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Transport coefficients for drifting Maxwellian plasmas:
The effect of Coulomb collisions

Walaa’ Najeeb Jubeha and Imad Ahmad Barghouthib
Department of Physics, Al-Quds University, Jerusalem, Palestine, 144

(Received 5 December 2017; accepted 20 December 2017; published online 5 January 2018)

We derive the collisional momentum and energy transport coefficients in Maxwellian
plasmas with a general drift velocity with respect to the ambient magnetic field by using
two approaches, the Fokker-Planck approximation and Boltzmann collision integral.
We find the transport coefficients obtained from Fokker-Planck representation are
similar to those obtained by using Boltzmann collision integral approach, and both
results are presented in a closed form in terms of hypergeometric functions. This
has been done for drifting Maxwellian plasmas with special emphasis on Coulomb
collision, i.e. inverse-square force. Also, we calculate the transport coefficients for
two special cases, firstly, when the drift velocity is parallel to the ambient magnetic
field (i.e. u = u ‖ , and zero perpendicular drift velocity), and secondly, when the drift
velocity is perpendicular to the ambient magnetic field (i.e. u = u⊥, and zero parallel
drift velocity). It is worthy to mention that, up to our knowledge, none of the derived
transport coefficients for the above mentioned case are presented in closed form and in
terms of hypergeometric function. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5018318

I. INTRODUCTION

Transport equations based on an isotropic Maxwellian distribution function were first derived
by Tanenbaum (1967), Burgers (1969), and reviewed by Schunk (1977). They obtained these
transport equations by using Boltzmann collision integral approach and presented them in terms
of the Chapman–Cowling collision integrals (Chapman and Cowling, 1970). These coefficients
are valid for arbitrary temperature differences between the interacting gases, and are restricted
to small relative drift velocity between the interacting gases. In this study, we removed the lat-
ter restriction and calculated transport coefficients for general drifting Maxwellian plasmas that
are valid for arbitrary drift velocity differences as well as for temperature differences between
the interacting plasma species. We also derived these transport coefficients for two special cases,
the first one, when the drift velocity is parallel to the ambient magnetic field and the second
one when the drift velocity is perpendicular to the ambient magnetic field. These coefficients are
obtained by using two different approaches; Fokker-Planck approximation and Boltzmann collision
integral.

This paper starts with a discussion of the theoretical formulation of Boltzmann’s equation and
the relevant collision terms i.e. Boltzmann collision integral and Fokker-Planck approximation. This
is followed by showing the general forms of Boltzmann collision integral and Fokker-Planck approx-
imation. Then, we derived the closed set of transport coefficients for drifting Maxwellian distribution
function with emphasis on the effect of Coulomb collisions, and finally we investigated two special
cases (i.e. drift velocities perpendicular and parallel to the ambient magnetic field) by using two forms
of the collision terms. The last section discusses our results and future studies.
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A. Theoretical formulation

In dealing with plasma it is convenient to investigate the distribution function of these species, in
general each species in the plasma is described by a separate velocity distribution function fs(r, vs, t)
which defined such that fs(r, vs, t) drdvs represents the number density of particles of species s which
at time t have positions between r and r + d r and velocities between vs and vs + d vs. The species
distribution function changed with respect to time as a result of collisions and particle motions under
the influence of external forces, the mathematical description of this effect is giving by Boltzmann’s
equation:

∂fs
∂t

+ vs · ∇fs +

[
G +

qs

ms

(
E +

1
c

vs × B
)]
· ∇vs fs =

δfs
δt

(1)

where qs, and ms, are the charge and mass of species s, G is the acceleration due to gravity, E is
the electric field, B is the magnetic field, c is the speed of light, ∂/∂t is the time derivative, ∇ is the
coordinate space gradient, ∇vs is the velocity space gradient, and the quantity δf s /δt represents the
rate of change of fs due to the collisions, this term is given in different forms, in this study we are
interested in Boltzmann collision integral and Fokker-Planck approximation forms.

