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Abstract  

 

Cancer transformation and development is associated with aberrant gene expression, which is 

acquired through genetic mutations and epigenetic mechanisms. One of the main epigenetic 

mechanisms altered in cancer is DNA methylation. While the mechanisms responsible for DNA 

methylation are well established and well-studied, DNA demethylation was thought to be a passive 

process until recent discovery of the Ten-Eleven Translocation (TET) family which actively 

demethylate DNA by hydroxylation of methylated cytosine (5hmC). TET family members are 

reduced in a variety of human malignancies, suggesting a tumor suppressor function of these 

proteins. Thus our hypothesis was that reduced activity of these enzymes is suggested to be 

responsible for hypermethylation and aberrant gene expression in breast cancer. In this project we 

wanted to study the regulation mechanisms of TET enzyme in breast cancer .through the 

assessment of some regulatory mechanisms impact on the expression of TET enzymes in breast 

cancer cells, including hormonal signaling and their downstream signaling transduction pathways. 

We also tested the presence of alternative transcription start sites for the TET1 gene. And its 

promoter methylation as a possible regulatory mechanism. Our results show that TET enzymes are 

regulated by hormonal action and some kinases, well established like PKA, PKC, PI3k and 

CaMKs, that are involved in the hormonal regulation of the TET enzymes. In addition, our results 

show that TET1 have different isoforms with different expression patterns in breast cancer cell 

lines. Interestingly, these isoforms are differentially regulated by hormonal activities. We also 

showed that expression of loner isoform of TET1 is suppressed by promoter methylation. Overall, 

our finding demonstrate that TET genes expression is regulated, in part, in breast cancer at the 

transcriptional level and that TET1 has two isoforms of the enzyme that are differentially expressed 

and regulated. All together, our data suggests that TET enzymes are important in breast 

tumorigenesis and that further research is needed to elucidate more detailed molecular pathways 

that are involved in TET enzyme regulation in the context of breast cancer development and 

progression.  
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Chapter 1 

 

1. Introduction  
 

According to WHO, cancer is the second leading cause of death worldwide (Global Burden 

of Disease Cancer et al., 2017). This disease is defined as uncontrolled cell division that leads 

to sustained proliferation. In addition to its continuous cell division, cancer cells acquire 

different properties that support their survival and progression. These phenotypes including 

resistance to apoptosis, inducing angiogenesis, and evading the immune system are called 

the hallmarks of cancer (reviewed in;(Hanahan & Weinberg, 2011). Acquiring these 

characteristic phenotypes through cancer transformation and development is associated with 

aberrant gene expression that disrupts the balance between oncogenes and tumor suppressor 

genes as well as other genes that maintain normal cell identity. 

 

In light of the fact that all cells in the human body contain the same genetic information, gene 

expression regulation is needed for proper cell development and differentiation, and more 

important, for the response to environmental changes and stimuli. Regulation of gene 

expression is achieved through different mechanisms at different levels, including; 

transcription, RNA splicing, RNA degradation, translational regulation, posttranslational 

modifications, protein localization, allosteric regulation, and protein degradation. The most 

important mechanism that determines the expression status of genes is transcription 

initiation, which depends on regulatory sequences in gene promoter, where RNA polymerase 

and transcription factors assemble to start transcription. Another type of regulatory sequences 

are enhancers and repressors which are considered as gene-distal regulatory elements(Lee & 

Young, 2013), in addition to epigenetic regulation level. 

 

Epigenetics literally means “above” genetics and it is defined as all the processes that cause 

changes in gene expression without affecting DNA sequence. It’s important for normal 
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cellular development, differentiation and homeostasis. Epigenetic mechanisms involved in 

gene expression regulation include, but not limited to, chromatin remodeling and histone 

modification. DNA is wrapped around an octamer structure of histones that contain two 

copies of four histone proteins; H2B, H2A, H3, and H4, to form a nucleosome. Condensation 

of the nucleosome to form the chromatin is the basis for chromosome folding. Chromatin 

structure which could be tight (heterochromatin) or relaxed (euchromatin) changes the 

accessibility of TF to promoter sequences, which will affect transcription of the respected 

genes. In heterochromatin, genes are most likely silenced while in euchromatin they are 

actively transcribed. Chromatin structure compaction is affected by active modification of 

the histones body and tail. These modifications include; methylation, phosphorylation and 

acetylation. For example acetylation of histones by adding an acetyl group by 

acetyltransferases open the chromatin structure and moreover recruits transcription factors 

to the promoter of a target gene. On the other hand, deacetylation by histone deacetylases 

closes chromatin structure and inhibits expression. In addition, different studies have shown 

an association between histone marks and genomic features like promoters and enhancers. 

For example, H3K4me3 is found to be present in active promoters, while H3K27me3 

H3K9me3 are present in inactive and silenced genes. Also, H3K27Ac indicates the presence 

of active enhancers and promoters (Rivera & Ren, 2013). 

 

Another mechanism involved in epigenetic gene expression regulation is DNA methylation. 

It involves the addition of methyl group at position 5 of cytosine. This process is catalyzed 

by DNA methyltransferase enzyme family members; DNMT3a, DNMT3b and DNMT1. 

This gene expression regulatory mechanism is an extremely important mechanism and 

defects in this process were found to have fatal outcomes. For example, DNMT1 knockout 

in mouse model led to embryonic lethality (E. Li, Bestor, & Jaenisch, 1992), while repression 

of DNMT1 using CRISPR/cas9 in embryonic stem cells led to rapid and massive loss in the 

DNA methylation which resulted in cell death (Liao et al., 2015)Methylation occurs at CpG 

dinucleotide regions, which are called CpG Islands. These CpG Islands are usually found at 

the centromeric tandem repeat units and in the promoter area of many genes. Methylation of 

the promoter sequence is associated with long-term transcriptional repression. Gene 
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expression inhibition of methylated genes is believed to be through preventing the binding 

of transcriptional activators. Moreover, the binding of Methyl-CpG-binding proteins to 

methylated regions recruits’ histone deacetylase and other transcriptional repressors to 

modify chromatin and further repress gene expression (Klose & Bird, 2006). 

 

DNA methylation is involved in many cellular processes like X chromatin inactivation, 

through maintaining the repression of genes on the inactivated X chromosome (Schübeler, 

2015), genome imprinting and silencing of the repetitive element of DNA. Since methylation 

is very important for proper embryogenesis and normal development, cellular differentiation 

and reprogramming, aberrations in DNA methylation are associated with many human 

diseases including cancer.  Alteration in DNA methylation pattern is one of the most common 

events in cancer, which is characterized by global hypomethylation and regional hyper 

methylation of tumor suppressor genes that leads to genomic instability, which has great role 

in cancer initiation and progression (Herman, 1999; Robertson, 2005). Moreover, 

methylation pattern in cancer cells is different from normal cells, which makes it a good 

biomarker for cancer detection and predicting the progression of the disease (Mikeska & 

Craig, 2014).  

 

While DNA methylation mechanisms are well understood and documented, mechanisms 

responsible for counterbalancing and reversing methylation are not very well established in 

both normal and cancer tissues. The only known demethylation process was thought to be 

through passive dilution of methylated cytosine during cell division due to the loss of DNMT 

function. Thus, the exact active mechanism(s) of DNA demethylation was elusive for many 

years until the discovery of Ten Eleven Translocation proteins (TETs)(Kohli & Zhang, 

2013). 

