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Abstract 

Traffic congestion at intersections is an international problem in the cities. This 

problem causes more waiting time, air pollution, petrol consumption, stress of people and 

healthy problems. Against this background, this research presents a benchmark iterative 

approach for optimal use of the metaheuristic optimization techniques to optimize the traffic 

light signals timing problem. A good control of the traffic light signals timing on road 

networks may help in solving the traffic congestion problems. The aim of this research is to 

identify the most suitable metaheuristic optimization technique to optimize the traffic light 

signals timing problem, thus reducing average travel time (ATT) for each vehicle, waiting 

time, petrol consumption by vehicles and air pollution to the lowest possible level/degree. 

The central part of Nablus road network has a huge traffic congestion at the traffic 

light signals. It was selected as a research case study and was represented by the SUMO 

simulator. The researcher used a random algorithm and three different metaheuristic 

optimization techniques: three types of Genetic Algorithm (GA), Particle Swarm Algorithm 

(PS) and five types of Tabu Search Algorithm (TS). Parameters in each metaheuristic 

algorithm affect the efficiency of the algorithm in finding the optimal solutions. The best 

values of these parameters are difficult to be determined; their values were assumed in the 

previous traffic light signals timing optimization research. The efficiency of the metaheuristic 

algorithm cannot be ascertained of being good or bad. Therefore, the values of these 

parameters need a tuning process but this cannot be done by using SUMO simulator because 

of its heavy computation.  

The researcher used a benchmark iterative approach to tune the values of the 

metaheuristic algorithm parameters by using a benchmark function. The chosen function has 
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similar characteristics to the traffic light signals timing problem. Then, through the use of this 

approach, the researcher arrived at the optimal use of the metaheuristic optimization 

algorithms to optimize traffic light signals timing problem. The efficiency of each 

metaheuristic optimization algorithm, tested in this research, is in finding the optimal or near 

optimal solution after using the benchmark iterative approach. The results of metaheuristic 

optimization algorithm improved at some values of the tuned parameters. 

The researcher validated the research results by comparing average results of the 

metaheuristic algorithms, used in solving the traffic light signals optimization problem after 

using benchmark iterative approach, with the average results of the same metaheuristic 

algorithms used before using the benchmark iterative approach; they were also compared with 

the results of Webster, HCM methods and SYNCHRO simulator. 

In the light of these study findings, the researcher recommends trying the benchmark 

iterative approach to get more efficient solutions which are very close to the optimal solution 

for the traffic light signals timing optimization problem and many complex practical 

optimization problems that we face in real life. 
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بقارنة  الضوئية المرور اشاراتتحسين توقيت ل ضبط خوارزميات التحسين التخمينية

 .الدوال

 .رامي كمال عزت ابو شهاب: إعداد 

 .عبدالحقبكر . بديع السرطاوي و د. د: اشراف

 :ملخص

المزيد من  تسبب هذه المشكلة. الازدحامات المرورية عند التقاطعات هي مشكله عالمية في المدن

، يقدم على هذه الخلفية . صحيةمشاكل و  الناساستهلاك الوقود، و توتر وتلوث الهواء و  الانتظار وقت

مشكلة توقيت الإشارات  تحسين في التخمينيةتقنيات التحسين  للاستخدام مكررال معيارال نهج هذا البحث

حل مشاكل  في التحكم الجيد في توقيت الاشارات الضوئية على شبكات الطرق قد يساعد .الضوئية

لتحسين مشكلة  تخمينيةيهدف هذا البحث الى تحديد أفضل و أنسب تقنية تحسين . الازدحام المروري

و وقت  ،لكل مركبة (ATT)الوقت الذي يستغرقه السفر متوسط وبالتالي تقليلتوقيت الاشارات الضوئية، 

 .مستوى ممكن إلى أدنىتلوث الهواء المركبات و  المستخدم في الوقود استهلاكو  ،نتظارالا
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يعاني الجزء المركزي من شبكة طرق مدينة نابلس من ازدحام مروري كبير على الاشارات 

و تم اختيار هذا الجزء كحالة البحث الدراسية و التي تم تمثيلها باستخدام برنامج المحاكاة . الضوئية

من  ثلاث انواع: و هي تخمينيةو استخدم الباحث خوارزمية عشوائية و ثلاث تقنيات تحسين . سومو

و هناك متغيرات . الخوارزمية الجينية، و خورزمية سرب الجسيمات، و خمسة انواع من خوارزمية التابو

عب تحديد و من الص. في ايجاد الحلول المثلىتؤثر على فعالية الخوارمية تخمينية في كل خوارزمية 

ين توقيت الاشارات ابحات تحسنت تفترض في لهذه المتغيرات؛ و قيم هذه المتغيرات كاالقيم افضل 

لا يمكن التحقق منها اذا ما كانت التخميني وفي هذه الحاله فعالية اقتران التحسين . الضوئية السابقة

ط ، ولكن لا يمكننا ذلك باستخدام برنامج عملية ضبلقيم هذه المتغيرات بحاجه ولذلك فان . جيده او سيئة

 .طويلهه ثقيله و المحاكاه سومو لانه حسابات

باستخدام  التخمينيةلضبط قيم متغيرات خوارزمية التحسين مقارنة الدوال استخدم الباحث طريقة 

ثم من  .خوارمية المعيار المختاره لها خصائص شبيهه بمشكلة توقيت الاشارات الضوئية. خوارزمية معيار

لتحسين  تخمينيةالخلال استخدام هذه الطريقة، وصل الباحث الى افضل استخدام لخوارزميات التحسين 

في  تخمينيةتم اختبار فعالية كل خوارمية تحسين  هذا البحثوفي . مشكلة توقيت الاشارات الاضوئية

لقد تحسنت . ضبط خوارزمية التحسين التخمينيةايجاد الحل الامثل او حل قريب من الحل الامثل بعد 

 .تم ضبطهاعند بعض قيم المتغيرات التي  التخمينيةنتائج خوارزمية التحسين 
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التي  التخمينيةقام الباحث بالتحقق من نتائج البحث بمقارنة معدل نتائج خوارزميات التحسين 

، مع ضبط خوارزمية التحسين التخمينيةمشكلة توقيت الاشارات الضوئية قبل تحسين امستخدمها في 

؛ وهذه سين التخمينيةضبط خوارزمية التحبعد التي امستخدمها  التخمينيةخوارزميات المعدل نتائج نفس 

 .و برنامج السنكرو HCMطريقتي ويبستر و النتائج تمت مقارنتها مع نتائج 

طريقة مقارنة الدوال لضبط خوارزميات في ضوء نتائج هذه الدراسة، يوصي الباحث بتجريب 

للحصول على حلول فعالة اكثر و التي تكون قريبة جدا من الحل الامثل لتحسين  التحسين التخمينية 

 .وئية و لتحسين المشاكل العملية المعقدة التي تواجهنا في الحياة العمليةمشكلة توقيت الاشارات الض
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Chapter One 

Introduction  

 

 

Metropolitan cities in many countries suffer from chronic traffic congestion 

problems on their road networks. The major traffic congestion is mostly at the intersections 

and traffic light signals. These congestion problems cause many problems such as waste of 

time, waste of petrol, and air pollution, stress and other health problems for people. 

In 2002, people spent 100,000 hours in total in queues in the Greater Copenhagen 

road infrastructure, and nearly 750 million Euros were lost, due to traffic problems [1]. 

Danish researchers and Copenhagen municipality tried to solve the traffic congestion 

problem, through improvement of road network, by increasing number of lanes, and 

building of more bridges. But the problem is that it is very difficult to increase number of 

lanes and bridges in all cities because of lack of open spaces within urban centers and lack 

of financial resources to build bridges. In the light of this challenge, there is a chance for 

alleviation of this problem through improvement of the control process of the traffic light 

signals timing. If the optimal time for each traffic light signal was selected, the traffic 

congestion problem might be reduced [2, 3, 4, 5, 6, 7]. However, the selection process for 

the optimal traffic light signals timing is a very complex problem because the road 

networks have a random behavior [8]. 

Engineers and scientists have developed simulation tools to represent the road 

network and to compute very huge parameter values such positions, speeds, accelerates, 

decelerates …, for all vehicles, and for control of the road network, to help in solving the 

road network problems by using the force of computer systems. One suitable way to solve 
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the traffic light signals timing problem is by using optimization processes. One suitable 

optimization technique, to solve this type of problems, is using the metaheuristic 

optimization technique as the literature review shows below in the next chapter. 

The case study of this research was a Nablus city center road network which was 

represented on SUMO simulation (Simulation of Urban MObility). The case study 

contained 13 traffic light signals. Each traffic light signal may have a red or green light and 

takes a fixed time value between 10s to 100s, and each traffic light signal had 90 

probabilities. All parameters of the road network of the case study for the network road in 

SUMO simulation were stable, and the variable inputs were just a list of 13 traffic light 

signals timing. To find the optimal traffic light signals timing, which has a minimum 

average travel time (ATT) for each vehicle, a search process in a large solution space had to 

be done. 

The execution time of SUMO simulation for one hour, for each input time list, 

takes the computer a ½ minute to complete. Many years would be needed to try all 

different probabilities of input time lists. This is a strong proof of the complexity of the 

problem. Because this problem is random and unsolvable by traditional analytical 

mathematic [2, 9, 10], the researchers used different metaheuristic optimization techniques, 

as previous research shows, to optimize the traffic light signals timing in the road network 

of the case study [2, 3, 4, 5, 6, 7, 9, 11]. 

The researcher used a basis random algorithm and nine metaheuristic optimization 

methods to optimize the traffic light signals timing problem in the case study. These 

methods were three types of Genetic Algorithm (GA), Particle Swarm algorithm (PS) and 

five types of Tabu Search algorithm (TS). One of them was the main algorithm and four 

types were developed from the main TS algorithm type. 
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The researcher selected GA type1, PS and TS type1 algorithms from Abdalhaq B. 

and Abu Baker M. research in which they had calibrated many parameters of SUMO 

simulators like vehicle length, minimum and maximum speed, acceleration, deceleration. 

These algorithms were used in addition to Simultaneous Perturbation for Stochastic 

Approximation algorithm (SPSA). The results of these metaheuristic algorithms were 

compared with the classical optimization algorithms like Nealder-Mead (NM) and 

Constrained Optimization By Linear Approximation  algorithm (COBYLA) [12]. 

 However, each metaheuristic algorithm had main parameters whose values had an 

effect on the efficiency (ex. arriving speed to the optimal or near optimal solution) of the 

algorithm in finding the optimal solution. The values of these parameters were assumed in 

the previous traffic light signals timing optimization researches, so that we cannot 

determine if algorithm efficiency is good or not (see next chapter). These parameters are as 

follows: 

1- Iteration number: In a lot of research, the number of iterations was executed to find the 

whether the optimal solution was presupposed, but these iterations failed to determine 

whether the best solution obtained was near or far from the optimal solution. A number 

of iterations were used in PS and TS algorithms. The number of iterations was equal to 

the generation size multiplied by the generation numbers in GA. 

2- W, cp, cg parameters: These parameters were used in PS algorithm, and their values had 

an effect on the behavior of this algorithm [12, 13], because w represents the percentage 

effect of the particle’s speed and vector itself, while cp represents the percentage effect 

of the best neighborhood particle’s speed and vector, and cg parameter represents the 

percentage effect of the best particle’s speed and vector in the swarm. 
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3- k and tau numbers: These two parameters were used in TS algorithm. k represents the 

neighborhood steps from the best solution in the generation by adding to and dropping k 

from each record to get a new generation. tau represents a value for the best solution 

arrived at to avoid the searching process in the same region for tau values, and to 

reroute the searching process to a new region for tau iterations[12]. 

4- GA mutation rate, crossover rate and selection rate parameters 

 To determine the best parameters’ values, all values’ probabilities had to be tried 

on the traffic light signals timing problem of the case study with many replications. 

However, if SUMO simulator execution time for one solution by one computer was ½ 

minute, then this process would need a very long time for each metaheuristic algorithm, 

because the number of probabilities is large and the number of replications has to be large 

to get a confident solution. 

 Research Problem 

How can we determine the best parameters’ values of each metaheuristic optimization 

algorithm for optimizing the traffic light signals timing problem? 

 Research questions  

Can we find a simple approach to determine the best previous parameters’ values in a short 

time for efficient metaheuristic optimization algorithms to optimize the traffic light signals 

timing problem? 

Can we improve some metaheuristic optimization algorithms to find new solutions that are 

close to the optimal solution in solving the traffic light signals timing optimization 

problem? 
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Can we determine the best metaheuristic optimization algorithm suitable for solving traffic 

light signals timing optimization problem? 

To answer these questions, the researcher used a benchmark iterative approach, for 

tuning the parameters values of the metaheuristic optimization algorithms, to optimize the 

practical problem in a more efficient way than those of the previous research. The 

methodology of this research depends on experimentation to determine the best 

parameters’ values for any metaheuristic optimization method at a reasonable time by 

using a suitable light benchmark function. 

The benchmark iterative approach is used to optimize the traffic light signals timing 

problem to help in answering Teklu  F., Sumalee A., Watling D.  (2007) question: How 

will the best parameters’ values determine an efficient metaheuristic optimization 

algorithm to solve the traffic light signals timing optimization problem? [4]. 

Many experiments have been conducted, using metaheuristic algorithms to 

compute the average travel time for each vehicle at each algorithm with many replications. 

At the end, comparative processes, between the average results of the algorithms, were 

done to determine the efficiency of the metaheuristic algorithm when the benchmark 

iterative approach was used, and the most suitable algorithm type to solve traffic light 

signals timing problem was determined. These algorithms’ results were validated by 

comparing the best algorithms’ results for optimizing the traffic light signals timing 

problem before using benchmark iterative approach and after using benchmark iterative 

approach, and with two main mathematical models for traffic light timing Webster and 

HCM methods [14], and SYNCHRO simulation timing results [15]. At the end, it was 

found that the results were promising. 
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1.1 Motivation 

 

This study seeks first to provide metaheuristic optimization researchers with a 

benchmark iterative approach for optimal use of metaheuristic optimization techniques to 

get more efficient solutions for their problems. Second, it endeavors to prove that it is 

possible to benefit from the metaheuristic optimization techniques in an optimal way to 

solve complex practical optimization problems. Third, it aims at applying computational 

methodologies to solve traffic engineering problems for civil and traffic engineering. 

Fourth, it also aims at reducing the problems of the traffic congestion, resulting from the 

control of the traffic light signals, to the lowest level.  

1.2 Objectives  

This study seeks to find an approach for optimal use of metaheuristic optimization 

techniques to obtain new solutions which are close to the optimal solution. It also seeks to 

find the most suitable metaheuristic optimization algorithm to optimize the practical 

problem such as the traffic light signals timing problem. Finally, this study aims at 

improving metaheuristic algorithms of practical problems to obtain new good solutions. 

1.3 Research Contribution 

1. Using a benchmark iterative approach for optimal use of the metaheuristic optimization 

techniques to solve complex practical optimization problems, and find the optimal or 

near optimal solution. 

2. Improving the TS algorithm to get a global minimum for the benchmark function, and 

get good solutions for the traffic light signals timing optimization problem compared 

with the basic TS algorithms. 
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It is worth noting that as a result of this research, a scientific research paper was 

accepted and published in the Proceedings of the 6
th
 International Conference on 

Computer Science & Information Technology CSIT (see IEEE Computer website [16]. 

This thesis is organized as follows: Review of literature will be discussed in 

chapter two. Research background and details, including a description of research problem, 

case study and data, tools, techniques and methods used in this research, are presented in 

chapter three. Chapter four is devoted to the methodology of the study and the 

experiments. Experimental results are presented and discussed in chapter five. 

Experimental results validity is presented in chapter six. Finally, Conclusion and 

recommendations are given in chapter seven. 
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Chapter Two 

 Review of Literature 

 

This chapter summarizes related literature on metaheuristic optimization 

algorithms. More specifically, it sheds light on different traffic light signals timing 

optimization problem methodologies and tuning parameters’ values for metaheuristic 

optimization algorithm. It also provides an introduction to optimization and traces the 

development and classification of different optimization techniques, and traffic road 

network models and simulations. 

2. 1 Methodologies of Traffic Light Signals Timing Optimization Problem  

Methodology is a set of steps, tools and methods which can be used in problem 

solving processes. A lot of research has been conducted on the optimization process for the 

traffic light signals timing problem. Webster (1958) was the first researcher to introduce/ 

define a new methodology for solving this problem [14]. His methodology, which depends 

on the first development of mathematical model, aimed at optimizing the cycle time length 

and green time for the traffic light signals at an isolated intersection to minimize the delay 

time, queue length, or the volume of vehicles. The main shortcoming of this model is that 

it was used to optimize just one isolated intersection. 

 Researches in this field, after that, have developed approaches, models, algorithms 

for improving the solutions of the traffic congestions on the intersections depending on 

Webster’s models. The researchers suggested that using metaheuristic optimization 

techniques might be more efficient to optimize many intersections as a global road network 

traffic light signals timing in comparison with Webster’s method used to synchronize the 

movements of vehicles through the traffic light signals. A number of researchers used 
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metaheuristic optimization algorithms for optimizing the traffic light signals timing 

problem to reduce the traffic congestion problems. 

Yun I. and Park B. (2006) used a methodology which depends on simulating a real 

road network in Virginia, USA. This methodology contained 82 traffic signals at 12 

intersections. CORIM microscopic traffic simulation model [2], and heuristic optimization 

methods GA, Simulate of Annealing (SA) and Opt Quest Engine, with iteration numbers= 

2,500, were used. They used these algorithms to optimize traffic light signals timing (cycle 

time) to minimize the total queue time such as delay time for each vehicle. Then they 

compared their results with the results of another existent network optimization program 

named SYNCHRO which is based on macroscopic models. Their conclusion was that GA 

results were more suitable than other methods’ results. SYNCHRO program results were 

used.  

Teklu F., Sumalee A. and Watling D. (2007) used a methodology to solve a signal 

timing problem based on NDP (Network Design Problem). They used GA with a different 

population size={30, 50, 70}, and a different generation number= {150, 90, 70} to 

optimize the traffic signal cycle time to minimize the total travel time to deal with 

congestion problems and atmospheric pollution [4]. The researchers developed an 

application called GA-FITSUM which depended on SATURN model; then they 

implemented their case study which was road network in the city of Chester, UK, which 

had 75 signalized junctions. The operations of the GA used were selection processes for 

the best chromosomes with higher probabilities named elitism. They were randomly paired 

crossover for parents to produce offspring, and the mutation process on genes, on some 

probabilistically selected chromosomes, was followed to mutate and form the next 

population. They compared GA-FITSUM results TT with SATOPT optimized signal 
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timings. GA- FITSUM was found to have more promising results in finding the optimum 

signal timings than SATOPT. During their research, the researchers observed that there 

was a relationship between the GA parameters’ values, like population size and generation 

number, and the performance of the algorithm. In this context, the researchers asked 

themselves one question: How can we find optimum values of the GA parameters? 

