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Abstract 

 

Introduction: P2Y12 receptor plays a central role in platelet aggregation and thrombus 

formation. Recently, inter-individual variations in platelet response of healthy untreated 

individuals were established which was explained by genetic variations in P2Y12 receptor 

gene. Several single nucleotide polymorphisms (SNPs) in P2Y12 receptor have been 

associated with increased platelet reactivity and risk of cardiovascular diseases. Therefore, 

this study aimed to evaluate the H2 haplotype (using G52T as a tag-SNP) and 18C>T 

polymorphisms in three different ethnic groups; Palestinians, Swedish and Congolese, in 

addition to evaluating the effect of these SNPs on platelet response induced by adenosine 

diphosphate (ADP) and thrombin receptor activating peptide (TRAP). 

Methodology: The 5’ end of the coding region of the P2Y12 gene including the H2 

haplotype and 18C>T SNPs were determined in conveniently selected healthy individuals 

from different ethnic groups (n=254). Blood samples were drawn for the aggregation and 

genetic studies. The whole exon-3 of P2Y12 was sequenced and analyzed using ABI 

PRISM 310 Genetic Analyzer. The major and the minor allele frequencies of the P2Y12 

SNPs were determined in the study populations and the genetic differences between ethnic 

groups in P2Y12 were elucidated. In addition, the frequencies of the genotypes and the 

haplotypes were calculated among the ethnic groups. Further, the effects of genetic 

variations (18C>T and 36G>T) on platelets aggregation induced by ADP/TRAP agonists 

were assessed in 10 healthy Swedish individuals using multiple electrode analyzer (MEA).  

Results: In this study, five benign SNPs were genotyped and identified; 18C>T, 36G>T, 

162G>T, 546C>T and 989A>G. The overall frequencies of each SNP in study population 

(n=254) was 21.9, 10.0, 0.2, 0.6 and 0.2%, respectively. The frequency of H2 haplotype 

among Swedish (n=55), Congolese (n=54) and Palestinian (n=145) was 23.6, 12.0, and 

4.1%, respectively, while the frequency of 18C>T was 20%, 6.5% and 28.3%, respectively. 

There were significant differences in the frequencies of H2 haplotype and 18C>T among 

the ethnic groups (P<0.0001). In regard to the pathological SNPs, all of the study 

participants were negative. Genetic variations in P2Y12 exon-3 (18C>T and 36G>T) had no 

significant effect on platelet aggregation induced by ADP/TRAP.  
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Conclusions: There are significant differences in the frequencies of the genetic variants of 

the P2Y12 exon-3 between the study ethnic groups. Further, none of the variants 18C>T 

and 36G>T (H2 haplotype) had an effect on ADP or TRAP- induced platelet aggregation. 

Keywords: P2Y12, single nucleotide polymorphisms, platelets aggregation. 
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 نيالفلسطيني بين P2Y12 -مستقبلات البيىرينرجكالتسلسلات الجينية ل ت الىراثية فيلاختلافاا

 .ليينىغلكىنن وايالسىيذيو

 .ذ ٠ٛسف سع١ذ عسع١سِحّ عذاد:إ

 .د.سا١ٔخ اثٛس١ش ول:مشرف أ

 .د.وب١ِلا ٘سٟ مشرف ثاني:

 ملخص:

فٟ رٕش١ط اٌصفبئح اٌذ٠ِٛخ  ِحٛس٠ب   ( دٚسا  P2Y12رٍعت ِسزمجلاد اٌج١ٛس٠ٕشجه ) :ةخلفية الذراس

ث١ٓ  سزجبثخ اٌصفبئح اٌذ٠ِٛخاخزلافبد فٟ اٌٛحع ٚجٛد  ،خ١شحٚٔخ الأاٌجٍطخ. فٟ ا٢ ٚرى٠ٛٓ

شخبص ٝ اخزلاف اسزجبثخ اٌصفبئح ث١ٓ الأٌِٓ أُ٘ الأسجبة اٌزٟ رؤدٞ إ . ٚاحذح١ٓ١شخبص اٌطج١عالأ

اٌج١ٕٟ ٌّسزمجلاد  ًاٌزسٍس بد اٌج١ٕ١خ ٚاٌطفشاد اٌٛساص١خ فٟٚجٛد الاخزلاف٘ٛ ١١ٓ اٌطج١ع

( فٟ ج١ٓ 18C>T and 36G>T) زبْْ غ١ش ِشظ١ٚساص١زب ْ، ٠ٛجذ طفشرباٌج١ٛس٠ٕشجه. حب١ٌب  

ِشاض اٌمٍت ٠بدح ٔشبط اٌصفبئح ٚص٠بدح خطش الإصبثخ ثأِسزمجلاد اٌج١ٛس٠ٕشجه ٚاٌزٟ رعًّ عٍٝ ص

ّشظ١خ ث١ٓ اٌغ١ش ١ٚخ ٌّشظٌٝ رحذ٠ذ ٔست اٌطفشاد اٌٛساص١خ ا١٠ٓ. رٙذف اٌذساسخ اٌحب١ٌخ إٚاٌششا

ص١ش ٘زٖ ، ثبلإظبفخ إٌٝ دساسخ رأ)اٌفٍسط١١ٕ١ٓ ٚاٌس٠ٛذ١٠ٓ ٚاٌىٛٔغ١١ٌٛٓ( ِجّٛعبد عشل١خ ِخزٍفخ

 اد اٌضشِٚج١ٓ.ِزعذدفٛسفبد ٚ اٌ صٕبئٟد٠ٕٛس١ٓ الأ اسزجبثخ اٌصفبئح ثبسزخذاَ ِحفضاداٌطفشاد عٍٝ 

دساسخ  ٛس٠ٕشجه١ٌج١ٓ ِسزمجلاد اٌجاٌّشفشح رحذ٠ذ اٌطفشاد اٌٛساص١خ فٟ إٌّطمخ  رُ منهجية البحث:

صلاصخ ع١ٕخ عشظ١خ ِٓ الأشخبص اٌطج١ع١١ٓ فٟ ( 18C>T and 36G>Tاٌطفشر١ٓ اٌٛساص١ز١ٓ )

دساسخ  جّع ع١ٕبد دَ ٌغشض رُ. ، اٌس٠ٛذ٠ْٛ، اٌفٍسط١ٕ١ْٛ، ٚاٌىٕغ١ٌْٛٛ(452)ْ= أعشاق ِخزٍفخ

ٌج١ٓ ِسزمجلاد اٌجٛس٠ٕشجه ٌىً  3-دساسخ الأوسْٛ اٌذساسخ اٌج١ٕ١خ. ثعذ رٌه رُ رجّع اٌصفبئح ٚ

ٚدساسخ الاخزلاف فٟ رٛص٠ع اٌطفشاد ٚاٌطشص اٌج١ٕ١خ ث١ٓ  حّط إٌٛٚٞاًٌ رسٍس ذساسخشخبص ثالأ

 إظبفخ  إٌٝ رٌه فمذ. ABI PRISM 310 Genetic Analyzerثبسزخذاَ جٙبص  الأعشاق اٌّخزٍفخ

سزخذاَ ِحفضاد الأد٠ٕٛس١ٓ لااسزجبثخ اٌصفبئح اٌذ٠ِٛخ خزلافبد اٌج١ٕ١خ عٍٝ رأص١ش الا خدساس ذرّ

اٌصفبئح ٚظبئف ِٓ اٌس٠ٛذ ثبسزخذاَ جٙبص  أشخبص 01 ٌذٜ اد اٌضشِٚج١ِٓزعذدفٛسفبد ٚ اٌ صٕبئٟ

 ٌىزشٚد.ِزعذد الأ

شاد اٌٛساص١خ اٌح١ّذح فرُ عضي خّسخ ِٓ اٌط ثحست إٌزبئج اٌزٟ ظٙشد فٟ اٌذساسخ فمذ :النتائج

 :ٟ٘ٚ18C>T، 36G>T، 162G>T، 546C>T،989A>G وّب ٠ٍٟ:   ح١ش وبٔذ إٌست اٌّئ٠ٛخ

فٟ  فمذ وبٔذ ٔسجزٗ H2 ّٕط اٌفشدأٟٕسجخ اٌِب ثبٌٕسجخ ٌأ %.1.4، 1.0ٚ، 1.4، 01.1، 21.9
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% 2.0، 04.1ٚ، 43.0رسبٚٞ  (025( ٚاٌفٍسط١١ٕ١ٓ )ْ=52)ْ= (، اٌىٛٔغ55ٓ١١ٌٛ)ْ=اٌس٠ٛذ١٠ٓ 

% 3..4، 0.5ٚ، 41.1 فمذ وبٔذ إٌست اٌّئ٠ٛخ وّب ٠ٍٟ: 18C>Tِب ثبٌٕسجخ ٌطفشح عٍٝ اٌزٛاٌٟ. أ

 عشاق اٌّخزٍفخ.اٌطفشاد ث١ٓ الأ ٘زٖ بئ١خ فٟ رٛص٠عحصإوبْ ٕ٘بن فٛاسق راد دلاٌخ  ٚلذ عٍٝ اٌزٛاٌٟ.

أِب ثبٌٕسجخ ٌزأص١ش  .ج١ّع ع١ٕبد اٌذساسخ سبٌجخ ثبٌطفشاد اٌٛساص١خ اٌّشظ١خ فىبٔذِب ف١ّب ٠زعٍك أ

س عشاق اٌضلاالأ ث١ٓ ( عٍٝ اسزجبثخ اٌصفبئح اٌذ٠ِٛخ 18C>T and 36G>Tاٌطفشر١ٓ اٌٛساص١ز١ٓ )

  .احصبئ١خفىبٔذ ١ٌسذ راد دلاٌخ 

 رٛص٠عفٟ  رٚ دلاٌخ إحصبئ١خ ٕبٌه اخزلاف٘ ْ  رظٙش ٔزبئج ٘زٖ اٌذساسخ أ الاستنتاجات والتىصيات:

اٌطفشاد اٌٛساص١خ عٍٝ اسزجبثخ  بلإظبفخ إٌٝ رٌه، رأص١ش ٘زٖث .اٌّخزٍفخعشاق ث١ٓ الأ اٌطفشاد اٌٛساص١خ

  اٌصفبئح وبْ ثذْٚ دلاٌخ احصبئ١خ. 

 رجّع اٌصفبئح. ،رعذد أشىبي ا١ٌٕٛو١ٍذاد إٌّفشدح ِسزمجلاد اٌجٛس٠ٕشجه، :ةالكلمات المفتاحي
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Chapter One  

______________________________________________________________ 

Introduction 

 

This chapter includes general background, problem statement, research objectives and 

hypotheses of this study.  

 

1.1 Background 

Platelets are anucleated discoid cytoplasmic fragments that play a pivotal role in 

blood transfusion medicine. They play a key role in hemostasis, maintenance of 

blood vessel integrity, inflammation, thrombus formation and rapid cessation of 

bleeding in case of loss of vascular integrity (Maree & McRedmond, 2005). 

Bleeding disorders that express thrombocytopenia are generally treated by 

platelets concentrate (PC), which can be acquired by an apheresis technique or 

through the derivation of whole blood donations. In hemostasis, a series of 

reactions occur in response to vascular injury, the first step consists of adhesion, 

where the platelets come in contact with the endothelium and attach within a few 

seconds. The platelets then change their shape by becoming spherical and the 

contents of the granules, such as fibrinogen from the alpha granules and 

adenosine diphosphate (ADP) from the dense granules, are released. ADP 

secretion acts as a positive feedback that amplifies platelet response and stabilizes 

platelet aggregation induced by other agonist such as thromboxane A2 (TXA2), 

collagen and thrombin. Furthermore, ADP enhances the procoagulant effect of 

platelets. By this, platelets become able to aggregate via the glycoprotein 

(GPIIb/IIIa) receptors and can form a plug that temporarily seals a break in the 

vessel wall (Rondina et al., 2013). ADP is considered as one of the most 

important mediators for platelets aggregation and thrombus formation. The action 

of ADP on platelet is mediated by two specific G-protein coupled receptors 

(GPCRs); P2Y1 and P2Y12.  
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The P2Y1 receptor mediates weak responses to ADP and has an important role in the early 

steps of platelet activation induced by ADP or collagen. The role of P2Y12 receptor 

completes and amplifies platelet activation and aggregation, irreversibly (Foster et al., 

2001). On the other hand, the importance of P2Y12 is emphasized by the fact that its 

distribution is limited in the body tissues with common expression in platelets. In addition, 

it is the target of the thienopyridine anti-thrombotic drugs such as ticlopidine and 

clopidogrel (Hollopeter et al., 2001). Several studies have reported differences in the 

P2Y12 response between individuals. These differences were postulated to be a result of 

genetic variations in the P2Y12 gene. Moreover, considerable variability in the antiplatelet 

effect of the antithrombotic agents especially clopidogrel targeting ADP receptors P2Y12 

has been reported. Further, defects in the P2Y12 gene have been reported to be associated 

with hemorrhagic tendency in which ADP-induced platelet aggregation via P2Y12 is 

impaired (Price et al., 2009).  

 

Five common benign SNPs were identified at the level of P2Y12 receptor. Four of these 

SNPs were in absolute linkage disequilibrium and were designed in two phenotypic groups 

with two haplotypes: H1 which include: i-C139, i-T744, absence i-ins801A, and G52. H2 

includes: i-139T, i-744C, presence i-ins801A, and 52T. The fifth identified SNP was C34T 

(18C>T) which is associated with 4-folds increased risk of ischemic stroke and/or carotid 

revascularization (Fontana et al., 2003a; Sherry et al., 2001; Ziegler et al., 2005). 

 

Thus, in this study, exon-3 of P2Y12 gene was sequenced and analyzed among different 

populations (n=254). In addition, the frequencies of C34T (also known as 18C>T), H2 

haplotype, (by the detection of G52T genetic variant known also as 36G>T) and other 

benign SNPs were identified and all study populations were tested for pathological SNPs: 

Arg256Gln, Pro258Thr, and Arg265Trp. Moreover, the effects of genetic variation in the 

P2Y12 gene on the extent of ADP/TRAP-induced platelet aggregation were studied in 

healthy Swedish individuals (n=10). 

 

1.2 Problem statement 

P2Y12 plays a crucial role in platelet function, especially in platelet activation and 

aggregation. Furthermore, P2Y12 is a targeted receptor for antiplatelet drugs, in 

particular, thienopyredine compounds, which are used in the treatment of patients 
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diagnosed with cardiovascular diseases (CVDs). Indeed, platelet function and 

response to these drugs have shown an inter-individual variation that might be 

attributed to genetic variations in P2Y12. These variations have never been studied 

among Swedish, Palestinian or Congolese populations. In this study, the 

frequencies of P2Y12 genetic variations in different ethnic groups were studied 

and their effects on platelet aggregation were examined in a pilot study of 

Swedish population. 

 

1.3 Objectives 

The overall goal of the present study is to analyze the P2Y12 receptor gene in 

different ethnic group. Our major objectives are:  

1. To identify the frequencies of the common genetic variations in ADP 

receptor gene (P2Y12) coding region among different populations including 

Palestinians, Swedish and Congolese.  

2. To study the association between ethnicity, and the identified SNPs in the 

P2Y12 gene. 

3. To investigate the effect of the P2Y12 allelic variants on platelet 

aggregation in response to ADP/TRAP agonists. 

 

1.4 Hypotheses 

1. The genetic variations in the ADP receptor (P2Y12) coding region vary among 

different populations and their frequencies and haplotypes are associated with 

ethnicity. 

2. The SNPs allelic variants affect the platelet aggregation in response to ADP/TRAP 

agonists. 
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Chapter Two 

______________________________________________________________ 

Literature Review 

 

In this chapter, we provide an overview of the literature available on the physiology and 

the pharmacology of P2Y12, focusing on molecular characterization and genetic variations 

of the P2Y12 receptor gene. 

 

2.1 Platelets and their functions 

Platelets are the smallest of the circulating blood cells, or are rather in more strict sense 

small cytoplasmic fragments that are derived from megakaryocytes in the bone marrow. 

Each megakaryocyte produces approximately 2,000 to 3,000 platelets in a highly regulated 

process called megakaryocytopoiesis. It is regulated by thrombopoietin and its receptor; 

myeloproliferative leukemia protein (MPL). Platelets contain small amounts of mRNA in 

their cytoplasm, which give platelets a very limited capacity for protein synthesis. Platelets 

were discovered in 1882 by an Italian pathologist called Giulio Bizzozero. They were 

named platelets because they appear like small plates (Mazzarello et al., 2001). These 

fragments of cells are anucleated and discoid, with a size of 2-4 μm in diameter and can 

reach up 6 micron after activation (Chang & Lo, 1998). Following their formation from 

megakaryocytes, platelets have a life span of 5-10 days. They play a critical role in 

hemostasis and thrombus formation by acting as a surface for coagulation cascade, 

production and secretion of factor V and VIII and consequently the formation and 

consolidation of primary and secondary hemostatic plug. The role of platelets in thrombus 

formation was established especially in the cardiovascular diseases such as myocardial 

infarction, where the unwanted platelet activation occurred due to an endothelial injury as a 

result of atherosclerosis (Badimon et al., 1992). Although they act as the major role in 

hemostasis, they also play non-hemostatic role such as in the cases of inflammation and  

wound healing by helping in the leukocyte recruitment (rolling and adhesion) at the site of 

inflamed tissue, this action is facilitated by the p-selectin receptor at the surface of the 

platelets (Huang & Chang, 2012). Another role of platelets is at the level of the immune 
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system and allergy by the platelet itself which expresses a functional receptor for the Fc 

fragment of immunoglobulin E FcγRIIa (Kasperska-Zajac & Rogala, 2006) and by its 

mediators; such as TXA2, cysteinyl leukotrienes and lipoxins. These mediators potentiate 

the allergic response, and this is shown after the exposure to certain allergens that lead to 

platelet arachidonate pathway activation (Pitchford et al., 2008). Moreover, nervous 

system and other body systems depend directly or indirectly on platelets and their contents. 

All these vital functions make platelets very important in human health. However, to fulfill 

their role, platelets must be adequate in function and in number (Kim et al., 2012). 

 

Platelets contain two major types of granules. The first type is alpha granules, which are 

the most abundant granules inside the platelets (50-80/platelet), they contain platelet 

specific proteins; such as: platelet factor IV and beta-thromboglobulin. Further, these 

granules contain coagulation factors such as FV, FXI and protein S. Type two is the dense 

granules, which mainly contain ADP, ATP, adenosine tetraphosphate (Ap4A), serotonin 

and calcium (Ca
+2

) (Whittaker & Watkins, 1972). 

 

2.2 Platelets and their role in hemostasis 

At the level of hemostasis, platelets circulate for 5 to 10 days in the human body in non-

reactive manner and stay ready for stimuli such as vascular injuries. Defects in the 

hemostatic system lead to serious complications such as thrombotic effect and vaso-

occlusive. When vascular injury occurs, three major steps are activated and initiated. These 

steps are initiation, extension, and consolidation. Vascular injury exposes the negative sub-

endothelial matrix, which stimulates and activates platelets by a series of events, starting 

with platelets adhesion with sub-endothelium substrates (collagen, fibronectin and 

laminin), mediated by von Willebrand factor (vWF) through GPIb-IX-V receptor complex 

under high shear stress (initiation step) (Kumar et al., 2003). The exterior coat of platelets 

is called glycocalix. Glycocalix provides platelets with adhesive characteristics. Once a 

platelet adheres, it becomes activated, shape changes and pseudopodia formation occur 

(extension). This process facilitates surface intigreins, mainly GPIIb/IIIa, which is 

transformed from the low affinity to the high affinity form, to bind with fibrinogen. 

