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Abstract 
 

Phase behavior of a newly developed extended surfactant of alkyl polypropylene oxide 

polyethylene oxide sulfate (X-AES) with a small quantity of cationic hydrotrope was 

studied for their applications in enhanced oil recovery (EOR) and aquifer remediation 

process. Formulation of microemulsion with high level of extraction efficiency of crude oil 

is the main interest objective in this research.  

 

Ternary phase diagram, salinity scan, interfacial tension and adsorption on clay are used to 

preferably compare between formulations, also using visual inspection as well as cross 

polarizers to detect anisotropy.  

 

The results show that X-AES with Variquat cc-9 as cationic hydrotrope are preferred 

candidates for EOR applications as it can give ultra low interfacial tension at optimum 

salinity. The minimum surfactant concentration needed to initiate middle phase formation 

was low, as much as 0.05 wt.%, and the adsorption of this surfactants mixture on Kaolin 

clay can be neglected at this low concentration. Interfacial tension (IFT) calculation using 

Huh equation showed a minimum value of 0.0004 mN/m between diesel and brine.  

X-AES-Variquate cc-9 mixture have been identify as promising EOR surfactant using this 

screening method. 
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1.1 Enhanced Oil Recovery 

 

Oil recovery processes as an industrial view from a reservoir can be divided into three 

main stages: 

1- Primary oil recovery process: 

This is the first stage in oil recovery process, in this stage the oil is recovered due to 

the natural gases pressure in the reservoir without any additional external pressure. 

2- Secondary oil recovery process (Water flooding): 

Usually this second stage started when the first stage ended or stopped as a result of  

decrease the natural pressure in the reservoir, when the pressure in the reservoir 

reach a point where the expelling process of the oil is not achievable water is 

injected to re-pressurize the remain oil. 

3- Tertiary oil recovery process (Enhanced oil recovery (EOR)): 

The amount of oil still present in the reservoir after the primary and secondary 

stages is estimated to be about 65%, because of this high lost percent of oil and 

because of the decline of oil discovery during the last decades, there is a great need 

to recover at least apportion of the remained quantity of the oil, and this is the main 

idea of the third stage of oil recovery. Tertiary oil recovery methods mean to 

increase the mobility of the oil in order to enhance extraction of the oil from 

processed reservoirs. 

 

The illustration and written descriptions of the various methods of oil production 

have been simplified in Fig. (1.1) below: 
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Fig. 1.1: Oil production, 1⁰, 2⁰ and 3⁰ oil recovery processes (Enhanced oil recovery information, 1986). 
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Enhanced oil recovery or tertiary oil recovery stage can be divided according to the field of 

application, the properties of the crude oil and the properties of the reservoir divided into 

two major groups (Pillai, et al., 1999): 

1- Thermal processes 

2- Chemical flooding processes 

 

Thermal recovery processes in which energy have to be introduced are the most advance in 

the field experimentation, these method consist of adding heat to a reservoir in order to 

reduce the viscosity of the crude oil and eventually vaporize it (Salager, 1977). Thermal 

methods include as a main advances techniques: in-situ composition and steam injection, 

specifically steam injection still dominate as the preferred EOR methods for heavy oil 

reservoir (Alvarado and Manrique, 2010). 

 

Chemical flooding processes may contains caustic flooding, surfactant flooding and 

polymer flooding, these processes may consist of various chemicals specially surfactants 

and polymers, usually as dilute solution, polymer and surfactants can be used as diluted 

solution to increase the amount of oil recovered in some formation. 

 

Chemicals preparations in chemical flooding processes may form a mixture which 

typically contains surfactants, co-surfactant, polymer, and electrolyte and / or alkaline 

those are often mixed into the fresh water or formation brine is used in EOR (Flaaten, 

2007).  

The co-surfactants in formulation for enhanced oil recovery acts to prevent gel formation 

and reduce equilibrium time. Alkali agents can be used to enable in-situ soap generation 

from crude components.  

The neutral electrolytes are adjusted to achieve optimum salinity and thus minimum 

interfacial tension. Injection of alkaline or caustic solution into reservoir will result in the 

production of soap of organic acid in crude oil which may lower interfacial tension (IFT) 

enough to increase oil recovery from reservoir (Pillai, et al., 1999).  

 

Fig. (1.2) below is a simplified chart illustrate some types of enhanced oil recovery 

methods generally sorted in petroleum industry, generally combination of two major 

method in recovery process is helpful and useful to overcome the interfacial effect and alter 

the viscosity which ease the mobility of trapped oil in pores of rocks (Gurgel, et al., 2008). 
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Fig. 1.2: Some enhanced oil recovery methods (LPG = Liquefied petroleum gas). 

 

Oil remains trapped in geological reservoir because of high interfacial tension (IFT) 

between crude oil and brine, by decreasing the value of IFT to a very low values getting 

what is known as ultralow interfacial tension (~10
-3

 mN m
-1

), a large amount of crude oil 

from reservoir can be recovered, so lowering the tension between the water and the oil is 

the driving force that enables the researchers for getting applicable method to increase the 

recovered quantity of trapped oil (Moulik and Rakshit, 2006).  

 

Many considerations must be taken when selecting a suitable method for enhanced oil 

recovery (Gurgel, et al., 2008). Especially in surfactant flooding techniques, some of these 

considerations are the adsorption phenomena which occurs within the reservoir porous 

medium which affects the interfacial tension and interfacial rheology, this phenomena 

reduces the efficiency of the process because of surfactant loss by adsorption, other 

important issue have to be consider the concentration of the surfactant to be used and its 

efficiency The efficiency of surfactant affected by surfactant type, CMC values, the 

solubility of surfactant, temperature and Kraft point of the surfactant. The choice of the 

more appropriate surfactants to be used in EOR application must have fulfillment study to 

all these aspects (Gurgel, et al., 2008). 

Oil recovery processes are function of displacement, which are dependent on three major 

forces: capillary forces, gravitational or buoyancy forces, and viscous forces (Martel and 

Gelinas, 1996). 

 

Capillary forces cause oil trapping and they resist its mobilization. Three functions are 

affecting this capillary forces, first oil/aqueous phase interfacial tension, second water-solid 

contact angle in the presence of oil (wettability) and third the radius of the pore containing 

the interface (Martel and Gelinas, 1996). The ratio of viscous forces, which favor oil 

mobilization to capillary forces, which favor oil trapping, is quantified by the capillary 

number (Nc). 

 

Gravitational forces are hydrostatic in nature; viscous forces are created by the flow of the 

displacing fluid in porous media. Capillary forces can be reduced by lowering interfacial 

tension or by changing wettability (Martel and Gelinas, 1996).  
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Microemulsion is also a potential candidate because it has benefits as a special formulation 

that can be effective in this field of oil recovery. 

 

Application of microemulsion in EOR is usually limited by the cost of surfactants used in 

the preparation of microemulsion, their adsorption and loss onto the rock. 

 

Chemical flooding processes are the most complex methods to be applied as an oil 

recovery techniques because there are many sensitive and important parameters have to be 

controlled (Salager, 1977). Since every crude oil is unique therefore a unique chemical 

EOR formulation and technique have to be designed for specific crude oil, equivalent 

alkane carbon number (EACN) are used to characterize and identify crude oil, evaluating 

this parameter, which is analogous to the alkane carbon number (ACN) indicated the 

hydrophobicity of the oil phase, to affect optional salinity and solubilization ratio. Also 

many considerations must be taken when selecting a suitable method for EOR such as 

heterogeneous geological nature of the oil reservoir (Gurgel, et al., 2008). 

 

1.2 Surfactants Enhanced Aquifer Remediation (SEAR) 
 

The presence of non aqueous phase liquids is one of the principle problems associated with 

ground water remediation efforts since these non aqueous liquids have low aqueous 

solubility. Aqueous solution with or without additives are employed to solubilize 

contaminants in soil and aquifer. The efficiency of extracting the contaminants depends on 

important factors such as the hydraulic conductivity of the treated soil, high permeability 

(greater than 1 х 10 
-3

 cm\s) the solubility of excited pollutants and if these pollutants are 

originally solubilized in water or not, the chemistry of binding these pollutants and the 

hydrogeology of the site to be treated, soil pH and soil type and the particle size, high clay 

and matter contents all of these factors are key factors in removal efficiency processes.  

Removing mechanisms of many organic contaminants is controlled by the solubility of 

these contaminants in water, additives are used to enhance efficiencies by reduce the time 

of treating a site and a large variety of contaminants can be treated comparing of using 

water alone. The liquid contaminants remains as a separate phases called non-aqueous 

phase liquids (NAPL’s), non-aqueous phase liquids which sink below water are denser and 

called denser non-aqueous phase liquids (DNAPL), and those are lighter called lighter non-

aqueous phase liquids (LNAPL), some of these contaminants are chlorinated solvents, such 

as trichloroethylene, polycyclic aromatic hydrocarbons, and other contaminants become 

more complicated such as mixtures of metals.         

The additives used to enhance the contaminants removing process must be effective, low 

cost, low toxicity and biodegradable, these additives include surfactants, polymers organic 

and inorganic acid, sodium hydroxide and complexing agents such as EDTA (Mulligan, et 

al., 2001).  

 

Numerous studies and research have indicated that surfactants enhance recoveries of non-

aqueous phase liquids (NAPL’s) especially DNAPL by reducing the interfacial tension 

between DNAPL and ground water, the forcing idea to be applied here is reducing or 

damaging the capillary forces which restrict the mobility of DNAPL, when these forces are 

reduced or removed the contaminants are mobilized and collected in separate extraction 

wells (Mulligan, et al., 2001).  

 

Several technologies exist to treat water after pumped from the ground to remove 

hydrocarbons and metals (Mulligan, et al., 2001).  
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Some of the major of these technologies are ion exchange, sodium hydroxide or sodium 

sulfide precipitation, ultra filtration, activated carbon adsorption, reverse osmosis 

(Mulligan, et al., 2001).  