 

The TET enzyme family consists of three members, TET1, TET2 and TET3. TET enzymes 

structure consists of catalytic domain at the C terminus that is conserved for the three 

enzymes TET1, TET2, and TET3. It is composed of cysteine-rich region and double strand 
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beta sheet at the C-terminus (DSBH). This CD contains also binding sites for the cofactors 

Fe and α-Ketoglutarate, which are involved in the oxidation reaction of the methylated 

cytosine, as explained below. TET1 and TET3 have CXXC zinc finger domain in the N-

terminus, which is responsible for the recognition of CpG islands and the binding to DNA 

(fig 1). In one study, it was shown that overexpression the TET1 catalytic domain causes 

global DNA demethylation, while overexpression of the full-length TET1 didn't lead to the 

same effect, which reveals that the CXXC domain of TET1 is important for targeting of CpG 

islands. Moreover, TET1 CXXC domain was found to bind unmethylated CpG sequences 

which indicates that TET1 is mainly involved in maintaining hypomethylation signal (C. Jin 

et al., 2014). Another study found that localization of TET1 to the heterochromatin is 

determined through the guidance of Methyl-CpG binding domain protein 1 (Mbd1) through 

its CXXC domain (P. Zhang et al., 2017) .TET3, CXXC domain mutagenesis revealed that 

this domain has higher affinity for 5caC and the other derivatives of the cytosine (S. G. Jin 

et al., 2016). Although TET2 doesn't have CXXC domain (Fig 1.1), it still has the ability to 

bind DNA through the help of IDAX, which has the same structure as the CXXC domain 

(Ko et al., 2013). 

 

 

 

TET enzymes are hydroxymethylase family of enzymes. These enzymes catalyze DNA 

demethylation in stepwise manner oxidation reactions. TET enzymes convert 5-

methylcytosine to 5-hydroxymethylcytosine which was found to act as a stable epigenetic 

marker that prevents further methylation of DNA by reducing the binding affinity of DNMT 

to CpGs that will contribute to passive demethylation of DNA (Hashimoto et al., 2012). In 

addition, TET enzymes can catalyze active demethylation through further oxidation of 5-

hydroxymethylcytosine to form 5-formylcytosine and 5-carboxylcytosine, which can be 

Figure 1.1 Schematic illustration of TET1, TET2, TET3 enzyme structure(Zhao & Chen, 2013). 
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converted to free cytosine through the base excision repair system by thymine DNA 

glycosylase TDG enzyme (Fig1.2) . 

 

Figure 1.2 DNA demethylation catalyzed by TET enzymes. TET enzymes convert methyl cytosine to 5-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) through serial 

oxidation reaction (Tan & Shi, 2012) 

 

TET enzymes convert alpha ketoglutarate to succinate and CO2 in the oxidation conversion 

of 5-methylcytosine to its products. It was found that TET enzyme activity is inhibited by 

the accumulation of oncometabolites like; succinate, fumarate and 2-hydroxyglutarate. These 

alpha ketoglutarate analogues compete with TET enzyme substrate for binding to their 

catalytic domains (Laukka et al., 2016). Ascorbic acid (vitamin c), an antioxidant known to 

enhance the α-KG/Fe dependent dioxygenase enzymatic activity was found to directly 

interact with the catalytic domain in the C terminus of TET enzyme and induce its 

dioxygenase activity to convert 5mc to its oxidation products (Yin et al., 2013). 

 

Different physiological functions were assigned to the different TET enzymes. TET enzymes 

might have common as well as distinct functions in embryonic development, stem cell 

biology, cell differentiation as well as neuronal cell biology (Rasmussen & Helin, 2016). 

 

TET enzymes have been shown to have different expression pattern in different physiological 

processes, which indicate that these enzymes have different roles in different biological 

processes. For example, knockout mouse model for TET3 leads to neonatal lethality, while 

TET2 knockout did not affect embryonic development but instead it leads to the development 

of myeloid malignancies (Z. Li et al., 2011).  TET1 is highly expressed in embryonic stem 

cells, which is associated with high level of 5hmc. While TET1 knockout “ES cells show 
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reduction in 5hmc level, it preserve it’s pluripotency properties. Moreover, TET1 knockout 

mice produce viable fertile mice (Dawlaty et al., 2011). 

 

TET1 was found to have two isoforms that are expressed differently in different tissues. For 

example, the long full length  isoform of TET1 is expressed in mouse embryonic stem cells, 

and throughout differentiation, the expression of this long isoform is replaced by a shorter 

isoform, which becomes the dominant isoform in adult tissues (W. Zhang et al., 2016). 

  

The highest levels of 5hmc was found to be concentrated in brain tissue , which is due to the 

overexpression of TET1 in brain tissue which is very important for the demethylation of very 

essential genes in the nervous system like fibroblast growth factor 1 FGF1 and brain-derived 

neurotrophic factor BDNF (Guo, Su, Zhong, Ming, & Song, 2011). 

 

Some studies reported that TET enzymes are important for proper differentiation of 

embryonic stem cells. In this context TET1,TET2 and TET3 triple knockout mouse has 

aberrant promoter hypermethylation that results in deregulation of developmental gene 

expression that leads to impairments in the differentiation of ES (Dawlaty et al., 2014). 

 

In cancer, it has been found that the expression pattern of TET enzymes is altered in both 

liquid and solid tumors. In liquid cancers, recently, in a mouse model, it was found that loss 

of function of TET2 and TET3 genes cause complete loss of 5hmc which leads to initiating 

aggressive myeloid cancers (An et al., 2015). Moreover, mutations in TET2, for example, 

were found to be the most common genetic alteration among hematological malignancies 

(Scourzic, Mouly, & Bernard, 2015). In solid tumors, different studies demonstrated  an 

association between loss of 5-hydroxymethylcytosine and low expression of TET genes in 

different human tumor types including; liver, lung, pancreatic, prostate and breast cancer (H. 

Yang et al., 2013). 
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In a liver cancer mouse model, it was found that reprogramming of DNA methylation occurs 

and is characterized by loss of 5hmc in CGI, an event that is directly associated with hyper 

methylation and transcriptional silencing of CGI in tumors. Moreover, in TET1 knockout 

mice, the liver shows low level of 5hmc , which indicates that the loss of 5hmc during 

tumorigenesis is, in part, due to the downregulation of TET1 (Thomson et al., 2016). In 

another study which compared the level of TET1, TET2, and TET3 in cervical cancer (CC) 

tissue to normal cervical tissue samples, the level of TET1 expression was significantly 

decreased in cervical cancer patient compared to normal subjects. Also, TET2 and TET3 

were shown to be reduced in CC patients (Bronowicka-Klys et al., 2017). 

 Recently, in a study conducted on gastric cancer samples, immunohistochemistry results 

showed decreased levels of 5hmc in gastric cancer tissues compared to the adjacent normal 

tissue. This reduction was associated with low expression of the TET1 enzyme (K. C. Wang 

et al., 2018). 

 

TET2 loss of function in different types of cancer was found to result from mutations or epigenetic 

silencing and was shown to be the most common genetic alteration among hematological 

malignancies (Scourzic et al., 2015), however in parathyroid carcinoma, TET2 expression was 

significantly reduced in cancer tissue compared to normal tissue as a result of heavy TET2 promoter 

methylation (Barazeghi et al., 2017). Moreover, TET3 was found to inhibit epithelial-mesenchymal 

transition in ovarian cancer by demethylating the tumor suppressor microRNA mir-30d which 

directly targets TGF-β1 one of EMT inducers. Thus, it was shown that down regulation of TET3 

leads to the activation of TGF-β1-induced EMT and progression of ovarian cancer (Ye et al., 2016) 

 

1.1.TET enzymes and Breast cancer  

 

Breast cancer is the second most common leading cause of death among women (Siegel, Miller, & 

Jemal, 2017). Like other types of cancer, breast cancer is characterized by heterogeneity which 

means that cancer tissue contains different cell subtypes that are diverse in their cellular and 

molecular features. Breast cancer is classified according to the expression of three main types of 

receptors: estrogen receptor (ER), progesterone receptor (PR) and the human epidermal growth 

factor receptor 2 (HER2). Basal-like tumors which are triple-negative are ER, PR, and HER2 

negative and it’s high histological grade indicates bad prognosis. While Luminal A tumor are low 
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grade breast cancer cells that are positive for ER, PR and HER2, luminal B are HER2-

enriched(Guiu et al., 2012). 