However, the answer is still controversial and requires further research. 

Medina J., Moreno M., Cabrera M. and Royo E. (2009) proposed a methodology to 

optimize the traffic signal states sequence through simulation of a virtual road network on 

a microscopic simulator model, developed in this research as a non-linear model for 

simulating traffic behavior based on the Cellular Automata Model [11]. Then they used 

GA to fit the number of vehicles that left the network. They carried out a traffic simulation 

to speed up their work; they developed a cluster system based on a Beowulf Cluster. In this 

research, each traffic signal had two states, red light which means stop, and yellow light 

which means go, and all traffic light signals were encoded in one chromosome, and each 

gene was encoded as red=’1’, and yellow=’0’. In their experiment, they presupposed that 

the population size=200 chromosome, generation number=200, and the first generation 

would be created randomly. Then the next generation would be created by selection of the 

best two chromosomes; later they conducted a crossover between parents, a mutation of the 

parents and new chromosomes with some probabilities. The conclusion was that this 

methodology could be helpful to solve the traffic congestions on the road network. 

Singh D. and Singh R. (2009) used a methodology which depends on development 

of a mathematical model derived from Webster’s and HCM’s models. They computed and 

estimated the delay time at isolated intersections by some equations, and used GA, with a 

fixed population size=20 and generation number=50, to optimize traffic signals timing plan 
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to minimize delay time parameter. Then they implemented their real network on a 

MATLAB program as a simulation tool, and at the end, they compared the results of the 

estimation equations model [7]. The results of the optimization process through GA, and 

the delay time was reduced by using GA more than estimation equations. 

Farooqi A., Munir A. and Baig R. (2009)’s methodology depends on a newly 

developed simulation tool named THE simulator. They used it to simulate their virtual 

traffic road network which had 16 traffic signals [3]. Then they used GA, with population 

size=10 and generation number=10, to optimized the traffic light signals time cycle to 

minimize the delay time and the travel time. The results were found to be good because the 

total wait time was reduced.  

Sklenar J., Beranek Z. and Popela P. (2009)’s methodology depends on developing 

a new traffic simulator named Stochastic Simulation in Java library for stochastic 

simulation. A numerical approximation objective function was developed, but the 

differential algorithms failed to optimize this function [8]. The researchers implemented a 

heuristic optimization algorithm SA to optimize the traffic light signals timing parameters 

of three junctions, at Konecného Square in Brno, The Czech Republic, to maximize the 

throughput and to minimize the average waiting time in the system. The distributions of 

the vehicles’ arrival queue rate and the time of services for the vehicles at the traffic light 

signals were not exponential as they had supposed, so this problem could not be solved by 

using Jackson network and queuing theory as an analytical way. Using the simulation tool 

was found to be more efficient. At the end, the current timing plan was improved for the 

junctions, so the waiting time, and the queue length were reduced. The results were 

compared with the results of VISSIM model which was developed by BKOM.  
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In their methodology, Singh L., Tripathi S. and Arora H. (2009) depended on 

development of an emulator to represent dynamic conditions of traffic on an isolated 

intersection with traffic system conditions controlled with a surveillance system (by traffic 

camera). They wanted to provide a real time status to the optimization control algorithm 

which was decided for traffic light signals status. They used GA to optimize traffic light 

signals timing problem to determine the best time duration for the signal and to reduce 

stops and overall vehicle delays, or to maximize the throughput [5]. They sought to 

develop an efficient traffic adaptive control strategy that would identify a real time traffic 

scenario. The researchers compared the results that were obtained by presupposing real 

time based on traditional fixed time system. The results of real time based on the system 

were found to have more significant performance.  

Renfrew D. (2009) investigated a new approach to find the optimal signal timing 

plan for a traffic intersection using ant colony optimization algorithms to optimize traffic 

signal timing on the intersection and minimize vehicle delays [6]. They considered an 

isolated traffic intersection, and used six types of the ACO algorithm; Ant System 

Algorithm, Ant System with local search algorithm, Elitist Ant System Algorithm, Elitist 

Ant System with local search algorithm, Elitist Ant System with local search and heuristics 

algorithm, and Rank-based Ant System with local search and heuristics, at these 

parameters’ values, ants number={10, 25, 50}, iteration number=100, the pheromone 

evaporation coefficients of p=4 and p=2 and the vehicle arrival rate is 800 vph (vehicles 

per hour) per movement. 

The convergence rate parameter of pheromone concentration for optimal solution, 

in different algorithm types of the ACO, was tested. The best simulation results were found 

in the Rank-Based Ant System algorithm. The average vehicle delay was tested and 

compared with a fully traditional actuated control. 
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Table 2.1: Traffic light signals timing optimization of different research. 

 

S
tu

d
y

 

Methodology components and conclusion of  each research 

Optimization 

Methods 

Simulation 

Tool 

Optimization 

Parameter 

Fit 

Function 

Network 

Type 
Conclusion 

[2] 

GA & SA & 

OptQuest 

Engine 

CORIM 

microscopic 

Model 

Signal timing 

Minimize the total 

Queue time, and delay 

time 

Fairfax, Virginia, 

USA road 

network 

GA is the 

best 

[4] GA 
SATURN 

model 

Traffic signal 

cycle time 
Minimize the total time 

City of Chester 

in UK 
Positive 

[11] GA 
Microscopic 

model 
Signal timing 

Maximize # of vehicles 

lifted the network 

Virtual 

Network 
Positive 

[7] GA MATLAB delay time. Minimize the total delay. Virtual network Positive 

[3] GA THE simulator Signal timing 
Minimize delay time and 

total travel time 
Virtual network Positive 

[8] SA 

Stochastic 

simulation 

model 

Signal timing 

Maximize network 

throughput and Minimize 

waiting time 

Konecného 

square in Brno, 

Czech Republic 

Positive 

[5] GA 
Their own 

emulator 
Signal timing 

Maximize network 

throughput and Minimize 

total delay time 

Isolated four-way 

intersection 
Positive 

[6] 

ACO &  fully 

actuated 

algorithm 

Dynamic 

simulator 

traffic model 

Signal timing Minimize total delay time 

Four-lagged 

isolated traffic 

intersection 

ACO is 

the best 

 

The results showed that when vehicles’ flow was less than 600vph, the 

conventional fully actuated control was more efficient, but when the vehicles’ flow greater 

than 600vph, ACO algorithm was more efficient.  

Table 2.1 summarizes the traffic light signals timing optimization methods of 

previous research. And the differences between the previous traffic light signals timing 

optimization problem and this research can be summarized as follows: 

1- The main shortcoming of previous research was in the researchers’ methodologies. 

They just used some types of the metaheuristic optimization algorithm without any 

improvement of the algorithms used in traffic light signals timing problem or any tuning 

processes for the algorithms’ parameters.  
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2- In this research, a benchmark iterative approach for using is used to tune many 

metaheuristic algorithms’ parameters’ values, by using a benchmark function to 

improve the algorithms’ performance in a short time. The proposed simple approach is 

used to improve several metaheuristic algorithms such as GA, PS and TS. 

3- In this research, through the use of the benchmark iterative approach, new types of TS 

algorithm were developed. The results were found to be better than basic TS algorithm 

in both optimizing benchmark function and traffic light signals timing optimization 

problems. 

2.2 Parameters Tuning for Metaheuristic Optimization Algorithms  

Metaheuristic optimization techniques began to be used recently at a large scale to 

solve complex problems, which are unsolvable by traditional optimization methods. Each 

one of these techniques has many parameters or factors which take huge value 

probabilities. These parameters demonstrate the algorithm’s efficiency. Finding a process 

for the best parameters’ values which the metaheuristic algorithm be more efficient in 

finding optimal or near optimal solutions named parameter tuning.  

Universally optimal parameters’ values for some algorithms to solve many 

problems don’t exist yet. Finding the best parameters’ values is not an easy task and it is 

very difficult to understand the effect of the algorithm’s parameters on each problem [17]. 

The problem is that some algorithms work efficiently at the best parameters’ values on 

some problems, but may not work efficiently on others. So this problem is a big challenge 

for each optimization problem [18]. Therefore, using a set of benchmark problems may 

help in the tuning process.  

Xu J., Chiu S. and Glover F. (1998) proposed a systematic procedure to tune five 

parameters of TS algorithm: neighborhood structure and moves, move evaluation and error 
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correction, TS memories, probabilistic move selection, and advanced restarting and 

recovery. In order to improve the algorithm performance to solve many test problems, they 

used statistical tests to ensure the best parameters’ values. After conducting the tests, they 

found that the procedure of fine-tuning has improved the performance of TS algorithm for 

a telecommunications network design problem [19]. 

Balci H. and Valenzuela J. (2004) used a new approach to solve UCP (Unit Commitment 

Problem) problems. They depended on a method that uses a combination of PS algorithm 

and LR (Langrangian relaxation) framework; they tuned w, cp, cg and the number of 

iteration parameters for the new method to solve a six instance UCP problem. The results 

of the proposed method were found to be more computationally efficient than other 

methods which were used in this research. Therefore, tuning PS algorithm parameters, like 

w, cp, cg and number of iterations, are very important according to the efficiency of the 

algorithm to find optimal or near optimal solutions [20]. 

In their study, S. Smit and A. Eiben (2009) focused on parameter tuning to find out 

the advantage of tuning metaheuristic algorithms to improve the algorithm performance. 

They selected 10 benchmark test functions to determine the best values of population size, 

offspring size, mutation probability, crossover points, crossover probability and 

tournament size parameters for the GA. They concluded that the optimal selection for the 

parameters’ values for these problems appeared to have more efficient results than 

common selection [18]. 

Pedersen M. (2010) tuned the parameters of PS and new type of PS called MOL (Many 

Optimizing Liaisons) algorithms’ (s (swarm size), w, cp, cg) and s, w, cg to solve 12 

benchmark problems. The results of MOL algorithms were found to be more efficient in 

several benchmark problems than PS algorithm [21]. 
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H. Akbaripour and E. Masehian (2013) presented a new framework for 

metaheuristic algorithms’ parameters tuning. They claimed that parameters tuning for 

metaheuristic algorithm could improve the efficiency and capability of the functions to find 

the optimal or near optimal solutions. Their framework depended on determining 

parameter levels and ranges, using Designs of Experiment, Signal to Noise ration, Shannon 

entropy and VIKOR methods. Tuned SA algorithms were found to be more efficient in 

solving N-queen problem. The results of tuned GA were also found to be more efficient in 

solving Hub Location Problem [17].  

From the findings of these studies, one infers how much important the parameters 

tuning is for the efficiency of metaheuristic optimization algorithms, and how we can tune 

the parameters. The main parameters for each metaheuristic optimization algorithms were 

determined. Benchmark functions are used in this research. 

2.3 Introduction to Optimization  

Optimum means the best. The optimization process is the process that determines 

the conditions which produce the best possible results, and the best results are when they 

have maximum or minimum values. The main goal of the optimization process is either to 

minimize effort or to maximize the benefits especially when it comes to taking decisions 

pertinent to design, construction, maintenance, …, and engineering. The effort and benefit 

can be usually presented as a function of certain variables, hence the optimization process 

is the process of finding the variables’ values which obtain a maximum or a minimum 

result of a function [9], and “There is no single available method for solving all 

optimization problems efficiently. The optimum seeking methods are also known as 

mathematical programming techniques” [9], p.1.  
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Mathematical programming consists of many techniques such as calculus method, 

calculus of variations, nonlinear programming, geometric programming, quadratic 

programming, linear programming, dynamic programming, integer programming, 

stochastic programming, separable programming, multi objective programming, game 

theory, simulated annealing, genetic algorithms and neural network. In this context, 

programming doesn’t mean software, but it means planning for a solution [9]. 

2.3.1. Historical Development 

 Optimization science could be traced back to the days of Newton, Cauchy and 

Lagrange [9]. Newton and Leibnitz’s contributions to calculus were developed for the 

differential methods. Calculus of variations, which deals with the minimization of 

functions, was developed by Bernoulli, Euler, Lagrange and Weirstrass. In the middle of 

twentieth century, when computers’ speed increased remarkably, the implementation of the 

procedures and stimulated research on new methods became possible. 

To solve linear programming problems, simplex methods were developed by 

Dantzig in 1947. The optimal principle, developed in 1957 by Bellman to solve the 

dynamic programming problems, paved the way for constrained optimization methods 

development. During the early 1960s, unconstrained optimization methods, such as 

nonlinear programming, were developed significantly by Zoutendijk and Rosen. In the 

1960s, Duffin, Zener and Peterson developed geometric programming. Integer 

programming, developed by Gomory, was one of the most common world applications 

under this category of problems. Then stochastic programming techniques were developed 

by Dantzing, Chares and Cooper. The goal of programming was developed to solve 

specific types of multi-objective optimization problems which were proposed for linear 

programming by Cooper in 1961. And Game’s theory, developed by Neumann in 1928, 
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was applied to solve several mathematical economic and military problems, but in recent 

years this theory has been applied to solve the design of engineering problems. 

Metaheuristic optimization techniques, such as genetic algorithms, simulated 

annealing and neural network methods, are a new approach of mathematical programming 

techniques. Genetic algorithms are search techniques which are based on natural selection 

and genetics. 

2.3.2. Optimization Methods for Optimization Problems 

Optimization processes can be applied to solve any engineering problems such as 

design of aircrafts, bridges, towers, industries, machines, and control systems. The main 

mathematical statement for any optimization problem is called “the objective functions” 

[9] as below:    

cost function:                                         Min. f(x) 

                     or                                       max.f(x) 

Constraints:                                               xϵ R
n 

Find x= 

  
      
  

   which min.  f(x) or max.  f(x)……………(2.1) 

Under constraint:  a <= xi <=b. 
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2.3.3. Classification of Optimization Methods  

Many classification categories for the optimization techniques depend on a natural 

of the optimization problem as inputs, outputs and objective function of the problem. The 

main classifications of the optimization techniques are illustrated in Fig.2.1 above; some of 

these classifications are illustrated as follow:  

A. Classical Optimization Methods 

These methods are used to find the optimal solution for continuous and 

differentiable functions; these methods find the optimal solution analytically. These 

methods are classified into four categories depending firstly on the number of inputs for 

the function:   

Single-variable methods: when the objective function has one input (one parameter), and 

Multi-variable methods: when the objective function has many inputs (many parameters). 

 

Non gradient 

Gradient Unconstrained 

Constrained 

Discrete 

Continuous 

Local 

Global 

Multi- 

variable 

Single 

variable 
Stochastic 

or heuristic 

Optimization 

Methods 

Taxonomy 

Linear 

Nonlinear 

Dynamic 

Figure 2.1: Optimization Methods Taxonomy 

 



 
20 

 

 

 

 

 

 

It secondly depends on the type of the optimal values for the function:  

Global optimization methods: if they always get the global optimal solution, or local 

optimization methods: if they always get the local optimal solution. Fig.2.2 above 

illustrates the global and the local optimal solutions for some functions [9]. 

And here the objective function for single variable as:       min.f(x)          

And here the objective function for multi variable as:       min.f(x1, x2,…, xn)             

Constraints:   m<= x <=n,  f function must be continuous and differentiable.  

B. Linear Programming (LP) 

 This is used to solve the problems in which the objective function and constraints 

appear as linear functions; linear programming was developed in the 1930 by economists 

[9].  

C. Nonlinear Programming (NLP) 

This is used to solve the problems in which the objective function is too 

complicated to solve as nonlinear functions, and is also used when classical analytical 

methods fail in finding the optimal solution. Some of these methods are constrained: 

when the objective function has constraints and others are unconstrained minimization 

methods: when the objective function has no constraints.  

m 

e  

d  

b  

a 

C  
a: is a local maximum 

b: is a global minimum 

c: is a global maximum 

d: is a local minimum 

e: is a local maximum 

 Figure 2.2: Global and local minima  

 

n 
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Nonlinear methods may be classified into two categories: direct search methods 

or nongradient methods: these methods deal with non differentiable objective function, 

while decent methods or gradient methods deal with differentiable objective function 

[9]. 

D. Dynamic Programming 

 In practical problems, decisions are taken sequentially at different levels in time or 

space for a component of a system or subsystem. Dynamic programming methods are 

mathematical approaches that are fit for the optimization of multilevel decision problems. 

These methods are very suitable to solve a wide range of complex problems in several 

areas of decision making such as those of a salesman, and shortest path problems which 

named greedy algorithms. The main solution concepts depend on the use of a recursive 

technique to solve sub- problems [9]. 

E.-Integer Programming  

 Optimization methods can be classified depending on the input variable:  

Continuous optimization methods: these are used when the objective function has a 

continuous input variables (real values) while Integer optimization programming 

methods are used when the objective function has a discrete input variables (just integer 

values) [9]. 

 

 

 

 



 
22 

 

F.-Stochastic Programming 

 Stochastic, heuristic, probabilistic or random programming is suitable to solve 

problems when the inputs’ parameters of the optimization problem are random values at 

each run [9]. In recent decades, researchers have increasingly turned to the stochastic 

optimization techniques and metaheuristic optimization techniques in particular. Stochastic 

programming does have many positive features, but it is still controversial. As mentioned 

earlier, results obtained from a stochastic optimization technique are unpredictable due to 

randomness. The forces of stochastic programming are as follows: 

1- A search process, through the use of a stochastic optimization algorithm, may miss the 

global optimal solution from a wide search of space.  

2- Most of stochastic optimization algorithms are inspired by natural behavior, and each 

stochastic algorithm has at least one control parameter. The efficiency of stochastic 

algorithms more or less depends on these control parameters. However, the stochastic 

algorithms are not simple. 

3- Stochastic techniques usually require more objective function evaluations to find the 

optimal solution, thus making them computationally more expensive. 

Some important types of stochastic optimization algorithms are evolutionary 

methods. These methods were inspired by Darwin’s theory of evolution as biological 

evolution mechanism.  

Three mainstream evolutionary methods were used in this research: GA [22, 23], 

PS algorithm [13, 24, 25], and TS algorithm [26]. GA, PS algorithm and TS algorithm are 

selected to optimize the traffic light signals timing problem, to minimize the average of 

travel time ATT for each vehicle. Because these algorithms are global methods, and used in 
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the previous research for solving the traffic light timing problem. The traffic light timing 

optimization problem is classified as a multi-variable and stochastic problem. 

Each algorithm has many control parameters which affect the efficiency of the algorithm in 

finding the optimal solution; the main parameters are as follows: 

 Generation number: Statistically a late generation is better than an earlier generation. 

 Population size: This is the number of chromosomes or lists of records. The first 

generation in the three algorithms must be generated randomly. 

 Chromosome list or individual: This is a set of genes or records which must be equal to 

the number of the input parameters in the optimization problem. 

 Gene, particle or record: This is the input parameters’ value, and usually it is real 

number. 

