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Abstract  

In this work, a literature survey of automarking field has been reviewed as well as the 

techniques applied in these systems. In addition, the type of questions that are suitable to be 

automatically marked, the description of the currently most used systems of free texts 

answers‟ systems, both for academic and commercial environments have also been covered. 

A comparison of all of these systems in compliance with the currently available evaluation 

metrics have been introduced. 

 

In cases with questions like essay or short text answers, hard problems like Syntactic, 

grammatical, Rhetorical structure analysis, Topical content analysis and Synonyms problem 

“Similarity or Related Words” come to stage. Such types of problems have attracted many 

interested researchers and system developers to introduce several designs to solve these 

problems. In fact, few of them have focused their studies on solving similar words problem.  

 

In this thesis, we have concentrated our study on similar words' problem of short-text answer, 

and the various methods to solve this problem. A new approach for solving similar words 

problem in short-text answer questions based on a fuzzy logic algorithm is presented. We 

have emphasizeed our study on Fuzzy Logic techniques, and how to use each part of this 

method to solve similar words problem, in a way to explore the suitability of using it to solve 

such problems.  

 

A Multi (3-5) Input Single Output, MISO, system have been tested, after which a general 

MISO model have been proposed and tested. Several approaches have been examined. 

Comparisons between the various results obtained have been conducted, 90% by the 

instructors evaluation.  

 

A promising result shows the adequacy of using the fuzzy logic approach to such types of 

questions. It is recommended that further elaboration, testing, and comparison with the other 

currently available approached and systems are required.  
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ملخص 

فٙ ْزا انؼًم ، لًُب ثًشاخؼخ ربسٚخٛخ نًدبل انزظهٛر الانٙ نلأعئهخ ر٘ الاخبثبد انمظٛشح، ٔانزمُٛبد انزٙ أعُذد نٓزِ 

الاَظًخ، َٕٔع الاعئهخ انًُبعت انزٙ ًٚكٍ أٌ رمٛٛى، ٔ ٔطف نغبنجٛخ الاَظًخ انًغزخذيخ زبنٛب فٙ رمٛٛى الاعئهخ لظٛشح 

الاخبثخ أٔ الاعئهخ انًمبنٛخ عٕاءً انًُزدخ يٍ لجم انًؤعغبد الاكبدًٚٛخ أٔ انًؤعغبد انزدبسٚخ، ٔ يمبسَخ خًٛغ ْزِ الاَظًخ 

 .فٙ الانزضاو  ثًمبٚٛظ انزمٛٛى انًؼزشف ػهٛٓب زبنٛب

  

فًٛب ٚزؼهك ثبنزظهٛر الانٙ نلأخبثبد يثم إخبثبد انًمبلاد أٔ انُظٕص انمظٛشح فمذ ثشصد يشبكم طؼجخ يثم انزسهٛم 

اٌ يثم ْزِ انًشبكم لذ . انُسٕ٘ ٔ انجلاغٙ ٔ انزشكٛجٙ، ٔ رسهٛم انًسزٕٖ انًٕضٕػٙ ٔ كزنك  رسهٛم انًشادفبد انهغٕٚخ

خزثذ اْزًبو انؼذٚذ يٍ انجبزثٍٛ ٔ يطٕس٘ الاَظًخ نطشذ ػذح رظبيٛى رؼًم ػهٗ زم ْزِ انًشبكم، ٔ فٙ انسمٛمخ، فمذ لبو 

. ػذد لهٛم يٍ ْؤٔلاء ثزشكٛض دساعبرٓى ػهٗ يشكهخ انًشادفبد 

 

فٙ ْزِ انذساعخ، لًُب ثزشكٛض انجسث ػهٗ يغأنخ انًشادفبد فٙ إخبثبد انُظٕص انمظٛشح ٔ كزنك ػهٗ الاعبنٛت انًزُٕػخ 

ٔ . فٙ زم ْزِ انًشبكم، زٛث رى رمذٚى اعهٕة خذٚذ فٙ ْزا انشأٌ ، ٔ ْٕ ٚؼزًذ ػهٗ يجذأ خٕاسصيٛخ انًُطك انضجبثٙ

رشكضد انذساعخ ػهٗ أخضاء انًُطك انضجبثٙ ٔ كٛفٛخ اعزخذاو كم خضء يُٓب فٙ يشكهخ انكهًبد انًزشادفخ ثطشٚمخ رغزكشف 

.  إيكبَٛخ اعزخذايّ فٙ زم يثم ْزِ انًشبكم

 

، ٔ ثؼذْب رى إلزشاذ (MISO( )انًخشخبد)ٔيخشج أٔ َزٛدخ ٔ ازذح  (5-3)رى إخزجبس َظبو يب ٚغًٗ ثزؼذد انًذخلاد 

يمبسَخ يغ رمٛٛى % 90ٔكزنك رى فسض ػذح أعبنٛت ٔ رى يمبسَخ َزبئدٓب، ٔ كبَذ انُزٛدخ .  ػبوMISOٔإخزجبس ًَٕرج 

. انًذسعٍٛ

 

كًب ٔ ٕٚطٗ ثبنمٛبو . رشٛش انُزبئح انٕاػذح انٗ يلائًخ اعزخذاو يفٕٓو انًُطك انضجبثٙ فٙ زم يثم ْزِ الإَاع يٍ انًغبئم

. ثبْزًبيبد، ٔإخزجبساد ٔ يمبسَبد يغ الاعبنٛت ٔ الاَظًخ انًزٕفشح زبنٛب
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction  

The FLASA “Fuzzy Logic in Auto-marking Short text Answers” algorithm is one of 

methods that reduce the similar words problems in essay and short text answers, that may 

arise during the design of auto-marking system. When the questions are like essay or short 

text answers, hard problems like Syntactic, grammatical, Rhetorical structure analysis, 

Topical content analysis and Synonyms problem “Similarity or Related Words” comes to 

stage.  

Such types of problems have attracted many interested researchers and system developers to 

introduce several designs which tackle these problems, but few of them have focused their 

studies on solving similar words.  

FLASA algorithm is represented by a set of rules and the way of these rules are fired or 

executed. The main concept of the FLASA algorithm is it approach in solving similar words 

problems, by putting weight for each similar word in the answer.  

The aim of the proposed auto-marking similar words in short answer is to generate auto-

marking short-text answer once the exam is completed. Here we will focus our algorithm in 

one part of the short answers problems which called similar or related words. A typical auto-

marking system usually consists of the accuracy property. So the main judgment in the 

comparison between the auto-marking similar words is the accurate of the results.  
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The most of the auto-marking short answer tools solving the similar words problems by the 

linear way c-rater, which mean that if the main words or their similarity was found in the 

answer; the answer is correct without taking in consideration that may be similar words are 

not in the same level of the main words in the key answer. 

 

After a discussion with different instructors “PhDs holders” at Al-Quds University as shown 

in appendix C.1, about the way of evaluating the short answer questions, the following 

results has come out: 

 

 Most of instructors do not pay attention to spelling problems, thus no marks go to 

right spelling neither dedicated marks for wrong spelling.  

 

 The majority of instructors do not consider the Syntactic Structure Analysis and 

Rhetorical Structure Analysis problems of the phrases. 

 

 Most instructors concentrate on finding the main words or related words within the 

student answer.  

 

 Some instructors define new methods in this type of evaluating; this method is 

defining weight for each one of the similar or related words once appear in the student‟s 

answers.  
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1.2 Motivation  

To enhance the accuracy of evaluation system, and its flexibility, the Fuzzy Logic “FL” in 

solving word‟s similarity problems in auto-marking system will be explored and investigated 

for the first time. 

1.3 Problem Definitions  

There are many questions should be answered before designing an auto-marking short-text 

answer system namely: 

1. Why there are differences in evaluating the same answer from instructor to another?   

2. Why the instructor marking for example 3/5 and not 5/5 if the answer is correct and 

0/5 if not? Why 3/5 and what is the standard points of this evaluation? 

3. Is there any effect of spelling problems in the evaluation of the answers? 

4. Is there any effect of grammar problems in the evaluation of the answers?  

 

These questions divert researchers to different problems that should be taken into 

consideration when develop an applications that marking or evaluating essay or short-text 

questions. Some of these problems are Syntactic Structure Analysis SSA, Rhetorical 

Structure Analysis RSA and Topical Content Analysis TCA. Which will be discussed next 

chapter. 

 

 The main problem arise on surface, is that, each question has different shape of solution at 

the same time, there are different words having the same meaning; so the answer differ from 

one student to another and each answer will be most likely different from the actual answer. 



 23 

Thus, marking will be different from one student to another. This problem case troubles for 

instructors in grading their students. Thus is the main point of this research. This problem 

likely occurs in the reading and comprehension, when student answer this question by 

replacing some words by synonyms ”words similarity”. Thus also happening when changing 

the words order without influencing the sentences meaning as in the following example. 

 

What is the Relation Database? 

The answer key is {a database is a set of related data}. 

The student's answers may be as following: 

S1: A database is a set of related data. 

S2: The database is a group of data that are related together. 

S3: The database is a set of data that are related together. 

S4: A set of entity that is related by foreign key. 

S5: Is a related table. 

 

By using auto-marking (computer) all of these answers are not one hundred percent correct, 

except the first one, comparing by the answer key. This problem can be avoided by manually 

marking but it is difficult to solve this problem automatically.  

 

Few of existing methods may solving this problem, but not in the way as the instructors need, 

and the main concern for them is how to build the methods as accurate as possible. Most of 

them fail to evaluate the short answer exactly as the instructors evaluate. This is due to the 

following problems: 
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 Some methods solved this problem by normal algorithm “simple keyword analysis” 

[5]. It is the simplest technique looking for the presence of coincident keywords or n-grams 

between the student text and the teacher one. This method cannot extract the meaning of the 

student answer nor deal with synonyms. The comparison results are either true or false or in 

another word 0/1. The differences between the key answer and the student‟s answer will 

make the comparison false or 0. So there is one possible output from this method which is 0 

or 1 for each one of the main words in the answer. 

 

 Most methods are solving this problem by making new technique rather than making 

normal comparison, which is dealing with similar words or synonyms as c-rater models 

using Alchemist [14]. This method based on searching in the similar words or in synonyms 

database, if there is similar words in the answer, then it is true otherwise false. But this 

method is not accurate, since there are some similar words having different weighting than 

the main words. 

 

 Some methods solving this problem by putting weight for each similar words as in 

Auto-Marking [19]. These weights defined by the instructors. Then the summation step is 

performed to theses weights to have the answer mark done. This method is the most effective 

method so far, since the results are close to the instructor‟s evaluation. 

 

After the above illustration for these methods we have to introduce our algorithm. This 

algorithm is some how similar to the last mentioned method excepts that, we will not perform 

a direct summation for weights. The invented algorithm will apply a process step instead of 
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the summation step. This process will introduce a non-fuzzy value (word‟s weight) to a fuzzy 

value (low, med, high) with confidences, which in turn will be produce many roles to 

produce many fuzzy output set (zero, low, med, high, full) with confidences. These 

confidences are a value between zero and one.   

1.4 Research Objectives 

Our research objectives can be briefly described in two categories. The first identifies 

problems of auto-marking short-text answer, and the second to introduce a new detailed 

design with FL paradigm for the purpose of resolving similar or related words in student‟s 

answers text; to reduce instructor‟s time in educational system.  

1.5 Approach and Deliverable  

The word‟s similarity problem, in auto-marking short text answer, give us the motivation of 

starting with Fuzzy Logic approach to have better design. There are many software products 

that mark the true -false, multiple choice and other types of questions automatically. Few of 

them [ETS, e-rater, c-rater, ERB] would correct the essay-type questions (i.e. discussing, 

defining…etc) or short description questions.  

The proposed approach for solving this problem is sited in introducing a new design auto-

marking short text answer on the concept of rules as in Fuzzy Logic method.  
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1.6  Contributions 

The main contribution of our work is how to use the Fuzzy Logic method in solving the 

similar words problem in short text answer. And making comparisons with other methods 

like keyword method and with instructor‟s results. 

 

The main contributions of our work for solving the problems defined in the last section is to 

develop a new algorithm, FLASA, (Fuzzy Logic based on Auto-marking Short-text 

Answer). 

 

 
1.7 Structure of the thesis. 

 

This work is organized as follows: 

 

 Chapter 2 starts with a brief historical overview of the field and types of questions. It 

also provides the importance of auto-marking essay and short-text questions, as well as a 

review of the current statistical, Natural Language Processing “NLP” and other techniques 

that are being employed and the description of the state-of-art of Computer Assisted 

Assessment “CAA” for short-text answers by presenting the currently available automatic 

essay systems. 

 

 Chapter 3 presents briefly the fuzzy logic as well as describes its structural algorithm. 

In addition, a brief introduction of the FLASA design Methodology and it‟s domain.  
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 Chapter 4 introduces our contribution with a new approach based on the use of FL 

algorithm. The design of original algorithm will be described, and a study of the best 

performance it can attain will be demonstrated. 

 

 Chapters 5 provides three examples with different number of main words, tests them, 

then discusses the results obtained, and makes a comparison with results obtained from other 

methods as well those of the instructor‟s evaluations. Further more, the advantages and 

disadvantages of FLASA will be addressed.  

 

 Chapter 6 concludes and presents the future works.  
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

We divide this chapter into four parts.  The first part is about the concentrates on Analysis the 

grammatical structure of the text, and giving some tools that process it. The second section is 

about a history of Auto-marking system in past, recent and future research. In third parts we 

present e-rater, c-rater prototype and in four parts we present an overview of our algorithm 

Fuzzy Logic, we get background of this algorithm and how it works.  

 

2.1 Introduction.  

 One of the methods of monitoring individual pupil‟s progress is through the testing system. 

Theoretically the „test and retest‟ [1] system is very effective. It can really help weaker 

pupils to improve on certain topics at a time. But, it also results in an increased workload for 

the teacher. So the technology will be used in this area to decrease workload of the 

instructors by making marking the answers automatically. These technologies will face 

problems in implements, as in our technology which is auto-marking the student‟s short text 

answers. 

There are different types of questions that instructors would ask. The degrees of efficiency of 

these types of questions are vary. However, essay and short-text questions are very important 

in evaluating students for many courses, the advantages of the short-text answer over other 

types of questions will be discussed. More over briefly describe for the main problems in 

marking essay and short-text questions will be highlighted through some of algorithms and 

tools used. 
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Enable to distinguish between types of questions, a brief description for each types of 

questions will be studied as follow: 

1. Multiple-choice questions: This is a type of question in which students are given 

several possible answers and they have to choose the correct one.  

a. Always Useful  

b. Seldom Useful  

c. Depends on the situation  

d. Non of the above 

 

2. Multiple-select questions give respondents more flexibility for giving input of 

feedback. In this type of questions the student can choose one or more answer. 

a. The respondent may want to choose this answer.  

b. And/or choose this answer.  

c. Or even this answer.  

 

3. True-false questions, are only gives an answer when the sentence or the idea is 

completely true or false.  

TRUE  

FALSE 

 



 30 

4. Fill in the blank can also be valuable in places where an essential single 

word or phrase is needed. 

 

5. Filter questions. 

 Example: (Question A is the filter question)  

A. Do you like ice cream? 

Yes (Go to question B) 

No (Go to question C) 

 

B. What is your favorite ice cream flavor? 

Vanilla 

Chocolate 

Cherry Garcia 

Other 

 

C. Do you like cake? 

Yes 

No 

 

6. Ordinal Question  

Please rank the following vegetables from best (1) to worst (5): 

Broccoli 

Carrots 
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Potatoes 

Spinach 

 

1. Short description questions. 

 Example: What is the Fuzzy Logic? 

Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle the concept of partial truth- truth values betw een "completely true" and "completely false". 

 

 

One of the main types of questions are multiple choice, True/False, Matching and Short text 

answer. There are advantage and disadvantage for using these types of question:  

 

 Multiple-choice, true/false and matching questions, unlike short-text answer questions 

in term of evaluating student‟s understanding. This is due to types of questions depends in 

certain way on the chance in answers. So student will answer even if could not understand 

the question or got the answer. These types of questions, however, can be easily evaluated 

without too much time consuming by the instructor. But still there are difficulty in writing 

some of these types especially when the questions are like multiple choice, which need more 

time in creating and reduce the number of questions that can be presented in the exam.  

