)………..….……27

2.2.3 Triple- DES (3DES)………………………………...…..……28

2.2.4 Blowfish Algorithm ……..…………………………….….…29

2.2.4 Hill Cipher Algorithm (HC) ……..……………...….….….…30

2.3 Key management Algorithms………………….…………………….……31

 2.3.1 Rivest Shamir Adleman Algorithm (RSA)...………….....….32

 2.3.2 Elliptic Curve Cryptography (ECC) Algorithm………....…33

 2.3.3 Diffie-Hellman Algorithm (DH) …………………....………33

 2.3.4 Elliptic Curve Cryptography and Diffie-Hellman Algorithm.34

2.4 Cryptosystem models for Cloud Computing………………………..…….35

2.5 Anti-vulnerability methods ..………………………..……...…..…..…….35

 2.5.1 Compression techniques...…………..….……………..…..…..36

 2.5.2 Padding techniques …………………………………………...37

2.6 Summary……...………...………………………………….……………..39

3 Cloud Computing Architecture: Background and definition 40

3. 1 Introduction ... 41

3.2 Cloud Computing Models ... 42

 3.2.1 Information Dispersal model (ID) ... 43

 3.2.2 Lookup Table based Secure Cloud Computing model (LUT) 44

 3.2.3 DNA Matching model... 45

 3.2.4 Client-Server User Authentication and Encryption model 46

3.3 Summary……………………………………….…………………..…..…47

4 Cryptosystem model for secure data sharing in Cloud Computing 48

4.1 Introduction to SSCC .. 49

4.2 First technique SSCC1 .. 55

 4.2.1. Mathematical model of SSCC1 .. 55

4.3 Second technique SSCC2 .. 60

 4.3.1 Mathematical model of SSCC2 ... 60

4.4 Matrix Key Generator (MKG) .. 63

4.5 Summary .. 66

5 Simulation and Testing 67

5.1 Simulation results for Encryption process ... 68

 5.1.1 Simulation results with compression ... 69

 5.1.2 Simulation results without compression .. 79

 5.1.3 Comparison between SSCC1, SSCC2 with and without compression . 89

 5.1.4 Comparison between SSCC and other models 95

5.2 SSCC Assumptions .. 98

5.3 Brute force attack ………………………………………...……………...……98

6 Conclusion and Future work 99

6.1 Conclusion ... 100

6.2 Future work .. 101

Chapter One

Introduction

Contents

1.1 Introduction .. 1

1.2 Motivation ... 4

1.3 Problem Statement .. 5

1.4 Research Methodology .. 5

1.5 Objectives ... 7

1.6 Threat Model ... 8

1.7 Contributions ... 9

1.8 L U Factorization proof ... 10

1.9 Literature Review .. 12

1.10 Thesis Organization .. 21

Chapter 1: Introduction

1

1.1 Introduction

Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g. networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction [21]. This

cloud model is composed of five essential characteristics, three service models, and

four deployment models[30].Cloud computing deployment models that used in

common are: Platform as a Service (PaaS), Software as a Service (SaaS), Infrastructure

as a Service (IaaS), and Hardware as a Service (HaaS).

Platform as a Service (PaaS) is a service that use cloud computing platform in

developing or using custom applications. Software as a service (SaaS) using this

service as a commercial of the shelf (COTS) cloud users can run a software located

into virtual servers and use it to gain business. Using Infrastructure as a Service (IaaS)

cloud users can pay per use for infrastructure (servers, storage, networking equipment

and hardware).Finally, Hardware as a Service depends on time sharing on mainframes

and minicomputers [13].

Cloud computing represented by three main types, First is the public cloud where

vendor host the infrastructure and it can be accessed and used generally by any public

user or organization that can't control where the data are stored, this type of cloud

supports pay-as-you-go principle.

Second is the private cloud that is customized for a particular organization/user

and the resources are not shared by other organizations, this will make it more secure

but expensive and include two subtypes: externally hosted; Cloud that hosted by a third

party and can be used only by one organization, and on premise; Cloud that host by the

enterprise itself and can be hosted by other externally organizations, this kind is more

expensive than others.

Third is the hybrid cloud is a composition of the two cloud types private and

public. Private of its own critical data to gain more secure storage and public of its

Chapter 1: Introduction

2

general type of data that can be accessed from anyone , so that , this type of cloud is

more powerful than the previous types.

Some cloud experts generate a new type and called it Community Cloud which

restrict infrastructure to be only used by the organization consumers and managed by

one of the third parties or greater organization of the community or both [23].

Cloud computing has a set of benefits that make it useful like configurable

computing resources , flexibility of the services and economic savings .However , the

privacy and security principles represent a very wide issue that must be keep in a

safety manner and cloud computing support them using multi-tenancy , outsourcing

and resource sharing. This model must save the privacy of each user and keep data safe

also from the cloud providers [32].

As shown in Figure 1.1, a survey report that of collected information from 263

IT professionals by asking different questions related to the cloud represent security as

a first rank according to IT executive [14].

 Figure 1.1: Cloud computing issues

Application software databases are moved now towards cloud computing

datasets where users may not feel that it is trustworthy [9]:

1. Trust management: trust management depends on data integrity and strength,

moving data to a third party may entrust your data and make it issued.

2. Security provider: Provide encrypted data storage after user authentication and

authorization work will, but user may worry about his data to be unauthorized

Chapter 1: Introduction

3

accessed by hackers. Providers can mitigate this problem using substantial

resources.

3. Privacy protection: Cloud support virtual computing to utilize the traditional

computing model. User's data is saved into several virtual data centers which may

be not on the same physical location, so data will face different legal privacy

protection systems.

4. Ownership: Users will concern about preserving their rights in the cloud storage.

Cloud provider use well-skilled user sided agreement to solve it and then user can

decide if he/she wants to accept this agreement or not.

5. Data location and Relocation: Cloud computing support data mobility in a high

degree and users don't know the exact location of their data [9].

6. Data integrity: providing more secure data in the data sets will add a high degree

of integrity to that storage so that we need a strategy to secure users data.

7. Data recovery : a problem may occur like a server break down may cause loss or

damaged data, to solve this problem data cloud users must backed up their data

specially critical once on a local computer to recover it later.

8. Performance and availability: in Cloud computing performance and availability

of application on the cloud can be measured through a set of levels. Business

organization may be worried about this point.

9. Data Backup: Cloud user's data are stored using redundant servers and via routine

data backup processes, some users will be worried about their backups. Cloud

providers now offering data dumps or by regular downloads.

10. Data portability and conversion : cloud users can changed their service providers,

this can be difficult while transferring, porting and converting data cause of the

dependent on the data retrieval format provided by cloud providers.

Chapter 1: Introduction

4

1.2 Motivation

Cloud Computing is standout amongst the most critical themes whose

application is being explored in today's chance. One of the noticeable administrations

offered in it is the cloud storage [4]. With this storage, information is put away on

numerous third party servers, instead of on the committed server utilized as a part of

conventional arranged data storage.

All data put away on different outsider servers is not minded by the client and

nobody knows where precisely data spared. It is minded by the cloud storage provider

that claims that they can secure the data. However nobody trusts them.

Many security models were built to protect the security of data storage in

distributed systems; few ones take care of the security in the cloud environment. This

will courage us to design a more secure model for data storage in cloud computing

within an efficient strategy keeping in our minds the high performance represented by

decreasing the encryption/decryption time and the amount of data that can be

upload/download to/from the cloud storage at a time.

Moreover, our model is more secure because it added new features to the

existing models, for example: padding, compression in the addition of encryption; this

will provide a high degree of security which keeps it hard to find the original data in

an easy way.

Data will be encrypted before the processing of uploading them to the cloud

storage to ensure that it is save from rather than unauthorized or authorized access

from the cloud providers, also each cloud user will gain a unique secret key from a

trusted Authority to restrict the access for only the authorized users; this will keep the

accessing of the data storage from anywhere to everywhere.

Chapter 1: Introduction

5

1.3 Problem Statement

The nature of data storage in the cloud has many characteristics: Data and

applications that are often located off-premise, Users do not control their data and

applications, and Shortage of knowledge on how cloud computing impacts the

confidentiality of stored data, processed and transmitted in the cloud computing

environments. There are many benefits for cloud computing: Reduces costs, increases

scalability and flexibility, provides a large-scale infrastructure for high-performance

computing, and provides an on-demand access to a shared pool of configurable

computing resources [17].

These resources can be rapidly provisioned and released minimal management

effort by the consumer (minimal service provider interaction) and able to adapt to user

and application needs [37]. However, research results show that security concerns,

especially data security and privacy protection issues, remain the major reason of

objection for decision makers to adopt cloud computing.

Clients need to store and get out the information safely from the cloud storage

keeping that the guarantees of security and information put away on cloud need to be

protected. A further point of interest is that if there is security problem at the cloud

provider, the client's information will keep on being secure since all information is

encoded. Clients additionally require don't care over cloud providers accessing their

information unlawfully.

1.4 Research Methodology

During this thesis we search about the Original Hill cipher and its several

matrices techniques, take the advantages from that and then add a new modifications

to make it more accurate and close to the standard results, two approaches are

designed and developed to cover these added features for solving the previous

problems according to the original Hill cipher. This features control the matrices

structure by creating a suitable new way to hold data with different sizes and the same

matrix can be hold a wide range different file sizes and remove the hardness of

Chapter 1: Introduction

6

creating the key matrix with a set of rules, that mathematically proofed to be always

correct.

In this thesis , Simulation phase composed of two parts in order to cover the

proposed techniques SSCC1 and SSCC2 and compared the results with other

encryption algorithms and the standard , our testing is done within a different variable

that was delivered to gain various results depending rather than on the file size or on

the matrix size .

Another simulation was done using the same files including two main cases for

them, first case using compression which supported using our model the second one is

without using compression, then we compare between these cases to proof that the

compression played a big role by increasing the file size contained in the matrix

which will decrease the traffic while data transfer.

Chapter 1: Introduction

7

1.5 Objectives

In this section we summarize the objectives of this thesis as the following points:

 To read and analyze existing cryptosystem models.

 To define compression techniques.

 To develop new cryptosystem model that covers both the encryption and

key exchange process.

 To simulate and test proposed cryptosystem model including

encryption/decryption, compression and key exchange.

 To comparison between our model and the existing models through time,

throughput.

Chapter 1: Introduction

8

1.6 Threat Model

Cloud Computing environment is a network that connect several resources

together to maintain one shared pool and can be accessed by different kind of users

represented by organizations or individuals can suffer from a set of threats that our

model will solve:

1- Denial of the service (DoS): is a type of attack that occurs while data

transmission session where the attacker use packet splitting and duplicate

insertion and this kind of attack can be described through three main cases

[41] where each one can be solved through our model :

 Direct: the increase in the payload of cloud computing operating system

will lead to allocate more computational power to hold it [42], using our

model we can decrease the needed traffic within a specific session time for

data transferred based on compressed data principle.

 Indirect: the attacker work hard to break the availability of the service of

one instance so that it affects the availability of other instances [43], our

model make it available always using secret key that can't be break easily

so that the data will be available and retrieved every time and everywhere

this work well against plaintext attack and chosen plaintext attack where

attacker hack the plaintext partially to gain information about it.

 Distributed: the attacker controls a large scale of distributed hosts, so that

it is the most dangerous type of the denial of the service attack [44], our

proposed model support the distributed systems environments by

encrypted and splitting the whole data into sub-blocks that saved into

several cloud storage.

2- Man in the middle attack (MITM): attacker of the cloud computing

environment will steal the connection between two parties (user and provider)

and make the provider believe that this connection is secured enough, so that

Chapter 1: Introduction

9

the provider then send all messages directly to the attacker which can modify

the received messages and retransmit them to the user [45], using our model

we can make a secure connection between these two parties within the key

exchange process.

3- Application security: if the application/software that lies in the cloud and not

in the users side has a list of vulnerabilities then the attacker can easily plays

its role on stealing the inserted data on that software despite the way [46] [50],

cloud computing provider encrypt data using several techniques but the

security issue has a high rank, so that we propose our cryptosystem model to

encrypt data despite that data encryption using the cloud environment.

Our proposed model will mainly solved the Man in the Middle attack (MITM)

by encrypting data before transmitting it to other parties, so that if any unauthorized

access to these data it's encrypted and the secret key gained by the key exchange

process between user and the third party can't be found on other parties rather than the

original two parties (sender, receiver). Also, if someone tries to download these data

from the cloud storage upon it is the cloud provider itself, the secret key needed to

decrypt it and the algorithm must be known by them.

1.7 Contributions

 The aims of this model are done using a set of improvements on the Original

Hill Cipher that cover the following points:

 Develop new technique to modify Hill Cipher algorithm using matrices

principle and compression technique to improve the traffic speed and

keep the throughput in a save mode.

 Another important contribution, which improves the security of Hill

Cipher against known plaintext attack. This enhancement in security is

possible by using key generation idea based on key-exchange and

generation process using Diffie-hellman principle.

Chapter 1: Introduction

10

 Remove known plaintext and brute force attacks to protect data from

unauthorized access by another users on the same cloud storage or

even though the cloud providers themselves.

 Get benefit from the simplicity of encryption process of Hill cipher to

show that SSCC algorithm tacks less time than AES and original Hill

cipher.

1.8 L U Factorization proof

Triangular matrix is a matrix with zero elements above or below the main

diagonal, on one hand if the non-zero elements below the main diagonal it is called

lower triangular matrix denoted by L and on the other hand if all non-zero elements

above the main diagonal it is called an upper triangular matrix that denoted by U.

The L U Factorization is used in many applications basically in solving the linear

systems AX=B.

Let A be a square n×n matrix and can be written using lower and upper

triangular matrices then:

A =LU is the L U Factorization of A.

[

]

[

]

[

]

 (4.6)

Example:

Let:

 [

]= [

] (4.7)

Chapter 1: Introduction

11

 We apply the element row operation to find the upper triangular matrix U from

matrix A in equation 4.7:

 [

]

R2 → R2 – 1/2 R1

R3 → R3 – 2 R1

 [

]

R3 → R3 – -3 R1

 [

] => U= [

]=[

] (4.8)

To find the lower triangular matrix L, we use the multiplied coefficients that

solve the upper triangular matrix:

 [

] [

] (4.9)

E1 =[

] , E2 =[

] , E3 =[

]

 E3 E2 E1 A = U (4.11)

 A = (E3 E2 E1)
-1

 U = L U (4.12)

The L U Factorization can generate multiple solutions for the same matrix, only

if the solver gains the lower triangular matrix and the resultant matrix the upper

triangular matrix can be solved easily with a unique solution, so that the attacker can't

access to the upper triangular matrix without the lower once [36].

Chapter 1: Introduction

12

1.9 Literature Review

Modified Hill Cipher [2] gave a solution for the disadvantage points on the

original Hill cipher by supporting iterations and interlacing. Despite that iteration will

increase the complexity when we work with images as the input data and interlacing

leads to confusion on the output of the cipher text, it provides a more secure results

for the plaintext rather than images using binary conversion principle which is

suitable for integers, so the key matrix can be generated to be always in a non-singular

form.

In [1] Biometric traits can be solved in a secure manner using a cryptosystem

model based on modified Hill Cipher within a secret key matrix represented by a

prime circulant matrix where each element is rotate by one step to the right direction

related to the proceeding row vector, it can be written as equation 2.28 :

[

]

 = (2.28)

A circulant matrix is called a prime circulant matrix if and only if the gcd of the

row vector elements is equal to 1, let row vector elements called a, b, c,d then the

condition is denoted by: gcd(a,b,c,d) = 1 .

Another matrix called coefficient matrix denoted by Gc is a coefficient matrix

of the matrix G defined by:

 ()

The row vectors of matrix G, And is the circulant matrix of the row

vector , see the following example [1]:

Let G is 2x2 matrix then Gc is a 4x4 matrix in equation 2.29:

Chapter 1: Introduction

13

 G = [

] ; then Gc =[

] (2.29)

This matrix is used as a public key which may has a determinant equal to zero

to gain more efficient results where this matrix when used to be solved has infinite

solutions for the attacker through multi-level polynomial equations like equation 2.30:

 K = AGA
-1

 mod P (2.30)

This type of equations is a hard NP-complete problem when P represents a large

prime number and it is hard to compute the modulus value of that number, so a

simplification form is added to solve this problem using equation 2.31 [1]:

 Gc X = Y mod P (2.31)

Such that X contains the elements of A and A
-1

, also Y contains the elements of K,

For example: Let A be a circulant prime matrix and G is an invertible matrix using

equation 2.32:

 [

] [

] [

] (2.32)

The number of equations is less than the number of unknowns, this leads to

infinite number of solutions.

In [2] information hiding can increase the security degree of the cryptosystem

model, so that a combination between this model and a steganography method will

secure the transmit text message using the LSB insertion technique. Two random

techniques are used subsequently, one for XOR the ciphertext and the other for the

LSB insertion process into any image.