Further, platelet activation and shape changes stimulate the secretion and release of 

platelets granules content, such as serotonin, which induces vasoconstriction at the site of 

injury, and secretion of diffusible aggregating agent, in particular ADP and TXA2 
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(produced within platelets), that induce platelet aggregation. Following adhesion, 

activation and release reaction, platelets aggregate together by aggregating agent through a 

specific heterodimeric receptor GPIIb/IIIa and fibrinogen to form a primary plug that 

ultimately prevents bleeding. The release of platelets content lead to amplification and 

further platelet response and aggregation at the site of injury and formation of a secondary 

plug (consolidation) (Jackson et al., 2003). Each of these functions should act rapidly and 

locally at the site of the injury. Platelets also provide platelet factor III (thromboplastin) 

and factor V and act as a surface for assembly of tenase and prothrombinase complex. 

Consequently, secondary hemostatic response formation and plug reinforcement occurs. 

Any defect in one of these functions leads to bleeding disorders (Coller, 2011). 

 

2.3 Platelets role in transfusion medicine 

The role of platelets in blood transfusion medicine is emphasized by the use of platelets for 

treatment of large group of patients with abnormal platelet number (thrombocytopenia) and 

bleeding manifestations. However, the percentage of hematological malignancies accounts 

from 11% to 14% of all cancer cases (Cancer Research UK, 2013). Patients with 

hematological malignancies and some other cancer types complain from bone marrow 

failure as a secondary sign for chemotherapy treatment, radiotherapy or stem cell 

transplantation, and consequently, most patients have thrombocytopenia. This secondary 

thrombocytopenia is treated with platelets concentrate (PC) to prevent serious bleeding 

complications such as intracranial hemorrhage. The first effective PC was demonstrated in 

1910 by Duke WW (Duke, 1911). After that, in 1970s and until now, platelets have 

become a standard treatment for patients suffering from thrombocytopenia. In addition, PC 

is used as a prophylactic therapy in some surgical procedures and hematological 

malignancies to increase circulating platelets to the hemostatic level (Bergeron, 1989). 

 

2.4 Platelets preparation and storage 

There are several therapeutic applications for using PC with the most important in bleeding 

disorders that express thrombocytopenia. PC is prepared by two methods: the first one is 

by whole blood-derived platelet concentrates and the second procedure is by apheresis 

technique. In either component, platelets are suspended in an appropriate volume of the 

original plasma, which contains near-normal levels of stable coagulation factors that are 

stored at room temperature (Slichter & Harker, 1976). Apheresis platelets are stored in 
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additive solutions that replace plasma. One unit of platelets derived from a whole blood 

collection usually contains more than 5.5 × 10
10

 platelets suspended in 40 to 70 mL of 

plasma. Platelets may be provided either singly or as a pool of four leukoreduced platelet 

units together with platelet additive solution. On the other hand, one unit of apheresis 

platelets usually contains more than 3.0 × 10
11

 platelets and therapeutically is equivalent to 

4 to 6 units of whole blood derived platelets (Simon, 1994).  

 

PCs are stored at 20
o
C to 24

o
C with continuous agitation for 7 days. After 5 days, PCs are 

considered to be clinically useless. During storage, many changes occur in platelet 

structure and function. The overall changes of platelet function and structure that arise and 

take place from the time of blood donation to the time of platelet concentrate transfusion to 

the recipient are called platelet storage lesions (PSL). One of the most PSL is the decline in 

ADP response after storage time (Colman, 2006). The response of platelets activation and 

aggregation varies between healthy individuals and in patients under anti-aggregating 

agent therapy (Salles et al., 2008). One of the underlying mechanisms of these variations is 

the genetic variations in receptors’ genes that are involved in platelet activation (Fontana et 

al., 2003a).  

 

2.5 Platelets aggregation measurement 

Platelets aggregation is the adhesion of platelets to each other under a variety of conditions 

and in the presence of a number of different agonists. It is mediated by interaction of 

fibrinogen and vWF with GPIIb/IIIa receptors. Platelets aggregation is considered as the 

test of choice for measurement of platelets function in vitro (Harrison, 2005a). Several 

congenital and acquired platelets disorders are diagnosed by spectrophotometric assays 

(Hayward et al., 2006). These photometric assays are used also to monitor antiplatelet 

therapy in patients under clopidogrel therapy. 

 

Several previous clinical studies suggested clopidogrel resistance in approximately 5-30% 

of the patients (Rudez et al., 2009). To monitor and detect the responsiveness of patients 

for antiplatelets agents, in particular clopidogrel, ADP induced platelet aggregation could 

be carried by a number of methods including light transmission aggregometry (LTA), 

platelet function assay 100 (PFA-100®), VerifyNow® P2Y12, multiple electrode analyzer 
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(MEA), Plateletworks® and flowcytometric measurement of vasodilator stimulated 

phosphoprotein (VASP) phosphorylation. 

 

2.5.1 Light transmission aggregometry (LTA) 

LTA is considered as the gold standard method for the measurement of platelets function. 

The principle of LTA is to measure the changes in light transmittance after adding of 

aggregating agents to platelet-rich plasma. The disadvantages of LTA that it’s time 

consuming and the interpretation of the test results which requires standardization and 

trained laboratory staff. Before carrying the test, individuals should fast, rest and avoid 

smoking and drugs. The basic turbidometric method of LTA is carried by adding different 

aggregating agents such as ADP, collagen and epinephrine to the platelets rich plasma 

(PRP) at 37°C (Frontroth, 2013). PRP is acquired by centrifuging whole blood with citrate 

anticoagulant. First, whole blood is centrifuged at 1500 rpm for 15 minutes at room 

temperature to obtain PRP. After carefully removing the upper two third of PRP, the 

second centrifugation is done at 15,000rpm for 20 min to obtain platelet poor plasma 

(PPP). PPP is used to dilute PRP and to adjust the platelets count to obtain final platelet 

count of 250×10
9
/L. Also, PPP is used as a blank to adjust the instrument optical density. 

LTA results are more accurate and more sensitive to monitor the thromboembolic 

complications than other methods such as VerifyNow and Multiplate analyzer which are 

point-of-care methods (Flechtenmacher et al., 2015). 

 

2.5.2 Platelet function analyzer (PFA-100) 

PFA-100 is a rapid, simple and in vitro tool for monitoring primary hemostatic disorders 

through measuring high shear-dependent platelet function in citrated whole blood. It is 

used to detect and diagnose platelet function disorders; such as von Willebrand disease and 

Glanzmann's thrombasthenia. Furthermore, PFA-100 is used for pre-operative monitoring 

of patient with bleeding tendency before surgery and to assess the effectiveness of 

transfused platelets (Harrison, 2005b). The PFA-100 uses disposable test cartridges that 

contain a collagen/ADP (CADP) or collagen/epinephrine (CEPI) coated membrane with a 

small central aperture (147 µm). The test is carried under high sheer condition (5,000-

6,000/s) with constant vacuum from the sample reservoir via a capillary tube to the 

membrane cartridge with monitoring of blood flow by aperture. After that, platelets come 

in contact with vWF and GPIb. This leads to platelets activation and aggregate with 

GPIIb/IIIa resulting in formation of platelet plug and occlusion of aperture within 3 mins 
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from test initiation. The time required for aperture occlusion is reported as closure time 

(CT) (van Werkum et al., 2010). 

 

2.5.3 VerifyNow P2Y12 assay 

This assay is a fast and standardized point of care test that widely uses ADP agonist in 

order to evaluate the efficacy of P2Y12 receptor antagonists, especially clopidogrel (Price, 

2009). It is a P2Y12 specific assay that uses fibrinogen coated beads and prostaglandin E1 

(PGE1). By adding the PGE1, P2Y1-induced platelet aggregation is inhibited, which makes 

the ADP induced aggregation only by P2Y12 receptors. After addition of ADP, it activates 

the platelets via P2Y12 receptors and induces platelet-fibrinogen bed agglutination. The test 

has turbidimetric-based optical detection system that measures platelet-induced 

aggregation as an increase in light transmittance in citrate-anticoagulated whole blood. 

Patients with cut-off value of < 240 platelet reaction unit (PRU) are considered as good 

responders for clopidogrel (Marcucci et al., 2009). 

 

2.5.4 Multiple electrode analyzer  

Multiple electrode platelet aggregometry (MEA) is another method for monitoring platelets 

function. It’s an in vitro test to measure the aggregation of the platelets in response to 

specific agonists such as ADP or collagen. MEA is used to measure the platelets functions’ 

disorders as well as platelet reactivity in response to antiplatelet drugs (Baumgarten et al., 

2010). It consists of five channels; each channel contains two sensors for quality control. 

An instrument such as multiple platelet function analyzer (Roche Diagnostic, Rotkreuz, 

Schweiz) is a fast and point of care testing that uses small amount of hirudin whole blood 

(300 µL). This method is based on aggregation with impedance technique. When whole 

blood or PC is added to a cuvette with special sensor, it triggers the MEA by the adhesion 

of activated platelets with sensors which lead to increase in the electrical impedance. By 

adding an agonist such as ADP, the platelets are able to aggregate and the aggregation 

increases the impedance between the two electrodes in a test cell. Throughout the test, the 

impedance is registered and three parameters are calculated: area under the curve (AUC) 

which is a measure of aggregation, aggregation (AU) which corresponds to the curves 

amplitude and the speed (AU/min) which is the maximal gradient of the curve (Wurtz et 

al., 2014).  

 

 



10 

 

2.5.5 Plateletworks® assay 

It is a point of care assay which is used to assess the effect of GP IIb/IIIa antagonists. The 

principle of this assay is based on measuring platelet inhibition percentage before and after 

ADP addition. The first step is to measure the baseline platelet count in K3-EDTA 

anticoagulated whole blood. Then, the platelet count is repeated using Plateletworks® tube 

containing both 50 μmol/L of D-Phe-Pro-Arg-chloromethylketone (PPACK) and 20 

μmol/L of ADP agonists. In the presence of ADP agonist, platelets activation and 

aggregation will occur. Platelet aggregates exceed the threshold limits for platelet size (<30 

fL). So, the hematology analyzer no longer counts them as platelets. The percentage of 

platelets inhibition is calculated by the ratio of the platelet count between the ADP and K3-

EDTA tubes (van Werkum et al., 2010). 

 

2.6 Platelet receptors 

After platelets activation and secretion reaction, several different agonists are released, 

including the agonist TXA2, ADP, thrombin and epinephrine. Each of these agonists acts 

on platelets through a specific receptor. These receptors modulate and coordinate the 

functions of platelets by complicated and interconnected mechanisms. Some of these 

receptors modulate their effect through the GPCR. Examples of these G-coupled receptors 

are purinergic receptors (P2Y) of ADP and ATP agonist, the platelet alpha-adrenergic 

receptor 2A (A2AR) for epinephrine and thromboxane prostanoid (TP) receptor and 

thrombin receptors (protease-activated receptors PAR-1/PAR-4) (de Groot et al., 2012).   

 

2.6.1 Purinergic receptors 

2.6.1.1 History and nomenclature 

Purines and pyrimidines nucleotides are extracellular molecules that induce huge 

biological effects through specific surface receptors called purine receptors. There are two 

major groups of purines receptors: P1 (adenosine) and P2 (ATP and ADP) receptors 

(Ralevic & Burnstock, 1998). P1 contains 4 distinct GPCR subtypes: A1, A2A, A2B, and A3, 

and each subtype has a specific amino acid homology sequence (Ralevic & Burnstock, 

1998). However, P2 receptors are subdivided into two categories: the first one is ATP 

gated ionotropic receptors P2X. The second one is metabotropic G-coupled protein 

receptors P2Y depending on the basis of pharmacology, ligand characteristic and receptor 

sequence (Burnstock, 1996; Fredholm et al., 1994). In respect to purinergic receptors 
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nomenclature, P2Y is the name that includes functional mammalian receptor proteins and 

functional non-mammalian species. In case of mammalian orphan receptors and non-

mammalian functional receptors, the lower case p2y is used. The attached number 

following purinergic receptors (1 to n) indicates the cloning time pattern of complementary 

DNA. The first purinergic receptor was cloned in 1993 and the last one was in 2001 (Webb 

et al., 1993). Cloning studies of P2 receptors and studies of transduction mechanisms in the 

early 1990s led to subdividing of P2 receptor into P2X and P2Y receptor families. 

Currently, seven subtypes of P2X receptors and eight subtypes of P2Y receptors are 

recognized (Mason, 1988; Westphal, 1987). Furthermore, previous studies have recognized 

that some P2Y receptors respond to naturally occurring extracellular nucleotide 

pyrimidines as well as purines. These nucleotides have relatively low bioavailability and 

stability in vivo and are widely distributed but their extracellular concentration increase in 

response to certain situation such hypoxia, injury, inflammation and mechanical stress 

(Jacobson et al., 2012). 

 

2.6.1.2 P2Y receptors’ roles 

Purinergic receptors P2Y are a group of guanine nucleotide-binding-protein coupled 

receptors (GPCR) that are widely distributed and expressed on broad types of tissues in 

human body. This increases their importance at physiological and pathological level. Eight 

distinct mammalian P2Y receptors have been cloned and recognized: the P2Y1, 2,4,6,11,12,13,14 

receptors. Moreover, P2Y receptor is further subdivided into P2Y1 like subfamily and 

P2Y12 like subgroup (Westphal, 1987). P2Y1 subfamily includes P2Y1, PY2, P2Y4, P2Y6 

and P2Y11. All of these P2Y1 subfamily act by the same mechanism via Gq protein and 

activation of phospholipase C. Also, P2Y11 receptor of P2Y1 like subfamily has been 

documented to couple Gs as well as Gq in some cells to induce cyclic adenosine 

monophosphate (cAMP) production (Qi et al., 2001). The second group is the P2Y12 

subfamily, which includes P2Y12, P2Y13 and P2Y14. P2Y12 subfamily act through Gi 

protein and thereby inhibition of adenylate cyclase enzyme (Cooper & Rodbell, 1979). 

There are differences between purinergic receptors among species at the level of function, 

occurrence, and ligand preference of the P2YRs, e.g., the absence of P2Y11 gene in mice 

genome (Jacobson & Boeynaems, 2010). Each one of these purinergic receptors is coupled 

with a specific preferential purine and pyrimidine ligand agonists which are as following: 

P2Y1, P2Y12, and P2Y13 have ADP as their agonist; ATP is agonist for P2Y2, P2Y4 (rat, 

but not human), and P2Y11; uridine diphosphate (UDP) for P2Y6 and P2Y14; uridine 
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triphosphate (UTP) for P2Y2 and P2Y4; and UDP-glucose and other UDP-sugars for 

P2Y14. In some situations, the same nucleotide that activates one P2Y subtype may act as 

an antagonist for another subtype. For example, ATP acts as an agonist for P2X and an 

antagonist at the P2Y12 receptors in platelets (Springthorpe et al., 2007). One of the major 

challenges regarding P2Y agonists is to design a potent, specific and selective synthetic 

agonist that makes a key for structural and functional identification of P2Y receptors. 

Radio-ligand studies were able to apply and efficiently carry out at both P2Y1 and P2Y12 

but it failed for other subtypes of P2Y (Abbracchio et al., 2006). 

 

The use of antibody targeted purinergic receptor plays an important role to understand the 

distribution and the roles of different P2 receptors in different tissues. Several previous 

studies emphasized the presence and the role of these receptors in different tissues such as 

platelets (P2X, P2Y1, P2Y12), nervous system (P2Y12, P2Y13, P2Y14), contracting/relaxing 

activities of gastrointestinal tract, eyes (P2Y4), ears, cardiovascular, placenta and other 

tissues (Brass et al., 2012). The central role of P2Y is seen in platelet function in 

hemostasis and thrombus formation. It plays a direct role by inducing platelet aggregation 

and indirect role by potentiating effect for other platelet agonist. In addition, purinergic 

receptors, especially P2Y12, play many roles in different conditions. These roles include: 

thromboembolism, neuromodulation, vasodilatation, inflammatory response, cell migration 

and antitumor effects (Brass et al., 2012). 

 

In addition, P2Y12 plays an important role in chemotaxis. After brain injury, the level of 

extracellular nucleotides is increased. This activates the P2Y12 receptors in the brain cells 

and mediates the migration of primary immune microglial cells and extends the processes 

toward the sites of tissue damage (Haynes et al., 2006). 

 

Fibroblast is the major cell in heart muscle. It plays a very important role in structural and 

functional aspects of the heart. Fibroblasts are then differentiated to myofibroblasts. The 

myofibroblasts express all P2Y receptors. All of these receptors are functional except 

P2Y13. They play a central role in myofibroblast regulation. After myocardial infarction, 

the nucleotide concentrations (ADP, ATP and UTP) increases with several effects at the 

level of cardiovascular system such as vasoconstriction induced by UTP (Wihlborg et al., 

2006). 
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The role of P2Y receptors in the status of myocardial infarction is established by enhancing 

the thrombus formation erosion of atherosclerotic plaque and by stimulation of endocytosis 

of high density lipoprotein HDL in hepatocytes. The activation of P2Y13 in hepatocytes 

stimulates HDL endocytosis by inducing Ras homolog gene family, member A (RhoA) 

activation and its effectors’ Rho-associated, coiled-coil containing protein kinase 1 (ROCK 

I), resulting in HDL endocytosis through cytoskeleton reorganization. Also, purinergic 

receptors play an unclear role in the neurological disorders such as Alzheimer disease, 

neuritic plaques and neurofibrillary tangles (Brass et al., 2012). 

 

The roles of P2Y as a pharmacological target expanded markedly in the past years. P2Y12 

is considered as a potent antiplatelet agent that is used efficiently in treating cardiovascular 

diseases. 

 

2.6.2 Platelet purinergic receptors and their roles 

Platelet has at least two different purine receptors (P2); one P2X and the second is P2Y 

with very important function in platelet response and aggregation. P2X1, P2Y1 and P2Y12 

are the major platelets receptors. Recently small amount of P2Y14 were identified with 

unknown function (Cattaneo & Gachet, 1999; Moore et al., 2003). Approximated number 

of P2Y1 per platelet is 150 P2Y1/platelet which account approximately to 20% - 30% of 

ADP binding sites on platelets (Ohlmann et al., 2013; Westphal, 1987). This number is 

very low compared with thromboxane prostanoid receptors or with the thrombin receptor 

PAR-1 (1000–2000 receptors/platelet) (Westphal, 1987). On the other hand, the number of 

P2Y12 receptors on platelets plasma membrane is 425 ± 50/platelet (approximately 70% of 

platelet ADP binding sites) (Baurand et al., 2001). This is confirmed by using an 

antagonist radiolabeled substrate called [3H] 2-Propylthioadenosine-5- adenylic acid (1,1-

chloro-1-phosphonomethyl- 1-phosphonyl) anhydride ([3H]PSB-0413) which is highly 

stable, accurate and specific antagonist for P2Y12 receptors (Ohlmann et al., 2013). ADP is 

considered to be one of the most important mediators for platelets aggregation and 

thrombus formation. It’s the first described weak platelet aggregating agent with low 

molecular weight. The importance of ADP and its dense granules are proved by the fact 

that patients with ADP storage or secretion problems have bleeding diathesis (Daniel et al., 

1998). ADP is released either from activated platelets or from damaged cells at the sites of 

injured tissues. 
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ADP has a greater affinity than ATP for P2Y1, P2Y12 and P2Y13. Also, ADP is considered 

as a full agonist for P2Y1 while ATP is a partial agonist. Regarding P2Y12, the ATP has an 

antagonism relation while ADP and its derivatives have agonist effects. At the level of 

P2Y13, both ATP and ADP act as full agonist (Abbracchio et al., 2006). 

 

The autocrine – paracrine manner of ADP action in platelets is mediated by two specific G 

protein-coupled receptors; P2Y1 receptor and P2Y12. Thus far, P2Y12 plays a central role in 

the dense granules excretion and thromboxane production which is additional important 

aggregating agent. Patients with P2Y12 dysfunction have a small and loosely thrombus 

formation with increased bleeding time. Without P2Y12, platelet induces shape changes in 

the presence of ADP but with reduced granules content and failed to inhibit adenylate 

cyclase enzyme. This effect is similar to P2Y12 antagonism by thienopyridine antiplatlet 

drugs (Dorsam & Kunapuli, 2004). 

