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Abstract

We study the problem of a retailer facing uncertainty on the demand. The main
objective is to maximize his profit by optimizing the inventory policy and sales,
also considering the option to open new selling points. We propose an integrated
framework to jointly optimize the strategic and tactical decisions. First, we for-
mulate a deterministic optimization problem (with demand known in advance)
and we analyze its outcomes. The optimal solution is not satisfying because it
suffers from being anticipative. Secondly, multi-stage stochastic optimization is
considered. We formulate the problem in three different versions with increas-
ing complexity. The first version considers a single retailer (SRLP) and ignores
the strategic decision for opening a new selling point. We solve it by stochastic
dynamic programming and we discuss results. Second and third versions are: a
N−retailer (NRLP) case where transshipments between retailers are possible; a
case where opening decisions of retailers might be made only at the beginning of
the time span. Here we propose a new resolution method gathering Stochastic
Dual Dynamic Programming and Progressive Hedging algorithms.
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Chapter 1

Introduction

In this chapter, we present the problem (classic in the operations research field).
We classify it as a facility location problem combined with tactical and operational
decisions. We will look at the general context that arises in our approach, as well
as the objectives and state of the art regarding similar problems.

1.1 Motivation

Frequently, entrepreneurs put a product on the market creating retail business,
making decisions mostly based on experience, particular observations of the mar-
ket, personal interests or other qualitative methods.

Once a retailer is beginning to show grow tendencies, some questions appear
for the company’s manager. E.g. “What is the order sized triggered to suppliers?”,
“Where is the better place to open a new selling point?”, “What is the proper size
for the warehouse?”. These questions impact directly the strategic and operational
decisions of the business.

Retailers are companies that can be found at the last echelon of the supply
chain, just where the product is made available for the client. Those retailers are
oftentimes working under uncertainty on the demand, given that the customer is
who attends the selling point to buy their products. Despite the manager can
find some demand behavior, it is unlikely to establish accurately the quantities
demanded in future time periods.

This thesis is focused on assessing retailer companies in the process of mak-
ing decisions related with the above questions and context. The research on this
topic has been addressed both to find the optimal performance for the entire
supply chain and for first or intermediate echelons of it (plants, warehouses, col-
lections points, etc). Often, researchers develop mathematical models to decide
about inventory management, transshipments at the same echelon or between
them. Also, researchers have studied widely the facility location theory, as we
will see in §1.3. Nonetheless, rarely we find studies with simultaneous decisions.

8
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Recently, Laporte et al. [1] carried out a survey about facility location tendencies
under stochasticity conditions in one or more components of the problem. This
text highlights several proposes around multi-stage model optimizing opening and
closing decisions at any moment over a previous defined time span.

We propose a mathematical model denoted as Retail Location Problem or
(RLP), wherein we consider multiple stages with decisions about inventory man-
agement, sales and location of new possible selling points. The objective is to
maximize the retailer total profit, taking into account Net Present Value of the
cash flows across the time. In order to provide a better comprehension of the prob-
lem and its components, we have developed two phases that progressively increase
both the real-life case representation and the complexity to solve the model:

1. A deterministic version whereby the demand can be anticipated, it means
that the manager makes decisions knowing the future in advance.

2. A multi-stage stochastic problem, where the demand is a random variable.
This proposal in turn will be decomposed into others:

(a) A model in which we only consider one retailer that manages its inven-
tory policy and sales (SRLP)

(b) The previous proposal evolves when we have two or more selling points.
Here the decisions are made about particular inventory policies, trans-
shipments between them and sales (NRLP)

(c) Finally, we present the problem that includes strategic (location) de-
cisions added to the NRLP and this is what we call Retail Location
Problem (RLP)
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1.2 Objectives and research questions

1.2.1 Objectives

General

Formalize mathematically the RLP aimed to optimize the total profit of a retailer
company working under uncertain demand and apply an adapted method to solve
its different versions

Specifics

• Transform the deterministic RLP in several stochastic programs

• Solve the stochastic optimization programs (SRLP, NRLP and RLP) using
adapted method for each one of them

• Carry out a sensitivity analysis of the problem using several random in-
stances

1.2.2 Research Questions

• How can we transform the deterministic RLP in multiple stochastic pro-
grams?