Chapter 1: Introduction

14

This will provide a robust cryptosystem model using both encryption and

steganography processing which work against cryptanalytic attacks. The XOR process

is executed within a special key (password) that is known only by the sender and the

receiver, and then the encrypted sequence is permute completing using the XOR

operation . The final output of that sequence is converted into an ASCII values and

hidden inside any cover image.

The insertion operation of the ASCII values into that cover image is done using

a numeric key within a randomized technique .This key is generated and represented

by a unique random number that is a resultant value from a particular seed to the key

generator. During the transmission phase user need to send his key to the Hill cipher,

XOR key and the random number generator.

Encryption at the Sender Side: The mxm key matrix 'K' is taken one a time per

session, and if it is a non-invertible matrix with a determinant that equal to zero, an

identity matrix is added to it to make it invertible.

The encrypted cipher text is calculated and formed by an mxn matrix using equation

2.33:

 C = K× P (2.33)

The resultant cipher text is divided into two parts C1 and C2 of order mxn

computed by the equation 2.34:

 C1 =⌊ ⌋ , C2 = C mod 26 (2.34)

The usage of the number 26 is to convert the text into an alphabet sequence of

letters, so that we gain a doubled number of elements when compared with the

original plaintext.

In the XOR technique, the cipher text is entered to an XOR operation with the

key (password) of the user and XORed with it to get a new encrypted form of the text

the output matrix is also divided into two parts using the division operation on 26, and

then storing the quotients in matrix called C1 and the reminder in other matrix called

C2. The integer value 65 is added to both matrices to form linear elements then

Chapter 1: Introduction

15

concatenating with each other in one single array with a doubled size .Finally the

linear array is converted a gain into a character form.

On the receiver side to retrieve the original text , first we got the cipher text

from the stego-object through the key (password) dependent on the block selection

algorithm , then XOred using that password to get the Hill Cipher of that text with a

doubled length when compared to the original once .After that we subtract the added

integer 65 to retrieve alphabetic values that varies between 0-26 , then divide the

results into two matrices of the size 3x3 to get C1 and C2 with a random key that

picked up from a key Generator ,let K = [17 17 5; 21 18 21; 2 2 19] ,Then using the

equations 2.35 and 2.36 :

 C = (26×C1) +C2. (2.35)

 P=K
-1

×C. (2.36)

Finally, a value 65 is added to Plaintext take it to ASCII range and the result is

Plaintext = [78 65 84 73 79 78 65 76 65] , then convert it back to alphabet range we

got “NATIONALA” , where the last character A is added to fix the length of the

cipher , so it deleted to get the original plaintext "NATIONAL" .

In the Steganography Hiding, text is divided into number of parts that less than

number of blocks in the cover image by one, a random numerical key generated using

a random sequence generator which specifies the bit hiding degree in the cover image.

 Decryption at the Receiver Side: In the Steganography Un-hiding random key

sequence is generated using random key generator as in the sender side to unhide the

stego-objects from the cover image, using techniques of XOR and decryption to

retrieve the original Hill cipher of the text, we apply the XOR operation on the given

sequence of bits to get the modified Hill Cipher values of that text.

After that, Divide the given cipher text into two parts and then reshape them

into two separated matrices of order mxn the same as C1 and C2 on the sender side,

then Convert these two matrices back to their numerical values by subtract 65 and

called them Y1 and Y2 respectively. They also take the same key matrix, and if it is

singular convert it to an invertible matrix by adding its identity matrix to it.

Chapter 1: Introduction

16

Use the equation 2.37 to calculate the cipher text:

C= ((Y1 × 26) + Y2). (2.37)

Finally, calculate the original plaintext using equation 2.38:

P = K
-1

 × C. (2.38)

In [7] One way hash algorithm can be used to clarify the principle of a singular

matrix in GF (2) using the Hill cipher multiplication method .This matrix is filled by

only one entry for each row and 0 otherwise , so that some of matrices can be

represented only using m entries .

In this model, Hill cipher is used symmetric encryption and multiplied by a key

matrix and authors proposed a class of matrices in GF (2) based on singular matrices

where it is easy to prepare and used. This new model gives an automatic alternative

for one-way hash function and a square singular matrix of size m is generated by the

summation of two permutation matrices in the form of GF(2) , that means values can

be only {0,1} and multiplied by the plaintext to gain the ciphertext based on the Hill

Cipher principle .

The algorithm is designed within different two models that both based on the

Cipher Block Chaining (CBC) to generate the hash value, the second model varies

from the first one by a list of additional operation using a nonlinear function. The

plaintext is converted to a binary values before the operation of hash value calculation

then divided to column vectors { B1 , B2 , … BN } with a size of mx1 and Bi = (bi0 , bi1

, ….. bi m-1) such that bij {0,1} using the following protocol in the communication

parties: Sender and Receiver.

At the sender side : they prepare a value M and singular matrix P ,then calculate

the hash value using the hash function A according to equation 2.39, finally send it to

the receiver:

 H = A (P, M) (2.39)

Chapter 1: Introduction

17

At the receiver side: the got the same value M and a singular matrix P, then

calculate the hash value H' using the same hash function A according to equation

2.40:

 H' = A (P, M) (2.40)

The main idea is to compare H and H' to ensure that we have the same value at

the two sides.

In [11] A new technique based on the original Hill cipher is proposed to solve

the flexibility of the key matrix and enhance the security of this model against the

brute force attach by using public ideas that gain more powerful complexity than

linear algebra steps which can be done using a specific options .Authors proposed a

robust cryptosystem algorithm for singular matrices based on the original Hill cipher

,this technique cover the two main stages of the cryptography model represented by

Encryption/Decryption processes.

At the encryption process, convert the character of the original plaintext into

numerical values, and then generate the key matrix that needed to the multiplication

operation, if this matrix singular we must convert it to a non-singular form by adding

the identity matrix. After that, calculate the ciphertext by the multiplication process

between the key matrix and the encoded plaintext using equation 2.33.

Finally, compute C1, C2 where values are specified using equation 2.41 and

convert the results of C1 and C2 into character again.

C1=⌈ ⌉ and C2 = C mod P (2.41)

At the decryption process, convert the sequences of the cipher text C1, C2 back

to its numerical values called them Y1, Y2, then check the determinant of the key

matrix; if is zero this means that we got a singular matrix, and then remove its

singularity by adding the identity matrix of it, after that calculate the plaintext using

equation 2.42. Finally, convert P back to the character form.

P = K
-1

× ((Y1× 256) +Y2) (2.42)

Chapter 1: Introduction

18

In [3], using matrices as a formula for the input text and the key used by the

encryption process will improve the results gain from this process, many algorithms

use that principle like Row Column Diagonal (RCD) and output a more powerful

results than the traditional ways. The RCD engine is used to encode data either in 2D

or 3D format which provide a high degree of security , it refers to RCD which means

that we do our operations on them within RCD bits given by supervisor and called

RCDSUP.

RCD bits contain data despite the needed operations of them that are for row,

column, diagonal or transpose of the matrix.

Another type data is generated called data seed (RCDSeed) which is executed

on either addition or subtraction operation that is done on row, column and diagonal

of the matrix. This model is composed of a set of components as the following:

1. Seed Generator

The seed supervisor is used the seed generator regardless of the running mode

UPLOAD/DOWNLOAD to provide the RCDSUP and RCDSeed for both the

CLOUD and the HOST.

2. RCD Encryption Decryption Module (RCDEDM)

This model performs the Encryption and Decryption operations for data that is

specified through RCD bits.

3. Seed validator

The validation process is done by the HOST to validate the RCD replay that

comes from the Cloud side containing address which is unique and use the the

validation data that always stored in the Seed buffer.

Chapter 1: Introduction

19

4. Seed buffer

This component plays a big role by storing the current statues of the process

cycle and it used by the HOST to store validation data, RCD bits that represent all the

seeds at the moment.

5. Controller

The decision of sending data through which line is taken by the controller, these

lines can be either a Secure Control Line (SCL) where RCD bits, seed values, RCD

reply and control signals are send through it or a Secure Data Line (SDL) where it is

the channel for all transmitted data.

6. Unique Address Recorder

The HOST requests its unique address from this recorder in order to give it for

the RCD supervisor or EDM module to validate RCD Reply and data.

7. RCD TABLE

Located at the Cloud side and store the status of the sub-clouds contains the

stored files, available space, load and other parameters. This status is needed when an

UPLOAD request to the sub-cloud occur and the central Cloud handle this request

and directed it to the suitable sub-cloud then update the RCD table.

The Encryption Decryption Module (EDM) is a module used for the

Encryption/Decryption process for the incoming RCD bits that decide the operation

needed to be performed either on Row, Column ,diagonal or transpose of the matrix

within the process of uploading/downloading to the Data matrix . These conditions

are satisfied by the RCD bits which is called RCDSUP and generated by a RCD

supervisor to tell the RCD engine what operation must be done and either it needs to

be encrypted or decrypted.

The RCD encryption engine take an mxm matrix that contain data input and

output (m+2) × (m+2) matrix contains data output, these two rows are added as a

carry values resultant from either addition or subtraction operations on values.

Chapter 1: Introduction

20

First, when the first operation is done on the data matrix, we padded it with 0's

for all size, so that two rows and two columns are added to this matrix. Now, the first

element in the first row is prepared to contain the carry of the operation on the

diagonal and the reset element will keep the carries of the columns operations. Also,

the most left column will handle the carry of the diagonal and the rest contains the

carriers of the row operations.

Chapter 1: Introduction

21

1.10 Thesis Organization

The organization of this thesis can be summarized as follows:

1. Chapter one includes brief overview of cloud computing security, motivation

of thesis, problem statement, proposed solution, research methodology, and

objectives of the thesis.

2. Chapter two gives an introduction to cryptosystem models including

symmetric or single key encryption and asymmetric or public key encryption

techniques.

3. Chapter three introduces cloud architecture and the key exchange techniques,

comparing between them and the chosen one in our model.

4. Chapter four presents our proposed model using a set of steps that describes

the phases of the proposed algorithm in details and a pseudo code for two our

techniques that clarify it briefly.

5. Chapter five presents the testing and simulation results for both two

techniques of our model (SSCC1 and SSCC2) comparing them with each

other to get the optimal solution , then complete the testing by compare the

results with others algorithms .

6. Chapter six presents conclusions of our results and future work for this model.

7. Finally, The list of references used during this thesis.

Chapter Two

Cryptosystem models

Contents

2.1 Introduction………...……………………………………………..……….23

2.2 Standard Cipher Algorithms…………………..…………...……………...25

 2.2.1 Advance Encryption Algorithm (AES)……...…………….…26

 2.2.2 Data Encryption Standard Algorithm(DES)…………….……27

2.2.3 Triple- DES (3DES)………………………………...…..……28

2.2.4 Blowfish Algorithm ……..…………………………….….…29

2.2.4 Hill Cipher Algorithm(HC) ……..………………….….….…30

2.3 Key management Algorithms………………….…………………….……31

 2.3.1 Rivest Shamir Adleman Algorithm (RSA)...………….....….32

 2.3.2 Elliptic Curve Cryptographpy (ECC) Algorithm………....…33

 2.3.3 Diffie-Hellman Algorithm (DH) …………………....………33

 2.3.4 Elliptic Curve Cryptography and Diffie-Hellman Algorithm.34

2.4 Cryptosystem models for Cloud Computing………………………..…….35

2.5 Anti-Vernability methods …………………………..……...…..…..…….35

 2.5.1 Compression techniques...………….….……………..…..…..36

 2.5.2 Padding techniques ...……………...…….………..……….….38

2.6 Summary……...……....…………………………………….……………..39

Chapter 2: Cryptosystem models

23

2.1 Introduction

In this Chapter we present an overview about Cryptosystem models, the word

"Cryptography" may use alternatively with the words "Cryptology" or

"Cryptanalysis" but each of them has its own meaning that differ slightly using the

term "Crypto" which comes from Greek "Krypto" to mean hidden and ending with

"graphy" which mean writing, so the whole word cryptography is mean to hidden

writing that done as an output of the encryption process in the secret systems [5].

The encrypted message or text is called ciphertext or cipher. There is someone

who can legitimately decipher this text and get the original one using a "key". Only

the key holder can simply get the original plaintext which kept secret and can be

provided within a trusted third party through a secure manner.

The word "Cryptanalysis" is referred to the process of analysis of the cipher or

hidden text to get the original one by decrypting or expose what is hidden when the

analyst of the system doesn’t have the legitimate key that used directly to retrieve the

original text. Also, the word "Cryptology" is more correct to be used because it merge

the meaning of either the encryption techniques or the analysis of these techniques, in

common people using the term Cryptography instead [29].

Cryptography is a term that reflects the meaning of information hiding and

verification using formals that depends on a set of protocols that used to results a

specific form of data to keep it in away from illegal access special when we

communicate with each other using sensitive information.

The process of converting the original plaintext from useful understating form

to opaque form of understanding called cipher text represent the Encryption phase of

the message , also using the opposite direction of the process to retrieve the original

useful plaintext is called the Decryption phase, two phases are used to create the

cryptography concept [6].

Chapter 2: Cryptosystem models

24

Cryptography is an area in a computer security that support the protection of

data; keeping it in a safe manner with a confident formula to obtain and preserving of

the main objectives of the computer security includes cryptography services: integrity,

confidentially and availability of the resources; which contains either software or

hardware. Cryptography is used to satisfy security objective using only one applicable

security model, there are three main objectives confidentiality, integrity and

availability (CIA) represent the base of the computer security principle:

1. Confidentiality: this concept can clarify two different terms; first is Data

confidentiality that ensure the avoidance of unauthorized access to the users

private data or data storage in cloud computing environment, Second is

privacy to restrict the disclose of data from whom to whom and these data are

collected and stored together.

2. Integrity: this concept also can cover two related terms include: Data Integrity

where data is kept with only changes from an authorized users and System

integrity where the system execute its function in a correct manner and prevent

illegitimate manipulation from unauthorized users.

3. Availability: means that the service work correctly and available every time it

will be requested from the authorized users.

Cryptography as a special case of the computer security has in general the same

goals like: message confidentiality (privacy) and integrity and adds new goals because

it is more specific contains: Sender authentication ensures the identity of the sender

from the message content and in some cases the path the message was traveled, and

sender non-repudiation: the sender can't deny the process of sending the message.

These goals are not applicable for all cryptographic systems, because some of

them require one or more goals to be achieved as needed using a set of variants

including: Access control; to satisfy for whom the data will be shared and the

availability of the message [29].

Chapter 2: Cryptosystem models

25

Cryptosystem model is referred to a model that applied an Encryption

methodology and a key exchange technique to generate a more secure model. In the

field of Cryptography there are two several techniques for encryption/decryption

processes, i.e. Symmetric and Asymmetric key Cryptography [5].

The transformation of cloud computing has given open doors for examination in

all parts of cloud computing. Research in the safe cloud storage is intensified by the

reality that user's data might be kept at a few areas for either repetition/adaptation to

internal failure or in light of the fact that the administration is given through a chain of

administration providers.

Secure data storage framework is composed, executed and assessed basically.

The configuration is given every single required point of interest, which uses off-the-

shelf crypto-graphical strategies and gives essential upload/download facilities.

2.2 Standard Cipher Algorithms

Standard Cipher Algorithms is a type of Symmetric or single key cryptography

same key called a secret key is used for encryption and decryption. Figure 2.1,

demonstrate the simplified model for symmetric key encryption technique, the plain

text is encrypted using that key and the output differ when we use a different key also

the decryption process done using the same key or the inverse of that key [4].

Figure 2.1: A simplified model for the symmetric encryption

Chapter 2: Cryptosystem models

26

In a symmetric cryptography the encryption and decryption process is

done using one generated secret key that commonly shared between only

two parties, this type of cryptography is composed of two main types one of

them is mainly for cloud computing environment and the other is for any

other distributed system that based on matrices principle.

Cloud computing environment uses many encryption algorithms to

convert the cloud storage data to a cipher values that can't be guessed from

users that shared the same resources. It uses generally the symmetric key

encryption for several algorithms. Each one has its own role and support

suitable case [51].

2.2.1 Advance Encryption Algorithm (AES)

The AES supports the scalability of the hardware resources and represent

symmetric cryptography techniques that are fast and can be implemented easily [51].

This algorithm represent the standard of encryption algorithms used in cloud

computing environment and depends on number of cycles used that leads to different

key sizes and based on 4x4 matrix size, 10 cycles needs a key length of 128 bit also

12 cycles supports a key length of 192 bit, finally 14 cycles needs a key length of 256

bit [52]. The key that is provided as input is expanded into an array of forty-four 32-

bit words. Four distinct words (128 bits) serve as a round key for each round [29], see

Figure2.2.

Chapter 2: Cryptosystem models

27

 Figure2.2: AES encryption process [29]

2.2.2 Data Encryption Standard Algorithm (DES)

The DES use symmetric key encryption [53] strategy where a secret key is

used for encryption/decryption process it use 64 bit of block cipher and a key of 56

bits, the encryption process is done by both confusion and diffusion processes to

result the cipher text blocks that divided into 32 bits which input to F-function then

combine the output with other half of data got from XOR operation to generate the

whole result and then passed through 16 rounds the decryption process is done using

the same operation in the reverse order but the key used is too short and can be broken

also its suitable for hardware rather than software applications [52] ,see equations 2.1,

2.2 and Figure2.3.