 

2.6.2.1 P2X 

P2X (P2X1 to P2X7) which is an ion-coupled receptor with a rapid and selective 

permeability for calcium (Ca
+2

), sodium (Na
+
) and potassium (K

+
) within 10 milliseconds 

in response to ATP. The signal transduction pathway appears to be relatively fast and 

simple. Once P2X is activated, it leads to rapid entry of extracellular Ca
+2

 ions inside the 

platelets and stimulation of platelet cytoplasmic Ca
+2

 voltage channel, and consequently, 

increasing the intracellular Ca
+2

 ions concentration that can synergize P2Y1 effects to 

induce platelet shape changes (Ralevic & Burnstock, 1998). The P2X receptors sequence 

proteins that range from 379 to 472 have a topology that includes two transmembrane 

domains (TMs), intracellular N- and C-termini and a large glycosylated extracellular 

domain (Ralevic & Burnstock, 1998). The function of P2X was obvious in different 

physiological processes other than platelet function such as pain sensation, nerve 

transmission, and immune response (Brass et al., 2012). 

 

2.6.2.2 P2Y1 and P2Y12 structure and mechanism of action 

The P2Y receptors proteins range from 308 to 378 amino acid sequence and are organized 

in seven alpha-helix TM domains. P2Y1 is a polypeptide consists from 373 amino acids 

that are coupled to Gq protein and partially sensitive to pertussis toxin (Ralevic & 

Burnstock, 1998). The presence of P2Y1 receptors was confirmed by the detection and 

isolation of P2Y1 receptor mRNA from platelets and megakaryocytes. Their role was 
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established by using selective agonist/antagonist and by P2Y1 deficient mouse model 

(Hechler et al., 1998). Once ADP binds with P2Y1, it leads to induce an intracellular 

transduction pathway that activates Gq protein by α subunit and consequently 

phospholipase C activation. This leads to hydrolysis of membrane phosphatidylinositol 4, 

5-biphosphate (PIP2) to inositol triphosphate (IP3) and diacyl glycerol (DAG). IP3 binds 

with IP3 receptors on endoplasmic reticulum leading to open Ca
+2

 channel and elevation of 

free cytoplasmic Ca
+2

, while DAG acts by activation of protein kinase C (PKC). Also, IP3 

and DAG together activate guanine nucleotide exchange factor (CalDAG-GEF1), which is 

responsible for activating Rap1 by inducing exchange of GDP for GTP. GTP-bound Rap1 

contributes in switching on and activating GPIIb/IIIa (Bertoni et al., 2002). These events 

lead to induce platelets shape changes and transient reversible aggregation (Gachet, 2001). 

P2Y1 receptor has two arginine residues in the carboxy-terminal domain which play 

essential role for activation of Gq-pathways (Ding et al., 2005). 

 

The two receptors P2Y1 and P2Y12 should be activated simultaneously for normal 

aggregation since separated inhibition of each of them by selective antagonists results in 

dramatic inhibition of aggregation (Milic-Emili, 1990) as shown in figure 2.1. 

 

The P2Y1 knockout platelets models showed no shape changes, and no aggregation in 

response to ADP agonist with no effect on adenylate cyclase enzyme. This suggests the 

presence of another ADP receptor in platelets which is P2Y12 (Fabre et al., 1999). In 

addition, P2Y1 receptor participates in aggregation induced by collagen, as shown by the 

reduced value of aggregation and the increase in the lag phase from the addition of 

collagen to the onset of aggregation in P2Y1 knockout platelets (Mangin et al., 2004). The 

serotonin can restore the ADP response in P2Y1-deficient platelets or in the presence of 

P2Y1 antagonist through activation of Gq. Although the serotonin alone is not able to 

induce platelet aggregation (Jin & Kunapuli, 1998). 

 

P2Y1 receptors also play a role in collagen-induced shape changes when TXA2 formation 

is prevented. The morphological changes during platelet aggregation indicate that the 

P2Y1 receptor is involved in the centralization of platelet granules induced by ADP and the 

formation of pseudopodia in platelets activated with low concentrations of strong agonists 

such as TXA2 or thrombin (Mangin et al., 2004). 
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On the other hand, P2Y12 receptors (old names P2YADP, P2YAC, P2Ycyc or P2TAC) is a 

multifunctional receptors that couple Gi2 protein to complete, amplify and stabilize the 

platelet response to ADP. It plays central roles in thrombus formation, activation of 

fibrinogen receptor, potentiating the secretion reaction and TXA2 production (Dorsam & 

Kunapuli, 2004; Kahner et al., 2006). The action of P2Y12 is facilitated by multiple 

pathways through Gi2 coupled protein, when ADP agonize P2Y12, multiple signal pathways 

are initiated, started with the inhibition of adenylate cyclase enzyme that leads to decrease 

cAMP production and increase in the dephosphorylated vasodilator stimulated 

phosphoprotein (VASP). Despite that inhibition of adenylate cyclase via Gαi2 is the main 

mechanism for P2Y12 stimulation, it indirectly induces platelet aggregation (Haslam, 

1973). The second mechanism that is induced by P2Y12 receptor is the stimulation of 

phosphatidylinositol-3 kinase (PI-3K) activity which plays a vital role in sustaining platelet 

aggregation, as shown in figure 1. Moreover, P2Y12 activates small GTPase Ras-related 

protein (RapIb) through a PI-3K-dependent mechanism (Kauffenstein et al., 2001; Trumel 

et al., 1999). The clinical relevance of P2Y12 is obtained when it’s blocked in CVD 

patients with thienopyridine compounds therapy. Poor aggregation induced by ADP was 

seen in platelet deficient P2Y12 with normal shape changes and intracellular Ca
+2

. The 

aggregation response by ADP and in the presence of P2Y12 antagonist is enhanced and 

restored by Gz stimulated via epinephrine, although the epinephrine alone is not able to 

induce platelets aggregation (Daniel et al., 1999). 

 

Vasodilator stimulated phosphoprotein (VASP) is an intracellular actin regulating protein. 

It acts as a substrate for cAMP- and cyclic guanosine monophosphate (cGMP)-dependent 

protein kinases (Waldmann et al., 1987). After P2Y12 activation and cAMP production 

inhibition, VASP dephosphorylation occurs. On the other hand, the inhibition of P2Y12 

receptors by thienopyridine compounds and the stimulation of cAMP production by 

vasodilator molecules such prostaglandin and nitric oxide (NO) induce phosphorylation of 

VASP. In case of clopidogrel resistance, measurement of VASP is needed to detect 

patients insufficiently protected by clopidogrel (Aleil et al., 2005). So, the level of VASP 

dephosphorylation/phosphorylation is associated and reflects the P2Y12 receptor activation 

and deactivation. The measurement of VASP by flow cytometry is considered as a reliable 

and specific marker for assessment of the P2Y12 inhibition (Schwarz et al., 1999). 
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Overall, the P2Y1 receptor mediates weak responses to ADP and has a crucial role in the 

early steps of platelet activation induced by ADP or collagen. So, the role of P2Y12 

receptor completes and amplifies platelet activation and aggregation irreversibly. The 

P2Y1 and P2Y12 receptors also play an important role in procoagulant activity of platelets. 

Both receptors are indirectly involved in platelet P-selectin exposure and formation of 

platelet-leukocyte conjugates leading to leukocyte tissue factor exposure. In addition, 

P2Y12 receptor is directly involved in the procoagulant activity of platelets through 

phosphatidylserine exposure at the surface of platelets (Leynadier, 1989). 

 

 

Figure 2.1: P2Y12 receptors’ structure and function. Three P2 receptors have been identified and 

cloned on platelets. P2X is ATP-mediated ion channel receptor that induces shape changes by rapid 

increase in intracellular Ca. P2Y1 and P2Y12 are ADP gated G-protein coupled receptors that 

induce platelets aggregation. P2Y1 receptor is Gq-coupled and responsible for intracellular calcium 

mobilization, shape change, and initiation of aggregation; while the P2Y12 which is Gi-coupled 

receptor and responsible for the completion of the aggregation to ADP and potentiating of 

aggregation and secretion by agents such as thrombin, serotonin, collagen, thromboxane A2, and 

immune complexes. The mechanism of action of P2Y12 receptor is mediated by inhibition of 

adenylate cyclase enzyme and decrease cAMP leading to indirect activation of the GbIIb/IIIa 

integrin and subsequent aggregation. Another mechanism for P2Y12 is dephosphorylation of the 

vasodilator-stimulated phosphoprotein (VASP), which negatively regulates GbIIb/IIIa, also a 

PI3K-dependent activation of the small GTPase Rap1B and PKB/Akt are involved in P2Y12 

receptor-mediated aggregation. The P2Y12 receptor is the target of the thienopyridine compounds 

ticlopidine and clopidogrel (Harrison, 2005a). 
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2.6.3 P2Y regulation 

Similar to most GPCRs, P2Y receptor activity is highly regulated by a number of complex 

mechanisms, including receptor desensitization, internalization and recycling. These 

mechanisms act to prevent the over stimulation of platelet response at the site of injury and 

thrombus formation. After platelet activation by its P2Y receptors, the regulation of P2Y 

receptors response is a very important and interesting point. To prevent the over 

stimulation and undesirable effects, once P2Y become activated by a first application of 

ADP, platelets become unresponsive to a second stimulation with ADP. This mechanism 

of activation is called refractory state of platelets to ADP and it is caused by 

desensitization of the P2Y1 and P2Y12 receptors (in other study the P2Y12 receptor remains 

functional) with a resultant loss of shape change and aggregation (Cunningham et al., 

2013; Hardy et al., 2005). In human platelets, both P2Y1 and P2Y12 are desensitized by 

different kinase dependent mechanism. P2Y1 is desensitized in protein kinase dependent 

manner, while P2Y12 is desensitized in G receptors kinase manner (Hardy et al., 2005). 

Another mechanism of P2Y receptors regulation is established and called P2Y receptor 

trafficking. In this mechanism, P2Y1 and P2Y12 receptors are differentially regulated and 

relocated upon activation by agonist and recycle back to plasma membrane upon removal 

of agonist stimulation. Both P2Y1 and P2Y12 receptors undergo clathrin and dynamin 

dependent endocytosis (Mundell et al., 2006), while the P2Y12 receptor mainly stays at the 

plasma membrane or internalized via G protein kinase. Also, degradation of P2Y1 

following prolonged ADP exposure is detected as a type of receptor regulation 

(Cunningham et al., 2013). This action may be of major consequence in vivo, since even in 

platelets refractory to stimulation by ADP, the P2Y12 receptor would be able to ensure 

platelet reactivity at sites of injury, thus preventing loss of the hemostatic function 

(Baurand et al., 2000). 

 

In summary, both P2Y1 and P2Y12 receptors are necessary for normal hemostasis and both 

play a key role in arterial thrombosis. P2Y12 receptors targeting antithrombotic drugs 

already exist, and new compounds have been developed and are under clinical evaluation 

(Gachet, 2008). 

 

2.6.4 Pharmacology of purinergic receptors 

Cardiovascular diseases are one of the most common causes of death worldwide. Ischemic 

vascular disease of arterial vascular bed includes three groups: peripheral artery diseases 
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(PAD), cerebrovascular stroke and coronary artery diseases (CAD). Moreover, CAD is 

further divided into two sub-groups; stable angina and acute coronary syndrome (ACS) 

which is the severe form of CAD which includes: an unstable angina pectoris; non-

segment elevated myocardial infarction (non-STEMI), and ST-elevation myocardial 

infarction (STEMI) which leads to heart failure, arrhythmia and sudden death (Cannon et 

al., 2013). 

 

One of the most important and usable pharmacological principle for treating CVD is the 

inhibition of ADP induced aggregation. According to the type of vascular disease severity 

and duration, patients may be managed by antithrombotic agent alone or may undergo 

percutaneous coronary intervention (PCI) (revascularization) or surgical vascular bypass 

graft. Whatever the patient treatment regime, antiplatelet agent should be used in all cases 

to prevent and manage the thrombotic effect and re-occlusion with minimal risk of 

bleeding (Gachet, 2015). 

 

Due to the important role of platelets and their receptors, especially P2Y12 in arterial 

thrombosis and CVD, the anti-aggregation agent is considered as a cornerstone and drug of 

choice for treating CVD. The prognosis of patient with ACS is improved by PCI together 

with antiplatelet agents such as aspirin and/or clopidogrel (Mehta et al., 2001). Aspirin was 

the first prescribed antiplatelet agent that acts by irreversible inhibition of cyclooxygenase-

1(COX 1). This enzyme is responsible for prostaglandin H2 synthesis that is transformed 

inside platelet by thromboxane synthase to TXA2 which acts as a potent anti-aggregating 

agent and stimulates platelet release reaction and vasoconstriction (Roth & Majerus, 1975). 

 

In contrast to other P2Y receptors, P2Y12 has a limited distribution throughout the body. 

So, it is considered as an attractive target for the thieonopyredeine groups which include: 

ticlopidin, clopidgrel and prasugrel (Hollopeter et al., 2001). Also, P2Y12 is targeted by a 

group of ATP analogue ticagrelor (AZD6140), and cangrelor (AR-C69931MX) which are 

direct, reversible antagonist agents for P2Y12 receptor; all of these agents antagonize P2Y12 

receptor with pharmacological differences, but with the same indirect blockage of ADP 

dependent activation of fibrinogen receptors GPIIb/IIIa. Thienopyridine compounds are 

pro-drugs that are metabolized by liver hepatocytes cytochrome P-450, especially 

CYP2C19 to produce active metabolites. Then, the active metabolite, which contains the 

thiol group, binds covalently and irreversibly with cysteine-containing sequences of P2Y12. 
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This disrupts the receptor oligomer and cancels its roles in platelet aggregation and 

thrombus formation (Savi et al., 2000). 

 

As it has been mentioned before in chapter one, one of the most important roles for P2Y12 

receptor is that it acts as a targeted ligand for antiplatelet agent especially thienopyrdines 

groups. These groups of antiplatelet drug may be used alone or in combination with aspirin 

as a dual therapy with high efficacy to treat patient with CVD and cerbrovascular diseases 

as well (Williams et al., 2010). The role of thienopyridine groups have become more 

obvious after cloning of P2Y12 in 2001 by Hollopeter et al. (Hollopeter et al., 2001). 

 

Clopidogrel is the second generation drug of thienpyridine group that acts by platelet 

P2Y12 receptors. The response of P2Y12 receptors inhibitors, in particularly, clopidogrel 

which is measured by platelet aggregation inhibition is influenced by several factors such 

as: poor bioavailability, accelerated platelet turnover, smoking, interaction with other 

drugs, genetic and other factors that could explain the inter-individual variation. Several 

previous studies have emphasized the effect of SNPs on clopidogrel response in patients 

with vascular disorders (Bura et al., 2006; Galic et al., 2013). Clopidogrel is a prodrug that 

is activated in the liver cells by cytochrome P450 (CYP) enzymes, mainly by CYP2C19. 

The steady state of clopidogrel therapy is achieved after 3-4 days after taking the standard 

daily dose of 75 mg/day, and is considered as a disadvantage for clopidogrel therapy 

(Gachet, 2005). The normal platelets functions especially aggregation are returned to 

normal after five days of clopidogrel cessation. Once clopidogrel is activated, it binds 

irreversibly with ADP receptor P2Y12 on platelet surface and prevents the secretion 

reaction, platelet aggregation and thrombus formation. Approximately 5-30% of patients 

treated with standard dose of clopidogrel therapy (75mg/daily) and 5-45% of patient under 

aspirin therapy have shown a wide inter-individual variability and high residual on-

clopidogrel / aspirin platelet reactivity respectively (Lev et al., 2007). The phenomenon of 

high platelet reactivity in patient under aspirin and clopidogrel therapy leads to failure in 

platelet aggregation inhibition ex vivo with increased risk of recurrent adverse 

cardiovascular diseases (Bura et al., 2006). 

 

Due to the previously mentioned factors, especially genetic ones; clopidogrel response 

with platelet aggregation inhibition less than 10% is considered as resistance to 

clopidogrel. Furthermore, when the platelet aggregation inhibition is less than 30%, it is 
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considered as a weak response for clopidogrel (Tang et al., 2013). This low response is 

associated with clopidogrel resistance and increased the risk of recurrent ischemic event. 

Multidrug resistance protein 1 (MDR1), cytochrome p450 (CYP2C19), and P2Y12 receptor 

are proteins for clopidogrel metabolism and biotransformation to active metabolite with 

clear evidence of association with clopidogrel response (Wiviott & Antman, 2004). Several 

SNPs were identified in these proteins and were correlated with clopidogrel response and 

platelet aggregation with considerable inter individual variation in clopidogrel response 

(Tang et al., 2013; Ziegler et al., 2005). The MDR1 gene is a coding gene for P-

glycoprotein which acts as a barrier against clopidogrel absorption in intestine. C3435T is 

an example of a SNP in MDR1 gene that is associated with decrease in P-glycoprotein 

expression (Shalia et al., 2013). SNPs were identified in CYP 450 include CYP2C19*1 

wild type, CYP2C19*2, [G681A] with splicing defect, and CYP2C19*3 [G636A] with 

stop codon (Sofi et al., 2011). Carriers of reduced functional variant of CYP2C19 

(CYP2C19 loss-of-function alleles) have a 61% higher risk for a major adverse cardiac 

event compared with non-carriers. These carriers are called poor responder or metabolizer 

(Simon et al., 2009). In contrast, people with increased functional variant of CYP2C19 

(gain of functional alleles) are associated with bleeding tendency (Simon et al., 2009; 

Williams et al., 2010). SNPs at the level of P2Y12 gene have also been studied. Two 

functional haplotypes are produced: H1 and H2 haplotypes. H2 haplotype has been 

designed as a factor that affects platelets and clopidogrel response variability. For example, 

18C>T and 36G>T SNPs of the P2RY12 gene significantly increased the risk for 

clopidogrel resistance and as a result, increased the risk of CVDs adverse effect (Fontana 

et al., 2003a; Shalia et al., 2013). Due to the obvious effect of SNPs in metabolizing 

enzyme in the case of clopidogrel, the strategy of treatment of patients with CVDs has 

been changed by using high dose of clopidogrel as a loading dose or using different types 

of antiplatelet drugs such as prasugrel. However, a combination therapy can be used to 

overcome clopidogrel resistance and decrease adverse effect of CVDs. 

 

Molecules such as clopidogrel or the ATP analogs of the AR-C series selectively inhibit 

the Gi-coupled ADP response without any impact on the P2Y1 receptor-mediated effects, 

whereas, P2Y1 receptor antagonists inhibit ADP-induced platelet aggregation without 

inhibiting the effect of ADP on adenylate cyclase activity. The requirement of this receptor 

to complete aggregation to ADP was confirmed by the generation of P2Y12 receptor-
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deficient mice, which displayed a defect in platelet aggregation in response to ADP, 

although the shape change was conserved (Leon et al., 1999). 

 

Ticagrelor (Brilinta) is a novel oral non-competitive direct antagonist agent that binds 

reversibly with P2Y12 receptor. It’s a potent antiplatelet agent with high efficacy and high 

absorption rate in contrast to clopidogrel (Wallentin et al., 2009). The metabolism of 

ticagrelor is like clopidorgrel which takes place in the liver by the action of CYP-P450 

3A4 and 3A5. After metabolism of ticagrelor, it gives the active ingredient named AR-

C124910XX. It has higher effects and less variability in decreasing the risk of adverse 

effect of CVD and cerebrovascular events compared with thienopyridine compounds. 

Therefore, the European Society of Cardiology (ESC) and American College of 

Cardiology (ACC) guidelines have recommended the use of ticagrelor instead of 

clopidogrel for treating and managing patients with ACS (Wallentin et al., 2009). 