• Which adapted methods exist and how do we apply it to solve the stochastic
programs?

• How can we do a sensitivity analysis for the SRLP, NRLP and RLP?
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1.3 Literature review

In this section, we present a brief discussion about three main topics: inventory
management, sales policies and location decision over the supply chain and its
different echelons. Furthermore, we present the solution methods used on the
problems described and related with our proposal.

Initially, we talk about facility location problems. Snyder [2] shows multiple
historical approaches around this problem, specially for our interest, cases with
simultaneous strategic and tactical or operational decisions, which had not been
widely studied before 2006. The first authors considering stochasticity for this kind
of problem were Alonso-Ayuso et al [3], Santoso et al. [4], Snyder et al. [5], Öszen
et al. [6] and Atamtürk et al. [7] who consider: two-stage stochastic programs for
supply chain design [3], [4], while [5], [6] and [7] consider only one echelon of the
supply (warehouses).

To our knowledge only one paper studies the problem of facility location deci-
sions under uncertainty for retailers, Fernández et al. [8] wherein their aim is to
maximize the market participation of the new selling point, inventory and sales
management are out of consideration in this study.

Hinojosa et al. [9] propose a multi-stage stochastic program studying opening
and closing decisions, also they include inventory management acquiring pretty
similar features regarding our proposal. However, they considered whole supply
chain forbidding transshipments between facilities at the same echelon.

Zadeh et al. [10], Albareda-Sambola et al. [11], Ghaderi et al. [12], Álvarez-
Miranda et al. [13] and Shiina et al. [14] also present related literature. In problems
of location and minimization costs, they used several exact resolution methods as
L-Shape method, branch-and-bound, Benders decomposition, as well metaheuris-
tic methods, greedy algorithms or Fixed-and-relax coordination [11], [10], [12]
and [13] present study cases for supply chains of steel, health care and disaster
management. The main concepts of our literature review so far are in Table 1.1.

There is no a related model in Table 1.1 solved through Dynamic Programming
or Stochastic Dynamic Programming (SDP), this is a special characteristic as we
will see in future paragraphs and sections. Hinojosa et. al. [9] present a multi-
stage stochastic model solved by lagrange-ralaxation, considering location and
inventory decisions.

Now, we are going to review approaches regarding inventory management in
only one facility, also trying to find considerations on lost sales and policies over
orders and sales. Morton in [16] and [17], Nahmias [18], [19] and [20] propose
heuristics methods to solve the inventory problems for periodic review systems
under different conditions such as lead times, backlogged orders, lost sales and
others. Zipkin [21] introduces several ways to manage inventory in facilities and
also, stochastic cases where the complexity increases when lost sales instead of
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Author Year Location Inventory Transshipments Objective
Shiina et al. [14] 2014 5 X X Costs Minimization

Álvarez-Miranda et
al. [13]

2014 X 5 5 Costs Minimization

Ghaderi et al. [12] 2013 X 5 5 Costs Minimization
Albareda-Sambola et

al. [11]
2013 X 5 5 Costs Minimization

Nickel et. al. [15] 2012 X 5 5 Profit maximization
Atamtürk et al. [7] 2012 X X 5 Costs Minimization
Zadeh et al. [10] 2011 X X 5 Costs Minimization

Hinojosa et al. [9] 2008 X X 5 Costs Minimization
Oszen et al. [6] 2008 X X 5 Costs Minimization
Snyder et al [5] 2007 X X 5 Costs Minimization

Fernández et al [8] 2006 X 5 5
Market participation

maximization

Snyder [2] 2005 NA NA NA
Minimize, maximize
minimax, minisum

Santoso et al [4] 2005 X 5 X Costs Minimization
Alonso-Ayuso et

al. [3]
2003 X No X Profit maximization

Table 1.1: Literature review strategic and tactical decisions

backorders are considered. Beyer et. al [22] introduce a treatment for Markovian
demands and non-linear costs.