 Short texts are perfect for brief, highly focused lessons that emphasize and reinforce 

teaching certain strategies or important ideas and concepts. This is because no chance 

available in the answer, and the students write the answer carefully with focusing. This type 



 32 

of question is easy to create with limited time. In other hand, this type of question need more 

time than other types to be evaluated.  

Although the importance of the short-text answer, there are many problems in auto-marking 

of this type of question, that making auto-marking very difficult to programming. So the 

problems and the systems that solving these problems will be discussed in next chapter. 

Questioning should be used purposefully to achieve well-defined goals. An instructor should 

ask questions which will require students to use the thinking skills which he is trying to 

develop. A system exists for organizing those thinking skills. Bloom's Taxonomy is a [2] 

hierarchal system of ordering thinking skills from lower to higher, with the higher levels 

including all of the cognitive skills from the lower levels.  

2.2 Types of questions.  

The art of asking questions is one of the basic skills of good teaching. Socrates believed that 

knowledge and awareness were an intrinsic part of each student. Thus, [3] in testing the craft 

of good teaching an educator must reach into the student's hidden levels of knowing and 

awareness in order to help the student reach new levels of thinking. 

Bloom [2] provided taxonomy for categorizing the level of abstraction of questions used in 

the assessment of student work. He identified six different levels that are shown in Figure 

2.1. This taxonomy has been taken as the starting point for analyzing the student‟s learning 

competence. Table 2.1 summarizes the main features of each competence level.  
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Figure 2.1: The six-element Bloom‟s taxonomy of educational competencies to be assessed 

 

 

Table 2.1: Review of the six Bloom‟s competence levels, the main skill that they 

demonstrate, two examples of question cues and a relevant assessment method for each of 

them. 

Competence Question cues Skill demonstrated Example 
Knowledge  definitions, list, concepts, 

principles 

Remembering previously 

learned material 

What are the stages of cell 

division? 

Understanding  Summarize and predict  explaining in one's own 

words or citing examples 

Explain the process of 

digestion? 

Application  Illustrate and solve  Practical use of the 

material  

How does the law of supply 

and demand explain the 

current increase in fruit and 

vegetable prices? 

Analysis  Breaking a piece of material 

into its parts and explaining 

the relationship between the 

parts. 

Notice patterns and 

hidden data  

What is the relationship of 

probability to statistical 

analysis? 

Synthesis  Putting parts together to form 

a new whole, pattern or 

structure. 

Digest information  How might style of writing 

and the thesis of a given 

essay be related? 

Evaluation  Using a set of criteria, 

established by the student or 

specified by the instructor, to 

arrive at a reasoned judgment 

Judge value for purpose  How well does the Stillman 

Diet meet the criteria for an 

ideal weight reduction plan? 

 

 

When it is necessary to measure the higher levels, short-text or open ended questions should 

be employed.  Short description questions or Open ended question is the most complex type 

of question to evaluate because it is not a choice between several possibilities. Students have 

Evaluation 

Synthesis 

Analysis 

Application 

Understanding 

Knowledge 
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to write a text more or less long about the topic asked with the only help of their own 

experience and knowledge. 

 

 The answers of an open ended question is an essay that was defined by Stalnauker in 1951 as 

[5] “..response composed by the examinee, usually in the form of one or more sentence, of a 

nature that no single response or pattern of responses can be listed as correct, and the 

accuracy and quality of which can be judged subjectively only by one skilled or informed in 

the subject,...but even an expert cannot usually classify a response as categorically right or 

wrong. Rather, there are different degrees of quality or merit which can be recognized...”. 

2.2.1 Lower and Higher Level Questions. 

Interestingly, the most instance line of experimental research on the effectiveness of 

questions has focused on the differences between so-called lower- and higher-level questions. 

Lower-level questions are generally characterized [6] as those that require students to recall 

and reiterate literally what they have read or heard. In contrast, higher-level questions are 

viewed as those that require more complex cognitive operations: that is, drawing information 

together, applying a concept, explaining, analyzing, evaluating.  

The conventional wisdom seems to be that higher-level questions will stimulate deeper and 

more elaborate thinking that results long-lasting academic achievement than low-level 

questions. Even in the basis of descriptive studies, researchers who have found that teachers 

ask more literal questions than other question types will go on to encourage teachers to ask 

more high-level questions.  
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Usually questions at the lower levels are appropriate for:  

1. Evaluating students' preparation and comprehension.  

2. Diagnosing students' strengths and weaknesses.  

3. Reviewing and/or summarizing content.  

Questions at higher levels of the taxonomy are usually most appropriate for:  

1. Encouraging students to think more deeply and critically.  

2. Problem solving.  

3. Encouraging discussions.  

4. Stimulating students to seek information on their own. 

2.2.2 Open and Closed Questions  

In addition to asking questions at various levels of the taxonomy an instructor might consider 

whether he is asking closed or open questions.  

According to Bloom's Taxonomy [2], a closed question is one in which there are a limited 

number of acceptable answers, most of which will usually be anticipated by the instructor. 

For example, "What is a definition for 'adjective'?" requires that students give some 

characteristics of adjectives and their function. While students may put the answer in their 

own words, correct answers will be easily judged and anticipated based on a rather limited 

set of characteristics and functions of adjectives. 

According to Bloom's Taxonomy [2], an open question is one in which there are many 

acceptable answers, most of which will not be anticipated by the instructor. For example, 
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"What is an example of an adjective?" requires only that student‟s name "any adjective." The 

teacher may only judge an answer as incorrect if another part of speech or a totally unrelated 

answer is given. Although the specific answer may not be anticipated the instructor usually 

does have criteria for judging whether a particular answer is acceptable or unacceptable. 

Both open and closed questions may be at any level of the taxonomy.  

An open low-level question might be:  

"What is an example of an adjective?"  

 

An open high-level question might be:  

"What are some ways we might solve the energy crisis?"  

 

A closed low-level question:  

"What are the stages of cell division?"  

 

A closed high-level question:  

"Given the medical data before you, would you say this patient is intoxicated or suffering 

from a diabetic reaction?"  

 

We can close questions to finish a conversation or part of a conversation. Use open questions 

to get the other to speak more.  
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2.3 Auto-marking System  

As we know that the most important thing in our life is the time, the time is very expensive in 

our life, and the using technology will be reducing the time of working any thing. These 

technologies are used in the most important things in our life. In my point of view, the most 

important parameter in the computer-based education and in the modern universities is that 

the new technology used in.  

 

For the educational-testing community, [7] one motivation is economic: if you can replace 

two human graders with one human and one system, you can reduce the cost of grading the 

examination. After making case study about the time consumer in Al-Quds University for 

evaluating exams, the results was, 30% of instructor's time is spent on marking essay or 

short-text questions. As a result, instructors are not able to give writing assignment as often 

as they would wish. If we are to free up that 30% of their time, then we must find an effective 

way that teachers will trust, to mark essays and short-text responses. This substitution seems 

acceptable, as long as you can demonstrate that it won't affect the final grade and that human 

judges make the final decision, should the human and system disagree. 

 

A second, more important, motivation [7] is that automated grading of short-answer 

questions provides students with much more immediate feedback there is no need to wait for 

an instructor to provide a “ruling” on the correctness of the answer. This immediacy supports 

interactive drills and testing, including diagnostic feedback for intelligent tutoring. However, 

an automated grading system‟s success ultimately depends on its ability to closely 

approximate the kinds of judgments a human grader would make. 
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With these problems in mind, researchers have sought to develop applications that automate 

essay and short text scoring and evaluation.  

2.3.1 Auto-marking Limitations.  

 

It's not easy to use computer instead of the human in evaluation system, especially when the 

answers are like essay or short-text answer, because these types of questions have a lot of 

problems and difficult in program, we will take this problems carefully in this section. All of 

these problems relate to Analysis the grammatical structure of the text, as will see in next 

section. 

 

There are many software tools for auto-marking essay and short-text answer questions, as 

illustrate in figure 2.3. There have been a considerable amount of different classifications of 

techniques to automatically assess short-text answers. Some of them are more complete than 

others, but it is convenient to present at least a number of these classifications in order to 

fully understand the final proposed one. 

 

In fact, any grading which involves the use of natural language, is difficult as there can be 

numerous ways to say the same thing. The grader has to read the student's answer and then 

grade it depending on how well written and how accurate the answer is. When it comes to 

essays, things get even more difficult, this is because [8] essays reflect the thoughts and 

opinions of another human and thus there are no perfect answers to an essay. This is indeed a 

very tedious and fatigue inducing job, and hence if this job is automated, we end up saving a 
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lot of time and money and of course, human effort. However, we believe that, in order to 

fully assess the answers, both a syntactic, Rhetorical and a semantic analysis is required. 

 

 Syntactic Structure Analysis.  

The scoring guide indicates that one feature used to evaluate an essay is syntactic variety. [8] 

The basis for syntactic analysis is parsing which is the process of making explicit the 

syntactic structure of sentences. This requires tagging each word in the essay with its 

appropriate part of speech and then assembling the words into phrases and clauses. [9] For 

example E-rater, C-rater and PS-ME are underpinned by these techniques. 

 

 Rhetorical “Discourse” Analysis.  

A rhetorical analyzer is used to discover the internal structure of the answer; Graduate 

Management Admissions Test “GMAT” essay prompts are of two types: Analysis of an 

issue (issue) and Analysis of an Argument (argument). The GMAT issue essay asks the 

writer to respond to a general question and to provide "reasons and/or examples" to support 

his or her position on an issue introduced by the test question. The GMAT argument essay 

focuses the writer on the argument in a given piece of text, using the term argument in the 

sense of a rational presentation of points with the purpose of persuading the reader.  

 

 Lexical Conceptual Structure:  

In conformity with Oslen [47] this theory aims to grade essays by “fuzzy matching” of 

sentences that could be expressed in totally different syntactic structures but bear similar 

semantic content. It is based in translating the text information into language independent 

data structures that afterwards could be compared. The problem this approach has is very 
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similar to the so-called divergence problem in machine translation, when the translated text is 

quite different from the original one. Some solutions are proposed by Dorr [48]. However, 

none of the currently existing systems have used these ideas yet.  

 

2.3.2 Auto-marking Techniques  

There are many techniques used by most of auto-marking tools to grade essay or short-text 

answers, some of these techniques are:- 

 

 Statistical techniques:  

In general, all systems that rely on a statistical analysis of one or several features of the texts 

should be considered in this category. They usually need an initial training phase to calculate 

the parameters of the system. They do not use complex Natural Language Process “NLP” 

techniques and, in most cases, the texts are only processed with a tokens and a sentence 

splitter. As a consequence, they should be easy to port across languages and domains. In 

particular, there are several subcategories [5]: 

 

o Simple keyword analysis: 

 It is the simplest technique and consists in looking for coincident keywords or n-grams 

between the student text and the teacher one. This method cannot extract a representation of 

the meaning of the student answer nor deal with synonyms and polysemous terms. 

Consequently none of the systems studied is based solely on this technique. 
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o Latent Semantic Analysis LSA:  [49] 

 It is a complex statistical technique that was initially developed for indexing documents and 

information retrieval. Nevertheless, [12] it can also be applied to automated essay grading. In 

this field, this technique serves to extract the conceptual similarity between the student‟s 

candidate text and the teacher‟s reference text by looking for repeated patterns between them. 

According to Dessus [50] this approach is quite robust and proves its name by finding the 

hidden relationships between words that could be in different documents or between 

documents that do not share words. The reason for this fact is given by Landauer [12] who 

said that what causes two words to have similar meanings is that they change the meaning of 

passages in which they occur. He also claimed that although as many statistical techniques 

are language-blind, LSA might have problems with complex morphological structured 

languages. 

 

 Full natural-language processing:  

NLP is the application of computational methods to [51] analyze natural language. Cited 

tools such as syntactic parsers to find the [52] linguistics structure of a text and [53] 

rhetorical parsers to find the discourse structure of a text. The combination of these 

techniques improve the use of statistics by involving a deep text parsing and a semantic 

analysis in order to gather more information to effectively assess the student‟s answer. On 

the other hand, it is hard to accomplish and very difficult to port across languages. Among 

the current systems, C-rater and PS-ME are underpinned by these techniques. Another 

approach is to grade the student essay by summarizing it so that only the relevant information 

is taken into account and the noise is eliminated Burstein [51] and Marcu [53]. 



 42 

 

 Information Extraction (IE) techniques 

Information extraction (IE) techniques [19] pull out pertinent information from a partially 

syntactically analysed text by applying a set of domain specific patterns typically built from 

training data. Information Extraction consists in [37] acquiring structured information from 

free text, e.g. identifying Named Entities in the text and filling a template. 

  

 It can be considered as a shallow NLP technique, as it usually does not require an in-depth 

analysis of the texts. IE process is broken down into a series of subtasks [19].  

 

o First, the Named Entity (NE) subtask consists of classifying (typically) NPs into 

categories like name of a person, a company, a location, or a date.  

 

o Secondly, relations between named entities, or properties of entities are extracted.  

 

o Thirdly, pre-defined templates are filled by these entities and relations. 

 

For example, [56] Automark and ATM are based on this approach. An example of mark 

scheme is Figure 2.2. 
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Figure 2.2: Example of a scheme used in Automark to score the answer to the question like 

“What movement relates the Earth and the Sun?”, [56] 

 

 

 

 
 

Figure 2.3: Time line of research in automated short-text answers. 
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2.4 Existing systems 

 

To decrease instructor‟s time, researchers have sought to develop applications that automate 

essay scoring and evaluation. There are many methods automated essay and short-text 

answer questions, in this section we will introduce some of these methods, and discusses the 

drawback and limitation of each one.  

 

Work in automated essay scoring began in the early 1960‟s and Figure 2.3 shows a timeline 

of automated of short questions, indicating some systems and their dates of appearance. 

 

2.4.1 PEG “Project Essay Grader”  

The pioneer in the field of auto-marking of free text answers was Page with the Project Essay 

Grader (PEG). It focused [7] in the style of the essay, he set the stage for automated 

writing evaluation. The aim he pursued was to improve the assessment process. Despite its 

impressive success at predicting teachers‟ essay ratings, the early version of PEG received 

only limited acceptance in the writing and education community, precisely because it used 

indirect measures of writing skill. Critics argued that using indirect measures left the system 

vulnerable to cheating, because students could artificially enhance their scores using tricks 

they could simply write a longer essay.  

 

In middle of nineties, PEG system was also undergoing transformations to include more 

direct measures of writing quality. In 1995, Page reported that PEG‟s “current programs 

explore complex and rich variables, such as searching each sentence for soundness of 
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structure and weighing these ratings across the essay.”[11] In 1997, Page‟s system became 

mature and started to be commercially available.  

 

PEG is [40] suitable for most type of essays, achieving a 87% correlation. Nevertheless, it 

has problems whenever the text content and word order are important, for instance, in factual 

disciplines‟ essays. 

 

The research in this field nearly stopped until the nineties, with some exceptions, in the early 

of 1980s WWB Writer Work Bench tool [38] set took a first step toward direct measures of 

writing quality. (WWB) was not an essay-scoring system. Instead, it aimed to provide 

helpful feedback to writers about spelling, diction, and readability. 

 

In 1990, the situation slightly started to change. A team of Educational Testing Service ETS 

researchers, led by Jill Burstein, hypothesized a set of linguistic features that might more 

directly  measure these general writing qualities-features they could automatically extract 

from essays using NLP and Information Retrieval IR techniques. 

 

In 1993, Wresch [54] noted that results were not so encouraging as Page envisioned: most of 

the teachers did not even know of the existence of automatic software tools to assess 

students‟ essays and the research community was still exploring the field. 

In addition to this, in the same year three new systems were introduced: 

 The Intelligent Essay Assessor (IEA). 

 E-rater. 
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2.4.2 Intelligent Essay Assessor (IEA) 

The IEA, [12] developed by Landauer and his colleagues at the Colorado University in USA 

in 1997. It primarily focuses on the content and it is based on Latent Semantic Analysis 

(LSA). LSA aims at going beneath the essay‟s surface vocabulary to quantify its deeper 

semantic content.  

 

It was originally conceived as an academic product but some years later they founded their 

own company called Knowledge Analysis Technology” Website: http://www.knowledge-

technologies.com” and they are in the process of patenting their system. Moreover, IEA 

cannot be executed in an ordinary PC but on a secure web servers placed in their company in 

USA. They always depend on Knowledge Analysis Technology‟ servers. 

 

One of its main advantages is its language independence, with the restriction that it is not 

able to process too complex morphological structure of the language. Also it does not use any 

NLP techniques such as removing stop words. 