The algorithms (GA, PS, and TS) can be summarized as follows: 

1.-Genetic Algorithm (GA) 

 This is a metaheuristic search that presents the process of natural evolution. It was 

developed by Prof. John Holland and his students in the University of Michigan in the 

1960s and 1970s [22, 23]. This algorithm generates solutions for optimization problems by 

using techniques inspired by natural evolution, such as inheritance of the best genes to the 

next generation and skipping of the worst genes from the next generations, by mutation, 

selection, and crossover operations.   

GA is used in the application of computer science, engineering, economics, 

physics, manufacturing, mathematics, and other fields. Each chromosome consists of 

number of genes which are equal to the input parameters’ values to be optimized. 
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2.-Particle Swarm Algorithm (PS) 

  Introduced by Kennedy and Eberhart in 1995 [13, 24, 25], as its name implies, PS 

was inspired by the movement and the intelligence of swarms. A swarm is a structured 

collection of interacting organisms such as bees, ants, or birds together. Each organism in 

the swarm is a particle. Each input list is a swarm which consists of input parameters 

(particles), and each particle has two values: position and velocity. 

3.-Tabu Search Algorithm (TS) 

 This metaheuristic method, originally developed by Glover [26], has been 

successfully applied to a variety of combinatorial optimization problems [27]. Each 

generation consists of a number of lists and each list consists of input parameters (records). 

The generation size must be equal to the input list size multiplied by 2.  

It can be concluded that each algorithm has many different types of operations to 

get a new generation from the previous generation. 

The differences between steps of GA, PS and TS are illustrated in Table 2.2 below. 

Table 2.2: GA, PS and TS algorithm’s steps 

Steps GA PS TS 

1 Initialize first generation 

randomly. 

Initialize first generation 

randomly. 

Initialize first generation randomly. 

2 Compute fitness value for 

each chromosome, and 

sort them. 

Compute fitness value for 

each list and sort them. 

Compute fitness value for each list and 

sort them. 

3 Carry out the operations 

(selection, cross over, and 

mutation) on the previous 

generation to produce a 

new generation. 

By update for each particle 

position and velocity in the 

previous generation, a new 

generation is produced. 

Update the parameters or records values 

in the previous generation, by adding and 

subtracting a fixed number to each record 

and saving the best one in tabu list; a new 

generation is produced. 

4 Do step 2 until the end of 

population. 

Do step 2 until the end of 

population. 

Do step 2 until the end of population. 

5 Getting the optimal 

solution at the end. 

Getting the optimal solution 

at the end. 

Getting the optimal solution at the end. 
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2.4 Simulation for Representation of the Transportation System 

A simulation system is a real system which is represented in a software program. 

Simulation consists of methods and applications to simulate the real systems’ behavior. It 

is developed almost through using computer software. Simulation became more popular 

and powerful in recent years since computer and software are better than ever [28]. 

The simulation system consists of many models, and each model may consist of 

sub models. Each one of these can represent the construction and the work of real sub-

system from the main system. Each model has inputs, processes and outputs, and the 

model should represent the real system to some degree. Models must be verified and 

validated through comparison of inputs, processes and outputs of the model with the real 

system. The simulation tool is a controlled system used to evaluate and improve the 

performance of the system by using the powerful computer system with more reduction of 

cost and time than the real system. A developing process for any real system has many 

aims such as solving the problems, improving them to be more efficient and applicable and 

saving money and time. But improving the process in some complex real systems directly 

is not practical because the developing process would be more expensive in terms of time 

and cost as when the input or output behavior is random or very huge and is impossible to 

compute in the real world. When a simulator system is completed to simulate a real 

system, all input parameters can be optimized by suitable optimization techniques to 

improve and optimize the system results and accordingly make a decision about the 

development of real systems [29].  

Simulation models are classified as dynamic or static, discrete or continuous, and 

stochastic or deterministic models [28], p.9. The simulation models are widely used in 
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traffic network to deal with shortcomings, planning and improvement of the performance 

of traffic network systems. 

In the 1930s, many attempts were made to develop a mathematical model for traffic 

flow system but they did not succeeded because the traffic phenomena are nonlinear and 

are complex. They depend on multi interactions such as a large number of vehicles which 

interact in a complex way with the system laws and the psychological reactions of the 

human driver. Until now even a general simple mathematical theory for describing the real 

traffic flow system has not been found [30]. The simulation tools are the best way for 

accurate description of the transportation system, and all traffic simulators depend on the 

similarities between traffic network systems and the queuing networks. Jackson is 

considered the father of the queuing theory. This theory was a mathematical model for 

waiting time at some server or queue or line; it provides an analysis for the relations 

between many related servers [31]. This theory consists of three concepts: servers, queues 

and customers. The inputs and the outputs of queuing system are customers or vehicles 

with some distributions such as exponential distribution behavior.  

There are three main classes of traffic flow models which can be distinguished 

according to the level of details of the transportation simulation systems. These modes are 

microscopic, macroscopic and mesoscopic models. 

 In the microscopic models, a high computation time is needed because every 

vehicle is considered as an individual particle with some characteristics such as speed, 

position, acceleration and driver-vehicle interaction. These are evaluated at each time from 

the start to the end of run simulator, because the evaluation of these parameters 

mathematically is very hard. However, in the macroscopic models, it is assumed that the 

movement of vehicles is shown as a fluid motion and this model is computationally fast 
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because the input requirements are very simple. The last class model is called mesoscopic; 

it comes between the microscopic and the macroscopic models, and each lane in this model 

represents as one server which serves one vehicle at a time. However, the last two models 

are limited in representing differences in drivers’ behaviors and interacting processes 

between vehicles on the network [2, 30].  

In this research microscopic simulation, called SUMO simulator, was selected to 

represent the research road network of the case study [32]. 
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Chapter three 

Research Background and Details 

 

This chapter is devoted to the main traffic light signals optimization problem and 

the traditional methods, used to optimize this problem, and their shortcoming. The data of 

the road network of the case study, definition of the main objective function of the traffic 

light signals timing optimization problem, the main simulation tool used to simulate road 

network of the case study, SUMO simulation explanation, and selection of suitable 

benchmark function. The chapter also dwells on other tools used to help in solving the 

problems like parallel processing tool. All methods were selected to be used in solving the 

traffic light signals timing optimization problem. These include random algorithm and 

metaheuristic optimization methods (GA, PS, TS). 

3.1 Traffic Light Signals Timing Optimization Problem 

What is the traffic light signals timing optimization problem? 

To answer this question, let us assume we have 4 intersections and 13 traffic light 

signals on our real road network, and this network is working in a city. We have to ask 

another question: Are the traffic light signals on the road network working in the optimal 

way or not relative to waiting time and to travel time? To answer this question, some 

optimization processes for the traffic light signals timing parameters must be done: 

1. The optimization process can use many techniques, models and sometimes simulation 

tools of the real world road network. 
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2. There is a strong relationship between the traffic light signals timing system control and 

the total travelling time for all vehicles in the network discussed in interactive research 

in the previous chapter. Therefore, by changing the period time for one or more traffic 

light signals time, such as green light or red light, the total travel time value for all 

vehicles may ascend or descend, and the best time value will be when the total travel 

time decreases, but this relation isn’t directed or simple. 

 Municipality engineers use different simple approaches to find the optimal timing 

for the traffic light signals to minimize delay time or total travel time and to maximize 

throughput (number of vehicles exiting the road network). These methods are as follows: 

 Webster method: This method is used to find the optimal cycle time length for isolated 

intersection mathematically. The green time for each lane movement is used to minimize 

the delay time to the global minimal [14]. The steps of this method are as follows: 

1. Each lane at any intersection i has a saturation flow Si, (the ideal case for this lane) 

When the lane has a green light for one hour, and the maximum number of vehicles is 

3,700 vph, 2,000 vph or 1,600 vph, the condition and the environment at the intersection 

determine the saturation flow. 

2. There is a lost time for each traffic light time phase Li, which might be between 3.5s to 

5s, and yellow light time ranges from 2s to 5s as we presupposed. 

3. The total percentage of vehicle flow to the saturation flow for some intersections was 

computed by collecting all the percentages of vehicle flows, for each lane group works 

together to the saturation flow for this lane group on the same intersection.  

4. By the Webster equation [14], chp.8, pp.(353-355), the optimal cycle length can be 

computed as follows: 

   
       

   
   
   

   
   

 ……………...(3.1) 
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where C0: is the optimal cycle length. 

L= lost time in the cycle time which we presupposed = 4s for each traffic light time phase. 

Lvi= actual lane volume in one hour. 

Ø= number of traffic light phases. 

Lsi- Saturation flow for each lane which we presupposed = 1,600 vph (in this research). 

 The optimal green time for each traffic light signal can be computed as follows: 

    
   

 
   
   

   
   

               ……………...(3.2) 

Where Gt: the actual green time phase for the traffic light signal. 

Lvi= actual lane volume in one hour. 

Lsi= saturation flow for each lane 1,600 vph, (presupposed). 

C0= is the optimal cycle length. 

L= lost time in the cycle time which we presupposed = 4s for each traffic light time phase. 

Li= lost time for the green phase=4s. 

Yt= yellow time phase for the traffic light time which we presupposed = 3s. 

 

 HCM method: This method was used to determine the optimal cycle length and green 

time, for isolated intersection mathematically, to minimize the delay time to the global 

minima [14]. This method is close to Webster method and is used to determine the optimal 

cycle time length and green time for each traffic light signal to minimize the delay time for 

the global minima. The main equations are as follows [14], chap.8, p.(356): 

            
   

   
      

     
 

   
  …………(3.3) 

Where xc= is the critical v/c ratio for the intersection. 

  
   

   
      

   = summation ratios of actual flow to saturation flow for all lanes. 

C= is the optimal cycle time length in s. 

L= is the total lost time in the cycle time which we presupposed = 4s for each phase. 

The green time equation as in the eq.(3.2). 
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 SYNCHRO simulation program: Developed in the US to optimize the traffic light 

signals timing for computing many objective functions [15], this program is a macroscopic 

simulation, is very simple, and is widely used in the world [2]. Nablus municipality is 

using it to optimize the traffic light signals timing parameters on its road network. 

By using Webster and HCM methods, the optimal cycle time length and green time 

for each traffic light signal in the road network of the case study, illustrated in next section, 

will be computed to minimize the ATT for each vehicle to the global minima. Table 6.1, 

chapter 6, shows results of each optimal time list of Webster, HCM methods and 

SYNCHRO simulation.  

However, the main shortcoming of these methods is that they could be just applied 

on isolated intersections, and when the flow rate is small or a large, these methods are 

ineffective as the phase time is not logical, as when the green or red phase time =2s or 

250s. In this context, we ask the main research questions: 

Do these methods (Webster, HCM and SYNCHRO) determine the real optimal timing for 

each traffic light signal in our case study road network? And could the delay time at the 

traffic light signals be global minima? 

To check the previous conclusion and to answer these questions, the researcher optimized 

the traffic light signals timing parameters by using different metaheuristic optimization 

techniques (GA, PS and TS) to find the optimal timing for each traffic light signal. The 

research case study road network, as a global way, (ex. all traffic light signals at the same 

time), was used to minimize the average travel time (ATT) for each vehicle to the global 

minima or close to the global minima. Then the results of these algorithms are compared 

with the results of Webster, HCM and SYNCHRO. Here another question could be raised:  

Can we find the most suitable metaheuristic optimization algorithm that arrive at the 

optimal solution or more efficient solution,(ex. closer to the optimal solution) for the traffic 
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light signals timing problem, out of the space solution, to minimize the average travel time 

for each vehicle?  

In this research, each traffic light signal time (green or red), as we presupposed, can 

take a time value from 10s- to- 100s.  In the road network of the case study of this research 

in the next section, there were 13 traffic light signals which might have different light 

colors (green and red) at the same time. Therefore, each traffic light color period can take a 

value between 10s - 100s. The 13 traffic light signals have a huge space as shown in Table 

3.1 below.  

There are also many symbols: 

TL= is a one traffic light signal time.  

TLir = means the time of red light for traffic light signal i. 

TLig = means the time of green light for traffic light signal i. 

T= is a time list of 13 records of traffic light signals time.  

The main time list is T= [TL1, TL2, TL3, TL4, TL5, TL6, TL7, TL8, TL9, TL10, TL11, TL12, 

TL13]. 

The time list contains 13 records which represent the traffic light signals time phases as: 

T= [TL1g, TL2g, TL3g, (TL4g, TL4r), (TL4r, TL4g), (TL5g, TL5r), (TL5r, TL5g), (TL6g, TL6g, 

TL6r), (TL6r, TL6r, TL6g), (TL6r, TL6g, TL6g), (TL7g, TL7g, TL7r), (TL7r, TL7r, TL7g), (TL7r, 

TL7g, TL7g)] 

Table 3.1: Traffic light signals timing probabilities. 

 

 

 

 

 

Traffic light* time 
Time 

t1 t2 t3 … t90 

TL1 10s 11s 12s … 100s 

TL2 10s 11s 12s … 100s 

…. … … … … … 

TL13 10s 11s 12s … 100s 
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Suppose that each green or  red light time period were  10s ≤ TLig ,  TLir ≤100s, 

and each traffic light signal time had 90 probabilities, then the solution space would be as 

follows:  

The number of probabilities for the solutions grows up. Exponential 90
13 

means:  

(Number of each time value probabilities)
(Number of traffic light input values)

. 

3.2 Case study 

The road network, used in this research, is located in an important city center: 

Nablus city. The streets and the junctions had heavy traffic at peak hours. At peak hours 

there was always traffic congestion, especially in the municipality building area. The 

schemes and measurements of road network parameters used in this research were taken 

from the Engineering College of An-Najah National University. The flow of vehicles at 

each traffic light signal data is shown in Fig. 3.1 below. The figure represents the historical 

real data of vehicle movement collected on September 21, 2010 for one hour between 7:00 

am and 8:00 am at each traffic light signal.  

 

The total number of vehicles which entered the road network = 1,640 vehicles. The 

researcher presupposed that all vehicles would have the same type in this research.  

 
Figure 3.1: Road network case study with vehicle volume per hour at each traffic light 

signals collected September 21, 2010. 
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 The phases of all traffic light signals in the case study are represented as the time 

list T= [TL1, TL2, TL3, TL4, TL5, TL6, TL7, TL8, TL9, TL10, TL11, TL12, TL13]. 

T= [TL1g, TL2g, TL3g, (TL4g, TL4r), (TL4r, TL4g), (TL5g, TL5r), (TL5r, TL5g), (TL6g, TL6g, 

TL6r), (TL6r, TL6r, TL6g), (TL6r, TL6g, TL6g), (TL7g, TL7g, TL7r), (TL7r, TL7r, TL7g), (TL7r, 

TL7g, TL7g)] 

3.3 Traffic Light Signals Timing Model and Objective Function 

The objective function equations below show the complexity level of the traffic 

light signals timing optimization problem which this research is trying to solve as a total 

way. The objective function (or fitness function) for optimizing the traffic light signals 

timing parameter is minimizing the average travel time for each vehicle, which leads to 

minimization of  delay time at the red traffic light signals and  minimization of the total co2 

gas pollution which comes from the stopping vehicles. 

In this research, the researcher presupposed the period time of each traffic light 

signal phase time TLir or TLig ϵ {10s, 11s, 12s, …, 100s}, and each traffic light signal time 

phase has 90 probabilities times in seconds. Time of yellow light phase is constant TLiy 

=3s, for all traffic light signals. 

The main objective function is: Min. f(T)= Min.(average travel time (for each vehicle)). 

These symbols stand for the following meanings: 

1- TTT= Total Travel Time for all vehicles (s). 

2- ATT=Average Travel Time (TTT/vehicle) for each vehicle in s. 

3- TT= Travel Time for each vehicle in s. 

4- V= average velocity of the vehicles (m/s). 

5- Li= Length from start point to distention point for each vehicle in meter. 

6- n= number of vehicles in the road network . 

7- V1(t)= speed of the leading vehicle in time (t) which changeable with time. 

8- g(t)= gap to the leading vehicle in time (t). 

9- Ʈ= is the driver’s reaction time (usually 1s). 
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10- b(t)= the deceleration function. 

11- TTi= (L/V), for each one vehicle from start point to end point. 

 12- vi(t)= vehicle speed at some time (t) 

 13- t = a time in seconds. 

 14- TLi = a time in seconds for the traffic light i phase. 

The main equations for the objective function (ATT for each vehicle) are as follows:   

                                                                f(T)=ATT 

Cost function:                              Min. f(T)=Min.(ATT)…….(3.4) 

Constraints 

Where T= [TL1, TL2, TL3, TL4, TL5, TL6, TL7, TL8, TL9, TL10, TL11, TL12, TL13]. 

TLi   ϵ {10s, 11s, 12s, 13s, …, 100s}. 

************************************ 

And the ATT for each vehicle calculated as:    ATT =TTT/n………..…(3.5) 

From movement equations:           TTT=        
   
     =    

  

  
    

   ……..(3.6) 

              The travel time for each vehicle is calculated by SUMO simulator which depends 

on a car flowing model [33]. And the vehicle’s speed logic in this model is adapted to the 

speed of the leading vehicle, and the drivers should lead their vehicles in a safe velocity. 

Therefore, each vehicle may be driven with a changing speed at each changing time by 

depending on the safety distance between the vehicles, the speed of vehicles on the road, 

the traffic light signals control, and the scenarios of  movement of vehicles (stopping, fixed 

velocity, acceleration, and deceleration). Below is a car-flowing model which explains the 

vehicles motion mechanism like in SUMO simulator steps working [33], as in eq.(3.7):  

               
           

 

    
  

…..….(3.7) 

By replacing (vi) in eq.(3.6) with V safe(t) in eq.(3.7),  eq.(3.8) will  exist  to explain how 

the total travel time will be computed. 
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TTT =    
  

      
           

 
    

  
      

           
 

    
  

      
   

   
   ……..(3.8) 

So when traffic light is red, the velocity of each vehicles on this traffic light signal 

is zero, so each vehicle crosses a number of traffic light signals through its trip, and the 

velocity of the vehicle =0, upon arrival  at the red traffic light, but: 

* The driver cannot know when the vehicle would arrive at each traffic light signal, and 

whether the traffic light signal would green or red. 

* Each vehicle has its own number of traffic light signals crossed. 

From these equations, and depending on the logic of traffic light system, when the 

velocity of vehicles =0, it means vehicles would always stop on the red traffic light, and 

the vehicles would accelerate their speed when the traffic light is green. So to minimize the 

ATT, we can optimize the traffic light signals timing.  

 Traffic light signal systems and road network systems and the optimization process 

for traffic light signals timing parameter, as a global way, are very complex because the 

mathematical relation between the inputs (13 traffic light signals timing) and the outputs 

(average travel time) is not definite, and the topology of this relation cannot be known, 

because it has huge probabilities and random behavior. Therefore, the best way to get the 

global optimal solution is by testing all inputs probabilities (90
13

).
 