Close to our matter, we can find [23] introducing an effective method for
models with lost sales. Nonetheless, we still have significant differences regard
his work, due to the maximization of profit (sales random variables) and not the
minimization of costs posed by Zipkin (not sales random variables included). In
the same way, Levi [24] conducts dual balancing methods for problem in Zipkin
proposal. In 2011, Bijvank et. al [25] introduce the basic theory to manage
lost sales under different policies, always considering costs minimization. A last
approach by Li [26] uses stochastic dynamic programming for a minimization
problem with lost sales including returned orders.

At the end, we review bibliography regarding resolution methods for stochas-
tic multi-stage programs, particularly on stochastic dual dynamic programming
(SDDP). Bertsekas [27] and Shapiro et. al. [28] tackle the problem of decisions
about inventory management for one facility under uncertainty and show its the-
oretical solution. However, there is no a proposal for transshipments or facility
open decisions. Also, Shapiro et. al [28] give the principles of SDDP. On the other
hand, King et. al [29] present the complexity to work with SDP to get exact so-
lutions, even when we solve “small” size instances and a “little” set of constraints
(those instances will be shown further on); they also give basic concepts to take
into account net present value of money in time, mainly in objective functions.

Last, Ross [30] defines a concept of Positive Dynamic Programming showing
how to apply that in gambling theory and its implementations.



Chapter 2

The Retail Location Problem
Statement

This chapter presents the general structure of the Retail Location Problem (RLP)
including statement, variables, dynamics, criterion, logistics considerations and
assumptions. Across the document we will often refer to the problem context in
order to apply and modify the main concepts, according to each model posed, one
deterministic and three stochastic.

2.1 Problem context

Here, we consider a supply chain composed of a set of retailers, with centralized
management, selling a single product. This kind of business is at the end of a
chain serving the final consumer. We study a case with only one supplier to
all retailers. The problem in consideration takes into account the optimization
of location decisions, inventory management and transshipments for each selling
point.

The decisions are framed in some important assumptions in terms of logistics
and supply chain management:

• If the total demand is greater than the stock plus incoming orders, those are
Lost Sales

• If the company has a customer with demand greater than the current stock
Partial Sales are allowed

13
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2.1.1 Assumptions

We present some convenient assumptions to tackle the problem:

1. Transshipments are allowed between selling points

2. Lead times are neglected, once you put an order to the supplier it will be
available for the same time period

3. The demand is treated as a random variable during the second phase

4. We consider price and costs as constants over whole time horizon

5. The fixed costs triggering an order to the supplier is assumed as zero

6. The investment budget to open new facilities is unlimited

7. There is a finite and fixed set of candidates facilities

8. We assume a known discount rate for the time value of money (NPV)

In addition, we have some considerations very useful to define the problem
size:

• the time span is finite and discrete, where

t ∈ T = {t0, t0 + 1, . . . , T}, (2.1)

and

t ∈ T = {t0, t0 + 1, . . . , T − 1}, (2.2)

and t denotes the beginning of the period [t, t+ 1[; we call t0 the initial time
and T denotes the last time period.

• we denote the set of facilities as

i ∈ I = {1, . . . , I} (2.3)

this set is split in two disjoint subsets, Io represents the subset of open
facilities and Ic is the subset that contains the candidate facilities, with

I = Io ∪ Ic and Io ∩ Ic = ∅. (2.4)
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2.1.2 Parameters

As we mentioned in §2.1.1, Net Present Value is considered in order to tackle the
problem as an investment project for the company. Also, we establish associated
parameters to compute incomes and costs

Hereafter, whenever we speak of indexes t and i, it is assumed that each one
are included in sets T and I respectively:

• r is a discount rate used in discounted cash flow,

• cfi fixed costs arise to open a new selling point, it will be zero when the
facility i is already open

• pt unitary selling price at the time t

• cpt unitary purchase price at the time t

• cdit unitary cost for the transportation from the supplier to the retailer i at
the time t

• csoit unitary cost of stockout at the retailer i and time t

• cht unitary holding cost at time t

• ceijt unitary cost to transshipment product from the retailer i to retailer j at
time t

• S]i storage capacity in the retailer i

2.2 Variables

We are going to present two kind of variables that intervene in our mathematical
formulation.