 

Overall, desirable surfactant characteristics used for SEAR include low toxicity, 

biodegradability, low adsorption to soil, solubility at ground-water temperatures, effective 

at concentration lower than 3%, low CMC and low surface tensions (Mulligan, et al., 

2001).  

 

Some interest and useful surfactants used in SEAR are called Biosurfactants which are 

biologically produced from yeast or bacteria from different substrate like sugar, oils and 

alkanes, composition and yields depend on the fermentor design, pH, temperature, 

composition of the nutrients, most of these biosurfactants are neutral and anionic and few 

are cationic, their CMCs generally ranging from 1 – 200 mg\L and have ranging molecular 

weights of 500 – 1500, these biosurfactants were effective in oil recovery and 

transformation of crude oil by effective reduction in the interfacial tension values between 

crude oil and water (Mulligan, et al., 2001).  

 

Table (1.1) below give an example of these surfactants. 

 

Table 1.1 Classification and microbial origin of biosurfactants (Mulligan, et al., 2001). 

 

Surfactant class Microorganism 
Trehalose lipids Arthrobacter paraffineus 

Rhammolipids Pseudomonas aeruginosa 

Sophorose lipids Candida apicole 

Glucose-, fructose-, saccharose lipids R. erythropolis 

Cellobiose lipids Ustilago maydis 

Polyol lipids Rhodotorula glutinous 

Diglycosyl diglycerides Lactobacillus fermentii 

Lipopolysaccharides Acinetobacter calcoaceticus 

Lipopeptides Bacillus pumilis 

Ornithine, lysine peptides Streptomyces sioyaensis 

Phospholipids T. thiooxidans 

Sulfonylipids Capnocytophage  

Fatty acids Penicillum spiculisporum 

 

Surfactant solution compatibility with aquifer material, ground-water temperature, and 

salinity must be verified before using surfactants as SEAR, during the application of the 

surfactant solution in fields the surfactant solution may mobilize the fine minerals particles 

that can restrict the ground water flow, polyvalent cations may adsorbed on sediment 

particles causing surfactant precipitation leading to deficiency of the washing solution 

(Martel and Gelinas, 1996). 

 

Interfacial tension can be reduced between DNAPL and ground water by using surfactants, 

also the surfactant ease and enhance the solubility of the contaminants which may aid in 

extraction them from an aquifer (Fountain, et al., 1996). 

 

As an application of technology a sand column techniques is a necessary pre-work before 

lab scale or pilot scale application this column technique simulate the effect of 

contaminated porous aquifer. 
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Fig. (1.3) below show an experimental setup for sand column washing (Martel and Gelinas, 

1996).  

 

 
Fig. 1.3: Experimental setup for sand column washing. 

 

1.3 Microemulsion 

 

Microemulsions are isotropic, thermodynamically stable dispersions of two immiscible 

liquids containing appropriate amounts of surfactants (Sharma and Shah, 1985). It was first 

introduced in 1959 by Jack H. Shulman at Columbia University (Lee, 2010).   

 

Since microemulsions are thermodynamically stable it does not need a high energy or shear 

condition for their formation (Lee, 2010).  

 

Microemulsions appear clear unlike emulsion, and have a droplet size around 10 nm (Lee, 

2010). With a dispersed phase which consists of small droplets with diameter in the range 

of 100-1000 ⁰A (Sharma and Shah, 1985). These unique properties of microemulsion make 

it the most interest field of scientific research (Lee, 2010). The most interest properties of 

microemulsion such as low interfacial tension, high thermodynamic stability and the ability 

to dissolve immiscible liquid give microemulsion potential application as a drug delivery 

vehicles and many application in food industry and in the petrochemical industry (Lee, 

2010).  

 

Microemulsions are typically classified into three main categories, or Winsor-type systems. 

Winsor’s type I microemulsion consist of oil swollen micelles in water with excess water, 

where as a type II system consists of water swollen inverse micelles in oil with excess oil. 

Type III microemulsion system, middle phase microemulsion or Winsor III appears with 

an excess of both water and oil (Salager, et al., 2005).  

 

Fig. (1.4) Illustrate the three types of phase behavior for surfactant (S) – oil (O) – water 

(W) system according to Winsor. Shading indicates the surfactant rich phase, and R is 

Winsor ratio, that indicates the ratio of interaction between surfactants at interface and oil, 

and the interaction between surfactants and water. R= Aco/Acw, where Aco indicates the 

interaction between the surfactant adsorbed at the interface and the oil phase per unit area 

of interface, and where Acw does likewise for the water phase (Salager, et al., 2005).  
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Fig. 1.4: Three types of phase behavior for surfactant (S), oil (O) and water (W) system 

according to Winsor. 

 

When R=1 a maximum solubilization and a very low interfacial tension occurs (Salager, et 

al., 2005).  

 

Fig. (1.5) Illustrate phase behavior along a salinity scan test tube aspect and phase 

diagrams (Salager, et al., 2005).  

 
Fig. 1.5: Phase behavior along a salinity scan test tube aspect and phase diagrams. 

 

Interest in the application of microemulsion in enhanced oil recovery continues to grow 

(Salager, et al., 2005).  

 

The zero net-curvature condition for the surfactant layer between the oil and water, is the 

most favorable when highly solubilization are concerned (Salager, et al., 2005).  

 

Three types of microemulsion can be formed oil in water, water in oil and middle-phase 

microemulsion. Middle-phase microemulsion occurs when the Winsor’s ratio R=1, and 

when the SAD = 0 (Kanicky, et al., 2001), where SAD is the Surfactant affinity difference. 
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Surfactant affinity difference (SAD): 

Ultra-low interfacial tension and maximum oil mobilization can be predicted using 

numerical empirical correlation. This correlation (Surfactant affinity difference) is a 

measure of the difference between the standard chemical potentials or the Gibbs free 

energy of surfactant in the oil and water phase. 

 

SAD = µw - µo = ∆ G (Water         Oil) = -RTLnKp 

 

Where µw and µo are the chemical potential of the surfactant in the water and oil phase, 

respectively, Kp is the partition coefficient of surfactant between water and oil at the 

corresponding temperature. 

 

SAD actually represents the free energy of transfer of a surfactant molecule from the water 

to the oil. 

At a SAD = 0, the surfactant affinity for the water phase exactly equals its affinity for the 

oil phase, thus resulting in the optimum formulation (Ultra-Low interfacial tension). The 

sign of the SAD indicates the dominant affinity of the surfactant, whereas the value 

denotes the magnitude of deviation from an optimum formulation. A SAD < 0 means that 

surfactant – oil interactions dominate, while a SAD > 0 indicates that surfactant – water 

interactions prevail. 

 

Many factors which change the hydrophobic balance of the surfactants may enable us to 

move from one type to another. 

These factors are illustrated below: 

 

1) Chain length of surfactants 

Longer chain length would take us from Winsor I to Winsor II. 

2) Polarity of aqueous phase (Water) 

The addition of short chain alcohol can causes increase in polarity of water and then 

transfer from Winsor I to Winsor II. 

3) Temperature and electrolyte concentration  

The increasing in temperature for a non-ionic surfactants or increasing in 

electrolyte concentration for ionic surfactants would take us from Winsor I to 

Winsor II also (Goodwin, 2004).  

 

Many numerical equations can be used to calculate the values of interfacial tension (IFT), 

scientist Huh (1979) develop an equation that used to estimate IFT using optimal solubility, 

this equation is given as: 

 

γ = 0.3 / (σ*)
2
   

 

where γ is IFT and σ* is oil or water solubilization ratio at optimal salinity (Flaaten, 2007).  

 

Another research indicates that interfacial tension can be calculated using Vannegut 

equation (1942): 

 

γ  = π (ρ1 – ρ2) Rd
3 
ω

2 
/ 4 

 

γ = Interfacial tension 

ρ1= Density of continues phase 
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ρ2= Density of droplet phase 

Rd = Droplet diameter 

ω = Rotational speed (Flaaten, 2007). 

 

All the above results of scientific research where obtained to ease the dealing of IFT values 

in equation forms, since these values are of great importance in microemulsion techniques. 

 

 

1.4 Extended Surfactants 

 

Extended chain surfactant is a new generation of surfactants which have an intermediate 

polarity linking chain (Polypropylene oxide (PO), Polyethylene oxide (EO)) inserted 

between lipophilic tail and hydrophilic head. 

 

The general formula of extended surfactants is: R-(PO)x-(EO)y-O-SO3-A 

 

Where R is a linear or branched, saturated or unsaturated aliphatic or aromatic hydrocarbon 

having from 8-20 carbon atoms. 

A: is a cationic species such as alkaline earth metal. 

X: is the number of propylene oxide group (Degree of propoxylation) ranging from 5-15, 

and Y: is the average degree of ethoxylation ranging from 1-5 (Smith and Hand, 2006).  

 

General structure for extended surfactant is shown below in Fig. (1.6) (Quintero, et al., 

2009).  

 
Fig. 1.6: General structure for extended surfactant. 

 

The first generation of extended surfactants was found to produce a high solubilization 

with long hydrocarbon and polar oil, which is presented in the form: 

 

Alkyl-polypropylene oxide-polyethylene oxide sulfate sodium salt (Salager, et al., 2005). 

 

The second generation of extended surfactants which are recently been synthesized are 

more bio-friendly polar groups, such as glucose, galactuse, xylitol or carboxylate (Salager, 

et al., 2005). 
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Using extended surfactant alter using hydrophilic and lipophilic linkers, which are used to 

increase surfactant-water and surfactant-oil interaction. 

 

1.4.1 Properties of extended surfactants 

 

Extended surfactants exhibit a critical micelle concentration (CMC) and a cloud point that 

changes with the number of propylene oxide groups per molecule (Perez, et al., 1995).  

 

As the number of propylene oxide group increase, the CMC decreases. 

In Fig. (1.7) we see the variation in CMC as a function of number of propylene oxide 

group per molecules (Perez, et al., 1995).  

 
Fig. 1.7: CMC of extended surfactant as a function of propylene oxide number (PON). 

 

The cloud point temperature decreases when the number of propylene oxide groups 

increases. 