Then the best input that 

gives a minimum result of the average travel time for each vehicle would be selected. But 

the question is how implemented this way. 

 First, in the real world, we have thousands of vehicles, and each one has its own 

parameters which change relatively in terms of time, speed, position, direction, drivers’ 

reactions and the traffic light signals phases in the city. Therefore, we cannot implement 

and optimize this problem in the real world. It is very difficult, complex, expensive, and 
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time consuming since we depend on a hundred millions of probabilities which take a very 

long time: years. 

Second, some researchers think that using computer systems to implement the road 

network system is very efficient because the computational efficiency is good to solve the 

previous problems: cost, complexity and capacity. 

Also the simulation systems are the most suitable way to implement a real complex 

system problem.  

In this research, a random algorithm and metaheuristic optimization techniques 

(GA, PS and TS) were used to optimize the traffic light signals timing problem, and to 

compare the one that has the most suitable results. 

3.4 SUMO Simulator 

Traffic simulation models can be helpful in estimating/predicting the conditions 

such as delays, travel times, queues and flows. These models can predict future conditions 

and can be used to optimize network operations for current and future real world 

conditions. SUMO simulation is a famous tool and is widely used for studying random and 

complex real-world systems. 

 SUMO simulator was developed in 2000 [32]. The major reason for the 

development of an open source microscopic road traffic simulation was to support the 

traffic researchers with a tool and ability to implement and evaluate algorithms. This tool 

has no need to consider all the necessary things to obtain a complete traffic simulation such 

as implementing and/or setting up methods to deal with road networks, demand, and traffic 

controls.  

SUMO simulator has input files and output files, thus generating just one output file 

is named tripinfo.xml. This file at the end of running for the simulator will contain the total 
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data about each vehicle trip on the SUMO simulator. This data includes vehicle’s id, type, 

starting and ending time, arrival speed, lane, and lane length. The three input files are 

named new.sumo.cfg, new.net.xml, and rout.rou.xml. Net.xml and rout.xml have data 

about network building and control such as lanes, nodes, positions, maximum speed, logic, 

traffic lights, junctions, vehicles routes and priority while sumo.cfg file has a configuration 

file to join input files and output file with SUMO simulator. 

The road network of the case study, which was simulated, has 13 traffic light 

signals as main factors. This research studied the effect of these parameters’ values on the 

average travel time for each vehicle to get the optimal values for these parameters which 

produced the minimum of the average travel time for each vehicle. The steps of SUMO 

simulator, were used in this research with each optimization method, are as follows:                                                                                                                                                        

1- When SUMO simulator runs to control the traffic light signals on the road network, 

there are 13 time values. A time list had to be set as input list, and each time value binds 

to one traffic light signal case. To that end, a python code function was written to input 

the time list to the new.net.xml file before running the simulator:   

Define  integer time list[13]=[20,30,40,55,45,39,67,81,49,58,15,72,69]    

  //set each value randomly which represents one traffic light time.  

{Open new.net.xml file 

Write the list on it in traffic light signals time location 

Close new.net file 

Call sumo simulator with new.sumo.cfg file} 

 

2- The results were saved in some files. Then the time list input was changed into a new 

list: [78,67,56,75,46,33,24,42,35,93,84,61]. The simulator was run another time; then 

the new results were saved, and these steps, many times, were iterated. At the end, the 

results differed according to the input time list. The average travel time for each 
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vehicle might be up or down according to the traffic light signals time list. The number 

of vehicles which stopped on the red traffic light signals and the average travel time 

for each vehicle might be up or down. The best traffic light signals time list when the 

result is the minimum value for the average travel time for each vehicle.   

3- To get the minimum average travel time for each vehicle, there is a very big number of 

different traffic light signals lists. Time inputs must be tested and a simulator be run 

with each one. The best list time has a global minimum of the average travel time 

result for each vehicle. This process is named an optimization process. But how much 

time of running simulator with different list time do we spend to get the optimal list? 

4- In this research, each traffic light signal time case can take a value between 10s and 

100s, so each record in the time list has 90 probabilities, and the list time consists of 

13 records. The number of different time lists which we must try, to get the optimal 

traffic light signal list time, is     , and this is a very huge number: about thousands 

of millions or trillions together. Each running of SUMO simulator for one hour takes 

about 30s. Therefore, to get the optimal time list, many years of running SUMO 

simulator would be needed, and to get the global minimum of fitness function, all 

probabilities input time lists must be tested. This solution is neither efficient nor 

applicable. Solving this problem is a big challenge. For this reason, many 

metaheuristic optimization techniques had been clarified in this chapter and were used 

to get accurate and nearest solution to the optimal one.  

5- Each algorithm started with random selection for the first generation of the time lists. 

Then the simulator was run for each time list, and the average travel time for each 

vehicle was computed and saved. After that, the lists of results were sorted, and by the 

algorithm’s operations, the new generation would be built depending on the previous 

generation.
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Figure 3.2: Schema of SUMO simulator and optimization algorithm steps and parts. 

This step was replicated many times until the end of the generation numbers were 

gained. The schema in Fig.3.2 above illustrates the used steps and parts. 

3.5 Benchmark Function Selection 

The function of the traffic light signals timing is of an unknown topology. After 

trying some metaheuristic optimization algorithms with SUMO simulator in the first 

experiment, the results couldn’t decide if the optimization algorithm was the best or not, 

because the optimal solution is unknown and the results could not decide whether the best 

solution was the optimal solution or near the optimal solution or far from it. Therefore, the 

researcher decided to get some suitable benchmark functions to test optimization 

algorithms used.  

Some benchmark functions were found in [21]. This function has many local 

minimum values and the global minimum value is known; the number of input parameters 

is equal to the number of input parameters in traffic light signals timing problem. The steps 

of benchmark function used the same steps in the traffic light signals timing problem just 
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by replacing the SUMO simulator with a benchmark function. And the schema of used 

steps of the benchmark function is illustrated in Fig. 3.3 above. The benchmark function is 

called Rastrigin’s function [20]: 

 

y= 10        
                   …………..(3.9) 

            , and the minimum when y=0 at     

* n: is the number of records in each list =13 records, and it is equal to the records of time 

list in traffic light timing problem. 

The range of probabilities of each input parameters is also equal or close to the 

range of probabilities of the input parameter in the traffic light signals timing problem 

presupposed in this research. As xi: is the input record value in each list, and       

   , the different input list of values are 102 probabilities, and these probabilities are near 

from the number of input in the traffic light signals timing experiment which takes 90 

probabilities’ values. 

 

Figure 3.3: Schema of benchmark function and optimization algorithm steps. 
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 Notes: There is no relation between the benchmark function optimization problem and 

the traffic light signals timing problem. Therefore, if an optimization algorithm is the 

best in solving the benchmark function, it may not be the best in solving traffic light 

signals timing problem and the opposite is true. 

  Benefits of using the benchmark function in this research: 

1- To determine the efficiency of the optimization algorithms and find the optimal solution 

when the results are minimum. 

2- To help us in finding the best conditions for the metaheuristic optimization algorithms 

were used to solve the traffic light signals timing problem. Through experiments the 

significance of this function was illustrated in the speed of finding the best conditions 

for the algorithms in a short time. 

3.6 Parallel Processing 

SUMO simulator running time for each chromosome (ex. time list) takes about 30 

seconds on one computer. For example, in Experiment 1, in the next chapter, each 

generation takes about 15 minutes to end running. Therefore, to finish 50 generations on 

one PC, it may take about 12 hours running time, and this time is very long. In this 

research, a parallel processing was used to reduce the running time for each generation by 

using a parallel processing server with python language (named: ppserver) on one 

computer with 4 or 8 processors [34]. That means 4 or 8 running simulators at the same 

time. In this case, the generation time was reduced to ¼ or more, as running 50 generations 

in (30 ch.*50 gen.* 30s)/4≈ 3 hours. Implementing this way on more than one computer 

could be done in this research because a cluster had to be found to do that but there was no 

cluster available. 
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3.7 Random Algorithm 

In this algorithm, each chromosome in all generations was selected in a random 

way without a optimization process. The flow chart in Fig.3.4 above shows the steps and 

the operations of this algorithm. This algorithm was used in this research as a base 

algorithm to compare its results and the results of the metaheuristic algorithms were used 

in this research to see if the metaheuristic optimization algorithm was good or not. 

3.8 Metaheuristic Optimization Techniques 

Metaheuristic optimization techniques (GA, PS and TS) were used in this research 

to optimize 13 traffic light signals timing (in a global way) found in the road network of 

the case study to minimize the average travel time for each vehicle. The conventional 

optimization methods are not applicable to optimize the traffic light signals timing 

problem, “… These methods require a closed form function to find the optimal values 

directly”[8]. And the traffic light signals timing problem do not need to be represented in a 

close function, because of the complexity and random system. Therefore, the engineers 

optimized the traffic light timing problem for each isolated intersection using Webster, 

HCM methods and SYNCHRO simulation. 

In this research, the researcher presupposed that the metaheuristic optimization 

methods were very suitable to optimize the traffic light signals timing parameters (global 

yes 

Generate first generation randomly 

 Run sumo simulator with each chromosome, 

evaluate fitness ATT. then sort them.  

 

Start 

While not end 
# of generation 

 

End 

Figure 3.4: Random algorithm flowchart 

 

no 



 
44 

 

way) with the microscopic models. GA, PS and TS algorithms, in addition to many types 

for each algorithm, were used in this research with a tuning process. Benchmark function 

was used for each algorithm’s parameters’ values (population size, generation size, swarm 

size, w, cp, cg, tau and k add/drop, selection, crossover and mutation rate) to determine the 

best parameters’ values for the most efficient algorithm to get optimal or near optimal 

solution in solving traffic light signals timing optimization problem. These algorithms’ 

types are as follows: 

3.8.1. Genetic Algorithm (GA)  

GA, which consists of natural selection and genetics, is a global evolution 

optimization search tool. It depends on the concept of biological evaluation. This algorithm 

in general starts from a random population [2, 12, 22]. After candidate solutions are 

evaluated, selection process, cross over and mutation are applied on the previous 

generation to get a new generation. The best solutions have more probabilities in producing 

new generations.  

The three types of GA were used in this research are: 

3.8.1.1. GA Type 1: In this type of GA, the best individual (ex. Chromosome is a time list) 

may not be selected to continue in the new generation, but it has much diversity to get 

good solutions when the number of individuals and generations is large [12, 35].  

The algorithm steps and operations are illustrated in a pseudo code:  

a. Randomly generate the first generation of individual potential solutions. 

b. Evaluate the objective function ATT, for each generation record. 

c. While not ( number of generation reached):  

1. Select two chromosomes individuals randomly (two times). 

2. Average crossover of best two selected individuals to get a new one. 

3. Mutate with the probability, randomly mutate the output of previous step. 

4. Repeat steps (1, 2 and 3) until new generation completed, and then return to 

b step. 
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The algorithm steps and operations are shown in Fig.3.5 above. 

Operations of this algorithm are as follows: 

1. Selection: Select randomly two individuals (two times). Then the best two will survive 

and cross average. 

2. Cross operations: cross average the selected individuals (
       

 
 
       

 
   

       

 
). 

3. Mutation: with probability MP mutate the new individual, by Change one parameters by 

randomly selecting a value out of its feasible range (like 10s to 100s). 

3.8.1.2. GA Type 2: This type of GA was inspired by the mated queen of bee; the best two 

individuals from each generation would be selected as parents [7]. Then by crossover and 

mutation between the parents, two new offspring would be obtained, and other individuals 

would be generated randomly. The algorithm steps are illustrated in the pseudo code:  

a-Randomly generate the first generation of individuals’ potential solutions. 

b-Evaluate the objective function ATT, for each generation record. 

c-While not (number of generation reached):  

1. Select the best two chromosomes from previous generations as parents. 

2. Crossover between selected chromosomes to get a new two offsprings. 

3. Mutate all parents and with the mutation probability; mutate offspring. 

4. Generate randomly the other chromosomes until new generation 

completed, and then return to b step. 

Figure 3.5: GA Type 1 algorithm flowchart 
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The algorithm steps are shown in Fig.3.6 above. The operations of this algorithm type are 

as follows: 

1. Selection: The best two chromosomes from previous generations would be selected.  

2. Cross-over: First two chromosomes are taken and selected as the best. Crossover 

between them is made to get the two new chromosomes as offsprings: 

    Chromosome1= {t1, t2, t3,… ,tn}         and select a value= c  between 1-to-n randomly, 

     Chromosome2= {r1, r2, r3,… ,rn}        then crossover from c point:             

    Chromosome3 = {t1,t2,…, tc,rc+1, rc+2,…, rn}. 

    Chromosome4 = {r1, r2, …, rc, tc+1, tc+2, …, tn}. 

3. Mutation: Mutate the first two chromosomes (parents), and then with probability MP 

mutate the offspring. 

3.8.1.3. GA Type 3: In this type of GA, the best fitness of half number of individuals is 

selected as parents; the worst half is discarded [35]. Then by crossover, operations between 

each two parents are selected to get a new two individual offspring.  

Figure 3.6: GA Type 2 algorithm flowchart. 
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The steps and the operations are shown in Fig.3.7 above in a pseudo code: 

a- Randomly generate the first generation of individuals’ potential solutions. 

b- Evaluate the objective function ATT, for each generation record. 

c- While not (number of generation reached):  

1.Select the best half chromosomes from previous generations as parents        

2.Crossover between each two parents in order to get  two new offsprings.                 

 3.Mutate all the parents.    

4. New generation has been completed, return to b step 

 Operations of this algorithm type  

1. Selection: select the best half chromosomes from the previous generation as parents.  

2. Cross-over: Crossover between each two chromosomes is selected in order to get the 

other half of the new chromosomes as offsprings and complete the new generation: 

     Chromosome 1= {t1, t2, t3,… ,tn}      and select a value = c  between 1-to-n randomly, 

     Chromosome 2={r1, r2, r3,… ,rn}    then crossover from c point:  

     Chromosome 3={t1,t2,…, tc,rc+1, rc+2,…, rn}. 

     Chromosome 4={r1, r2,…, rc, tc+1, tc+2,…, tn}. 

3. Mutation: Mutate the parents’ chromosomes by random selection of one parameter 

(record), and select randomly value (like between 10s to 100s). After that, set it in the 

record selected. 

Figure 3.7: GA Type 3 algorithm flowchart 
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Figure 3.8: Particle swarm behavior 

3.8.2. Particle Swarm Algorithm (PS)  

PS algorithm is a global evolution optimization method based on the social 

behavior: movement of fish, birds and bees. Each particle at the beginning starts from a 

random position and velocity parameters’ values [12]. Then, the particle direction and 

velocity change to move between their movement (w) and the best neighborhood particle 

movement (cp) and the global best particle movement in the swarm (cg). Fig.3.8 above 

shows a pointed line at v(k) which represents the particle movement; the best neighborhood 

particle movement is at Pbest and the global best particle movement at Gbest. Then X(k+1) 

represents the update movement of the particle v(k). 

These parameters will be tuned by benchmark function to optimize the traffic light 

signals timing problem, by PS algorithm, to get the optimal or near optimal timing list, 

which has a min.(ATT) for each vehicle.  

The PS  algorithm steps are illustrated in the pseudo code: 

a. Randomly generate the first generation of individuals’ potential solutions (φ). 

b. Evaluate the objective  function ATT, for each generation record 

c. While ( particle x in φ):  

1 . For each dimension I : 

     Xvi = w * Xvi  + cp * random *(pbest I  - Xi) + cg * random* (gbesti  - Xi)//   

     speed calculation 

     Xi = Xi + Xvi  // to update the particle position 

2 . While stop step is not reached, go to the next generation. 

 

X(k+1) 

Gbest 

pbes

t 
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Where: 

 Xvi: dimension I velocity component 

X: dimension I of particle position 

Random: uniformly distributed random variable [0, 1]. 

gbest: global best value found in dimension in 

pbest: neighborhood best value found in  dimension i. 

The PS algorithm steps are shown in Fig.3.9 above. In this algorithm, w, cp and cg 

parameters have an effect on the convergence of the particle movement to arrive at the 

global optimal particle [12]. The best values for these parameters are not known, and the 

natural selection of the optimization problem will determine the best parameters’ values, 

but almost all the parameters’ values were in this range as we see in w, cp and cg ϵ [0, 5]. 

3.8.3. Tabu Search Algorithm (TS) 

 TS is a global optimization technique; it has a strategy to explore new areas of 

solution space. At the same time, it is used to solve complex optimization problems such as 

Figure 3.9: PS algorithm flowchart. 
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timetabling, traveling salesman and so on. The main steps of this algorithm start from 

random generation, fit each list and sort them, generate a tabu list with maximum number 

of times= tau, to avoid reversal movement for tau times to the previous solutions’ direction 

arrived at, then generate a new generation by adding/dropping k number to each record in 

the best solution.  Then fit each list in the new generation aspiration. If the best list result in 

the new generation were more suitable than the previous best solution, then it would return 

to generate a new generation again from the best solution. And the new best solution is 

accepted if it hasn’t previously been categorized (ex. Memorized) as a tabu, or the next 

solution is accepted as a best solution for a new generation [12, 26, 27].  

k and tau parameters’ values will be tuned by benchmark function to optimize the 

traffic light signals timing problem by TS algorithm to get the optimal or near optimal 

timing list, which has a min.(ATT) for each vehicle.  

In this research, the standard TS algorithm was used in the first type (TS 1) to 

optimize the benchmark function and the traffic light signals timing problem to obtain the 

global minimum of the average travel time (ATT). Then the researcher tried to develop this 

algorithm by updating the start best solution in each stage and by trying different add/drop 

k values, which means the distance of neighborhood movements, as fixed or changed 

number, to improve the results of this algorithm.  

The algorithm types (TS 2, TS 3, TS 4 and TS 5) were tried to get more suitable 

results than the results of the basic TS algorithm (TS Type 1) in solving traffic light signals 

timing problem. These types were not used or tried before this research according to the 

researcher’s best knowledge. At the end, the developed types (TS 3, TS 4 and TS 5) 

produced better results than the basic TS algorithm in both benchmark and traffic light 

signals timing problem. These types are as follows: 
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3.8.3.1. TS Type 1 Algorithm (TS 1): This is the basic TS algorithm where the tabu list 

consists of 26 records= (input timing parameters (13 traffic light signals time) * 2). It also 

consists of the number of times (tau value) for each previous best solution to allow 

reversing to the previous solution direction after tau value times [12].  