Ticagrelor has another distinct mechanism of action in which it inhibits the sodium-

independent equilibrative nucleoside transporters (ENT 1/2). So, it decreases adenosine 

uptake by cells, leading to accumulation of adenosine outside the cell. This stimulates the 

GPCR and activates the adenylate cyclase enzyme. Consequently, this increases cAMP and 

inhibits platelet activation and aggregation (Cattaneo et al., 2014). The concentration of 

adenosine is increased after cellular stress conditions such as hypoxia, inflammation and 

tissue damage. This is mediated by the action of nucleotidase enzyme which converts ADP 

and ATP to adenosine that acts as a vasodilator and as a potent anti-aggregating agent. 

However, the effect of adenosine is limited in the blood because of the fast uptake by red 

blood cells in a half-life of few second. The main side effects of ticagrelor are dyspnoea 

and ventricular pauses.  

 

Cangrelor is a type of ATP analogue that binds competitively with P2Y12 by intravenous 

injection. It acts rapidly within a short action time (3-6 min) and short offset (30-60 min). 

It is considered as an emergency drug for acute situations (Gachet, 2015). Another new 

approach for CVD treatment and management is the use of Ap4A analogue. It acts by 

inhibiting ADP-induced platelet activation through synergistic antagonization of ADP 

receptors P2Y1 and P2Y12 at the same time which prevents platelet aggregation in a 

reversible manner (Gremmel et al., 2016). 
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2.6.5 Molecular and structural characterization of P2YR 

There are more than 1000 members of GPCR coding by eukaryotic genome. These groups 

of proteins are stimulated by diverse ligands, including: amines, lipids, peptides, ions, 

nucleotides, or proteases. GPCRs are diverse in structure, relevant in function and lead to 

variety of physiological responses. GPCRs are considered as key target for 30%-60% of 

modern drugs (Takeda et al., 2002). Based on sequence conservation, GPCR are grouped 

in at least 5 classes/families (GRAFS classification) with little sequence homology 

between each other. The largest class is group A or group 1 which is called also rhodopsin 

like receptors. It includes β2 adrenergic receptors, rhodopsin, P2Y receptors and others 

(Fredriksson et al., 2003; Takeda et al., 2002). To study the molecular modeling of P2Y 

receptors, different GPCR models such as β2 adrenergic receptor and bovine rhodopsin 

were used as templates for P2YR homology modeling. In 2000, the high-resolution crystal 

structure of bovine rhodopsin was used as a template and homology modeling was applied 

to all of the P2YRs at various times (Palczewski et al., 2000). P2Y1 was the first P2Y 

subtype in which molecular modeling was applied in conjunction with site-directed 

mutagenesis. The ligand binding site of this subtype was suggested to be located in the 

extracellular site within the upper third of TM 3, 6, and 7. An evidence reported that the 

charge of amino acid of these extracellular TM domains of P2Y1 and other P2Y like 

subgroup were expressed as positively charge. These positively charged amino acids were 

responsible to neutralize the negatively charged phosphate group of the nucleotide agonist 

ADP ligand (Cherezov et al., 2007). After that, β2 adrenergic receptors and rhodopsin 

were superseded and replaced by improved new alternative template with high resolution 

that was more identical at the level of sequence analysis homology. The new molecular 

modeling of peptide receptor was designed and reported in 2010 by Stevens (Deflorian & 

Jacobson, 2011). It was based on X-ray structures of the antagonist-bound form of the 

human C-X-C motif chemokine receptor 4 (CXCR4). CXCR4 is a new appropriate model 

template for both P2Y1 like subfamily and P2Y12 like subfamily. The overall sequence 

similarity between human P2Y12 receptor and the CXCR4 chemokine receptor is 22% and 

26% for the TM domains (Jacobson et al., 2012). 

 

After Hollopeter cloning and deorphanization of P2Y12, the structure and roles of P2Y12 

had become more obvious. There were three genetic transcripts forms for P2Y12 in human 

platelet resulted by alternative splicing. The common transcript in platelet was 2.4kb. 

Another less common 4.5kb transcript was isolated from platelet and brain. The third 
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transcript with 1kb in size was observed only in platelet mRNA (Hollopeter et al., 2001). 

P2Y12 receptor gene is composed of 4 exons and three introns located on chromosome 

3q24-q25. Table 2.1 shows the P2Y12 gene characteristic. Only exon three is encoded by 

342 amino acid peptide expressed on brain tissue, megakaryocyte and platelet surface 

(Sattler et al., 1977). The 342 amino acids protein with conserved amino acid sequence 

within TM domain belong to the class A rhodopsin family GPCRs. P2Y12 polypeptide 

seems like other GPCR. It consists of a single polypeptide chain that forms seven α-helical 

TM domains, connected to each other by six varying length loops. The cleft surrounded by 

the TM domains is thought to act as a ligand binding site and receptor functionality. Also, 

extracellular and intracellular loops coordinate specific ligand binding and signal 

transduction pathway through a GPCR (Costanzi et al., 2004). P2Y12 peptide has two N-

linked glycosylation sites (Asparagine6 and Asparagine13) that play an important role in 

P2Y12 receptors expression and signal transduction pathway regulation. Also, P2Y12 

protein has 4 extracellular cysteine residues (Cys) at the positions 17, 97, 175, and 270. 

Cys 97 and Cys175, are bound together by a disulphide bond and are important for 

receptor expression and binding of thiol group of thienopyridine compounds as shown in 

figure 2.3 (Ding et al., 2003). Molecular modeling and ligand docking of P2Y receptors 

reveal that the P2Y1R-like and P2Y12R-like subfamilies have 20% sequence identity. 

Therefore, the type of ligand and the mechanism of its binding are different for each of the 

subfamilies. Within each subfamily, the sequence identity is higher (Jacobson et al., 2012). 

 

Table 2.1: The P2Y12 gene details. 

Official full name Purinergic receptor P2Y12 (rs2046934) 

Alternative names HORK3; P2Y12; ADPG-R; BDPLT8*; SP1999; P2T(AC); P2Y(AC); 

P2Y(12)R; P2Y(ADP); P2Y(cyc) 

Protein family  G-protein coupled receptors 

Gene type Protein coding 

Organism Homo sapiens 

Lineage 

 

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 

Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; 

Catarrhini; Hominidae; Homo 

Chromosome location  3 (151336843..151384812) 

Map location  q21-q25.1 

Exon count 4 

Size  342 amino acids; 47970 bases; 39439 Da 

Tissues expression Brain, Platelets, Megakaryocyte 

Homologs P2RY12 gene is conserved in chimpanzee, Rhesus monkey, dog, cow, 

mouse, rat, zebrafish, and frog. 

Function Platelet aggregation, and is a potential target for the treatment of 

thromboembolisms and other clotting disorders. 

*BDPL8: bleeding disorder, platelet type 8. 
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2.7 Abnormalities of P2Y12 

Platelets functions especially aggregation and response to antiplatelet therapy showed 

variability among populations. One of the underlying factors is the genetic variations at the 

level of platelets receptors.  

 

2.7.1 Polymorphisms in the P2Y12 gene 

Several SNPs have been identified in P2Y12 gene. Recently, five common benign SNPs 

were identified at the level of P2Y12 receptor (Figure 2.2). According to Fontana study, 

two SNPs were located 139 nucleotide (nt) and 744 nt after the 5_ intron start site, 

consisting of a C-to-T (i-C139T) and a T-to-C (i-T744C) transition, respectively. Another 

polymorphism consisted of a single-nt insertion (A) at position 801 of the intron 

(ins801A). The remaining 2 polymorphisms were found in exon-2 and consist of a C-to-T 

transition (C34T), which is also called 18C>T, and a G-to-T transversion (G52T), which is 

called also 36G>T, but none of them modified the encoded amino acid (Asn6 and Gly12 

respectively) (Fontana et al., 2003a; Sherry et al., 2001). Four of these SNPs were in 

absolute linkage disequilibrium and were designed in two phenotypic groups with two 

haplotypes: H1 which include: i-C139, i-T744, absence i-ins801A, and G52 with frequency 

86%. H2 includes: i-139T, i-744C, presence i-ins801A, and 52T with frequency 14%. The 

fifth identified SNP was C34T which is associated with increased risk of adverse 

neurological event (4-folds) that is defined as ischemic stroke and/or carotid 

revascularization within a 2-year observation period than in subjects carrying the wild-type 

genotype (Ziegler et al., 2005). H2 haplotype has been associated with increased platelet 

aggregation and atherothrombotic risk (gain of function SNPs) (Fontana et al., 2003a).  

 

While rare pathological mutations within the P2Y12 gene lead to a clinical significant 

bleeding diathesis, common benign polymorphisms of the P2Y12 gene may have important 

implications and indirect association with atherothrombosis (Bierend et al., 2008). Genetic 

defects of human P2Y12 gene are associated with bleeding tendency due to defect in 

response to ADP induce platelet aggregation. This type of bleeding disorder is called 

bleeding disorder-platelet type 8 (BDPLT8) and is inherited in an autosomal recessive 

(AR) pattern (Sattler et al., 1977). 
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H2 haplotypes (H2/H2) are molecular variants associated with enhanced platelet responses 

and increased platelet aggregation (hyper responsiveness) induced by ADP, TRAP, 

collagen, epinephrine, and collagen-related peptide (CRP), or ristocetin (Yee et al., 2005). 

Also, patients with H2 haplotype (H2/H2) and under anti-platelet therapy with 

thienopyridine group, but not Aspirin, have shown decreased response or resistance for 

these drugs (Bierend et al., 2008; Fontana et al., 2003a) . In contrast, patients carrying the 

H1/H1 and H1/H2 haplotypes have the same whole blood aggregation (Staritz et al., 2009). 

 

 

Figure 2.2: Location of the polymorphisms in the P2Y12 gene. (Source: Fontana et al., 2003a).  

 

2.7.2 Congenital deficiency of P2Y12 

It is an AR disorder characterized by severe congenital deficiency in P2Y12 receptors. 

Patients with AR P2Y12 deficiency express severely impaired platelets aggregation and 

longer life bleeding diathesis with bleeding time elevation up to 20 mins (Cattaneo et al., 

1992). It is characterized by easy bruising, mucosal bleedings, and excessive post-

operative hemorrhage (Fontana et al., 2009). Decreased expression of P2Y12 receptors lead 

to diminished function at level of platelet function and thrombosis. The characteristic 

features of a homozygous patient is the failure of high concentration of ADP (>10mM) to 

induced irreversible platelet aggregation and the diminished potentiating effect of P2Y12 

with normal Ca
+2

 mobilization and shape changes (Cattaneo et al., 1992). However, 

heterozygous patients with congenital P2Y12 defect show a full response with irreversible 

aggregation in the concentration of ADP (>10mM). 
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2.7.3 Congenital dysfunction of the platelet P2Y12 receptors 

It’s associated with normal P2Y12 ligand binding site, but with dysfunctional receptors. 

Patients with dysfunction P2Y12 receptor express mild bleeding symptoms due to residual 

amount of functional P2Y12. The action of ADP to reduce cAMP produced by 

prostaglandin E1 was diminished, although the receptors site was normal when 2-

methylthioadenosine 5-[33P] diphosphate agonist was used (Cattaneo et al., 2003). The 

underlying cause of this defect is due to G to A transition that can change the codon of 

arginine 256 in sixth domain TM6 to Glutamine. In contrast, a C to T transition changing 

the codon for arginine 265 in the third extracellular loop (EL3) to tryptophan as shown in 

figure 2.3. Another mutation that changed codon 258 coding for proline (CCT) to 

threonine (ACT) (Pro258Thr) was identified and was found to affect P2Y12 receptor 

hydrophobicity, size and rotational mobility (Cattaneo, 2011a; Remijn et al., 2007). 

 

 

Figure 2.3: Suggested secondary structure of P2Y12. Black circles represent the sites of amino acid 

substitution in patients with dysfunctional P2Y12. TM indicates transmembrane region; EL, 

extracellular loop; and IL, intracellular loop. (Source: Cattaneo, 2011b). 
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Chapter Three 

______________________________________________________________ 

Materials and Methods 

 

This chapter explains the methodology of the study in details. It aims to determine the 

frequency of the most common and significant SNPs at the level of P2Y12 gene among 

Palestinian, Swedish and Congolese healthy individuals (n=254). Moreover, it covers the 

methodology used in exploring the effect of C34T (18C>T) and G52T (36G>T) genotypes 

on platelets response induced by ADP/TRAP agonists. All different materials, instruments 

and equipment that were used in this study are described in table 3.1.  

 

Table 3.1a: Instruments and reagents used in the study. 

Item Components Company 

Blood collection 

tubes 
EDTA and Hirudin vacutainer tubes.  

DNeasy Blood & 

Tissue Kits; 

purification kit for 

blood 

1- Proteinase K. 

2- DNeasy Mini Spin Columns (colorless) in 

2 ml Collection Tubes. 

3- Collection Tubes (2 ml). 

4- Buffer ATL. 

5- Buffer AL. 

6- Buffer AW1 (concentrate).* 

7- Buffer AW2 (concentrate).* 

8- Buffer AE. 

Germany 

Expanded long 

template PCR 

1- Expanded long template enzyme mix 

2- Expanded long template 10x buffer 1 

3- Expanded long template 10x buffer 2 

4- Expanded long template 10x buffer 3 

Roche; Germany 

PCR Master mix 2X 

1- Taq DNA polymerase. 

2- dNTPs. 

3- 1.5 mMMgCL2. 

4- Red dye. 

ThermoScientific; 

USA 

PCR tubes 
0.2 ml thin-walled reaction tubes with flat 

caps, Lot. 5084811. 
Sarsted; Germany 

Centrifuge Eppendorfs Germany 

Spectrophotometer Beckman; DU 530 USA 

Multiplate electrode  Roche, Germany 

Agonists 
1- ADP 6.5 µM 

2- TRAP 32 µM 
Roche, Germany 
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Table 3.1b: Instruments and reagents used in the study. 

Item Components Company 

PCR cycle 

sequencing kit 

1- BigDye® Terminator v1.1 

Sequencing kit ( BigDye Terminator v1.1 

Matrix Standards) 

2- BigDye® Terminator v1.1, v3.1 5X 

sequencing buffer. 

1- Applied 

Biosystems 

California, USA 

2- Warrington, UK 

PCR machine Applied biosystems; Veriti Germany 

Agarose type II Medium EEO; Lot# SLBN2061V Sigma-Aldrich; USA 

TRIS-EDTA(5X 

TBE) 

1- 54 g Tris 

2- 27.5 g boric acid 

3- 20 ml of 0.5 EDTA 

 

Nucleic acid gel 

stain 
GelStar 

Lonza, Basel, 

Switzerland 

PCR product dye 6x Loading dye solution New England; Biolab 

Gel agarose standard 
Gel agarose standard O Gene Ruler 

100 bp (green color). 

Fermentas, Waltham, 

Massachusetts, USA. 

Power supplier 
Microcomputer electrophoresis power supply 

(100-150 voltage). 

CONSORT, 

Hertfordshire, 

England. 

UV light Dark reader  

ABI PRISM® 310 

Genetic 

Analyzer 

10x EDTA buffer, Polymerase 
Applied Biosystems, 

California, USA 

Cycle sequencing kit 
BigDye® Terminator v1.1 Sequencing kit ( 

BigDye Terminator v1.1 Matrix Standards) 

Applied Biosystems, 

California, USA 

Injection solvent for 

genetic analyzer 
Hi-Di™ Formamide 

Applied Biosystems 

(PN 4311320) 

* Buffer AW1 and Buffer AW2 are supplied as concentrates. A 96–100% ethanol was added according to 

the bottle label before use to obtain a working solution. 

 

3.1 Study population 

For the genetic study, a total of 254 healthy individuals from three different populations; 

Swedish, Congolese and Palestinians were recruited to participate in the study. The 

distribution and baseline characteristics of study subjects are shown in table 3.2. A total of 

145 samples were from Palestine with ages between 17-24 years and a male: female ratio 

of 70:75, 55 samples were from Sweden and aged between 17-55 years and 54 samples 

from DR Congo, all of which were females aged between 17-45 years. Furthermore, ten 

Swedish volunteers were recruited to participate in the aggregation study. 
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Table 3.2: Study population baseline characteristics. 

Variable Palestinian Swedish Congolese 

Frequency (n) 145 54 55 

Age range (years) 17 – 24 17 - 55 17 – 45 

Gender (M:F) 70 : 75 --- 0 : 55 

Region West bank; Hebron Gothenburg Bukavu 

 

3.2 Sample collection and preparation 

Subjects were recruited conveniently from healthy unrelated individuals with different 

blood groups from Palestine and DR Congo, while all Swedish samples were picked 

randomly from blood group O. The molecular part of the study was analyzed at 

Gothenburg University, Department of Biomedicine Science and the aggregation study 

was conducted at Sahlgrenska Hospital, Department of Transfusion Medicine.  

 

For genotyping, DNA was extracted for the Palestinian samples from buffy coat EDTA 

blood. The DNA samples that were available were extracted according to manufacture 

instructions and stored at -20C°.  

 

For the aggregation study, 3 mL of whole blood were collected from 10 Swedish 

individuals in hirudin coagulated tubes using a vacutainer technique for the purpose of the 

aggregation and direct measurement of platelet aggregation (within 2 hours) induced by 

ADP/TRAP using multiple electrode Analyzer (Roche Diagnostic). 

 

3.3 Platelet aggregation study 

In this study, multiple electrode analyzer (MEA) instrument was used to assess the platelet 

aggregation in response to 6.5 µM of adenosine diphosphate (ADP) and 32 µM of thrombin 

receptor activating peptide (TRAP) agonists. The purpose of the aggregation study was to 

correlate the effects of the identified SNPs with platelets response induced by different 

agonists (ADP and TRAP). Whole blood (3 mL) from 10 healthy Swedish individuals was 

collected and analyzed. Aggregation studies were performed within 2 hours of blood 

collection and aggregation was measured at 37°C. Multiple electrode analyzer instrument 

is a phenotypic assay that measures an intermediate clinical phenotype called platelet 

reactivity using different adjusted concentrations of agonists. 
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For whole blood, 300 μL phosphate buffered saline (PBS) (0.15 mol/L sodium chloride 

buffered with sodium- and calcium phosphate 0.06 mmol/L, pH 7.1) and 300μL whole 

blood were mixed in the test cell and incubated for 3 minutes. After the incubation, 20 μL 

ADP or TRAP were added as an agonist to induce aggregation and AUC was obtained 

after a 6 minutes measurement. AUC reflects the level of platelets aggregation response 

due to stimulation of the P2Y12 receptors by ADP/TRAP agonist. In case of sufficient 

concentration of ADP, platelet activation and shape changes were induced. This leads to 

increase the impedance of electrodes during the test time until maximal aggregation 

occurs. The normal individual has an increasing AUC until maximal full platelets 

activation occurs. If a patient is under thienopyridine compounds, the AUC result is below 

the normal range. However, if the AUC for patients with clopidogrel resistance is close to 

normal range, inadequate platelet inhibition occurred. 

 

3.4 Genetic study 

3.4.1 DNA extraction 

Swedish and Congolese samples: Genomic DNA was prepared from whole blood drawn 

in EDTA tubes using the QIAGEN DNeasy Blood & Tissue extraction Kit according to the 

manufacture instructions (Qiagen, 2013). Briefly, after preparation of working solution, 20 

μL of proteinase K were added into the bottom of a 1.5 sterile microcentrifuge tube. Then, 

200 μL of well mixed whole blood were transferred carefully to the tubes. After that, 200 

μL of buffer AL (lysing buffer) were added. The tubes were mixed vigorously to yield a 

homogenous solution by puls vortexing for 15 seconds. After incubation for 10 min at 56 

⁰C, the micocentrifuge tubes were centrifuged briefly to remove the drops from tube lid. 