 

Regarding their role in breast cancer development and progression, it was shown that TET 

enzymes expression was reduced in breast cancer samples. (L. Yang, Yu, Hong, Yang, & 

Shao, 2015). In addition, it was found that low TET1 expression level correlated with a 

more aggressive cancer and lymph node metastasis. (Sang, Cheng, Tang, Zhang, & Lv, 

2015). Another study has found that TET1 and TET2 down regulation is associated with 

5hmC levels, and that miss-localization of TET1 contributes to the loss of 5hmc which 

correlates with bad prognosis of breast cancer (Tsai et al., 2015).  

Moreover, TET3 was found to be downregulated in metastatic breast cancer cell lines 

compared to non-tumorigenic ones. Also, TET3 was found to inhibit the proliferation of 

breast cancer cell with the help of BRAC1 to co-repress EZH2 gene which promotes the 

tumorigenesis and metastasis of breast cancer (M. Wang et al., 2016). 

 

Regarding the mechanisms behind the reduction of TET enzymes expression of these 

enzymes at the transcriptional level, many studies showed that the low level of TET1 in 

many types of cancer is due to the hypermethylation of TET1 promoter (Li et al., 2016). In 

breast cancer, it was found that the level of TET1 promoter hypermethylation in metastatic 

cells is higher than cells of primery site. Since methylation of the TET1 promoter was 

frequently found in breast cancer, it is considered as a diagnostic marker for breast cancer 

(Sang, Cheng, Tang, Zhang & Lv, 2015). In hypoxia in breast cancer, HIF1α was found to 

induce the transcription of TET1 and TET3 (Wu et al., 2015). 

 

One of the post-transcription level regulation mechanism of TET1 in breast cancer is by 

microRNA Mir29a, which is overexpressed in breast cancer was shown to directly target 

TET1 and reduce its expression.TET1 downregulation was found to be involved in 

promoting cell proliferation and also epithelial-mesenchymal transition (Pei, Lei & Liu, 

2016) Postnatal mammary gland development is dependent on hormones like estrogen and 



9 
 

other female reproductive hormones including; progesterone, prolactin and GnRH (Brisken 

& O'Malley, 2010). During puberty estrogen is the major mitogenic signal that stimulates 

the growth of mammary gland cells, and also breast cancer (LaMarca & Rosen, 2007). 

Breast cancer is considered as hormone-dependent cancer. One of the most important 

hormones that play critical roles in breast cancer development is estrogen, and about 60% 

of breast cancer cases express estrogen receptor (Masood, 1992). Estrogen has an important 

role in regulating gene expression by binding to its intracellular receptor, which acts as a 

transcription factor by binding to response elements on the promoter region of target genes 

or by the activation of a variety of signal transduction pathways (e.g. ERK/MAPK, 

p38/MAPK, PI3K/AKT, PLC/PKC) that eventually regulate the expression of many 

different genes (Marino, Galluzzo, & Ascenzi, 2006). Another hormone that plays an 

important role in breast cancer development is Gonadotropin-releasing hormone (GnRH). 

Which stimulates pituitary gland secretion of Luteinizing and follicle stimulating 

hormones. GnRH exert its activity through binding to its receptor (GnRHR), expressed in 

pituitary tissues and other non-pituitary tissues like ovary, placenta, uterus, and breast 

(Cheng & Leung, 2005), and in many types of cancer including; prostate, ovary, and breast 

cancer cell lines (Harrison, Wierman, Nett, & Glode, 2004; Kakar, Grizzle, & Neill, 1994). 

Interestingly GnRH agonist was shown to have an anti- proliferative effect on breast cancer 

(Everest et al., 2001). Moreover, GnRH was found to decrease the invasiveness ability of 

breast cancer (von Alten et al., 2006). 

 

GnRH receptor is a G protein-coupled receptor that activates phospholipase c (PLC) which 

in turn activates protein kinase c (PKC) and increases cytoplasmic level of calcium (Ca+2), 

which induces the synthesis and secretion of gonadotropin (Cheng & Leung, 2005).  

 

In this project, the regulation of TET genes expression was studied in breast cancer at the 

transcriptional level in response to different hormones including Estrogen and GnRH on 

the expression of different TET genes and also TET1 isoforms on the RNA level. The 

methylation pattern of the TET1 gene promoter differs in different breast cancer cell line. 
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We also found that TET1 has two isoforms that are differentially expressed in different cell 

types. 

  

1.2.Hypothesis 

 

The expression of TET1 is down regulated in breast cancer, thus we hypothesize this is due 

to promoter hyper methylation. In addition, breast cancer cell gene expression is highly 

affected by hormones. Consequently, we think that different hormones might also alter TET 

expression in various the breast cancer cell lines.  

 

1.3. Objectives and specific aims 

 

Main Objective: Study at least two mechanisms responsible for altering TET expression in 

breast cancer cell lines.  

 

Specific Targets: 

1.3.1. Study the effect of estrogen and GnRH on the expression of TET1, TET2 and 

TET3. 

1.3.2.  Use different signaling pathway effector inhibitors to elucidate how hormones 

alter TET gene expression. 

1.3.3.  Test the methylation status of TET1 gene promoter in breast cancer cell lines that 

have low or normal expression levels of this  . 

1.3.4.   Understand the expression pattern and regulation of TET1 isoform.  
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Chapter 2 

 

2. Materials and methods 
 

2.1.Materials 

 

Table 2.1 list of materials. 

No Material Manufacture 

1 MDEM/F12 media Beit Haemek 

2 RPMI (1640) media Gibco Thermofisher 

3 Charcoal striped Fetal bovine serum Biological industries 

4 Fetal bovine serum Gibco Thermofisher 

5 Hydrocortisone Sigma 

6 Insulin Sigma  

7 Epidermal growth factor (EGF) Sigma 

8 Cholera toxin Sigma 

9 Glutamine Biological industries 

10 Penicillin/streptomycin  Biological industries 

11 DMSO sigma 

12 Sterile phosphate buffer saline PBS   Biological industries 

13 Isopropanol biological gradient Sigma 

14 Ethanol biological gradient Sigma 

15 Chloroform biological gradient Sigma 

16 qScript™cDNA synthesis kit Quanta Biosciences 

17 SYBR® Green Applied Biosystems 

18 TRIZOL Sigma 

19 GnRH hormone Biological industries 

20 5-aza-2'-deoxycytidine   Sigma 

21 H89  Calbiochem 

22 Wartmannin  Sigma 

23 Kn93  Calbiochem 

24 NGIC-I Calbiochem 

25 EpiTect® Fast Bisulfite Conversion QIAGEN 

26 Blood/Cell DNA Mini Kit Geneaid 

27 Red master mix larova 

28 GoTaq® Green Master Mix Promega 

29 RNase A  
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Table 2.2 list of equipment’s and tools. 

No Equipment or tool Company Industrial 

country  

1 Inverted microscope Olympus ck40-SLP Japan 

2 Biological hood (HERA 

guard) 

Heraeus Germany 

3 Biofuge Stratos 

Reconditioned 

 

Heraeus 75005289R Germany 

4 Biofuge Fresco Heraeus 75005521 Germany 

5 Hera cell 150 CO2 

Incubator 

Heraeus Germany 

6 Labofuge 200 centrifuge  Heraeus Germany 

7 Autovortex SA6 Stuart Scientific U.K 

8 Water Bath Orbital Shaking Grant OLS200 U.K 

9 Water Bath Grant LTD6G U.K 

10 SPIN-micropipette site Nano Spinreact china 

11 Digital dry bath  Labnet U.S.A 

12 Elisa reader BioTek EL-X800 U.S.A 

13 Analytical Balance METLER TOLEDO 

AB104 

Switzerland 

14 Autoclave  HIRAYAMA HV-

110 

U.S.A 

15 RT-PCR (Applied Bio-

systems 7500 FAST 

Real Time PCR 

Singafora 

16 

 

PCR machine 96 well  Applied Biosystem 

#9902  

Singapore  
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2.2.Methods 

 

2.2.1. Cell culture 

  

Breast cancer cell lines MCF7, MDA MB231, and T47D cells were grown in RPMI 

media (from Beit-Haemek), supplemented with 10% FBS, 1% glutamine, and 1% 

penicillin/streptomycin (all from Beit-Haemek). MCF10A cells were grown in 

DMEM/F12 media (from Beit-Haemek) supplemented with 5% horse serum, 1% 

glutamine, 1% Penicillin/Streptomycin (all from Beit-Haemek), 20 ng/mL EGF, 10 

μg/mL insulin, 0.5 μg/mL hydrocortisone, and 100 ng/mL cholera toxin, (All from 

Sigma Aldrich). Cells were incubated in a humidity chamber at 37 °C with 5% CO2. 