All tasks are divided into two loops (stages). The first loop has 3 times, while the 

second loop has 96 times. Each step of these loops generates 26 list time as a new 

generation by adding and dropping a fixed k value which ranges from 1 to 25; k is the 

distance from the neighbors, and by comparing the previous best solution and the new best 

solution, the inspiration is done or not [26]. In this algorithm, the reversal step to the 

previous best solution direction cannot be allowed until it has arrived at tau times. The 

steps of this algorithm are illustrated in Fig.3.10 above in the pseudo code: 

a- Determine tau and k value s, generate the tabu list with (time list records *2)record 

b- Generate randomly the first generation and run to determine the gbest one as a 

solution sol. 

c- First loop while not reaching repeat number=3: 

Second loop while not reaching last g=96: 

1- Generate new generation which contains (time list records *2) lists, by increasing 

and decreasing the fixed number (k) value to the records in the sol. list. 

2- Run the new generating with SUMO to determine the best time list. 

3- If (best < gbest): best is tabu and gbest = best, sol= best. 

4- Else: if (best is not tabu): sol= best, else: sol =next list in generation. 

Figure 3.10: TS Type 1 algorithm flowchart 
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3.8.3.2.TS Type 2 Algorithm (TS 2): This type of TS algorithm is similar to the TS1 in all 

steps, but the reversing process for the best previous solution must be enforced at the 

beginning of the first loop to avoid worst solutions regions through the searching process. 

The steps of this algorithm are illustrated in Fig.3.11 above, and in a pseudo code: 

a- Determine tau and k value s, generate the tabu list with (time list records *2)record 

b- Generate randomly the first generation and run to determine the gbest one as a 

solution sol. 

c- First loop while not reaching repeat number=3: 

              Sol= gbest 

Second loop while not reaching last g=96: 

1- Generate a new generation which contains (time list records *2) lists, by 

increasing and decreasing the fixed number (k) value to the records in the 

sol. list. 

2- Run the new generation with SUMO to determine the best time list. 

3- If (best < gbest ): best is tabu and gbest = best, sol= best. 

4- Else: if (best is not tabu): sol= best, else: sol =next list in generation. 

Figure 3.11: TS Type 2 algorithm flowchart 
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3.8.3.3. TS Type 3 Algorithm (TS 3): This type of TS algorithm is similar to TS1 in all 

steps, but the distance movement to the neighborhoods’ k number changes. In the TS 1 and 

TS 2, the search process starts from near neighborhoods, but here the researcher 

presupposed that each number in the second loop k would change for many generations. k 

starts from a  big number then it changes to a small number like [45, 40, 35, 25, 22,…, 1].  

The improvements of this algorithm allow searching processes in the different 

regions of the solution space, as it starts from the farthest neighborhoods and then end at 

the nearest neighborhoods. The steps of this algorithm are illustrated in Fig.3.12 above, 

and in a pseudo code: 

a- Determine tau and k value s, generate the tabu list with (time list records *2)record 

b- Generate randomly the first generation and run to determine the gbest one as a 

solution sol. 

c- First loop while not reaching repeat number=3: 

Second loop while not reaching last g=96: 

1- Generate a new generation which contains (time list records *2) lists, by 

increasing and decreasing the changed number (k) to records in the sol.  

2- Run the new generation with SUMO to determine the best time list. 

3- If (best < gbest ): best is tabu and gbest = best, sol= best. 

4- Else: if (best is not tabu): sol= best, else: sol =next list in generation. 

Figure 3.12: TS Type 3 algorithm flowchart 
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3.8.3.4. TS Type 4 Algorithm (TS 4): This type of TS algorithm is similar to TS 3 in all 

steps, but the reversing process for the best previous solution must be enforced at the 

beginning of the first loop of this algorithm to avoid worst solutions regions through the 

searching process. 

The steps are shown in Fig.3.13 above and in a pseudo code: 

a- Determine tau and k value s, generate the tabu list with (time list records *2)record 

b- Generate randomly the first generation and run to determine the gbest one as a 

solution sol. 

c- First loop while not reaching repeat number=3: 

                   Sol= gbest 

Second loop while not reaching last g=96: 

1- Generate new generation which contains (time list records *2) lists by 

increasing and decreasing the changed number (k) value to the records in 

the sol. list. 

2- Run the new generating with SUMO to determine the best time list. 

3- If (best < gbest): best is tabu and gbest = best, sol= best. 

4- Else: if (best is not tabu): sol= best, else: sol =next list in generation. 

Figure 3.13: TS Type 4 algorithm flowchart 
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3.8.3.5. TS Type 5 Algorithm (TS 5): This type of TS algorithm is similar to TS 4 in all 

steps, but the reversing process for the best previous solution must be enforced at the 

beginning of the second loop of this algorithm to avoid worst solution regions through the 

searching process at the beginning of each new generation. The steps are illustrated in 

Fig.3.14 above and in a pseudo code: 

a- Determine tau and k value s, generate the tabu list with (time list records *2)record 

b- Generate randomly the first generation and run to determine the gbest one as a 

solution sol. 

c- First loop while not reaching repeat number=3: 

Second loop while not reaching last g=96: 

       Sol= gbest 

1- Generate new generation which contains (time list records *2) lists by 

increasing and decreasing the changed number (k) value to the records in 

the sol. list. 

2- Run the new generation with SUMO to determine the best time list. 

3- If (best < gbest): best is tabu and gbest = best, sol= best. 

4- Else: if (best is not tabu): sol= best, else: sol =next list in generation. 

Sol.=gbest 

Figure 3.14: TS Type 5 algorithm flowchart 
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At the end of Tabu algorithm types section, in TS types 1 and 2, the k number   

added and dropped each record in the best solution list of the previous generation, to 

generate the next generation. This is a fixed number for all generations, like k={1, 2, 3,…, 

20. The speed of arriving at the optimal solution was very slow because the steps of 

movement between the best solutions were very small and concentrated in some directions. 

For this reason, TS types 1 and 2 almost had the worst solutions or local optimal solution 

in solving both benchmark function and traffic light signals timing optimization problems, 

this can be seen in the results of experiments 7 and 8 (see pages 74-76). 

However, TS types 3, 4 and 5 were improved in this research; k number added and 

dropped each record in the best solution list of the previous generation to generate the next 

generation. This is a changed number for each of many generations (see how k value 

changed in the experiments 7 and 8 in pages 61-62), it started from a big value until arrival 

at a small value like k= {45, 40, 30,…, 2, 1}. The speed of the arrival at the optimal 

solution was very fast because the steps of movement between the best solutions were very 

long and in all directions, and the search processes were in different region of the solution 

space.  For this reason, TS types 3, 4 and 5 had more optimal solutions than the first two 

types in solving benchmark function.  TS type 5 at tau =10 almost had the  nearest solution 

to the global optimal solution in solving traffic light signals timing optimization problems, 

as can be seen in the results of experiments 7 and 8 ( see pages 74-76). 
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Chapter four 

Methodology of the Study 

The methodology of the research depends on using benchmark iterative approach 

with metaheuristic optimization techniques. This research is classified into both 

quantitative and experimental types.  

Statement of the problem: Can we benefit from using a benchmark iterative approach to 

determine the best parameters’ values in a short time for each metaheuristic optimization 

algorithms to be more efficient for optimizing the traffic light signals timing problem? 

Research objectives: The aim of this study is to identify the best parameters’ values for 

each metaheuristic optimization algorithm used in this research, thus making it more 

efficient to optimize traffic light signals timing problem.  

Research population and sample: The target population of this study is Nablus City Road 

Network. The sample of the study, selected randomly, is the Road Network of the city 

center. It includes the intersection in front of Al-Watani Hospital to the eastern intersection 

of Nablus Municipality in the city center. The network contains 13 traffic light signals as 

discussed in chapter 3. 

Research tools: The software tools (SUMO simulator, Python 2.7) are used;  the hardware 

tools used were 12 computers with processor: Intel® Xeon® CPU E5603@ 1.600 GHz, 

Ram: 12.0GB and system type: 64 bit operating system, in addition to 40 computers with 

processor: Intel® core (tm) i7-3770 CPU 3.40 GHz (8 cpus), Ram: 8.0 GB and system 
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type: 64 bit operating system All were in two computer labs at An-Najah National 

University. 

Research methods: Methods used included a random algorithm and three metaheuristic 

optimization algorithms: three types of GA, PS, five types of TS (For details, see chapter 

three). 

Research hypothesis: There is a relation between metaheuristic optimization algorithms’ 

parameters’ values and the efficiency (ex. finding a solution closer to the optimal solution) 

of the algorithms in finding the optimal or near optimal solution for traffic light signals 

timing optimization problem. 

Research procedure: The research procedure depends on eight experiments:  

1-Traffic Light Signals Timing Experiment 1 with GA: GA types 1, 2 and 3 and random 

algorithms were used to optimize traffic light signals timing problem. Fixed conditions 

were assumed for these algorithms in this experiment: 

a- Mutation probability (MP) parameter changes at each different population, as 

MP=[10%, 20%,30%, 40%,50%,60%,70%,80%,90%]. Therefore, each algorithm of 

GA Type 1 and GA Type 2 were experimented with nine different populations. 

b-Each population consisted of 50 generations, and each generation consisted of 30 

chromosomes. That is, the number of iteration times for running SUMO simulator 

was 50*30=1500 iterations. The number was used in each experiment and for each 

algorithm. 

c-This experiment was repeated 10 times for each algorithm of GA types 1, 2, and 20 

times for GA Type 3 and random algorithm. 

2-Benchmark Function Experiment 2 with GA: This represents the start of the benchmark 

iterative approach. This experiment is similar to Experiment 1 with the same algorithms 
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and conditions used; the second one is with a benchmark problem to see/test the 

behavior of each algorithm and how algorithms’ results are far from the optimal 

solution.  

3-Benchmark Function Experiment 3 with GA and PS algorithms: In this experiment, the 

researcher tried to improve the results of the algorithms used in Experiment 2, by 

increasing the generation size and number for each GA type (1, 2 and 3), PS with 

parameters’ values w=0.25, cp=1, cg=2 were assumed and random algorithms were 

experimented until arriving at the optimal solution for the benchmark function by GA 

Type 3 at generation size =50 and generation number =150. The experiment conditions 

are as follows:  

a-The first condition in this experiment is similar to the first condition in Experiment 1. 

b-Each population consists of 150 generations, and each generation consisted of 50 

chromosomes. That is, the number of iteration time of benchmark function running is 

150*50= 7500 iterations in each experiment and for each algorithm. 

c-This experiment is repeated 10 times for GA types (1, 2), and 20 times for GA Type 3 

and PS algorithm, and 110 times for random algorithm. 

4-Traffic Light Signals Timing Experiment 4 with GA and PS algorithms: This experiment 

is similar to Experiment 3 with the same algorithms and conditions, but the second one 

was with SUMO simulator to optimize traffic light signals timing problem to see the 

optimal solution of each algorithm if improved at generation size= 50 and generation 

number= 150.  

5-Benchmark Function Experiment 5 with PS Algorithm: In this experiment, improved the 

PS algorithms were experimented by testing all w, cg and cp parameters’ values with 

the same conditions as Experiment 3. Therefore, to get the best values of the three 
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parameters, w, cp and cg, which could get the optimal or near optimal results, this 

experiment is done by following a number of steps and conditions: 

a-Each parameter has a changed value which starts from 0 value to 5 by adding 0.25 

each time it was presupposed. Each parameter had 21 different values as {0, 0.25, 

0.5,…, 5}, and the number of different experiments tested =21*21*21. 

b- After conducting these experiments many times, the best values of the three 

parameters, when the optimal results<=10, were taken. This step is repeated two times. 

c-After that, the best parameters’ values, when the optimal results of PS <=10, were 

detected for the benchmark function problem. 

6-Traffic Light Signals Timing Experiment 6 with PS algorithm: In this experiment, the 

best two values, for  w, cp and cg parameters, were determined in the light of the results 

of Experiment 5. They were also tested in this experiment for traffic light signals timing 

problem, but the results were worse than the results in Experiment 4.The researcher 

reversed the parameters’ values by increasing the cg value and decreasing the cp value. 

Many values of the three parameters were experimented for traffic light signals timing 

problem with SUMO simulation under the same conditions of Experiment 3, 

Experiment 4, and Experiment 5. 

7-Benchmark Function Experiment 7 with TS Algorithm: In Tabu Search algorithm, the 

main challenges were to determine the best tau values and what the best fixed or 

changed k values are and which algorithm arrived at the optimal benchmark results. In 

this experiment, TS types 1, 2, 3, 4 and 5 algorithms were used to optimize the 

benchmark function. The fixed conditions and constraints were as follows:  

a-For all algorithm types, tau values ={ 1,2,3,…,12} were tuned. 
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b-For each algorithm type, the first generation started with a random of 50 lists, and 

then ran all lists with a benchmark function. The lists were sorted are dependent on 

the results. At the end, the list which produced the minimum result was selected to 

continue as a solution to get new generation lists. 

c-Each population consisted of 3 levels with 96 times, and each generation consisted of 

26 lists. That is, the number of benchmark function running times should be equal to 

50+3*96*26= 7538 running times in each experiment for TS types 1, 2, 3, 4 and 5 

algorithms. 

d- Fixed numbers, k= {0.1, 0.2, 0.3, …, 2.5}, were used to add and subtract from each 

record in the solution list to get new generation. After that, this experiment was 

repeated 10 times in Tabu algorithm Type 1 and Type 2 for each k number. 

e- For TS algorithm’s types 3, 4 and 5, changed number k was used in this experiment 

as follow: the iteration number (j=96) was divided into 12 parts as: 

at 0<= j <5  k=5.2, at 4< j <10  k =2.5, at 9< j <15 k =2, at 14< j <20 k =1.5. 

at 19< j <30 k =1.2, at 29< j <40 k =1, at 39< j <50 k =0.8, at 49< j <60 k =0.7. 

at 59< j <70 k =0.5, at 69< j <80 k =0.3, at 79< j <90 k =0.2, at 89< j <96 k =0.1. 

 k changed from one part to another part (k was  same for many generations, then 

changed), to add to and subtract k from each record in the solution list. This experiment 

was repeated 50 times by TS Types 3, 4 and 5 for each algorithm. 

8-Traffic Light Signals Timing Experiment 8 with TS Algorithm: In this experiment, TS 

types 1,2,3,4 and 5 algorithms, were used as they were used in Experiment 7, but in 

traffic light signals timing problem with SUMO simulator, the fixed conditions and 

constraints were presupposed for these algorithms in this experiment as follow: 

a-For TS algorithm types 1 and 2, at tau =6, and TS algorithm types 3, 4 and 5 at tau = { 

2, 4, 6, 8, 10}, were used in each experiment. 
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b-This point presented the same step 3 in the previous experiment, but with traffic light 

signals timing problem and SUMO simulation. 

c- The results of all fixed numbers and tau values used in Experiment 7 were far from 

the optimal solution so; these numbers could not be experimented in the SUMO 

simulator because the number of experiments needed long times to test them. 

Therefore, tau =6 was selected to be used in TS algorithm types 1 and 2, with fixed 

number k= 7. This experiment was repeated 10 times for Tabu algorithm types 1 and 

2. 

d-For TS algorithm’s types 3, 4 and 5, the changed number k was used in this 

experiment as follow: the iteration number (j=96) was divided into 12 parts as: 

at 0<= j<5  k=45, at 4< j<10 k=30, at 9< j<15k=25, at 14< j<20k=20. 

at 19< j<30k=17, at 29< j<40k=15, at 39< j<50k=12, at 49< j<60k=10. 

at 59< j<70k=7, at 69< j<80k=5, at 79< j<85k=3, at 84< j<90k=2. 

and at 89< j<96k=1. 

 k changed from one part to another part (k is the same for many generations, then 

changed), to add to and subtract k from each record in the solution list. This experiment 

was repeated 10 times for each of TS algorithm Types 3, 4 and 5. 
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Research design: (see Figure 4.1 above) 

Research results analysis: Using T test, significant intervals, min., max. and the average, 

the algorithms’ results were analyzed and tested in chapters five and six to ensure the 

benefits from the benchmark iterative approach. These results were validated by comparing 

the algorithms’ results after and before using the benchmark iterative approach with the 

Webster and HCM methods and SYNCHRO simulation. 
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Chapter five 

Results and Discussion of Experiments 

 

This chapter presents and discusses chronologically the results of the experiments. 

Each table in Appendix 1 represents one experiment results. There are many differences 

between algorithms’ results in each experiment as shown in the tables. The comparison 

process between algorithms’ results depended on comparing the average, as well as 

maximum and minimum results.  

* TLSTP: Traffic Light Signals Timing Problem 

5.1-Results of Experiment 1: [Comparison between GA types 1, 2 and 3 in TLSTP]     

Firstly, from the results of this experiment, the researcher found that the probability 

of  mutation operation had an effect on the optimal solution which arrived at by both GA 

Types 1 and 2, and the best average for the optimal solution when MP = 70%, for both 

algorithms as shown in Fig.5.1 below and Table 5.1 (see Appendix 1). 

 

Figure 5.1: Results of GA 1 vs. Results GA 2 in Experiment 1 
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Figure 5.2: Summary of Experiment 1 results 

Secondly, the results of this experiment show that the four algorithms were not 

equal and the best one was GA Type 3. According to the average results of each algorithm, 

GA Type 3 had the minimum average results and the minimum result, and the worst one 

was GA Type 1. Its average results were near the random algorithm results as shown in 

Fig.5.2 above and Table 5.1 (see Appendix 1). 

The preferable algorithm results were those of GA Type 3 because the selection 

process transferred the best half of chromosomes from the previous generation to the next 

generation without any random chromosome as in GA types 1 and 2. Fig.5.2 above 

summarizes the results in Table 5.1 (see Appendix 1). 

Because of the differences in GA types’ results, the main hypothesis was accepted 

for the first time, and the selection, crossover and mutation rate were found to have an 

effect on the GA performance, but at the end of this experiment, we can ask these 

questions:  

Is the GA Type 3 the best algorithm to optimize traffic light signals problem?  

Can these algorithms become more improvable and more efficient in optimizing this 

problem?  

Is the minimum result of the GA Type 3 the optimal solution for the traffic light signals 

timing optimization problem in the research case study road network? 

To answer these questions, Experiment 2 with the benchmark function was done. 

56 

58 

60 

62 

64 

66 

68 

70 

random best GA1 at MP= 

70% 

best GA2 at MP= 

70% 

GA3 

A
V

G
.(

A
T

T
fo

r 
ea

ch
 

v
eh

ic
le

) 

algorithms 

Best results of GA Types 1 and 2, vs. GA Type 3 result, with 1500 

iterations in Experiment 1. 



 
66 

 

 

Figure 5.3: Results of GA 1 vs. Results GA 2 in Experiment 2 

 

5.2-Results of Experiment 2: [comparing GA types 1, 2 and 3 in benchmark] 

As it was illustrated in chapter three, the optimal result of the benchmark function 

was known=0. From the results of this experiment, the researcher found that the 

probability of mutation operation also had an effect on the optimal solution which was 

arrived at by both GA Types 1 and 2, and the best average for the optimal solution when 

MP = 20% for GA Type 1 and MP = 90% for GA Type 2, as shown in Fig.5.3 above and 

Table 5.2 (see Appendix 1). 