 

Fig. (1.8) indicate the relation between cloud point temperature and number of propylene 

oxide group, where 712 SN, 713 SN and 714 SN contain 6, 10 and 14 group of PO, 

respectively (Perez, et al., 1995).  
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Fig. 1.8: Cloud point of extended surfactants as a function of PON. 

 

The cloud point decrease is approximately 10 ⁰C per propylene oxide group (Minana-

Perez, et al., 1995).  

 

Intermediate-polarity group (PO / PO-EO) in extended surfactants structure offer a 

smoother interfacial transition from a polar aqueous to non polar oil region, that’s why it 

capable to form middle-phase microemulsions with high solubilization, ultralow IFT and 

lower optimum salinity for a wide range of oil (triglyceride, vegetable oil and long chain 

alkane) (Witthayapanyanon, et al., 2009).  

 

With the additional of PO groups in surfactant, extended surfactants are likely to evidence 

higher characteristic length (ξ) (Thicker surfactant membrane) and more rigid surfactant 

membrane (Er) (Witthayapanyanon, et al., 2009).  

 

Increasing the number of EO group in surfactant molecule increase the optimum salinity 

and the tolerance for divalent cations, preventing precipitation problem. Whereas PO group 

increase the size and area of the surfactant and thus tend to promote lower IFT over a wide 

range system (Flaaten, 2007).  

 

1.4.2 Extended surfactants synthesis 

 

Extended chain surfactants can be prepared by reaction of appropriate alcohol with 

propylene oxide at 120 ⁰C and ethylene oxide at 160 ⁰C in the presence of a base catalyst 

(Sodium hydroxide, potassium hydroxide, sodium methoxide) to produce an alkoxylated 

alcohol (Smith and Hand, 2006).  

 

Alkoxylated alcohol can be reacting with chlorosulfonic acid (CSA) or SO3 and neutralized 

by NaOH to produce the extended chain surfactants (Smith and Hand, 2006).  
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1.4.3 Role of extended surfactants in microemulsion application 

 

Extended surfactants ease forming microemulsion in a wide range of efficient applications, 

such as EOR, SEAR, laundry detergent, liquid-liquid extraction, alternative fuel and plant 

oil extraction. 

 

1.5 Aims of the Study 

 

1. Prepare alcohol-free microemulsion using newly developed extended surfactant 

sodium alkyl polypropylene oxide polyethylene oxide sulfate [C12 (PO)14 (EO)2 

SO4Na] (X-AES) and short chain cationic hydrotrope with a low amount of 

surfactants and reach ultra low IFT. 

 

2. Study the phase behavior of X-AES and cationic hydrotrope (Variquat cc-9 and 

TEAC) with water. 

 

3. To investigate phase behavior of X-AES, diesel and water ternary system. 

 

4. Investigate the effect of addition hydrotrope cationic surfactants on phase behavior 

of system containing sodium alkyl polypropylene oxide polyethylene oxide sulfate 

and diesel. 

 

5. Construct a ternary phase diagram of a mixture of extended surfactant and cationic 

hydrotrope, diesel and water at 25 ⁰C. 

 

6. Reach the optimum salinity TDS < 12000 ppm. 

 

7. Construct a phase diagram of anionic extended surfactant, cationic hydrotrope, 

diesel and water at 50 ⁰C. 

 

8. Prepare middle phase microemulsion using mixture of sodium alkyl polypropylene 

oxide polyethylene oxide sulfate and cationic hydrotrope with diesel by salinity 

scan method and determine the properties of this system.  

 

9. Reach middle phase microemulsion at a minimum equilibrium time and low salt 

concentration. 

 

10. Determine the main properties of the formulated microemulsion. 

 

11. Investigate the adsorption of surfactants system onto Kaolin Clay. 

 

12. Prepare and give the optimum microemulsion formulations and to investigate them 

in EOR and SEAR project. 
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This chapter provided literature review on the theory and methods used in this research. 

The main topics cover in this chapter are preparation of microemulsion using extended 

surfactants and characterize its properties for EOR and SEAR application, the second is 

review of literature that study cationic hydrotrope and its benefits in microemulsion 

formulation as flooding fluids for EOR. 

 

Microemulsions are a thermodynamic stable dispersion of oil and water stabilized by 

surfactants with a combination of additives or co-surfactant. Middle phase microemulsion 

with its unique properties, in particular their ability to significantly reduce interfacial 

tension (IFT) and enhance the solubilization of hydrophilic and lipophilic ingredients make 

it a key component of successful technologies in various applications such as an enhanced 

oil recovery (EOR) and surfactant enhanced aquifer remediation (SEAR). 

 

Ultra low interfacial tension system using sodium alkyl polypropylene oxide sulfate and 

sodium alkyl polypropylene oxide polyethylene oxide sulfate has been formulated with a 

wide range of oil, which exhibit low critical micelle concentration (CMC), low critical 

microemulsion concentration (CµC) compared with conventional surfactants, and it was 

also found that introduce PO and EO in the extended surfactants yielded ultralow IFT and 

lower optimum salinity. In this research they observe that there is a slight increase in the 

IFT above CµC for extended surfactants used, and indicate that the physical explanation 

for this phenomenon is still unknown (Witthayapanyanon, et al., 2006). 

 

Extended surfactants which consisting of both EO and PO groups in surfactants structure 

have a dual ionic and nonionic characteristic (Witthayapanyanon, et al., 2006). 

 

Evaluating of both equilibrium and kinetic aspects of extended surfactant based 

microemulsion was studied by Witthayapanyanon, et al., 2009 and they found that 

extended surfactant resulted in a relatively rigid interfacial membrane compared with 

conventional surfactants. 

 

The interfacial morphology of the extended surfactant membrane, both the characteristic 

length (ξ) and interfacial rigidity (Er) parameters will increase with the increase in length 

of the polypropylene oxide spacer (Witthayapanyanon, et al., 2009). 

 

Witthayapanyanon introduce an accurate model to determine the hydrophilic-lipophilic 

nature of extended surfactants. Hydrophilic-Lipophilic Deviation (HLD) approach can be 

used to determine the surfactant characteristic (σ) and the σ\k parameter of extended 

surfactants (Witthayapanyanon, et al., 2008). 

 

Recently it was found that the addition of a small amount (modest quantity) of cationic 

hydrotrope surfactants to anionic extended surfactants will increase solubilization of oil 

and brine in microemulsion and lower IFT at optimal salinity (Kayali, et al., 2010). 

 



17 
 

Adding cationic surfactants to anionic surfactant has a disadvantage, that some of the ion 

pairs formed may partition into the oil phase instead of remaining at the internal interfaces 

in microemulsion (Kayali, et al., 2010). 

 

Many studies indicate the synergistic effect of cationic hydrotrope (Polypropylene oxide 

ammonium chloride) and anionic extended surfactants (Sodium alkyl polypropylene oxide 

sulfate) to prepare microemulsion with a minimum amount of 0.20 wt. % surfactant and 

ultra low IFT (Kayali, et al., 2011). 

 

Using optical microscopy (Klaus, et al., 2009/2010) investigated phase behavior of 

extended surfactants in water at all concentrations from dilute and semi dilute up to 

concentrate phases, and at different temperatures from 0 – 90 ⁰C they examined formation 

of liquid crystal by two methods, the first way by increasing surfactant concentration and 

the other is by increasing temperature. 

In their pioneer work on extended surfactants they found that X-AES formed many types 

of mesophases like H1, Lα, V2, H2 when mixed with water without other component by 

increasing temperature or concentration (Klaus, et al., 2010). 

A comprehensive description of different phase formed using X-AES and its properties 

(Shape, size and area per molecule) were studied by (Klaus, et al., 2010). 

 

A ternary phase diagram was determined at ambient condition for alkyl polypropylene 

oxide sulfate combined with tetrabutyl ammonium bromide with water and decane as 

shown in Fig. (2.1) below (Kayali, et al., 2011). According to this study lamellar liquid 

crystalline phase will disappear when using cationic hydrotrope surfactant with extended 

surfactants. 

 

 
 

Fig. 2.1: Partial ternary phase diagram of water, L123-4S:TBAB (1:1 molar ratio) and 

decane at 25°C. (Kayali, et al., 2011). 
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The presence of a smooth, blurred and expanded transition across the interfacial region 

from polar to non-polar phases can be improved solubilization in microemulsion (Salager, 

et al., 2005). 

 
Extended surfactants with a poly-propylene oxide chain inserted between the conventional 

alkyl and ether sulfate groups, exhibit a critical micelle concentration and a cloud point that 

changes with the number of propylene oxide group per molecule. These surfactants show 

three phase behavior at optimum formulation with hexadecane, ethyl oleate and with 

triglyceride oil, such as soya oil (Minana-Perez, et al., 1995). 

 
X- AES surfactant exhibits a cloud-point temperature that decreases with increasing 

surfactant concentration before adding electrolytes (Klaus, et al., 2011). 

 
Extended surfactants are found to enhance the interaction on the oil side of the interface, 

formation of that because microemulsion is now possible with triglyceride oils or very long 

chain hydrocarbons (Minana-Perez, et al., 1996). 

 
Fig. (2.2) below illustrate the two generation of extended surfactants, with second 

generation which exhibit a higher biocompatibility than did the first generation. 

 

 
Fig. 2.2: An increase in solubilization by stretching the surfactant interior 

to increase the penetration into the oil and water phases. (A) First 

generation: anionic–nonionic extended surfactant; (B) second generation: 

sugar-based extended surfactant. EO, ethylene oxide. (Salager, et al., 2005). 
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Kayali, et al., 2011 studied water-diesel microemulsion using anionic extended surfactants 

and cationic hydrotrope, for their application in EOR. Since the presence of precipitation or 

liquid crystal in injected solution lead to non uniform distribution and many complicate the 

transport process, they test the equilibrium phase behavior of aqueous solution containing 

1.0 wt% of X-AES and Sodium dodecyl benzene sulfonate as a function of NaCl as in Fig. 