Then, 200 μL of absolute ethanol were added to the tube mixture and mixed again by puls 

vortexing for 15 sec. Then, the tubes were centrifuged briefly to remove drops from inside 

of the lid. After that, the mixture was transferred to QIAamp mini spin column with a 2 mL 

collection tube. Tubes were centrifuged for 1 min at 8,000 rpm. After centrifugation, the 

QIAamp Mini spin columns were placed in clean collection tubes. Then, 500 μL of AW1 

buffer were added without wetting the rim and centrifuged at 8,000 rpm for 1 min. Next, 

QIAamp Mini spin column was placed in a new clean 2 mL collection tube. Then, the 

QIAamp Mini spin columns were carefully opened, 500 μL of buffer AW2 were added and 

the columns were centrifuged for 3 min at full speed (14,000 rpm). After that, the 
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collection tubes were discarded and the QIAamo Mini columns were re-centrifuged at full 

speed for 1 min for drying. Finally, the QIAamp Mini columns were placed in a clean 1.5 

mL microcentrifuge tubes and the DNA was eluted by adding 100 μL distilled water, 

incubation for 1 min and then centrifugation at 8,000 rpm for 1 min. The extracted DNA 

was stored at –20°C. 

 

Palestinian samples: Genomic DNA was prepared from buffy coat using the 

MasterPure™ DNA Purification (Epicentre) according to the manufacture instructions 

(Epicentre, 2013).  

 

3.4.2 DNA quantification 

The concentration of DNA for Palestinian samples was measured spectrophotometrically 

by Nanodrop 2000c (Thermoscientific). For Swedish and Congolese samples, the 

BioPhotometer Plus (Eppendorf) was used. The instrument was adjusted using 60 μL 

distilled water as a blank. Most samples were measured twice to check the accuracy and 

precision. The protein/DNA ratio (260/280 nm) was calculated to evaluate the purity of 

DNA samples. The DNA concentrations for all samples were ranged from 7-114 ng/μL. 

The concentrated DNA samples were diluted with distilled water. In contrast, diluted DNA 

samples were concentrated by increasing the taken volume of template DNA. DNA 

samples with A260/A280 ratio less than 1.2 were not used. 

 

3.4.3 Primer design 

As mentioned before, the P2Y12 receptor gene consists of four exons in which exon-3 is the 

only coding one. The most significantly reported SNPs are located in the coding region of 

exon-3, which includes 36G>T (H2 haplotype) and 18C>T. In this study, only exon-3 was 

sequenced in all samples (n=254). Four pairs of primers were designed according to the 

primer design software of eurofins genomics. The sequence, length, melting temperature 

and nucleotide position are listed in Table 3.3. Our primers’ length ranged between 20-27 

bp in length. They were selected with an average of GC content around 33%-60% with 

random base distribution. Since exon-3 is long and with high GC content, three primer 

pairs (3-8) with an overlap designed to cover the whole exon-3, as shown in table 3.3. 

 

 

 



33 

 

Table 3.3: Primers sequence that were used to amplify exon-3 of P2Y12 gene. 

Primer 

No. 
Oligo

1
 name Sequence 

Length 

(bp) 

Tm
2
 

(
o
C) 

GC% 

1 P2Y12F
3
127532 

5’-

CCTTAGGCTGAAAAT

AACCATCCTC-3’ 

25 61.3 44% 

2 P2Y12R
4
128675 

5’-

GCGCTTTGCTTTAAC

GAGTTCTGAA-3’ 

25 61.3 44% 

3 P2Y12ex2.1F 

5’-

AATAACTACCTTAGG

CTGAAAATAACC-3’ 

27 58.9 33% 

4 P2Y12ex2.1R 

5’-

TTTTAAATGGCCTGG

TGGTC-3’ 

20 55.3 45% 

5 P2Y12ex2.2F 

5’-

CTGGGAACAGGACCA

CTGAG-3’ 

20 61.4 60% 

6 P2Y12ex2.2R 

5’–

AAGGAATTCGGGCAA

AATG-3’ 

20 53.2 40% 

7 P2Y12ex2.2F 

5’–

AAAGAACTGTACCGG

TCATACG-3’ 

23 58.9 43.5% 

8 P2Y12ex2.3R 

5’ –

TTAGCGTTTGCTTTAA

CGAG-3’ 

21 55.9 42.9% 

1
Oligo: Oligonecleotide; 

2
Tm: melting temperature; 

3
F: Forward primer; 

4
R: reverse primer. 

 

3.4.4 DNA amplification by PCR 

In this study, extended Long Template PCR system (LT-PCR) was used for the majority of 

samples. LT-PCR is a special enzyme mixture that contains thermostable Taq DNA 

polymerase and thermostable Tgo DNA polymerase. The Tgo polymerase has 3’-5’ 

exoneoclease activity (proofreading activity). So, LT-PCR yields large amount of target 

DNA. A final volume of 50 μL PCR reaction was used and included two mixtures. The 

final volume of mixture one was 25 μL containing 5 μL of dNTPs, 1 μL genomic DNA 

(~100 ng), 1 μL of each amplification primer (10μM each) and 17 μL distilled water. The 

second mixture with 25 μL contains 19.25 μL ddH2O (double distilled water), 5 μL of 

buffer1 10X with 17.5 mM MgCl2, 0.75 μL of enzyme mix of Taq and Tgo DNA 

polymerase enzymes with enzyme storage buffer (20 Mm Tris-HCl, pH 7.5 at 25°C, 100 

mM KCl, 1 mM dithiothereitol (DTT), 0.1 mM EDTA, 0.5% nonidet P40 V/V, 0.5% 

Tween 20 V/V, 50% glycerol V/V). Mixture one and two were mixed together in a PCR 
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tube to get a final volume of 50 μL. PCR amplification was carried out in a PCR system 

(Applied Biosystems, Verity 96 well thermal cycler). 

 

A total of 32 samples of Congolese population were amplified by PCR master mix1X with 

the same LT-PCR program. The PCR master mix includes Taq DNA polymerase, dNTPs, 

1.5 mM MgCL2, and red dye. The PCR tube mixture with final volume of 25 μL contained 

3 μL genomic DNA (~100 ng), 20 μL PCR buffer (buffer:75 mM Tris-HCl, pH 8.8 at 

25°C, 20 mM ammonium sulfate, 1.5 mM MgCl2 and 0.625 Units ThermoPrime Taq DNA 

Polymerase) and 1 μL of each amplification primer (10 μM each). The amplification was 

performed in the thermal cycler using the PCR condition summarized in table 3.4. 

 

Table 3.4: Thermal cycler program for exon-3 amplification by LT-PCR. 

PCR program 
Exon-3 amplification by LTPCR 

Temp (
o
C) Time 

Initial denaturation 92  10 sec 

Denaturation 92  6 sec 
35 

cycles 
Annealing 58  15 sec 

Extension 68  2 min 

Final Extension 72  7 min 

Keep in machine 4  24hrs 

 

3.4.5 Agarose gel electrophoresis 

After PCR reaction and amplification of target DNA, the agarose gel electrophoresis was 

used for separating and analyzing the targeted DNA fragment. In neutral pH buffers, the 

net negative charge of phosphate backbone of DNA migrates from the cathode (negative 

electrode) to the anode (positive electrode). Migration is according the fragment size, 

whereas, the shorter DNA fragments move faster and longer. 

 

A 1.5% agarose gel was prepared by mixing 0.9 gm of Agarose type II, with 60 mL of 

0.5TBE (54g Tris, 27.5g borate, 20mL 0.5 EDTA) buffer. When the mixture had cold 

down to about 60°C, 1 μL Nucleic Acid Gel Stain, Gelstar, Lonza was added in order to 

visualize the DNA fragments after separation. Then, 5 μL of the PCR products were 

electrophoresed on the agarose gel. A PCR product from colorless LT-PCR was mixed 

with 1μL of Gel Loading Dye (6x) and then was loaded. In the first lane, 1 μL of 100 bp 
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DNA OGeneRuler Gel agarose marker was loaded. All amplification products were 

separated by high-voltage electrophoresis (150 voltages for 40 min). After separation, the 

gel was placed on a UV light transilluminator to visualize the DNA fragments. 

 

3.4.6 Purification of PCR products 

Purification for PCR products was performed using (QIAquick PCR purification kit) from 

QIAGEN company using a silica-based membrane technology in the form of spin columns. 

After the working reagent was prepared according to manufacturer’s instructions, a 5 

volume of Binding Buffer was added to 1 volume of PCR product and mixed well (250μL 

binding buffer to 50 μL PCR products). Then, the QIAquick column was placed in a 2 mL 

collection tube and centrifuged for 30-60 seconds to allow DNA to bind with the silica 

membrane. Next, the flow-through was discarded and 750 μL of the diluted washing buffer 

were added (with ethanol) to the QIAquick purification column. The column was 

centrifuged for 30-60 seconds and the flow-through was discarded. After that, the 

purification column was placed back into the same collection tube and the empty 

QIAquick purification column was centrifuged for an additional 1 min for completely 

removal of any residual wash buffer. The QIAquick purification column was transferred to 

a clean 1.5 mL microcentrifuge tube. Finally, 50μL of Elution Buffer (10 mM Tris-HCl, 

pH 8.5) were added to the center of the QIAquick purification column membrane and 

centrifuged for 1 minute. The QIAquick purification column was discarded and the 

purified DNA was stored at 4°C. The quality and quantity of purified PCR product was 

assessed by agarose gel electrophoresis. 

 

3.4.7 Sequencing of PCR products 

The PCR reaction for sequence was performed using applied biosystems thermal cycler 

instrument with a final volume of 20 μL. For each sample, three sequencing PCR were 

done. According to the sequencing primer (Table 3.3), exon-3 was divided into three parts 

with different primer sets. The PCR mixture with each primer set included 3 μL of pure 

PCR product, 8 μL ddH2O, 1 μL of forward primer, 2 μL BigDye Terminatorv1.1/3.1 

Sequencing Buffer and 6 μL BigDye Sequencing Buffer. This mixture was subjected to 35 

three-temperature cycles. The sequencing reaction is summarized in table 3.5. 
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Table 3.5: Cycle sequencing reaction. 

Reagent Concentration Volume (μL) 

BigDye Terminator v1.1/3.1 Sequencing Buffer 5X 2 

BigDye Sequencing Buffer 5X 6 

Primer (Forward) 10X 1 

DNA template  3 

dd H2O  8 

Final volume  20 

The samples were mixed well and spinned briefly, then, the tubes were placed in a thermal 

cycler and the volume was set to 20 μL. 

 

3.4.8 Ethanol / EDTA precipitation 

After Cycle Sequencing was completed, the 20 μL PCR sequencing reactions were 

precipitated. A 100 μL of 99% ethanol and 5 μL of 125 mM EDTA were added to each 

PCR tube. The mixture was incubated for 30 min to 4 hours at room temperature, and 

centrifuged for 20 min at 12,000 rpm. The tube content was inverted into paper towel 

without disrupt the belt. The next step followed immediately and if this was not possible, 

the tubes were spinned for additional 2 min before performing the next step. The tube was 

washed with 200 μL of 70% ethanol and centrifuged for 5 min at 12,000 rpm. The tube 

content was inverted into paper towel without disrupt the belt for complete air drying. 

Finally, 20 μL HiDi formamide were used to re-suspend the single-stranded sequencing 

amplicons. 

 

3.4.9 Sequencing 

Swedish and Congolese samples were sequenced using ABI PRISM, 310 Genetic analyzer, 

Applied Bio systems, U.S, which is based on capillary electrophoresis (CE) and used POP-

6 performance optimized polymer 6 and 1X buffer with EDTA. The PCR products from 

the Palestinian samples were sent to Eurofins Company in Germany for exon-3 

sequencing. 

 

3.4.10 Analysis of DNA sequence 

Basic Local Alignment Search Tool (BLAST) searches / CDS feature (complete DNA 

sequence) was used to compare the DNA sequences with RefSeq (Homo sapiens 

Purinergic P2Y12 receptor ID: 64805), RefSeq Gene on chromosome 3, Accession 

AK292096). Sequences were first examined for 2 benign polymorphisms in the first part of 

exon-3; (18C>T [p.Asn6] and (36G>T [p.GlY12]). Another two pathological SNPs were 
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examined in the second and third parts of exon-3; (767G>A [p.Arg256Gln] and (793C>T 

[Arg265Trp]). Also, all exon-3 was examined and analyzed for any other SNPs. Other 

programs were used to look for all P2Y12 gene variants that have been discovered before 

and the role of each variant (polyphenotyping) in pathogenicity using the dbSNPs short 

genetic variations, ENSEMBL Genetic Variation and Exome Variant Server (EVS). 

 

3.5 Ethical considerations 

All individuals were given information about the study and then signed a written consent 

form for the use of the blood components in this study. An ethical approval was given by 

the Institutional Review Board of Sahlgrenska University Hospital and Al-Quds 

University. 

 

3.6 Statistical analysis 

Data was coded, entered and analyzed using SPSS version 24. Descriptive statistics for all 

individuals were presented as frequencies and percentages for categorical variables, and 

mean and standard error of mean (SEM) for continuous variables. Independent t -test was 

used to compare the association between the genotypes and the platelet aggregation 

induced by ADP/TRAP. Differences between genotype groups and population study were 

analyzed by using Chi-square test. Alleles and genotypes frequencies were calculated with 

the Hardy-Weinberg equilibrium prediction. A p-value of <0.05 was considered to be 

statistically significant. 
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Chapter Four 

______________________________________________________________ 

Results 

 

4.1 P2Y12 sequencing results 

In this study, the P2Y12 coding exon-3 was sequenced and analyzed. All samples (n=254) 

were sequenced and tested for H1, H2 haplotype (tag-SNP G52T ―36G>T‖) and C34T 

(18C>T). Furthermore, all individuals were tested for two other pathological SNPs 

767G>A and 793C>T. For this purpose, six primer pairs were designed for the sequencing 

of exon-3 of P2Y12 gene. Swedish and Congolese samples were sequenced for whole exon-

3 with the forward primers 3, 5 and 7, while the Palestinian samples were sequenced for 

the exon-3 with the forward primer 3. The tag-SNP G52T and C34T were located in the 

first part of exon-3, as shown in figure 4.1. The target exon-3 was amplified using PCR. 

Then, PCR products were separated by gel electrophoresis, purified, and used for DNA 

sequencing (Figure 4.2). 

 

ATGCAAGCCGTCGACAA(C/T)CTCACCTCTGCGCCTGG(G/T)AACACCAGTCTGTGCACCA

GAGACTACAAAATCACCCAGGTCCTCTTCCCACTGCTCTACACTGTCCTGTTTTTTGTTGGAC

TTATCACAAATGGCCTGGCGATGAGGATTTTCTTTCAAATCCGGAGTAAATCAAACTTTATT

ATTTTTCTTAAGAACACAGTCATTTCTGATCTTCTCATGATTCTGACTTTTCCATTCAAAATTC

TTAGTGATGCCAAACTGGGAACAGGACCACTGAGAACTTTTGTGTGTCAAGTTACCTCCGTC

ATATTTTATTTCACAATGTATATCAGTATTTCATTCCTGGGACTGATAACTATCGATCGCTAC

CAGAAGACCACCAGGCCATTTAAAACATCCAACCCCAAAAATCTCTTGGGGGCTAAGATTC

TCTCTGTTGTCATCTGGGCATTCATGTTCTTACTCTCTTTGCCTAACATGATTCTGACCAACA

GGCAGCCGAGAGACAAGAATGTGAAGAAATGCTCTTTCCTTAAATCAGAGTTCGGTCTAGT

CTGGCATGAAATAGTAAATTACATCTGTCAAGTCATTTTCTGGATTAATTTCTTAATTGTTAT

TGTATGTTATACACTCATTACAAAAGAACTGTACCGGTCATACGTAAGAACGAGGGTGTAG

GTAAAGTCCCCAGGAAAAAGGTGAACGTCAAAGTTTTCATTATCATTGCTGTATTCTTTATT

TGTTTTGTTCCTTTCCATTTTGCCCGAATTCCTTACACCCTGAGCCAAACCCGGGATGTCTTT

GACTGCACTGCTGAAAATACTCTGTTCTATGTGAAAGAGAGCACTCTGTGGTTAACTTCCTT

AAATGCATGCCTGGATCCGTTCATCTATTTTTTCCTTTGCAAGTCCTTCAGAAATTCCTTGAT

AAGTATGCTGAAGTGCCCCAATTCTGCAACATCTCTGTCCCAGGACAATAGGAAAAAAGAA

CAGGATGGTGGTGACCCAAATGAAGAGACTCCAATGTAA 

Figure 4.1: Screened P2Y12 nt sequence of the transcript variant X1, mRNA for exon-3 that 

shows the site of SNPs C34T (18C>T) and G52T (36G>T), respectively. (Source: NCBI Reference 

Sequence: XM_017007069.1). 
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Figure 4.2: Agarose gel electrophoresis of PCR products of P2Y12 gene exon-3 of 9 Swedish 

subjects. 

 

A total of five benign SNPs were found among study population (18C>T, 36G>T, 

546C>T, 989A>G, and 162G>T). In addition, the two pathological SNPs 767G>A and 

793C>T were not found in the study group. The minor allele frequencies (MAF) of the five 

P2Y12 gene variants are shown in table 4.1 (21.9%, 10.0%, 0.6%, 0.2 and 0.2%, 

respectively). Regarding the genotypes, the proportion of subjects carrying the wild type 

for the five genetic variants was 64.2%, 80.3%, 98.8, 99.6% and 99.6% for 18C>T, 

36G>T, 546C>T, 989A>G and 162G>T, respectively. Furthermore, heterozygous 

genotypes for the previously mentioned variants in the same order were found in 28.0%, 

19.3%, 1.2%, 0.4% and 0.4% of study subjects. Moreover, 20 subjects and only one 

subject had homozygous mutated alleles for the 18C>T and 36G>T variants, respectively.  

 

Table 4.1: The frequency of P2Y12 SNPs among study populations. 

SNP 

Frequency (n=254)* Minor allele 

frequency**  

(%) 
Wild type 

N (%) 

Heterozygote 

N (%) 

Homozygote 

N (%) 

c.18C>T → p. Asn6= 163 (64.2) 71 (28.0) 20 (7.9) 21.9 

c.36G>T→ p.Gly12= 204 (80.3) 49 (19.3) 1 (0.4) 10.0 

c.546C>T→ p.Phe182= 251 (98.8) 3 (1.2) 0 (0.0) 0.6 

c.989A>G→p.Glu330Gly 253 (99.6) 1 (0.4) 0 (0.0) 0.2 

c.162G>T→p.Arg54= 253 (99.6) 1 (0.4) 0(0.0) 0.2 

* Numbers may not add to 100% due to rounding. 

** n=508 chromosomes. 

100bp ladder ~1027 bp 

llladde 
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4.1.1 Sequencing of P2Y12 in the Swedish population 

A total of 55 individuals from Swedish origin were sequenced and exon-3 was analyzed. 

All participants were negative for the pathological SNPs: 767G>A and 793C>T. 

Furthermore, all individuals were negative for other SNPs in part two and three of exon-3. 

Regarding part one of exon-3, only two benign SNPs were identified and genotyped C34T 

(18C>T) and G52T (36G>T). The rare genotype TT (H2H2 haplotype) was identified in 

one Swedish participant. The number of individuals and the percentage of each SNP 

genotypes are shown and the minor allele frequencies are shown in table 4.2. The MAF 

were calculated using Hardy-Weinberg Equation to be 20% and 23.6% respectively for the 

tow variants.  

 

Table 4.2: The frequency of P2Y12 SNPs among Swedish population. 

SNP 

Frequency (n=55)* Minor allele 

frequency** 

 (%) 

Wild type 

N (%) 

Heterozygote 

N (%) 

Homozygote 

N (%) 

c.18C>T → p. Asn6= 35 (63.6) 18 (32.7) 2 (3.6) 20.0 

c.36G>T→ p.Gly12= 30 (54.5) 24 (43.6) 1 (1.8) 23.6 

* Numbers may not add to 100% due to rounding. 

** n=110 chromosomes 

 

4.1.2 Sequencing of P2Y12 in the Congolese population 

Regarding the Congolese individuals, a total of 54 samples were analyzed. The two tested 

SNPs at the level of part 1 of exon-3, 18C>T and 36G>T, were detected with frequencies 

of 6.5% and 12%, respectively. In addition, for part 2 of exon-3, two additional 

polymorphisms were found (546C>T and 989A>G). These allele variants were found only 

in heterozygous manners. One of the identified SNPs was a silent mutation at position 

c.546C>T without any clinical significance. The other SNP was identified at position 

c.989A>G with a substitution in amino acid 330 from Glu to Gly. Furthermore, all 

participants were negative for the two pathological SNPs767G>A and 793C>T (Table 4.3). 