The results of this experiment show that GA Type 3 was the most suitable one, 

because the average results were less than the average results of the other algorithms (AVG. 

= 16.1). The best GA Type 1 results (AVG. = 37) were better than the best GA Type 2 

results (AVG. = 64), but they were far from optimal result y= 0. The results of the three 

algorithms, GA Type 1, GA Type 2 and GA Type 3, were better than the random algorithm 

as shown in Fig.5.4 on the next page which summarizes the results in Table 5.2 (see 

Appendix 1). 
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Figure 5.4: Summary of Experiment 2 results 

 

The main conclusion from this experiment is that the results of the algorithms were 

still far from the optimal result of the benchmark function y=0, but the best optimization 

algorithm for the benchmark function must arrive at the optimal value y=0 or y  0 value. 

The researcher tried to improve the performance of GA types 1, 2 and 3 and PS algorithms 

by finding a process for the optimal result of the benchmark function and by increasing the 

number of the execution times for the benchmark evaluation in the search process. This 

could be through increasing population size and the number of generations in Experiment 3 

to see if the results improved or unchanged. 

5.3-Results of Experiment 3: [Tuning GA Types 1, 2 and 3 and PS in benchmark]     

Through increase of the process of the execution times parameter, such as 

population size and number of generations, the results of the optimization algorithms used 

in Experiment 2 improved in this experiment. The best average results of GA Type 1 =33, 

at MP= 20%, and the best average results of GA Type 2 =36, at MP= 30% are shown in 

Fig.5.5, next page and Table 5.3 (see Appendix 1). 
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Figure 5.5: Results of GA 1 vs. Results GA 2 in Experiment 3 

The best improvement was in GA Type 3 in generation size=50 and generation 

number=150. Its results were the closest to the optimal of the benchmark result y=0.The 

researcher stabilized this pop. (Size) and G number for all algorithms. The worst algorithm 

was PS algorithm because its results were the farthest from the optimal of the benchmark, 

as shown in Fig.5.6 below which summarizes the results in Table 5.3 (see Appendix 1). 

From the results of this experiment, one can conclude that the execution times or 

the number of times parameter value had a strong effect on the metaheuristic optimization 

algorithms’ performance in finding the optimal or near optimal solution. 

 

 
Figure 5.6: Summary of Experiment 3 results. 
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When we increased the population size and the generation numbers, GA types 1, 2 and 3 

algorithms’ results improved with different percentages. The main reason for the 

differences between the results of the algorithms was that the best algorithm had a high 

power to search in all regions of the search space. However, the worst algorithm had just a 

central search in some regions which had always local minima. 

Then the same optimization algorithms (GA1, GA2, GA3) and PS algorithm and 

random algorithm, were used in this experiment under the same conditions of 50 

chromosomes and 150 generations were used to optimize the traffic light signals timing 

problem with SUMO simulator in Experiment 4 to see if the results improved in 

comparison with the results in Experiment 1.   

5.4-Results of Experiment 4: [comparing tuned GA types 1, 2 and 3, and PS in TLSTP] 

The results of this experiment showed that there were some improvements on the 

results of the metaheuristic optimization algorithms GA types 1, 2 and 3 which were used 

in Experiment 1. That was because the average results and the minimum result of each 

algorithm in this experiment were less than the average results and the minimum result of 

each algorithm in Experiment 1. After comparison the average results of the ATT for each 

vehicle which were produced from GA Types 1 and 2, the best ATT results of the GA 

Type1 = 58s, at MP = 40%, and the best ATT results of the GA Type 2 = 60s, at MP = 

10%, as shown in Fig.5.7 on the next page and Table 5.4 (see Appendix 1). 
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Figure 5.7: Results of GA 1 vs. Results GA 2 in Experiment 4 

The best algorithm in this experiment was GA Type 3 because the average results 

of the average travel time for each vehicle was the minimum (AVG.(ATT) = 55.9s), and the 

minimum result of the average travel time for each vehicle min.(ATT)=53.4s, as shown in 

Fig.5.8 below and Table 5.4 (see Appendix 1). These improvements were right logically 

because the number of search times increased from 1,500 times in Experiment 1 to 7,500 

times in this experiment. The main observation, in this context, was when the GA Type 3 

was saved for the preferable results in the four previous experiments. The main research 

hypothesis was accepted because the number of times parameters’ values (generation size 

and generation number) had a strong effect on the metaheuristic optimization algorithm 

performance in the optimizing process of the traffic light signals timing problem. 

 

 

Figure 5.8: Summary of Experiment 4 results. 
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The results of AVG.(results)=53.3 of the PS algorithm were far from the optimal 

benchmark function value y=0  in Experiment 3. In addition, the PS algorithm results were 

not the best results in Experiment 4. Experiment 5 was done to improve the performance of 

PS algorithm to get the optimal or near optimal solution for the benchmark function by 

finding a process for the best parameters’ values (w, cp, cg). 

5.5-Results of Experiment 5: [tuning PS by using benchmark] 

 First, after completion of  this experiment with the parameter values: 

w = {0, 0.25, 0.5 , 0.75, 1.25, … , 5}, and cp ={0, 0.25, 0.5 , 0.75, 1.25, … , 5}, and cg= 

{0, 0.25, 0.5 , 0.75, 1.25, … , 5} the total number of the experiments was 

21*21*21=9261 as the number of the probabilities for the w ,cp and cg values. These 

three values were done twice. The results were found to be very good, and some 

experiments results were almost close to the optimal solution of the benchmark. 

Therefore, the experiments whose results were =“0” or <= “10” were taken. The three 

parameters’ values of each experiment results <=10 were when: w= [0, 0.25, 0.5], cg= 

[0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75], and cp= [1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 

2.75, 3, 3.25]. 

 Second, each experiment was done two times for each probability for the best values of 

w, cg and cp produced in first step. The best results were less than 10  when: 

w= [0, 0.25], cg= [0.75, 1, 1.25, 1.5, 1.75, 2], and cp= [1.75, 2, 2.25, 2.5, 2.75, 3, 3.25]. 

 Third, each experiment was done forty times for each probability of the three 

parameters’ values (w, cg, cp), which produced the best results in the second step. The 

best experiments’ produced results were  less than 10 when : 
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{w, cg, cp}= {0, 0.75, 2.25} with 17 times less than 10, {0, 0.75, 2.5} with 20 times less 

than 10, {0, 0.75, 2.75} with 15 times less than 10, { 0, 0.75, 3} with 19 times less than 

10, and {0.25, 0.75, 2.75} with 15 times less than 10. 

 Fourth, the best three parameters’ values, which produced the best results in the third 

step, were tested 20 times for each three parameters’ values. The results are shown in 

Table 5.5 (see Appendix 1). 

As 5.5 (see Appendix 1) shows, the best two results were when the number of times 

their results were less than 10 more than half of the total number of times. This was done 

in probabilities 2 and 3 as shown in Table 5.5 (see Appendix 1).Therefore, the best results 

were when: {w, cg, cp} = { 0, 0.75, 2.5} and { 0, 0.75, 2.75}. The best values of the three 

parameters (w, cg, cp), which produced the best two results in the benchmark function, 

were tested in solving traffic light signals timing optimization problem with SUMO 

simulator in  Experiment 6. 

5.6-Results of Experiment 6: [using tuned PS in TLSTP] 

After the experiment of the best two values of the three parameters {w, cg, cp} = 

{0, 0.75, 2.5} and {0, 0.75, 2.75} for PS algorithm, which produced the best results in the 

previous experiment, in optimizing the traffic light signals timing problem with SUMO 

simulator in this experiment, the results were found to be not good as shown in Fig.5.9, 

next page, and Table 5.6 (see Appendix 1). They were worse than the results of PS 

algorithm in Experiment 4 at parameters’ values {w, cg, cp} = {0.25, 2, 1}. 
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Figure 5.9: Summary of Experiment 6 results. 

Therefore, the parameters’ cg and cp values {0.75, 2.5} and {0.75, 2.75} were 

reversed by increasing the cg value and decreasing the cp value, and the parameters’ values 

tried were w, cg, and cp= {0, 4.75, 0.25}, {0, 4.25, 0.25}, {0, 3.5, 0.75}, {0.25, 3.5, 1.25} 

as shown in Fig.5.9, above and Table 5.6 (see Appendix 1). The results were produced 

were good, and the best results were at the parameter’s values w, cg and cp = {0.25, 3.5, 

1.25} as shown in Fig.5.9, above and Table 5.6 (see Appendix 1). 

Concerning  the average results of  PS algorithm in this experiment  AVG.(ATT) = 

55.9s and the minimum results Min.(ATT)=53.4s when the parameters’ values were w, cg, 

and cp={0.25, 3.5, 1.25}, it was found that they  were better than the average results of the 

same algorithm in Experiment 4 AVG.(ATT)=58.9s and the minimum results Min.(ATT)= 

54.9s were when the parameter’s values were w, cg and cp and = {0.25, 2, 1}. From these 

results, we conclude that the values of the three parameters, w, cp and cg, had a direct 

effect on the efficiency of PS algorithm. Therefore, the main research hypothesis was 

accepted again. 
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5.7 Results of Experiment 7: [tuning TS by using benchmark] 

This experiment was done by using TS algorithm types 1, 2, 3, 4, and 5, with 

benchmark function, to detect the best parameters’ values, as k number and tau value, and 

to get the optimal or near optimal results for the benchmark function. The main challenge 

was finding the best values of these parameters. The TS algorithm has a high performance 

to get the optimal or near optimal results for the benchmark function. 

The results of the standard TS algorithms, such as TS Type 1 and Type 2 

algorithms’ were not good as shown in two tables: Table 5.7 and Table 5.8 (see Appendix 

1). The best results of all k fixed values = {0.1, 0.2, 0.3, …, 2.5}and tau values ={1, 2, 3, 

…, 12},  tested, were greater than 20. These results were farther than the optimal of the 

benchmark function y= 0 because the search processes maybe central in some regions 

which have a local minima. 

In contrast, the results of the new algorithms’ TS types 3, 4 and 5 were more 

efficient than the results of the standard algorithms TS types 1 and 2 as shown in Table 5.9 

(see Appendix 1).The new four algorithms’ types produced the optimal benchmark 

function value y=0, because the k number changed as it was illustrated in the experiment 

conditions in chapter four, this allowed to search processes in all the regions of the solution 

space, and  this was almost the main reason for the ease of obtaining the global minimum 

results using these algorithms’ types. The best type was TS Type 5. All its results arrived at 

the optimal value y=0, and the percentage of the results = 0 was 100% as shown in Table 

5.9 (see Appendix 1). 

5.8   Results of Experiment 8: [using tuned TS in TLSTP] 

After completion of the previous experiment, and because the results were 

promising especially in using new algorithms TS type 3, 4 and 5 algorithms, these 
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algorithms were experimented in optimizing traffic light signals timing problem with 

SUMO simulator in this experiment. The big number of probabilities input fixed 

parameters’ values was k= {0.1, 0.2, 0.3, …, 2.5} and tau= {1, 2, 3, …, 12} were 

experimented with in the previous experiment. This number of probabilities could not be 

done to optimize traffic light signals timing problem with SUMO simulator in this 

experiment. They may need several months to finish these probabilities of parameters’ 

values.  

One parameter’s value for each k and tau as k= 7 and tau= 6 was tested by each 

standard algorithm TS types 1 and 2 in this experiment. Both results were bad because they 

were close to the full random algorithm results or perhaps they were worse than the full 

random algorithm results as shown in Table 5.10 (see Appendix 1). 

When k number changed, and five values of tau parameter ={2, 4, 6, 8, 10} were 

tested by new algorithms TS types 3, 4 and 5 in this experiment, the best algorithm was 

found to be TS type 5 algorithm because all the averages of the results at all Tau values 

were less than 58.5s, and the minimum average results of this algorithm was AVG.(ATT)= 

56.2s and the minimum result of this algorithm was  Min.(ATT)= 52.5s at tau= 10. The 

worst algorithm was TS Type 3 algorithm, because all the averages of the results at all tau 

values were more than 61.5s. The main reason for these differences, between the results of 

the three TS algorithm types, was the start of input list in each stage of the algorithm. TS 

Type 3 algorithm started each time of the two stages from a new solution which is 

unknown. This is the reason for its bad results. But TS Type 4 algorithm started each time 

in the first stage from the best solution which the algorithm arrived at. This is the reason 

why its results were better than those of TS Type 3. At the end, TS Type 5 algorithm 

started each time of the second stage from the best solution which the algorithm arrived at. 
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This is the reason why its results were the best of the three algorithms as Table 5.10 shows 

(see Appendix 1). At the end of this experiment, tau and k values were found to have a 

strong effect on the performance of TS algorithm. Thus, the main hypothesis was accepted 

again. 

5.9   Best and Worst Algorithms Behavior and Decisions   

All traffic light signals timing experiments with SUMO simulator were divided into 

two parts. The first part was the number of execution times =1,500 time as in Experiment 

1, and the second part was the number of execution times =7,500 time as in three 

experiments (4, 6 and 8). Each algorithm was used in any part had a better result when the 

result was a minimum and a worse result when the result was maximum. 

In the first part, the best behavior cases for each algorithm, used in Experiment 1, 

are shown in Fig.5.10 below. It is clear in this figure that the behavior of each algorithm, 

according to the generation numbers, and the algorithm GA Type 3, was the best one. The 

algorithm GA Type 1 was the closest to the random algorithm.   

 

Figure 5.10: Best case of algorithms’ results of Experiment 1 
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Figure 5.11: Worst case of the algorithms’ results of Experiments 1. 

The worst cases for each algorithm used in Experiment 1, are shown in Fig.5.11 

above. This figure shows the behavior of each algorithm with the generation numbers. 

In the second part, the benefits of using the benchmark iterative approach are 

illustrated. The algorithms’ results improved in three experiments (4, 6 and 8) according to 

the results of Experiment1 by determining the best parameters’ values for each algorithm. 

The best cases for the algorithms used in three experiments (4, 6 and 8) are shown in 

Fig.5.12 below. It is crystal clear in this figure that the behavior of each algorithm with the 

generation numbers and the algorithm TS type 5 was the best one, and the random 

algorithm was the worst one.  

 

Figure 5.12: Best case of the algorithms’ results of Experiments 4, 6 and 8 
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Figure 5.13: Worst case of the algorithms’ results of Experiments 4, 6 and 8 

The worst case for the algorithms used in the three experiments (4, 6 and 8) is 

shown in Fig.5.13 above. This figure shows the behavior of each algorithm according to 

the generation numbers. 

At the end of this chapter, and by looking at the results in this chapter, the main 

conclusion is that the benchmark iterative approach could help in the improvement process 

of the metaheuristic optimization algorithms by determining the best parameters’ values of 

each algorithm in optimizing traffic light signals timing optimization problem. The most 

suitable algorithms for optimizing the traffic light signals timing problem were GA Type 3, 

PS algorithm, at parameters’ values w =0.25, cp =1.25 and cg =3.5, and TS type 5 

algorithm, at parameters’ values tau =10, with 7,500 execution times. This can be inferred 

by looking at the results of the following Tables: 5.4, 5.6 and 5.8 (see Appendix 1). They 

have the minimum average of ATT for each vehicle as AVG.(ATT) = 55.9s, for both 

algorithms of GA Type 3 and PS at w =0.25, cp=1.25 and cg =3.5, and the AVG.(ATT) 

=56.2s for TS Type 5 new algorithm at tau=10. They have the minimum ATT for each 

vehicle as min.(ATT)= 53.4s for both algorithms GA Type 3 and PS at w=0.25, cp=1.25 

and cg=3.5 and the min.(ATT)=52.5s for TS Type 5 algorithm at tau=10. 
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However, to check this conclusion and the benefit of the benchmark iterative 

approach, the next chapter compares the results of the metaheuristic optimization 

algorithms used in this research before and after using benchmark iterative approach with 

the results of the mathematical models for optimizing the traffic light signals timing 

optimization problem, Webster and HCM methods, and the results of SYNCHRO 

simulator. The metaheuristic optimization algorithms’ results were validated before using 

benchmark iterative approach and after using this approach. By using T test and confidence 

intervals (with 95% confidence), the researcher presents some reliability of the best 

algorithms’ results. 
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Chapter six 

 

Results Validity and Reliability  
 

 

To validate the metaheuristic optimization algorithms’ results, obtained from 

optimizing the traffic light signals timing problem in this research, the researcher 

compared these results, (Tables 5.1, 5.4, 5.6 and 5.8, Appendix 1) with the results of the 

common and traditional methods analytically like Webster and HCM and SYNCHRO 

simulation. These were used to determine the optimal timing for each traffic light signal in 

the road network of the case study (Fig.3.1) to minimize the average travel time for each 

vehicle (ATT). The results for each optimal time list from Webster and HCM methods and 

SYNCHRO simulation are shown in Table 6.1 below.  

Table 6.1: Traffic light signals timing of Webster and HCM methods and SYNCHRO 

simulation and ATT results for each vehicle 

HCM  optimal timing for the traffic light signals at saturated lanes 1600 vph 

Traffic light 

signals time 

TL0 TL1 TL2 TL3 & 4 TL5 & 6 T L7 & 8 & 9 TL10 TL 11&12 ATT for 

each 

vehicle 
phase

1 

phase

1 

phase

1 

phase

1 

phase

2 

phase

1 

phase

2 

phase

1 & 3 

phase

2 

phase

1 

phase

1 

phase

2 

Yellow 3 3 3 3 3 3 3 3 3 3 3 3  

at 

(v/c)=100% 
green

en 

3 6 4 6 2 13 5 6 2 3 6 3 153s 

 red    2 6 5 13 2 6  3 6 
at 

(v/c)=90% 
green 4 9 5 8 2 21 7 9 2 5 8 5 149s 

 red    2 8 7 21 2 9  5 8 

at 

(v/c)=75% 

green 7 20 9 14 4 67 21 16 3 9 15 9 178s 

 red    4 14 21 67 3 16  9 15 

Webster optimal timing for the traffic light signals at saturated lanes 1600 vph 

Traffic light 

signals time 

TL0 TL1 TL2 TL3 & 4 TL5 & 6 TL7 & 8 & 9 TL10& 11 & 12 ATT for 

each 
vehicle 

phase

1 

phase

1 

phase

1 

Phase

1 

Phase

2 

Phase

1 

Phase

2 

phase

1&3 

phase

2 

phase

1 

phase

2 

phase

3 

Yellow 3 3 3 3 3 3 3 3 3 3 3 3 
  

 202s  
Green 13 23 23 19 3 41 11 29 3 22 22 3 
Red    3 19 11 41 3 29  3 22 

Synchro. optimal timing for the traffic light signals from Nablus  municipality   

Traffic light 

signals time 

TL0 TL1 TL2 TL3 & 4 

T5 & 6 

TL5 & 6 TL7 & 8 & 9 

traffic light 

signals time 

TL10& 11 & 12 ATT for 

each 
vehicle 

phase

1 

phase

1 

phase

1 

Phase

1 

Phase

2 

Phase

1 

Phase

2 

phase

1&3 

phase

2 

phase

1 

phase

1 

phase

1 

Yellow 3 3 3 3 3 3 3 3 3 3 3 3  
Green 69 69 69 27 70 69 28 67 30 30 30 67 92s 

Red    70 27 28 69 30 67     
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All metaheuristic optimization algorithms’ results, and random algorithm results, 

obtained before using the benchmark iterative approach or before tuning the algorithms’ 

parameters’ values from the experiments on the traffic light signals timing problem, using 

SUMO simulator, were found to be more suitable to optimize the traffic light signals 

timing problem than the results of the traditional methods. Metaheuristic optimization and 

random algorithms results of ATT. for each vehicle were in the range [min. =56.5s, max. 