(2.3) below and they found that both surfactants individually exhibit precipitate above 2.0 

wt% of NaCl, whereas no precipitation or cloudiness occurs when using a mixture of X-

AES - Sodium dodecyl benzene sulfonate at wt. ratio of 1:1 as NaCl content increase up to 

5 wt% (Kayali, et al., 2011). 

 

For SEAR and EOR processes, ultralow interfacial tension values near 0.01 mN/m are 

necessary for any successful displacement of oil (Kayali, et al., 2011). 

 

 
 

Fig. 2.3: Effect of added NaCl on phase behavior of 1 wt% solutions of X-AES / sodium 

dodecyl benzene sulfonate. 

When using sodium octane sulfonate with X-AES in a ratio of 0.27:0.73 (SOS:X-AES) the 

region of one phase enlargement to about 20 wt. % of NaCl (Kayali, et al., 2011). The main 

idea is by using sulfonate with X-AES it increase salt resistance. 

 

Choosing the type of hydrotrope used can adjust the optimal salinities according to crude 

oil required (Kayali, et al., 2011). 

 

Table (2.1) summarize numbers of extended surfactants and its some properties and 

characteristics obtained from many articles deal with these topics.
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Table 2.1 Properties of the Extended Surfactants. These data obtained from [(Witthayapanyanon, et al., 2009),
 
(Witthayapanyanon, et al., 2008), 

(Witthayapanyanon, et al., 2006),
 
(Do, et al., 2008), (Arpornpong, et al., 2010) and (Phan, et al., 2011)] 

 
Extended surfactants Alkyl 

No. 

% Branch No. of PO 

groups 

No. of EO 

groups 

% Active MW Ai (A
⁰2

) HLB σ No salt 0.2 M NaCl 

CMC Area per 

molecule 

CMC Area per 

molecule 

C12,13H25,27(PO)3SO4Na 12-13 0 3 0 - - - 39.55 -1.77 - - - - 

C12,13H25,27(PO)8SO4Na 12-13 0 8 0 29.1 712.8 - 38.80 

31.6 

-0.78 130 153 14 68 

C14,15H29,31(PO)8SO4Na 14-15 0 8 0 29.6 715.5 - 30.6 - 33 133 5 116 

C12,13H25,27(PO)4SO4Na 12-13 100 4 0 30.0 527 - - - - - - - 

C12,13H25,27(PO)8SO4Na 12-13 100 8 0 30.7 766 - - - - - - - 

C14,15H29,31(PO)4SO4Na 14-15 100 4 0 30.0 553 - - - - - - - 

C14,15H29,31(PO)8SO4Na 14-15 100 8 0 29.5 783 - - - - - - - 

C12,13H25,27(PO)4SO4Na 12-13 0 4 0 27.3 519 - - - - - - - 

C12,13H25,27(PO)4SO4Na, 50 B 12-13 50 4 0 30.0 

28.1 

527 144.9 - - - - - - 

C12,13H25,27(PO)8SO4Na, 50 B 12-13 50 8 0 30.7 766 61.73 - - - - - - 

C12,13H25,27(PO)8SO4Na, 100 B 12-13 100 8 0 30.6 667 96.14 - - - - - - 

C12H25(PO)14(EO)2SO4Na 12 0 14 2 24.1 1104 31.8 39.51 

38.6 

0.74 80 200 8 147 

C12H25(PO)10(EO)2SO4Na 12 0 10 2 24.1 - - 39.2 - - - - - 

C12H25(PO)12(EO)2SO4Na 12 0 12 2 24.2 - - 38.7 - - - - - 

C10(PO)18(EO)2SO4Na 10 0 18 2 22.5 - - 38.91 1.99 - - - - 

C10(PO)14(EO)2SO4Na 10 0 14 2 22.4 - - 39.5 - - - - - 

C10(PO)10(EO)2SO4Na 10 0 10 2 17.4 - - 40.1 - - - - - 

C16H33(PO)2.9SO4Na 16 0 2.9 0 22.2 - - 37.7 - - - - - 

C16H33(PO)4.5SO4Na 16 0 4.5 0 23.2 - - 37.4 - - - - - 

C16H33(PO)5.5SO4Na 16 0 5.5 0 24.7 - - 37.3 - - - - - 

C16H33(PO)8.2SO4Na 16 0 8.2 0 24.1 - - 36.9 - - - - - 

C16H33(PO)10.7SO4Na 16 0 10.7 0 24.2 - - 36.5 - - - - - 

C16,17(PO)4(EO)5COONa 16-17 0 4 5 - - 184 19.3 - 0.020 - - - 

C16,17(PO)4SO4Na 16-17 0 4 0 - - 55 37.3 - 0.070 - - - 
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Kayali, et al., 2010 study phase behavior of system that contains sodium bis (2-ethylhexyl) 

sulfosuccinate (AOT) as a primary surfactant and tetraethyl ammonium chloride as cationic 

hydrotrope co-surfactant as a function of alkane carbon number and salt concentration at 

ambient condition, they found that 10mM of AOT need to formulate microemulsion with 

high alkane carbon number such as heptanes, octane and nonane. 

  

Velasquez, et al., 2009 study the effect of temperature and other variables on the optimum 

formulation of anionic extended surfactant/ alkane/ brine systems, they found that extended 

surfactants with alkyl polypropylene oxide sulfate type obey the linear correlation LnS=k 

ACN for optimum formulation, an increase in temperature found to produce a decrease in 

surfactant hydrophilicity. 

 

Wu, et al., 2010 investigate Alkyl alcohol propoxylated sulfate surfactants as candidates 

for enhanced oil recovery application, the result show that these anionic surfactants can 

create low interfacial tension at dilute concentrations even at high salinity, without 

requiring an alkaline agent or co-surfactant. 
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Chapter Three 

Materials and Method 
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3.1 Materials 

 

Chemicals components used in this research for microemulsion preparation are chosen 

based on their molecular design and evaluated based upon both the aqueous phase behavior 

and microemulsion phase behavior with diesel as a module.  

 

Sodium alkyl polypropylene oxide polyethylene oxide sulfate used as extended surfactants 

for this research, C12 (PO)14 (EO)2 SO4 Na, pale yellow to colorless solution consists of 

23.6% active, the surfactant was donated by Huntsman Petrochemical Corp. (Houston, 

TX,USA) and was used as received from the manufacturer without any analysis. 

 

Tetraethyl ammonium chloride (TEAC) was obtained from SIGMA, assay > 98.0%, 

melting point > 300⁰C and used as received. 

 

Polypropylene oxide quaternary ammonium chloride (Variquat cc-9 NS) purity >90% was 

donated by Evonik-Deguss, Germany. 

 

Diesel was obtained from Al-Huda station in Al-Beirh. 

 

Distilled water obtained from Quality Control lab of Jerusalem Pharmaceuticals was used 

as the aqueous phase to prepare all stock solutions, Sodium chloride was from Merck, 

Germany. 

 

Sodium hydroxide, assay > 99%, sodium carbonate, assay > 99.9% and di-sodium 

tetraborate decahydrate (Na2B4O7*10H2O), Molecular weight 381.37, assay 99.5-103.0 all 

of these materials are from Merck KGaA Germany, and used as received. 

 

Kaolin clay was obtained from Wbbminerals, United Kingdom, and used as received. The 

compositions of this clay (Assay) are as follow: 

SiO2 = 48.00% 

TiO2 = 0.04% 

Al2O3 =36.46% 

Fe2O3 = 0.85% 

CaO = 0.06% 

MgO = 0.39% 

K2O = 2.40% 

Na2O = 0.10% 

 

3.2 Instruments and equipments 

 

Analytical balance (Acculab Vicon Vic-303), Vortex mixer (mrc Laboratory Equipment 

VM-1000), Cross polarizer, Polarizer microscope (Olympus), Shaker, Water bath, Oven, 

pH meter 691 (Metrohm SWISS made), KF Titrino 701 (Metrohm SWISS made), 

Centrifuge, conductivity meter LF 538 (WTW), mrc K7135 Refractometer, Brookfield 

viscometer, 10 mm glass test tubes with screw caps. 

 

3.3 Procedure 

 

3.3.1 Constructing ternary phase diagram 
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Sample of anionic extended surfactants was placed in oven at 30-40 ⁰C for many days with 

fan ventilation (Vacuum condition) to reach a desired concentration of surfactants.  

 

Sample were prepared by weighing appropriate amounts of each component into 10 mm 

glass test tubes with screw caps at ambient condition 25⁰C and at 50⁰C, the samples were 

mixed by vortex then stand until equilibrate. Detecting number of phases by naked eye. 

Polarized microscope was used to detect anisotropy. Finally draw the phase diagram using 

OriginPro 7.5 program develop by OriginLab Corporation. 

 

3.3.2 Fish phase diagram 

 

WOR=1 by salinity scan using surfactant mixture.  

Samples were prepared by weighing appropriate amount of each component into 10 mm 

glass test tubes molar ratio of surfactant mixture and water / diesel (1:1) 
 

To calculate IFT Chun-Huh equation will be used, the solubilization parameter Vx/Vs can 

be obtained by measuring the amount of solubilized oil or water, by knowing the amount of 

oil or water after equilibrium and abstract it from the original oil or water added. 

 

3.4 Methodology 

To determine the appropriate ratio of anionic and cationic surfactants which will be used to 

prepare middle phase microemulsion with brine and diesel we prepare ternary phase 

diagram of water, cationic surfactant and anionic extended surfactant. We examine 

transparency of system visually. 

Ternary phase diagram for water, acceptant mixture of anionic extended surfactant with 

cationic and diesel also will be prepared. These phase behavior will be studied at ambient 

condition and at 50 ºC. 

All samples will be weighted in 10 mm glass test tube with screw caps, shake with  a 

vortex for 1-2 minutes then diesel will be added and mix gently on a mixer for 12 hours, 

then the tubes will put in an upright position to allow to settle. 

Polarized light will be used to detect birefringence phases if it appears.  

Salinity scan method will be used to prepare middle phase microemulsion. 

 

Mixture of X-AES and Variquat cc-9 Preparation: 

Two compensation was used in this research, one by mixing X-AES:Variquat cc-9 in ratio 

4:1 wt./wt., and the other combination is 1:1 wt./wt.. 