Li = Ri (2.1)

Ri = Li XOR f (Ri) (2.2)

Chapter 2: Cryptosystem models

28

 Figure2.3: DES encryption process [29]

2.2.3 Triple- DES (3DES)

The triple –DES or 3DES as a type of symmetric key cryptography [53] is use

three key to encrypt the plaintext message and apply the DES three times to generate

the ciphertext, these will increase the security degree and keep the cipher text in a safe

manner [52] , see equation 2.3.

Ci = EK3 (DK2 (EK1 (Pi))) (2.3)

If K2 = K3 this is DES, see Figure2.4.

Chapter 2: Cryptosystem models

29

 Figure2.4: Triple DES encryption process [29]

2.2.4 Blowfish Algorithm

It is also a symmetric key algorithm that works as DES using one secret key [51],

but it use a larger one that varies from 32 to 448 bit that is hard to brake when

compared with the previous techniques like DES, it support file sizes that are multiple

of eight and if not a padded bits will be added to access the suitable file size. As DES

the 64 bits is divided into two equal sized parts of 32 bits and has 16 rounds. The bits

are passed to P-array function to generate the left side of the message [52]. First,

Divide P into two 32-bit halves: L, R then starts with the first Round

We XORed the part of from the left side of the plaintext with a subkey see equation

2.4.

L = L XOR Ki (2.4)

Then the Right side of the plaintext is equal to the Left side output from a specific

function f and XORed with the Right side see equation 2.5.

 R = f (L) XOR R (2.5)

Chapter 2: Cryptosystem models

30

After that swap the left and right sides together .The last two steps XORed the Right

and Left sides with K16 and K17 respectively, see equations 2.6, 2.7.

 R = R XOR K16 (2.6)

 L = L XOR K17 (2.7)

Finally, Recombine L and R sides to shape the ciphertext, see Figure for more

illustration.

 Figure2.5: Blowfish encryption process [29]

2.2.5 Hill Cipher Algorithm (HC)

This cipher is developed by the mathematician Lester Hill is One of the

symmetric key cryptography that use the matrix manipulation [15] principle and

depending on key matrix that must be invertible to use it in both sides;

encryption/decryption. Moreover, not all matrices are invertible so a singular matrix

can't be eligible to be chosen as a key matrix. Hill cipher defines its simplicity by

using letters frequencies to represent the text message and the results of multiplication

are given by a high speed and also high throughput. Encryption: To Encrypt Plain text

with a fixed-length of Block size m, the values of Pnxn matrix entries are vary between

(0, q − 1) included where q represent number of entries, and P must be an invertible

Chapter 2: Cryptosystem models

31

(nonsingular) matrix, Each block of the Plain text matrix also contains entries

between (0, q-1) included and represent a vector of n dimension .This process is done

using the linear equation 2.10:

C = P × K 𝑚𝑜𝑑 𝑁 (2.10)

Decryption: To Decrypt cipher text vector C, we need first to find the inverse matrix

K
-1

 to K, where that matrix must be nonsingular. Then we can decrypt the incoming

cipher text message using the following equation 2.11 [8]:

 P = C × K-1 𝑚𝑜𝑑 𝑁 (2.11)

The singular matrix can be converted to non-singular matrix [31], so Hill

cipher becomes more efficient because it can encrypt/decrypt any text using the key

matrix. The Hil Cipher is stronger than Playfair because it not used the principle of

the letters frequencies this will hide these details completely, and as the matrix size

increase, more letters and its frequencies are hidden. Despite Hill-cipher is robust

against ciphertext it is easy to be broken using plaintext attack.

2.3 Key management Algorithms

The Key management algorithms mainly based on the asymmetric or public

key encryption; user must have two type of keys to complete the

encryption/decryption process; public key for encryption and private key for

decryption between two users or parties like UserA and UserB. UserA encrypt her

plaintext using the public key of UserB before sending it to him then decrypt it using

its own private key, so that no one can decrypt the ciphertext without the private key

of UserA to keep his privacy [10], see Figure 2.6.

 Figure 2.6: A simplified model for asymmetric encryption

Chapter 2: Cryptosystem models

32

There are different methods to implement this type of cryptography system .These

are RSA, ECC, Diffie-Hellman and Digital Signature.

2.3.1 Rivest Shamir Adleman Algorithm (RSA)

The difficulty of getting the plaintext message back from the ciphertext and

the public key is related to the difficulty of factoring a very large product of two

prime numbers. The RSA [10] key Generation can be done using the following steps

[26]:

First we choose two large primes p and q, then using the equation 2.12to compute n:

 n = p × q (2.12)

After that the phi function is solved preparing the e value using the equation 2.13:

 ɸ p-1) × (q-1) (2.13)

Select the public exponent e{1,2,.., ɸ(n)-1} based on the relationship specified in the

equation 2.14:

 ɸ (2.14)

Compute the private key d using equation 2.15:

 d × e  m ɸ (2.15)

Finally, the public key denoted by kpub can be computed using n and e, also the private

Key denoted by kpr is equal to d; RSA is used for the encryption/decryption process as

the following:

Encryption: The Encryption process can be done using the given: Public Key (n, e) =

kpub and Plaintext = P. Then the Encryption function is represented using the equation

2.16:

 C = Epub(P) Pe mod n. (2.16)

Chapter 2: Cryptosystem models

33

Decryption: RSA Decryption process is done using the given: Private Key d= kp and

Ciphertext = C.Then the Decryption function computed using equation 2.17:

 P = Dpr(C) Cd mod n. (2.17)

2.3.2 Elliptic Curve Cryptography Algorithm (ECC)

The ECC [27] used the curve principle to generate two distinct keys called the

public and private keys, this will be generated using the Elliptic curve properties of

points on that curve, a set of these points can be described by the equation 2.18 [12]:

 (2.18)

Where: 0 .

There are two group operations of the Elliptic Curve: Point addition: to

compute a new point, using a tangent line that is going through the two points P and Q

and Point Doubling where the two points are equal P and Q.

2.3.3 Diffie-Hellman Algorithm (DH)

First public-key type scheme proposed by Diffie and Hellman along with the

exposition of public key concepts, now know that James Ellis (UK CESG) secretly

proposed the concept. It is a practical method for public exchange of a secret key

between two parties where each one has the same key using a set of steps to specify

both the key generation and distribution principles [29]. Also the attacker can't guess

this value because it depends on private keys of the two parties let us called them A

and B, the following scenario clarify how the Diffie-Hellman key exchanges work:

First step: prepare global public elements: q as a prime number and a is

primitive root of q less than q. Second step: the Key Generation for User A can be

done by selecting private key Kpr_a < q then calculate public key Kpu_a using

equation 2.19:

 Kpu_a = a × Kpr_a mod q (2.19)

Chapter 2: Cryptosystem models

34

The same steps are repeated for User B and the public key is calculated using

equation 2.20:

 Kpu_b = a × Kpr_b mod q (2.20)

Then, the secret key of User A can be calculated using equation 2.21:

 Ks = (Kpu_b) × Kpr_a mod q (2.21)

Also, the Calculation of secret key for User B can be calculated using equation 2.22:

 Ks = (Kpu_a) × Kpr_b mod q (2.22)

Notice that the same result of secret key is gained by the two cases.

2.3.4 EEC and Diffie-Hellman Key Exchange Cryptography

As mentioned in section 2.3.2.2 the Elliptic Curve is a type of asymmetric

public key cryptography [29], it is also a technique for key exchange which include

the key generation and distribution phases, as specified in the following steps:

User select a suitable curve Eq(a,b) then Select a base point G=(x1,y1) with large

order n such that n × G = 0 . Second User A and User B select private keys Kpr_a< n,

Kpr_b < n.

After that they compute public keys: Kpu_a = Kpr_a × G and Kpu_b = Kpr_b × G to prepare

the shared secret key between them using equations 2.23 and 2.24:

Ks = Kpr_a × Kpu_b and Ks= Kpr_b × K (2.23)

Also the same results in the equation 2.15:

 Ks= Kpu_a × Kpu_ab ×G (2.24)

Attacker would need to find Ks which hard.

Chapter 2: Cryptosystem models

35

2.4 Cryptosystem models for Cloud Computing

Symmetric and Asymmetric key Cryptography is both used in several areas.

Each one has its own role, but it differs from each other through a set of factors that

affect its role. These factors are: key length, Rounds, Block size, Security rate,

Execution time, see Table2.1 for more details.

Table2.1: Comparison between symmetric and asymmetric Algorithms

Factors RSA DES 3DES AES

Key length

Based on

number of bits

in N = p× q

56 bits 168 , 112 bits
128,192 and

256 bits

Rounds 1 16 48 10 or 12 or 14

Block Size variance 64 bits 64 bits 128 bits

Security rate Good Not enough Adequate Excellent

Execution time Slowest Slow Very slow More fast

Also, when we compared the RSA and Diffie-Hellman key exchange , each one

has its own key length where Diffie-hellman needs more bits so that it's more secure

than RSA as a key distribution algorithm , see Figure 2.7 we illustrate that Diffie-

hellman needs less time to exchange keys between two parties.

 Figure2.7: Comparison between RSA and Diffie-Hellman Key

 Generation

2.5 Anti- vulnerability methods

This section includes matrix compression method that used in our proposed

algorithm with modification and a set of several padding algorithms that support the

Chapter 2: Cryptosystem models

36

security degree of our plaintext, use padded bits will add raw data to the original one

that make it robust against any other attacks.

2.5.1 Padding techniques

Padding is used to complete a specified stream of bits in order to make it useful

in a specific manner .That is to retrieve data easily after sending them to another party.

It is known that the usage of padding was to satisfy the authentication process of the

message .This process called Message Authentication Codes (MACS).The recipient

checks the padded bits to confirm that it comes from the original sender and no one has

stolen these data in order to modify it. There are two types of padding as mentioned

below:

1. Bit Padding: is a technique that adds single '1' bit and complete stream of bits

with '0's to access the specified block size [54] for example if the plaintext

stream of bits b's are :

… | bbbb bbbb bbbb bbbb bbbb bbb1 0000 0000 |

The padded bits are specified with the bold bits that start with '1'.

2. Byte Padding: Used for encoding process when the plaintext message is based

on integral number of bytes B's and contains :

A. Zero Padding: all padded bytes are filled with '0's to complete a

specified length of block size [58] , see example below:

… | BB BB BB BB BB BB BB BB | BB BB BB BB 00 00 00 00 |.

B. ISO/IEC 7816-4: There are two main types of padding [16]: the old

method that adds zero values to the string of bits to access a fixed

length. And the other first add one value let it be 80 then fill the

remained values with zeros until the needed length accessed as an

example ISO/IEC with different versions.

 … | BB BB BB BB BB BB BB BB | BB BB BB BB 80 00 00 00 |.

Chapter 2: Cryptosystem models

37

C. ISO 10126: Random bytes are added at the last byte and the number of

padded bytes should be specified with the last byte [56].

Example:

… | BB BB BB BB BB BB BB BB | BB BB BB BB 81 A6 23 04 |.

D. ANSI X.923: The plaintexts of bytes are padded with '0's and the final

byte represents the number of padded bytes [55].

Example:

… | BB BB BB BB BB BB BB BB | BB BB BB BB 00 00 00 04 |

E. PKCS7: padding is done on all bytes the number of padded bytes

represent the value that padded through it [57], so that the padded bytes

can be one of the following forms:

… | BB BB BB BB BB BB BB BB| BB BB BB BB 04 04 04 04 |.

2.5.2 Compression

Is a type of lossless compression of numerical matrices by a representing data

in a new mathematical model by converting number into stream of binary bits of a

variable lengths to improve the operations on the original data with minimum

computational costs by minimize the needed space in memory and the operation time.

Nowadays, in the digital computers all integer values are stored as a stream of

binary bits (base 2) and the block size (chunk) is take a power of two, numbers of bits.

Most of the modern computers are 64 bits word length. Thus, the total memory size

allocated for the matrix Pmxn is 64 × m × n.

We can retrieve matrix elements using the row and column indices and this will

waste more overheads between the memory and the processor, so that each row is

composed only using one decimal value. This means that the m×n matrix will be

converted to column vector.

Chapter 2: Cryptosystem models

38

There are many methods to solve this compression process , either for static

block size along the matrix depends on the minimum number of bits needed to

represent the maximum number between a set of values through the first row , this

method is called The Supreme Minimum (SM) or using a variable length block (VLB)

[24].

The Supreme Minimum (SM): This is a matrix compression method depends on the

value of the greatest element in the matrix represented by the minimum number of bits

and called it the supreme, see 2.25, 2.26.

 [

] (2.25)

 p {
 p { }

⌊ p ⌋ p
 (2.26)

Table2.2: Elements Binary representation according to 2.25

Element Value Binary Bit length

P1,1 20 10100 5

P1,2 660 1010010100 10

P1,3 11 1011 4

P1,4 256 100000000 9

P1,5 2 2

P1,6 721 1011010001 10

P1,7 700 1010111100 10

P1,8 500 0111110100 10

Bitstream1=

 ⏟ ⏟

 ⏟

 ⏟

 ⏟

 ⏟

 ⏟

Bitstream2=
 ⏟ ⏟ ⏟

Each bit stream can contain only 64 bit so that the element P1, 7 is divided into two

parts: a located on the first stream of bits and b located on the second stream of bits.

Let you see the following complete example of the process:

Chapter 2: Cryptosystem models

39

Assume: [

] (2.27)

 [

] [

] [

] (2.28)

Ternary system is used instead to make the compression process harder to

guess than binary, notice that in some cases, switching the conversion system to

Ternary system will retrieve smaller values, but not always, using a larger matrices

sizes that depends on the increasing number of columns, so that number of digits

increase and using the Ternary system the decimal number will be represented using

three possible values 0, 1 and 2, see equation 2.29.

 [

] [

] [

] (2.29)

2.6 Summary

Our proposed model SSCC is based on the original Hill Cipher using matrices

principle, where the encoded plain text is added into a matrix and multiplied by the

key matrix which contains the secret key of that plain text.

The original version of Hill cipher use two nxn matrices that filled completely

by entries. The model adds a new feature that the matrices has their own properties to

make it difficult to be broken by the attacker, that’s why we create an upper triangular

matrix for the input secret key and a lower triangular matrix for the input plain text

and multiply them to attain the ciphertext.

Chapter Three

Cloud Computing Architecture: Background and definition

Contents

3. 1 Introduction ... 41

3.2 Cloud Computing Models ... 42

 3.2.1 Information Dispersal model (ID) .. 43

 3.2.2 Lookup Table based Secure Cloud Computing model (LUT) 44

 3.2.3 DNA Matching model... 45

 3.2.4 Client-Server User Authentication and Encryption model 46

3.3 Summary…………………………………………………………………..…..…47

Chapter 3: Cloud Computing Architecture: Background and definition

41

3.1 Introduction

Cloud Computing is an environment that composed of a set of central remote

servers that communicate with each other through the internet network to serve either

data or applications . It provides the accessibility of their resources while the internet

is available to their users that can be ordinary or business users. Cloud Computing

apply the availability concept of its resources where these resources (Storage,

memory, Processing and bandwidth) are centralized to support a more efficient

environment [28].

The outsourcing of data to cloud computing environment and deal with a third

party that may be known or not will leads to a security issue where data is processed

in a global scope, so that this issue must be solved using a cryptosystem model that

keep data in the encryption mode before they uploaded to the Cloud storage .User can

access their data through a specific name and make its own modifications (upload,

edit) within a virtual server that view all data as a one unit and on the same location

this is what is called the transparently concept .

Cloud Storage is the main component in the cloud computing environment

where that data and applications located on multiple servers that is may not be

dedicated on the same network.

The location where that data placed doesn’t exists as the user see, it represent

on the reality view by a set of computers that connects together through a network to

form the cloud. A dynamic change of that location will occur periodically and affect

the actual used storage, but user don’t see these changes and work with it like a static

location on his own computer and can easily make modification on his data.

A management system controls the Cloud storage architecture and composed

of a master server that controls a set of storage servers. According to this level of

abstraction only one of data servers is connected to internet.

Chapter 3: Cloud Computing Architecture: Background and definition

42

3.2 Cloud Computing Models

In this section, a set of cloud computing architectures are mentioned briefly to

clarify the differences between them and show who it works by view their steps and

who it support the security concerns to be robust enough against the unauthorized

access from the unknown third parties . The selected Cloud computing architecture is

depends mainly on the purpose of that cloud storage and the needed security level, so

that critical data or application needs a very robust system to ensure that it is safe

enough and to gain the satisfaction of the end users or organizations.

Cloud computing environment mainly composed of five separated components

[40], the two major components are: First is the Cloud Service consumer:

represented by a company that interested in the cloud based solutions, it requests a

service either from the Cloud Service Provider or from the Cloud broker; and second

is the Cloud Service Provider (CSP): provides a set of layers consists of :Service

Layer, Resource abstraction and control layer, physical resource layer, Cloud service

management, privacy and security layers.