 

2.2.2. Cells freezing  

 

Freezing media was prepared to contain 10% DMSO (Sigma), 40% fetal bovine 

serum and 50% cell culture media. Cells were detached for the culture plate by adding 

1ml trypsin. collected in freezing media and divided into aliquots in cryo-tube, and 

were stored in liquid nitrogen cell storage Tank. 

 

2.2.3. Cell passage 

 

After removing the media, cells were washed with 1 ml X 1 PBS. Then, 1ml trypsin 

was added to cells and incubated in the humidity chamber at 37 °C until the cells 

were detached from the plate. Then cells were collected and divided into new culture 

plates depending on different experiment needs. Finally, cells were incubated in a 

CO2 incubator at 37 °C. 
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2.2.4. 5-aza-2'-deoxycytidine (5-aza-dc) treatment 

 

Cells were treated with 0.5-10 μM 5-aza-dc (Sigma) for 2 to 5 days. The medium 

containing 5-aza-dc was changed every 2 days.  

 

2.2.5. Hormone and inhibitor treatment  

 

Cells were cultured in RPMI media without phenol red supplemented with 10% 

charcoal-dextran-treated fetal bovine serum, 1% L-glutamine, and 1%penicillin 

streptomycin (All from Beit-Haemek) for 1-2 days before hormonal treatment. For 

experiments that included both hormone and kinase inhibitor treatments, inhibitors 

;1 μM Wortmannin from Sigma, 50 μM Kn 93, 20 μM H89, and 10 μM NGIC-I from 

(CalBioChem) were added 30 min before hormonal treatment, then treated with10-9 

M GnRH and Estradiol (both from Beit-Haemek).  

 

2.2.6. RNA extraction and reverse transcription-PCR and Real-Time PCR 

 

Total RNA was prepared using the TRI reagent (Sigma Aldrich) as described by the 

manufacturer. The concentration of RNA sample was measured using Nano-drop 

spectrophotometer, and the integrity of RNA was determined by running it on 0.8% 

agarose. Then one microgram of RNA was used for cDNA synthesis using qScript™ 

cDNA synthesis kit (Quanta Biosciences). Quantitative real-time PCR was 

performed using Power SYBR Green PCR Master Mix (Applied Biosystems, Foster 

City, CA), and carried on Applied Biosystems® 7500 Real-Time PCR machine.  

Primers were designed at exon/exon boundaries to prevent amplification from 

genomic DNA. All measurements were performed in triplicate and standardized to 

the levels of the house keeping gene hUBC.  
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2.2.7. DNA extraction and bisulfite conversion   

 

DNA was extracted using Genomic DNA mini kit (Geneaid). For bisulfite 

conversion, 1.5 to 3 μg of DNA were converted using EpiTect Fast Bisulfite kit 

(QIAGEN) according to the manufacturer's instructions. 

 

2.2.8. Bioinformatics 

 

TET Gene sequences were obtained from PubMed gene bank(Benson, Karsch-

Mizrachi, Lipman, Ostell, & Wheeler, 2004). using the accession numbers 

NM_030625.2 for TET1, NM_001127208.2 for TET2, and NM_001287491.1 for 

TET3. RT-PCR primers were designed using the primer3 website (Untergasser A et 

al., 2012). CpG islands prediction, methylation specific primers and bisulfite 

sequencing primers were designed using MethPrimer (Li LC and Dahiya R, 2002). 

Transcriptional Start sites were defined (recognized) using UCSC genome browser 

(Kent et al., 2002).  

Table 2.3 Methylation specific primer for TET1 two transcription starting sites. 

 

NO target Primer sequence  
1 EXON1.20

0M 

F.P  5’-ttttgggaatcgattttttatttc-3’ 

R.P  5’-aaacctacaccaaccctcga-3’ 

2 EXON1.20

0UM 

F.P  5’-tttttgggaattgattttttatttt-3’ 

R.P  5’-caaacctacaccaaccctcaa-3’ 

3 EXON1.40

0M 

F.P   5’-gttttgcgtttttggttttttc-3’ 

R.P  5’-ccgaaaacattatttatctccga-3’ 

4 EXON1400

UM 

F.P  5’-gttttgtgtttttggtttttttgt-3’ 

R.P  5’-caaaaacattatttatctccaac-3’ 

5 EXON3 M F.P  5’-ttgttttatttttggtttaggtttc-3’ 

R.P  5’-aatcaactatcactaaacatctatatccg-3’ 

6 EXON3 

UM 

F.P 5’- ttgttttatttttggtttaggtttg-3’ 

R.P 5’-aatcaactatcactaaacatctatatccac-3’ 
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           Table 2.4 RT and conventional PCR primers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.9. Methylation-specific PCR  

 

The primers for MSP were designed using MethPrimer as mentioned above. The 

primers were designed to cover two possible regulatory regions in TET1 isoforms, 

which were identified using ENCODE Data on UCSC genome browser. The first 

region is in exon 1 and the second region is in the end of intron 2 before exon 3. 

 

PCR conditions were as follows: initial denaturation at 95 °C for 5 min followed by 

35 cycles of 94 °C for 30 s, 58 °C for 30 s, and 72°C for 30 s and a final extension at 

72 °C for 5 min, PCR was performed using advantage PCR mix (cleantech). 

No. Gene Primer sequence 
1. hUBC F.P.    5’-gtcgcagttcttgtttgtgg-3’ 

F.P.    5’-gatggtgtcactgggctcaa-3’ 

2. TET1 F.P.    5’-ccacagggacattcacaaca-3’ 

R.P.    5’- catggagctgctcatcttga-3’ 

3. TET2 F.P.    5’-ccgagacgctgaggaaatac-3’ 

R.P.    5’- acatgctccatgaacaacca-3’ 

4. TET3 F.P.    5’-cccacaaggaccagcataac-3’ 

F.P     5’-ccaagagtctgctggacac-3’ 

5. GnRHR F.P      5’- gacccccacgaactacaact-3’  

R.P      5’-ctgggtctgacaacctgttt-3’ 

6. E2R  F.P.    5’-atcctgatgattggtctcgtct-3’  

R.P.   5’-ggatatggtccttctcttccag-3’ 

7. TET1 

Exon2_Exon4 

F.P.     5’-gtgtaaccagcacagttcatg-3’ 

R.P.     5’-tgtgtccacttctccacctc-3’ 

8. TET1 

Exon1_Exon2 

F.P.    5’-caagtcatgcagccctacct-3’ 

R.P.   5’-catttttgttggctcccttg-3’ 

9.  TET1 

Exon3-Exon4 

F.P.   5’-gaaaacaagaggccccagag-3’ 

R.P   5’-gcgtttttatggtttgcagtg-3’ 
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Chapter 3 

 

3. Results 
 

3.1.Effect of GnRH on TET mRNA levels 

 

In breast cancer, gene expression is highly regulated by different hormones(Bernhardt et 

al., 2016). GnRH hormone receptor was found to be expressed in breast cancer 

tissue(Eidne, Flanagan, Harris, & Millar, 1987).Moreover, GnRH was found to have an 

anti-proliferative effect on breast cancer cells .Thus, we wanted to study the effect of 

GnRH hormone on the transcription of TET mRNA in breast cancer cell lines that express 

GnRH receptor.To this end, MCF7 and T47D cells were incubated with GnRH for 

different time points. In MCF7, real-time PCR analyses showed that GnRH increased the 

expression of TET1, TET2, and TET3 over all-time points tested, ranging from 2.5 to 5 

folds with a peak at 2hrs of incubation (Fig.3.1.A). In comparison to MCF7, GnRH 

hormone has almost no effect at certain time points while lowering the expression of the 

different TET enzymes in others (Fig.3.1.B). 
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Figure 3. 1. Effect of GnRH on TET gene expression in breast cancer cell lines. (A). Real time PCR results showing the 

expression level of TET1,TET2,and TET3 gene after treating MCF7 cells with 10-9 GnRH hormone for the indicated time points. 