 

It is also possible to perform synonym recognition in order to treat several synonyms with 

similar meanings as the same word. IEA requires an initial training but it is not human 

supervised. The only input is a set of texts about the topic to evaluate. 

 

IEA has been tested in the military environment with 2000-word essays and achieving a 0.35 

interreliability between the teacher and the system. IEA has also been used for psychology, 

medicine and history texts, achieving a 80%-90% of exact agreement with the teacher. 

http://www.knowledge-technologies.com/
http://www.knowledge-technologies.com/
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Landauer et al. stated that one problem their system has is that it does not take into account 

the word order. Thus, it cannot interpret sentences in which word order is the discriminate 

factor. Besides, it is easily tricked because it does not perform any syntactical or grammatical 

analysis. 

 

According to its authors, IEA can be used in many different applications within education, 

from the simple consistency checker, to help teachers to discover cheating and plagiarism, to 

the formative and summative assessment of the essays. 

 

2.4.3 E-rater.  

E-rater, an improved version of Educational Testing Service “ETS” which uses a hybrid 

approach by combining NLP and statistical techniques. It was presented in 1997 [39] and in 

1999 it became the second grader for the GMAT exam in USA. E-rater features are based on 

four general types of analysis: syntactic, discourse, topical, and lexical, so It takes into 

account both the content and the style of the text. 

 

A diagram of the E-rater architecture can be seen in Figure 2.4. E-rater relies on the 

combination of statistical techniques and NLP. It takes into account both the content and the 

style of the text. The content is checked by a vector of weighted content words and the style 

with shallow parsing techniques to identify syntactic and discourse features. 
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Figure 2.4: Architecture of the E-rater system [39] 

 

It is important to notice that in some cases E-rater [51] is not able to score the text because it 

is too short, or too different from the rest. In these cases, an advisory message is generated.  

 

Since 1999, [5] E-rater has scored over 750,000 GMAT essays with an agreement about 97% 

with the other grader.  

 

The main problems that have been found is that [40] the system could be tricked by writing 

grammatically correct texts but without meaning, also indicate that E-rater does not assess 

text content beyond keywords identification and that it cannot deal with essays on factual 

disciplines. 

 

2.4.4 Automark. 

In 1999 [18] Mitchell, Russell, Broomhead and Aldridge from the University of Liverpool 

and Brunel University in UK created a new automated methods called Automark. The aim of 

the system is mostly summative, that is, to grade the style and the content of a student essay 

in order to say whether it is acceptable or not according to the criteria specified by the 

teacher to the system. 
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AutoMark uses [42] IE techniques and some NLP techniques to ignore some mistakes in 

spelling, typing, syntax or semantics that should not be taken into account.  

 

The system has been used in the [18] Brunel University to test Java knowledge of first year 

engineering students, and it has also been applied to assess answers from the 1999 statutory 

national curriculum assessment of science. In this case, students were 11-year-old pupils, and 

there were four types of questions: single word generation, single value generation, 

generation of a short explanatory sentence and description of a pattern in data.  

 

The correlation achieved ranged between 93% and 96%. Finally, four problems can be 

identified: to correctly identify misspelled words, to correctly analyze the sentence structure, 

to identify an incorrect answer, and to assess information that is not represented in the mark 

scheme template. The distribution of each problem is shown in the Figure 2.5. 

 

Figure 2.5: Drawbacks in the assessing process of AutoMark, source Mitchell et al. 

(2002)[43] 
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2.4.5 C-rater  

In the year 2001 a prototype of an automated scoring engine called Concept-rater or C-rater, 

has been developed at the Educational Testing Service (ETS), to measure a student‟s 

understanding of specific content material without regard for the student‟s writing skills. It 

uses [5] automated NLP techniques to determine whether a student response contains specific 

linguistic information required as evidence that the concept has been learned.  

 

It is [14] currently a working system and the scoring process is fully automatized, but the 

reference model-building still requires human intervention. Hence, they have developed 

Alchemist, a friendly interface for this task. 

 

C-rater [14] tries to recognize when a response is equivalent to a correct answer, and so is, in 

essence, a paraphrase recognizer. As such, the scoring engine is designed to recognize a 

correct response when it exhibits the variations that are ordinarily associated with 

paraphrases, whether they be syntactic variation, different inflections of a word, substitution 

of synonyms or similar terms, or the use of pronouns in the place of nouns.  

 

In addition to these features, which are ordinarily associated with paraphrasing, c-rater 

recognizes words that are spelled incorrectly – an essential feature for the K-12 market. 

Table 2.2 shows examples of these paraphrase variations as they have appeared in student 

responses. 
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        Table 2.2: Types of Variation in C-rater Method [14] 

Syntactic Variation  
Money worries Walter → Walter is worried about 

money.  

Inflectional 

Variation  
dreams, dreaming →dream  

Synonymy or 

Similarity  

dreams →wants 

expensive →costly  

Pronoun Reference  
Mama disagrees with Walter. He thinks that money is 

life.  

Spelling  Walter →Wlater, Waalter, Walther  

 

According to Diana [5], this system is very similar to the E-rater system. In fact, their main 

differences are that E-rater focuses on the style, while C-rater on the content; that E-rater 

assigns a holistic score, while C-rater only identifies whether the response contains specific 

information necessary to be correct; that E-rater is partly based on the rhetorical structure of 

an essay, while C-rater is more based on a predicate-argument structure; and that E-rater 

needs a larger training set. 

 

C-rater has been usually applied to formative low-stakes tasks, as for example the review 

short questions at the end of each chapter in a textbook. According to Diana [5] when C-rater 

was used in a small-scale study with a university virtual learning program it achieved over 

80% of agreement with the instructor and, according to Leacock [41], when it was used in a 

large-scale assessment to score 170,000 short-answer responses to 19 reading comprehension 

and five algebra questions, the result was 85% of accuracy. 
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In compliance with Leacock [41], C-rater‟s main problems are that it is unable to assess 

answers that depend on the verb tense due to the stemming phase, that it does not deal with 

answers that include a quote, that some spelling mistakes are not correctly repaired, and that 

it does not know how to manage idiomatic expressions. 

 

2.4.6 IEMS Intelligent Essay Marking System  

The Intelligent Essay Marking System was presented by [44] Ming, Mikhailov and Kuan 

from the NGEE ANN Polytechnic in Singapore, in 2000. Its aim is both summative and 

formative.  

 

IEMS is based on the Pattern Indexing Neural Network, the Indextron that performs pattern 

recognition and in this case the patterns are the words of the texts. This system has been 

mostly applied to qualitative questions (e.g. biology, psychology, history or anatomy) rather 

than numerical ones. For instance, taking an 800-word passage entitled “Crime in 

Cyberspace” and asking 85 students of third-year Mechanical Engineering to write a 

summary of not more than 180 words about the text, IEMS achieved an 80% correlation. 

 

2.4.7 ATM Automated Text Marker.  

In the year 2001 [15] at the Portsmouth University in the UK Callear, Jerrams-Smith and Soh 

developed a new automated method called Automated Text Marker ATM. They were so 

convinced that both content and style should be taken into account that they designed their 

system in order to give two independent score, one for each aspect and to leave the teacher 

the task of combining them to give the final grade. 
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ATM relies on IE techniques to assess students‟ essays. The system architecture is shown in 

Figure 2.6. It is important to highlight the syntax and semantics analyzer: 

 

• The syntax analyzer: It checks the grammar of each input sentence. According to Callear 

[45], this can be done successfully.  

 

• The semantics analyzer: The system [45] looks for concepts in the text and their 

dependencies, and then a pattern-matching Prolog procedure is performed between the 

dependency groups from the student‟s answer and the reference model. See Figure 2.7 for an 

example of dependencies group. 

 

Figure 2.6: Architecture of the ATM system, source Callear et al. (2001) [45]. 

 

According to its authors, ATM works better assessing short answers to factual questions (e.g. 

in Prolog programming, psychology and biology-related fields). 
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Figure 2.7: Example of dependencies groups found out by the semantics analyzer of ATM, 

source Calleat et al. (2001) [45]. 

 

 

2.4.8 BETSY “Bayesian Essay Test Scoring sYstem”.  

The BETSY system was [16] developed between 2001 and 2003 by Rudner and Liang at the 

College Park of the University of Maryland with funds from the U.S. Department of 

Education. According to author, its aim is to classify essays using a four point nominal scale. 

 

BETSY is underpinned by naive bayesian networks. The user is given the possibility of 

choosing one of two models: Multivariate Bernouilli Model (MBM) and Bernouilli Model 

(BM). Rudner and Liang claim that BM is quicker as it only looks if certain features are 

present while MBM takes into account the uses in which these features have been employed. 

A comparison between both models is done by McCallum, A. and Nigam [17] and they 

suggest that MBM with a large vocabulary is more accurate than BM. Although as Rudner 

and Liang warn it might be different with students‟ essays. 

 

BETSY has the [18] possibility of stemming the text and removing the stop words, this might 

improve the text classification task. The system has been used to assess Biology items for the 
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Maryland High School and the results were that the BM model achieved an 80% accuracy 

and the MBM a 74%. Furthermore, Rudner and Liang say that their system could be applied 

to any text classification task. 

 

2.4.9 Auto-Marking. 

Auto-marking was developed by [19] Pulman, Sukkarieh and Nicholas Raikes  

“Computational Linguistics Group” in Oxford and in the Interactive Technologies in Assessment 

and Learning (ITAL) Unit of the University of Cambridge Local Examinations Syndicate 

(UCLES3). Its aim is not to automatically score high-stakes exams, but to help in low-stakes 

ones. Each exercise is given a value between 0 and 2, where 0 means incorrect, 1 partially 

correct or incomplete, and 2 correct and complete. 

 

This system relies on a combination of NLP and pattern-matching techniques. It consists of 

three modules: 

 

• Customization and shallow processing module: Firstly, [19] it uses a Hidden Markov 

Model part-of-speech “HMM POS” tagger,  and a Noun Phrase (NP) and Verb Group (VG) 

Finite State Machine (FSM) chunker to provide the input to the information extraction 

pattern matching modules as in figure 2.8. 

 

• The pattern-matcher module: It is very similar to the one used in Automark, that is, human 

experts have to design the information extraction patterns and then the students‟ answers are 
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compared against them. Appelt and Israel [20] emphasized the importance of designing good 

rules. 

 

The 3 crucial steps in which to write extraction rules by hand can be found [20], these, in 

order, are: 

 

1. Determine all the ways in which the target information is expressed in a given corpus.  

2. Think of all the plausible variants of these ways.  

3. Write appropriate patterns for those ways.  

 

• The marking algorithm module: These rules are organized in classes and the algorithm 

described in [19] matches them with the student‟s processed answer to score it. 

 

AutoMark has been applied with answers from the GCSE exam of Biology with a 88% of 

exact agreement between the teacher and the system. On the other hand, the authors claimed 

that this system is not suitable for subjective general opinions and therefore it should not be 

used in that area.  

 

The main problem they encountered was the [5] inaccuracy of taggers that do not have 

enough knowledge about Biology, even that they include some guessing heuristics for 

unknown words. Moreover, the system cannot deal with students‟ inferences and with 

contradictory or inconsistent information. 
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2.4.10  CarmelTC 

Carmel is a Virtual Learning Environment “VLE” system that has been recently incorporated 

a new free text assessment module called CarmelTC. This module has been developed at the 

University of Pittsburgh by Ros´e, Roque, Bhembe and Vanlehn [34]. CarmelTC has also 

been used in the tutorial dialogue system Why2.  

CarmelTC relies on the combination of machine learning classification methods using the 

features extracted from the Carmel‟s linguistic analysis of the text and the Rainbow Naive 

Bayes classification [21] .The system was tested with 126 physics essays, and the results 

were 90% of precisions, 80% of recall and a 8% of false alarm rate. 

 

 

 

Biology Text 

“When the caterpillars are feeding on the tomato plants, a chemical is released from the plants.” 

 

Specialized 

lexicon 
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When/WRB [the/DT caterpillars/NNS]/NP [are/VBP feeding/VBG]/VG on/IN [the/DT tomato/JJ 
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Figure 2.8: Auto-marking Modules [19] 
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2.4.11 ERB “Evaluating Responses with BLEU “  

It‟s a new automated evaluation methods based on the use of a shallow modified version of 

the Bleu “BiLingual Evaluation Understudy” algorithm, which is a translation system 

presented by Papineni, Roukos, [22], whose main goal is to rank systems according how well 

they translate the texts from one language to other.  

 

Due to the good results attained by the Bleu algorithm, some researchers started to think 

about applying this algorithm to new fields. For instance, Lin and Hovy [10] used it for 

evaluating summaries. It depends on the references text to evaluate candidate‟s text. 

Including shallow NLP techniques, such as stop words removing and stemming and by 

removing the Brevity Penalty BP factor, as for summaries the idea is just the opposite. 

 

There are three main types of questions have been assessed with ERB: definitions, 

advantages/disadvantages and yes/no with justification, the performance of evaluating these 

types of questions are shoed in figure 2.9. The crucial factors affecting the ERB performance 

are the number and quality of the reference texts used [5].  

 

The problem of simple using of the Bleu algorithm to evaluate students‟ answers was that it 

only takes into account the precision and ignores the recall, that is, it does not penalizes 

students‟ texts that do not cover some percentage of the information in the reference texts. 

Therefore, they have modified the [22] BP factor in order to consider the recall too and we 

have called this new BP factor, the Modified Brevity Penalty (MBP) factor. The core idea of 

this MBP factor is shown in Figure 2.10. 
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Figure 2.9: Histogram that shows how different types of questions affect ERB performance. 

Def. stands for definition or description, A/D for advantage/disadvantage and Y/N for yes/no 

with justification. 

 

 

Figure 2.10: Graphical visualization of the procedure to compute the MBP factor. 

 

 

 

 

 



 60 

CHAPTER 3 

FUZZY LOGIC AND METHODOLOGY  

3.1 Fuzzy Logic.  

Most of us have had some contact with conventional logic at some point in our lives. In 

conventional logic, [23] a statement is either true or false, with nothing in between. This 

principle of true or false was formulated by Aristotle some 2000 years ago as the Law of the 

Excluded Middle, and has dominated Western logic ever since.  

As the complexity of a system increases [30], it becomes more difficult and eventually 

impossible to make a precise statement about its behavior, eventually arriving at a point of 

complexity where the fuzzy logic method born in humans is the only way to get at the 

problem.  

The term "fuzzy logic" emerged in the development of the theory of fuzzy sets by Lotfi 

Zadeh [24] a professor at the University of California at Berkley in (1965) when he presented 

his seminal paper on "fuzzy sets. Zadeh showed that fuzzy logic unlike classical logic can 

realize values between false (0) and true (1). 

 Basically, he transformed the crisp set into the continuous set [1,2], in other meaning, there 

are different possible values between 0 and 1 in the crisp set of [0, 1], 0 for absolutely false 

and 1 for absolutely true. Computers can interpret only true or false values but a human being 

can reason the degree of truth or degree of falseness.  
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Fuzzy models interpret the human actions and are also called intelligent systems [24], as in 

the Fuzzy sets [23] which have movable boundaries, i.e., the elements of such sets not only 

represent true or false values but also represent the degree of truth or degree of falseness for 

each input.  

FL was conceived as a better method for solving many types of "real-world" problems, 

especially where a system is difficult to model, [25] it has proven to be an excellent choice 

for many control system applications since it mimics human control logic. [26] It uses an 

imprecise but very descriptive language to deal with input data more like a human operator. 

Some Fuzzy Logic applications include:  

 Control (Robotics, Automation, Tracking, Consumer Electronics)  

 Information Systems (DBMS, Info. Retrieval, Data Mining)  

 Pattern Recognition (Image Processing, Machine Vision)  

 Decision Support (Adaptive HMI, Sensor Fusion) . 

According the concepts of fuzzy logic, a typical fuzzy system consists of a rule base, 

membership functions, and an inference procedure as in Figure 3.1. 

 

Crisp to Fuzzy 

 

Fuzzify 

Input 
Inference  

 

Max, Min .etc 

Fuzzy Set 

Membership Functions 

Rule Base 

Fuzzy to crisp  

 

Defuzzify 

Max , average, 

centroid ,singleton , etc 

Output 

Figure 3.1: Scenario of FL System. [25] 
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3.1.1 Fuzzification 

In any fuzzy logic algorithm it must be define input and output fuzzy set, Defining the input 

and output data is perhaps the most important step of all in constructing an expert system. 