Since we expected a small quantity of hydrotrope, most of experiments done on 4:1 w/w 

ratio. 

 

Acid value determination: 

 

Reference: USP-34 Pharmacopeia. 

Procedure: Dissolve about 10.0 g of diesel, accurately weighed, in 50 mL of a mixture of 

equal volumes of alcohol and ether, which has been neutralized to phenolphthalein with 0.1 

N sodium hydroxide contained in a flask. 

Calculate the acid value by the formula:  
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Acid value = 56.11 V * N/W 

 

In which 56.11 is the molecular weight of potassium hydroxide; V is the volume, in mL; N 

is the normality of the sodium hydroxide solution; and W is the weight, in g, of the diesel 

taken. 

 

Surfactants adsorption onto Kaolin Clay 

 

A quantity of Kaolin clay was dried in an oven at 120⁰C for two hours, then one gram of 

clay is used for 20g of surfactants solution. This sample was shaken for 24 hours on shaker 

at ambient condition. Then the test tube was centrifuged to separate the solution and clay. 

Surfactant adsorbed mass was determined.   
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Chapter Four 

Results and Discussion 
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Selection and screening of surfactants for EOR application undergo three stage procedures, 

first by testing a list of surfactants based upon surfactant structure, activity, knowledge and 

physicochemical condition of reservoir. That’s because extended surfactant is choosing for 

this research, since it can increase solubilization, as well as a broader region of ultra-low 

IFT can be a chive with low amount of surfactant. 

 

The second step is done using phase behavior experiments, with calculation of IFT, 

measure viscosity and equilibration time are used to evaluate candidates. In this stage alkali 

and other additives may be added to optimize performance. 

 

The final phase involves oil recovery experiments (Core flood) in reservoir cores; this 

stage is lifted for future work.  

   

Chemicals for EOR application are commonly characterized in phase behavior experiments 

by evaluating the microemulsion created with oil, water and surfactants. 

 

The most important step in chemical formulation for an EOR application is to work well in 

phase behavior before being tested in a core flood experiment. To obtain an optimal 

formulation a strategic design methodology is required. 

 

Surfactants cause the solubilization of water and oil with each other, and form the primary 

component in phase behavior studies, so choosing the proper surfactants mixture ratio is 

very important, since the most desirable phase behavior is microemulsion with low 

viscosity and the absence of high viscosity gel or other viscous phases, this viscous phases 

retard transport in porous media and also promote high retention, so we tested many 

hydrotrope surfactants (TEAC and Variquat cc-9) to compare and chose the best mixture 

and the best ratio of these surfactants; the primary or the main surfactant which is the 

extended surfactant and secondary which is the co-surfactant (Cationic hydrotrope).  

 

Concentrated X-AES: 

A suitable amount of Sodium alkyl polypropylene oxide polyethylene oxide sulfate C12 

(PO)14 (EO)2 SO4 Na was dried in an oven at temperature range of  30-40 ⁰C with vacuum 

condition for many days to evaporate water from the sample, this is the way how a 

concentrated X-AES is obtained to be use in this research, weight variation between the 

weight of the sample before and after evaporation is used to calculate the concentration of 

the extended surfactant, which is a 71% X-AES, further tests are done on the dried samples 

using available instruments as: KF titrino titer, which is used to determine the actual 

quantity of water in the finished sample, the result show that sample contains 26.66% 

water.    

Refractive index used generaly to identify oily sample or solvent, and used here for further 

characterization for the concentrated sample of X-AES, the result show that RI equal to 

1.431. 

 

Injection composition of microemulsion can be represented on equilibrium ternary 

diagrams with coordinates water, surfactant and oil. That portion of such a diagram having 

economic significance, divides into a single phase region and a multiphase region. Within 

the single phase region, micellar structure is studied in relation to effects of salinity and co-

surfactant on viscosity, optical birefringence and conductivity. Within the multiphase 

region, effects on phase behavior, interfacial tension and solubilization parameter are 

determined as functions of salinity. 
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4.1 Ternary phase diagram of X-AES/TEAC/Water at 25 ⁰C 

 

A Ternary phase diagram obtained by addition of water to alkyl polypropylene oxide poly 

ethylene oxide sodium sulfate, which is the extended surfactant (X-AES 71%), and 

Tetraethyl ammonium chloride TEAC at 25 ⁰C, the result is a single clear isotropic region 

as in Fig. (4.1) below, and lamellar liquid crystal phase at moderate concentration of X-

AES on binary system with water. 

L1 micelle isotropic region will appear at low surfactants concentration, when the X-AES 

concentration increases at binary system (Water and X-AES) a viscous one phase region 

appears, when the sample tested by polarized microscope a shiny crystal as Maltese cross 

patterns is shown. 
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Fig. 4.1: Ternary phase diagram of X-AES/TEAC/Water at 25 ⁰C. 

 

On binary system of X-AES (71%) and water, a region of viscous single phase is appears 

labeled as Lα and when a small quantity of TEAC is added to X-AES and titrated with 

water milky suspension (Two phase) appears. This because of solid nature of TEAC. 

In order to have a high concentrated sample, we evaporate the water from the original 

surfactant the maximum concentration we could reach was 71% that why the 

uninvestigated region appears in the obtained phase diagram.  

 

The Fig. (4.2) below adopted from a research paper (Klaus, et al., 2009) dealing with the 

same problem, the research results complies with what is obtained in our work in extended 

surfactant treatment, even the result of the research paper were tested using optical 

microscope. 
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Fig. 4.2: Schematic phase diagram of the extended surfactant X-AES/Water system. 

 

At 25 ⁰C, L1 appear from zero up to 34% of extended surfactant, where as Lα appear at 

higher concentration upper than 35% to 70%. 

 

In Fig. (4.3) below, ternary phase diagram for AOT / TEAC and water adapted from 

(Kanan, et al. studied phase behavior of extended surfactant with cationic hydrotrope, our 

result complies with their result related to TEAC and water. 

 

 
Fig. 4.3: Ternary phase diagram of AOT/TEAC/Water at 25 ⁰C. 
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4.2 Ternary phase diagram of X-AES/Variquart cc-9/Water at 25 ⁰C 

 

The extended surfactant X-AES used in this research has a long hydrocarbon chain 

compared with hydrotrope used either TEAC or Variquat cc-9, this give hydrotrope its 

properties to be located at water oil interface, and this will decrease the electrostatic 

attraction of the head group of the main surfactant and thus synergistic effect will be 

obtained which will enable additional solubilization of oil. 

 

Fig. (4.4) below illustrate ternary phase diagram of X-AES / Variquat cc-9 with water, 

many one phase region appears, initially by clear isotropic phase (micelle solution L1, 

conductivity = 10.1 mS/cm) in high concentration of water, secondary by huge region of 

inverse micelle L2 (Conductivity = 5.2 mS/cm), despite of no oil present and a high 

percent of water up to 50% presence in this region inverse micelle is observed, third by a 

small one phase region presence in high concentration of X-AES, which is an isotropic low 

viscous liquid, this lead to fact that addition of hydrotrope prevent the formation of liquid 

crystal.  
N
ot investigated
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Fig. 4.4: Ternary phase diagram of X-AES/Variquat cc-9 and Water at 25 ⁰C. 

 

Huge one phase regions appear in the above ternary phase diagram consisting of different 

types of lyotropic phases, comparing with TEAC phase diagram shown previously, this 

behavior of spreading large one phase regions due to the more hydrophilic nature of 

Variquat cc-9 than TEAC. 

The minimum quantity of Variquat cc-9 (Ratio to X-AES) used and give large area of 

isotropic one phase is 2:8 wt./wt. (Variquat cc-9:X-AES), so this ratio used for further 

investigation and considered as the best ratio of hydrotrope. 

 

4.3 Ternary phase diagram of X-AES/Diesel/Water at 25 ⁰C 

 

Ternary phase diagram upon addition of water to a combination of sodium 

alkylpolypropylene oxide polyethylene oxide sulfate and diesel as oil model was done. The 

results are illustrated below in Fig. (4.5), which show three regions of one phase, one of 

them is gel and the others is water like, after this gel tested between crossed polarizer it 

show that region is anisotropic and has Maltese cross patterns under polarized microscope. 
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Fig. 4.5: Ternary phase diagram of X-AES/Diesel/Water. 

 

On the other hand from the figure above, 10% of X-AES is sufficient to solubilize 10% of 

water in diesel.  

 

4.4 Ternary phase diagram of X-AES:Variquat cc-9/Diesel/Water at 25 ⁰C 

 

The observed ternary phase diagram at 25 °C is shown in Fig. (4.6), which was prepared 

using combination of X-AES (71%) with Variquat cc-9 [8:2 wt./wt.] as surfactant. 

 

The ratio of anionic extended surfactant (X-AES (71%)) to cationic hydrotrope (Variquat 

cc-9) concentration was systematically varied in phase behavior experiments, so we chose 

that ratio depends on high single phase sample with the lowest quantity of variquat cc-9 as 

mentioned before. 
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 Fig. 4.6: Ternary phase diagram of X-AES:Variquat cc-9/Diesel/Water at 25 ⁰C. 
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Isotropic regions appear in figure above labeled by L1, L2 and large area of isotropic 

viscous liquid region. The combination of X-AES with variquat cc-9 can prevent liquid 

crystal formation and enhance solubility of diesel with water, since 60% of diesel can mix 

with 20% of water using 20% of surfactants to give clear thermodynamic stable 

microemulsion. 

 

4.5 Ternary phase diagram of X-AES:Variquat cc-9/Diesel/Water at 50 ⁰C 

 

Effect of the temperature on the phase behavior of X-AES and Variquat cc-9: 

 

The hydrophilic head of the X-AES is sulfate group, which is hydrolyzed above 60 ⁰C, so 

we study the phase diagram at 50 ⁰C, this make this type of surfactants limited to low 

reservoir temperature applications.  