Also, Cloud computing has Cloud Broker, Cloud Auditor and Cloud carrier;

each one plays its role to satisfy the major aim of the Cloud computing principle like

resource sharing and other services, Cloud Broker integrate these cloud services it

works as a cloud provider when act with the consumer this role is supported by the

Cloud Auditor which check the privacy and security concerns, finally the cloud

carrier makes the connectivity between the consumer and the CSP.

The first three zones are consists of the Cloud service provider (SCP) within its

domain and the last one is an external zone that can be accessed from the outside see

Figure 3.1.

Chapter 3: Cloud Computing Architecture: Background and definition

43

 Figure 3.1: NIST Cloud Architecture design [21]

3.2.1 Information Dispersal model (ID)

In [20] the period of 'Big Data', computerized substance is created at an uncommon

pace by organizations and users alike. Usage of IT has driven up the interest for

portable storage devices (PSD), they are additionally seeing an exponential

development in the utilization of individual cloud storage administrations. PSD, in

spite of the fact that advantageous to use because of it's fitting in plug-and-play, is

regularly subject to loss and theft.

Secret sharing or information dispersal model (ID) slices information into n

number of slices and scatters the slices to large numbers of storage nodes. Without

adequate number, m, of slices, the information can't be recreated. These methods

depend on (m, n) threshold plan. An enemy needs to take in any event m of the n cuts

to recreate the file. With less than m cuts, the attacker gets no data. By giving secrecy

without encryption, we can utilize a more adaptable and secure authentication based

security framework that can be effectively changed in light of new dangers and

vulnerabilities. Interestingly, evolving encryption plan involves the regularly

inconceivable errand of re-encryption furthermore, keeping up an excessively

complex key generation framework.

Cloud

Service

consumer

Cloud

Broker

Cloud Carrier

Cloud Service Provider (CSP)

Resource

allocation

and

abstraction
Physical

Resource

Cloud Services

management

P
ri

v
ac

y

Cloud

Auditor

S
ec

u
ri

ty

Services

SaaS

PaaS

IaaS

Chapter 3: Cloud Computing Architecture: Background and definition

44

This architecture is based on using a single secret key that can be found using

public key of User B called Kpub_b and private key of User A called Kpr_a' to complete

the process a key exchange will occur between two parties as shown in Figure 3.2,

where:

IDA: Identifier of A.

N1, N2: nonce to identify this transaction uniquely.

 Figure 3.2: ID key exchange

3.2.2 Lookup table based Secure Cloud Computing model (LUT)

In [34] a great deal of cryptographic procedures have been proposed to reduce

the data security issues in cloud , however the greater part of these works concentrate

on comprehending a particular security issue, for example, data sharing, correlation,

searching, and so forth. Using the LUT of the FPGA (field-programmable gate array),

we can produce a more secure cloud storage for both data and program depending on

the k-meaning clustering.

The evaluation of every function in the computer infrastructure is done within

a Look up table scheme. This scheme work as a traditional table which consists of a

set of elements (entries) and each one has two main properties (index ,value); where

indices is used to represent inputs and values used to simplified output .

Several types of functions can be converted into this LUT pattern easily like

constant functions, successor functions or any other primitive functions. Also, if the

function contains more than one type at the same formula, we can decompose it into

partial functions and solve each of them separately then composed them again to get

the final result.

User A User B

(1) E (Kpub_b, [N1 || IDA])

(2) E (Kpub_a, [N1 || N2])

(3) E (Kpub_b, N2)

(4) E (Kpub_b', E (Kpr_a', Ks))

Chapter 3: Cloud Computing Architecture: Background and definition

45

The conversion process of the function into the LUT scheme need to collect

all the possibilities of the input set, then apply them into the function to calculate their

results that represent the output set .The number of inputs may be greater than two

inputs, this means that we need a vector to represent the input element which can

directed link to multiple output.

This architecture based on key exchange of public keys PKA , PKB between

two users and parameters of each user called KAparameter and KBparameter as shown in

Figure 3.3, User A and User B retrieve their parameters from the Trusted 3
rd

 party,

then send their encrypted public keys to each other.

 Figure 3.3: LUT Key exchange

3.2.3 DNA Matching model

In [19] Cloud computing aims to satisfy a set of features like performance,

availability, scalability and low cost at the same time within low processing efforts at

the client side and handle it on the cloud side. User needs only a simple input/output

device and the most of the computation process is done on the cloud infrastructure.

This algorithm supports a hybrid Cloud computing architecture using the DNA

matching.

User A User B

(3) E (PKA, PKB)

(4) E (PKB, PKA)

Trusted 3
rd

party

(1) KAparameter
(2) KBparameter

Chapter 3: Cloud Computing Architecture: Background and definition

46

A more secure cloud is built using DNA matching system within garbled

circuit evaluation technique and RSA to improve the overhead to the cloud storage in

the public and private cloud and decrease the needed execution time.

 User data is represented by a DNA sequence that sent to the private Cloud and

the encryption process is done using the RSA algorithm that generate the cipher string

is processed to Garbled Circuit to gain the garbled sequence of the input DNA

sequence, then it is moved to public Cloud and a comparison matching is done

between this sequence and the original DNA sequence using Edit distance algorithm

to complete the evaluation process. The Decryption process is done back on the

private Cloud after the completeness of the verification process using matching

principle. Figure 3.4 illustrates the key exchange process between two parties and via

a Trusted Third Party User A and B request their public keys PUA, PUB from it and

each request has an ordered number Request1 , Request2 , … and so on.

 Figure 3.4: DNA Key exchange

3.2.4 Client-Server User Authentication and Encryption Model

In [59], authors proposed a new model for cloud computing environment that

do the encryption process before uploading to the cloud storage using RSA algorithm

output small e to share an encrypted key that keep the transparent between using two

different keys between parties represented by client server architecture, then it check

the authentication degree using modified Diffie-Hellman key exchange to work with

only one secret key in order to authenticate and validate each other.

User A User B

(6) E (PUA, PUB)

(5) E (PUB, PUA)

(1) REQUEST (PUA)
(3) REQUEST (PUB)

(2) E (PUA, Request1) (4) E (PUA, Request2)

Trusted 3
rd

party

Chapter 3: Cloud Computing Architecture: Background and definition

47

The authentication leads to identity the legal users and control there privileges

to access the shared resources. This model will add features to data protection, and

security of the transmitted data which support the cloud computing services [60],

Figure 3.5 illustrates the key exchange between two parties User A and B and secret

shared encrypted secret key Ks using small integer value e is exchanged.

 Figure 3.5: Client-Server User Authentication and Encryption model key exchange

3.3 Summary

 In this chapter, we introduce the general form of Cloud Computing

Architecture, and then several Cloud Computing architectures are mentioned to

clarify the variety in the Cloud computing environment and demonstrate the key

exchange process for each one separately.

 In our model we generate a composite secret key that will be distributed across

the key matrix, but searching through a key of 100 bit still harder than 4 x 25 bit

where the key is divided into two parts for example, so we padded the key using

random bits to decrease this problem.

User A User B

(6) E (Ks,e)

(5) E(Ks, e)

(1) REQUEST (PUA)
(3) REQUEST (PUB)

(2) E (PUA, Request1) (4) E (PUA, Request2)

Trusted 3
rd

party

Chapter Four

 Proposed Model:

Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

Contents

4.1 Introduction to SSCC .. 49

4.2 First technique SSCC1 .. 55

4.2.1. Mathematical model of SSCC1 .. 55

4.3 Second technique SSCC2 .. 60

4.3.1 Mathematical model of SSCC2.. 60

4.4 Matrix Key Generator (MKG) .. 63

4.5 Summary .. 66

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

49

4.1 Introduction to SSCC

In this chapter we introduce our proposed algorithm (SSCC) that's a

Cryptosystem model for Secure Data Sharing in Cloud Computing which has two

inputs (Plain text, Secret Key) and one output (Cipher text) as a result of the

encryption process. The plain text can be represented by File = f [m1,m2,….mn] where

f is the file from the user data where each users can store a lot of files into the cloud

storage and each file composed of a set of blocks m1,m2,….mn and n is the number of

the last block in this file .

The other input is the secret key (Ks). The user can obtains its key from a

trusted third party let us called it CaaS, which plays its role by request a new secret

key from a key Generator (keyGen) for each user that can be either a new user or old

users. So, a new key is retrieved for this purpose.

Our model SSCC communicate with the Cloud provider and send the

encrypted part of file to it as xi = E(ks,f) so each file f is encrypted using user own key

ks and stored in xi to send directly to the cloud provider which directed it to the cloud

storage as the whole file X , you can follow the scenario illustrated in Figure 4.1.

 Figure 4.1: SSCC Block Diagram

Figure 4.1: SSCC Scenario

Plain text

Secret Key

SSCC

Algorithm

Cloud

Provider Cloud
Storage

Key
Generator

Trusted 3rd party

KS

Ks

X

X
 =

E
(K

s,
f)

F

il
e

=

f[
m

1
,m

2
,.

.
m

n
]

Secure

Connection

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

50

SSCC uses matrices manipulation principle to produce ciphertext .This algorithm

uses two matrices: plain text (P) and key (K) as a type of triangular matrices to gain

i.e., benefit from their properties. The key matrix (k) contains the secret key of the

owner where each user has his own unique key to support high security guarantees for

the data file sharing systems through low management and maintenance costs of the

outsourced data files. The users' memberships will change frequently, so we need a

robust system to handle these users and save them from the collisions that may occur

by untrusted cloud users.

 Also, we need a secure communication channels and a group manager Certificate

Authorities that provide private keys for dynamic groups in the cloud, when a new

member wants to join or revoked from this group, the private keys of the other

members will not be changed .And the revoked member can't access to any data files if

it come from untrusted third party [38].

 SSCC Algorithm

Our SSCC Algorithm has eight sequential steps to transform the plain text message

and then upload it to the Cloud storage as a cipher text file. The phases of the SSCC

algorithm are as the following:

1. Input: User input a plaintext file (M) and a secret key that considered a

password for his data (Ks). This key can be gained also from a trusted third

party to make the process portable.

2. Encode: the plaintext encoded such that each character is represented using a

decimal integer value starts from 1 up to 26. To keep the matrix in the upper

triangular form we discard the 0 value, let us called these resultant values E.

Then E is filled into matrix of m × n [24], see Table4.1 which illustrate the

values of alphapatic characters that we used in our testing.

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

51

Table4.1: Character Encoding

Value Character

1 a

2 b

3 c

4 d

5 e

6 f

7 g

8 h

9 i

10 j

11 k

12 l

13 m

14 n

15 o

16 p

17 q

18 r

19 s

20 t

21 u

22 v

23 w

24 x

25 y

26 z

3. Split: plain text is split into n numbers of sub blocks (m1, m2 , ….. mn) ,

depending on a blockSize value (B).

4. Compress: Each sub block is converted into its ternary value then a

composition of this stream of values is converted to one decimal value that

represents a block.

These set of blocks is inserted into an upper triangular matrix, see the Figure below

that explain the compression process completely:

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

52

 Figure 4.2: Compress phase

5. Pad: The zeros elements in this matrix is replaced with padding values using

ISO/IEC padding technique to complete the matrix , i.e., all elements above the

diagonal are nonzero elements.

6. Generate and Result: The used key for the encryption is by utilizing several

algorithms. A keyGen uses the Diffie-hellman key exchange principle and then

stores it into a trusted third party. The value is unique for each user, and then

the key matrix is prepared to be used with the plaintext matrix.

7. Encryption : The process of encryption is represented by the multiplication

between two matrices; Plaintext(P) and Key (K) to generate a third matrix

called Cipher text (C) ,then decode the result matrix in order to prepare the

ciphertext file.

8. Output: ciphertext (c) is uploaded to the cloud storage.

Start

Input Plaintext (M),

Block Size

Split Plaintext into sub-

blocks

T= Convert each sub-block into

Ternary value

Plaintext length

= Matrix Size

D = Convert T to a decimal

value

Insert D into an upper triangular

matrix (P)

Add ISO/IEC Padding

Output Ciphertext (C)

End

Yes

No

Ternary Stream of bits

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

53

 These 8 phases are done sequentially where the input of each phase depends on the

output of the previous phase except the first one. The forward direction through these

phases result the Encryption process sees Figure 4.3.

Figure 4.3: Encryption process flow chart

Pseudo code at the UPLOAD to the Cloud storage (Encryption)

M = readFile("Plaintext.txt")

E=encode(M) % a=0 , b=1 , ……. , z=26 and fill them in Emxn matrix

T= dec2ter(E) % convert decimal values to values of base 3values

B= split(T, BlockSize) % split into equal Sized sub-blocks

compBlocks = ter2dec(B , n) % convert form ternary to decimal

K= upperTriang(key) %insert key vector into upper triangular matrix

pcb = padCompBlocks(compBlocks) % add padding if needed

P = lowerTriang(pcb) % insert pcb vector into lower triangular matrix

R=K × P % generate the ciphertext matrix

C = decode (R) % convert decimal values to characters

uploadToCloud(C,"ciphertext.txt")

Algorithm 4.1: Algorithm for Encryption process for SSCC1

Start

Input Plaintext (M),

Secret Key (Ks)

Encode Plaintext (E)

Split encoded plaintext into

sub-blocks

Compress set of sub-blocks into

blocks (Comp Blocks)

Padding? Pad Comp Blocks (PCB)

Generate Plaintext matrix (P),

Key matrix (k)

Calculate C= K × P

Decode Ciphertext matrix (D)

Output Ciphertext (C)

End

Yes

No

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

54

Also the reverse direction within these phases represents the decryption process see

Figure 4.4.

Figure 4.4: Decryption process flow chart

Pseudo code for the DOWNLOAD from the Cloud storage (Decryption)

C= downloadFromCloud("ciphertext.txt")

E=endcode(C)

padCompBlocks=lineSolve(E,K) %matrices L U decomposition

pcb = extractVector(padCompBlocks)

comBlocks=removePadding(pcb)

T=dec2ter(comBlocks)

B=split(T,blockSize)

E=ter2Dec(B)

P=decode(E)

SaveTo(P,"paintext.txt")

Algorithm 4.2: Algorithm for decryption process for SSCC1

Our model has two techniques to be accomplished that vary by the plaintext

matrix form. The first technique is called SSCC1 which has an upper triangular matrix

Start

Input Ciphertext (C),

Secret Key (Ks)

Encode Ciphertext (E)

Generate Ciphertext matrix (C),

Key matrix (K)

P = K-1 × C

Padding

exists? Remove Padding (Comp Blocks)

Remove Compression (Blocks)

Split blocks into sub-blocks

Decode each block (D)

Output Plaintext (P)

End

Yes

No

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

55

with zero elements above the diagonal. The second technique is called SSCC2 which

has non-zero elements for all entries in this matrix based on the LU Factorization

principle as mentioned in the previous section. The next two sub-sections provide more

details about them.

4.2 First technique SSCC1

The first technique of SSCC is called SSCC1. This Technique implies the last 8

phases with more details related to the form of the needed matrices. Recall that we

have two matrices. First is for the secret key ks called K matrix with nxn size and lower

triangular matrix properties where all elements over the diagonal are zeros. The second

matrix hold the numeric values of the plain text and called P matrix with size nxn and

in the upper triangular matrix properties.

The output of this technique can be computed by the multiplication of the last

to matrices to get the ciphertext and called it C matrix of n x n size.

Triangular matrices are needed to gain the benefits from the LU decomposition

theory in the linear algebra and that’s done through the LU factorization process to

retrieve either the plain text or the key matrix. And as the key matrix in the lower

triangular form, this will force it to be always invertible as we fill it in that form to

emphasis the non-singularity of the Key matrix. The Encryption / Decryption process

will work well and in the forward and reverse directions due to the proprieties of LU

decomposition form.

4.2.1 Mathematical model of SSCC1

In this section we focus on the model that used for two different stages;

UPLOAD and DOWNLOAD.

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

56

UPLOAD encrypted file to the Cloud storage (Encryption)

 User needs to follow the previous steps in the forward direction to complete the

process of uploading his data to the cloud storage.

Let the key matrix (K), K=[

]

And the plaintext matrix (P), P=[

]

Then;

[

] [

] [

]

K x P = C (4.9)

Where,

K: nxn lower triangular matrix that contains the secret key for one user. Ks =

[k1 k2 ……. km]; where ksi is an integer value represent a subpart of that key.

P: nxn upper triangular matrix that contains encoded and compressed data, so

that each element represents a block of data, using the following formula:

pij = compression(encode(pcb)) (4.10)

Where,

pcb is a padded compression block.

encode (pcb) to convert it into integer values rather than characters

i = 1.. n , j = 1.. n.

C: nxn Cipher matrix.

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

57

DOWNLOAD encrypted file from the Cloud storage (Decryption)

If Ciphertext matrix (C), C = [

]

User has the key and the incoming cipher matrix; so P can be easily found by solving a

system of linear equations to find K
-1

.

C = K x P (4.11)

Where:

pij as mentioned in equation 4.10.