B. Boltzmann collision integral

For binary elastic Coulomb collision between s and t charged particles, the appropriate collision
term is the Boltzmann collision integral, which can be presented as

δfs
δt
=

∑
t

∫
dvtdΩgstσst (gst , θ)

[
f ′s f ′t − fs ft

]
(2)

where dvt is the velocity-space volume element of species t, gst is the relative velocity of the colliding
particles s and t, dΩ is an element of solid angle in the s particle reference frame, θ is the scattering
angle, the primes denote quantities evaluated after a collision, and σ(gst, θ) is the differential scattering
cross-section (Goldstein, 1980; Schunk and Nagy, 2009):

σ =
q2

s q2
t

64π2ε2
oµ

2
st

1

g4sin4θ
(3)

where qs and qt are the charges of species s and t species, respectively, µst = msmt /(ms + mt) is the
reduced mass, mt and ms are the masses of particles t and s, and εo is the permittivity of free space.

C. Fokker-Planck approximation

Sometimes Boltzmann collision integral appears to be difficult to evaluate, so that the Boltzmann
collision integral (i.e. Eq. (2)) reduces to another simpler form by taking the first order of Taylor
expansion of it under the assumption that a series of consecutive weak (small-angle deflection)
binary collisions is a valid representation for the Coulomb interactions, the result is the Fokker-Planck
approximation.

δfs
δt
=−

∑
t

∇v .
q2

s q2
t lnΛ

8πε2
◦ms

∫
1g2 − gg

g3
·

(
fs
mt

∂ft
∂vt
−

ft
ms

∂fs
∂vs

)
d3vt (4)

where 1 is the unity tensor, and ln Λ is the Coulomb logarithm, which is typically between 10 to 25
for space plasmas.

The moments of fs are most conveniently defined in terms of the random or thermal velocity of
the species s, cs, with respect to their own mean flow velocity, us, as follow

cc = vs − us (5)

so that the integration over the velocity space dcs = dvs and the only difference being a displacement
of the origin of the velocity space (Grad,1949,1958; Burgers, 1969). The advantage of it that if there
are large drift velocity difference or temperature difference between interacting species, the velocity
distribution function of a given species more likely to be Maxwellian about its own drift velocity
than to be Maxwellian about the average velocity. Consequently, a series expansion of the species
distribution function about Maxwellian will converge more rapidly if the species average drift velocity
is used to define the transport properties (Schunk, 1977).
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II. TRANSPORT COEFFICIENTS

The starting point for the derivation of transport coefficients for gas mixtures is Boltzmann’s
equation i.e. Eq. (1). The transport equations are obtained by multiplying the right hand side of the
Boltzmann’s equation by an appropriate function of velocity Qs= Qs(cs) and then integrating over all
velocity space. The resulting transport coefficients describe the effect of collisions between different
species.

If we multiply the right hand side of Eq. (1) by Qs = 1, mscs, and mscs
2/2 and integrate over

velocity space, we obtain the rate of change of density, momentum and energy, and are symbolically
written as δns/δt, δMs/δt, and δEs/δt, respectively, for species s.

For Boltzmann collision integral, the corresponding transport coefficients are given as

δQs

δt
=

∫∫∫
d3csd

3ctdΩgstσst (gst , θ)
[

f ′s f ′t − fsft
]
Qs (6)

Due to reversibility of elastic collision, we can interchange primed and unprimed quantities in the
Eq. (6) without changing the result (Schunk and Nagy, 2009).

δQs

δt
=

∫∫∫
d3csd

3ctdΩgstσst (gst , θ)fsft
[
Q′s − Qs

)]
(7)

where Q′ is a function of velocity after the collision. The evaluation of Eq. (7) is easier than that of
Eq.(6), as it does not require the calculation of f ′s f ′t .

However, this integral can be evaluated by transform it from (cs,ct) to (Vc, gst), where Vc is the
center-of-mass velocity, and gst is the relative velocity, which are

gst = vs − vt (8)

Vc =
msvs + mtvt

ms + mt

=
(mscs + mtct + msus + mtut)

(ms + mt)
(9)

And the next step in evaluating the collision integral is to integrate over the solid angle
dΩ = sinθ dθ dϕ by using spherical polar coordinate system in the center of mass reference frame,
so we obtain

Density
∂ns

∂t
= 0 (10)

Momentum
δMs

δt
=

∑
t

−µst

∫∫
d3csd

3ctgstgst fs ftQ
(1)
st (11)