 

An increase in temperature is known to increase the hydrophilicity of ionic surfactants, in 

spite that there is an opposite effect on ionic extended surfactants by increasing 

temperature, from this point the effect of temperature on phase diagram of X-

AES:Variquat cc-9/Diesel/Water were studied, the result shown below in Fig. (4.7), with 

same ratio as above from X-AES and Variquat cc-9. 
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Fig. 4.7: Ternary phase diagram of X-AES:Variquat cc-9/Diesel/Water at 50 ⁰C. 

 

One phase region was shrinking and become smaller by increasing temperature. More 

surfactants concentration needs to formulate one phase region. As at 25 ⁰C L1 and L2 

appears and faint shiny under polarized microscope region appears.  

 
4.6 Acid value for diesel 

 

The addition of alkali to a formulation solution for EOR serves to increase both electrolyte 

strength and pH. The optimal salinity then will achieve with little amount of NaCl. In 

addition that using NaOH or sodium carbonate as example of alkali agent help to saponify 

naphthenic acid present in diesel, so work as alternative surfactants. 
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Naphthenic acid is unspecific mixture of several cyclopentyl and cyclohexyl carboxylic 

acids with molecular weight of 120 up to 700 g/ mole. An example of Naphthenic acid is 

described in Fig. (4.8) below: 

 

 
 

Fig. 4.8: Example of a naphthenic acid. 

 

The composition of naphthenic acid is varies with the crude oil composition and the 

condition during refining and oxidation. Naphthenic acids are present in crude oil and leads 

to corrosion problems within the oil refineries, so for this reason and to enhance surfactant 

efficiency we try to convert it to soap. 

 

The acid number of the crude oil (mg of KOH required for neutralizing 1g of oil) is often 

used as an indicator of the naphthenic / carboxylic acid concentration that could potentially 

be saponified. 

  

To determine the acidity of diesel as reflection of naphthenic acid and other acids represent 

in the oil; acid value can be used. 

 

Test method and calculation of acid value for diesel are doing according to USP-34 

Pharmacopeia, the result show that acid value for diesel is 0.3 mL of 0.1N NaOH require to 

neutralize 10g of diesel. 

We use sodium borate as alkali agent for further investigation, to optimize formula for core 

flooding and to draw fish diagram using optimum surfactants combination as in phase 

diagram early.  

Using sodium carbonate as alkali agent have many disadvantages, one of them is 

precipitation of calcium carbonate when anhydrite is present in the rock. However it may 

be possible to use sodium metaborate to avoid this problem. 

 

Oil recovery mechanisms in alkali flooding are complicated and there are at least eight 

postulated recovery mechanisms, these include emulsification with entrainment, 

emulsification with entrapment, emulsification with coalescence, wettability reversal, 

wettability gradients, oil-phase swelling, disruption of rigid films and low interfacial 

tensions.  

 

4.7 Fish diagram 

 

The effect of salt concentration on phase behavior of X-AES with cationic hydrotrope 

Variquat cc-9 with different ratio, and WOR=1 using diesel as a model oil was noted in 

order to understand the whole solution behavior of surfactant mixture.  
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Fig. (4.9) shows the equilibrium phase behavior at ambient condition of oil free aqueous 

solutions containing many surfactants concentration, varies from 0.01% to 25.0% of 

surfactants mixture (X-AES:Variquat cc-9 [8:2 wt./wt.]) with a fixed quantity of 0.5% of 

Sodium borate. In the absence of electrolytes, X-AES exhibits a cloud-point temperature 

that decreases with increasing surfactant concentration, but here at ambient conditions and 

with addition electrolyte we see that when surfactants concentration increases precipitation 

appears at lower electrolyte concentration. 

 

 
Fig. 4.9: Effect of added NaCl on phase behavior of X-AES:Variquat cc-9 [8:2] and 0.5% 

sodium borate solution. 

 

Salinity scans (Based on the whole volume) of the above solution equilibrated with equal 

weight of diesel were prepared at room temperature, the Fig. (4.10) below shows the 

results. 
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Fig. 4.10: Microemulsion fish phase diagram of X-AES:Variquat cc-9 [8:2] and 0.5% 

sodium borate using diesel WOR=1. 

 
The minimum surfactants concentration needed to start forming middle phase was 0.05 

wt.%, and the minimum surfactants concentration needed to form one phase (Winsor IV) 

was 20.0 wt.% of surfactants mixture. The equilibrium time was reached within 15 days. 

 

Phase behavior at ambient temperature of salinity scan containing 0.50 wt.% of X-AES 

71%, Variquat cc-9 (8:2 wt./wt.) with equal weight ratios of water and diesel was observed. 

Fig. (4.11) shows a typical Winsor I, III and II microemulsion sequence using sodium 

chloride from 1.0% at the left hand up to 8.0% at right hand, the optimum salinity was 

shown at 3.0% of NaCl and equilibrium was reached within 15 days. 

 

To understand phase behavior of X-AES with addition of hydrotrope (Variquat cc-9) and 

sodium borate, blank solution was prepared to investigate the effects of Variquat cc-9 and 

sodium borate on phase behavior. 

 

In the absence of variquat cc-9 salinity scan of 1.0 % of X-AES was investigated with 

WOR=1 with diesel as module, the salinity scan of (0.0 – 4.5 wt.%) were tested, the middle 

phase appears with optimum salinity at 2.0% of NaCl, and no effect for the addition of 

Variquat cc-9 on optimum salinity, whereas addition of sodium borate cause a slightly shift 

in optimum salinity. 
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Fig. 4.11: Salinity scan for 0.50% X-AES,Variquat cc-9 (8:2 wt./wt.), with diesel, WOR = 

1. 

 
Effect of sodium hydroxide and sodium carbonate 

 
The phase behavior experiments reported tested the addition of sodium hydroxide and 

sodium carbonate in combination with surfactants. The focus of this research was on 

sodium borate which is the primary alkali chemical used for these experiments. Diesel 

contains naphthenic acids that may saponify upon the addition of sodium borate and 

generate in-situ soap. The addition of sodium carbonate is desirable because it has been 

shown to reduce anionic surfactant adsorption on reservoir rocks (Jackson, 2006). 

One of disadvantage of use sodium carbonate is the precipitation of sodium carbonate after 

the dissolution of high concentration of calcium in brine water around reservoir. 

 

Fig. (4.12) show the salinity scan for 1.0% of surfactants mixture (X-AES 71% + Variquat 

cc-9 [8:2] wt./wt.) with 0.5% as a constant individual quantity of sodium borate, sodium 

hydroxide and sodium carbonate, it has been shown that no Winsor III was formulated with 

this quantity of alkaline agent, this because of high quantity of sodium ion in formulation. 

This problem can be go over by decreasing the alkaline agent used, considering acid value 

for oil used. On the other hand optimum salinity of the system can be changed according to 

salinity of reservoir by varying the alkalinity agent or its concentration. 
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Fig. 4.12: Salinity scan after equilibration of equal volumes of diesel and aqueous solutions 

containing 1.0 wt.% X-AES,Variquat cc-9 (8:2 wt./wt.), and wt.% NaCl as indicated. 

 

These results indicate that alkali addition contributes electrolytes to act as a NaCl 

equivalent. 

  
One of the challenge in EOR fluid is to find surfactant blends that reach optimum salinity 

at a total dissolved solid (TDS) < 12000 ppm, so the effects of surfactants mixture ratio 

were studied, using (1:1) wt. /wt. of X-AES 71% and Variquat cc-9, the results shown in 

Fig. (4.13) below. 

 

Salinity scan of 1.0% of surfactants (X-AES 71% + Variquat cc-9 [1:1]) is shown below, 

there is no clear Winsor III microemulsion formed with this surfactants combination ratio. 
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Fig. 4.13: Salinity scan for 1.0% X-AES,Variquat cc-9 (5:5 wt./wt.), with diesel, WOR = 1. 

 
In general for actual field reservoir, the optimal salinity must match salinity field brine. 

  

Calculation of IFT (γ) and Solubilization Parameter 

 
Interfacial tension (γ) and solubilization ratio can be calculated using Huh equation that 

describes relationship between solubilization ratio and IFT as follow: 

 

γ = C/σ
2 

 

Solubilization ratios were introduced to describe the microemulsion phase behavior– Phase 

behavior testing seeks to establish the salinity where the Winsor type III middle phase 

microemulsion is largest (i.e. maximum volume oil and water solubilized per volume 

surfactant. 

 

Winsor III microemulsion needs in general a solubilization ratio equal to or greater than 10 

at optimal salinity, and an equilibration time of less than 7 days to be suitable for EOR 

process.  

 

Table 4.1 below show the result of IFT measurement for a system of X-AES 

(71%)/Variquat cc-9 (4:1) wt.% WOR=1 with fixed amount of Sodium borate 0.5% at 

25⁰C using Huh equation [γo = C/(Vo/Vs)
2
, γw = C/(Vw/Vs)

2
], with assuming C = 0.3 mN/m 

and all surfactants in the middle phase. 

 

Where γo is the IFT between the oil phase and surfactant phase, and (Vo/Vs) is the ratio of 

solubilized oil to the volume of total surfactant and γw is the IFT between the water phase 
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and surfactant phase, (Vw/Vs) is the ratio of solubilized water to the volume of total 

surfactant. 

The oil solubilization ratio is applied for Winsor type I and type III behavior, where as 

water solubilization ratio is applied for Winsor type III and type II behavior. 

 

According to Huh equation a solubilization ration of 10 or greater corresponds to an IFT of 

0.003 dynes/ cm or lower. This typically the target IFT necessary to recover residual oil. 

 
Table 4.1: Solubilization ratio and interfacial tension IFT for a system containing 1.0% of 

X-AES (71%)/Variquat cc-9 (4:1) wt. % WOR=1 with fixed amount of Sodium borate 

0.5% at 25⁰C. 