(B).  Real time PCR results showing the expression level of TET1,TET2,and TET3 gene after treating T47D cells with 10-9 GnRH 

hormone for the indicated time points. The mRNA levels are shown after normalization to the level of the housekeeping gene 

UBC and relative to mRNA levels in control untreated cells. Bars represent SD of the mean. To test for the significance of 

difference between different time points and the control untreated cells, we did T-test to calculate p-value. (** means that p-

value>0.05 and * means that p-value <0.05). 
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3.2.Estrogen decrease the expression of TET enzymes  

 

Estrogen is a breast cell mitogen. It enhances cell proliferation which has mutagenic effect 

on breast cells that leads to breast cancer development(Yue, Yager, Wang, Jupe, & 

Santen, 2013).Estrogen produces its effect through its binding to estrogen alpha receptor, 

which in turn regulates gene expression by directly binding to  DNA or indirectly by 

interacting with other proteins in the cell. (McDonnell & Norris, 2002). Because it affects 

gene expression, we tested the effect of estrogen on TET enzymes expression by treating  

MCF7 and T47D estrogen Alpha positive cells (appendix 2)with estrogen for different 

time points.  Our qRT-PCR results in MCF7 cell line show that Estrogen lowers the 

expression of TET1and TET3 most the time (Fig. 3.2.A) while increase or has almost no 

effect in the expression of TET2 at certain time points.however in T47D cells qRT-PCR 

results were different TET1 and TET3 has no effect but TET2 expression was increased 

most the time with peak of 2.5 fold (Fig. 3.2.B). 

 

Estrogen has differential effect on different TET enzyme in different type of cells. 
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Figure 3. 2. Effect of estrogen on TET gene expression in breast cancer cell lines. (A). Real time PCR results 

showing the expression level of TET1,TET2,and TET3 gene after treating MCF7 cells with 10-9Estrogen hormone for the indicated 

time points. (B).  Real time PCR results showing the expression level of TET1,TET2,and TET3 gene after treating T47D cells with 

10-9 Estrogen hormone for the indicated  time points. The mRNA levels are shown after normalization to the level of the 

housekeeping gene UBC and relative to mRNA levels in control untreated cells. Bars represent SD of the mean. To test for the 

significance of between different time points and the control untreated cells, we did T-test to calculate p-value. (** means that p-

value>0.05 and * means that p-value <0.05). 
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3.3.Kinase inhibitor effect on TET mRNA level 

 

After screening for the effect of E2 and GnRH hormone effect on the expression of TET 

enzymes in breast cancer cell lines, we wanted to elucidate the intracellular signaling 

pathway(s) downstream of these hormone receptors that is responsible for regulating 

TETs gene expression. In order to do so, we co-treated both MCF7 and T47D cells with 

E2 and GnRH and different cellular kinase inhibitors including; PKA inhibitor (H89), 

CaMKs inhibitor (Kn93) or PI3K inhibitor (Wartmannin) and PKC inhibitor (NGIC-I). 

We can see the great effect of kn93 in reducing the expression of all TET enzyme with 

both estrogen and GnRH treatment (Fig. 3.3), its clearly demonstrated that Wartmannin 

has effect on TET1 and TET2 but not TET2 in estrogen treated cells (Fig.3A), while 

affecting the expression of all TET enzyme treated with GnRH (fig.2.3.B). NGIC-I shows 

remarkable effect on all TET genes in estrogen treated cells (fig.3A), but has no effect in 

GnRH treated cells (Fig.3.3.B). H89 reduce the expression of TET1 and TET3 but not 

TET2 in estrogen treated cells (Fig.3.3.A),while in GnRH treated cells it doesn’t show the 

same effect on all TET genes (Fig. 3.3.B) . 

 

All inhibitors have different effects on TET expression indicating these kinases are 

involved differentially in the cellular response to GnRH and Estrogen treatment GnRH 

treatment. 
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Figure 3. 3. Effect of kinases inhibitor with hormones on TET gene expression in breast cancer cell line. Real time PCR 

results showing the expression level of  TET1,TET2,and TET3 mRNA after treating MCF7 cells with 10-9 GnRH hormone for 2hrs 

after pre-treating the cells with H89 (PKA inhibitor), Kn93(CaMKs inhibitor ) or Wartmanin (PI3K inhibitor). The mRNA levels 

are shown after normalization to the level of the housekeeping gene UBC and relative to mRNA levels in control MCF7.  

cells. Bars represent SD of the mean. To test for the significance of difference between different time points and the control cells, 

we did  T-test to calculate p-value. (** means that p-value>0.05 and * means that p-value <0.05). 
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3.4.TET1 has two isoforms 

 

During real time and conventional PCR analyses of TET1 RNA levels, using different 

sets of primers, we noticed the possible presence of different TET1 isoforms, as shown in 

(Fig.3.4) that  PCR results using primer targeting different exon of TET1 ,primers 

targeting exon 1 and 2 are expressed in T47D cells but not in other cell lines which gives 

hint these two exon might be lost and there is another TET1 isoform that leak Exon1 and 

2.while primer targeting the Exon 3 and 4 are expressed in all cell lines . Moreover, a 

recent work had just showed the presence of Tet1 isoform switch that regulates epigenetic 

memory erasure and mouse development (W. Zhang et al., 2016).  

 

Figure 3. 4. Expression pattern of TET1 isoforms in breast cancer cell lines. Conventional PCR 

results using primers that target different TET1exones in different breast cancer cell lines. A: 2-4 407bp, 

B: 1-2, and C: 3-4 PCR product 470, 466, and 464 respectively, we used G6PD as internal control.100bp 

ladder. 

 

Therefore, we performed some bioinformatics analysis on ENCODE data using the 

UCSC genome browser, to detect possible transcriptional start sites. Both DNaseI 

sensitivity cluster and localization of H3K27Ac3 clearly suggest that human TET1 is 

expressed as two possible isoforms using two possible transcription initiation sites (TSS). 

To further confirm the presence of alternative TSS, we did analysis on published 

transcription factor chromatin immunoprecipitation data. This analysis showed that TET1 

has two possible TSS and one of those TSS leads to the transcription of a shorter isoform 

that lacks the first exon and possibly all or a part of exon 2 (Fig.3.5) which might lead to 
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the translation of a shorter TET1 protein from an alternative translation start site present 

in exon 3, a finding that suggests the presence of a shorter TET1 protein.  

 

 

 To test this hypothesis and to confirm the bioinformatics data, we did real time PCR on 

RNA isolated from MCF7, T47D, MCF10A and MDA MB231 cells. 