Example for SSCC1

UPLOAD to the Cloud storage (Encryption)

Let user needs to upload a file contains the following plaintext:

Plaintext = "helloisraa"

Then each character is encoded to its value according to Table4.1:

Blocks =[

]

Each entry in the Blocks matrix is converted from Decimal to Ternary value to

generate a matrix let us called it T:

T = [

]

Each row entries in matrix T are column wise merged to represent a decimal value to

generate a new matrix let us called it T':

 T ' =[

]

Each element in matrix T' is converted back from Ternary to decimal value added to a

matrix called CompBlocks:

CompBlocks = [

]

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

58

The matrix CompBlocks entries are added to another matrix P in an upper triangular

form and if any entry missed it padded to complete the matrix using ISO/IEC padding

as mentioned in section 2.5.1:

P =[

]

The secret key is generated using MKG as mentioned in section 4.4 and returned in a

decimal value Ks as example:

Ks = (9)10

Convert the secret key decimal value to binary stream of bits Ks':

Ks'= (1001)2

Pad the Ks' with random 0's and '1 to complete a suitable key length for the matrix K

which must be with the same size of the Plaintext matrix P to generate Ks'':

Ks''=(100101100)2

The resultant stream of bits are read from left to right then divided into sub keys of

only three bits:

SubKeys ={1, 5, 1}

The SubKeys elements are inserted into a lower triangular matrix K:

K=[

]

The ciphertext matrix is gained as a result of the multiplication operation of K and P

matrices:

 C=[

]

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

59

DOWNLOAD from the Cloud storage (Decryption)

The ciphertext matrix returned from encoding the downloaded text file from the Cloud

Storage, notice that we must avoid using 1x1 and 2x2 matrix, because the first row will

be remain the same as you see in the following example:

C=[

]

Obtain the key matrix from a trusted third party and insert it into a K matrix as

mentioned in the UPLOAD stage:

K=[

]

After Linear Solve using LU Decomposition, using the ciphertext and Key matrices to

get the plaintext matrix P:

P =[

]

This matrix P contains compressed blocks of data with padding, we need to remove the

padded entries and insert entries without padding into column vector called

CompBlocks:

CompBlocks = [

]

Convert the entries in the CompBlocks from Decimal to Trinary values called T:

T =[

]

Split the stream of bits into 3 by 3 elements called it T':

T' = [

]

Convert each value back to its original Decimal value to generate Blocks matrix:

Blocks =[

]

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

60

Decode each decimal value to get the characters of our text, and then return the whole

plaintext as an output:

Plaintext = "helloisraa"

4.3 Second technique SSCC2

The Second technique of SSCC is called SSCC2 implies the last 8 phases with

more details related to the form of the needed matrices, as we have two matrices; First

is for the secret key ks called K matrix with nxn size and square matrix properties

where all elements are nonzero, the second matrix exists to hold the numeric values of

the plain text and called P matrix with size nxn and also a square matrix properties

represented by the nonzero for all elements.

The output of this technique can be computed by the multiplication between

the last to matrices to get the cipher text and called it C matrix with also nxn size

where C = K P. The key matrix at this technique is needed to be an invertible matrix ;

this can be done be check the determinant of the matrix at the end of the filling process

of elements if it is equal to zero a new key matrix will be generated that satisfied that

condition .

4.3.1 Mathematical model of SSCC2

In this section we illustrate our model using the second technique SSCC2 for

both stages UPLOAD and DOWNLOAD.

UPLOAD to the Cloud storage (Encryption)

 User needs to follow the previous steps in the forward direction to complete the

process of uploading his data to the cloud storage as mentioned for SSCC1 but the

matrix format change to be as a fulfilled form.

Let Key matrix (K), K=[

] , and the plaintext matrix (P) is

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

61

 P=[

]

Then,

 [

] [

] [

]

 K x P = C (4.11)

Where,

K: nxn lower triangular matrix that contains the secret key for one user. Ks =

[k1 k2 ……. km]; where ki is an integer value represent a subpart of that key.

P: nxn upper triangular matrix that contains encoded and compressed data, so

that each element represents a block of data, as mentioned in the equation 4.10.

DOWNLOAD from the Cloud storage (Decryption)

User download the text file from, it converted to ciphertext matrix using the encoding

process then,

 C = [

]

User has the key and the incoming cipher matrix; so plaintext can be easily found by

solving a system of linear equations, See equation 4.11.

Example for SSCC2

UPLOAD to the Cloud storage (Encryption)

Plaintext = "helloisraa"

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

62

Blocks =[

]

T = [

]

 T =[

]

Comp Blocks = [

]

P =[

] // Padding is started from the first entry of the 2

nd
 row

Ks = (9)10

Ks= (1001)2

Ks with padding =(100101100)2

Sub Keys ={1 , 5 , 1 }

K= Lower matrix =[

]

 C=[

]

DOWNLOAD from the Cloud storage (Decryption)

C=[

]

K= Lower matrix =[

]

After Linear Solve using LU Decomposition:

P =Upper matrix =[

]

Comp Blocks = [

]

T =[

] ,T = [

]

Blocks =[

] = Plaintext = "helloisraa"

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

63

At the DOWNLOAD from the Cloud storage (Decryption)

C= downloadFromCloud("ciphertext.txt")

E=endcode(C)

padCompBlocks=lineSolve(E,K) %matrices L U decomposition

pcb = extractVector(padCompBlocks)

comBlocks=removePadding(pcb)

T=dec2ter(comBlocks)

B=split(T,blockSize)

E=ter2Dec(B)

P=decode(E)

SaveTo(P,"paintext.txt")

Algorithm 4.3: Algorithm for decryption process for SSCC2

4.4 Matrix Key Exchange model MKG

 Matrix key generator (MKG) is a proposed new function that we developed to

generate several secret keys for the SSCC model; it is work as an aided subsystem to

our main cryptosystem model, where each user has his own unique key to encrypt his

data. This MKG takes its input from the Diffie-Hellman algorithm that output a secret

unique key and distributes it between two different parties (Trusted 3
rd

 party and the

key Generator).

 This secret key Ks also padded with extra random bits to make it with the

suitable length as a power of two stream of bits then it is divided into sub-key then

inserted as an entries inside the key matrix, this mean that a composite key is used to

encrypt the given plain text matrix which need a hard effort from the attacker to be

hacked, see Figure 4.6 that demonstrate the abstraction view of the key exchange

process.

Pseudo code for MKG

In MKG the secret key has several lengths which is related mainly to the

matrix size, as the matrix size increase the key length must be increased to protect a

Diffie-

Hellman
Algorithm

Trusted 3rd

party

Or CaaS

Matrix Key

Generator

(MKG)

SSCC

Algorithm

Ks

Ks

Or

Figure 4.6: Block Diagram for Key Exchange process

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

64

convenient security degree, a random padded stream of bits are added to access the

needed length and support the security of the secret key.

Table4.2: Secret Key length

Key

length

(bits)

With

padding

Key

length

(bits)

Without

padding

*A

matrix

number

of

elements

n x n

A

matrix

size

16 8 1 1x1

32 24 3 2X2

64 48 6 3x3

128 80 10 4x4

128 104 13 5x5

256 168 21 6x6

256 224 28 7x7

256 228 36 8x8

512 360 45 9x9

512 440 55 10x10

*Note that the number of non-zero elements in the triangular matrix with a specified

size nxn is calculated using:

NumberOfElements = ∑
 , where n is number of rows or columns because we

work with square matrices forms.

 Based on the results on Table 4.2, the results show that increase the value of n

which represent nxn or the size of the matrix lead to increasing the key length, see

Figure 4.7:

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

65

 Figure 4.7: Relationship between n and key length

Pseudo code is used to show the main steps of our new algorithm MKG as the

following:

Algorithm: MatrixKeyGenrator(Ks , matrixCapacity)

Input: A secret Key (Ks) from Diffie-hellman algorithm.

Output: A lower triangular matrix with size nxn called a key matrix

Ks' = dec2bin(Ks) // convert the secret key to its binary value

While length(Ks') < matrixCapactiy do

Ks' = Ks' + random(1) // add padding to the secret key to access the specified length

K = splitKey(Ks' , 3) // divide the secret key into parts containing only 3 bits

K' = bin2dec(K) // Convert the resultant parts into their decimal values

Output = fillMatrix(K') // insert the decimal values into the key matrix as a lower

triangular form

return Output

Algorithm 4.4: Algorithm for matrix key generator (MKG)

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

66

4.5 Summary

In this chapter we present our model. In the first section, we provide an

introduction that well clarifies the main idea about it. The second section, an algorithm

of our model explains the main steps (phases) as each one was clarified carefully. We

also mentioned the two main techniques of our model named SSCC1 and SSCC2

respectively; each technique has its own mathematical model that is introduced to be

different from the other.

Finally, a general pseudo code is written to clarify the sequence of steps as

functions and parameters, to make it easy to follow during reading it. Our model was

illustrated by employing a set of different ways to understand and to ensure the

simplicity of the given algorithm. Besides its correctness to prove that it is good

enough to be used later.

Chapter 4: Proposed Model: Cryptosystem model for Secure Data Sharing in Cloud

Computing (SSCC)

67

Chapter Five

Simulation and Testing

Contents

5.1 Simulation results for Encryption process .. 68

5.1.1 Simulation results with compression .. 69

5.1.2 Simulation results without compression ... 79

5.1.3 Comparison between SSCC1, SSCC2 with and without compression. 89

5.1.4 Comparison between SSCC and other models 95

5.2 SSCC Assumptions ... 97

5.3 Brute force attack ………………………………………...…………………97

Chapter 5: Simulation and Testing

68

5.1 Simulation results for Encryption process

In this chapter we present the results and discussion our simulation in an Intel

ASUS P6100 laptop, 2.00GHz 2 core(s), 4GB RAM/ Microsoft windows7/MATLAB

7.10.0 simulator.

A different file sizes are chosen and fed to the algorithm to generate a cipher text

for the input file and then calculate the processing time for each case. First, we start

with small file sizes to calculate the capacity for different matrices, so we start with

1x1 to 10x10 matrices to calculate the processing time needs for the encryption

process; these matrices can be either an upper triangular matrix represented by the 1st

technique (SSCC1) or a fulfilled matrix represented by the 2nd technique (SSCC2).

 Our simulation was covered two cases, first when the compression phase is

included in our model and applied for the two techniques separately and the second

was when we skip the compression phase mainly from our model.

The degree of compression was measured using a finite value called it Compression

Value (CV) which affect the results in a significant effect, Table5.1 shows the results

of different compression values 18, 27, and 135 bytes that clarify that when the

compression value increase the amount of data transfer will increase, which will save a

lot of encryption time, this results was gained from the testing of both techniques and a

proportional relationship between matrix (n× n) and file size (Bytes).

 Table5.1: File Sizes in bytes for different compression values (CV) using a set of matrices

File Size(Bytes)

n×n
(matrix Size)

Comp. value = 135
Byte

(9x15)

Comp. value = 27
Byte
(9x3)

Comp. value = 18
Byte
(9x2)

Second
technique
SSCC2

First
technique
SSCC1

Second
technique
SSCC2

First
technique
SSCC1

Second
technique
SSCC2

First
technique
SSCC1

135 135 27 27 18 18 1x1
540 405 108 81 72 54 2x2

1215 810 243 162 162 108 3x3
2160 1350 432 270 288 180 4x4

3375 2025 675 405 450 270 5x5
4860 2835 972 567 648 378 6x6
6615 3780 1323 756 882 504 7x7

8640 4860 1728 972 1152 648 8x8
10935 6075 2187 1215 1458 810 9x9
13500 7425 2700 1485 1800 990 10x10

Chapter 5: Simulation and Testing

69

The illustrations of the previous table are emphasized using Figure 5.1 and clarify the

differences between curves that represent several sets of data.

 Figure 5.1: File sizes in a related of matrix size using different

Compression values

5.1.1 Simulation results with compression

 Simulation results can be measured including the compression phase in our

model SSCC when we either use the first or the second technique. We applied this

phase and got results from our system; first we take matrices with different sizes to

compute the amount of data carried through each one and at the same time measure the

encryption time for them separately, see Table5.2.

Table5.2: Encryption time for SSCC2 using different file sizes, compression value = 9x15 = 135 byte

Encryption
time (sec)

File Size(bytes) Matrix
size

(nColumns
× nRows)

2nd

technique

(SSCC2)

1st
technique

(SSCC1)

0.001 135 135 1x1

0.004 540 405 2x2

0.007 1215 810 3x3

0.012 2160 1350 4x4

0.018 3375 2025 5x5

0.024 4860 2835 6x6

0.033 6615 3780 7x7

0.041 8640 4860 8x8

0.049 10935 6075 9x9

0.063 13500 7425 10x10

0.075 16335 8910 11x11

0.088 19440 10530 12x12

Chapter 5: Simulation and Testing

70

Note that, each value of File Size is calculated of a matrix that is either

fulfilled or triangular filled in bytes within the following formula, Figure 5.2

illustrates that there is a non-linear growth between matrix size and encryption time:

File Size = Compression Value x numberOfElementsInTheMatrix (Bytes)

Figure 5.2: Relationship between the matrix size and the needed

Encryption time in (ms) including the compression phase in SSCC model

 The encryption time was increased as the size of the matrix increase , we test

our model on several file sizes that varies from 32 to 320 kilo bytes using a base

matrix with different size from 1x1 to 10x10 at each case , base matrix means that the

whole file is divided into a set of matrices abound this size of matrix and add padding

at the end if its needed to complete elements in the matrix, and then compare between

the results to get the optimal one for this encryption process .

 For the 1x1 matrix you can see the results in Table5.3:

Table5.3: The encryption time for different file sizes depends on the 1x1 as a base matrix.

It is easy to work with 1x1 as a base matrix where each block of data is

represented in a separate matrix that is the same using our two techniques SSCC1 ,

Encryption time (ms)
File Size

(Kb)
2

nd
 technique
SSCC2

1
st
 technique
SSCC1

0.2370 0.2370 32

0.4740 0.4740 64
0.7111 0.7111 96
0.9481 0.9481 128

1.1851 1.1851 160
1.4222 1.4222 192
1.6592 1.6592 224
1.8962 1.8962 256

2.1333 2.1333 288
2.3703 2.3703 320

Chapter 5: Simulation and Testing

71

SSCC2 because of the existence of only one element, see Figure 5.3, also throughput

can be measured for the File Size = 320 Kb using the formula 5.1.

 𝑜

 𝑜 𝑚

 𝑜

Figure 5.3: Relationship between the file size in (kB) and the needed

 Encryption time in (ms) for 1x1 matrix

For the 2x2 matrix you can see the results below in Table5.4:

Table5.4: The encryption time for different file sizes depends on the 2x2 as a base matrix.

The usage of 2x2 matrix will generate a small difference in results of the

encryption time between the first technique SSCC1 and the second SSCC2, see Figure

5.4.

 𝑜

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

0.2370 0.3160 32

0.4740 0.6320 64
0.7111 0.9481 96
0.9481 1.2641 128
1.1851 1.5802 160

1.4222 1.8962 192
1.6592 2.2123 224
1.8962 2.5283 256

2.1333 2.8444 288
2.3703 3.1604 320

Chapter 5: Simulation and Testing

72

 Figure 5.4: Relationship between the file size in (kB) and the needed

 Encryption time in (ms) for 2x2 matrix

For the 3x3 matrix you can see the results in Table5.5:

Table5.5: The encryption time for different file sizes depends on the 3x3 as a base matrix

Another big difference is done using this size of matrix 3x3 and the better

values are using the first technique SSCC1 that support compression according to

Figure 5.5.

 𝑜

Figure 5.5: Relationship between the file size in (kB) and the needed

Encryption time in (ms) for 3x3 matrix

For the 4x4 matrix you can see the results in Table5.6:

Encryption time (ms)
File Size

(Kb)
2

nd
 technique

SSCC2

1
st
 technique

SSCC1

0.1843 0.2765 32

0.3687 0.5530 64

0.5530 0.8296 96

0.7374 1.1061 128

0.9218 1.3827 160

1.1061 1.6592 192

1.2905 1.9358 224

1.4748 2.2123 256

1.6592 2.4888 288

1.8436 2.7654 320

Chapter 5: Simulation and Testing

73

Table5.6: The encryption time for different file sizes depends on the 4x4 as a base matrix.

As we see in Figure 5.6 , a more gap is appear between the two curves but we got that

the difference between it and the previous one isn't big especially the SSCC1 curve.

 𝑜

Figure 5.6: Relationship between the file size in (kB) and the needed

encryption time in (ms) for 4x4 matrix

For the 5x5 matrix you can see the results below in Table5.7:

Table5.7: The encryption time for different file sizes depends on the 5x5 as a base matrix.