 

Table 4.3: The frequency of P2Y12 SNPs among Congolese population. 

SNP 

Frequency (n=54)* Minor allele 

frequency** 

 (%) 

Wild type 

N (%) 

Heterozygote 

N (%) 

Homozygote 

N (%) 

c.18C>T → p. Asn6= 50 (92.6) 1 (1.9) 3 (5.6) 6.5 

c.36G>T→ p.Gly12= 41 (75.9) 13 (24.1) 0 (0.0) 12.0 

c.546C>T→ p.Phe182= 52 (96.3) 2 (3.7) 0 (0.0) 1.9 

c.989A>G→p.Glu330Gly 53 (98.1) 1 (1.9) 0 (0.0) 0.9 

* Numbers may not add to 100% due to rounding. 

** n=108 chromosomes 
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4.1.3 Sequencing of P2Y12 in the Palestinian population 

Regarding the Palestinians, a total number of 145 individuals were sequenced and analyzed 

for exon-3 using forward primer 3. The MAF using Hardy-Weinberg Equation of C34T 

(18C>T) and G52T (36G>T) were 28.3% and 4.1%, respectively. All Palestinian 

individuals were negative for the two pathological SNPs. Further, two silent SNPs at 

position c.546C>T and c.162G>T were detected in one individual each. The number of 

individuals and the percent of each genotype are shown in table 4.4. 

 

Table 4.4: The frequency of P2Y12 SNPs among Palestinian population. 

SNP 

Frequency (n=145)* Minor allele 

frequency** 

 (%) 
Wild type 

N (%) 

Heterozygote 

N (%) 

Homozygote 

N (%) 

c.18C>T → p. Asn6= 78 (53.8) 52 (35.9) 15 (10.3) 28.3 

c.36G>T→ p.Gly12= 133 (91.7) 12 (8.3) 0 (0.0) 4.1 

c.546C>T→p.Phe182= 144 (99.3) 1 (0.7) 0 (0.0) 0.3 

c.162G>T→p.Arg54= 144 (99.3) 1 (0.7) 0 (0.0) 0.3 

* Numbers may not add to 100% due to rounding. 
** n=290 chromosomes 

 

Moreover, there was a significant difference in the frequency of 18C>T genotypes between 

the three study populations (P <0.001) and for 36G>T genotypes (P <0.001). Examples on 

the sequencing results of the different SNPs are illustrated in figure 4.3 and figure 4.4. In 

addition, table 4.5 summarizes all SNPs/variants observed in the study populations. 

 

 

Figure 4.3: DNA sequencing result from exon-3 of the P2Y12 gene, showing C34T (18C>T) and 

G52T (36G>T) genetic variants.  
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Figure 4.4: DNA sequencing result from exon-3 of the P2Y12 gene. A) TT genotype of C34T 

(18C>T) and GG genotype (H1H1 haplotype) of G52T (36G>T). B) CC genotype of 18C>T and 

GT genotype (H1H2) of 36G>T. C) The rare genotype TT (H2H2) of 36G>T. D) The heterozygous 

form of 989A>G. 

 

Table 4.5:.DNA variants observed in the study subjects. (Source: 

http://evs.gs.washington.edu/EVS/) 

rs ID* 

Variant 

position** 

(bp) 

Alleles 
€ cDNA 

change 

Protein 

change 

Phenotype
¥
 

Allele 

frequency
# 
(%) 

rs6785930 151338828 G+A c.18C>T p.Asn6= Benign 71% G / 29% A 

rs6809699 151338810 A+C c.36G>T p.Gly12= Benign 83% C / 17% A 

rs121917885 151338079 C+T c.767G>A p.Arg256Gln 
Probably 

damaging 
100% C 

rs121917886 151338053 G+A c.793C>T p.Arg265Trp 
Probably 

damaging 
100% G 

rs16863320 151338300 A+G+T c.546C>T p.Phe182= Benign 99% G / 1% A 

rs16846673 151337857 T+C c.989A>G p.Glu330Gly Benign 99% C / 1% T 

* rs ID (rsids): accession number used by researchers and databases to refer to specific SNP and it 

stands for (Reference SNP cluster ID) or dbSNP (SNPs Database) reference SNP identifier. 

** Variant position: SNV (Single Nucleotide Variant) location on the chromosome. 
€ 
Alleles: it refers to a change from a reference allele to an alternate allele. 

#
Allele frequency: observed allele percentage in all populations (European American (EA) and 

African American (AA).  
¥
 Phenotype: prediction of possible impact of an amino acid substitution on protein structure and 

function based on Polymorphism Phenotyping (PolyPhen2) program.  

A B 

C D

https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=121917886
https://www.ncbi.nlm.nih.gov/nuccore/NT_005612.17?report=graph&m=57632480&v=57632430:57632530&c=3366FF&theme=Details&flip=false&select=null&content=5&color=0&decor=0&layout=0&spacing=0
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=16846673


43 

 

4.2 Aggregation study results 

Platelet aggregation in whole blood induced by ADP and TRAP agonist was measured 

using a multiple electrode analyzer (Roche Diagnostic) instrument. TRAP is a potent 

platelet aggregating agent that acts via the thrombin receptor PAR-1. The reference ranges 

for ADP and TRAP induced platelet aggregation for whole blood according to the 

manufacturer of the multiple electrode analyzer instrument are 53-122 AUC and 94-156 

AUC, respectively. The ratio of ADP to TRAP induced aggregation is called relative ADP-

induced aggregation (r-ADP-agg) and considered as a valuable tool for reflecting the 

individual degree of P2Y12-mediated platelet reactivity. 

 

The majority of the individuals (n=9) had a normal phenotypic group of platelet 

aggregation. The AUC results of all individuals were within the reference range with an 

aggregation profile consistence with normal platelet response for ADP/TRAP agonists. 

The mean ± SEM of TRAP-induced aggregation, ADP-induced aggregation and r-ADP-

agg were 120.7 ± 4.8 AUC, 74.7 ± 3.43 AUC and 61.8%, respectively. One individual was 

excluded because he was under anti-platelet therapy and had a low AUC in response to 

ADP and TRAP, 8 and 56 AUC, respectively.  

 

4.3 Effect of DNA sequence variants on aggregation study 

Regarding the aggregation study, the frequency of G and T alleles of 36G>T in the 9 

Swedish individuals were 66.7% and 33.3%, respectively. On the other hand, the 

frequency of C and T alleles of 18C>T were 33.3% and 66.6%, respectively. For the 

36G>T genetic variant the mean ± SEM of platelet aggregation induced by ADP for 6 

individuals with W.T genotype was 73.5 ± 3.7 AUC, while the mean ± SEM of 3 

individuals with the heterozygous (GT) genotype was 77.3 ± 8.25 AUC. There was no 

significant difference in the aggregation results induced by ADP for individuals who carry 

WT and GT of 36G>T (P=0.632). 

 

Regarding the effect of 36G>T SNP (H2 haplotype) on platelets’ response induced by 

TRAP agonist, there was no significant difference between the mean AUC of the six 

individuals who carried the WT (121 ± 5.8) and the three individuals with the 

heterozygous (GT) genotype (120.3 ± 10.4) (P=0.95). On the other hand, three individuals 

carried the WT genotype of the 18C>T genetic variant and six individuals carried 
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heterozygous genotypes (CT) and homozygous TT genotypes (CT and TT were combined 

in the same group because only one individual had the TT genotype). The mean AUCs of 

TRAP-induced aggregation for individuals with the WT genotype and the (CT and TT) 

genotypes were 131.6 ± 4.3 and 115.5 ± 5.8, respectively, with no significant differences 

between the two groups of genotypes (P=0.113). In addition, the effect of 18C>T 

genotypes on ADP-induced platelet aggregation was assessed, but no significant difference 

was found (P=0.77) (Table 4.6). 

 

Table 4.6: The effect of the SNPs C34T (18C>T) and G52T (36G>T) genotypes on the 

platelet aggregation response to ADP/TRAP induced aggregation (AUC). 

Agonist 

AUC 

Genotype 

C34T ( c.18C>T) 
G52T (c.36G>T) 

c.767G>A c.793C>T 
H1H1 H1H2 H2H2 

CC 

n=3 

CT 

n=5 

TT 

n=1 

GG 

n=6 

GT 

n=3 

TT 

n=0 

GG 

n=9 

GA 

n=0 

AA 

n=0 

CC 

n=10 

CT 

n=0 

TT 

n=0 

ADP 

(AUC) 
76.3 73.4 77 73.5 77.3 - 74.7 - - 74.7 - - 

TRAP 

(AUC) 
131.6 115.4 115 121 120.3 - 120.7 - - 120.7 - - 
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Chapter Five 

______________________________________________________________ 

Discussion, Conclusions, Limitations and Recommendations 

 

5.1 Discussion   

The purinergic receptor P2Y12 is considered as one of the most important receptors in the 

human body. These receptors are particularly distributed in human brain cells and platelets 

with very important role in platelet aggregation and thrombus formation. P2Y12 receptors 

constitute one of the major strategies for treating patients after percutaneous coronary 

intervention (PCI). Although P2Y12 has a significant role in normal hemostasis and in 

thrombus formation, little is known about genetic variations in P2Y12 receptor among 

Palestinian, Swedish and Congolese populations. The platelet aggregation response 

induced by ADP and its receptor P2Y12 in healthy untreated individuals showed inter-

individual variation. In addition, the response of these receptors to clopidogrel showed 

variation among treated patients (Galic et al., 2013). One of the most important underlying 

mechanisms is genetic variations in the P2Y12 gene. Genetic variations (SNPs) were shown 

to increase the risk of clopidogrel resistance and consequently increase the adverse effect 

of CVDs (Lev et al., 2007). Thus, the study of P2Y12 receptors has many beneficial 

aspects. First, to detect the differences in genetic variations in the P2Y12 gene among 

different ethnic groups, this may explain the differences in the prevalence of clopidogrel 

resistance and the risk of adverse effect in CVD patients. Second, to determine the 

frequency of identified SNPs among the study populations and their role in platelet 

aggregation response.  

 

5.1.1 P2Y12 sequencing 

In the present study, we performed a thorough analysis of the SNPs of P2Y12 in a cross-

sectional study of different unrelated ethnic groups. Different mutations were identified in 

the coding region of P2Y12 gene that results in quantitative or qualitative defects in P2Y12 

receptors. For the P2Y12 receptor defect with bleeding diathesis, we assumed that different 

missense mutations might be responsible such as c.767G>A and c.793C>T (Hayward et 
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al., 2006; Remijn et al., 2007). Our participants were all healthy individuals which were 

confirmed by the absence of the pathological SNPs among study subjects. In the cases of 

inter-individual variations among healthy individuals, we assumed that different benign 

SNPs may be responsible, such as c.18C>T and c.36G>T (H2 haplotype). Moreover, these 

SNPs may affect thienopyridine compounds and lead to a high platelet reactivity and an 

increased risk of adverse effect after PCI. To identify these SNPs, we did sequence 

analysis of the whole part of P2Y12 exon-3. 

 

Sequencing results revealed that there were significant variations in the frequencies of 

18C>T, 36G>T and other SNPs between three different populations. Regarding the 

18C>T, there was a clear difference in the frequency of 18C>T among Palestinian, 

Swedish and Congolese populations (28.3, 20.0 and 6.5%, respectively). The MAFs of the 

genetic variants reported in this study among each of the three populations are summarized 

in table 5.1. Moreover, as we mentioned earlier in the literature review, carriage of the 

mutated allele of 18C>T was associated with clopidogrel resistance and had a 4.0-fold 

increased adjusted risk for neurological events compared to the wild type (Ziegler et al., 

2005). So, 18C>T polymorphism may act as a contributor factor to the prevalence 

differences in adverse effects in clopidogrel patients with different ethnicities.  

 

Furthermore, the tag-SNP 36G>T was used to detect frequency of the H2 haplotype in the 

study population (n=254), which was found to be 10.0% among the overall study 

population and 4.1, 12.0 and 23.6 among Palestinians, Congolese and Swedish, 

respectively. These findings were in agreement with Fontana and Lee studies. Furthermore, 

different studies reported different results among different populations. For examples, 

among the Japanese the MAF of 36G>T was reported to be (19%), for the Chinese it was 

reported to be (21%, and among Caucasian populations 23%) as was reported in HapMap 

database (Sherry et al., 2001). The H2 haplotype was more frequently found in patients 

with CVDs (Bierend et al., 2008; Fontana et al., 2003b; Ziegler et al., 2005). On the other 

hand, inconsistent results were reported about the relation of H2 haplotype and the increase 

in the risk of clopidogrel resistance and cardiovascular diseases (Cuisset et al., 2007; 

Schettert et al., 2006). We observed significant differences in H2 haplotype between three 

ethnic groups. These differences may lead to differences in aggregation response between 

ethnic groups. The frequency of H2 haplotype was found to be highest among Swedish 

individuals compared to Congolese and Palestinians In addition, the only individual with 
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TT genotype (H2H2 genotype) was of Swedish origin. Due to these differences in H2 

haplotype among the study populations, we assumed that Swedish patients under 

thienopyridine compounds are more likely to express clopidogrel resistance and an 

increased risk of adverse effect after PCI. Further studies are needed to confirm the 

differences in aggregation/ clopidogrel response between different ethnic groups and the 

impact of P2Y12 genotype on individual phenotypes. Exon-3 analysis also revealed 

additional SNPs (c.546C>T→p.Phe182= and c.989A>G→p.Glu330Gly) which were 

detected in small numbers among Palestinian and Congolese populations, but not Swedish 

population. These SNPs were not correlated with aggregation. Table 5.1 shows a 

comparison between the findings of this study and what is reported by SNPs databases in 

regard to the prevalence of genetic variants. 

 

Table 5.1: Prevalence of SNPs among the study populations. Values are given as the 

percentage of tested alleles in the study population. 

*ENSEMBL Genetic Variation available at (ENSEMBL, 2013).  

**EVS: Exome Variant Server: available at (Server, 2017). 
€
 MAF: minor allele frequency. 

 

Furthermore, several previous studies have emphasized that there are both interethnic 

groups and intra-ethnic significant differences in the distribution of the variant alleles in 

P2Y12. The frequencies of the different genotypes and the minor allele frequency of the 

two benign SNPs (18C>T and 36G>T) between study ethnic populations and other 

populations are shown in table (5.2). Regarding the 18C>T SNP, the frequency of 

homozygous genotype of the minor allele (TT) was highest among the Palestinian 

population (10.3%) in comparison to the other ethnic groups. On the other hand, for the 

Study population  

(n) 

SNP ID 

c.18C>T 

→ 

p. Asn6= 

c.36T>G

→ 

p.Gly12= 

c.767G>A

→  

p.Arg256 

Gln 

c.793C>T

→ 

p.Arg265 

Trp 

c.546C>T

→ 

p.Phe182= 

 

c.989A>G

→ 

p.Glu330

Gly 

Overall 21.9 10.0 0.0 0.0 0.6 0.4 

Palestinian (145) 28.3 4.1 0.0 0.0 0.3 0.3 

Swedish (55) 20.0 23.6 0.0 0.0 0.0 0.0 

Congolese (54) 6.5 12.0 0.0 0.0 1.9 0.9 

ENSEMBL Genetic 

Variation*/MAF (%) 
2.4 9.0 0.0 0.0 4.0 2.4 

EVS**/MAF
€
 (%) 27.3 12.1 Not listed Not listed 4.1 2.4 
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heterozygous genotype (CT), the highest frequency was seen among the European 

population (46.9%), while for the genotype (CC) the highest frequency was among the 

Congolese population with a percentage of (92.5%). Furthermore, comparing the MAF of 

the three study populations, we found huge differences between Palestinian, Swedish and 

Congolese populations. The highest frequency was found in the Congolese population 

(28.2%), followed by the Palestinian (20.0%) and the Swedish population (6.5%), 

respectively. However, for the other ethnic groups the highest MAF was found among 

Europeans (30.5%). 

 

For the 36G>T SNP (H2 haplotype), the MAF was the highest among the Swedish 

population (23.6%) in comparison with the other ethnic groups. On the other hand, the 

Palestinians showed the lowest MAF in our study (4.2%). This percentage was close to that 

reported among the Sub-Saharan population (4.0%). The variation between the different 

ethnic groups shows that there are significant differences in the underlying genetic causes 

of platelets responsiveness between healthy individuals and patients with CVDs treated 

with thienopyridine compounds. 

 

Table 5.2: Comparison of the distribution of the genotype frequencies and allele 

frequencies (%) of P2Y12’s 18C>T and 36G>T polymorphisms among different ethnic 

groups. 

Population 

SNPs 18C>T  36G>T 

Ref** 
18C>T / 

36G>T 

(N/N) 

Genotype 

frequency (%)* 

Allele 

frequency 

(%)* 

Genotype  

frequency (%)* 

Allele 

frequency 

(%)* 

CC CT TT C T GG GT TT G T 

Palestinian 145/145 53.8 35.9 10.3 80.0 20.0 91.7 8.3 0.0 95.8 4.2 
Present 

study 

 Swedish 55/55 03.0 34.3 3.0 53.5 0.5 52.5 23.0 0.. 30.5 43.0 
Present 

study 

Congolese 54/54 92.6 1.9 5.6 30.. 28.2 75.9 24.1 0.0 87.9 12.0 
Present 

study 

Korean 50/50 52.7 36.0 6.0 76.0 24.0 60.0 40.0 0.0 80.0 20.0 
(Lee et al., 

2011) 

European 226/266 46.0 46.9 7.0 69.4 30.5 65.4 31.8 2.6 81.4 18.5 
(Sherry et 

al., 2001) 

Asian 168/172 54.7 38.0 7.1 73.8 26.1 81.3 18.6 0.0 90.6 9.3 
(Sherry et 

al., 2001) 

Sub-Saharan 224/98 73.2 24.1 2.6 85.2 14.7 91.8 8.2 0.0 95.9 4.0 
(Sherry et 

al., 2001) 

* Numbers may not add to 100% due to rounding. 

** Ref: reference. 
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5.1.2 Aggregation study 

In vitro platelet aggregation study is the best test to reflect in vivo platelet function. In our -

study, in vitro platelet aggregation of healthy individuals induced by ADP/TRAP agonist 

in all of the individuals (n=9), had ADP/TRAP AUC within the normal range 53-122 and 

94-156 AUC, respectively. All subjects could be considered as normal in this respect as no 

values were out of the reference range. The effect of the 36G>T polymorphism on the 

platelet aggregation response induced by ADP/TRAP was not statistically significant. 

Unfortunately, none of the recruited individuals in this study had H2/H2 haplotype (TT 

genotype), therefore, the effect of H2/H2 haplotype in the present study was not 

investigated. However, the aggregation results of individuals with H1/H2 showed increase 

in aggregation response induced by ADP (77.3 ± 8.3 AUC) compared to H1/H1 haplotype 

individuals (73.5 ± 3.7 AUC), but the difference was not statistically significant. This 

result was in agreement with a study of Fontana et al. (Fontana et al., 2003a) and Lee et al. 