Energy
δEs

δt
=

∑
t

−µst

∫∫
d3csd

3ctgst fs ft
(
Vc.gst

)
Q(1)

st (12)

where

Q(1) = 2π

2π∫
θmin

σst (gst , θ) (1 − cos θ) sin θdθ (13)

= 4π

(
qsqt

4πε◦µstg2

)2

lnΛ

Also, these moments can be obtained by using the Fokker-Planck approximation by multiplying
it with an appropriate function of velocity Qs=Qs(cs) and integrating over all velocity space as follows:

δQs

δt
=−

∑
t

∇v .
q2

s q2
t lnΛ

8πε2
◦ms

∫
1g2 − gg

g3
.
(

fs
mt

∂ft
∂ct
−

ft
ms

∂fs
∂cs

)
Q (cs) dcsdct (14)
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After integration by parts, the corresponding transport coefficients can be expressed as
Density

∂ns

∂t
= 0 (15)

Momentum

δµs

δt
=

∑
t

q2
s q2

t lnΛ

8πε2
◦ns

∫
1g2 − gg

g3
.
(

fs
mt

∂ft
∂ct
−

ft
ms

∂fs
∂cs

)
dcsdct (16)

Energy

δEs

δt
=

∑
t

q2
s q2

t lnΛ

4πε2
◦ns

∫
cs

1g2 − gg
g3

.
(

fs
mt

∂ft
∂ct
−

ft
ms

∂fs
∂cs

)
dcsdct (17)

Note that for all elastic collisions the rate of change of density is zero because the particle’s mass
does not change.

The remaining integrals in equations (11, 12, 16, 17) can be evaluated after adopting approximate
expressions for fs and ft . However, in this study we assume the distribution function to be drifting
Maxwellian function. This assumption will be used to evaluate these integrals.

III. TRANSPORT COEFFICIENTS FOR DRIFTING MAXWELLIAN VELOCITY
DISTRIBUTION FUNCTION

As noted in the last section, it is necessary to adopt approximate expression for the species velocity
distribution functions, in order to evaluate the transport coefficients as presented in equations (11,12,
16,17). So we assume all colliding species in the gas have drifting Maxwellian velocity distributions
function. This case is known as the 5-moment approximation because each species in the gas mixture
is characterized by five parameters (i.e. species density, three components of drift velocity, and
temperature).

fs =

(
ms

2πkTs

)3/
2
e−

msc2
s

2kTs (18)

ft =

(
mt

2πkTt

)3/
2
e−

mt c2
t

2kTt (19)

In the following sub-sections, we will derive the transport coefficients by using firstly Boltzmann
collision integral and then Fokker-Planck approximation, and finally verify that they are equivalent.

A. Boltzmann collision integral

The rate of change of the momentum and energy are obtained from equations (11) and (12)
respectively, the term fsft can be expressed as

fs ft = nsnt

(
ms

2πkTs

)3/
2
(

mt

2πkTt

)3/
2
e−

msc2
s

2kTs
−

mt c2
t

2kTt (20)

The integrations over the velocity space can be performed by introducing the following variables
as follows:

cs = c∗ −
mtTs

msTt + mtTs
g∗ (21)

ct = c∗ +
msTt

msTt + mtTs
g∗ (22)
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where

c∗ =Vc − uc +
Tt − Ts

msTt + mtTs
µ2

st (∆u + g) (23)

g∗ =−g − ∆u (24)

∆u=ut − us (25)

uc =
msus + mtut

ms + mt
(26)

We also introduce

a2 =
2kTsTt

msTt + mtTs
; α2 =

2k (msTt + mtTs)
msmt

(27)

And
dcsdct = dc∗dg∗ (28)

Substituting Equations from 21 to 28 into Eq.(20) and then into the expression for δMs/δt (11)
and δEs/δt (12) yields

δMs

δt
=−

∑
t

µstnt

π3a3α3

(
qsqt

4πε◦µst

)2

lnΛ
∫

e
−c2
∗

/
a2 dc∗

∫
g
g3

e
−g2
∗

/
α2 dg∗ (29)

δEs

δt
=−

∑
t

µstnt

π3a3α3

(
qsqt

4πε◦µst

)2

lnΛ
∫

e
−c2
∗

/
a2 dc∗

∫
(Vc.g)

g3
e
−g2
∗

/
α2 dg∗ (30)