Encryption time (ms)
File Size

(Kb)
2

nd
 technique
SSCC2

1
st
 technique
SSCC1

0.1777 0.2844 32
0.3555 0.5688 64
0.5333 0.8533 96
0.7111 1.1377 128

0.8888 1.4222 160
1.0666 1.7066 192
1.2444 1.9910 224

1.4222 2.2755 256
1.6000 2.5600 288
1.777 2.8444 320

Encryption time (ms)
File Size

(Kb)
2

nd
 technique
SSCC2

1
st
 technique
SSCC1

0.1706 0.2844 32
0.3413 0.5688 64
0.5120 0.8533 96

0.6826 1.1377 128
0.8533 1.4222 160
1.024 1.7066 192

1.1946 1.9911 224
1.3653 2.2755 256
1.5360 2.5600 288

1.7066 2.8444 320

Chapter 5: Simulation and Testing

74

In Figure 5.7 the encryption time values are approximately the same as in

Figure 5.6, this means that we can hold more data with the same encryption time that

compared to 5x5 matrix.

 𝑜

 Figure 5.7: Relationship between the file size in (kB) and the needed

Encryption time in (ms) for 5x5 matrix

For the 6x6 matrix you can see the results in Table5.8:

Table5.8: The encryption time for different file sizes depends on the 6x6 as a base matrix

The 6x6 matrix plays its role by decreasing a bit of the encryption time, which

will affect the whole process as in Figure 5.8.

 𝑜

Encryption time (ms)
File Size

(Kb)
2

nd
 technique
SSCC2

1
st
 technique
SSCC1

0.1580 0.2708 32
0.3160 0.5417 64
0.4740 0.8126 96

0.6320 1.0835 128
0.7901 1.3544 160
0.9481 1.6253 192
1.1061 1.8962 224

1.2641 2.1671 256
1.4222 2.4380 288
1.5802 2.7089 320

Chapter 5: Simulation and Testing

75

 Figure 5.8: Relationship between the file size in (kB) and the needed

 encryption time in (ms) for 6x6 matrix

For the 7x7 matrix you can see the results in Table5.9:

Table5.9: The encryption time for different file sizes depends on the 7x7 as a base matrix

 The results again directed to be increased again using this size of matrix 7x7

see Figure 5.9, which leads to skip it for better results in the coming graphs.

 𝑜

 Figure 5.9: Relationship between the file size in (kB) and the needed

Encryption time in (ms) for 7x7 matrix

For the 8x8 matrix you can see the results below in Table5.10:

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

0.1596 0.2793 32
0.3192 0.5587 64
0.4789 0.8380 96
0.6385 1.1174 128

0.7981 1.3968 160
0.9578 1.6761 192
1.1174 1.9555 224

1.2770 2.234 256
1.4367 2.5142 288
1.5963 2.7936 320

Chapter 5: Simulation and Testing

76

Table5.10: The encryption time time for different file sizes depends on the 8x8 as a base matrix

Using 8x8 matrix will return approximately the same results.

 𝑜

Figure 5.10: Relationship between the file size in (kB) and the needed

Encryption time in (ms) for 8x8 matrix

For the 9x9 matrix you can see the results below in Table5.11:

Table5.11: The encryption time for different file sizes depends on the 9x9 as a base matrix

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

0.1542 0.2699 32
0.3037 0.5399 64
0.4555 0.8098 96
0.6074 1.0798 128

0.7592 1.3497 160
0.9111 1.6197 192
1.0629 1.8897 224

1.2148 2.1596 256
1.3666 2.4290 288
1.5185 2.6995 320

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

0.1434 0.2581 32
0.2868 0.5162 64
0.4302 0.7743 96

0.5736 1.0324 128
0.7170 1.2905 160
0.8604 1.5486 192

1.004 1.8067 224
1.1471 2.0649 256
1.2905 2.3230 288
1.4340 2.5811 320

Chapter 5: Simulation and Testing

77

The good results are found using 9x9 matrix where the encryption time is decreased

and at the same time a larger file sizes are hold, so that we can call it the best case of

our approach when using the SSCC2 second technique of our model.

 𝑜

 Figure 5.11: Relationship between the file size in (kB) and the needed

Encryption time in (ms) for 9x9 matrix

For the 10x10 matrix you can see the results in Table5.12:

Table5.12: The encryption time for different file sizes depends on the 10x10, 11x11 and 12x12 as base matrix

In matrices 10x10, 11x11 and 12x12 as illustrated in Figure 5.13 the problem

of the big encryption time will solved but it is still larger than the 9x9 matrix, so we

chose the 9x9 as the best case of all cases.

 𝑜

 𝑜

 𝑜

Encryption time (ms)for

12x12

Encryption time (ms)for

11x11

Encryption time (ms)for

10x10
File Size

(Kb) 2
nd

 technique
SSCC2

1
st
 technique
SSCC1

2
nd

 technique
SSCC2

1
st

technique
SSCC1

2
nd

 technique
SSCC2

1
st

technique
SSCC1

0.1448 0.2674 0.1469 0.2693 0.1493 0.2715 32

0.2897 0.5348 0.2938 0.5387 0.2986 0.5430 64
0.4345 0.8022 0.4407 0.8080 0.4480 0.8145 96
0.5794 1.0697 0.5876 1.0774 0.5973 1.0860 128

0.7242 1.3370 0.7346 1.3468 0.7466 1.3575 160
0.8691 1.6045 0.8815 1.6161 0.8960 1.6290 192
1.0139 1.8719 1.0284 1.8855 1.0453 1.9006 224

1.1588 2.1394 1.1753 2.1548 1.1946 2.1721 256
1.3037 2.4068 1.3223 2.4242 1.3440 2.4436 288
1.4480 2.6742 1.4692 2.6936 1.4933 2.7151 320

Chapter 5: Simulation and Testing

78

Figure 5.12: Relationship between the file size in (kB) and the needed

Encryption time in (ms) for 10x10 matrix

 We make our comparison between these matrices and conclude that the usage

of the 1x1 matrix will obtain the optimal solution of the encryption time but a smaller

amount of data that can be carried through this type of matrix, so we search about the

second optimal solution and we gain the 9x9 matrix that provide both a better

encryption time than others and with a very good throughput while the process of data

transfer , also the usage of 2x2 matrix will provide a very bad results comparing it

with others , see Figure 5.13.

Figure 5.13: Relationship between the file size in (kB) and the needed

Encryption time in (ms) for all matrices and using the SSCC1 technique

with compression

 Another last comparison in this section is done between several matrix sizes

but using the second technique SSCC2 and the results indicates that the optimal

solution was found using the 9x9 matrix and the second once was the 10x10 matrix

and again the usage of 2x2 matrix represent the worst case of this model, see Figure

14.

Chapter 5: Simulation and Testing

79

 Figure 5.14: Relationship between the file size in (kB) and the needed

encryption time in (ms) for all matrices and using the SSCC2 technique

with compression

 Finally, a comparison between using 1x1 and 9x9 matrices based on the

transmission time to approximate the network traffic at each case using the 5.2 formula

and let bandwidth=100Mbps :

 m m

 (5.2)

For 1x1 matrix (see Table 5.2 for File Size):

 m m

 m

Using both SSCC1 and SSCC2, we gain the same results because there is only one
element at this matrix

For 9x9 matrix (see Table 5.2 for File Size):

a. Using SSCC1

 m m

 m

b. Using SSCC2

 m m

 m

The results show that the matrix 9x9 needs more time than 1x1 matrix to be
transmitted but it can hold more data than it.

Chapter 5: Simulation and Testing

80

5.1.2 Simulation results without compression

 Simulation results can be measured excluding the compression phase in our

model SSCC for both techniques SSCC1 and SSCC2. We skipped this phase and got

results from our system; first we take matrices with different sizes to compute the

amount of data carried through each one which mainly decreased when compared with

the previous approach where the compression process included and at the same time

measure the encryption time for them separately, see Table5.13.

Table5.13: Encryption time for SSCC using different File sizes

Encryption
time (sec)

File Size(bytes) Matrix
size

(nColumns
x nRows)

2nd

technique

(SSCC2)

1st
technique

(SSCC1)

0.001 9 9 1x1

0.005 36 27 2x2

0.012 81 54 3x3

0.024 144 90 4x4

0.030 225 135 5x5

0.041 324 189 6x6

0.055 441 252 7x7

0.071 576 324 8x8

0.088 729 405 9x9

0.100 900 495 10x10

Note that, each value of File Size is calculated of a matrix that is either

fulfilled or triangular filled in bytes as illustrated in Figure 15 and within the

following formula: File Size = numberOfElementsInTheMatrix (bytes).

Chapter 5: Simulation and Testing

81

 Figure 5.15: Relationship between the matrix size and the needed

encryption time in (ms) excluding the compression phase in SSCC model

For the 1x1 matrix you can see the results in Table5.14:

Table5.14: The encryption time for different file sizes depends on the 1x1 as a base matrix

 We notice that a huge difference between values as the file size increase,

because each element of the matrix contains only one byte of data and the matrix is

composed of only one element , so the data transfer is done one byte at a time which

will waste time as in Figure 5.16.

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

3.5555 3.5555 32
7.1111 7.1111 64

10.6666 10.6666 96

14.2222 14.2222 128
17.7777 17.7777 160
21.3333 21.3333 192

24.8888 24.8888 224
28.4444 28.4444 256

32 32 288

35.5555 35.5555 320

Chapter 5: Simulation and Testing

82

 Figure 5.16: Relationship between the file size in (kB) and the needed

 encryption time in (ms) for 1x1 matrix

For the 2x2 matrix you can see the results below in Table5.15:

Table5.15: The encryption time for different file sizes depends on the 2x2 as a base matrix

In 2x2 matrix , the encryption time continue its increasing process but there is

a difference in output between the two techniques SSCC1 , SSCC2 where the SSCC2

return a less time than SSCC1 , this indicate positively as in Figure 5.17.

Figure 5.17: Relationship between the file size in (kB) and the needed

 encryption time in (ms) for 2x2 matrix

For the 3x3 matrix you can see the results below in Table5.16:

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

4.4444 5.9259 32

8.8888 11.8518 64
13.3333 17.7777 96
17.7777 23.7037 128

22.2222 29.6296 160
26.6666 35.5555 192
31.1111 41.4814 224

35.5555 47.4074 256
40 53.3333 288

44.4444 59.2592 320

Chapter 5: Simulation and Testing

83

 Table5.16: The encryption time for different file sizes depends on the 3x3 as a base matrix

The absence of the compression phase affect the results mainly , so that as the

matrix size increase which leads to an increase in the file size will reflects negatively

on the encryption time see Figure 5.18.

Figure 5.18: Relationship between the file size in (kB) and the needed

 encryption time in (ms) for 3x3 matrix

For the 4x4 matrix you can see the results in Table5.17:

Table5.17: The encryption time for different file sizes depends on the 4x4 as a base matrix

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

4.7407 7.1111 32
9.4814 14.2222 64

14.2222 21.3333 96
18.9629 28.4444 128

23.7037 35.5555 160
28.4444 42.6666 192
33.1851 49.7777 224

37.9259 56.8888 256
42.6666 64 288
47.4074 71.1111 320

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

5.3333 8.5333 32
10.6666 17.0666 64

16 25.6 96
21.3333 34.1333 128
26.6666 42.6666 160

32 51.2 192
37.3333 59.7333 224
42.6666 68.2666 256

48 76.8 288
53.3333 85.3333 320

Chapter 5: Simulation and Testing

84

As we see in Figure 5.19 , the values grows up deeply with respect to matrix

size that represent the file size , this will prove that the compression phase must be

included to gain the perfect results .

Figure 5.19: Relationship between the file size in (kB) and the needed

 encryption time in (ms) for 4x4 matrix

For the 5x5 matrix you can see the results in Table5.18:

Table5.18: The encryption time for different file sizes depends on the 5x5 as a base matrix

In 5x5 matrix, the values move down and decreased when compared with the

last cases that conclude 1x1 to 4x4 matrices, this will provide a good feedback see

Figure 5.20.

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

4.2666 7.1111 32

8.5333 14.2222 64
12.8 21.3333 96

17.0666 28.4444 128
21.3333 35.5555 160

25.6 42.6666 192
29.8666 49.7777 224
34.1333 56.8888 256

38.4 64 288
42.6666 71.1111 320

Chapter 5: Simulation and Testing

85

Figure 5.20: Relationship between the file size in (kB) and the needed

 encryption time in (ms) for 5x5 matrix

For the 6x6 matrix you can see the results in Table5.19:

Table5.19: The encryption time for different file sizes depends on the 6x6 as a base matrix.

As shown in Figure 5.21, the results continue their decreasing process that the

difference gap increase as the matrix size increase.

Figure 5.21: Relationship between the file size in (kB) and the needed

encryption time in (ms) for 6x6 matrix

For the 7x7 matrix you can see the results in Table5.20:

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

4.0493 6.94176 32
8.0987 13.8835 64

12.1481 20.8253 96
16.1975 27.7671 128
20.2469 34.7089 160
24.2962 41.6507 192

28.3456 48.5925 224
32.3950 55.5343 256
36.4444 62.4761 288

40.4938 69.4179 320

Chapter 5: Simulation and Testing

86

Table5.20: The encryption time for different file sizes depends on the 7x7 as a base matrix

According to the Table5.20, we notice that the results remain approximately as

the previous case when the matrix size is 6x6, but using the 7x7 matrix is better

because it can contain more data.

Figure 5.22: Relationship between the file size in (kB) and the needed

encryption time in (ms) for 7x7 matrix

For the 8x8 matrix you can see the results in Table 5.21:

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

3.9909 6.9841 32
7.9818 13.9682 64

11.9727 20.9523 96
15.9637 27.9365 128

19.9546 34.9206 160
23.9455 41.9047 192
27.9365 48.8888 224

31.9274 55.8730 256
35.9183 62.8571 288
39.9092 69.8412 320

Chapter 5: Simulation and Testing

87

Table5.21: The encryption time for different file sizes depends on the 8x8 as a base matrix

In 8x8 matrix, the values return to its increasing manner specially for the SSCC1

technique and remain the same in the SSCC2 technique.

Figure 5.23: Relationship between thefile size in (kB) and the needed

 encryption time in (ms) for 8x8 matrix

For the 9x9 matrix you can see the results in Table5.22:

Table5.22: The encryption time for different file sizes depends on the 9x9 as a base matrix

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

3.9444 7.0123 32
7.8888 14.0246 64

11.8333 21.0370 96

15.7777 28.0493 128
19.7222 35.0617 160
23.6666 42.0740 192

27.6111 49.0864 224
31.5555 56.0987 256
35.5000 63.1111 288

39.4444 70.1234 320

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

3.8628 6.9530 32

7.7256 13.9061 64
11.5884 20.8592 96
15.4513 27.8123 128

19.3141 34.7654 160
23.1769 41.7185 192
27.0397 48.6716 224

30.9026 55.6246 256
34.7654 62.5777 288
38.6282 69.5308 320

Chapter 5: Simulation and Testing

88

 The results of Table5.22 are illustrated in Figure 5.24, and no big changes on

data, so that we make sure to use the larger size of the matrix to complete the process

of data transfer with larger file sizes.

Figure 5.24: Relationship between the file size in (kB) and the needed

 encryption time in (ms) for 9x9 matrix

For the 10x10 matrix you can see the results in Table5.23:

Table5.23: The encryption time for different file sizes depends on the 10x10 as a base matrix

 Finally, in 10x10 matrix is the optimal matrix for data transfer because it

provides the less encryption time with a more a larger data files, so that as the results

of the previous cases we choose it as the best case according to Figure 5.25 indication.

 𝑜

Encryption time (ms)
File Size
(Kb)

2
nd

 technique
SSCC2

1
st
 technique
SSCC1

3.5555 6.4646 32
7.1111 12.9292 64

10.6667 19.3939 96
14.2222 25.8585 128
17.7777 32.3232 160
21.3333 38.7878 192

24.8888 45.2525 224
28.4444 51.7171 256
32.0000 58.1818 288

35.5555 64.6464 320

Chapter 5: Simulation and Testing

89

Figure 5.25: Relationship between the file size in (kB) and the needed

encryption time in (ms) for 10x10 matrix

 Moreover, We make a comparison between all cases that include different

matrix size at the same time for our first technique SSCC1and conclude that the usage

of the 1x1 matrix will obtain the better encryption time but no one will use it because

of it small capacity and high traffic which will waste time in overheads , then 2x2

matrix has the second order but also with a small capacity ,the third one is 10x10

matrix which represent the best one because it combine the two advantages

represented by larger file sizes with low encryption time , see Figure 5.26.

Figure 5.26: Relationship between the file size in (kB) and the needed

encryption time in (ms) for all matrices and using the SSCC1 technique

without compression

 In the second technique SSCC2, the gap between curves decrease mainly and

indicates the opposites relationship between the file size and the encryption time, as

the matrix increase the encryption time decrease, the 10x10 matrix refer to the best

case and 4x4 matrix refer to the worst case in this technique because it contains more

padded bytes than data, see Figure 5.27.

Chapter 5: Simulation and Testing

90

Figure 5.27: Relationship between the file size in (kB) and the needed

encryption time in (ms) for all matrices and using the SSCC2 technique

without compression

5.1.3 Comparison between SSCC1, SSCC2 with and without

compression

 Compression play a big role in our process and embedded it within the

encryption process will increase the efficiency of the output, the testing is done either

with or without compression and the results show the difference between them

separately, we compose the two cases with compression and without together to

clarify the big gap between them for each matrix size individually.