(Lee et al., 2011) who found normal aggregation response to ADP in healthy untreated 

volunteers who were carriers of the H1 haplotype but not H2 haplotype. Moreover, our 

results were in agreement with Oestreich and his colleagues in which the aggregation 

response induced by TRAP did not show statistical differences between individuals with 

H1 and heterozygous H2 haplotype (Oestreich et al., 2014). This means that the H1H1 and 

H1H2 did not affect the aggregation induced by thrombin receptors PAR-1. Regarding the 

18C>T polymorphism, three individuals had mutated alleles (CT and TT) with normal 

aggregation results when induced by ADP in contrast to wild type individuals. For the 

TRAP agonist, low aggregation results induced by TRAP in three individuals with mutated 

alleles, CT and TT (115.5 ± 5.8 AUC) were found in contrast to wild type individuals 

(131.6 ± 4.3 AUC). This prompted us to suggest that the 18C>T polymorphism may affect 

TRAP induced aggregation but not ADP induced aggregation. This could be explained by 

the role of P2Y12 receptors in potentiating the response of other agonists or may be due to 

other SNPs in PAR-1 receptor. Further studies should be conducted to confirm the effect of 

18C>T on TRAP agonist. As for the ADP agonist and 18C>T polymorphism, it was also 

not associated with an increase in platelets aggregation response in our healthy Swedish 

individuals which is also in agreement with Fontana et al. and Lee et al. (Fontana et al., 

2003a; Lee et al., 2011). ADP induced platelet aggregation is achieved by combination of 

P2Y1, P2Y12 activation and other unknown factors, thus, these receptors' genes act as prime 

candidate for genetic variations. Furthermore, SNPs may present at the level of 



50 

 

untranslated region (5’ and 3’ UTR) and intronic region which may also affect the platelet 

aggregation response induced by ADP/TRAP. The discrepancy of our study from Fontana 

and his colleagues may be due to the small number of individuals who were recruited for 

aggregation study and the absence of H2/H2 haplotype from our study, which may 

significantly affect the platelet aggregation induced by ADP. Thus, our result and the result 

of Fontana et al. may imply that the H2 haplotype (H1/H2 and H2/H2) are responsible for 

increased platelet aggregation by potentiating TXA2 formation, which leads to maximal 

platelet aggregation. Another discrepancy was the differences in the used aggregation 

method which was 4-channel aggregometry in Fontana et al. study.  

 

Our findings were consistent with Fontana, Lee and Bierend studies, in which 18C>T SNP 

was not correlated with aggregation (Bierend et al., 2008; Fontana et al., 2003a; Lee et al., 

2011).  

 

5.2 Conclusions 

In conclusion, the populations included in this study were negative for pathological SNPs. 

Regarding the benign SNPs; our findings did not support previous studies where genetic 

variants in the P2Y12 gene were reported to affect platelet aggregation. Furthermore, in this 

study we found that the frequency of genetic variants in exon-3 of the P2Y12 gene differed 

by ethnicity. Further studies are needed to investigate the association between genetic 

variants in the P2Y12 receptor and platelet aggregation response.  

 

5.3 Strengths and Limitations 

To the best of our knowledge, this study was the first to determine the frequency of P2Y12 

receptor gene polymorphisms among the study populations; Palestinian, Swedish and 

Congolese, and the effect of identified SNPs on platelet aggregation response. The first 

limitation in this study was the small sample size used for aggregation study and the 

inability to compare the aggregation response between Swedish, Palestinian and Congolese 

individuals. Also, the sample size of the genotyping study for the ethnic groups was small 

and so we were not able to detect all SNPs carried in all populations and the majority of the 

study population was Palestinians. In addition, the study design did not allow the 

examination of all the potential sources of genetic variability in P2Y12 gene although 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Bierend%20A%5BAuthor%5D&cauthor=true&cauthor_uid=17995973
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several identified SNPs are located in the intronic region. Moreover, genetic variations in 

other genes such as thrombin receptors and CYP 450 genes that were not examined in this 

study which may explain part of the effect of genetic variations in P2Y12 on ADP/TRAP-

stimulated platelet response in healthy individuals. The sample size for the aggregation 

study was very small, for better explanation and generalization; more individuals should be 

included in expanded studies with different haplotypes. In addition, the effect of each 

genotype on platelet aggregation should be studied separately. Also, other agonists such as 

epinephrine and collagen should be assessed for platelet aggregation in order to achieve 

better understanding. Finally, the unavailability of the demographic characteristics of the 

study subjects limited our analysis. One particular strength of this study was the analysis of 

the whole P2Y12 coding region, which confirmed the absence of other novel SNPs in our 

study populations. 

 

5.4 Recommendations  

The role of genetic variations in P2Y12 and their effects on platelets aggregation and 

thienopyridine compounds response especially clopidogrel was well established. 

Therefore, we recommend the examination the patients who were diagnosed with ACS and 

underwent PCI and stent implantation routinely for aggregation test to assess the response 

to clopidogrel therapy and to exclude resistance. In addition, our data prompted us to retest 

the full gene sequencing in patients who are under thienopyridine therapy in different 

ethnic groups and to correlate the effect of deferent genetic variants on drug response. So, 

further studies are needed to completely understand the variations between different 

populations and the effects of the SNPs on platelet aggregation and response. 



52 

 

References  

1. Abbracchio, M. P., Burnstock, G., Boeynaems, J. M., Barnard, E. A., Boyer, J. L., Kennedy, 

C., et al. (2006). International Union of Pharmacology LVIII: update on the P2Y G protein-

coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. 

Pharmacol Rev, 58(3), 281-341. doi:10.1124/pr.58.3.3 

2. Aleil, B., Ravanat, C., Cazenave, J. P., Rochoux, G., Heitz, A., & Gachet, C. (2005). Flow 

cytometric analysis of intraplatelet VASP phosphorylation for the detection of clopidogrel 

resistance in patients with ischemic cardiovascular diseases. J Thromb Haemost, 3(1), 85-92. 

doi:10.1111/j.1538-7836.2004.01063.x 

3. Badimon, L., Chesebro, J. H., & Badimon, J. J. (1992). Thrombus formation on ruptured 

atherosclerotic plaques and rethrombosis on evolving thrombi. Circulation, 86(6 Suppl), 

III74-85.  

4. Baumgarten, A., Wilhelmi, M., Kalbantner, K., Ganter, M., & Mischke, R. (2010). 

Measurement of platelet aggregation in ovine blood using a new impedance aggregometer. 

Vet Clin Pathol, 39(2), 149-156. doi:10.1111/j.1939-165X.2009.00198.x 

5. Baurand, A., Eckly, A., Bari, N., Leon, C., Hechler, B., Cazenave, J. P., et al. (2000). 

Desensitization of the platelet aggregation response to ADP: differential down-regulation of 

the P2Y1 and P2cyc receptors. Thromb Haemost, 84(3), 484-491.  

6. Baurand, A., Raboisson, P., Freund, M., Leon, C., Cazenave, J. P., Bourguignon, J. J., et al. 

(2001). Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor 

antagonist. Eur J Pharmacol, 412(3), 213-221.  

7. Bergeron, M. G. (1989). The pharmacokinetics and tissue penetration of the 

fluoroquinolones. Clin Invest Med, 12(1), 20-27.  

8. Bertoni, A., Tadokoro, S., Eto, K., Pampori, N., Parise, L. V., White, G. C., et al. (2002). 

Relationships between Rap1b, affinity modulation of integrin alpha IIbbeta 3, and the actin 

cytoskeleton. J Biol Chem, 277(28), 25715-25721. doi:10.1074/jbc.M202791200 

9. Bierend, A., Rau, T., Maas, R., Schwedhelm, E., & Boger, R. H. (2008). P2Y12 

polymorphisms and antiplatelet effects of aspirin in patients with coronary artery disease. Br 

J Clin Pharmacol, 65(4), 540-547. doi:10.1111/j.1365-2125.2007.03044.x 

10. Brass, D., Grably, M. R., Bronstein-Sitton, N., Gohar, O., & Meir, A. (2012). Using 

antibodies against P2Y and P2X receptors in purinergic signaling research. Purinergic 

Signal, 8(Suppl 1), 61-79. doi:10.1007/s11302-011-9278-z 

11. Bura, A., Bachelot-Loza, C., Ali, F. D., Aiach, M., & Gaussem, P. (2006). Role of the 

P2Y12 gene polymorphism in platelet responsiveness to clopidogrel in healthy subjects. J 

Thromb Haemost, 4(9), 2096-2097. doi:10.1111/j.1538-7836.2006.02113.x 

12. Burnstock, G. (1996). P2 purinoceptors: historical perspective and classification. Ciba 

Found Symp, 198, 1-28; discussion 29-34.  

13. Cancer Research UK. (2013). Leukaemia (all subtypes combined) statistics. Retrieved from 

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-

type/leukaemia 

14. Cannon, C. P., Brindis, R. G., Chaitman, B. R., Cohen, D. J., Cross, J. T., Jr., Drozda, J. P., 

Jr., et al. (2013). 2013 ACCF/AHA key data elements and definitions for measuring the 

clinical management and outcomes of patients with acute coronary syndromes and coronary 

artery disease: a report of the American College of Cardiology Foundation/American Heart 

Association Task Force on Clinical Data Standards (Writing Committee to Develop Acute 

Coronary Syndromes and Coronary Artery Disease Clinical Data Standards). Circulation, 

127(9), 1052-1089. doi:10.1161/CIR.0b013e3182831a11 

15. Cattaneo, M. (2011a). Molecular defects of the platelet P2 receptors. Purinergic Signal, 7(3), 

333-339. doi:10.1007/s11302-011-9217-z 

16. Cattaneo, M. (2011b). The platelet P2Y(1)(2) receptor for adenosine diphosphate: congenital 

and drug-induced defects. Blood, 117(7), 2102-2112. doi:10.1182/blood-2010-08-263111 

17. Cattaneo, M., & Gachet, C. (1999). ADP receptors and clinical bleeding disorders. 

Arterioscler Thromb Vasc Biol, 19(10), 2281-2285.  

http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/leukaemia


53 

 

18. Cattaneo, M., Lecchi, A., Randi, A. M., McGregor, J. L., & Mannucci, P. M. (1992). 

Identification of a new congenital defect of platelet function characterized by severe 

impairment of platelet responses to adenosine diphosphate. Blood, 80(11), 2787-2796.  

19. Cattaneo, M., Schulz, R., & Nylander, S. (2014). Adenosine-mediated effects of ticagrelor: 

evidence and potential clinical relevance. J Am Coll Cardiol, 63(23), 2503-2509. 

doi:10.1016/j.jacc.2014.03.031 

20. Cattaneo, M., Zighetti, M. L., Lombardi, R., Martinez, C., Lecchi, A., Conley, P. B., et al. 

(2003). Molecular bases of defective signal transduction in the platelet P2Y12 receptor of a 

patient with congenital bleeding. Proc Natl Acad Sci U S A, 100(4), 1978-1983. 

doi:10.1073/pnas.0437879100 

21. Chang, H. H., & Lo, S. J. (1998). Full-spreading platelets induced by the recombinant 

rhodostomin are via binding to integrins and correlated with FAK phosphorylation. Toxicon, 

36(8), 1087-1099.  

22. Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, 

T. S., et al. (2007). High-resolution crystal structure of an engineered human beta2-

adrenergic G protein-coupled receptor. Science, 318(5854), 1258-1265. 

doi:10.1126/science.1150577 

23. Coller, B. S. (2011). Historical perspective and future directions in platelet research. J 

Thromb Haemost, 9 Suppl 1, 374-395. doi:10.1111/j.1538-7836.2011.04356.x 

24. Colman, R. W. (2006). Hemostasis and thrombosis: basic principles and clinical practice: 

Lippincott Williams & Wilkins. 

25. Cooper, D. M., & Rodbell, M. (1979). ADP is a potent inhibitor of human platelet plasma 

membrane adenylate cyclase. Nature, 282(5738), 517-518.  

26. Costanzi, S., Mamedova, L., Gao, Z. G., & Jacobson, K. A. (2004). Architecture of P2Y 

nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and 

homology modeling. J Med Chem, 47(22), 5393-5404. doi:10.1021/jm049914c 

27. Cuisset, T., Frere, C., Quilici, J., Morange, P. E., Saut, N., Lambert, M., et al. (2007). Role 

of the T744C polymorphism of the P2Y12 gene on platelet response to a 600-mg loading 

dose of clopidogrel in 597 patients with non-ST-segment elevation acute coronary syndrome. 

Thromb Res, 120(6), 893-899. doi:10.1016/j.thromres.2007.01.012 

28. Cunningham, M. R., Nisar, S. P., & Mundell, S. J. (2013). Molecular mechanisms of platelet 

P2Y(12) receptor regulation. Biochem Soc Trans, 41(1), 225-230. 

doi:10.1042/BST20120295 

29. Daniel, J. L., Dangelmaier, C., Jin, J., Ashby, B., Smith, J. B., & Kunapuli, S. P. (1998). 

Molecular basis for ADP-induced platelet activation. I. Evidence for three distinct ADP 

receptors on human platelets. J Biol Chem, 273(4), 2024-2029.  

30. Daniel, J. L., Dangelmaier, C., Jin, J., Kim, Y. B., & Kunapuli, S. P. (1999). Role of 

intracellular signaling events in ADP-induced platelet aggregation. Thromb Haemost, 82(4), 

1322-1326.  

31. de Groot, P. G., Urbanus, R. T., & Roest, M. (2012). Platelet interaction with the vessel wall. 

Handb Exp Pharmacol(210), 87-110. doi:10.1007/978-3-642-29423-5_4 

32. Deflorian, F., & Jacobson, K. A. (2011). Comparison of three GPCR structural templates for 

modeling of the P2Y12 nucleotide receptor. J Comput Aided Mol Des, 25(4), 329-338. 

doi:10.1007/s10822-011-9423-3 

33. Ding, Z., Kim, S., Dorsam, R. T., Jin, J., & Kunapuli, S. P. (2003). Inactivation of the human 

P2Y12 receptor by thiol reagents requires interaction with both extracellular cysteine 

residues, Cys17 and Cys270. Blood, 101(10), 3908-3914. doi:10.1182/blood-2002-10-3027 

34. Ding, Z., Tuluc, F., Bandivadekar, K. R., Zhang, L., Jin, J., & Kunapuli, S. P. (2005). 

Arg333 and Arg334 in the COOH terminus of the human P2Y1 receptor are crucial for Gq 

coupling. Am J Physiol Cell Physiol, 288(3), C559-567. doi:10.1152/ajpcell.00401.2004 

35. Dorsam, R. T., & Kunapuli, S. P. (2004). Central role of the P2Y12 receptor in platelet 

activation. J Clin Invest, 113(3), 340-345. doi:10.1172/JCI20986 

36. Duke, W. W. (1911). The Rate of Regeneration of Blood Platelets. J Exp Med, 14(3), 265-

273.  



54 

 

37. ENSEMBL. (2013). Transcript: P2RY12-201 ENST00000302632.3.  Retrieved October 27, 

2017 

http://asia.ensembl.org/Homo_sapiens/Transcript/Variation_Transcript/Table?db=core;g=EN

SG00000169313;oa=Orphanet:36355;ph=44272;r=3:151337380-

151384812;t=ENST00000302632 

38. Epicentre. (2013). MasterPure™ DNA Purification Kit. Retrieved from 

http://www.epibio.com/docs/default-source/protocols/masterpure-dna-purification-

kit.pdf?sfvrsn=6 

39. Fabre, J. E., Nguyen, M., Latour, A., Keifer, J. A., Audoly, L. P., Coffman, T. M., et al. 

(1999). Decreased platelet aggregation, increased bleeding time and resistance to 

thromboembolism in P2Y1-deficient mice. Nat Med, 5(10), 1199-1202. doi:10.1038/13522 

40. Flechtenmacher, N., Kammerer, F., Dittmer, R., Budde, U., Michels, P., Rother, J., et al. 

(2015). Clopidogrel Resistance in Neurovascular Stenting: Correlations between Light 

Transmission Aggregometry, VerifyNow, and the Multiplate. AJNR Am J Neuroradiol, 

36(10), 1953-1958. doi:10.3174/ajnr.A4388 

41. Fontana, Dupont, A., Gandrille, S., Bachelot-Loza, C., Reny, J. L., Aiach, M., et al. (2003a). 

Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene 

sequence variations in healthy subjects. Circulation, 108(8), 989-995. 

doi:10.1161/01.CIR.0000085073.69189.88 

42. Fontana, Gaussem, P., Aiach, M., Fiessinger, J. N., Emmerich, J., & Reny, J. L. (2003b). 

P2Y12 H2 haplotype is associated with peripheral arterial disease: a case-control study. 

Circulation, 108(24), 2971-2973. doi:10.1161/01.CIR.0000106904.80795.35 

43. Fontana, Ware, J., & Cattaneo, M. (2009). Haploinsufficiency of the platelet P2Y12 gene in 

a family with congenital bleeding diathesis. Haematologica, 94(4), 581-584. 

doi:10.3324/haematol.13611 

44. Foster, C. J., Prosser, D. M., Agans, J. M., Zhai, Y., Smith, M. D., Lachowicz, J. E., et al. 

(2001). Molecular identification and characterization of the platelet ADP receptor targeted 

by thienopyridine antithrombotic drugs. J Clin Invest, 107(12), 1591-1598. 

doi:10.1172/JCI12242 

45. Fredholm, B. B., Abbracchio, M. P., Burnstock, G., Daly, J. W., Harden, T. K., Jacobson, K. 

A., et al. (1994). Nomenclature and classification of purinoceptors. Pharmacol Rev, 46(2), 

143-156.  

46. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G., & Schioth, H. B. (2003). The G-protein-

coupled receptors in the human genome form five main families. Phylogenetic analysis, 

paralogon groups, and fingerprints. Mol Pharmacol, 63(6), 1256-1272. 

doi:10.1124/mol.63.6.1256 

47. Frontroth, J. P. (2013). Light transmission aggregometry. Methods Mol Biol, 992, 227-240. 

doi:10.1007/978-1-62703-339-8_17 

48. Gachet, C. (2001). ADP receptors of platelets and their inhibition. Thromb Haemost, 86(1), 

222-232.  

49. Gachet, C. (2005). The platelet P2 receptors as molecular targets for old and new antiplatelet 

drugs. Pharmacol Ther, 108(2), 180-192. doi:10.1016/j.pharmthera.2005.03.009 

50. Gachet, C. (2008). P2 receptors, platelet function and pharmacological implications. Thromb 

Haemost, 99(3), 466-472. doi:10.1160/TH07-11-0673 

51. Gachet, C. (2015). Antiplatelet drugs: which targets for which treatments? J Thromb 

Haemost, 13 Suppl 1, S313-322. doi:10.1111/jth.12947 

52. Galic, E., Vrbanic, L., Kapitanovic, S., Catela Ivkovic, T., Petro, D., Vukovic, I., et al. 

(2013). P2RY12 gene polymorphisms and effect of clopidogrel on platelet aggregation. Coll 

Antropol, 37(2), 491-498.  

53. Gremmel, T., Yanachkov, I. B., Yanachkova, M. I., Wright, G. E., Wider, J., Undyala, V. V., 

et al. (2016). Synergistic Inhibition of Both P2Y1 and P2Y12 Adenosine Diphosphate 

Receptors As Novel Approach to Rapidly Attenuate Platelet-Mediated Thrombosis. 

Arterioscler Thromb Vasc Biol, 36(3), 501-509. doi:10.1161/ATVBAHA.115.306885 

http://asia.ensembl.org/Homo_sapiens/Transcript/Variation_Transcript/Table?db=core;g=ENSG00000169313;oa=Orphanet:36355;ph=44272;r=3:151337380-151384812;t=ENST00000302632
http://asia.ensembl.org/Homo_sapiens/Transcript/Variation_Transcript/Table?db=core;g=ENSG00000169313;oa=Orphanet:36355;ph=44272;r=3:151337380-151384812;t=ENST00000302632
http://asia.ensembl.org/Homo_sapiens/Transcript/Variation_Transcript/Table?db=core;g=ENSG00000169313;oa=Orphanet:36355;ph=44272;r=3:151337380-151384812;t=ENST00000302632
http://www.epibio.com/docs/default-source/protocols/masterpure-dna-purification-kit.pdf?sfvrsn=6
http://www.epibio.com/docs/default-source/protocols/masterpure-dna-purification-kit.pdf?sfvrsn=6


55 

 

54. Hardy, A. R., Conley, P. B., Luo, J., Benovic, J. L., Poole, A. W., & Mundell, S. J. (2005). 

P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. 