 

After treating RNA with DNase, we quantitated the expression of TET1 using primers 

that target either the long or the short isoforms of TET1. The expression level of Exons 

10 and 11 was used as our reference point. As shown in Fig.3.6, all cells express higher 

levels of the shorter TET1 isoform regardless the cells being basal or luminal. Moreover, 

our results show that luminal cells express higher levels of the longer TET1 isoform 

compared to very low expression levels of this isoform in basal cells.  

 

 

 

 

Figure 3. 5.TET1 two possible promoter characterization using UCSC genome browser. UCSC genome browser 

analysis of the 5’ end of the human TET1 gene showing the DNase clusters, H3K4me3 and Txn Factor chip 

localization to indicate possible transcription start-sites 
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Figure 3. 6. Expression pattern of TET1 isoforms in breast cancer cell lines. qPCR results on different TET1 

isoforms. Exons 10-11 were used as our reference point. The mRNA levels are shown after normalization to the 

level of the housekeeping gene UBC and relative to mRNA levels in control untreated cells. Bars represent SD of 

the mean. To defined the significances in differences between TET1full and TET1short expression by T-test to 

calculate p-value. (** means that p-value>0.05 and * means that p-value <0.05), to a significant results the p-

value <0.05. 

 

 

3.5.TET1 isoform and hormone treatment  

 

After examining the expression of TET1 two isoforms in different breast cancer cell lines, 

we wanted to see the how do hormone treatment affects the expression of these two 

isoforms in T47D cells. Our qRT-PCR showed that both estrogen and GnRH increased 

the expression of TET1 short isoform, while decreasing the expression of TET1 long 

isoform (Fig.3.7). 
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3.6.Methylation of TET1 promoter; effect of 5-aza-2'-deoxycytidine on TET1 mRNA 

level 

 

Methylation of TET1 promoter represent one mechanism behind its low expression in 

liver cancer (Thomson et al., 2016). Analogous to this, we wanted to know whether 

promoter methylation of TET1 is the reason behind it’s low expression in breast cancer 

cell lines. To this end, we tested TET1 promoter methylation status in MDA MB 231 

breast cancer cell line that expresses low levels of TET1. We treated the MDA MB 231 

cell with the demethylation chemical, 5-aza-2'-deoxycytidine for different time points 

using different concentrations. Our qPCR analyses showed that 5-AZA decreases the 

expression of TET1 in time dependent manner.  And time (Fig.3. 8).  
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Figure 3. 7. Effect of hormones on the expression pattern of TET1 isoforms in breast cancer cell 

lines. qPCR results on different TET1 isoforms. Exons 10-11 were used as our reference point. The 

mRNA levels are shown after normalization to the level of the housekeeping gene UBC and relative to 

mRNA levels in control untreated cells. Bars represent SD of the mean. To define the significance in 

difference between the expression of TET1 long and short isoform in control untreated cells and different 

time point hormone treated cells by T-test to calculate p-value. (** means that p-value>0.05 and * means 

that p-value <0.05), to a significant results the p-value <0.05. 
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3.7.Methylation of TET1 promoter by methylation specific PCR 

 

 

Since treatment with 5-aza can reactivate transcription repressors that could repress the 

transcription of TET1 and thus leads to reduced TET1 expression instead of increasing it, 

we decided to study TET1 promoter methylation pattern using methylation specific PCR. 

To do so, we first studied TET1 promoter using UCSC genome browser to identify the 

localization of the CpG islands in the regulatory region of TET1 (Fig.3. 9A). Based on 

our analysis, we then designed methylation specific primers that cover the regulatory 

region for TET1 long isoform in EXON1 and TET1 short isoform before EXON3, using 

MethPrimer free online software. Methylation-specific PCR (MSP) was performed on 

sodium bisulfite-treated DNA derived from MCF7, MDA-MB-231, T47D, and 
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Figure 3. 8. Effect of 5aza on the expression of TET1 in breast cancer cell line. (A):Real time PCR results 

showing the expression level of TET1 mRNA after treating MDA-MB-231 cells with 2uM of 5-aza-2'-

deoxycytidine for different time points. (B): Real time PCR results showing the expression level of TET1 

mRNA after treating MDA-MB-231 cells with different concentrations of 5-aza-2'-deoxycytidine for 48 hours. 

The mRNA levels are shown after normalization to the level of the housekeeping gene UBC and relative to 

mRNA levels in control MDA MB231cells. Bars represent SD of the mean. To define the significance of 

differences between the expressions of TET1 long and short isoform in control untreated cells and 5-aza-2’-

deoxycytidine treated cells by T-test to calculate p-value. (** means that p-value>0.05 and * means that p-value 

<0.05), to a significant results the p-value <0.05. 
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MCF10A cell lines. MS-PCR result showed that the promoter of the long TET1 isoform 

is un-methylated in MCF7and T47D cell lines, while hypermethylated in MDA-MB-

231 and in the transformed breast cell line MCF10A (Fig. 3.9B).The short isoform of 

TET1 possible promoter before exon 3 is found to be methylated in all cell lines  

 (Fig.3.9B). 
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Figure 3. 9. Methylation of CpG Island in TET1 promoter. A. UCSC genome browser CpG island prediction in 

TET1 regulatory region that start in EXON1 and end in the 3’of INTRON1.B methylation specific PCR for the 

regulatory region in EXON1,3’of INTRON1 for the long TET1 isoform, and before EXON3 the regulatory region of 

TET1 Short isoform 
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Chapter 4 

 

4. Discussion  
 

Proper gene expression regulation is very important for normal cell physiology and 

homeostasis. Cancer transformation and development is associated with aberrant gene 

expression. One of the aberrant gene expression regulation mechanisms in cancer is gene 

methylation. It has been shown that cancer has different genome methylation pattern 

compared to normal tissue. This methylation pattern of cancer genomes was thought to 

be related only to enzymes that are able of methylating CpG islands. However, it was 

recently discovered that there is a family of enzymes, TET family, that are able of 

demethylating genes and actively reverts methylation. These enzymes were found to be 

downregulated in different types of cancer, including breast cancer (L. Yang et al., 2015).  

In this research work different mechanisms that might be responsible for differential TET 

enzyme expression in breast cancer cell lines were investigated. Our data showed that 

different hormones affect the expression of TET enzymes in different manners. and at 

least TET1 has two isoforms transcribed from two different transcription start sites.  

   

Breast cancer is known as a hormone-dependent cancer. Different hormones can alter 

gene expression in breast cancer .through activation of different intracellular signaling 

cascades that influence gene transcription in a positive or a negative manner (Bernhardt 

et al., 2016). GnRH receptor was found to be expressed in different types of cancer 

including breast cancer (Cheng & Leung, 2005) . GnRH was found to have an anti-

proliferative effect on breast cancer cells (Everest et al., 2001). Therefore GnRH was 

hypothesized to affect the expression of TET genes in different breast cancer cell lines. 

and that GnRH would increase the expression of tumor suppressor genes like these of the 

TET genes. In concordance with this hypothesis, GnRH increased the expression of all 

TET genes in MCF7 cell line, however in T47D cells it decrease TET genes expression. 

Although MCF7 and T47D cells are classified in the same subtype as luminal A breast 

cancer cells, there is difference in the expression pattern of TETs .A study was done on 
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comparing the proteomic analysis of these two cell lines found that T47D cells show, for 

example, down regulation of proteins involved in the growth regression compared to 

MCF7 and also T47D has over expression of anti-apoptotic protein compared to 

MCF7(Aka & Lin, 2012),and this might explain the difference in the TET expression as 

response to GnRH in these two cell lines. Regarding the regulatory effect of GnRH on 

the expression of TET genes, a study was conducted on pituitary cells reported that TET1 

expression was repressed in response to GnRH  (Yosefzon et al., 2017). This opposite 

effect of GnRH on different cell lines might be explained by the fact that GnRHR is 

coupled to different G proteins in different cell lines. GnRH receptor in pituitary cells is 

coupled to Gq/G11, which upon ligand binding, stimulates phospholipase C, while in 

breast cancer GnRH receptor is coupled with Gi protein which interferes with Epidermal 

growth factor receptor(EGFR) (Aguilar-Rojas & Huerta-Reyes, 2009). 