For 1x1 matrix, and as shown in Figure 5.28 a big gap between the curves that used

when compression is applied or not.

Figure 5.28: Relationship between the file size in (kB) and the needed

 encryption time in (ms) for 1x1 matrix and using both SSCC1 and

 SSCC2 techniques with and without compression

Chapter 5: Simulation and Testing

91

 According to Figure 5.29 the 2x2 matrix is used and the values with

compression are stay the same when compared with 1x1 matrix, but the gap between

the two curves with and without compression was increased.

Figure 5.29: Relationship between the file size in (kB) and the needed

 encryption time in (ms) for 2x2 matrix and using both SSCC1 and

 SSCC2 techniques with and without compression

Figure 5.30 shows that a bit changes in values for SSCC1 results which used the

triangular matrices to represent data but the results of SSCC2 remain approximately

the same.

Figure 5.30: Relationship between the file size in (kB) and the needed

 encryption time in (ms) for 3x3 matrix and using both SSCC1 and

 SSCC2 techniques with and without compression

 The encryption time increase within the matrix size increase when the

compression phase discard, take the 4x4 matrix as an example we can notice the result

clearly, see Figure 5.31.

Chapter 5: Simulation and Testing

92

Figure 5.31: Relationship between the file size in (kB) and the needed

encryption time in (ms) for 4x4 matrix and using both SSCC1 and

SSCC2 techniques with and without compression

In 5x5 matrix and within Figure 5.32, the curves goes to be decrease a bit more than

4x4 , 3x3 , 2x2 , 1x1 but it still has a high encryption time when compared with the

results from compression .

Figure 5.32: Relationship between the file size in (kB) and the needed

encryption time in (ms) for 5x5 matrix and using both SSCC1 and SSCC2

techniques with and without compression

A bit more decrease is done through the 6x6 matrix, Figure 5.33 shows the added

effects on the previous 5x5 matrix. This matrix leads to better values.

Chapter 5: Simulation and Testing

93

Figure 5.33: Relationship between the file size in (kB) and the needed

encryption time in (ms) for 6x6 matrix and using both SSCC1 and SSCC2

techniques with and without compression

As shown in Figure 5.34 , the result of using 7x7 matrix doesn’t make any changes on

the previous 6x6 matrix , it appear as a little difference was made , so that we

compare between them using the file sizes in kilo bytes .

Figure 5.34: Relationship between the file size in (kB) and the needed

encryption time in (ms) for 7x7 matrix and using both SSCC1 and SSCC2

techniques with and without compression

Also , when we take the larger matrix 8x8 as a base matrix we gain the a more data

represented by file size that can be encrypted within the same encryption time of 7x7

as illustrated in Figure 5.35.

Chapter 5: Simulation and Testing

94

Figure 5.35: Relationship between thefile size in (kB) and the needed

encryption time in (ms) for 8x8 matrix and using both SSCC1 and SSCC2

techniques with and without compression

The 9x9 matrix, is the optimal matrix for performing our system because it include

more data at a time and less encryption time. This result is gained through our

experiments on matrices that varies from 1x1 to 10x10 and this optimal result is using

SSCC2 that include the compression phase on its design, see Figure 5.36.

Figure 5.36: Relationship between the file size in (kB) and the needed

encryption time in (ms) for 9x9 matrix and using both SSCC1 and SSCC2

techniques with and without compression

Our testing is done using 10x10 matrix as a base matrix which reflect that it is better

than 9x9 matrix using SSCC1 technique using triangular matrices , but this technique

cover less data than SSCC2 that use a complete full matrix an support compression

phase despite the support of it in the SSCC1, see Figure 5.37.

Chapter 5: Simulation and Testing

95

Figure 5.37: Relationship between the file size in (kB) and the needed

encryption time in (ms) for 10x10 matrix and using both SSCC1 and SSCC2

techniques with and without compression

 Finally, a comparison between using 1x1 and 9x9 matrices based on the

transmission time to approximate the network traffic at each case using the following

formula and let bandwidth=100Mbps based on the formula 5.2:

For 1x1 matrix:

 m m

 m

Using both SSCC1 and SSCC2, we gain the same results because there is only one
element at this matrix

For 9x9 matrix:

a. Using SSCC1

 m m

 m

b. Using SSCC2

 m m

 m

 The results show that the matrix 9x9 needs more time than 1x1 matrix to be

transmitted but it can hold more data than it. Also, if we compared results between

matrices with and without compression we notice that we need less time using without

compression technique but with high traffic cause to the smaller sizes of each matrix

either 1x1 or 9x9.

Chapter 5: Simulation and Testing

96

In Figure 5.38 a relationship between the Encryption time and the matrix size is

used to illustrate that the optimal matrix is 9x9, where the minimum encryption time.

 Figure 5.38: Encryption time for different matrix sizes using

 SSCC2 and File Size 320 Kb

5.1.4 Comparison between SSCC and other models

 In this simulation a different block sizes are used in the process for splitting the

input text into sub blocks then composite them into several compressed blocks. We

test our algorithm using two techniques and compare between them and others see

Figure 5.39.

These techniques are: full or triangular plain text matrix .We started from 32 Kb

and end with 160 kb with fixed matrix size = 9x9, we choose this size of matrix to be

a reference because we gain the optimal results using it when compared with other

sizes that varies from 1x1 to 10x10 with compression, see Table 5.24.

Figure 5.39: Encryption time for different algorithms ,

Compression Value = 135 bytes

Chapter 5: Simulation and Testing

97

Table5.24: Average time for different algorithms, matrix size 9x9

Time for 1 KB

in (µs)

Mean of the

algorithm

time (ms)

Algorithm

8.065 1519 SSCC1

4.48 789 SSCC2

4.81 846 MRHC [11]

4.31 758 AES [11]

 m

 m

Our results is gained according to test the SSCC model using different inputs

which will affect the traffic of uploading/downloading data and provide a good

modification in time compared with the last traditional cryptosystem models, a

comparison between SSCC and MRHC result an improvement percentage of 6.86%,

while the comparison between SSCC and AES result a percentage of 3.94% to the

AES, this means that our model has a good chance to approach the standard, using the

following formulas:

Using our techniques the needed time for completely encrypt the plaintext is

decreased such that when we apply the first technique (SSCC1) either before or after

compression process using the 9x9 matrix and file size 320 kb using the following

formula :

 (5.2)

Where,

ET: The percentage of decrease in the Encryption Time.

CET: Compression Encryption Time.

NCET: Non-Compression Encryption Time.

Chapter 5: Simulation and Testing

98

Based on the formula (5.2):

Using the compression process the encryption time will be decreased by .

5.2 SSCC Assumptions

Let us use a file size between 32kb to 320 kb and fill them into matrices 1x1 to

10x10 sizes to contain the original plain text that is divided into a set of sub-blocks,

key matrix must be with the same size of the plain text where each plaintext matrix

need a key matrix to encrypt it.

The Secret key is gained from the key Generator and has a length that filled the

matrix either when it is completely filled or half matrix the padding will be used to

add more security degree to the key that varies (8 to 48) bits without padding and (16

to 512) bits with padding.

5.3 Brute-force attack

Brute force attack is an attack from the outside world to the cipher text

message in order to get the original plain text by trying multiple keys to guess the sent

message. Encryption algorithm must be robust enough against this type of attacks by

calculating the time required for a key to be broken [29].

Table5.25 shows different size of key matrices and the time need to break that

key and the time is measured using two cased with and without padding, also we can

notice that the security concerns is approved when the matrix size is greater than 5× 5

because the key length must be greater than 1024 bit without padding and greater than

4x4 with padding.

Number of alternative keys =2
n
.

n: key length in bits .

Operation time = 64 kb (Using our platform).

Time need to break key = Operation time × Number of alternative keys (sec).

Chapter 5: Simulation and Testing

99

Table5.25: Time needed to break the key with different length for SSCC using different matrix sizes

The key length varies and depends on the matrix size, as the matrix become

larger and contains more data; we need a high key length to protect these data. We

calculate these values for the previous two cases (full and half plain text matrix).

nxn

Key

length

without

padding

(bit)

No. of

alternati

ve keys

Without

padding

Time need to

break key

(sec)

Key length

with

padding

(bit)

No. of

alternative

keys with

padding

Time need to

break key

(sec)

1x1 8 2
8
 16.3840x10

6
 32 2

32
 2.7488x 10

14

2x2 24 2
24

 1.0737x10
12

 64 2
64

 1.1806x10
24

3x3 48 2
48

 1.8014x10
19

 128 2
128

 2.1778x10
43

4x4 80 2
80

 7.7371x10
28

 128 2
128

 2.1778x10
43

5x5 104 2
104

 1.2980x10
36

256 2
256

 7.4107x10
81

6x6 168 2
168

 2.3945x10
55

 256 2
256

 7.4107x10
81

7x7 224 2
224

 1.7254x10
72

 256 2
256

 7.4107x10
81

8x8 360 2
360

 150.3067x10
111

512 2
512

 8.5810x10
158

9x9 440 2
440

 181.7096x10
135

512 2
512

 8.5810x10
158

10x10 528 2
528

 562.3642x10
161

1024 2
1024

 64k x 2
1024

Chapter Six

Conclusion and Future work

Contents

6.1 Conclusion ... 101

6.2 Future work ... 102

Chapter 6: Conclusion and Future work

101

6.1 Conclusion

Our proposed model SSCC has two techniques: The first one is using a

triangular matrix for the plain text and it is called (SSCC1) and the other one is using

a full matrix for the plain text and it is called (SSCC2). Although, the key matrix

remains the same as a lower triangular matrix for both techniques, this comparison

has done to satisfy a large file size through the same matrix by increasing the number

of blocks existed on that file or increasing the compression value, so that one block

will contain more bytes.

It's known that the SSCC tests the process with and without compression phase

to ensure the big role of the compression phase in the proposed model. Also, SSCC

aims to contribute the existing Hill Cipher algorithm by reducing time needed for the

process of encryption as well accesses a robust and secure mode.

Moreover, SSCC provide a set of modification on the existing Hill Cipher such

as: Encoding, compression for matrix blocks, plain text padding and encryption using

a composite secret key. This key is generated by the matrix key Generator (MKG) and

based on the Diffie-hellman key exchange principle, so that attacker has no direct

choices to check because the algorithm is complex and composite of a set of

complicated steps.

Compression phase leads to a huge data transform per unit of time where each

entry in the plain text matrix will represent a set of compressed blocks. The

compression value (CV) is variable and can be increased as needed to create high

speed traffic within the network. Our proposed model keeps the privacy of individual

users using unique secret key. It is not only for Cloud Computing but also can be

applied on distributed systems.

Chapter 6: Conclusion and Future work

102

6.2 Future work

In Future, we will add features for different types of data that is either texts,

numbers or images and videos where the compression will play a major role in

decreasing the multimedia files that have a large file sizes. The key exchange scheme

will be improved using the ECC and Diffie-hellman key exchange as it makes it hard

to guess the key against the Brute force attack.

Also, SSCC will be developed as a web based application and a mobile

application to make it flexible and portable for every user and everywhere. Users need

only their own login information to access the data in order to modify them through

an easy set of steps. Dealing with a robust secure system users will be able to block

unauthorized access even though the Cloud provider itself. These mechanisms will

courage users to upload their data to cloud environment with no worries about their

sensitive data.

103

Bibliography

[1] B. Acharya, H. Agrawal, A. Modi, ,U. K Agrawal."Combined Implementation of

Robust Cryptosystem for Non-invertible Matrices based on Hill Cipher and

Steganography", Proc. of Int. Conf. on Advances in Computer Science, 2010.

[2] B. Acharya, M. Sharma, , S. Tiwari,V. Minz. "Privacy protection of biometric

traits using modified hill cipher with involutory key and robust cryptosystem",

Procedia Computer Science,2010.

[3] S. Agrawal, S. Joshi, B. Purohit. "Secure Data Communication In A Cloud

Environment using Row Column Diagonal (RCD)", International Conference on

Soft Computing Techniques and Implementations, 2015.

[4] D. Arockiam, S. Monikandan. "Data Security and Privacy in Cloud Storage using

Hybrid Symmetric Encryption Algorithm". International Journal of Advanced

Research in Computer and Communication Engineering,2013.

[5] D. Arockiam, S. Monikandan. "Efficient Cloud Storage Confidentiality to

Ensure". International Conference on Computer Communication and

Informatics,2014.

[6] L. Batten."Public Key Cryptography: Applications and Attacks", IEEE Press

Series, 2013.

[7] A. Berisha, B. Baxhaku, A. Alidema."A Class of Non Invertible Matrices in GF

(2) for Practical One Way Hash Algorithm", International Journal of Computer

Applications, 2012.

[8] A. Kalai Selv, Dr.M. Sathik." Polynomial Based Secret Sharing Scheme for Image

Encryption Based on Mathematical Theorem", International Journal of Advanced

Research in Computer Science, 2011.

104

[9] D. Dinadayalan, S. Jegadeeswari, D. Gnanambigai. "Data Security Issues in Cloud

Environment and Solutions", World Congress on Computing and Communication

Technologies, 2014.

[10] H. Gururaja, M. Seetha, A. Koundinya, A. Shashank, C. Prashanth.

"Comparative Study and Performance Analysis of Encryption in RSA, ECC and

Goldwasser-Micali Cryptosystems". International Journal of Application or

Innovation in Engineering & Management,2014.

[11] R. Hamamrah, M. Farajallah. "Design of a Robust Cryptosystem Algorithm for

Non-Invertible Matrices Based on Hill Cipher", IJCSNS International Journal of

Computer Science and Network Security, 2009.

[12] D. Hankerson, A. Menezes, S. Vanstone. "Guide to Elliptic Curve

Cryptography", Springer proffisonal computing, 2004.

[13] K. Hashizume, D. Rosado, E. Fernández-Medina, E. Fernandez. "An analysis of

security issues for cloud computing", Journal of Internet Services and

Applications, 2013.

[14] S. Kuyoro, F. Ibikunle, O. Awodele, "Cloud Computing Security Issues and

Challenges", International Journal of Computer Networks, 2011.

[15] I. Ismail. "How to b the Hill cipher",2006.

[16] L. Janczewski. "Internet and Intranet Security Management: Risks and

Solutions", Idea Group Publishing, 2000.

[17] I. Khalil, A. Khreishah, M. Azeem. "Cloud Computing Security: A Survey",

available at: http://www.mdpi.com/,2014.

[18] J. Li, D. Xie, Z. Cai. "Secure Auditing and Deduplicating Data in Cloud", IEEE

Conference on Computer Communications,2015.

105

[19] S. Lunawat, A. Patankar . "Efficient Architecture for Secure Outsourcing of Data

and Computation in Hybrid Cloud", International Conference on Reliability,

Optimization and Information Technology,2014

[20] K. Mar, C. Law, V. Chin. "Secure Personal Cloud Storage", the 10th

International Conference for Internet Technology and Secured Transactions, 2015.

[21] P. Mell, T. Grance. "The NIST Definition of Cloud", National Institute of

Standards and Technology, 2011.

[22] U. MogheI, B. Chaturvedi, P.Lakkadwala. "Cloud Secure Resource Sharing

Algorithm from Object Based Sharable Environment", International Conference on

Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future

Directions), 2015.

[23] M. Nazir, P. Tiwari, S. Tiwari,"Cloud Computing: An Overview", available at:

http://ebooks.hctl.org/cloud-computing/chapter-1.pdf, 2015.

[24] C. Paix˜ao, F. Coelho. "Matrix compression methods", available at:

https://peerj.com/articles/,2010.

[25] Q. Quan , W. Tian-hong, Z. Rui, X. Ming-jun"A Model of Cloud Data Secure

Storage Based on HDFS",Computer and Information Science (ICIS),2013.

[26] S. Singh, A. Garg, AnshulSachdeva. "Comparison of Cryptographic Algorithms:

ECC & RSA",International Journal of Computer Science and Communication

Engineering,2013.

[27] R. Sinha, H. Srivastava, S.Gupta. "Performance Based Comparison Study of

RSA". International Journal of Scientific & Engineering Research,2013.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6588696

106

[28] D. Slamanig ,C. Hanser. "On Cloud Storage and the Cloud of Clouds Approach",

Internet Technology And Secured Transactions,2012.

[29] W. Stallings,"Cryptography and Network Security", Prentice Hall, 2005.

[30] Y. Sun, J. Zhang,Y. Xiong,G. Zhu. "Data Security and Privacy in Cloud

Computing", International Journal of Distributed Sensor Networks, 2014.

[31] S. Tang, F. Liu,"A one-time pad encryption algorithm based on one way hash

and conventional block cipher", International Conference on Consumer

Electronics, Communications and Networks (CECNet), 2012.

[32] C. Tsai, U. Lin, A. Chang, C. Chen,"Information security issue of enterprises

adopting the application of cloud computing", Networked Computing and

Advanced Information Management (NCM), 2010.