Input fuzzy set for replaced the input crisp number into any linguistic words from input fuzzy 

set members, and the output fuzzy set.  

Establishes the fact base of the fuzzy system. First, [27] it identifies the input and output of 

the system “Fuzzification”, then defines appropriate IF THEN rules and uses raw data to 

derive a membership function. At this point, one is ready to apply fuzzy logic to the system. 

The fuzzification methods is one of the important steps of any fuzzy algorithm, in this step 

we converting a crisp input number into linguistics words from fuzzy set as we will define. In 

this step we will define a term of Fuzzy set, Fuzzy subset and the membership functions.  

3.1.1.1 Classical Set  

In mathematics as we taken in set theory course, a set is simply a collection of objects 

“numbers, characters or strings”, which have a common trait. One may associate with every 

crisp set S, a membership value µs: U → {1, 0} to every element in the universe of discourse 

U. A value of 0 is assigned if the element does not belong to the set and a value of 1 is 

assigned if the element belongs to the set [28].  

 

For example if we have a crisp set X of all real number between 0 and 1. From this set X a 

subset A can be defined, (e.g. all values 0 < g < 0.2). The characteristic function of A,  (i.e. 



 63 

this function assigns a number 1 or 0 to each element in X, depending on whether  the 

element is in the subset A or not) is shown in Fig.3.2 .[29] 

 

Figure 3.2. Characteristic Function of a Crisp Set [29]. 

 

Any elements belong to the subset A are assigned by the number 1 and any elements are not 

belongs to the subset A are assigned to the number 0.This concept is restricted, and lacks of 

flexibility for some applications like controls system, information system, Decision Support 

System… etc.  

 

3.1.1.2 Fuzzy Set 

Humans do not think in binary terms. In general, we realize that things occur in degrees; 

fuzzy sets enable computers to map this way of thinking. Quality is not either high or low 

only; for example, we may describe it as very high, high, adequate, low, and very low. An 

objective of fuzzy sets is to make computers think like humans.  

 

The aim is to use fuzzy sets in order to make computers more intelligent; therefore, the idea 

above has to be coded more formally. In the example, all the elements were coded with 0 or 

1. A straight way to generalize this concept is to allow more values between 0 and 1. In fact 
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infinitely many alternatives can be allowed between 0 and 1, namely the unit interval I = [0, 

1] [29].  

 

A fuzzy set as Lotfi Zadeh proposed [30], is one to which objects can belong to different 

degrees, called grades of membership in other way fussy set is a group of anything that 

cannot be precisely defined. Is described using membership function, µF: U → [1, 0]. Each 

element x in the universe of discourse U is assigned a degree of membership µF (x) in [0, 1].  

 

To illustrate the idea of fuzzy sets, suppose we want to classify the room temperature, we 

have four classifications of a temperature. Very cold, cold, normal and hot. Firstly we want to 

describe our classification by using classical set as in figure 2.13 here we have a crisp set X 

for real number between 0 to  40 , from this set we have four subset , very cold, cold, normal 

and hot, very cold defined in subset {0,10} , cold →{10,20} , normal→ {20,30} and  hot → 

{30,40}.  

 

If we want to classify a room temperature which is 15, from all subsets we defined this 

temperature belongs to the subset cold, so it‟s 1 for subset cold and 0 for other subsets as in 

figure 3.4 . What about 19.99 or 30.00099, if we want to implements classical set 

methodology we have that 19.99 belongs to subset cold, and 30.00099 belong to subset D. 

 

 

 

 



 65 

3.1.1.3 Fuzzy Subset  

The label cold can be translated to a fuzzy set which is temperature of room with every 

temperature associated with a value from zero (no cold) to one (cold) to represent the degree 

of cold temperature as we think about it. We can then write the fuzzy subset cold:  

 

Cold = {(5,0), (10,0.66), (12.5,1), (15,0.66), (17.5,0.33), (20,0)} (1) 

 

 

 

µvery cold(x) =  

 

1  IFF  X <= 10  

0  IFF    X > 10  

µcold(x) =  

 

1  IFF  10 <  X <= 20  

0  IFF  X >20   

µnormal(x) =  

 

1  IFF  20 <  X <= 30  

0  IFF  X >30   

µhot(x) =  

 

1  IFF  30 <  X  

0  IFF  X <30     

Figure 3.3:  Classical set membership functions for the room temperature.  
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The fuzzy subset defined by (1) reflect the way of thinking that room Temperature 12.5 lead 

to completely cold Temperature, 10,15, and 17.5 are somewhat cold Temperature, and 20, 5 

are completely not cold Temperature as in figure 3.5 which describe the membership 

functions for each one of the fuzzy subset for the room Temperature set.  

 

 

 

Figure 3.5: .membership functions for Fuzzy set for room Temperature classification. 

 

As we see each one of fuzzy set members is a subset of main set which is room Temperature. 

From this example we can define terms fuzzy subset as, a fuzzy subset F of a fuzzy set S, is a 

set of order‟s pairs, first elements is an element of the fuzzy set S “ room Temperature”, and 
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Figure 3.4:  Classical set for room temperature  classification. 
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a second element that is the value of interval [0,1] “ the grade of the room Temperature for 

this subset F”.   

3.1.1.4 Fuzzy Variable  

Several fuzzy sets representing linguistic concepts such as low, medium, high, and so on are 

often employed to define states of a variable. Such a variable is usually called a fuzzy 

variable [31 page 13-14]. Accordingly, linguistic variables are a critical aspect of some 

fuzzy logic applications, where general terms such a "very cold" "cold" "normal" and "hot" 

are each used to capture a range of numerical values, as in figure 3.3. While similar to 

conventional quantization, fuzzy logic allows these stratified sets to overlap (e.g., a 17.5 

room Temperature may be classified in both the "cold" and "normal" categories, with 

varying degrees of belonging or membership to each group). Since these fuzzy variables are 

more attuned to reality than crisp variables.   

3.1.1.5 Input and output fuzzy set 

In any fuzzy system we have to define the input fuzzy set which is the classification of things 

as we described, and output fuzzy set which describe the system actions, For example, an 

extremely simple temperature regulator that uses a fan, which has input fuzzy set or input 

fuzzy variable {very cold, cold, hot, very hot}, and output fuzzy set or output variable {stop 

fan speed, turn down fan speed, maintain level, speed up fan}.  

After we define the fuzzy set of the fuzzy system, We need to describe a membership 

function for each one of the input fuzzy set members, to describe the members behavior, this 

because each input may be have to be replaced by one or two words, but which words, the 
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membership function can be describe which words can be replaced with confidence for each 

linguistic words.  

Note: we will use confidence rather than degree of the membership function of fuzzy set 

members. That because we may use terms degree to indicate the student‟s answer degree or 

marks later in this paper, and this permits us to use ordinary language in describing things in 

a precise way.  

3.1.1.6 Membership function.  

[31 page 11] Each fuzzy set is completely and uniquely defined by one particular 

membership function; the membership function is a graphical representation of the 

magnitude of participation of each input. It associates a weighting with each of the inputs that 

are processed, define functional overlap between inputs, and ultimately determines an output 

response. [26] There are different memberships functions associated with each input and 

output response. 

The membership function of a fuzzy set F is denoted by µF(x) : U → [0,1],  describes the 

membership of the elements x of the fuzzy set F in U, whereby for µF  a large class of 

functions can be taken.  

The grade or confidence of membership µF(X) of a membership function µF(X0) describes 

for the special element X=X0, to which grade it belongs to the fuzzy set F. This value is in 

the unit interval [0, 1]. Of course, X0 can simultaneously belong to another fuzzy set F1, such 

that µF1(X0) characterizes the grade of membership of X0 toF1.  
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There are a membership function for both input and output fuzzy set, the input membership 

function for converting input number to linguistic words “fuzzification”, and output 

membership function for converting linguistic words to crisp number “defuzzification”.  

 

  

Figure3.6:  .membership functions for Fuzzy set µF(X) and µF1(X) 

 

There are different shapes for the membership function, like trapezoidal and triangular 

member ship function, trapezoidal as in figure 3.6, and triangular as in figure 3.5.  

3.1.1.7 Operators for fuzzy sets 

The basic connective operations in classical set theory are those of intersection, union and 

complement. These operations on characteristic functions can be generalized to fuzzy sets in 

more than one way. However, one particular generalization, which results in operations that 

are usually referred to us as standard fuzzy set operations, has a special significance in fuzzy 

set theory. In the following, only the standard operations are introduced. The following 

operations can be defined:  
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 The fuzzy intersection operator (fuzzy AND connective) applied to two fuzzy sets 

and with the membership functions µA(X)  and µB(X) is 

µA∩B(X) = min { µA(X)  , µB(X)}  

 The fuzzy union operator (fuzzy OR connective) applied to two fuzzy sets and with 

the membership functions µA(X) and µB(X) is. 

µAUB(X) = max { µA(X)  , µB(X)} 

 The fuzzy complement (fuzzy NOT operation) applied to the fuzzy set with the 

membership function µA(X)  is 

µẢ(X) = 1 - µA(X) 

3.1.2 Fuzzy Rule Base “Fuzzy Inference”  

In the last sections we describe fuzzy set, and define the input and output fuzzy variable, in 

this section we have to define the fuzzy rule base, these rules are mapping between inputs 

fuzzy set and outputs fuzzy set.  

Fuzzy rule-based approach to modeling is based on verbally formulated rules overlapped 

throughout the parameter space. They use [32] numerical interpolation to handle complex 

non-linear relationships. It‟s linguistic IF-THEN- constructions that have the general form 

"IF A THEN B" where A and B are (collections of) propositions containing linguistic 

variables. A is called the premise and B is the consequence of the rule. 
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 In effect, the use of linguistic variables and fuzzy IF-THEN- rules exploits the tolerance for 

imprecision and uncertainty. In this respect, fuzzy logic mimics the crucial ability of the 

human mind to summarize data and focus on decision-relevant information.  

For example: 

IF temperature IS very cold THEN stop fan 

IF temperature IS cold THEN turn down fan 

IF temperature IS normal THEN maintain level 

IF temperature IS hot THEN speed up fan 

Notice there is no "ELSE". All of the rules are evaluated, because the temperature might be 

"cold" and "normal" at the same time to differing degrees.  

Here we have linguistics variable for input fuzzy set which is temperature classification 

{cold, very cold, normal, hot}, and the output fuzzy set which is the fan speed action {stop, 

turn down, maintain level, speed up}. We have in this example 4 rule bases. The number of 

rules depends on number of inputs and number of members in the input fuzzy set. The 

number of rules is calculated by the following function: 

Number of rules = Z
n
 (2) 

Where Z is the number of members in the input fuzzy set which is 4 members in room 

temperature example, and n number of inputs which is the room temperature and its crisp 

number. So we can derived a fuzzy rule base format from equation (2). 

 If  I1 is fC1 and I2 is fC2 and …. In is fCn then output is Omin(C1,C2….,Cn)      (3) 
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Where I is the input value, n is the number of inputs, f one of input fuzzy set members , C is 

the confidence of each one of the members of the fuzzy set,” each one of the members of 

fuzzy set has its own membership function as in figure 3.5,  from these membership 

functions we can calculated the confidences of each one of the members for each rule defined 

in this part”, and O is one of the output fuzzy set members, and min(C1,C2..Cn) is the results 

of AND operation as we discuses in last section.  

As we said in last section, there is a unique membership function associated with each input 

parameter. The membership functions associate a weighting factor “Confidence” with values 

of each input and the effective rules. These weighting factors determine the degree of 

influence or degree of membership (DOM) each active rule has. By computing the logical 

product of the membership weights for each active rule, a set of fuzzy output response 

magnitudes are produced. All that remains is to combine and defuzzify these output 

responses.  

3.1.3 Defuzzification  

Fuzzy logic [23] is a rule-based system written in the form of horn clauses (i.e., if-then rules). 

These rules are stored in the knowledge base of the system. The input to the fuzzy system is a 

scalar value that is fuzzified. The set of rules is applied to the fuzzified input. The output of 

each rule is fuzzy. These fuzzy outputs need to be converted into a scalar output quantity so 

that the nature of the action to be performed can be determined by the system. The process of 

converting the fuzzy output is called defuzzification.  
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Defuzzification is the reverse process of fuzzification. We have confidences in a fuzzy set of 

word descriptors as we define in our rules base, and we wish to convert these into a real 

number. This may be necessary if we wish to output a number to the user.  

The defuzzification method is the final phase of fuzzy system, as we illustrates in figure 2.9. 

The purpose of defuzzification is to convert each conclusion obtained by the inference engine 

“rule base”, which is expressed in terms of a fuzzy set, to a single real number.  

3.1.3.1 Defuzzification Methods. 

In the fuzzy models, [33] there are several methods of determining the expected value of the 

solution fuzzy region. These are the methods of decomposition, also called method of 

defuzzification, and describe the way we can derive an expected value for the final fuzzy 

state space.  

There are many defuzzification techniques [24] but primarily only three of them are in 

common use. These defuzzification techniques are discussed below in detail.  

 Maximum Defuzzification Technique  

This method gives the output with the highest membership function. This defuzzification 

technique [23] is very fast but is only accurate for peaked output. This technique is given by 

algebraic expression as  

 For all x in  X   (4) 

where x* is the defuzzified value. This is shown graphically in Figure 3.7. 
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Figure 3.7:  Max-membership defuzzification method 

 Centroid Defuzzification Technique  

This method is also known as center of gravity or center of area defuzzification. This 

technique was developed by Sugeno in 1985 [23]. This is the most commonly used technique 

and is very accurate. The centroid defuzzification technique can be expressed as the weighted 

strengths of each output member function are multiplied by their respective output 

membership function center points and summed. Finally, this area is divided by the sum of 

the weighted member function strengths and the result is taken as the crisp output. 

  

Where x
*
 is the defuzzified output, µi(x) is the aggregated membership function and x is the 

output variable. The only disadvantage of this method is that it is computationally difficult 

for complex membership functions.  
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 Weighted Average Defuzzification Technique 

In this method the output is obtained by the weighted average of the each output of the set of 

rules stored in the knowledge base of the system. The weighted average defuzzification 

technique can be expressed as  

 

Where x
*
 is the defuzzified output, m

i
 is the membership of the output of each rule, and wi is 

the weight associated with each rule. This method is computationally faster and easier and 

gives fairly accurate result.  
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3.2 FLASA Design Methodology  

The development of FLASA is passing through the following steps as shown in figure 3.8.  

 
Figure 3.8. FLASA Development phase. 

 

  3.2.1 The Scope of Domain.   

The aim of the proposed FLASA is to generate auto-marking system that solves the similar 

words problems in short-text answer questions as soon as the instructor evaluate.  

The most of the auto-marking short answer tools are solving the similar words problems 

“Keyword” by the linear way, which mean that if the main words or there similarities were 

found in the answer then the answer is correct, without concerning that may be the similar 

words are not in the same level of the main words in the answer key.  

The major algorithm used in this research is for using on one part of the short-text answer 

problem which is similar words problem, this type of problems are selected to be the domain 

in Fuzzy Logic design in this study.  

 

Domain analysis 

Capture Requirement and Analysis 

FLASA Design 

FLASA Implementation 

Test 
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It‟s for the first time Fuzzy Logic “FL” will be applied in auto-marking short-text answer, so 

it will be called FLASA system. FLASA will be companied with some of NLP technique as 

remove stop words.  

There are many requirements must be fulfilling in our system are:-  

 Adequacy: any auto-marking system must be accurate as instructor evaluation.  

 Flexibility: any auto-marking system should be very flexible; this means that the instructor 

can control many parameters in evaluation such as defining the rules results and weights 

of synonyms words etc…...   

 Scalability; scalability means basically how many main words in the key answer that can 

be evaluated by the auto-marking system. Our FLASA algorithm was tested for up to 5 

main words, and it will be tested later for more n words, which will be as a future works.  

 Performance; Performance is a necessary condition in every type of computing 

environment. It has special consideration in FLASA auto-marking system environments. 

the main consideration is the time to fill all FLASA rules; this will be done for one for 

each question. The time consumer depends on the number of the rules, this because the 

instructor‟s need to fill all rules results manually, all rules are defined automatically by 

the system and the results of these rules are defined by the instructor. The number of 

rules is 3
n
 , where n is the number of main words in the key answer.  