 

Another important hormone that plays an important role in breast carcinogenesis is 

estrogen. Estrogen was found to increase proliferation of breast cancer cells (Yue et al., 

2013). Estrogen alpha receptor was found to be expressed in around 60% of breast cancer 

cells (Masood, 1992) . Eventually estrogen might play a role in the expression of TET 

enzymes in different breast cancer cell lines. And it may decrease the expression of tumor 

suppressor genes like those of the TET enzymes. Our data showed that estrogen decreased 

the expression of TET1 and TET3 but didn’t affect TET2 gene in MCF7 cell line. 

However, in T47D, cell line estrogen has no effect on TET1 and TET3 but increased the 

expression of TET2.  Also in this context, T47D and MCF7 cell lines show a discrepancy 

in the estrogen effect on the expression of different enzyme in these two cell line. In fact, 

estrogen was found to have different effects on the expression of some genes in these two 

cell lines like c-MYC, TGFB1, and THSB1 (Rangel, Villegas, & Rondon-Lagos, 

2017).The differential effect of estrogen on the expression of TET enzymes in these two 

breast cancer cell lines could be a reflection of molecular heterogeneity of these breast 

cancer cell lines and also might be explained by the fact that  estrogen might bind to 

different types of receptors other than estrogen alpha receptor like G-protein coupled 

estrogen receptor (GPER) that is expressed in T47D and MCF7 (Samartzis et al., 2014). 
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In order to show the downstream effectors of GnRH and estrogen that affects TET enzyme 

expression, we used different inhibitor of different GnRH and estrogen receptor 

downstream kinases including. Among the kinases that were tested to see their 

involvement in the hormone regulation of TET enzymes Ca2+/calmodulin-dependent 

protein kinase (CaMKs) was found to be involved in the GnRH and estrogen regulation 

of all TET genes. In addition, PKA was found to be involved in GnRH regulation of all 

TET genes, which is similar to results obtained in pituitary cells (Yosefzon et al., 2017). 

Furthermore, Phosphatidylinositol 3-kinase (PI3-k) was found to be involved in GnRH 

regulation of TET1 and TET2. For estrogen treatment, PKA is involved in the estrogen 

receptor mediated regulation of TET3 but not TET1 and TET2. 

 

Protein kinase C (PKC) which we found to be involved in the  GnRH regulation TET3 

but not TET1 and TET2.and PKC is involved in estrogen regulation of all TET genes, 

similar to previous studies that reported PKC to be rapidly activated in response to 

estrogen treatment (Boyan et al., 2003). 

 

While trying to understand the expression pattern of TET enzymes, our data suggested 

that TET1 might have two isoform. Conventional PCR results showed that not all exons 

of TET1gene were expressed in different cell lines. Exon1 and 2 were not expressed in 

MDA-MB-231 but are expressed in T47D cell line. Indeed a recent study in the mouse 

embryonic stem cells showed that there are two TET1 isoforms (W. Zhang et al., 2016). 

Thus, by employing some bioinformatics using the UCSC genome browsing website 

which offers data for ENCODE projects that can help in the identification of the 

regulatory regions of genes and can give an idea about the location of transcription 

starting site of a gene. Our analysis on published ChIP data for the histone modification 

H3K27Ac3 which is found near the active promoter and enhancers (Rivera & Ren, 2013), 

and we found a high-density of H3K27Ac3 localized in two regions, one at the 5’ of the 

TET1 gene in EXON 1 and the other region in the 3’of INTRON 2 before EXON3. In 
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addition,  the DNase sensitivity clusters which represent the regulatory region depending 

on the fact that the regulatory region of gene show higher sensitivity do DNase activity 

since the chromatin structure in this region is not compact made them accessible for 

DNase activity (Tanaka, Zhao, Wu, & Hersh, 1998). Also, transcription factor binding 

from chromatin immunoprecipitation (ChIP) data shows a higher density of transcription 

factor in the two promoter regions mentioned earlier. These findings suggested the 

presence of a second transcriptional starting sit that leads to the transcription of a TET1 

isoform that lacks Exon1 and Exon2 and the translation of truncated TET1 that lacks the 

CXXC domain since the coding sequence of CXXC domain is located in Exon2. Indeed, 

all these findings were confirmed using different sets of primers that target different TET1 

exons. We found that TET1 short isoform is expressed in all breast cancer cell lines at 

different levels; MCF7 showed the highest expression level and MDA-MB-231 at the 

lowest level of TET1 long isoform. This switch of TET1 isoform expression was found 

to have a role in mouse development. It was found that TET1 long isoform is expressed 

in embryonic stem cells while the short isoform is activated in somatic cells (W. Zhang 

et al., 2016). Similarly to our findings, a recent study showed that TET1 short isoform is 

activated in different types of cancer including breast cancer (Good et al., 2017). 

 

The presence of the TET1 long isoform in the low grade luminal breast cell lines its loss 

in the more aggressive cell line might indicate that the long isoform might have a tumor 

suppressor activity, and that the loss of this long TET1 isoform contributes to breast 

tumorigenesis. The notion that, TET1 short isoform differential expression pattern 

indicates that it has different roles and functions in breast tumorigenesis. Moreover TET1 

short isoform lacks the CXXC domain that functions to identify the CpG islands which 

gives it the ability to de-methylate DNA in non CpG island regions. Of course this TET1 

short isoform can still be active and bind to DNA sequences with the help of other 

proteins. Indeed, a new study found that TET1 interacts with methyl CpG binding domain 

protein Mbd1 that enhance the localization and binding of TET1 to the methylated CpG 

through its CXXC3 domain (P. Zhang et al., 2017). This shorter isoform that lacks CXXC 

domain can function Similar to the mechanism involved in TET2 demethylation activity 
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mediated in a CXXC independent manner by interacting with IDAX, which has the same 

structure as the CXXC domain (Ko et al., 2013). All this indicates that the short isoform 

might have different target genes which, can reflect on its function in cancer 

tumorigenesis. Not only TET1 isoforms are differentially expressed in Breast cancer, but 

we also found that they are regulated differently by different hormones. The short isoform 

expression was increased with hormone treatment, while the long isoform expression was 

decreased upon hormone treatment. In order to understand the basis for this differential 

hormonal treatment effect on these isoforms the UCSC transcription factor chromatin 

immunoprecipitation data reveled that estrogen receptor 1(ESR1) has a binding site in the 

promoter region of TET1 short isoform but not in the promoter of the longer isoform. 

These data affirms that activation of estrogen receptor1 by directly binds to the promoter 

of TET1 short isoform and induces its transcription. In comparison, GnRH has the same 

effect on increasing the expression of the short isoform may be through the activation of 

estrogen response element since a study conducted in mouse pituitary cells showed that 

GnRH activates an estrogen element –luciferase reporter gene (Chen, An, Cheng, 

Hammond, & Leung, 2009). 

 

In order to elucidate the functions of these two TET1 isoforms in breast cancer 

tumorigenesis, knockout of these isoforms genes and their effect on cancer cells needs 

exploration using, for example, CRISPR-Cas9 technique.in addition, to overexpress each 

of these isoforms separately in different breast cancer cell lines, to test how would this 

affect cellular phenotypes. An investigation on their distribution in the cell, since this will 

give further a hint regarding the differential functions of these isoforms.  