2.2.1 Decision variables

Here, we present the decision variables of the problem. Later, we will classify
them, based on standards frequently used to tackle stochastic programs:

• Yi Location are the decisions about to keep open or closed a selling point i
during the time span; these are boolean variables wherein 1 means to open
the selling point and 0 the opposite choice

• Sit Stock is the quantity of product storage at the beginning of period
[t, t+ 1[ at the retailer i, belonging to the set S = [0, S]]
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• Qit Order Size is the quantity of product bought by the retailer i to the
supplier, available at the beginning of the period [t, t+ 1[, belonging to the
set Q = [0, Q]]

• Mijt Transshipment is the quantity of product delivered from the retailer i
to retailer j at the beginning of the period [t, t+ 1[

• Oit Sales at the retailer i during the time period [t, t+ 1[

• Fit Stockout at the retailer i during the time period [t, t+ 1[

2.2.2 Uncertain variables

We represent the sequence of demands as a stochastic process denoted {(Wit)t∈T, i∈I}.
Particularly, Wit is the random variable of the demand at location i during the
period [t, t + 1[ belonging to the set W =

[
W [,W ]

]
, where W [ is the minimum

level of the demand and W ] is the maximum.

2.3 Mathematical propositions

We now introduce mathematical expressions for inventory flow and the decision
maker’s objective as below.

2.3.1 Dynamics

The dynamics help us to hold a correct inventory flow across consecutive time
periods

Si,t+1 = fit(Sit,Qit,Mijt,Oit), ∀ i ∈ I, t ∈ T. (2.5)

Both in deterministic and stochastic RLP versions, the dynamics has some
special modifications. We present a generic function of the future stock depending
of the previous stock, order size, transshipments and sales.

2.3.2 Criterion

The decision maker’s problem is to maximize the profit taking into account price
and costs presented in §2.1.2 for each period over the time horizon. Total profit
is computed as follows:

∑
i∈I

−cfi Yi −
∑
t∈T

(
(pt − cpt )Oit − csoit Fit − cditQit − cht Sit −

∑
j∈I

ceijtMijt

) . (2.6)
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The criterion computes tidily: location decision costs, gross income, minus
stockout costs, minus delivery costs, minus inventory holding costs minus trans-
shipments costs.

Why did we introduce all this? As we mentioned in §1.1, there is a series
of different problems related to the Retail Location Problem (RLP). All concepts
introduced in this chapter will be used in several ways across the document, in
such way that this is a general framework to tackle the problem.



Chapter 3

Deterministic Retail Location
Problem

This chapter present our first approach to the Retail Location Problem (RLP).
We begin with the deterministic problem statement, then we formulate the math-
ematical model and finally we show an useful analysis for next chapters.

3.1 Optimization problem ingredients

We remember that the main motivation to do this project is studying the Re-
tail Location Problem. Our first approximation is a Mixed Integer Linear Pro-
gram (MILP) where we consider location decisions for new selling points under
deterministic demands. Now, We present some considerations with respect to
statements introduced in chapter 2.

3.1.1 Definitions

We use the decision variables described in §2.2.1. However, we need a special
consideration to distinguish deterministic and stochastic versions.

Remark 1 In terms of problem’s notation, we present random variables in bold
type, while in deterministic version those variables are typed in small. For exam-
ple, the demand Wit is a parameter and not a random variable Wit.

The following proposal of RLP can be formulated as a Mixed Integer Program
where the demand can be anticipated and it is just one input for the model.

18
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3.1.2 Criterion

We consider the criterion defined in equation (2.6) changing only the boldface on
variables

−
∑
i∈I

cfi Yi −∑
t∈T

(
(pt − cpt )Oit − csoit Fit − cditQit − cht Sit −

∑
j∈I

ceijtMijt

) , (3.1)

3.2 Optimization problem

Before explaining the optimization problem’s structure, we clarify the notation
used above: O(i.), Q(i.), S(i.), F(i.),M(ij.) are sequences that represent periodic
decisions over the time span:

Z(i.) = {Zi,t0 , . . . , Zi,T}, ∀ i ∈ I. (3.2)

Our goal is to maximize the profit using the criterion described previously
under a set of constraints. Then, the optimization problem is performed as follows:

max
Yi,O(i.),Q(i.),S(i.),F(i.),M(ij.)