 

3.2.2 Requirements and Analysis Phase.   

Requirements and analysis phase is one of the important phase of FLASA design, in which 

the domain requirement and all methods of similar words problems system design will be 

clearly determined.  
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In this phase we must study existing auto-marking techniques, and try to reuse most of 

available techniques knowledge such as statistical techniques and simple keywords analysis.  

The requirements phase will capture all valid requirements and outline an ideal system of 

auto-marking system. This phase consists of two main activities: The capture requirements 

activity and the analysis activity. The requirement model will specify the requirements of 

designing auto-marking system and the analysis model will outline the main concepts of the 

system.  

 

3.2.3 FLASA Design and Structure. 

The FLASA design phase is sub-process of the fuzzy logic development process consists of 

architectural design and detailed design.  

In design process the generic design solutions should be identified and that by:  

 Approve the design solutions by prototyping approach. 

 During the architectural design phase, we will identify the objects needed to 

implement the system, and the way the objects collaborate. 

 Dividing the system into subsystems during this phase. 

  

In next chapter we will introduce FLASA structure or design in details.  

 

3.2.4 FLASA Implementation Phase.  

The implementation phase follows the design phase, where all attributes and methods are 

identified and described. Simple implementations using simulations have been included in 

our work, as will be shown in chapter 4. 
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3.2.5 FLASA Testing Phase. 

The last phase is the unit testing phase. When performing a unit test, only one unit is tested at 

a time. The idea is that a well defined unit with well defined responsibilities is tested so it is 

verified that the unit will fulfill the requirements imposed on the unit. In FLASA we test our 

design through building a simulator in order to validate the accurate of this design.  
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CHAPTER 4 

FLASA DESIGN AND PROTOTYPE IMPLEMENTATION 

4.1  FLASA Design. 

This section describes the general structure of FLASA model, the FLASA is composed of 

two stages, normal method and fuzzy logic method, as shown in figure 4.1. The first stage is 

called normal way, which is an extension of traditional auto-marking system which solves 

similarity words problems as in Auto-marking algorithm that was designed by UCLES-

Oxford University research [19]. It is described as; choose a set of keywords from the answer 

key, i.e. all essential/salient keywords that occur in the marking scheme, and a set of 

synonyms or similar words for each keyword. Some words weigh more. 

 

 

Input 

Student‟s Main 

words Answer‟s 

Key weights  
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Output Fuzzy Set 
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Figure 4.1: FLASA Structure . 
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 Other systems that evaluate word use across text and documents use techniques such as 

Singular Value Decomposition (SVD) to evaluate synonym relationships between words 

across texts. These methods have also been applied to essay scoring [21]. 

 

Second stage is for using FL algorithm in processing and analysis each words or similarity 

weights and then having the crisp number which is the answer marks. These two parts will be 

studied as follow. 

 

4.1.1 Normal “Keyword” Method.  

This part of FLASA presents how to extract the main words and their similarities from the 

key answer or references texts which were described by the instructors. This method is 

shown in figure 4.2, and it‟s described as follow; all of these steps can be done automatically 

as shown in next flowcharts.  

 Extract all main words from key answer of the question. Here the system will 

separate all words in the key answers and the instructor just chooses the main words. 

 The system will define all similar words in each question of the main words in the 

key answer, by either using locally developed DB as shown in figure B.8 “FLASA WORDS 

SIMILARITY” file, or defined by the instructors.  

 The instructor will be defining the weight for each main word and their similarities. 

 The system will extract all main words in the student‟s answers, by comparing it with 

main words in key answer defined in step one in this stage. 

 The system will define the final mark by making linear summation for the weights of 

words in the student‟s answers as in formula 4.1 
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So if key answer with Word1, Word2…. and Word n, and the student‟s answer having Word1 

or similar1, Word.2 or similar 2…. Word n or similar n, then the corresponding number for this 

answer is calculated as:  

       (4.1) 

Where Mi is the mark of the wordi or similari. n is number of key words, and W is the 

corresponding number for the answer string.  

 

 

As discussed before the final mark of the students answer, by using just Normal method 

which described above can be obtained, but there is need for making comparison between 

keyword method, and normal method and normal method using FL algorithm.  

4.1.2 Fuzzy Logic ”FL” Method  

The steps of FLASA are shown in figure 4.1.it is will known that the most important step in a 

system or algorithm is to define inputs and the outputs of the system, here the main word‟s 

key answer weights or similar weights of the student is obtained from the first part of 
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FLASA. But there is a need to implement fuzzy system instead of summarized the weights to 

have a crisp or mark number for the student answer as the output of the system. The 

following sections will describe our algorithm carefully as previously shown in the figure 

3.1.  

The number of inputs depends on the number of the main key words for the question which 

defined by the instructor. So if we have the answer key contain three main words then we 

have three inputs for our system. And the number of output is fixed for any number of inputs, 

which is the answer mark.  

4.1.2.1 Fuzzification.  

Fuzzification step is the most important step in any fuzzy algorithms as in our FLASA 

algorithm, which is converts input number into linguist words, as it discussed in chapter 2. 

To be fuzzy input to the next step of our algorithm, this step called Fuzzification of the input. 

This step will be divided into 2 parts. 

1. Define input fuzzy set and output fuzzy set. 

2. Define the membership functions for input and output fuzzy set. 

In first part we must be careful in choosing linguist words to be compatible with our system 

for the input and the output fuzzy set, here we have chosen three words to be a member in 

our input fuzzy set which is: Low, Middle, and High, Low indicate to the small mark, Middle 

indicate to the medium mark and High indicate to the high and full mark for each one of the 

words in the key answer.  
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Five words to be members in our output fuzzy set which is: Zero to indicate to zero mark, 

Low, Middle, High and Full to indicate to the full mark. Each one of these words has a 

membership function to describe behavior. 

We need to describe a membership function for each one of the input fuzzy set members, to 

describe the members behavior, this because each input may be need to be replaced by one or 

two words. But which words the membership function can be described and which words can 

be replaced with confidence of each linguistic words.   Figure 4.3 illustrate the parts 

“scenario” of this step.  

 

 

 

After we define the fuzzy set “linguistic value” for our input and output, the next part of this 

step is to define the membership function for each member in the input and output fuzzy set. 

This membership function is the method to convert our input number which is non fuzzy 

input into linguist input fuzzy value from fuzzy set {Low, Middle, High} for input and 

{Zero, Low, Middle, High, Full} for the output. 

Input 

“Non Fuzzy Values 

Fuzzification Output 

Key Words Weights 
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Figure 4.3: Fuzzification Design. 
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 It is crucial to define in some way how to go back and forth between the description of input 

in numbers and the description of input in words. This stage is the most important step in our 

algorithm and our system. In this stage we will define the strategies of the algorithm to solve 

our problem, like defining the simple function and defragmenter the main interval which will 

be defined in this part into sub small interval each one are membership function as in the 

Figure 4.4.  

Figure 4.4 illustrates the features of the triangular membership function for input fuzzy set, 

which is used in this example because of its mathematical simplicity. Other shapes as 

trapezoidal can be used but the triangular shape lends itself to this illustration and very clear 

to describe our algorithm in graphics way. 

    In the FLASA usually will use the term confidence rather than grade of membership as 

described in last chapter. This permits us to use ordinary language in describing things in a 

precise way and we measure the confidence “grade” that the member belongs to the fuzzy set 

as a number ranging from zero (absolutely false) to 1 (absolutely true). 

 We can calculate the confidence of each one of the members of input fuzzy set by the 

following functions as described in figure 4.4.  

As we see in the figure 4.4, we have Y axis which denote to the confidence of our members 

which is ranging from zero (absolutely false) to 1 (absolutely true). The X axis is the weights 

of each word in the answer, which is ranging from 0 to 3.   This rang is fixed for our 

algorithm, and does not depend on any parameter of our algorithm.  
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After we describe the membership functions for the input fuzzy set, we have to describe the 

membership functions for the output fuzzy set. The following figure describes the 

classification of the output fuzzy set which is {Zero, Low, Middle, High, Full}. Here in the 

output membership function figure we have the y axis which describe the confidence of the 

out member, and x axis which is from 0 to N, where N is the full mark of the question and it 

is calculated as number of main words “z” products by 3, where 3 is the maximum weight of 

the main key words from the key answer.  

For example if we have 3 main words as the key answer then the x axis N=3 * 3 = 9, if z= 4 

then N=4 * 3 =12 and so on. So in this case the output value depends on the number of input 

which is the key words.  
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0    …   N/6  …..  .. N/3  ….     N/2   …..   N/1.5    …     N/1.2  ..   N          
Answers 

Weight 

Confidence  

High 1 
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0.0 

Full Medium Low 
Zero 

Figure 4.5: Possible Fuzzy Quantization of the range [0, 9] by triangular shaped. 

Low=  

1    IFF   W <=0  

(1.5 – W) / 1.5  IFF  0 < W < 1.5  

0    IFF  W >= 1.5  

Middle =  

0    IFF   2.5 >= W <= 0.5  

(W – 0.5)    IFF  0.5 < W < 1.5  

1    IFF  W = 1.5  

(2.5 – W)   IFF  1.5 < W <2.5  

High=  

0    IFF   W <=1.5  

(W – 1.5) / 1.5  IFF  1.5 < W < 3  

1    IFF  W >= 3  

Figure 4.4: Possible Fuzzy Quantization of the range [0, 3] by triangular shaped. 
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Figure 4.6: the membership functions for the output fuzzy set. 

 

High =  

0   IFF N/1.2 <= X <= N/2 

(X – 3Z/2) /(Z/2) IFF N/2 < X < N/1.5 

( 5Z/2  - X) / (Z/2) IFF N/1.5 < X < N/1.2 

1   IFF X=N/1.5 

Very High =  

0   IFF X<= N/1.5 

(X – 2Z )/ Z   IFF N/1.5 <X < N 

Very Low =  

0   IFF X >= N/3 

(1 – X/3)   IFF 0 <X < N/3 

Low =  

0   IFF N/2 <= X <= N/6 

(X – Z/2) /(Z/2) IFF N/6 < X < N/3 

((3Z/2) - X) / (Z/2) IFF N/3 < X < N/2 

1   IFF X=N/3 

Middle =  

0   IFF N/1.5 <= X <= N/3 

(X – Z) /(Z/2)  IFF N/3 < X < N/2 

( 2Z  - X) / (Z/2) IFF N/2 < X < N/1.5 

1   IFF X=N/2 
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4.1.2.2 Define Rules Base.   

In the last sections we described our input and output fuzzy set for our system, in this section 

we have to define our rules for our algorithm, these rules are mapping between inputs fuzzy 

set and outputs fuzzy set, these rules are called rules base. These rules mapping the input 

fuzzy set with the output fuzzy set. 

These rules are the most important term for training our system; it will be created 

automatically from the system. The instructor can put the results of each rule to have the final 

results from the rules.  

Here in our algorithm, as we know from chapter 2, the number of rules depends on number 

of inputs and number of members in the input fuzzy set. The number of rules is calculated by 

the following function: 

Number of rules = Z
n
 .  (4.2) 

Where Z is the number of members in the input fuzzy set which is 3 members in our 

algorithm, and n is the number of inputs which is the number of main words in the key 

answer.  

In our algorithm the rules format looks like:- 

If  I1 is fc1 and I2 is fc2 and …. In is fcn then Mark is Omin(c1,c2….,cn) . (4.3)  

Where I is the input value, n is the number of inputs, f one of input fuzzy set members {Low, 

Middle, High}, c is the confidence of each one of the members of the fuzzy set,” each one of 
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the members of fuzzy set has its own membership function as in figure 4.4 from these 

membership functions we can calculate the confidences of each one of the members for each 

rule defined in this part”, and O is one of the output fuzzy set members {Zero, Low, Middle, 

High, Full}. For logical "and" operations using fuzzy sets the resulting membership functions 

are defined as the minimum of the values of the memberships on the component sets as 

proposed by Lotfi Zadeh [24] .  

Summary:-  

 Defuzzification of the conditions of each rule and assigning the outcome of each rule 

the minimum Membership Value “MV” of its conditions multiplied by the rule weight. 

 Assigning each outcome the maximum MV from its fired rules.  

 Fuzzy inference will result in confidence factors (MVs) assigned to each outcome in 

the rule base.  

4.1.2.3 Defuzzification. 

In the last sections, we left off with the inference engine producing fuzzy output response 

magnitudes for each of the effective rules. It must be processed and combined in some 

manner to produce a single crisp (defuzzify) output. 

Defuzzification is the reverse process of fuzzification. We have confidences in a fuzzy set of 

word descriptors as we define in our rules base, and we wish to convert these into a real 

number. This may be necessary if we wish to output a number to the user. In our system for 

example, we will probably want to tell the instructor‟s how many grades of the student‟s 

answers are. To determine exactly what is the answer marks, we  first combine the results 
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from all rules into the outcome fuzzy set and then transform this composite fuzzy set to a 

crisp number by using one of the defuzzify methods. 

There are many methods to defuzzify the rules, as discussed in chapter 2, we will use the 

centroid method “finds the point at which the membership function is at center of the graph” 

in our algorithm.  

 Centriod Method. 

The defuzzification of the data into a crisp output is accomplished by combining the results 

of the inference process and then computing the "fuzzy centroid" of the area as in figures 4.7 

and 4.8. The marked strengths of each output member function are multiplied by their 

respective output membership function center points “Confidences” and summation. Finally, 

this area is divided by the sum of the marked member function strengths “Confidences” and 

the result is taken as the crisp output.  

OUTPUT = sum (representative value “corresponding” * confidence) / sum 

(confidences)  

 

 

Figure 4.7: Rule extraction for the deffuzzification methods.  
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Figure 4.8: Centroid method for the output fuzzy set. 

As mentioned early there are many methods to calculate the crisp number as output value 

“defuzzification” , as max centroid method, is that same of the centroid method except that 

we take the max of the scaling line instead of taking the center of scaling graph. 

4.2 FLASA Procedure and Architecture.  

In this section we will introduce our algorithm by procedural way. We can summarize the 

FLASA algorithm as the following steps, as we know from last section, we divide our 

algorithm into two parts, one for the normal method and the second for the FL method, and 

each part has its own steps, as following procedure: 

 Stage one “Normal method”. 

1. Extract all main words from the key answers “references text” of the questions and put 

them in set called Smain.  

Smain= {W1, W2,…,Wn} where n is the number of main words in the answer key, which is the 

number of input in Fuzzy Logic methods, as we describe in last sections of this chapter. 

2. Define all synonyms or similar words for each word and their weight and put the results 

in a new set called Ssyn.  
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Notes” the system will define most of similar words for each word in Smain, by using any 

synonyms methods, like Microsoft Words Synonyms.  

The flowchart of first two steps of this stage is shown in figure 4.9.  

 

3. Extract all words from the student answers “candidate text” that founds in Ssyn. And put 

it in set called Sanswer . after this step we have an input for the second part of FLASA. The 

flowchart of this step is shown in figure 4.10.  

 

 Stage 2 FL method. 

a fuzzy logic stage is a Multiple Input Single Output System (MISO System), Multiple 

means that, 3 Inputs for 3 main words, 4 Inputs for 4 main words, 5 Inputs for 5 main words, 

etc. Single output which is the words' mark.  

 

1. Define the input and output fuzzy set.  

2. Define the input output membership function. Here we depend on the number of main 

words found in Smain which is n.  

The flowchart of first two steps of this stage is shown in figure 4.11.  

3. Define the rules base for our input which is Z
n
 where Z is the number of member of input 

fuzzy set which is a constant number equal 3, and n is number of words in Smain .  

The flowchart of this step is shown in figure 4.12.  

4. Define the confidences for each words in Ssyn by applying membership function found in 

step 2 , and put the results in new set called SConf . 

 the flowchart of this step is shown in figure 4.13.  
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5. Define all rules for all elements in Sconf . 

6. Combine the results from all rules into the outcome fuzzy set and then transform this 

composite fuzzy set to a crisp number by using one of the defuzzification  methods. 

 

Figure 4.9: System Flowchart.  
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Figure 4.10: Flowchart for the first 2 steps of FLASA stage 1. 
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Figure 4.11: Flowchart for extraction of words in the student answers. 
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Figure 4.12: Flowchart of define the input fuzzy membership function. 
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Figure 4.13: Flowchart for the Rule base step in FLASA.  
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Figure 4.14: Flowchart for Centroid Defuzzification Method.  