Blood, 105(9), 3552-3560. doi:10.1182/blood-2004-07-2893 

55. Harrison, P. (2005a). Platelet function analysis. Blood Rev, 19(2), 111-123. 

doi:10.1016/j.blre.2004.05.002 

56. Harrison, P. (2005b). The role of PFA-100 testing in the investigation and management of 

haemostatic defects in children and adults. Br J Haematol, 130(1), 3-10. doi:10.1111/j.1365-

2141.2005.05511.x 

57. Haslam, R. J. (1973). Interactions of the pharmacological receptors of blood platelets with 

adenylate cyclase. Ser Haematol, 6(3), 333-350.  

58. Haynes, S. E., Hollopeter, G., Yang, G., Kurpius, D., Dailey, M. E., Gan, W. B., et al. 

(2006). The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat 

Neurosci, 9(12), 1512-1519. doi:10.1038/nn1805 

59. Hayward, C. P., Rao, A. K., & Cattaneo, M. (2006). Congenital platelet disorders: overview 

of their mechanisms, diagnostic evaluation and treatment. Haemophilia, 12 Suppl 3, 128-

136. doi:10.1111/j.1365-2516.2006.01270.x 

60. Hechler, B., Eckly, A., Ohlmann, P., Cazenave, J. P., & Gachet, C. (1998). The P2Y1 

receptor, necessary but not sufficient to support full ADP-induced platelet aggregation, is not 

the target of the drug clopidogrel. Br J Haematol, 103(3), 858-866.  

61. Hollopeter, G., Jantzen, H. M., Vincent, D., Li, G., England, L., Ramakrishnan, V., et al. 

(2001). Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature, 

409(6817), 202-207. doi:10.1038/35051599 

62. Huang, H. S., & Chang, H. H. (2012). Platelets in inflammation and immune modulations: 

functions beyond hemostasis. Arch Immunol Ther Exp (Warsz), 60(6), 443-451. 

doi:10.1007/s00005-012-0193-y 

63. Jackson, S. P., Nesbitt, W. S., & Kulkarni, S. (2003). Signaling events underlying thrombus 

formation. J Thromb Haemost, 1(7), 1602-1612.  

64. Jacobson, K. A., & Boeynaems, J. M. (2010). P2Y nucleotide receptors: promise of 

therapeutic applications. Drug Discov Today, 15(13-14), 570-578. 

doi:10.1016/j.drudis.2010.05.011 

65. Jacobson, K. A., Jayasekara, M. P., & Costanzi, S. (2012). Molecular Structure of P2Y 

Receptors: Mutagenesis, Modeling, and Chemical Probes. Wiley Interdiscip Rev Membr 

Transp Signal, 1(6). doi:10.1002/wmts.68 

66. Jin, J., & Kunapuli, S. P. (1998). Coactivation of two different G protein-coupled receptors is 

essential for ADP-induced platelet aggregation. Proc Natl Acad Sci U S A, 95(14), 8070-

8074.  

67. Kahner, B. N., Shankar, H., Murugappan, S., Prasad, G. L., & Kunapuli, S. P. (2006). 

Nucleotide receptor signaling in platelets. J Thromb Haemost, 4(11), 2317-2326. 

doi:10.1111/j.1538-7836.2006.02192.x 

68. Kasperska-Zajac, A., & Rogala, B. (2006). Platelet function in anaphylaxis. J Investig 

Allergol Clin Immunol, 16(1), 1-4.  

69. Kauffenstein, G., Bergmeier, W., Eckly, A., Ohlmann, P., Leon, C., Cazenave, J. P., et al. 

(2001). The P2Y(12) receptor induces platelet aggregation through weak activation of the 

alpha(IIb)beta(3) integrin--a phosphoinositide 3-kinase-dependent mechanism. FEBS Lett, 

505(2), 281-290.  

70. Kim, Y., Kim, K., Park, Y., & Moschandreou, T. (2012). Blood Cell—An Overview of 

Studies in Hematology. In: Intech Croatia. 

71. Kumar, R. A., Dong, J. F., Thaggard, J. A., Cruz, M. A., Lopez, J. A., & McIntire, L. V. 

(2003). Kinetics of GPIbalpha-vWF-A1 tether bond under flow: effect of GPIbalpha 

mutations on the association and dissociation rates. Biophys J, 85(6), 4099-4109. 

doi:10.1016/S0006-3495(03)74822-X 

72. Lee, S. J., Jung, I. S., Jung, E. J., Choi, J. Y., Yeo, C. W., Cho, D. Y., et al. (2011). 

Identification of P2Y12 single-nucleotide polymorphisms and their influences on the 

variation in ADP-induced platelet aggregation. Thromb Res, 127(3), 220-227. 

doi:10.1016/j.thromres.2010.11.023 



56 

 

73. Leon, C., Hechler, B., Freund, M., Eckly, A., Vial, C., Ohlmann, P., et al. (1999). Defective 

platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-

null mice. J Clin Invest, 104(12), 1731-1737. doi:10.1172/JCI8399 

74. Lev, E. I., Patel, R. T., Guthikonda, S., Lopez, D., Bray, P. F., & Kleiman, N. S. (2007). 

Genetic polymorphisms of the platelet receptors P2Y(12), P2Y(1) and GP IIIa and response 

to aspirin and clopidogrel. Thromb Res, 119(3), 355-360. 

doi:10.1016/j.thromres.2006.02.006 

75. Leynadier, F. (1989). [Mast cells and basophils in asthma]. Ann Biol Clin (Paris), 47(6), 

351-356.  

76. Mangin, P., Ohlmann, P., Eckly, A., Cazenave, J. P., Lanza, F., & Gachet, C. (2004). The 

P2Y1 receptor plays an essential role in the platelet shape change induced by collagen when 

TxA2 formation is prevented. J Thromb Haemost, 2(6), 969-977. doi:10.1111/j.1538-

7836.2004.00722.x 

77. Marcucci, R., Gori, A. M., Paniccia, R., Giusti, B., Valente, S., Giglioli, C., et al. (2009). 

Cardiovascular death and nonfatal myocardial infarction in acute coronary syndrome patients 

receiving coronary stenting are predicted by residual platelet reactivity to ADP detected by a 

point-of-care assay: a 12-month follow-up. Circulation, 119(2), 237-242. 

doi:10.1161/CIRCULATIONAHA.108.812636 

78. Maree, A., & McRedmond, J. (2005). Genomic and Proteomic Analysis of Platelets. In 

Platelet Function (pp. 315-331): Springer. 

79. Mason, J. T. (1988). Mixing behavior of symmetric chain length and mixed chain length 

phosphatidylcholines in two-component multilamellar bilayers: evidence for gel and liquid-

crystalline phase immiscibility. Biochemistry, 27(12), 4421-4429.  

80. Mazzarello, P., Calligaro, A. L., & Calligaro, A. (2001). Giulio Bizzozero: a pioneer of cell 

biology. Nat Rev Mol Cell Biol, 2(10), 776-781. doi:10.1038/35096085 

81. Mehta, S. R., Yusuf, S., Peters, R. J., Bertrand, M. E., Lewis, B. S., Natarajan, M. K., et al. 

(2001). Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy 

in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet, 

358(9281), 527-533.  

82. Milic-Emili, J. (1990). Flow resistance in anesthesia. Acta Anaesthesiol Scand Suppl, 94, 42-

45.  

83. Moore, D. J., Murdock, P. R., Watson, J. M., Faull, R. L., Waldvogel, H. J., Szekeres, P. G., 

et al. (2003). GPR105, a novel Gi/o-coupled UDP-glucose receptor expressed on brain glia 

and peripheral immune cells, is regulated by immunologic challenge: possible role in 

neuroimmune function. Brain Res Mol Brain Res, 118(1-2), 10-23.  

84. Mundell, S. J., Luo, J., Benovic, J. L., Conley, P. B., & Poole, A. W. (2006). Distinct 

clathrin-coated pits sort different G protein-coupled receptor cargo. Traffic, 7(10), 1420-

1431. doi:10.1111/j.1600-0854.2006.00469.x 

85. Oestreich, J. H., Steinhubl, S. R., Ferraris, S. P., Loftin, C. D., & Akers, W. S. (2014). Effect 

of genetic variation in P2Y12 on TRAP-stimulated platelet response in healthy subjects. J 

Thromb Thrombolysis, 38(3), 372-379. doi:10.1007/s11239-014-1058-5 

86. Ohlmann, P., Lecchi, A., El-Tayeb, A., Muller, C. E., Cattaneo, M., & Gachet, C. (2013). 

The platelet P2Y(12) receptor under normal and pathological conditions. Assessment with 

the radiolabeled selective antagonist [(3)H]PSB-0413. Purinergic Signal, 9(1), 59-66. 

doi:10.1007/s11302-012-9329-0 

87. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., et al. 

(2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289(5480), 

739-745.  

88. Pitchford, S. C., Momi, S., Baglioni, S., Casali, L., Giannini, S., Rossi, R., et al. (2008). 

Allergen induces the migration of platelets to lung tissue in allergic asthma. Am J Respir Crit 

Care Med, 177(6), 604-612. doi:10.1164/rccm.200702-214OC 

89. Price, M. J. (2009). Bedside evaluation of thienopyridine antiplatelet therapy. Circulation, 

119(19), 2625-2632. doi:10.1161/CIRCULATIONAHA.107.696732 

90. Price, M. J., Berger, P. B., Angiolillo, D. J., Teirstein, P. S., Tanguay, J. F., Kandzari, D. E., 

et al. (2009). Evaluation of individualized clopidogrel therapy after drug-eluting stent 



57 

 

implantation in patients with high residual platelet reactivity: design and rationale of the 

GRAVITAS trial. Am Heart J, 157(5), 818-824, 824 e811. doi:10.1016/j.ahj.2009.02.012 

91. Qi, A. D., Kennedy, C., Harden, T. K., & Nicholas, R. A. (2001). Differential coupling of the 

human P2Y(11) receptor to phospholipase C and adenylyl cyclase. Br J Pharmacol, 132(1), 

318-326. doi:10.1038/sj.bjp.0703788 

92. Qiagen. (2013). DNeasy Blood & Tissue Kits. Retrieved from 

https://www.qiagen.com/us/shop/sample-technologies/dna/genomic-dna/dneasy-blood-and-

tissue-kit/#orderinginformation 

93. Ralevic, V., & Burnstock, G. (1998). Receptors for purines and pyrimidines. Pharmacol Rev, 

50(3), 413-492.  

94. Remijn, J. A., MJ, I. J., Strunk, A. L., Abbes, A. P., Engel, H., Dikkeschei, B., et al. (2007). 

Novel molecular defect in the platelet ADP receptor P2Y12 of a patient with haemorrhagic 

diathesis. Clin Chem Lab Med, 45(2), 187-189. doi:10.1515/CCLM.2007.036 

95. Rondina, M. T., Weyrich, A. S., & Zimmerman, G. A. (2013). Platelets as cellular effectors 

of inflammation in vascular diseases. Circ Res, 112(11), 1506-1519. 

doi:10.1161/CIRCRESAHA.113.300512 

96. Roth, G. J., & Majerus, P. W. (1975). The mechanism of the effect of aspirin on human 

platelets. I. Acetylation of a particulate fraction protein. J Clin Invest, 56(3), 624-632. 

doi:10.1172/JCI108132 

97. Rudez, G., Bouman, H. J., van Werkum, J. W., Leebeek, F. W., Kruit, A., Ruven, H. J., et al. 

(2009). Common variation in the platelet receptor P2RY12 gene is associated with residual 

on-clopidogrel platelet reactivity in patients undergoing elective percutaneous coronary 

interventions. Circ Cardiovasc Genet, 2(5), 515-521. 

doi:10.1161/CIRCGENETICS.109.861799 

98. Salles, II, Feys, H. B., Iserbyt, B. F., De Meyer, S. F., Vanhoorelbeke, K., & Deckmyn, H. 

(2008). Inherited traits affecting platelet function. Blood Rev, 22(3), 155-172. 

doi:10.1016/j.blre.2007.11.002 

99. Sattler, T. A., Dimitrov, T., & Hall, P. W. (1977). Relation between endemic (Balkan) 

nephropathy and urinary-tract tumours. Lancet, 1(8006), 278-280.  

100. Savi, P., Pereillo, J. M., Uzabiaga, M. F., Combalbert, J., Picard, C., Maffrand, J. P., et al. 

(2000). Identification and biological activity of the active metabolite of clopidogrel. Thromb 

Haemost, 84(5), 891-896.  

101. Schettert, I. T., Pereira, A. C., Lopes, N. H., Hueb, W. A., & Krieger, J. E. (2006). 

Association between platelet P2Y12 haplotype and risk of cardiovascular events in chronic 

coronary disease. Thromb Res, 118(6), 679-683. doi:10.1016/j.thromres.2005.11.009 

102. Schwarz, U. R., Geiger, J., Walter, U., & Eigenthaler, M. (1999). Flow cytometry analysis of 

intracellular VASP phosphorylation for the assessment of activating and inhibitory signal 

transduction pathways in human platelets--definition and detection of ticlopidine/clopidogrel 

effects. Thromb Haemost, 82(3), 1145-1152.  

103. Server, E. V. (2017). NHLBI GO Exome Sequencing Project (ESP).  Retrieved October 27, 

2017 http://evs.gs.washington.edu/EVS/ 

104. Shalia, K. K., Shah, V. K., Pawar, P., Divekar, S. S., & Payannavar, S. (2013). 

Polymorphisms of MDR1, CYP2C19 and P2Y12 genes in Indian population: effects on 

clopidogrel response. Indian Heart J, 65(2), 158-167. doi:10.1016/j.ihj.2013.02.012 

105. Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., et al. 

(2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 29(1), 308-311.  

106. Simon, T. (1994). The collection of platelets by apheresis procedures. Transfus Med Rev, 

8(2), 132-145.  

107. Simon, T., Verstuyft, C., Mary-Krause, M., Quteineh, L., Drouet, E., Meneveau, N., et al. 

(2009). Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J 

Med, 360(4), 363-375. doi:10.1056/NEJMoa0808227 

108. Slichter, S. J., & Harker, L. A. (1976). Preparation and storage of platelet concentrates. 

Transfusion, 16(1), 8-12.  

http://www.qiagen.com/us/shop/sample-technologies/dna/genomic-dna/dneasy-blood-and-tissue-kit/#orderinginformation
http://www.qiagen.com/us/shop/sample-technologies/dna/genomic-dna/dneasy-blood-and-tissue-kit/#orderinginformation
http://evs.gs.washington.edu/EVS/


58 

 

109. Sofi, F., Giusti, B., Marcucci, R., Gori, A. M., Abbate, R., & Gensini, G. F. (2011). 

Cytochrome P450 2C19*2 polymorphism and cardiovascular recurrences in patients taking 

clopidogrel: a meta-analysis. Pharmacogenomics J, 11(3), 199-206. doi:10.1038/tpj.2010.21 

110. Springthorpe, B., Bailey, A., Barton, P., Birkinshaw, T. N., Bonnert, R. V., Brown, R. C., et 

al. (2007). From ATP to AZD6140: the discovery of an orally active reversible P2Y12 

receptor antagonist for the prevention of thrombosis. Bioorg Med Chem Lett, 17(21), 6013-

6018. doi:10.1016/j.bmcl.2007.07.057 

111. Staritz, P., Kurz, K., Stoll, M., Giannitsis, E., Katus, H. A., & Ivandic, B. T. (2009). Platelet 

reactivity and clopidogrel resistance are associated with the H2 haplotype of the P2Y12-

ADP receptor gene. Int J Cardiol, 133(3), 341-345. doi:10.1016/j.ijcard.2007.12.118 

112. Takeda, S., Kadowaki, S., Haga, T., Takaesu, H., & Mitaku, S. (2002). Identification of G 

protein-coupled receptor genes from the human genome sequence. FEBS Lett, 520(1-3), 97-

101.  

113. Tang, X. F., Zhang, J. H., Wang, J., Han, Y. L., Xu, B., Qiao, S. B., et al. (2013). Effects of 

coexisting polymorphisms of CYP2C19 and P2Y12 on clopidogrel responsiveness and 

clinical outcome in patients with acute coronary syndromes undergoing stent-based coronary 

intervention. Chin Med J (Engl), 126(6), 1069-1075.  

114. Trumel, C., Payrastre, B., Plantavid, M., Hechler, B., Viala, C., Presek, P., et al. (1999). A 

key role of adenosine diphosphate in the irreversible platelet aggregation induced by the 

PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood, 

94(12), 4156-4165.  

115. van Werkum, J. W., Kleibeuker, M., Postma, S., Bouman, H. J., Elsenberg, E. H., ten Berg, 

J. M., et al. (2010). A comparison between the Plateletworks-assay and light transmittance 

aggregometry for monitoring the inhibitory effects of clopidogrel. Int J Cardiol, 140(1), 123-

126. doi:10.1016/j.ijcard.2008.10.046 

116. Waldmann, R., Nieberding, M., & Walter, U. (1987). Vasodilator-stimulated protein 

phosphorylation in platelets is mediated by cAMP- and cGMP-dependent protein kinases. 

Eur J Biochem, 167(3), 441-448.  

117. Wallentin, L., Becker, R. C., Budaj, A., Cannon, C. P., Emanuelsson, H., Held, C., et al. 

(2009). Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J 

Med, 361(11), 1045-1057. doi:10.1056/NEJMoa0904327 

118. Webb, T. E., Simon, J., Krishek, B. J., Bateson, A. N., Smart, T. G., King, B. F., et al. 

(1993). Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS 

Lett, 324(2), 219-225.  

119. Westphal, H. (1987). Transgenic mice. Bioessays, 6(2), 73-76. doi:10.1002/bies.950060208 

120. Whittaker, V. K., & Watkins, J. C. (1972). The effect of the neuronal excitant N-methyl-D-

aspartate on the metabolism of mouse brain amino acids labelled from ( 14 C)bicarbonate 

and L-(U- 14 C)aspartate. Brain Res, 43(1), 227-234.  

121. Wihlborg, A. K., Balogh, J., Wang, L., Borna, C., Dou, Y., Joshi, B. V., et al. (2006). 

Positive inotropic effects by uridine triphosphate (UTP) and uridine diphosphate (UDP) via 

P2Y2 and P2Y6 receptors on cardiomyocytes and release of UTP in man during myocardial 

infarction. Circ Res, 98(7), 970-976. doi:10.1161/01.RES.0000217402.73402.cd 

122. Williams, M. S., Weiss, E. J., Sabatine, M. S., Simon, D. I., Bahou, W. F., Becker, L. C., et 

al. (2010). Genetic regulation of platelet receptor expression and function: application in 

clinical practice and drug development. Arterioscler Thromb Vasc Biol, 30(12), 2372-2384. 

doi:10.1161/ATVBAHA.110.218131 

123. Wiviott, S. D., & Antman, E. M. (2004). Clopidogrel resistance: a new chapter in a fast-

moving story. Circulation, 109(25), 3064-3067. doi:10.1161/01.CIR.0000134701.40946.30 

124. Wurtz, M., Hvas, A. M., Christensen, K. H., Rubak, P., Kristensen, S. D., & Grove, E. L. 

(2014). Rapid evaluation of platelet function using the Multiplate(R) Analyzer. Platelets, 

25(8), 628-633. doi:10.3109/09537104.2013.849804 

125. Yee, D. L., Sun, C. W., Bergeron, A. L., Dong, J. F., & Bray, P. F. (2005). Aggregometry 

detects platelet hyperreactivity in healthy individuals. Blood, 106(8), 2723-2729. 

doi:10.1182/blood-2005-03-1290 



59 

 

126. Ziegler, S., Schillinger, M., Funk, M., Felber, K., Exner, M., Mlekusch, W., et al. (2005). 

Association of a functional polymorphism in the clopidogrel target receptor gene, P2Y12, 

and the risk for ischemic cerebrovascular events in patients with peripheral artery disease. 

Stroke, 36(7), 1394-1399. doi:10.1161/01.STR.0000169922.79281.a5 

 

 