Integration with respect to dc∗ can be evaluated immediately, using a spherical coordinate system
(Gaussian integral) ∫

e
−c2
∗

/
a2 dc∗ = π3/2a3 (31)

It remains to carry out the integrations with respect to dg∗. We expressed g∗in terms of g and u

g2
∗ = g2 + 2g∆g∆uco + (∆u)2 (32)

where θ is the angle between g and v.
With these changes, Eq. (29) and Eq. (30) become

δMs

δt
=−

∑
t

µstnt

π3/2α3

(
qsqt

4πε◦µst

)2

lnΛ
∫

g
g3

e
−(g2+2g∆g∆uco+(∆u)2)

/
α2 dg (33)

δEs

δt
=−

∑
t

µstnt

π3/2α3

(
qsqt

4πε◦µst

)2

lnΛ
∫

(Vc.g)

g3
e
−(g2+2g∆g∆uco+(∆u)2)

/
α2 dg (34)

Schunk (1977) calculated these remaining integral over g by expanded the exponential terms
with cosθ, and he assumed a small relative drifts between the interacting gases (i.e., when the drift
velocity differences are much smaller than thermal speeds), so that Schunk (1977) neglected the
exponential term of (∆u/α)2 , and finally the transport coefficients expressed in terms of the so-called
Chapman–Cowling collision integrals (Chapman and Cowling, 1970).

In this study, we removed the latter restriction and calculated transport coefficients by using other
strategy in which we introduced new variables as follow:

v=
g
α

; V=
2∆u
α

(35)

The momentum and energy exchange collision terms reduce to

δMs

δt
=−

∑
t

ntq2
s q2

t lnΛ

2π3/2ε2
◦µstα3

e−∆u2/α2

π∫
0

∞∫
0

e−(v
2+vV cos θ)α sin θ cos θdvdθ (36)

δEs

δt
=−

∑
t

ntq2
s q2

t lnΛ

2π3/2ε2
◦µstα3

e−∆u2/α2

π∫
0

∞∫
0

1
ms + mt

(mscs + mtct − mt (us − ut)) e−(v
2+vV cos θ)

× α sin θ cos θdvdθ (37)
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This integral can be evaluated by using the technique Maclaurin series expansion for the
exponential terms with cosθ, and then express them in terms of the hypergeometric function, so
with these changes the final expressions for the coefficients are

δMs

δt
=−

∑
t

ntq2
s q2

t lnΛ

4πε2
◦µstα2

e−∆u2/α2
F *.
,

1
2
2

;

(
∆u
2

)2
+
-

(38)

δEs

δt
=−

∑
t

ntq2
s q2

t lnΛ

4πε2
◦msmtα2

e−∆u2/α2 *.
,
3k (Tt − Ts) − mt(us − ut)F

*.
,

1
2
2

;

(
∆u
2

)2
+
-
+/
-

(39)

where F *.
,

1
2
2

;

(
∆u
2

)2+/
-

is hypergeometric function(Lebedev, 1965; Koepf, 2014).

B. Fokker-Planck approximation

The first step in evaluating the transport coefficient for momentum by using the Fokker Planck
approximation is the derivation of fs and f t with respect to cs, ct respectively as follows

∂fs
∂cs
=−

2cs

a2
s

fs (40)

∂ft
∂ct
=−

2ct

a2
t

ft (41)

Where

a2
s =

2kTs

ms
; a2

t =
2kTt

mt
(42)

Then (
fs
mt

∂ft
∂ct
−

ft
ms

∂fs
∂cs

)
=
−2fs ft
msmt

(
msct

a2
t

−
mtcs

a2
s

)
(43)

When this term is substituted into Equation (16) and use is made of the relations

1g2 − gg
g3

.
(

msct

a2
t

−
mtcs

a2
s

)
=

1
(ms + mt)

g
g3

(44)

the result is
δMs

δt
=−

∑
t

ntq2
s q2

t lnΛ

4πε2
◦µst

∫∫
d3csd

3ctgstgst fs ft (45)

This is the same as we obtained from Boltzmann collision integral (i.e. Eq. (11)), so the final
expression is

δMs

δt
=−

∑
t

ntq2
s q2

t lnΛ

4πε2
◦µstα2

e−∆u2/α2
F *.
,

1
2
2

;

(
∆u
2

)2
+
-

(46)

Similarly, the energy coefficient δEs/δt can be calculated as we did for the momentum coeffi-
cient δMs/δt. We obtained approximately similar results as those obtained from Boltzmann collision
integral.