=82s]. These were less than the results of ATT. for each vehicle produced from the 

analytical methods of Webster and HCM and SYNCHRO simulation. They were in the 

range [min.= 92s, max.=202s] as Table 6.1 shows. The main reasons of this conclusion are 

the following: 

 Traditional methods of Webster, HCM and SYNCRO simulation computed the 

optimal timing for each isolated intersection, and the main factor here is the flow of 

vehicles on the lanes. However, this mathematical way may not be perfect especially 

when the flow of vehicles is small or huge. The timing phases might be illogical here 

as green time=2s or 250s. 

 Metaheuristic optimization algorithms and random algorithm were used in this 

research to optimize the traffic light signals timing problem in a global way and actual 

experimental ways through trying 1,500 or 7,500 time lists in each algorithm. 

After using the benchmark iterative approach and tuning process for the 

metaheuristic algorithms’ parameters’ values, all algorithms’ results improved. Table 6.2 

below shows that the benchmark iterative approach had an effect on the improvement of   

results of each algorithm used in Experiments 4, 6, 8. The importance of using the 

benchmark iterative approach was demonstrated because the metaheuristic algorithms’ 

results, after using benchmark iterative approach and tuning process, were better than the  
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Table 6.2: Comparison between metaheuristic algorithms’ results before and after using 

benchmark iterative approach in traffic light signals timing optimization problem 

Algorithms’ results (ATT.) for each vehicle before benchmark iterative approach and tuning process. 

algorithm Parameters values (supposed) Iterations Avg. Min. Max. 

random  1500 68s 63s 72.5s 

GA1 g size=30, #generations=50 1500 68s 63s 73s 

GA2 g size=30, #generations=50 1500 63s 58s 

 
69s 

GA3 g size=30, #generations=50 1500 61s 56.5s 67.5s 

PS w=0.25, cp=1, cg=2 7500 59s 55s 71s 

TS(1 and 2) Tau= 6, k= 7 7500 72.5s 

 

64.5s 

 

82.5s 

 
Algorithms’ results (ATT.) for each vehicle after benchmark iterative approach and tuning process. 

algorithm Parameters values (tuned) iterations Avg. Min. Max. 

random  7500 64.5s 62.5s 67.5s 

GA1 g size=50, #generations=150 7500 60.5 

s 

56.5s 67.5s 

GA2 g size=50, #generations=150 7500 61.5 58.5s 

 

65.5s 

 GA3 g size=50, #generations=150 7500 56s 53.5s 58.5s 

PS w=0.25, cp=1.25, cg=3.5 7500 56s 53.5s 59s 

TS(5) tau= 10, k= changed(45 to 1) 7500 56s 52.5s 59s 

 

metaheuristic algorithms’ results before using benchmark iterative approach and the 

results of traditional methods were like Webster and HCM, and SYNCHRO simulator. 

At the end, we can say that using metaheuristic optimization algorithms with the 

benchmark iterative approach, to optimize traffic light signals timing problem, were more 

suitable than using metaheuristic optimization algorithms without benchmark iterative 

approach and the traditional methods. Their results were less and were close to the optimal 

solution. 

To verify the main conclusion, obtained from using the benchmark iterative 

approach in this research (see chapter 5), the most suitable algorithms for solving the 

optimization traffic light signals timing problem were GA Type 3, PS algorithm at w=0.25, 

cg=3.5 and cp=1.25, and TS Type 5 algorithm at tau=10, with 7,500 execution times. They 
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had the minimum average (ATT.) for each vehicle. To make sure this conclusion has a 

good confidence, statistical tests (T test and confidence intervals) were used. 

T test was used between two different samples to check whether the two means of 

the two samples were equal or not and which one was the best [36]. The steps of this test 

are as follows: 

1- Start from the hypothesis  

    Null hypothesis:              H0 :    M1 = M2  ,   two means are equal. 

   Alternative hypothesis:   H1   M1 ≠ M2  ,    two means are not equal. 

2- Determine error ratio Alfa = 0.05 and the significant value = 95%. 

3- Compute the ( t )value between the two samples through this equation [36]: 

  
     

  
        

           
 

         
   

 

  
 
 

  
 

 
 ……..(6.1). 

4- Compute the standard deviation (S) for each sample through this equation [36]:  

   
 

   
    

      
   

 
   …………(6.2) . 

5- Get     
 
    from T table [36] p. 773 to see if H0 is rejected or not [36]. 

6- Accept Null hypothesis if :         -      
 
      ≤    t      ≤        

 
    

7- Reject Null hypothesis if:          -      
 
      >    t   or    t   >        

 
    

In this part, all experiments’ results had a normal distribution as an assumption, 

because the average of the results for each algorithm almost centered in the middle of 
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results. The algorithm GA Type 3 results with 7,500 execution times were found to be the 

best algorithm from all algorithms. T test was done between GA Type 3 results and all 

other algorithms’ results as shown below: 

1- Null hypothesis was:       H0 :    M1 = M2   

where M1 is the means of GA3 results with 7,500 execution times were assumed to be 

the best, and M2  is the means of each other algorithm results. 

2- Alternative hypothesis:   H1   M1 ≠ M2, two means are not equal. 

3- Standard deviations were computed for each algorithm results as shown in Table 

6.3 (see Appendix 2). 

4- T values were computed between GA 3 results and each other algorithm results. 

Comparisons for each T value with      
 
   

,      
 
   

,       
 
   

 and      
 
   

were done. 

5- T test results show that the null hypothesis H0 was rejected between GA3 results 

with 7,500 execution times and 58 states of other algorithms’ results at significant 

level (95%) as shown in Table 6.3 (see Appendix 2). The best one was GA Type 3 

algorithm because it had the minimum average (ATT) from all 62 states of other 

algorithms’ averages (ATT). However, the null hypothesis was accepted just for 

GA Type 3 and  PS algorithm at w=0.25, cg=3.5 and cp=1.25, and TS Type 5 

algorithm at tau=10, with 7,500 execution times at significant level 95% as shown 

in Table 6.3 (see Appendix 2). That means the three algorithms were equal in the 

average (ATT) and were the best algorithms for optimizing the traffic light signals 

timing problem because they had the minimum average (ATT).  
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To test the average of each algorithm results of ATT. for each vehicle, represented 

with some reliability level, a confidence interval with significant level 95% was computed 

for each algorithm results (ATT) for each vehicle results, using  this equation[36]: 

       
         

 

  
                 

         
 

  
    …..(6.3). 

Where   is any new experiment result (ATT) located inside the confidence interval. 

The confidence interval for each algorithm state is shown in Table 6.3 (see 

Appendix 2). The best three algorithms were GA Type 3 and PS algorithm, at w=0.25, 

cp=1.25 and cg= 3.5 and TS type 5 algorithm at tau=10, with 7,500 execution times; they 

had almost the minimum and the same confidence intervals as follow: 

a- The confidence interval, with significant level 95% of the GA Type 3 algorithm with 

7,500 execution times, was between 55.4s, and 56.5s. 

b- The confidence interval, with significant level 95% of the PS algorithm at w=0.25, 

cp=1.25 and cg=3.5, with 7,500 execution times, was between 55.3s, and 56.5s. 

c- The confidence interval, with significant level 95% of the TS Type 5 algorithm at 

tau=10, with 7,500 execution times, was between 54.9s, and 57.6s. 

To conclude, after results of T test and the confidence intervals, it was found that 

the most suitable algorithms for optimizing the traffic light signals timing problem were 

GA Type 3, PS algorithm, at w=0.25, cg=3.5 and cp=1.25, and TS Type 5 algorithm, at 

tau=10, with 7,500 execution times. The benchmark iterative approach helped us to 

determine the best metaheuristic optimization algorithm’ parameters’ values to arrive at the 

best performance for the metaheuristic algorithm in a short time, thus optimizing the traffic 

light signals timing problem. 
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Chapter seven 

Conclusion and Future Work 
 

 

Metaheuristic optimization techniques are more suitable for solving the traffic light 

signals timing optimization problem than traditional and mathematical methods. Using the 

benchmark iterative approach in this research helped us in determining the best parameters’ 

values as illustrated in the first chapter in short time. The metaheuristic optimization 

algorithm was more efficient at these values to get optimal or near optimal solution. 

Finding the optimal solution or near optimal solution in any optimization problem, 

selection of a suitable optimization algorithm for solving this problem are very important. 

Because some optimization algorithms especially in metaheuristic algorithms may be more 

efficient to get the optimal or near optimal solution than others with the same problem. 

In this research, when many metaheuristic optimization techniques were used, to 

optimize the traffic light signals timing problem, some algorithms were efficient to get 

optimal or near optimal solution, but some other algorithms were not efficient and the 

results were far from the optimal solution, and sometimes their results were worse than the 

random algorithm.  

The results of this research seem to be promising as illustrated in the previous two 

chapters. GA Type 3, PS, at w=0.25, cg=3.5 and cp=1.25, and TS Type 5 at tau=10 

algorithms with 7,500 execution times were more efficient to get less possible outcomes 

out of the average travel time (ATT) for each vehicle than other algorithms states. By using 
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these three algorithms the total waiting time at the traffic light signals, consuming petrol, 

and air pollution from the vehicles were reduced to a lower level indirectly.  

New types of Tabu Search algorithm were improved in this research, such as TS 

types 3, 4 and 5 algorithms, were more suitable in solving both benchmark function and 

traffic light signals problem than the basic algorithms’ types TS 1 and TS 2. They got the 

global minima value of benchmark function y= 0, and the minimum results of the average 

travel time (ATT) for each vehicle were less than the minimum algorithms’ results of TS 1 

and TS 2. Because the new types depended on the search in the farther neighborhoods, 

then in the nearest neighborhoods, but these new methods need to be proved 

mathematically in future research. 

Some metaheuristic optimization algorithms are suitable for solving some 

optimization problems but may be very bad in solving other problems, and the topology of 

the problems’ function may be the central point in determining which algorithm is the best, 

and this needs further research. 

All research questions were answered; the research problem was solved. In the light 

of these results, the researcher recommends using benchmark iterative approach by the 

optimization researchers for optimal use of metaheuristic optimization techniques to solve 

the complex practical problems and find out the optimal or near optimal solution. He also 

recommends that roads engineers use the metaheuristic optimization algorithms with this 

approach to get the optimal or near optimal timing for their road network traffic light 

signals timing optimization problem. 

             At the end of this research, municipalities and other institutions, in charge of the 

road networks and the traffic light systems, can benefit from the results of this research by 

using the most suitable metaheuristic algorithms whose results were the best in this 
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research. They can compute the average travel time for each vehicle for a statistical sample 

of vehicles or the flow of vehicles by using counters at the traffic light positions in the real 

world, with their optimal timing, before using the metaheuristic optimization algorithms, 

and the optimal timing for the traffic light signals after using the best metaheuristic 

optimization algorithms. Finally, they can then compare the results to see how much the 

best metaheuristic algorithm have improved the results of the average travel time for each 

vehicle and the flow of vehicles. 

In the future research, the researcher suggests trying other types of metaheuristic 

optimization algorithms to solve traffic light signals problem in addition to other road 

networks with a high number of traffic light signals and other simulators for presenting the 

network. This may help in finding the most suitable and stable algorithm to get the optimal 

solution of the main research problem in the short time. Algorithms used in this research 

were very time consuming to reduce waiting time at traffic light signals; petrol consuming 

and air pollution from the vehicles would drop to lower levels. 
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Appendix 1: Summary of all experiments results 

Table 5.1: Results of Experiment 1, traffic light signals timing problem with SUMO 

simulator, 30 chromosomes and 50 generations. 

algorithms’ MP repeating 

experiments 

AVG. (ATT.)  

for each vehicle 

Mini( ATT.)    

for each vehicle 

Max. ( ATT. ) 

for each vehicle 

Random 

algorithm 

 20 times 67.8s 63s 72.6s 

GA Type 1 

10% 

10 times 

70.2s 68.7s 72.5s 
20% 70.5s 64.7s 73s 

30% 69.1s 64.9s 72.6s 
40% 67.9s 64.3s 71s 
50% 67.4s 65.7s 69.2s 

60% 67.9s 66s 70.3s 
70% 66.9s 63.9s 69.8s 
80% 67.8s 63.1s 72s 
90% 68.4s 64.8s 70.7s 

GA Type 2 

10% 

10 times 

63.1s 58.1s 66.5s 
20% 63.9s 60.3s 69s 
30% 62.6s 60.3s   64.6s 

40% 63.4s 60.8s 66.8s 
50% 64.5s 59.2s 67.7s 
60% 63.2s 56.8s 68.3s 
70% 62.5s 60.7s 64.9s 

80% 63.9s 62s 65.5s 
90% 64s 60.5s 67.7s 

GA Type 3  20 times 60.8s 56.5s 67.3s 

 

Table 5.2: Results of Experiment 2, benchmark function with 30 chromosomes and 50 

generations. 

 

 

 

 

 

 

 

 

 

 

 

 

algorithms’ 
MP repeating 

experiments 

AVG.( experiments 

results) 

Min.(experiments 

results) 

Max. (experiments 

results) 

Random 

algorithm 
0% 110 times 168 118.5 199.4 

GA 

Type 1 

 

10% 

10 times 

40.8 32.8 52.8 
20% 37.2 25 50 
30% 39.7 30 46.8 
40% 42.7 25 49.8 

50% 46 35.6 58.2 
60% 45.5 35.6 59.5 
70% 47.5 33.5 57 

80% 48 43 59 
90% 52.2 43.4 62.8 

GA 

Type 2 

10% 

10 times 

69.9 45.4 94.2 
20% 68 49 95.1 

30% 76.8 45.6 104.3 
40% 71.3 53.4 89.1 
50% 74.3 49.8 94.6 

60% 69.4 42.8 87.5 
70% 68.7 57.2 97.7 
80% 64.9 45.8 83.8 

90% 64.4 56 85 
GA Type 3 0 20 times 16.1 7 27.8 
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Table 5.3: Results of Experiment 3, benchmark function with 50 chromosomes and 150 

generations. 

algorithms’ 
MP repeating 

experiments 

AVG.( experiments 

results) 

Min.(experiments 

results) 

Max. (experiments 

results) 

Random 

algorithm 

0% 110 times 109.7 81.4 128.4 

GA 

Type 1 

 

10% 

10 times 

35.3 27.6 45.8 
20% 33.5 28.8 40.2 

30% 34.8 30.2 40.4 
40% 33.7 27.2 39.4 
50% 35.4 27.4 40.7 
60% 38.6 31.2 44.2 

70% 37.4 28.4 42.6 
80% 40.7 36 51.3 
90% 41.2 33.6 49.2 

GA 
Type 2 

10% 

10 times 

41.2 25.6 37.8 
20% 39.6 31 52.8 
30% 36 21.6 47.6 

40% 37.6 31.4 54 
50% 41.7 31 57.1 
60% 37.7 29.2 53.2 
70% 41.1 33.4 56.2 

80% 30.8 30.8 61.8 
90% 39.3 20.6 46.6 

GA Type 3 0% 20 1.3 0 5 

PS 0% 20 53.3 20.8 82.8 

 

Table 5.4: Results of Experiment 4, traffic light signals timing problem with SUMO 

simulator, 50 chromosomes and 150 generations. 

 

 

 

 

 

 

 

 

 

 

 

 
 

algorithms’ MP repeating 

experiments 

AVG. (ATT.)  

for each vehicle 

Mini( ATT.)    

for each vehicle 

Max. ( ATT. ) 

for each vehicle 

Random 
algorithm 

 

10 times 

 

64.4s 62.5s 67.6s 

GA Type 1 

10% 62.2s 58.4s 67.5s 
20% 59.2s 57.3s 60.5s 
30% 58.8s 56.5s 62.5s 

40% 58.2s 57.4s 59s 
50% 59.1s 56.3s 60.7s 
60% 61.1s 59.3s 63.9s 

70% 61.6s 59.6s 65.2s 
80% 61.8s 60.4s 63.7s 
90% 62.5s 60.4s 65.1s 

GA Type 2 

10% 60.4s 59s 61.8s 

20% 61.2s 58.5s 64.9s 
30% 60.8s 59.3s 63.6s 
40% 60.7s 58.6s 62.4s 

50% 61s 58.6s 62.9s 
60% 61.8s 59.7s 63.8s 
70% 62.6s 59.6s 65.4s 

80% 62s 58.7s 64.7s 
90% 61.6s 59.6s 63.5s 

GA Type 3  
20 times 

55.9s 53.4s 58.3s 
PS  58.9s 54.9s 71.2s 
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Table 5.5: Results of Experiment 5, PS algorithm in solving benchmark function with 50 

chromosomes and 150 generations. 

Probability 

# 
w cg cp 

# of 

Results 

res=<10 

Probability 

of results 

<= 10 

Max. 

results 

Min. 

results 

1 0 0.75 2.25 8 40% 18 6 

2 0 0.75 2.5 
11 55% 20 5 

3 0 0.75 2.75 11 55% 26 6 

4 0 0.75 3 
8 40% 34 4 

5 0.25 0.75 2.75 
6 30% 20 4 

 

 

 

 

 Table 5.6: Results of Experiment 6, PS algorithm in solving traffic light signals timing 

problem with 50 chromosomes and 150 generations. 

 

 

 

 

 

 

experiments  w= cp= cg= 

# of 

experiment 

repetition 

AVG.(ATT) Min.(ATT) Max.(ATT) 

1 0 2.5 0.75 6 64.3s 61.8s 66.6s 

2 0 2.75 0.75 6 62.3s 59.6s 66.4s 

3 0.25 1.25 3.5 20 55.9s 53.4s 58.9s 

4 0 0.75 3.5 20 58s 53.4s 69.5s 

5 0 0.25 4.25 10 57.5s 53.2s 69.3s 

6 0 0.25 4.75 10 60.2s 55.9s 66.7s 
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Table 5.7: Results of Experiment 7, TS Type1 algorithm in solving benchmark function with tau= {1, 2, 3, …, 12}, and k={0.1, 0.2, 0.3, …, 2.5}. 

tau= 1 2 3 4 5 6 7 8 9 10 11 12 

K
=

 avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. 