−
∑
i∈I

cfi Yi −
∑

t∈T

((pt − cpt )Oit − csoit Fit − cditQit − cht Sit −
∑
j∈I

ceijtMijt)

 , (3.3a)

s.t.

Sit ≤ YiS
]
i , ∀ i ∈ I, t ∈ T (3.3b)

Oit + Fit = YiWit, ∀ i ∈ I, t ∈ T (3.3c)

Yi = 1, ∀ i ∈ Io (3.3d)

Si,t0 = 0, ∀ i ∈ I (3.3e)

Miit = 0, ∀ i ∈ I, t ∈ T (3.3f)

∑
j∈I

Mijt ≤ Sit, ∀ i ∈ I, t ∈ T (3.3g)

Si,t+1 = Sit −Oit +Qit +
∑
j∈I

Mjit −
∑
j∈I

Mijt, ∀ i ∈ I, t ∈ T (3.3h)
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Oi,T = Si,T +Qi,T , ∀ i ∈ I (3.3i)

Yi ∈ {0, 1}
Oit, Qit, Sit, Fit,Mijt ≥ 0 ∀ i, j ∈ I, t ∈ T

(3.3j)

The objective function (3.3a) is the Net Present Value of the profit for all
retailers, accumulated through the time span.

The constraints (3.3b) ensure that the inventory in each retail does not exceed
the maximum capacity of storage for every period. Constraints (3.3c) keep the
balance between sales, stock-out and demand for every period. The constraints
(3.3d) force the retailers (in the set Io) to remain open. Constraints (3.3f) and
(3.3g) prohibit the shipments from a retail to itself and ensure that the trans-
shipments are done only from open selling points. (3.3e) is used to set the initial
inventory in every selling point.

Moreover, the dynamics in equation (2.5) become in the constraints (3.3h) for
our MIP, guarantying the inventory flow conservation through all periods, and at
the horizon (last time period) the sales are calculated by (3.3i).

Finally, constraints (3.3j) denote the nature of the decision variables.

3.3 Computational experiments

After displaying the mathematical model, we proceed to solve some instances
through classic resolution methods. Then, we conclude and analyze the results.

3.3.1 Numerical data

We have developed 50 instances with T = 72, T = {1, 2, . . . , 72} periods for the
planning horizon and I = 10, I = {1, 2, . . . , 10} facilities whereby, between 2 and
5 were opened at the beginning of the time span Io and the other were candidate
facilities Ic. The features for these instances were:

• I = 10 facilities opened and candidates

• For the NPV we use a discount rate r = 6% per year or 0.5%

• Some parameters for the model were randomly generated using uniform
distributions as follows1:

1Naturally we have used some particular probability distributions as a strategy to build our
instances, specifically to generate parameters as costs and demand. This does not mean that
we are working with random variables, but that we develop instances under those assumptions.
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– Fixed cost to open a new selling point cfi between $50, 000, 000 and
$250, 000, 000 COP

– Delivery costs cdit between $600 and $1, 200 COP

– Transshipment costs ceijt between $200 and $400 COP

– Retailers’ capacity S]i between 50 and 200 units of product

• Each retailer had an associated demand Wit created randomly for the in-
stances by a normal distribution with a mean between 80 and 120, and a
standard deviation between 8 and 12 units of product.

• The unity gain, given by the difference between price pt and Unitary cost cpt
is $15, 000 COP

• Inventory holding cost cht was $1, 000 COP

• Stockout cost csoit was $1, 500 COP

The size of the set T, chosen by 72 months, is one of the most common time
horizon which general managers and/or investors impose to recover the money
invested in some project (open new selling points in this case).

3.3.2 Resolution method

To solve our linear model (3.3), we use Mixed Integer Linear Programming solver
CPLEX in GAMS Software Version 23.5. CPLEX uses branch and cut algorithm
to find the optimal solution for this kind of problems.