4.3 FLASA Prototype. 

We have accomplished our simulation by using Matlab‟s R12 software to construct the rules 

base in stage 2 of FLASA. And using Oracle8i and Developer6i, to design a prototype 

program for our algorithm. Using Oracle8i as a database engine to store the huge number of 

words and there similarity words, as a dictionary, this because the capacity of storing data in 

oracle8i is unlimited, which is unlike other system like SQL server, and access …etc, which 

have limited capacity.  While Developer6i is used to make an interface for our algorithm, this 

is due to the compatibility between oracle8i and developer6i. First example containing a 

careful detailed discussion for the developed algorithm. 

1) The instructor writes the questions of special course in the questions place, and their 

key answers in the key answer place, as shown in figure 4.15. It is important to note that the 

RDB in this case is a set of related data.  
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2) The system will remove all stop words and special characters in the key answer, and 

writes all main words in the Main Words place in left bottom corner of the figure 4.15. The 

stop words and special characters will be removed from the key answer, using some of NLP 

technique.  

 

3) After collecting all the main words of the key answer, the system will display all 

similar words for main words, as in right corner of figure 4.15, and then instructor will put 

the weight for each similar word in the screen.  

 

4) After completion the first 3 steps it‟s the time to deal with student‟s answers; the 

student‟s answer can be written as in figure 4.16. Thus a special screen can be established 

through the internet to let the students write their answers.  

 

5) After the answers were written, the system will do the same thing as in key answer, 

remove all stop words and write all main words in the answer in the main words side, and 

then the system will put the weight for each word.  

 

6) Now all main words weights can be summarized and having the final marks. This 

way is called normal method.  

 

7) The system will display all possible rules for the fuzzy logic method; this step is 

shown in figure 4.17. The instructor just define the results of each condition I the fuzzy rules. 
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Figure 4.15: FLASA screen for questions and answers key and their similarity words.  

 

 

 

Figure 4.16: Student‟s answers and input output fuzzy set.  
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Figure 4.17: Rule Base in Fuzzy Logic method. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1  Introduction  

After investigated the steps of our algorithm, and how the Fuzzy Logic can be used as a new 

approach in this type of methods. Three examples will be provided to check this algorithm 

applicability.  

The first example contains three key words as a key answer. The second one has four words 

and the third one contains 5 words. After discussing the examples the results will be 

discussed to come in conclusion about the reliability and credibility of this invented 

algorithm. 

Concerning the type of questions, FLASA only work with closed answers questions which 

have limited number of acceptable answers, most of which will usually be anticipated by the 

instructor.  

5.2  Keyword Method 

After each experiment we compare the results of FLASA with instructor‟s results and 

Keyword method which is an automated system. In this section, the implementation of the 

Keyword method for evaluating student‟s answers is going to be depicted, and then their 

performance is going to be compared against the FLASA one. 
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According to [5], The Keyword method is based only on counting the frequencies of words 

occurrences. In fact, it counts the frequency of each word of the candidate text in any of the 

reference texts. The procedure is taken as follows: 

1. Initialize a global counter (e.g. gCounter) to 0. 

2. Calculate the length of the candidate text and store it in lengthCandidate. 

3. For each word in the candidate text that is found in any reference text, add one point to 

gCounter. 

4. Normalize the result by dividing by the candidate text length, so that longer texts would 

not be better considered than shorter ones because they have less words. The formula is: 

Keyword = gCounter / lengthCandidate  (5.1) 

 

This method is no longer being used as a reliable technique but it still serves as baseline for 

many applications, so it is suitable to be used within the invented algorithm. 

5.3  Experiments. 

5.3.1 Experiment one. 

This example having a simple question from a Database Course in ALQUDS University, 

which has small and simple answer “3 main words” as it can be realized from the key 

answer. The question appears here, what is the accuracy of the algorithm under this situation?  

What is RDB System?  
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There are two main key answers for this question as a reference text used for the keyword 

methods.  

A RDB is a set of related data. 

A RDB is a database based on the relational model.  

 

The range of mark for this question is from 0 to 9 point, so we have a Full mark which is 9, 

and Zero mark which is 0, and Medium mark which is 4.5 as the instruction made by the 

instructor. Making different possible of answers from different virtual students and outlined 

is possible as in table (5.1).  

Table 5.1 : Student‟s expected answers 

Student# Student Answer 

Std#1 A RDB is a set of related data.  

Std#2 A RDB is a group of data that are related.  

Std#3 A RDB is a set of related tables. 

Std#4 A RDB is a set or related information. 

Std#5 A RDB is a group of information that is dependent together. 

Std#6 A RDB is a database based on the relational model 

Std#7 A RDB is a set of independent data. 

Std#8 A RDB is a collection of data. 

Std#9 A RDB is a collection of data that are connected together.  

Std#10 A RDB is a group of table that having a foreign key between 

other‟s.  

 

- Stage 1 Normal Algorithm. 

 Stage1 of FLASA is to convert all students‟ answers into number to be the marks of the 

answer. So there is a need to define a table of main words and similar words “synonyms” and 

http://www.bambooweb.com/articles/d/a/Database.html
http://www.bambooweb.com/articles/d/a/Database.html
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their marks. In this example there are three main words in the key answer which is Set, 

Related and Data, and each one of the main word has more than one similar word each one 

with its own weights, as in the following table.  

Table 5.2. The corresponding value for the main words of the key answer, this can be used as 

reference text for the Keyword method. 

 

Words Mark 

Set 3 

Related 3 

Data 3 

Main 

Words 

Similarity Mark 

Set group 2 

 Sum 1 

Collection 1.5 

Related connected 1 

 Dependent 2.5 

Foreign key  1.5 

Data information 2.5 

 Table 2.5 

Model 1.5 

 

Now converting the input strings defined from in table 5.1 to number using table 5.2 and the 

results appear in table 5.3. 

In the Normal Algorithm we have calculated the mark directly from summation of weighting 

of each word and similar words.  

In next stage we implement our invented algorithm to have a crisp number which is the mark 

of the student answer, there are more than one step to have the student‟s marks, we will take 
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the main words and there similar weights as input value for the invented algorithm, and we 

process these weights in some way which is close to the instructor‟s idea. 

Table 5.3: Corresponding number of the strings of the answers.  

Student# W1 / 

3 

W2 

/ 3 

W3 

/ 3 

Answer 

Mark / 9 

Std#1 3 3 3 9 

Std#2 2 3 3 8 

Std#3 3 3 2.5 8.5 

Std#4 3 3 2.5 9 

Std#5 2 2.5 2.5 7 

 Std#6 3 3 1.5 7.5 

Std#7 3 0 3 6 

Std#8 1.5 3 0 4.5 

Std#9 1.5 3 1 5.5 

Std#10 2 2.5 1.5 6 

 

-Stage 2 FL Algorithm. 

Fuzzification:-  

 Part1 of fuzzification is to define the input fuzzy set and the membership functions of 

the input system, here the input fuzzy set is {Low, Middle, High}, in the range [0, 3], which 

have the membership function as shown in figure 5.1.  

 

 part2 of fuzzification is to define the output fuzzy set and their membership functions. 

There are five members as the output fuzzy set namely; Zero, Low, Medium, High, Full, and 

the membership functions as in figure 5.2. It is must to define the interval range for the 

output fuzzy set.  
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In our algorithm as we define in last section, the output interval is from 0 to the number of 

key words produced to the maximum weight of the words. In this case having 3 words with 

weight 3 as maximum weight of key words, so the interval is [0,9], as resulted in figure 5.2.  

 

 

Answers 

Weight 0         1          2         3          4           5         6          7          8          9          

High 
1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

Full Medium Low 
Zero 

Answers 

Weight 0                                1                                  2                                  3          

Low Middle High 

Figure 5.1: Possible Fuzzy Quantization of the range [0, 3] by triangular shaped. 
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0.1 
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After obtaining the words description which is the fuzzy value. After completion the previous 

steps successfully the next step will investigate the rules base. 

Very Low =  

0   IFF X >= 3 

(1 – X/3)   IFF 0 <X < 3 

Low =  

0   IFF 4.5 <= X <= 1.5 

(X – 1.5) /(1.5) IFF 1.5 < X < 3 

1   IFF X=3 

((4.5) - X) / (1.5) IFF 3 < X < 4.5 

( 6  - X) / (1.5) IFF 4.5 < X < 6 

Middle =  

(X – 3) /(1.5)  IFF 3 < X < 4.5 

0   IFF 6 <= X <= 3 

1   IFF X=4.5 

High =  

0   IFF 7.5 <= X <= 4.5 

(X – 4.5) /(1.5) IFF 4.5 < X < 6 

( 7.5  - X) / (1.5) IFF 6 < X < 7.5 

1   IFF X=6 

Very High =  

0   IFF X<= 6 

(X – 6 )/ 3   IFF 6 <X < 9 

Figure 5.2:- Possible Fuzzy Quantization of the range [0, 9] by trapezoidal shaped. 
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Rule Base.  

Step 2 of FLASA is to define the Fuzzy Rule Base, which mapping the input fuzzy set with 

the output fuzzy set, as we know from the fuzzy rules base we have rule matrix with 3 

dimension since we have 3 words. So our rules number is 3
3
 which is 27 rules as written in 

table 5.4. 

Table 5.4: All possible rules for 3 inputs main words. 

AND L & L L & 

M 

L & H M & 

L 

M & M M & 

H 

H & L H & 

M 

H & 

H 

L Z L M L M H M H H 

M L M H M M H H H F 

H M H H H H F H F F 

As shown in table 5.4, rules with same color can be connected. This is due to; the order in 

our algorithm is not important, so from previous example we can reduce all possible rules 

from 27 rules to 10 rules, only if we have the following rules. 

If W1 is L and W2 is L and W3 is M then the Mark is Low 

If W1 is M and W2 is L and W3 is L then the Mark is Low 

If W1 is L and W2 is M and W3 is L then the Mark is Low 

Is the same, because the ordered of the words in our rules is not important.  
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Defuzzification  

The defuzzification of the data into a crisp output is accomplished by combining the results 

of the inference process, then computing the "fuzzy centroid" of the area. The weighted 

strengths of each output member function are multiplied by their respective output 

membership function center points and summed. Finally, this area is divided by the sum of 

the weighted member function strengths and the result is taken as the crisp output. 

OUTPUT = sum (representative value “corresponding” * confidence) / sum (confidences) 

After we define the Fuzzy Rule Base, we can start implements our algorithm in the example, 

we can describe some samples from the example to show how we can have a crisp number 

describes our marks of the sample.  

Stud#1:-  

A RDB is a set of related data.  

 

Here we have three main words which are Set, Related and Data, each words has it‟s own 

weight, from the table 5.2, Set weight is 3, Related weight is 3 and Data weight is 3, from the 

input fuzzy set we see that Set is High with confidence 1, Related is High with confidence 1 

and Data is High with confidence 1 so the rules which will be implement‟s in this case is 

R#10 which is:- 

If W1 is H and W2 is H and W3 is H then the Mark is Full (1 & 1 & 1)  

So the result of this rule is Full with confidences 1, when we implements centroid methods 

by using matlab software,  the results are shown in table 5.5 . . 
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Stud#2. 

 A RDB is a group of data that are related.  

Here we have:- 

W1 = Group with weight 2, Middle with Confidence 0.5 and High with confidence 0.33. 

W2 = Data with weight 3, High with Confidence 1 

W3 = Related with weight 3. High with Confidence 1 

So our rules are:- 

If W1 is M and W2 is H and W3 is H then the Mark is Full (0.5 & 1 & 1) = 0.5 

If W1 is H and W2 is H and W3 is H then the Mark is Full (0.33 & 1 & 1)= 0.33 

 

Stud#3.  

A RDB is a set of related tables. 

W1 = Set with weight 3. High with confidence 1. 

W2 = Related with weight 3. High with confidence 1. 

W3 = Table with weight 2.5. High with confidence 0.66. 

So our Rules are:- 

If W1 is H and W2 is H and W3 is H then the Mark is Full (1 & 1 & 0.66)= 0.66 
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Stud#4.  

A RDB is a set or related information. 

W1 = Set with weight 3. High with confidence 1. 

W2 = Related with weight 3. High with confidence 1. 

W3 = Information with weight 2.5. High with confidence 0.66. 

So our Rules are:- 

If W1 is H and W2 is H and W3 is H then the Mark is Full (1 & 1 & 0.66)= 0.66 

Stud#5.  

A RDB is a group of information that is dependent together. 

W1 = Group with weight 2. Middle with Confidence 0.5 and High with confidence 0.33 

W2 = Dependent with weight 2.5. High with confidence 0.66. 

W3 = Information with weight 2.5. High with confidence 0.66. 

So our Rules are:- 

If W1 is M and W2 is H and W3 is H then the Mark is Full(0.5 & 0.66 & 0.66)= 0.5 

If W1 is H and W2 is H and W3 is H then the Mark is Full(0.33 & 0.66 & 0.66)= 0.33 

Stud#6.  

is a database based on the relational model 

W1 = data with weight 3. High with confidence 1. 

W2 = relation with weight 3. High with confidence 1. 

http://www.bambooweb.com/articles/d/a/Database.html
http://www.bambooweb.com/articles/r/e/Relational_model.html
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W3 = model with weight 1.5. Middle with confidence 1. 

The rules are:- 

If W1 is M and W2 is H and W3 is H then the Mark is Full (1 & 1 & 1)= 1 

Stud#7.  

A RDB is a set of independent data. 

W1 = data with weight 3. High with confidence 1. 

W2 = independent with weight 0. Low with confidence 1. 

W3 = set with weight 1.5. Middle with confidence 1. 

The rules are:- 

If W1 is H and W2 is L and W3 is H then the Mark is High (1 & 1 & 1)= 1 

Stud#8. 

 A RDB is a collection of data. 

W1 = Data with weight 3. High with confidence 1. 

W2 = Collection  with weight 3. High with confidence 1. 

W3 = Null with weight 0. Low with confidence 1. 

The rules are:- 

If W1 is H and W2 is H and W3 is L then the Mark is High (1 & 1 & 1) = 1 

Stud#9. 

 A RDB is a collection of data that are connected together.  

http://www.bambooweb.com/articles/c/o/Collection.html
http://www.bambooweb.com/articles/c/o/Collection.html
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W1 = data with weight 3. High with confidence 1. 

W2 = connected with weight 1. Low with confidence 0.33 and Middle with confidence 0.5. 

W3 = collection with weight 1.5. Middle with confidence 1. 

The rules are:- 

If W1 is L and W2 is M and W3 is H then the Mark is High (0.33 & 1 & 1)= 0.33 

If W1 is M and W2 is M and W3 is H then the Mark is High (0.5 & 1 & 1)=0.5 

Stud#10.  

A RDB is a group of table that having a foreign key between other‟s.  

W1 = table weight 2.5. High with confidence 0.66. 

W2 = foreign key with weight 1.5. Middle with confidence 1. 

W3 = group with weight 2. Middle with confidence 0.5 and High with confidence 0.33. 

The rules are:- 

If W1 is M and W2 is M and W3 is H then the Mark is High(0.33 & 1 & 0.66)=0.33 

If W1 is M and W2 is H and W3 is H then the Mark is Full (1 & 0.66 & 1)=0.66 

After we processing all samples in the example 1, the result will be appeared in table 5.5. in 

this table we have the results from the normal algorithm, and from different deffuzzification 

methods for the output fuzzy set, and for different membership function shape to see how the 

output different from one method to another deffuzzification method, and from shape to 

shape of the membership shape functions.  



 116 

We can use table 5.2 as a references text for the keyword method and students answer in table 

5.1 as a candidate text. 

Table 5.5: Results of the normal, FLASA and Keyword Method, instructors evaluate.  

 Triangular MF Trapezoidal MF   
Student# Normal 

Method 

Centroid 

Method 

MO

M 

Centroid 

Method 

MOM  instructor

s 

Keyword 

Method 

Std#1 9 8.03 9 7.94 8.51 9 9 

Std#2 8 7.86 8.28 7.94 8.51 9 6.75 

Std#3 8.5 7.94 8.51 7.94 8.51 9 6.75 

Std#4 8.5 7.94 8.51 7.94 8.51 9 6.75 

Std#5 7 7.86 8.28 7.94 8.51 8 1.8 

Std#6 7.5 8.03 9 7.94 8.51 9 9 

Std#7 6 8.03 9 7.94 8.51 0 6.75 

Std#8 4.5 6 6.03 6 6.03 5 6 

Std#9 5.5 6 6.03 6 6.03 8 3.6 

Std#10 6 6.74 6.03 6.66 6.03 8 1.8 

 

From the results of example 1 as we see in table 5.5, we conclude that the results of our 

algorithm are some how equal the results of the normal algorithm as shown in figure 5.3. 