 
Salinity 

NaCl % 

Solubilization IFT using Chun-Huh 

equation C=0.3 mN/m 

Vo/Vs Vw/Vs γo γw 

2.0 21.0 29.0 6.8 X 10
-4

 3.6 X 10
-4

 

3.0 26.5 25.3 4.3 X 10
-4

 4.7 X 10
-4

 

4.0 31.4 22.5 3.0 X 10
-4

 5.9 X 10
-4

 

5.0 32.4 18.1 2.9 X 10
-4

 9.2 X 10
-4

 

 
Fig. (4.14) below show the relation between IFT and NaCl concentration, it shows that IFT 

between diesel and middle phase γo decrease from 6.8X10
-4

 to 2.9 X10
-4 

by increasing 

salinity, while IFT between water and middle phase γw increase with increasing salinity, 

from 3.6X10
-4

 to 9.2X10
-4

. 
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Fig. 4.14: IFT versus NaCl wt.%, for a system of 1.0% AES:Variquat cc-9 (4:1) wt.% ratio, 

WOR= 1 with fixed quantity of Sodium borate 0.5%. 

 

Table 4.1 and Fig. (4.14) show ultralow interfacial tension, which mean this system is 

applicable in many industrial field that need ultralow IFT for their formulation. 
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4.8 Surfactants adsorption onto Kaolin Clay 

 

Adsorption is an important physical process leading to surfactant loss during a surfactant 

EOR flooding, so surfactants adsorption onto positively charged kaolin clay is evaluated in 

terms of estimation of material loss in the rock during fluid flow. 

Adsorption of X-AES with Variquat cc-9 (8:2 wt/wt) surfactants onto kaolin clay was 

measured at 25 ⁰C and the results are shown below in Table 4.2.  

 

The long hydrophobic chain in X-AES that contains polypropylene oxide group make 

surfactant more hydrophobic chain, this weakens the interaction between the polar head of 

surfactant molecules and the specific sites on the kaolin clay surface (Wu, et al., 2010), 

that’s because adsorption of surfactants on solid surfaces can modify their hydrophobicity 

and surface charge (Zhang and Somasundaran, 2006). 

 

Table 4.2: Surfactants adsorption on Kaolin clay 

 

 

 

 

Adsorption of surfactants 

on kaolin Clay [mg/g] 

 

Surfactants concentration % 

0.5 1.0 5.0 10.0 

 

0.0 

 

5.0 

 

30.0 

 

26.0 

 

 

We see from the above results in table 4.2 that when the surfactants concentration increase, 

the quantity of surfactants adsorbed on kaolin clay as a module increases. Whereas at 0.5% 

surfactants the adsorption was zero, this give this formula another advantage, since there is 

no loss at low concentration of surfactants. 

 

Fig. (4.15) below show the ideal curve for adsorption isotherm, which is identical to our 

result in Fig. (4.16) which illustrate the S-shape of surfactants adsorption.  
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Fig. 4.15: S-shaped adsorption isotherm for an ionic surfactant on an oppositely charged 

substrate. 

 

The adsorption of surfactants (X-AES + Variquat cc-9 8:2 wt./wt.) onto kaolin clay is 

shown in Fig. (4.16) below: 

 

 
 

Fig. 4.16: Adsorption of X-AES : Variquat cc-9 (8:2 wt./wt.) onto kaolin clay. 

 

From Fig. (4.16), it can be seen that the adsorption isotherms of surfactants demonstrate 

the classical S-shaped isotherm. In spite of strong affinity of sulfate head group for 
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adsorption on positively charged surface, the adsorbed quantity of surfactants can be 

neglected. 

 

The magnitude of surfactants adsorption increases by increasing the surfactants 

concentration up to 30mg/g at 5% then decreases to 26mg/g at 10%, this trend due to the 

two mechanisms of surfactant adsorption, one at low bulk surfactant concentration, which 

is due to the interaction between the polar head of the amphiphile molecule and some 

specific site of the surface. The second mechanism at higher bulk surfactant concentrations, 

aggregates are formed at the interface as a result of lateral interactions between 

hydrophobic chains. On the other hand, adsorption of surfactant on mineral surfaces also 

depends on many factors, several physiochemical processes can be expected to occur, such 

as ion-exchange, electrostatic adsorption and dissolution of the clay constitute. 

At high concentration of surfactants when micelles formed it can dissolve some of the 

complex precipitate on the surface. As a result, the adsorption decreases at high 

concentrations. 
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Chapter Five 

Summary and Conclusion 
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The research helped to understand many of the objectives that motivated this work in the 

field of chemical EOR. 

 

Systematic experiments were done to observe the phase behavior of extended surfactant 

with diesel for EOR applications. Phase behavior observations used to screen surfactants 

for favorable attributes such as low microemulsion viscosity, short equilibration time, 

ultralow IFT and absence of viscous gel or macroemulsions. 

 

A systematic study with phase behavior experiments helped understand how different 

chemical components and environmental conditions affect microemulsion properties and 

phase behavior performance. 

 

Co-surfactants as cationic hydrotrope, alkali can be added to improve performance. 

Additional information such as optimum salinity, surfactants adsorption and solubilization 

ratios used to optimize formula. 

  

5.1 Conclusion 

 

Alkyl polyethylene oxide polypropylene oxide sodium sulfate extended surfactant is 

promising surfactant to use in EOR and SEAR applications. Presence of polyethylene 

oxide and polypropylene oxide within the surfactant structure give it unique properties with 

high solubilization capacity. 

 

Extended anionic surfactant (X-AES) combined with a short chain cationic hydrotrope 

(Variquat cc-9) 4:1 wt./wt. produced middle phase microemulsion at low surfactants 

concentrations 0.05 wt.% without alcohol and with high solubilization capacity and ultra 

low IFT values, 0.0004 mN/m or less, measured between brine and diesel.  

Minimize the depletion of the injected surfactant, can be achieved using these combination 

of surfactants (Alkyl polyethylene oxide polypropylene oxide sodium sulfate and Variquat 

cc-9). 

 

We are able to form both Winsor type III and IV microemulsions at ambient conditions 

without the addition of alcohols and at relatively low electrolyte concentrations. 

 

Generally, adsorption of these surfactants on Kaolin Clay increases with an increase in 

surfactants concentrations. 

 

In the absence of electrolytes, X-AES exhibits a cloud-point temperature that decreases 

with increasing surfactant concentration, but here at ambient conditions and with addition 

of electrolyte we see that when surfactants concentrations increase precipitation appears at 

lower electrolyte concentration. 

 

Several alkali types were tested in phase behavior to determine how they can affect phase 

behavior parameters. Sodium borate found to has advantages over NaOH and Na2CO3 since 

it is efficient to saponify Naphthenic acid present in diesel and has low pH range 

comparing to other alkali agents which prevent surfactants damage at high pH range. 

Another benefit for using sodium borate preventing Calcium ions precipitation. 
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5.2 Future work 

 

The optimum formulation as mentioned above can be applied in EOR and SEAR 

efficiently at low surfactants concentrations, it seems promising to contribute to future 

commercial projects or flooding experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

References 

 
M1 1 Alvarado, V. Manrique, E. (2010): “Enhanced oil recovery: An update 

review”. Energies, 3. pp. 1529-1575. 

U 2 Arpornpong, N. Charoensaeng, A. Sabatini, D. Khaodhiar, S. (2010): 

“Ethoxy carboxylate extended surfactant: Micellar, adsorption and 

adsolubilization properties”. Journal of Surfactants and Detergents, 13. pp. 

305-311. 

M 3 Do, L. Withayyapayanon, A. Harwell, J. Sabatini, D. (2008): 

“Environmentally friendly vegetable oil microemulsions using extended 

surfactants and linkers”. Journal of Surfactants and Detergents, 12. pp. 91-

99.  

H22 4 Enhanced oil recovery information (April, 1986): National Institute for 

Petroleum and Energy Research. Oklahoma 

O1 5 Flaaten, A. (2007): Experimental study of microemulsion 

characterization and optimization in enhanced oil recovery: A design 

approach for reservoirs with high salinity and hardness. University of 

Texas, Austin. 

L1 6 Fountain, J. Starr, R. Middleton, T. Beikirch, M. Taylor, C. Hodge, D. 

(1996): “A controlled field test of surfactant-enhanced aquifer remediation”. 

Ground Water, 34-5. pp. 910-916. 

B2  7 Goodwin, J. W. (2004): Colloids and interfaces with surfactants and 

polymers – An introduction, First edition. John Wiley and Sons, Ltd., 

England. 

D1 8 Gurgel, A. Moura, M. Dantas, T. Barros Neto, E. Dantas Neto, A. (2008): 

“A review on chemical flooding methods applied in enhanced oil recovery”. 

Brazilian Journal of Petroleum and Gas, 2. pp. 83-95.  

Z2 9 Jackson, A. (2006): Experimental study of the benefits of sodium 

carbonate on surfactants for enhanced oil recovery. University of Texas, 

Austin. 

I1 10 Kanan, K. Yousef, H. Kayali, I. (2012): “Nanostructured microemulsion 

phase behavior using AOT or extended surfactant combined with cationic 

hydrotrope”. Journal of Surface Engineered Materials and Advanced 

Technology, 2. pp. 53-60. 

E1 11 Kanicky, J. Lopez-Montilla, J. Pandey, S. Shah, D. (2001): Surface 

chemistry in the petroleum industry. In: K. Holmberg (Editor). Handbook 

of Applied Surface and Colloid Chemistry (pp. 251-267). John Wiley and 

Sons, Ltd., England. 

R 12 Kayali, I. Liu, S. Miller, C. (2010): “Microemulsions containing mixtures of 

propoxylated sulfates with slightly branched hydrocarbon chains and 

cationic surfactants with short hydrophobes or PO chains”. Colloids and 

Surfaces A: Physicochemical and Engineering Aspects, 354. pp. 246-251. 

Z 13 Kayali, I. Qamhieh, K. Habjoqa, F. AlBawab, A. Olsson, U. Bemert, L. 

Strey, R. (2012): “Phase behavior of microemulsions formulated with 

sodium alkyl polypropylene oxide sulfate and a cationic hydrotrope”. 

Journal of Dispersion Science and Technology, 33. pp. 369-373. 