0.1 64 28 94 76 44 102 74 51 98 69 43 93 70 41 105 72 43 94 64 34 82 68 38 101 67 44 99 66 38 106 72 53 93 74 52 103 

0.2 90 69 118 78 56 110 79 49 109 83 58 106 81 59 119 66 29 106 71 30 103 75 52 97 79 48 116 77 45 116 85 68 106 85 61 102 

0.3 89 48 127 89 71 115 92 55 122 87 71 100 92 68 118 92 77 110 93 60 117 85 57 111 78 54 95 86 71 114 80 67 88 77 47 107 

0.4 65 40 93 66 43 100 78 64 89 73 54 102 89 73 125 94 72 116 96 54 131 83 67 125 99 85 121 93 63 109 91 34 122 94 63 111 

0.5 87 33 139 72 44 99 68 39 101 65 33 90 50 39 94 51 28 84 47 17 59 50 31 80 50 28 66 48 40 56 42 24 52 41 21 67 

0.6 65 41 97 64 41 112 69 49 84 74 53 115 86 44 125 84 58 119 82 62 102 79 55 107 86 55 123 83 65 93 83 63 103 87 63 108 

0.7 80 49 111 75 57 122 82 59 111 72 53 112 76 40 138 78 52 102 82 40 111 73 55 115 56 44 63 59 45 76 66 45 87 73 53 108 

0.8 83 56 121 71 43 96 68 35 99 64 40 91 60 30 79 62 42 85 60 28 112 76 45 104 62 40 80 59 41 89 66 39 88 74 38 116 

0.9 67 52 102 61 27 99 65 39 91 69 33 94 68 36 109 73 42 94 76 37 102 61 35 106 66 35 96 73 53 103 68 39 103 57 25 82 

1.0 82 42 111 76 61 100 81 70 99 82 58 102 89 66 117 86 44 123 89 45 121 88 69 111 89 59 118 80 46 107 83 64 100 81 52 112 

1.1 78 54 95 68 52 83 73 51 96 72 48 97 62 38 99 73 54 92 77 36 105 75 50 114 73 44 95 79 46 124 78 62 94 72 37 94 

1.2 61 35 89 56 43 81 53 34 80 53 41 74 54 27 86 54 31 78 51 37 62 61 44 94 66 49 96 59 35 87 67 53 85 62 32 85 

1.3 55 33 93 54 34 74 52 38 77 57 40 77 51 36 76 57 40 79 50 38 67 53 33 69 55 34 78 61 42 82 60 48 73 59 45 92 

1.4 63 38 94 54 34 73 52 41 70 53 39 83 51 38 82 58 33 70 52 26 66 55 27 81 51 41 60 53 42 72 56 46 67 59 41 75 

1.5 72 32 100 56 29 95 54 29 76 46 27 61 49 29 61 50 30 66 48 37 63 53 43 65 52 40 79 55 45 67 56 47 74 55 38 79 

1.6 52 43 61 51 30 75 52 42 86 52 31 69 56 37 74 54 41 65 56 39 68 57 42 70 55 34 71 49 38 62 58 36 70 50 23 79 

1.7 51 35 70 50 37 70 56 39 71 49 37 61 57 43 67 64 48 107 59 40 77 62 45 86 65 50 91 60 45 99 63 42 79 58 35 88 

1.8 69 55 85 66 36 88 70 36 89 69 43 94 73 47 85 83 58 118 66 45 87 80 62 106 74 43 112 71 38 104 62 47 84 76 55 96 

1.9 96 66 123 91 75 111 90 57 124 86 40 108 88 68 149 84 58 108 88 49 134 95 74 124 86 71 120 80 52 134 94 72 129 89 49 119 

2.0 91 52 109 99 75 124 91 61 114 83 52 111 92 61 122 95 76 128 87 62 108 97 63 134 83 47 125 89 64 104 85 71 106 81 58 107 

2.1 94 58 115 105 74 138 76 42 106 95 25 138 103 79 136 83 66 109 88 69 106 88 65 108 92 64 115 88 45 145 83 65 98 87 50 119 

2.2 76 52 113 80 50 106 81 53 130 89 71 108 86 55 114 79 53 130 90 63 109 78 55 126 76 61 97 83 54 111 82 58 105 79 53 103 

2.3 65 42 89 65 33 90 74 62 83 75 49 92 68 48 85 74 53 107 74 56 90 71 56 96 72 54 97 76 61 90 72 59 85 71 48 93 

2.4 77 56 96 68 42 88 65 52 88 69 51 92 65 47 88 67 34 91 61 45 90 64 51 81 69 55 79 66 43 89 78 61 103 72 60 90 

2.5 47 24 109 46 24 87 60 34 101 53 38 67 65 49 96 60 41 75 65 51 77 66 48 75 71 51 86 68 43 93 65 40 83 69 42 93 
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Table 5.8: Results of Experiment 7, TS Type 2 algorithm in solving benchmark function with tau= {1, 2, 3, …, 12}, and k={0.1, 0.2, 0.3, …, 2.5}. 

 

Tau= 1 2 3 4 5 6 7 8 9 10 11 12 

time 10 10 10 10 10 10 10 10 10 10 10 10 

K= avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. avg. min. max. 

0.1 75 45 116 72 48 103 77 55 105 76 43 121 69 40 97 70 46 98 68 35 95 72 56 94 83 62 121 70 42 117 70 47 98 71 27 113 

0.2 85 66 105 78 51 104 73 57 97 83 52 108 78 62 101 75 34 100 83 58 117 74 49 110 85 43 135 74 38 111 82 42 102 79 61 101 

0.3 86 50 117 93 65 119 87 49 120 90 65 120 90 64 111 76 43 113 84 46 113 79 46 96 81 63 108 78 59 112 89 56 113 80 53 111 

0.4 71 27 106 59 37 80 72 47 87 75 61 105 82 60 117 85 60 110 78 32 113 84 62 118 88 54 122 72 57 93 82 70 94 80 47 121 

0.5 77 33 108 72 32 122 64 22 83 50 30 91 54 41 82 54 31 83 63 40 93 50 31 65 47 22 72 51 37 71 41 28 62 38 28 53 

0.6 48 26 90 66 40 100 57 32 86 70 27 104 73 47 126 68 35 99 59 36 95 58 33 83 74 53 99 75 56 112 64 37 107 64 47 88 

0.7 83 60 118 75 57 99 77 43 112 82 57 125 78 50 99 91 67 127 73 42 111 58 32 107 62 38 93 62 45 95 71 50 90 73 49 92 

0.8 67 33 85 63 39 75 69 32 97 69 46 92 73 52 140 72 34 120 72 42 118 53 32 68 57 44 76 59 46 70 57 28 76 62 45 82 

0.9 68 33 91 66 46 86 67 49 90 65 54 78 66 36 83 65 33 98 64 48 81 68 42 103 66 40 91 74 34 112 66 25 95 67 44 84 

1 82 59 116 90 55 137 88 74 104 84 56 110 92 60 130 84 41 103 89 61 117 82 62 98 88 55 107 85 62 103 90 75 114 75 46 98 

1.1 67 35 100 68 58 79 72 46 90 66 30 96 69 32 87 80 52 117 68 41 93 84 65 106 67 44 94 70 50 92 78 57 105 74 46 97 

1.2 66 29 122 56 40 69 52 29 79 47 29 75 47 28 66 54 35 74 62 42 71 60 44 74 60 28 80 60 32 75 64 44 103 64 48 76 

1.3 55 36 108 51 33 68 55 26 115 57 36 82 53 31 63 48 32 62 56 27 69 65 45 95 58 38 81 62 31 85 66 44 90 62 35 87 

1.4 54 40 67 52 36 80 45 35 62 55 41 69 56 38 73 58 33 78 62 36 82 56 46 71 52 26 82 52 27 73 53 31 65 56 33 67 

1.5 58 39 95 59 35 96 63 24 90 49 33 80 48 29 67 39 29 53 49 30 80 38 21 51 45 20 58 43 29 66 44 25 62 48 32 60 

1.6 49 30 66 58 37 92 49 31 60 55 36 74 51 30 84 51 33 59 48 27 68 44 33 65 45 37 54 53 39 74 56 31 66 57 38 74 

1.7 53 31 73 57 46 72 44 34 67 55 37 71 51 30 75 64 48 84 55 31 74 54 30 77 68 36 99 63 42 87 59 35 87 54 35 66 

1.8 72 54 85 73 54 92 71 50 96 74 63 106 67 44 101 67 44 93 69 48 109 77 59 90 80 54 102 74 52 106 76 55 102 76 49 107 

1.9 79 54 96 83 32 112 92 62 112 91 55 113 96 74 141 84 61 102 82 32 108 86 51 134 83 64 112 76 42 108 86 69 113 92 60 117 

2 86 57 116 97 59 131 97 75 118 94 70 140 101 84 134 80 63 103 93 65 107 94 46 121 93 54 138 100 84 117 92 60 116 102 69 136 

2.1 87 38 125 87 44 110 89 48 117 87 57 118 92 67 138 93 57 122 88 56 124 83 53 119 97 79 128 91 63 119 94 49 130 70 40 98 

2.2 88 61 109 70 50 90 78 59 98 74 53 122 73 57 99 81 46 121 82 64 109 72 49 114 89 70 116 75 57 96 79 41 99 81 61 101 

2.3 70 57 90 70 57 80 68 47 91 68 48 87 71 57 95 65 54 73 74 56 89 75 64 90 69 43 87 74 51 93 70 56 82 70 51 89 

2.4 68 47 98 71 62 83 73 61 98 69 56 89 66 35 98 64 47 92 67 52 83 68 58 82 68 50 85 69 53 93 65 50 83 69 58 83 

2.5 41 26 86 59 33 96 52 35 102 56 39 79 56 38 66 66 39 80 62 38 81 64 45 82 62 45 82 58 36 80 60 25 84 48 31 60 
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Table 5.9: Results of Experiment 7, TS Types 3, 4 and 5 algorithms in solving benchmark 

function with 7538 execution times. 

tau  1 2 3 4 5 6 7 8 9 10 11 12 

time repeating 50 50 50 50 50 50 50 50 50 50 50 50 

Tabu type 3 

Result =0 37 42 40 24 13 36 33 1 1 0 0 0 

Mini. 0 0 0 0 0 0 0 0 0 2 7 5 

Max. 2.8 2 2 2.8 6 3 5 10 9 19.8 19.6 30.6 

AVG. 0.3 0.2 0.28 0.85 2.7 0.6 0.87 6.1 5.3 11.5 13.8 13.9 

Tabu type 4 

Result =0 7 49 27 17 8 40 32 0 0 0 0 0 

Mini. 0 0 0 0 0 0 0 4 2 4 6 6 

Max. 3 2 2 3 6 6.8 6.8 9.8 11 21.6 23.8 34.6 

AVG. 1.34 0 0.52 0.95 3.2 0.7 1.1 6.3 8.2 11.1 14.8 15 

Tabu type 5 

Result =0 50 50 50 50 50 50 50 50 50 50 50 50 

Mini. 0 0 0 0 0 0 0 0 0 0 0 0 

Max. 0 0 0 0 0 0 0 0 0 0 0 0 

AVG. 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table 5.10: Results of Experiment 8, TS Types 1,2,3,4 and 5 algorithms in solving traffic 

light signals timing optimization problems with SUMO simulator with 7538 

execution times. 

tau = 2 4 6 8 10 

time 

repeating 
10 10 10 10 10 

results Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. 

Tabu type1 

at k=7  
  

 
  71.1s 64.3s 77.9s 

 
  

   

Tabu type2 

At k=7  
  

 
  72.4s 64.5s 82.4s 

 
  

   

Tabu type3 64.8s 58s 69s 62.7s 57.8s 68.5s 63s 56.9s 70s 61.8s 57.1s 73s 63.2s 56.9s 68.6s 

Tabu type4 59.9s 56s 66.3s 57.3s 53.7s 62.6s 58.8s 56.5s 61.2s 63.1s 58.9s 70.2s 61.2s 57.1s 66.5s 

Tabu type5 58.4s 54.4s 65.3s 58.3s 54.3s 68.8s 57.2s 53.4s 64.5s 57.2s 55.2s 59.2s 56.2s 52.5s 59.1s 
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Appendix 2: Validity and reliability of all experiments results 

Table 6.3: Results reliability by t-test between GA3 with 7500 execution times and all 

algorithm results at significant 95%, and by confidence interval with significant 

95% for each algorithm. 
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N
=

 

M
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s=
 

S
T

D
=

  

confidence 

interval with 

significant level= 

95% 

H0: M1= Mn 

t test between GA 3 with 7500 

iteration and each algorithm 

results at significant level= 

lower = upper=  95% 

e
x

p
er

im
e
n

t(
1

) 
tr

a
ff

ic
 l

ig
h

t 
si

g
n

a
ls

 t
im

in
g
 p

r
o
b

le
m

 w
it

h
 S

U
M

O
 

si
m

u
la
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5

0
0
 e

x
ec

u
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o
n

 t
im

e
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rand.   20 67.8 10.8 66.5 69.1 rejected 

GA 1 

MP=10% 10 70.2 1.4 69.3 71.0 rejected 

MP=20% 10 70.5 2.5 68.9 72.0 rejected 

MP=30% 10 69.1 2.4 67.7 70.6 rejected 

MP=40% 10 67.9 2.1 66.7 69.2 rejected 

MP=50% 10 67.4 1.4 66.5 68.2 rejected 

MP=60% 10 67.9 1.4 67.0 68.8 rejected 

MP=70% 10 66.9 1.8 65.7 68.0 rejected 

MP=80% 10 67.8 2.8 66.1 69.5 rejected 

MP=90% 10 68.4 2.0 67.2 69.6 rejected 

GA 2 

MP=10% 10 63.1 3.4 61.0 65.3 rejected 

MP=20% 10 63.9 2.6 62.3 65.5 rejected 

MP=30% 10 62.6 1.4 61.7 63.5 rejected 

MP=40% 10 63.4 1.9 62.3 64.6 rejected 

MP=50% 10 64.5 2.5 63.0 66.1 rejected 

MP=60% 10 63.2 3.3 61.1 65.2 rejected 

MP=70% 10 62.5 1.7 61.5 63.5 rejected 

MP=80% 10 63.9 0.9 63.3 64.4 rejected 

MP=90% 10 64.0 2.2 62.7 65.4 rejected 

GA 3   20 60.8 9.4 59.4 62.2 rejected 
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rand.   10 64.4 1.6 63.4 65.4 rejected 

GA 1 

MP=10% 10 62.2 2.9 60.4 64.0 rejected 

MP=20% 10 59.2 1.0 58.6 59.8 rejected 

MP=30% 10 58.8 1.7 57.8 59.9 rejected 

MP=40% 10 58.2 0.8 57.7 58.7 rejected 

MP=50% 10 59.1 1.2 58.3 59.9 rejected 

MP=60% 10 61.1 1.4 60.2 62.0 rejected 

MP=70% 10 61.6 1.9 60.4 62.8 rejected 

MP=80% 10 61.8 1.0 61.2 62.4 rejected 

MP=90% 10 62.5 1.5 61.5 63.4 rejected 

GA 2 

MP=10% 10 60.4 1.0 59.8 61.0 rejected 

MP=20% 10 61.2 1.7 60.1 62.2 rejected 

MP=30% 10 60.8 1.4 59.9 61.7 rejected 

MP=40% 10 60.7 1.4 59.9 61.6 rejected 

MP=50% 10 61.0 1.5 60.1 61.9 rejected 

MP=60% 10 61.8 2.1 60.5 63.1 rejected 

MP=70% 10 62.6 1.7 61.5 63.6 rejected 

MP=80% 10 62.0 2.0 60.7 63.2 rejected 

MP=90% 10 61.6 1.2 60.8 62.3 rejected 
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a
lg

o
rith

m
 

conditions  

N
=

 

M
e
a
n

s=
 

S
T

D
=

 

confidence 

interval with 

significant 

level=95% 

H0: M1= Mn 

t test between GA 3 50ch 150g 

and each algorithm results  at 

significant 

upper=  lower= 95% 

GA 3   20 55.9 7.9 55.4 56.5 
 

PS 

w=0.25  cp=1   

cg=2 
20 57.0 9.4 

57.1 60.7 rejected 

w=0     cp=2.5  

cg=0.75 
6 64.3 1.9 

62.8 65.8 rejected 

w=0     cp=2.75   

cg=0.75 
6 62.3 2.7 

60.1 64.4 rejected 

w=0.25  cp=1.25   

cg=3.5 
20 55.9 7.9 

55.3 56.5 accepted 

w=0  cp=0.75   

cg=3.5 
20 58.0 3.9 

56.3 59.7 rejected 

w=0  cp=0.25   

cg=4.25 
10 57.5 5.1 

54.3 60.7 accepted 

w=0  cp=0.25   

cg=4.75 
10 60.2 3.6 

57.9 62.5 rejected 

TS 1  tau=6   k=7      10 71.1 4.8 68.1 74.0 rejected 

TS 2  tau=6   k=7 10 72.4 6.1 68.6 76.2 rejected 

TS 3 

tau=2 ,     k 

changed number 
10 64.8 3.3 

62.7 66.8 rejected 

tau=4 ,     k 

changed number 
10 62.7 3.6 

60.5 64.9 rejected 

tau=6 ,     k 

changed number 
10 63.0 4.7 

60.1 65.9 rejected 

tau=8 ,     k 

changed number 
10 61.8 5.0 

58.7 64.9 rejected 

tau=10 ,    k 

changed number 
10 63.2 3.7 

60.9 65.5 rejected 

TS 4 

tau=2 ,     k 

changed number 
10 59.9 3.3 

57.9 62.0 rejected 

tau=4 ,     k 

changed number 
10 57.3 2.7 

55.6 59.0 accepted 

tau=6 ,     k 

changed number 
10 58.8 1.5 

57.9 59.7 rejected 

tau=8 ,     k 

changed number 
10 63.1 4.1 

60.6 65.6 rejected 

tau=10 ,    k 

changed number 
10 61.2 3.4 

59.1 63.2 rejected 

TS 5 

tau=2 ,     k 

changed number 
10 58.4 3.6 

56.2 60.6 rejected 

tau=4 ,     k 

changed number 
10 58.3 5.1 

55.2 61.5 accepted 

tau=6 ,     k 

changed number 
10 57.2 3.3 

55.2 59.2 accepted 

tau=8 ,     k 

changed number 
10 57.2 1.4 

56.3 58.1 rejected 

tau=10 ,    k 

changed number 
10 56.2 2.1 

54.9 57.6 accepted 