This indicates that this algorithm is highly applicable for 3 input as main words in the key 

answer.  

Table 5.5 show the results of evaluation answer with 3 main words as an answer key, by 

using FLASA, Keyword and Normal methods and the instructor evaluate. Figure 5.3 and 5.4 

summarize the experiment result.  
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Figure 5.3 : Graph that compares the FLASA algorithm using triangular MS with the 

Keyword and the instructor ones, for three inputs. 
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5.4: Graph that compares the FLASA algorithm using trapezoidal MS with the Keyword and 

the instructor ones, for three inputs. 
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5.3.2 Experiment 2. 

In this example the key answer contains four main words. we must implement this example 

in Normal and FLASA algorithms. In this example we have 6 student‟s this is because most 

of student‟s had the same answer, but few of them got different answers.  

Mars Polar Lander-Where Are You? 

(January 18, 2000) After more than a month of searching for a signal from NASA's 

Mars Polar Lander, mission controllers have lost hope of finding it. The Mars Polar 

Lander was on a mission to Mars to study its atmosphere and search for water, 

something that could help scientists determine whether life ever existed on Mars. Polar 

Lander was to have touched down December 3 for a 90-day mission. It was to land 

near Mars' South Pole. The lander was last heard from minutes before beginning its 

descent. The last effort to communicate with the three-legged lander ended with 

frustration at 8 a.m Monday. 

"We didn't see anything," said Richard Cook, the spacecraft's project manager at 

NASA's Jet Propulsion Laboratory. The failed mission to the Red Planet cost the 

American government more than $200 million dollars. Now, space agency scientists 

and engineers will try to find out what could have gone wrong. They do not want to 

make the same mistakes in the next mission. Controllers have been testing dozens of 

different scenarios to try and explain what might have happened to the lander. 

(Sources: Associated Press, CBC News Online, CBC Radio news, NASA) Copyright 

CBC/SRC, 1997. 

Sample reading comprehension passage with questions. News story courtesy of the Canadian 

Broadcasting Corporation 4 Kids site, http://cbc4kids.com/general/whats-new/daily-news. 

 

 
 

What was the mission of the Mars Polar Lander? 

http://cbc4kids.com/general/whats-new/daily-news
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Correct sentence key: 

Sentence 3: The Mars Polar Lander was on a mission to Mars to study its 

atmosphere and search for water, something that could help scientists determine 

whether life ever existed on Mars. 

 

Answer key: 

to study Mars‟ atmosphere and to search for water | 

to help scientists determine whether life ever existed on Mars 

 

Sample system answer: 

to study its atmosphere 

 

Answer-word recall: 

key 1: (alternative 1):                   [study, atmosphere, search, water] 

system:                                          [study, atmosphere] 

Recall:                                           2/5 = 40% 

Instructor:                                      2/2 = 100% 

As we see there are two answers key for this question from previous example, we will take 

the first one, which contain 4 main words. We have to write all possibility similar words for 

these 4 mains words, as in table 5.6. 

After we have all similar words and their weights, we can start in our example by using 

normal algorithm and FLASA algorithm. Our samples in this example are:  

Stud#1: To study Mars’ atmosphere and to search for water | 

Stud#2: To learn mars characters  and to search if there life or not.  

Stud#3: To study mars atmosphere and seek about life.  

Stud#4: To study mars atmosphere and explorer the life on it.  

Stud#5: To discover mars air and rummage around the life 

Stud#6: To revise mars environment and seeking if there water on mars or not.  
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       Table 5.6: Similar words for example 2.  

Words Mark 

Study 3 

atmosphere 3 

search 3 

water 3 

Main 

Words 

Similarity Mark 

Study learn 2 

 Discover  1 

revise 1.5 

Atmosphere Environment  2 

Character   1.5 

Air  2.5 

Search Look for 2.5 

 

 

Seek  1 

explore 1.5 

 Rummage around 2 

Water H2O 3 

 Life 1 

 

Normal Algorithm:- 

After we implement the normal algorithm we have the following table (5.7), which contains 

the results of the normal marking.  

Table 5.7: the results of Stage 1, instructor, Keyword method evaluation.  

Student

# 

W1 

/ 3 

W2 

/ 3 

W3 

/ 3 

W4  

/ 3 

Answer 

Mark / 12 

Keyword 

method 

Instr  

Std#1 3 3 3 3 12 12 12 

Std#2 2 1.5 3 2.5 9 7.2 10 

Std#3 3 3 1 2.5 9.5 9.6 10 

Std#4 3 3 1.5 2.5 10 9.6 11 

Std#5 2 2.5 2.5 1.5 8.5 4.8 11 

 Std#6 1 1.5 1.5 3 7 4.8 12 



 121 

FLASA Algorithm:- 

Here we have four main words in the key answer, so from our algorithm we have 3
4
 = 81 

rules, as we see in table (5.8) which describe the rule matrix with 4 dimensions. 

The input membership functions are standard for all examples and samples as in example1, 

but the different in the output membership function. The membership function for the output 

fuzzy set in our example is the following:- 

 

Very Low =  

0   IFF X >= 4 

(1 – X/3)   IFF 0 <X < 4 

Low =  

0   IFF 6<= X <= 2 

(X – 2) /(2)  IFF 2 < X < 4 

((6) - X) / (2)  IFF 4 < X < 6 

1   IFF X=4 

Middle =  

0   IFF 8 <= X <= 4 

(X – 4) /(2)  IFF 4 < X < 6 

( 8  - X) / (2)  IFF 6 < X < 8 

1   IFF X=6 

High =  

0   IFF 10 <= X <= 6 

(X – 6) /(2)  IFF 6 < X < 8 

( 10  - X) / (2)  IFF 8 < X < 6 

1   IFF X=8 
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As we see from table 3.8, we have all possible rules based on 4 inputs with 3 fuzzy members. 

As in example one we can remove all redundant rules. These rules are for any example with 

4 inputs as main words. 

 As known from the rule base section, the results of the rules defined by the system or by the 

instructors. Thus writing these results by the system, due to the maximum number of the 

rules. 

 

 

Very High =  

0   IFF X<= 8 

(X – 8 )/ 4   IFF 8 <X < 12 

Answers 

Weight 0              2                4                 6                8               10              12          

High 

Figure 5.5:- Possible Fuzzy Quantization of the range [0, 9] by trapezoidal shaped. 
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Table 5.8 The rule matrix for 4 inputs words. 

& L & L L & M L & H M & L M & 

M 

M & H H & L H & M H & H 

L & L Z L L L M M M M H 

L & M L M M M M H M H H 

L & H M M H M H H H H H 

M & L L M M M M H M H H 

M & M M M H M H H H H H 

M & H M H H H H H H H F 

H & L M M H M H H H H H 

H & M M H H H H H H H F 

H & H H H H H H F H F F 

After having inputs weights for all words, and after we have a rule matrix for 4 words, and 

the membership functions for the output fuzzy set. We must implement one of the 

defuzzification methods of our algorithm to have an output marks for the students answers. 

The same as in fist example we will use centroid and Mea Of Max (MOM) method for 

defuzzification method. As illustrated in table (5.9), which have the final results of our 

algorithm.  

Table 5.9: Results of FLASA by using different Defuzzification methods.  
 Triangular MF Norma

l 

Trapezoidal MF 

Stude# Centro

id  

MOM Mark/ 

12 

Centro

id 

MOM Key 

metho

d 

Inst

r 

Std#1 10.7 12 12 10.6 11.3 12 12 

Std#2 8.99 8.04 9 8.93 7.98 7.2 10 

Std#3 9.48 11 9.5 9.69 11.3 9.6 10 

Std#4 10.6 11.3 10 10.6 11.3 9.6 11 

Std#5 8.99 8.04 8.5 8.93 7.98 4.8 11 

Std#6 8 8.04 7 8 7.98 4.8 12 
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Figure 5.6: Graph that compares the FLASA algorithm using triangular MS with the 

Keyword and the instructor ones, for four inputs. 

 

Trapezoidal MF

0

2

4

6

8

10

12

14

1 2 3 4 5 6

Students Answer

M
a

rk
s

Normal

Instructor

Keyword

Centroid

MOM

 

Figure 5.7: Graph that compares the FLASA algorithm using trapezoidal MF with the 

Keyword and the instructor ones, for four inputs. 
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5.3.3 Example Three. 

In this example we will use a sample question with five main words in the key answer, so we 

have 243 rules as a rule base of our algorithm as in table 5.11. And we have an output 

membership functions ranged from 0 to 15 as in figure (5.8). 

The question is: 

What is the Bloods function?  

The key answers are:- 

Transport the O2 and food  to the cell and take the CO2 from it. 

The similar words table: 

  Table 5.10: Similar words for the example 3. 

Words Mark 

Transport 3 

O2 3 

food 3 

cell 3 

CO2 3 

Main 

Words 

Similarity Mark 

Transport Carry  2 

 take  1 

O2 Oxygen  2 

Air    1.5 

Food Nutrient 2.5 

 

 

Power  1 

Carbohydrate 1.5 

Cell Body 3 

CO2 Waste  1 
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The student‟s answers are: 

1. Taking the food to the cell and CO2 from the cell. 

2. Carrying the O2 and the food to the cell and take the waste from it.  

3. Transport the food and CO2 to the Cell and taking the waste from it. 

4. Carry the oxygen and carbohydrate to the cell and take out the CO2 from the cell. 

5. Transport the Air and the Power to the body and then taking the waste from it.  

6. Transporting the nutrient and the O2 to the Cell. 

7. Transporting the Food to the cell and taking the waste from it. 

8. Carrying the oxygen to the cell and taking out the CO2 from it. 

9. Carrying out the waste from the cell and power to it. 

10. Transporting the O2 and Food to the cell and CO2 from it.  

 

Table 5.11: Rule Base for 5 input main words. 

& 
L 

&  

L 

L 

&  

M 

L 

& 

 H 

M & 

 L 

M & 

 M 

M &  

H 

H & 

 L 

H & 

 M 

H & 

 H 

L & L & L Z L L L L L L L M 

L & L & M L L L L L M L M M 

L & L & H L L M L M M M M M 

L & M & L L L L L L M L M M 

L & M & M L L M L M M M M M 

L & M & H L M M M M M M M H 

L & H & L L L M L M M M M M 

L & H & M L M M M M M M M H 

L & H & H M M M M M H M H H 

M & L & L L L L L L M L M M 

M & L & M L L M L M M M M M 

M & L & H L M M M M M M M H 

M & M & L L L M L M M M M M 

M & M & M L M M M M M M M H 
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M & M & H M M M M M H M H H 

M & H & L L M M M M M M M H 

M & H & M M M M M M H M H H 

M & H & H M M H M H H H H H 

H & L & L L L M L M M M M M 

H & L & M L M M M M M M M H 

H & L & H M M M M M H M H H 

H & M & L L M M M M M M M H 

H & M & M M M M M M H M H H 

H & M & H M M H M H H H H H 

H & H & L M M M M M H M H H 

H & H & M M M H M H H H H H 

H & H & H M H H H H H H H F 

 

 

Answers 

Weight 0             2.5               5              7.5             10.5           12.5             15          

High 

Figure 5.8 :- Possible Fuzzy Quantization of the range [0, 9] by trapezoidal shaped. 
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After we defined the membership functions for the output fuzzy set, and defined all rules 

base, this making simulation by using matlab we have the following results shown in table 

5.12.  

High =  

0   IFF 12.5 <= X <= 7.5 

(X – 7.5) /(2.5) IFF 7.5 < X < 10 

( 12.5  - X) / (2.5) IFF 10 < X < 12.5 

1   IFF X=10 

Very High =  

0   IFF X<= 10 

(X – 10 )/ 5   IFF 10 <X < 15 

0   IFF 10 <= X <= 5 

(X – 5) /(2.5)  IFF 5 < X < 7.5 

( 10  - X) / (2.5) IFF 7.5 < X < 10 

1   IFF X=7.5 
Middle =  

Very Low =  

0   IFF X >= 5 

(1 – X/3)   IFF 0 <X < 5 

Low =  

0   IFF 7.5 <= X <= 2.5 

(X – 2.5) /(2.5) IFF 2.5 < X < 5 

((7.5) - X) / (2.5) IFF 5 < X < 7.5 

1   IFF X=5 
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Table 5.12: Results of normal and FLASA methods. 

 Inputs  Triangular   Trapezoidal  

St# W

1 / 

3 

W

2 / 

3 

W

3 / 

3 

W

4 / 

3 

W

5 / 

3 

Cent 

Metho

d 

MOM Instrut

or/ 15 

nor key 

S1 3 0 3 3 3 10 10 11 12 15 

S2 2 3 3 3 2 11.2 13.8 15 13 15 

S3 3 0 3 3 2 11.2 10 10 11 15 

S4 3 3 1.

5 

3 3 13.4 15 15 13.5 15 

S5 3 1.

5 

1 2 2 9.88 10 13 9.5 15 

 S6 3 3 2.

5 

3 0 10 10 10 11.5 15 

S7 3 0 3 3 2 11.2 10 10 11 15 

S8 3 3 0 3 3 13.4 13.8 12 12 15 

S9 3 0 1 3 2 10 10 10 9 15 

S10 3 3 3 3 3 13.4 15 15 15 15 
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Figure 5.9: Graph that compares the FLASA algorithm using Triangular MF with the 

instructor ones, Norma and Keywords for five inputs 
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5.4  Discussion  

From the previous results obtained. We can classify our observations into two categories: the 

first one is about the FLASA features as will presented in  section 5.5 and the second 

category about the FLASA adequacy introduce in the next subsection 5.4.1. 

5.4.1 FLASA Adequacy. 

It is understood that a uniform metric to give the adequacy results of CAA of free text answer 

systems is necessary. A reference corpus should be made available for the CAA community 

[35]. Whenever this measure and these references appear we would use it. At the same time, 

we have built our own corpus and analyzed FLASA adequacy by calculating the correlation 

between the teachers‟ scores and the FLASA scores as in formula 5.2. The results have been 

very promising as shown in Tables 5.5, 5.9 and 5.10. 

 

 Table 5.13: FLASA Results. 

# of main words Centroid MOM 

3 89% 94% 

4 86% 88% 

5 93% 97% 

Average 89 93 

    ∑FLASA Results    

                      ∑ Instructor Results 

 

X 100%  (5.2) 
Adequacy= 
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According to P´erez [46], FLASA adequacy has also been measured by using the following 

procedure:  

 For each of the data sets, evaluate all the answers with FLASA. 

 Scale the resulting scores using the linear regression equation to translate them to 

the teacher’s scale. 

 Calculate the deviation between FLASA scores and the teachers’ scores. 

 Generate the histogram of the deviations. 

Figures 5.3, 5.4, 5.6 and 5.7 are all an example of Histogram that shows the deviation of 

FLASA scores. From the figures “5.3, 5.4, 5.6, 5.7, 5.9” we can summarize the output of our 

FLASA algorithm by the following points: 

The adequacy of FLASA is obvious from figures 5.3, 5.4, 5.6 and 5.7, that centroid & MOM 

methods were closer to the reference marking (instructor) than the two other systems as 

shown in table 5.13. However, the normal methods is pounding a mean results since it 

depends on the summation without distinguish between words weight distribution. While the 

keywords method showed the lowest efficiency between all methods due to its way of 

dealing with words which can be described as concerning the reference text rather than 

keywords weight. However, the centroid and MOM methods showed higher adequacy when 

keywords number increasing as shown in table 5.13.  

Due to the differences that appears in figure 5.3 especially question number 7, mainly the one 

between the instructor mark (0 mark) and the FLASA two methods marks (8 and 9 marks) is 
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shown to be not accepted. To solve this problem, new step was invented to be added to 

FLASA algorithm which is called “Master Words”. 

5.4.2 Master Words Step 

As shown in figure 5.3 there was a gab between the two successful methods namely; 

Centroid and MOM in marking question number 7. Instead of having a close results between 

the instructor method and the FLASA methods the marks achieved by FLASA was not 

accepted. Therefore, the gab was marked to be missing one of the words which can‟t be just 

counted as weight but its present is crucial to give a mark for the answer.  