[33] P. Urien,"Cloud of Secure Elements: An Infrastructure For The Trust of Mobile

NFC Services",Wireless and Mobile Computing, Networking and Communications

(WiMob), 2014.

[34] L. Xu, P. Khoa, S. Kim, W. Ro,W. Shi. "LUT based Secure Cloud Computing-

an Implementation using FPGAs", ReConFigurable Computing and FPGAs

(ReConFig),2014.

[35] Z. Zhu, R. Jiang."A Secure Anti-Collusion Data Sharing Scheme", Transactions

On Parallel And Distributed Systems, 2016.

[36] D. Zill,W. Wright, "Advanced Engineering Mathematics", Jones and Bartlett,

2016.

[37] D. Zissis, D. Lekkas."Addressing cloud computing security issues", Future

Generation Computer Systems, 2012.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6459616
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5562236
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5562236
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6954269
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6954269
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7012990
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7012990

107

[38] B. Zwattendorfer, A. Tauber. "Secure Cloud Authentication UsingEids", Cloud

Computing and Intelligent Systems (CCIS),2012.

[39] A. Khaldi, K. Karoui, N. Tanabène, H. Ghezala. "A secure cloud computing

architecture design". International Conference on Mobile Cloud Computing,

Services, and Engineering, 2014.

[40] R. B. Bohn, J. Messina, F. Liu, J. Tong, J. Mao."NIST Cloud Computing

ReferenceArchitecture", National Institute of Standards and Technology,2011.

[41] Y. Huiming, P. Nakia, S. Dexter, and Y. Xiaohong. "Cloud computing and

security challenges",In 50th Annual Association for Computing Machinery

Southeast Conference,2012.

[42] A. Hammami, N. Simoni, and R. Salman. "Ubiquity and QoS for cloud security",

International Conference on Parallel Processing Work-shops (ICPPW),2012.

[43] M. Jensen, J. Schwenk, N. Gruschka, and L.L. Iacono."On technical security

issues in cloud computing". International Conference on Cloud Computing,2009.

[44] J. Bansidhar, A. Santhana, and B. Joshi. "Securing cloud computing environment

against DDoS attacks". In Computer Communication and Informatics (ICCCI),

2012.

[45] S. William. "Network Security Essentials",Pearson Education India, 2008.

[46] P. Srivastava, S. Singh, A. Pinto, S. Verma,V. Chaurasiya, and R. Gupta. "An

architecture based on proactive model for security in cloud computing", Recent

Trends in Information Technology (ICRTIT), 2011.

[47] L. Savu. "Cloud computing: Deployment models, delivery models, risks and

research challenges", Computer and Management (CAMAN), 2011.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6637132
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6637132

108

[48] L.Qing ,Z. Wang and et al," Applications integration in a hybrid cloud computing

environment: modelling and platform", Enterprise Information Systems,2013.

[49] L. Ertaul, S. Singhal, and G. Saldamli. "Security challenges in cloud computing",

International Conference on Security & Management, 2010.

[50] A. Bhardwaj and V. Kumar,"Cloud security assessment and identity

management", Computer and Information Technology (ICCIT), 2011.

[51] K. Jasim, S. Abbas, M. El-Horbaty, and M. Salem, "Efficiency of Modern

Encryption Algorithms in Cloud Computing", International Journal of Emerging

Trends & Technology in Computer Science (IJETTCS),2013.

[52] A. Pansotra, and S. Singh, "Cloud Security Algorithms", International Journal of

Security and Its Applications,2015.

[53] A. Bhardwaja, G. Subrahmanyamb, V. Avasthic, and H. Sastryd ." Security

Algorithms for Cloud Computing", International Conference on Computational

Modeling and Security (CMS 2016),2016.

[54] R. Rivest,"The MD5 Message-Digest Algorithm", MIT Laboratory for Computer

Science and RSA Data Security, Inc., 1992.

[55] M. Rosulek, "Block Cipher Modes of Operation", Mike Rosulek,2016.

[56] C. Jansen, P. Vlist, "Message encipherment with minimal expansion and

redundancy—doing better than ISO-10126", Elsevier Ltd, 1996.

[57] R. Housley,"Cryptographic Message Syntax (CMS)", Internet Engineering Task

Force (IETF),2010.

[58] B. Johnson, E. Cygnacom,"Improving Hash Function Padding", National

Institute of Standards and Technology,2005 .

http://www.tandfonline.com/author/Li%2C+Qing
http://www.sciencedirect.com/science/article/pii/S0167404896000132?np=y
http://www.sciencedirect.com/science/article/pii/S0167404896000132?np=y

109

[59] F. Moghaddam, I. Ghavam, D. Varnosfaderani, S. Mobedi. "A Client-Based User

Authentication and Encryption Algorithm for Secure Accessing to Cloud Servers",

IEEE Student Conference on Research and Development (SCOReD), 2013.

[60] S. Gupta and J. Sharma, "A Hybrid Encryption Algorithm based on RSA and

Diffie-Hellman", Computational Intelligence & Computing Research

(ICCIC),2012.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6504613
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6504613

110

.مشاركة البيانات بشكل امن في الحوسبة السحابيةنموذج

 إعداد : إسراء محمود عبدالفتاح القطو.

 إشراف: د. رشدي حمامرة.

 ملخص:

 تلعبالتوجهات في الوقت الحالي ، حيث أهممن (Cloud Computing)تبر الحوسبة السحابية تع

حسب حاجة المستخدم ، لكن ((scalabilityدورا هاما في توفير المصادر والمساحات التخزينية القابلة للتوسعة

ابية لاسيما انه تتم مشاركة من اهم المشاكل التي تواجه الحوسبة السحتعد (Security) مشكلة أمن المعلومات

الحوسبة السحابية هذه الأيام تأخذ موضع الصدارة باعتبارها ذات أهمية كبيرة . المصادر من قبل المستخدمين

حيث يتم وضع البيانات في مكان Cloud Storage) كمكان تخزيني للبيانات، ويسمى بالتخزين السحابي)

يانات كما هو معتاد . كل البيانات يتم حفظها بأماكن غير معروفة خارجي بعيدا عن المكان الأصلي لتخزين الب

في الحوسبة السحابية توفير للمستخدمين حيث لا يتم تحديد المكان بدقة ، ومن مهمة مزود مساحات التخزين

وإمكانية مكان امن لهذه البيانات ، لكن المستخدمين ما زالوا يواجهون قلقاً اتجاه مستوى الحماية لهذه البيانات

الاطلاع عليها من قبل المزود .

مشاركة البيانات بشكل امن في الأنظمة الموزعة بشكل خاص للحوسبة في هذا البحث تم اقتراح نموذج

والمسمى نموذجهذا ال. ويهدف (Secure Data Sharing Model for Cloud Computing)السحابية

SSCC ن الوصول غير المصرح بهم وحمايتهاالبيانات بطريقة آمنة لحفظ (unauthorized access). يأخذ

 (encryption) تشفيرها يتمباستخدام مجموعة من الخطوات وذلك بعدثم (input) نموذجنا نص عادي كمدخل

 secret))الذي يستخدم مفتاح سري واحد ((symmetric keyالمتماثل التشفير بالمفتاح إستراتيجيةباستخدام

key ن طرف ثالث م مكتسب(Third party) الخطوات .هذه مفتاح خاص بهموثوق به حيث يكون لكل مستخدم

ثم Padding)) النصمن حشوهو، (Data Compression)وضغط البيانات ، (Encoding)الترميز: تشمل

المصفوفات يولد مصفوفة ضرباستخدام مبدأ (وب(blocksيحولها إلى مجموعة من كتل مصفوفة

 نص عادي. منoutput) كمخرج) والذي يحتوي على نص مشفر (Ciphertext matrix)الشفرات

تقدم هذه الأطروحة طريقة جديدة للتعامل مع البيانات قبل تخزينها في المكان التخزيني التابع للحوسبة

ضمن السحابية بحيث تسمح للمستخدم الوصول والحصول على المعلومات بأمان من سحابة التخزين ، بحيث ت

أمنها وحمايتها حتى لو تم تخزينها في أماكن غير معروفة خصوصا إذا كان هناك مشكلة أمنية في مزود الخدمة

111

حيث انه يتم ترميز وضغط وتشفير البيانات قبل إرسالها لمكان التخزين وبالتالي لا يهم في ما اذا كان هناك

 قبل أطراف خارجية أخرى .وصول غير موثوق للبيانات سواء كان من قبل المزود أو من

وتم الحصول على النتائج للنموذج المقترح من خلال عمل تجربة على مجموعة من البيانات باستخدام

طريقتين مختلفتين الأولى تعتمد على ادخال البينات على مصفوفة مربعة وتعبئتها بشكل كامل وتسمى

((SSCC1 ل مصفوفة مثلثة علوية و الثانية تعتمد على تعبئتها بشكل جزئي على شكupper triangular

matrix و تسمى(SSCC2) التنزيل \بحيث أثرت على عملية التحميل(Upload\Download) في الطريقة

حيث كان تالثانية لان كمية البيانات المنقولة اكبر وأعطت انطباعا جيدا مقارنة بالطرق السابقة لتشفير البيانا

بينما عند المقارنة %6.86تحسين بمقدار ((HCو (SSCC)لوقت اللازم للتشفير بين ناتج المقارنة من ناحية ا

وهذا يعني ان النموذج المقترح لديه (AES) لصالح %3.94كان الفرق بينهما بمقدار (AES)و (SSCC)بين

فرصة لا بأس بها لمنافسة النموذج المعياري .

و SSCC1))ريقة من الطرق النموذج المقترح بالإضافة إلى مقارنات أخرى تشمل حالتين لكل ط

(SSCC2) حيث كانت تشمل المقارنة للطريقة الأولى((SSCC1 مع الضغط للبيانات وبدونه لنفس الملفات

مع الضغط وبدونه لنفس الملفات لإظهار اثر ضغط البيانات على الزمن SSCC2))ومقارنة الطريقة الثانية

باستخدام %96.287لهذه الملفات حيث تم تقليل الوقت بنسبة (Encryption Time) اللازم لعملية التشفير

باستخدام الطريقة الثانية . %67.146الطريقة الأولى ونسبة

112

Acronyms and Abbreviations

SSCC Secure data Sharing in Cloud Computing

MRHC Mousa Rushdi Hill Cipher

AES Advanced Encryption Standard

COTS Commercial of the Shelf

PaaS Platform as a service

SaaS Software as a service

IaaS Infrastructure as a service

HaaS Hardware as a service

IT Information Technology

KeyGen Key Generator

P Plaintext matrix

K Key matrix

C Ciphertext matrix

RSA Rivest Shamir Adleman

EEC Elliptic Curve Cryptography

gcd greatest common divisor

mod modulus arithmetic

RCD Row Column Diagonal

EDM Encryption Decryption Model

SeCloud Secure Cloud

ISO International Organization for Standardization

IDA Information Dispersal Algorithm

LUT Lookup Table

DNA Deoxyribonucleic acid

HDFS Hadoop distributed file system

CoSE Cloud of secure elements

CS – RSA Cloud Secure - Resource Sharing Algorithm

STROKE Secure idenTity acRoss bORders linKEd

MKG Matrix Key Generator

Epub Encryption within public key

Dpr Decryption within private key

113

Some of MATLAB Codes

Blocks_matrix.m

function [blocks]=blocks_matrix(blockSize,B)

% matrix for encoded values

blocks = zeros(ceil(length(B)/blockSize),blockSize);

%outer indexing

j=1;

for i = 1 : blockSize: length(B)-blockSize

 blocks(j,:)=double(B(i:i+blockSize-1))-96;

 j=j+1;

end

 blocks(j,1:length(B(i+blockSize:end)))=double(B(i+blockSize:end))-96;

end

%%%

Checkprimpitive.m

% To find the primitive root of the given value using powermod function

function foundAlpha=checkPrimitive(q)

p=0;

for alpha= 2 : q-1

 a=zeros(1,length(q-1));

 for i=1:q-1

 a(i)=powermod(alpha,i,q);

 end

 b=zeros(1,q-1);

 b=unique(a);

 if length(a)==length(b)

 foundAlpha=alpha;

 break;

 end

end

end

%%%

compressedBlocks.m

function [compBlocks] = compresed_Blocks(blockSize,C,blocks,B)

% matrix for compressed values

compBlocks = zeros(ceil(length(B)/blockSize),1);

%convert to binary and compression

114

j=1;

C = cellstr(dec2base(blocks,3));

CC='';

for i = 1 : length(C)

 CC=strcat(CC,C(i)) ;

 if mod(i,blockSize)== 0

 compBlocks(j)=base2dec(CC,3);

 %disp(CC);

 CC='';

 j=j+1;

 end

end

%disp(CC);

if j<=ceil(length(B)/blockSize)

compBlocks(j)=base2dec(CC,3);

end

end

%%%

Decrypt.m

% function call [output]=decryp(lower2_matrix,C,blockSize)

function output2=decryp(K,C,blockSize)

tic;

P=abs(linsolve(K,C'))

P=int64(P);

CompBlocks=P(P~=0 & P~=80)

Blocks=dec2base((CompBlocks'),3);

display(length(Blocks))

if length(Blocks) == (3*blockSize)-1

Blocks=strcat('0',dec2base((CompBlocks'),3));

end

Blocks2=Blocks';

size_Blocks=size(Blocks);

j=1;k=size_Blocks(2);

output=zeros(blockSize,size_Blocks(1));

output2=zeros(size_Blocks(1),blockSize);

for i = 1 : size_Blocks(1)

 output(:,i)=base2dec(findCharacters(Blocks2(j:k)),3);

 j=j+size_Blocks(2);

 k=k+size_Blocks(2);

end

stringSize=blockSize*size_Blocks(1);

for i = 1 : stringSize

115

output2(i)=output(i);

end

output3=reshape(output2',stringSize,1);

display(char(output3(output3~=0)+96)')

toc;

end

%%%

keyGen.m

function [lower2_matrix,counter]=key_Gen(n , x , y ,counter , lenComp)

%calling [lower2_matrix,counter]=key_Gen(11 , 2 , 3 ,counter

,length(compressed_Blocks))

%------ Diffie_Hellman_main -----------

%n=11; %must be a prime number

g=checkPrimitive(n); % primitive root of n

%x=2; % private key for the first person

%y=3; % private key for the second person

%a=powerDiff(g,x,n);

b=powerDiff(g,y,n);

%display(powerDiff(a,y,n));

%-------- Perpare Key matrix -----------

%CC{1}=20;

% slove it to find big values or duplicate well

CC{1}=powerDiff(b,x,n);

%write a full algorithm %duplicate key value

%KK=strcat(int2str(randVal),dec2bin(CC{1}));

K=dec2bin(CC{1});

%display(counter)

while length(K) ~= ((counter+1)*(counter+1))

randVal=int2str(round(rand(1)));

K=strcat(K,randVal);

%i=i+1;

end

%fliplr to read the stream of bits from left to right (more values)

[keys]=key_matrix((counter+1),fliplr(K),lenComp)

[lower2_matrix]=lu_matrix(keys)

%---------------------------------------

End

%%%

keyMatrix.m

function [keys]=key_matrix(counter,B,LengthcompBlocks)

116

% matrix for encoded values

keys = ones(1,LengthcompBlocks);

%outer indexing

j=1;step=3;

for i = 1 : LengthcompBlocks

 if j <= length(B)-3

 keys(i)=bin2dec(B(j:step));

 step=step+3;

 j=j+3;

 end

end

keys(keys ==0)=1;

% keys(j)=bin2dec(B(i+counter:end));

End

%%%

Lumatrix.m

%half plain text matrix

% With padding 80 .. to complete matrix

function [lower_matrix]=lu_matrix2(compBlocks)

count=135;

lower_matrix = zeros(count,count);

if length(compBlocks)<count

compBlocks=[compBlocks 80*ones(1,count-length(compBlocks))]

lower_matrix = triu(ones(count),1);

lower_matrix(~~lower_matrix)=compBlocks;

end

end

%%%

Test.m

clc;

%%message length must be greater than blocksize by 1

%%______________Divide message into Blocks and

encoding_________________%

%Import text file

fileID = fopen('Hello_n2.txt');

C = textscan(fileID,'%s','bufsize', 200000);

%fclose(fileID);

celldisp(C);

B=char(C{1});%----- Prepare plain text matrix -----%Store plaintext into cell array

blockSize=135; % amount of compression must equal n

tic;

blocks=blocks_matrix(blockSize,B)

[compBlocks] = compresed_Blocks(blockSize,C,blocks,B)

%if length(compBlocks)<blockSize

117

%compBlocks=[compBlocks 80*ones(1,blockSize-length(compBlocks))];

%end

lower_matrix=vec2mat(compBlocks,9)

C=lower2_matrix*lower_matrix';

%[C]=lu_Multi(lower2_matrix,lower_matrix');

toc;

%[lower_matrix]=lu_matrix(compBlocks)

%upper_matrix=lower_matrix'

%lengthComp=length(compBlocks)

%display(counter)

%format bank to display full results

%linsolve(lower2_matrix,C') to find the plain text matrix