 

As discussed above, one of the key mechanisms involved in the regulation of gene 

expression at the transcription level is DNA methylation, where alterations in DNA 

methylation has been connected with the development of diseases including cancer 

(Siegfried & Simon, 2010) (Robertson, 2005). Low levels of TET1 enzyme in breast 

cancer may be due to methylation of its promoter, similar to previous studies on colorectal 

cancer and many another type of cancers which showed that down-regulation of TET1 
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mRNA is associated with promoter hyper methylation(Rawluszko-Wieczorek et al., 

2015). To test this hypothesis in breast cancer cell lines, the low TET1 expressing cell 

line MDA-MB-231 cells was treated with the demethylating chemical 5-aza-2'-

deoxycytidine. Instead of detecting TET1 increase the qRT-PCR results showed the 

expression of TET1 mRNA was not restored, even upon using various 5-aza 

concentrations. The failure of 5-Aza to restore the expression of TET1 may due to 

induction of the expression of a transcriptional repressor of TET1, or demethylation was 

not enough to reverse TET1 silencing. A previous study found that the combination of 5-

Aza and deacetylase inhibitor which was not used in the present study has synergistic 

effect on demethylation and reversing gene silencing (Cameron, Bachman, Myohanen, 

Herman, & Baylin, 1999). Since our experiments with 5-Aza were not conclusive, 

methylation specific PCR approach was tested through. Methylation specific PCR 

primers to test the methylation status of the CpG Islands in the promoters of TET1 two 

isoforms. The results showed that in MDA MB231 cell line hypermethylation of the 

promoter of the long isoform in contrast to MCF7 and T47D cell lines where their long 

TET1 isoform promoter was shown to be hypomethylated. This methylation pattern of the 

long isoform are in consistency with the long isoform expression pattern in MCF7, T47D 

and MDA MB231cells. MCF7 cell line is considered less tumorigenic than the MDA-

MB-231 cell line which is derived from metastatic breast cancer. TET1 long isoform 

promoter is hypermethylated and its expression is down-regulated in MDA-MB-231, a 

finding that is supported by a previous study that showed that the expression level of 

TET1 is lost in metastatic cells compared to primary cells, which is associated with TET1 

promoter hypermethylation (Sang et al., 2015). Our data showed that CpG Island in the 

promoter of the TET1 short isoform, was found to be methylated in all cell lines, which 

is inconsistent with the expression of TET1 short isoform results which showed the TET1 

short isoform is expressed in all cell lines. An explanation could be while trying to identify 

the CpG Island in the second promoter using Meth Primer website, two additional CpG 

islands where detected and in fact we tested the methylation of one of these CpG islands, 

which is more upstream to the expected transcription start site. This of course ensures the 

necessity for testing the methylation status of the second CpG Island. In addition, one of 

the limitations of MD-PCR is that it does not tell us the exact methylated cytosines in 
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CpGs. Thus, it might be necessary to do bisulfate pyrosequencing, which shows exactly 

the pattern of methylation and how many of the cytosine in the CpG Island are methylated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

Chapter 5 

 

5. Conclusion and Recommendations 

 

5.1. Conclusions 

 

TET enzyme in breast cancer is regulated by hormone, TET1 has two isoforms the long 

isoforms that are differentially expressed in breast cancer. The TET1 long isoform is 

down regulated in aggressive breast cancer due to hyper methylation in their promoter. 

 

5.2. Recommendations 

 

Understanding the function of the TET enzyme can help to understand their regulation 

and role in breast cancer development. For this purpose, functional studies of these 

enzyme are required. Furthermore the regulation of the TET enzymes at the protein 

levels, their localization in the cytoplasm and nucleus will provide further insight to 

their contribution in understanding breast cancer biology. 
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 في سرطان الثديTET تنظيم نسخ جينات 

 

 إعداد:أبرار علي داود جاموس.

 .اشراف: الاستاذ الدكتور زيدون صلاح

 

 الملخص

 

الطفرات    تحول الخلايا السرطانية وتطورها مرتبط بإختلالات في التعبير الجيني والتي تحدث من خلال
لسرطان التنظيم الفوق جيني الرئيسية التي تختل في االجينية أو من خلال التنظيم الفوق جيني. واحدة من آليات 

( بينما أن الآليات المسؤولة عن إضافة DNA methylationهي إضافة مجموعة الميثل إلى الحمض النووي )
 الحمض عنعتقد أن عملية إزالة الميثيل كان ي، مجموعة الميثل إلى الحمض النووي واضحة ومدروسة جيدا

 Eleven Translocation (TET)-Tenكتشاف عائلة  أ تم حتى )passive process (النووي هي عملية سلبية
لميثلي  hydroxylation تفاعل زالة الفعالة لمجموعة الميثل عن الحمض النووي عن طريقلأوالتي تقوم با

 في TETعائلة   فرادايقل نشاط . )5hmC( السيتوسين مجموعة الهيدروكسيل الىلتحولها  )Cmالسيتوسين)
بالتالي، في تثبيط الأورام.  و  قد يساهم وظيفة هذه البروتينات أن عدة أنواع من الأورام الخبيثة، مما يدل على

ل عن زيادة نسبة مجموعة الميث ةكون مسؤولتكانت فرضيتنا هي أن النشاط المنخفض لهذه الإنزيمات قد 
التعبير في ختلالات إ مما يؤدي الى )hypermethylation(  ي الحمض النوويةف السيتوسين المضافة على 

أنزيمات في  TETبعض الآليات المنظمة التي تؤثر على تعبير  قمنا بفحصالجيني في سرطان الثدي. لذا 
قمنا  . وأيضاالمؤثرة عليهاالاشارات  سرطان الثدي، بما في ذلك الاشارات الهرمونية و بعض مسارات نقل

ثم قمنا بفحص وجود مجموعة الميثل على منطقة  . TET1 مختلفة لجينبفحص وجود مواقع بدأ النسخ الجيني ال
أنزيمات ينظمها  TET. نتائجنا أظهرت أن ةعتبارها كالآلية منظمأ مكانية لإ TET1 ل )promoter(بدأ النسخ 

ثل من النشاط الهرموني، مالمؤثرة شارات الأ نزيمية و بعض مسارات نقلنشطة الأالعمل الهرموني و بعض الأ
 KAP و PKC و PI3k وCaMKs   التي تشارك في التنظيم الهرموني ل ،TET   أنزيمات. بالأضافة

( مختلفة والتي لها مقاطع مختلفه من التعبير الجيني isoformsعدة نظائر ) وله TET1أن   أظهرت نتائجنا
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تلفة التنظيم بطرق مخهتمام أن هذه الهرمونات تقوم بومن المثير للأ في عدة أنوع من خلايا سرطان الثدي.
قد ثبط عن طريق وجود مجموعة   TET1أن تعبير النظير الاطول ل توأيضا كشف بواسطة النشاط الهرموني.

، في على الاقلأنزيم ينظم،   TET(. أجمالي نتائجنا تثبت أن تعبيرpromoterالميثل على منطقة بدأ النسخ )
ا ما الجيني وتنظيمهمفي تعبيره يختلفان انلديه نظير  TET1سرطان الثدي، على مستوى النسخ الجيني، وأن 
ورام الثدي و أن هناك حاجة أأنزيمات مهمة في نمو  TETفي سرطان الثدي. مجتمعه نتائجنا تشير الى أن 

أنزيم في  TETإلى مزيد من البحوث لتوضيح المزيد من المسارات الجزيئية التفصيلية التي تشارك في تنظيم 
 الثدي والتقدم.     سياق تطور سرطان
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Appendix 
 

 
 

Appendix 1: The expression of GnRH receptor in 

cancer cell lines. 

Breast cancer cell lines (MCF7,MDA-MB-231,T47D) ,live 

cancer cell line (HEPG2) is positive control, and negative 

control. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2:The expression of Estrogen alpha receptor 

in breast cancer cell line MCF7,T47D express E2R ,and 

MDA-MB-231 as negative control  
 

Ladder   MCF7   T47D   MDA      -ve 

Ladder    MCF7    MDA     T47D    HEPG2  -ve 
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Appendix 3: CpG Island in TET1 short isoform promoter .CpG island prediction for the 

second promoter using MethPrimer website: show the presence of two CpG island  

. 