δEs

δt
=−

∑
t

ntq2
s q2

t lnΛ

4πε2
◦msmtα2

[
e−∆u2/α2 *.

,
3k (Tt − Ts) − mt(us − ut)F

*.
,

1
2
2

;

(
∆u
2

)2+/
-

+/
-

+
(mscs

2
+ mtcs + msct

)]
(47)

The comparison between the results of Eq. (47) and Eq. (39) produce similar results and the little
difference due to the Fokker-Planck approximation which obtained from expanding the Boltzmann
collision integral and taking first terms in the Taylor series and neglect the other terms.
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C. Special cases

1) (u ‖= 0, i.e. u= u⊥), zero drift velocity parallel to the ambient magnetic field, and the drift velocity
is perpendicular to the ambient magnetic field, the transport coefficients equations reduce to:

δMs

δt
=−

∑
t

ntq2
s q2

t lnΛ

4πε2
◦µstα2

e−∆u2
⊥/α

2
F *.
,

1
2
2

;

(
∆u⊥

2

)2
+
-

(48)

δEs

δt
=−

∑
t

ntq2
s q2

t lnΛ

4πε2
◦msmtα2


e−∆u2

⊥/α
2 *.
,
3k (Tt − Ts) − mt(us⊥ − ut⊥)F *.

,

1
2
2

;

(
∆u
2

)2
+
-
+/
-

;

+
(mscs

2
+ mtcs + msct

) (49)

2) (u⊥=0, i.e. u= u ‖), zero drift velocity component perpendicular to the ambient magnetic field,
and the drift velocity is parallel to the ambient magnetic field, the transport coefficients take the
form:

δMs

δt
=−

∑
t

ntq2
s q2

t lnΛ

4πε2
◦µstα2

e−∆u2
‖
/α2

F *.
,

1
2
2

;

(
∆u ‖

2

)2
+
-

(50)

δEs

δt
=−

∑
t

ntq2
s q2

t lnΛ

4πε2
◦msmtα2


e−∆u2

⊥/α
2 *.
,
3k (Tt − Ts) − mt

(
us‖ − ut‖

)
F *.
,

1
2
2

;

(
∆u
2

)2
+
-
+/
-

+
(mscs

2
+ mtcs + msct

) (51)

These coefficients derived by using Fokker-Planck approximation are, nearly, similar to the
results obtained by using Boltzmann collision integral approach.

IV. RESULTS AND DISCUSSIONS

For temperature isotropic plasmas, we obtained the transport coefficients (density, momentum,
and energy) based on a drifting Maxwellian velocity distribution functions with drift velocity u
with respect to the ambient magnetic field (i.e. u= u ‖ + u⊥) by using Boltzmann collision integral,
and Fokker Planck approximation. The final results are presented in the closed form in terms of
hypergeometric functions. The two approaches produce approximately similar results.

We extended the work of Schunk (1977) and calculated the transport coefficients by using
Boltzmann collision integral for two special cases where the relative drift is either parallel or per-
pendicular to the magnetic field, which are the two most common cases in astronomy and space
physics. Then we investigated the previously problem by using another approach, Fokker Planck
approximation, we obtained nearly similar results. The transport coefficients are presented in the
form of hypergeometric functions. These results can be further generalized to an inverse power force
interaction.

Finally, it should be noted that we derived the closed set of the collisional momentum and
energy transport coefficients, however Chapman and Cowling (1970) calculated these coefficients
approximately and for special case i.e. when the drift velocity differences between the various species
are much smaller than typical thermal speeds, and they performed approximation for some specific
collision processes.

Similarly, Jubeh and Barghouthi (2017) derived the above transport coefficients for bi-
Maxwellian drifting plasma with special emphasis on the effect of Coulomb collisions. In an on-going
study we are interested to derive, in closed form, the velocity diffusion coefficients for both cases,
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Maxwellian and bi-Maxwellian drifting plasma, and provide them in terms of Hypergeometric func-
tions. These diffusion coefficients are going to be very useful to the solar and polar wind communities,
especially in modeling the plasma behavior in these regions.
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