These words, however, were decided to be called “Master Words” for example (increase, 

decrease), (dependent and independent)  ….etc, after adding this step to our algorithm it is 

obvious in figure 5.10 that the FLASA methods come back to be success in marking. 

This step, will be add as first step of our algorithm, so we will add the following step to our 

algorithm to have the results of example 3 as in table 5.13. 

Step one:  

IF  Master Word presented  THEN   

GO to next step 

ELSE  

Mark is Zero and EXIT 

  END IF 
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Table 5.14: FLASA method with Master Words step. 

 Triangular MF Trapezoidal MF   
Student# Normal 

Method 

Centroid 

Method 

MO

M 

Centroid 

Method 

MOM  instructor

s 

Keyword 

Method 

Std#1 9 8.03 9 7.94 8.51 9 9 

Std#2 8 7.86 8.28 7.94 8.51 9 6.75 

Std#3 8.5 7.94 8.51 7.94 8.51 9 6.75 

Std#4 8.5 7.94 8.51 7.94 8.51 9 6.75 

Std#5 7 7.86 8.28 7.94 8.51 8 1.8 

Std#6 7.5 8.03 9 7.94 8.51 9 9 

Std#7 6 0 0 0 0 0 6.75 

Std#8 4.5 6 6.03 6 6.03 5 6 

Std#9 5.5 6 6.03 6 6.03 8 3.6 

Std#10 6 6.74 6.03 6.66 6.03 8 1.8 
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Figure 5.10:- FLASA method with Master Words step. 

 

5.4.3 Experiments Observations   

The performed experiments came up with the following observation: 

1. Any change in the results of the Rule Base condition will make difference in the final 

results of the answer marks. 
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2.  In the first method, the distribution of inputs weights of words will not make any 

difference in the final results. But in our algorithm “FLASA”, there are a dependency 

between the weights distribution and the final results of the answers marks. These 

dependency making differences in the final result of the mark, as we see in table 5.14.  Table 

5.14 shows us the independency between the distribution of the weights and the final marks 

in the first method, and the dependency between the distribution weights of the words and the 

final marks in our algorithm.  

Table 5.15: dependency and independency of distribution weights  

I1 I2 I3 Normal Centroid  MOM 

2 2 2 6 5.93 4.5 

1 2 3 6 6.95 6.84 

1 2.5 2.5 6 7.86 8.28 

.5 2.5 3 6 7.94 8.51 

1.5 1.5 3 6 6.83 7.02 

1.5 2.5 2 6 6.95 6.84 

 

Table 5.12 also shows the distribution of the input weights are effect the final marks in 

FLASA algorithm. this is because we works with fuzzy terms like Low, Middle and High 

instead of number as an input, and the output is fuzzy terms like Zero, Low, Middle, High 

and Full which denotes from range zero mark to full mark.  
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5.5 FLASA Features and Advantages.  

The main advantages of FLASA include: 

1. FLASA does not depend on references texts, but depends on the main words and 

their synonyms.  

2. Final mark does not depend on the appearance of the words in the references text, 

but depends on the weights of these words in the answers key. The orders of the input words 

in the Rule Base conditions are not important, as we have discussed early in this chapter.     

3. Flexibility: FLASA is very flexible since the final results depend on many 

parameters in FLASA algorithm, like the weights distributions of the main words, the results 

of each rule in the rules base, membership functions for output fuzzy set, and the 

defuzzification methods used to extract the output number. 

4. Students can get instant and detailed feedback about their works, which improves the 

situation with many instructors that return few or little comments to their students, as shown 

in appendix B. 

5. Another important advantage of FLASA it can be easily extended and improved by 

integrating it with other techniques and resources such as thesauri or parsers as MSW 

dictionary, or any internet dictionary. 

5.6 FLASA Disadvantages and Constraints.  

FLASA Disadvantages are.  

 The main disadvantage of FLASA is the dependency on the main words number in 

the key answer, when the number of main words increased; this means that the number of 

rules in the rules base will be increased by using the following Expression: 
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Number of rules = 3
X
  

Where x is the number of main words. Thus the net results of this rules number are huge. So 

we need in one way or another to minimize the number of rules. 

 The crucial factors affecting the FLASA performance are the number and quality of 

the reference similar words used. 

 

FLASA Constraints are.  

 It‟s just for simple closed questions such as definitions which have limited numbers 

of acceptable answers. 

 It does not deal with type of questions where the order of main words in key answer 

is important, like describing behavior of some thing, for example, describe what Ali was 

doing?, the key answer is “ Ali was eating apple”. In this case the order of main words which 

are “Ali, eating, apple”, so we could not say that “apple eating Ali”.   

 It does not deal with type of questions that have lexical or grammatical problems.  

 It does not recognize negation if appears in the question. 
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CHAPTER 6 

 
CONCLUSIONS AND FUTURE WORK 

 
 

6.1 Conclusion  

The first conclusion that can be drawn from this work is that many universities and 

companies all over the world are taking an increasingly interest in developing systems to 

improve the quality of the evaluation task with the aid of computers. Thus to help both 

students and teachers. Students, because they have given immediate and detailed feedback. 

Teachers, by cutting-down of the time-consumed in scoring task by just having to check the 

answers that the computer could not handle or by supervising the process, “letting the hardest 

work to the computer”. 

 

On the other hand, although it is well known that just testing by MCQs “Multiple Choice 

Questions” or fill-in-the-blank questions is not enough to measure the student knowledge, 

since it depends at most on the chance, but it need less time in evaluation. The appearance of 

new automated evaluation techniques in this area will open the way for the instructors to 

choose any type of questions need without concerning the time of evaluation. Moreover, new 

types of assessments are devised (e.g. face-to-face assessment, alternative assessment, peer 

assessment or portfolio assessment) enlarging the assessment possibilities. 

 

In particular, we have focused on the automated methods of free text answers both for 

summative and formative evaluation. This type of evaluation is interesting since it requires 

students to remember the lesson concepts which making them to compose a writing answer 
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using their own expressions. Incidentally, it is in the previous statement where the core idea 

and one of the main problems of automated evaluation of free text answers are exposed: the 

core idea is to evaluate students emulating human teachers and thus, teachers are asked to 

write some reference texts or reference texts are automatically retrieved from other sources. 

Then students‟ answers are compared against the teachers‟ ones; and the problem is that 

students with unusual writing or more creative ideas and their expressions utterly are diverted 

from the teachers one references and they might be unduly penalized. 

 

From different approach the conclusion that can be drawn are concerning: 

 

1. The language in which the students answers are written. The most automated short-

text answers systems are limited to the English language; a movement to task into account 

more languages is being started. It is clear that the complexity of being able to assess texts 

written in other languages depends on the technique used in the system. FLASA algorithm is 

language independent, we testing it by using Arabic language as a student‟s answers.  

 

2. The suitable domains to assess, automated short-text answers system are not to 

evaluate general opinion or mathematical questions, just the opposite qualitative domains 

such as biology, psychology or history. 

3. What teachers expect from an automated short-text answers system, it can be 

highlighted the reliability of the system, that is, its scores should not be too different from the 

scores that they think. 
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4. What students expect, it can be highlighted the feedback. They do not want to wait 

weeks to be finally given just a single score without any justification. 

 

5. What should be assessed, the general opinion is that both the content and the style is 

important. 

 

6. The results, the correlation value should be above the 85% for all systems 

independently from the technique that is being employed. 

 

7. The applications, most of the existing system started as academic products and 

afterwards have become commercially available. Hence, their authors only provide limited 

demos on the web. The exception is BETSY that is freely downloadable. 

 

Regarding our approach, we have presented a new use of the Fuzzy Logic "FL"  algorithm, 

for evaluating students‟ answers "short-text answers"  with very promising results (as high as 

80% correlation) in comparison with instructors evaluation that has lead us to new research 

lines: 

 

 To prove that FLASA is a valid approach: by comparing results of FLASA with results of 

instructors and other methods including keyword ones.  
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 To build a completely new automated of short-texts answers system based on FLASA: 

FLASA is not to be used as a stand-alone application, just an internal module to improve the 

vocabulary analysis or as the basis for adding more complex modules that use NLP. 

 

 

6.2 Future work 

 
 

We envision the following open lines for near future work (to be accomplished in the order 

exposed): 

  

1. Generate a general system that works and deals with a wide range of n number of 

key words.  

 

2. Extend the FLASA algorithm with more advanced linguistic processing modules: 

For instance, a spelling checker, to remove typing mistakes; a rhetorical analyzer, to discover 

the internal structure of the answer; or an anaphora resolution module, to take into account all 

words used by the student ignoring the backwards references and making everything explicit. 

 

3. Extend the FLASA algorithm with more different types of questions: They would 

be extremely worthwhile providing the necessary information to improve the results with 

open answer questions and essay questions. 

 

4. Discuss the importance of other membership functions, rules, etc.  
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Appendix A 

Glossary 

ATM  Automated Text Marker 

BETSY  Bayesian Essay Test Scoring sYstem 

Bleu   Bilingual Evaluation Understudy 

BM   Bernoulli Model 

BP   Brevity Penalty 

CAA   Computer Assisted Assessment 

DOM  Degree Of Membership  

DSS  Decision Support System 

ERB   Evaluating Responses with Bleu 

ETS   Educational Testing Service 

FL  Fuzzy Logic 

FLASA    Fuzzy Logic in Auto-marking Short text Answers 

FSM  Finite State Machine 

GMAT  Graduate Management Admissions Test 

IE   Information Extraction 

IEA   Intelligent Essay Assessor 

IEMS   Intelligent Essay Marking System 

IR   Information Retrieval 
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ITAL  Interactive Technologies in Assessment and Learning  

LSA   Latent Semantic Analysis 

MBM  Multivariate Bernoulli Model 

MBP   Modified Brevity Penalty 

MCQ  Multiple Choice Question 

MF  Membership Function 

MISOS Multiple Input Single Output System 

MNLP Microsoft Natural Language Process 

MV  Membership Value 

NE  Named Entity  

NLP   Natural Language Processing 

NP  Noun Phrase  

PEG   Project Essay Grader 

RSA  Rhetorical Structure Analysis 

SSA  Syntactic Structure Analysis 

SVD   Singular Value Decomposition 

TCA  Topical Content Analysis 

TOEFL  Test of English as a Foreign Language 

UCLES  Unit of the University of Cambridge Local Examinations 

Syndicate 
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VG  Verb Group 

VLE   Virtual Learning Environment 
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Appendix B 
 

Technical details 

 
 

FLASA has been programmed in oracle software using Oracle 8i as a database engine and 

developer6i as an interface design. This because it can be ported across operative systems 

without any further modification of the code and it can be viewed thought the internet which 

means that we can have an on-line version of this method. This is may be in the second 

version of this system. This is the first version of FLASA, is a prototype of our system, we 

can introduce some screen used in this system.  

 

 

Figure B.1: Define the courses in the university.  

 

 
 

Figure B.2: Define the section of the course.  
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Figure B.3: Define all special character and all stop words to be used in the system. 

 

 

 
 

Figure B.4: Define the number of inputs and their related Rule Base. 

 

 

These rules may define from the instructors or by the system and the instructor can make any 

change.  
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Figure B.5: define the output Fuzzy Set.  

 

 

 
 

Figure B.6: Define the questions and their answers key. 

 

 

Here after we define the questions and their answers key, the system will be extract the main 

words from the answer key by using NLP techniques with help from the screen in figure B.3. 

And then the system will be define all similarity words using data in table 

FLASA_SIMILARITY_WORDS or by using MNLP “ Microsoft Natural Language Process” 
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dictionary, then the system or the instructor will put the weight for each one of the similarity 

words defined.  

 

 
 

Figure B.7: Define the answers.  

 

 

Here, the system loaded the students answer from special file or from the internet, and then 

the system will be extract all main words in the student‟s answers, and then define the weight 

for each one of the main words in the answers. This can be dining by keywords method 

which is the Normal Stage in our FLASA. 

After we define the main words and their weight the system will be translate to the FL stage, 

which is convert each main words in the from the student answer to one of the input fuzzy set 

with confidence, then the system will be extract all rules from the rule base screen which 
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linking input fuzzy set with output fuzzy set, and after making defuzzification for these rules 

we have a crisp number which is the final mark of the answer.  
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Figure B.8: Scheme that shows the tables and relationships among them in the database 

developed to be used with FLASA.  
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Appendix C  

Questionnaires  

C.1 Questionnaire 1. 

The aim of the first Questionnaire is to define the time taken to evaluate the same question 

with different shapes. And what is the favorite types of questions and why.  

بسم الله الزحمه الزحيم 

 

اٌ انٓذف يٍ ْزا الاعزجٛبٌ ْٕ  نًؼشفخ انٕلذ انز٘ ٚغزُفزِ انًذسط فٙ ػًهٛخ رظهٛر يخزهف الإَاع يٍ  .1

 . الاعئهخ ٔ يب ْٙ َٕػٛخ الاعئهخ انًفضهخ نذٖ الاعزبر ٔ نًبرا 

  :-اندضء الأل

  يب ْٙ َغجخ انٕلذ انًغزُفز نزظهٛر الايزسبَبد خلال انفظم يٍ عبػبد

....................................................................................................................... انزذسٚظ 

  انشخبء رشرٛجٓب زغت الافضهٛخ  يغ . يب ْٕ شكم الاعئهخ انزٙ رؼزمذ ثأَٓب رمٛى انطبنت ثشكم خٛذ

 . رٕضٛر يخزظش نهغجت

......................................................................................................................................................

......................................................................................................................................................

......................................................................................................................................................

 ......................................................

  يب ْٙ طجٛؼخ الاعئهخ انزٙ رفضهٓب ٔ نًبرا. 

......................................................................................................................................................

......................................................................................................................................................

.............................................................................. 

  يب ْٕ انٕلذ انًغزُفز نزظهٛر َفظ انغؤال ثؼذح أشكبل يثم-: 



 152 

 ..........................إخزٛبس الاخبثخ انظسٛسخ  .1

 . ...........................طر أو خطأ  .2

 . ............................رؼجئخ انفشاؽ  .3

 " . ................................يٍ عطش انٗ عطشٍٚ " إخبثخ لظٛشح  .4

 

  ْم رأخز ثؼٍٛ الاػزجبس الاخطبء الايلائٛخ فٙ ٔضغ ػلايخ انغؤال ؟ انشخبء انزٕضٛر . 

 

  ْم رأخز ثؼٍٛ الاػزجبس الاخطبء انهغٕٚخ ٔ انخبطخ ثزشكٛجخ الاخبثخ يٍ َبزٛخ الاػشاة ٔ ثُبء اندًهخ ؟ انشخبء

 . انزٕضٛر 

 

  يثم " عطش أٔ عطشٍٚ " يب ْٙ انطشٚمخ انًثبنٛخ انزٙ رزجؼٓب فٙ رظهٛر الاعئهخ انزٙ رسزبج انٗ إخبثخ لظٛشح :

 انخ ؟ ... ػشف يب ٚهٙ ، ٔضر ، ػهم ، فشق 
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C.2 Questionnaire 2. 

 

The aim of this questionnaire is to making comparison between the instructor evaluation and 

the FLASA one.  

 
 بسم الله الزحمه الزحيم 

 
الزجاء تصليح السؤال حسب الاجابة النموذجية مع إعطاء سبب لالية التصليح ، مع الاخذ بعيه الاعتبار بأن علامة 

.  الزجاء توضيح الية التصليح في حقل الملاحظات، و إعطاء العلامة في الحقل المخصص لذلك  . 9السؤال هي 

 

Question#1:- What is the RDB?  

 

The answer key is: the RDB is a set of related data.  

 

The student‟s answers are:- 

 

Stud Answers Grad

e 

Notes 

Std#1 A RDB is a set of related data.   

Std#2 A RDB is a group of data that are related.   

Std#3 A RDB is a set of related tables.   

Std#4 A RDB is a set or related information.   

Std#5 A RDB is a group of information that is 

dependent together. 
  

Std#6 is a database based on the relational 

model 
  

Std#7 A RDB is a set of independent data.   

Std#8 A RDB is a collection of data.   

http://www.bambooweb.com/articles/d/a/Database.html
http://www.bambooweb.com/articles/r/e/Relational_model.html
http://www.bambooweb.com/articles/r/e/Relational_model.html
http://www.bambooweb.com/articles/c/o/Collection.html
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Std#9 A RDB is a collection of data that are 

connected together.  
  

Std#10 A RDB is a group of table that having a 

foreign key between other‟s.  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.bambooweb.com/articles/c/o/Collection.html
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