S 14 Kayali, I. Qamhieh, K. Olsson, U. (2010): “Microemulsion phase behavior 

of aerosol-ot combined with cationic hydrotrope in the dilute region”. 

Journal of Dispersion Science and Technology, 31. pp. 183-187. 



47 
 

Q 15 Kayali, I. Qamhieh, K. Olsson, U. (2011): “Formulating middle phase 

microemulsions using extended anionic surfactant combined with cationic 

hydrotrope”. Journal of Dispersion Science and Technology, 32. pp. 41-46. 

X 16 Kayali, I. Qamhieh, K. Olsson, U. Bemert, L. Strey, R. (2012): “Water-

diesel microemulsions stabilized by an anionic extended surfactant and a 

cationic hydrotrope”. Journal of Dispersion Science and Technology, 33. pp. 

516-520. 

C 17 Klaus, A. Tiddy, G. Rachel, R. Trinh, A. Maurer, E. Touraud, D. Kunz, W. 

(2011): “Hydrotrope-Induced inversion of salt effects on the cloud point of 

an extended surfactant”. American Chemical Society, 27. pp. 4403-4411. 

V 18 Klaus, A. Tiddy, G. Touraud, D. Schramm, A. Stuhler, G. Drechsler, M. 

Kunz, W. (2009): “Phase behavior of an extended surfactant in water and a 

detailed characterization of the dilute and semidilute phases”. American 

Chemical Society, 26-8. pp. 5435-5443. 

G 19 Klaus, A. Tiddy, G. Touraud, D. Schramm, A. Stuhler, G. Kunz, W. (2010): 

“Phase behavior of an extended surfactant in water and a detailed 

characterization of the concentrated phases”. American Chemical Society, 

26-22. pp. 16871-16883. 

A1 20 Lee, K. (November, 2010): Applications and use of microemulsions. 

Department of Chemical Engineering and Chemical Technology, Imperial 

College London. 

A2 21 Martel, R. Gelinas, P. (February, 1996): “Surfactant solutions developed for 

NAPL recovery in contaminated aquifers”. Ground Water, 34. pp. 143-154. 

B 22 Minana-Perez, M. Graciaa, A. Lachaise, J. Salager, J. (1995): 

“Solubilization of polar oils with extended surfactants”. Colloids and 

Surfaces A: Physicochemical and Engineering Aspects, 100. pp. 217-224. 

E 23 Minana-Pereze, M. Graciaa, A. Lachaise, J. Salager, J. (1996): System 

containing mixtures of extended surfactants and conventional nonionics – 

Phase behavior and solubilization in microemulsion. In: Roger de Lluria 

(Editor), World Surfactants Congress, June 3-7 1996. A.E.P.S.A.T., Spain. 

pp. 226-234. 

H1 24 Moulik, S. Rakshit, A. (2006): “Physicochemistry and applications of 

microemulsions”. Journal Science Technology, 22. pp. 159-186. 

P1 25 Mulligan, C. Yong, R. Gibbs, B. (2001): “Surfactant-enhanced remediation 

of contaminated soil: a review”. Engineering Geology, 60. pp. 371-380. 

Y 26 Phan, T. Attaphong, C. Sabatini, D. (2011): “Effect of extended surfactant 

structure on interfacial tension and microemulsion formation with 

triglycerides”. Journal of American Oil Chemical Society, 88. pp. 1223-

1228.  

C1 27 Pillai, V. Kanicky, J. Shah, D. (1999): Applications of microemulsions in 

enhanced oil recovery. In: P. Kumar, K. Mittal (Editor). Handbook of 

microemulsion science and technology (pp. 743-754). Marcel Dekker, Inc. 

New York. 

K1 28 Quintero, L. Clark, D. Salager, J. Forgiarini, A. (23 July, 2009): 

“Mesophase fluids with extended chain surfactants for downhole 

treatments”. United States Patent, Pub. No.: US 2009/0183877 A1. 

N1 29 Salager, J. (1977): Physico-chemical properties of surfactant-water-oil 

mixtures: Phase behavior, microemulsion formation and interfacial 

tension. University of Texas, Austin. 

A 30 Salager, J. Anton, R. Sabatini, D. Harwell, J. Acosta, E. Tolosa, L. (January, 



48 
 

2005): “Enhancing solubilization in microemulsions – State of the art and 

current trends”. Surfactants and Detergents, 8-1. pp. 3-21. 

B1 31 Shan, D. Sharma, M. (1985): Introduction to Macro- and 

microemulsions. Departments of Chemical Engineering and 

Anesthesiology, University of Florida, Gainesville, FL 32611. 

J1 32 Smith, G. Hand, K. (21 September 2006): “Enhanced solubilization using 

extended chain surfactants”. United States Patent, Pub. No.: US 

2006/0211593 A1. 

W 33 Velasquez, J. Scorzza, C. Vejar, F. Forgiarini, A. Anton, R. Salager, J. 

(2010): “Effect of temperature and other variables on the optimum 

formulation of anionic extended surfactant-alkane-brine systems”. Journal 

of Surfactants and Detergents, 13. pp. 69-73. 

J 34 Witthayapanyanon, A. Acosta, E. Harwell, J. Sabatini, D. (2006): 

“Formulation of ultralow interfacial tension systems using extended 

surfactants”. Journal of Surfactants and Detergents, 9. pp. 331-339. 

F 35 Witthayapanyanon, A. Harwell, J. Sabatini, D. (2008): “Hydrophilic-

Lipophilic deviation (HLD) method for characterizing conventional and 

extended surfactants”. Journal of Colloid and Interface Science, 325. pp. 

259-266. 

D 36 Witthayapanyanon, A. Phan, T. Heitmann, T. Harwell, J. Sabatini, D. 

(2010): “Interfacial properties of extended-surfactant-based microemulsions 

and related macroemulsions”. Journal of Surfactant and Detergent, 13. pp. 

127-134. 

T 37 Wu, Y. Lglauer, S. Shuler, P. Tang, Y. Goddard, W. (2010): “Branched 

alkyl alcohol propoxylated sulfate surfactants for improved oil recovery”. 

Tenside Surfactants and Detergents, 47. pp. 152-161. 

H2 38 Zhang, R. Somasundaran, P. (2006): “Advances in adsorption of surfactants 

and their mixtures at solid/solution interfaces”. Advances in Colloid and 

Interface Science, 123-126. pp. 213-229. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

Appendices 
 

Definition 

 

These are some definition used in this research thesis: 

The glossary from National Institute for Petroleum and Energy Research was used as a 

basis for these definitions. 

 

Acid number: A measure of reactivity of crude oil with caustic solution, in terms of 

milligrams of potassium hydroxide that are neutralized by one gram of crude oil. 

 

Adsorption: The physical/chemical phenomenon whereby a molecule or aggregate of 

molecules attaches itself to the rock surface. 

 

Aquifer: A subsurface rock interval that will produce water; many oil reservoirs are under 

laid by an aquifer. 

 

Capillary forces: Interfacial forces between immiscible fluid phases, resulting in pressure 

differences between the two phases. 

 

Caustic consumption: The amount of caustic lost from reacting chemically with the 

minerals in the rock, the oil, and the brine. 

 

Corefloods: Laboratory flow test through small samples (cores) of porous rock. 

 

Displacement efficiency: Ratio of the amount of oil moved from the zone swept by the 

recovery process to the amount of oil present in the swept zone prior to start of the process. 

 

Lithology: The geological characteristics of the reservoir rock. 

 

Modified alkaline flooding: The addition of a cosurfactant and/or polymer to the alkaline 

flooding process. 

 

Non-Newtonian: A fluid that exhibits a change of viscosity with flow rate. 

 

Preflush: A conditioning slug injected into a reservoir as the first step of an EOR process. 

 

Pressure gradient: Rate of change of pressure with distance. 

 

Reservoir: A rock formation below the earth’s surface containing petroleum or natural gas. 

 

Reservoir simulation: Analysis and prediction of reservoir performance with a computer 

model. 

 

Retention: The loss of chemical components due to adsorption onto the rock’s surface, 

precipitation, or to trapping within the reservoir. 

 

Screening guide: A list of reservoir rock and fluid properties critical to an EOR process. 

 

Slug: A quantity of fluid injected into a reservoir during enhanced oil recovery. 
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Stripper well: A well that produces (strips from the reservoir) less than 10 barrels of oil per 

day. 
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Arabic abstract 

 

أهم التطبيقات في تحسين عمليات :سلوك المواد الفعالة على السطوح من النوع الممتد حديثة التطوير

.اسخراج النفط وتنقية المياه الجوفية  

 

مع استخدام كمية صغيرة ( X-AES)دراسة سلوك المواد الفعالة على السطوح حديثة التطوير لقد تم 

ة قصيرة الذيل وامكانية تطبيقها في تحسين عملية استخراج النفط وتنقية المياه من المواد موجبة الشحن

الهدف الأساسي في هذه الدراسة هو تحضير مستحلب يمتاز بقدرة عالية على استخلاص  . الجوفية

استخدام نظام الشكل الثلاثي، البحث الملحي، التوتر السطحي بين الطبقات والإدمصاص . النفط الخام

الضوء المستقطب لتمييز وتعيين كما أنه تم استخدام النظر و. ت للمفاضلة بين التراكيباستخدم

بينت النتيجة أن استخدام خليط من المواد الفعالة على السطوح بنوعيها . المناطق المتباينة الخواص

الممتد وقصيرة الذيل مفضل في حالة استخراج النفط الخام حيث يمكن أن يؤدي إلى توتر سطحي 

أقل كمية من المواد الفعالة على السطوح يمكنها . منخفض بين السطوح عند درجة الملوحة المثالية

كما ويمكن الغاء كمية المواد الفعالة على السطوح الممتصة على  %0.05تكوين نظام متوسط هي 

نيوتن لكل -م 0.....إن قراءة التوتر السطحي المقاس نظريا كانت . عند هذا الحد من التركيز السطح

هذه المواد الفعالة على السطوح يمكن اعتبارها على أنها مواد واعدة . م بين الديزل والمحلول الملحي

 .بناء على طرق التقييم المستخدمة

 

 