For all numerical experiments given in this paper we use a computer with
the following features: Intel R© Core(TM) i7-5500U CPU 2.40Ghz Processor and
16Gb RAM.

The deterministic RLP does not generate problems in terms of computational
times, given that we work with small size (for deterministic problems) instances
(I ∗ T ). The largest instance studied had a total of 3, 610 variables.

3.3.3 Results analysis

Computational times

The time to solve the instances is less than 1 second, a very small time regarding
the time span.



22 CHAPTER 3. DETERMINISTIC RETAIL LOCATION PROBLEM

Results

After solving all instances using the data showed in §3.3.1 we found:

• Since remark 1, the variables and parameters are deterministic, then:

Conjecture 1 The demand can be anticipated and the inventory, stockout
and transshipments increase the cost. Thus, the maximum of the problem
(3.3) comes when these variables are equal to zero for every period at each
facility, provided that the retailers’ capacity is not violating. Mathematically
it means that, at the optimum, we expect:∑

i∈I

∑
t∈T

(csoit Fit + cht Sit +
∑
j∈I

ceijtMijt) = 0. (3.4)

The mathematical proof of (3.4) is not available. We admit (3.4) as true
and its demonstration is a pendant issue for future research.

• Related with the previous assertion, in Figure 3.1 you can see how, in prac-
tice: orders, demand and sales are exactly equal, leaving zero transship-
ments, inventory and stockout

Figure 3.1: Deterministic RLP. Instance 4, selling point 2, time periods 1 to 10
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• Based on Conjecture 1 we can propose the rule to open any new facility as
a main result of the program

1. Firstly, we clarify that this rule is true iff sales are no limited to reach
the same demand quantity, that is to say, the orders do not have a limit
(supplier’s capacity is not restricted):

O(i.) = YiW(i.), ∀ i ∈ I

2. Given that the incomes are defined by the sales and the inventory is
zero always:

O(i,.) = Q(i,.) ∀ i ∈ I

Using all previous conclusions, the optimal decision rule for opening deci-
sions should be:



forall facilities i ∈ I

if:∑
t∈T

(pt − cpt )Oit ≥ cfi +
∑
t∈T

cditQit

then:

Yi = 1; and
O(i.) = W(i.)

else

Yi = 0; and
O(i.) = 0

The above procedure implies that, if the total gross income is greater than
the fixed costs for opening location plus total delivery costs, the facility i
must be opened, but in contrary case, it must remain closed.
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3.4 Final considerations

The conclusions presented here are valid under a classical cost’s structure, where
the stockout cost is greater than unitary profit, other cases are outside of our main
interests.

The Deterministic Model is a good initial approach to understand the system’s
behavior. Nonetheless, the proposed formulation is not the best representation
of real-life situations, given that knowing the demand in advance, the optimal
strategy ensures that inventory, stockout and transshipments never occur, which
is rarely the case in real life.

Henceforth, we will propose stochastic programs in order to improve the rep-
resentation of real problems.



Chapter 4

Single Retailer Stochastic
Problem

This chapter presents the first stochastic approach to RLP. We tackle the problem
with only one selling point, and we aim to optimize tactical decisions, orders
and sales, which impact directly on inventory holding and stockout. First, the
mathematical framework is posed, then we formulate the optimization problem
and outline the resolution method chosen. Finally, we present numerical tests
including analysis and conclusions respectively.

4.1 Optimization problem ingredients

As in the deterministic problem, we present some mathematical considerations
with respect to the general framework introduced in Chapter 2.

Remark 2 We introduce a probability space (Ω,A,P) which describes the behavior
of the uncertain variables, and E the mathematical expectation.

4.1.1 Parameters

We can use the parameters defined in §2.1.2, considering that index i is not nec-
essary here, due to we only are studying the operation of one selling point.

4.1.2 Information’s structure

Earlier, we have considered the period [t, t+ 1[ as a time slot wherein simultane-
ously occurs orders, sales, transshipments, stockouts and demands. From now on
we propose a model that represents the chronology of events. Thus, we establish
a neat calendar of the events during [t, t+ 1[:

25
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1. At the beginning of the interval time we observe a stock at the retailer

2. Immediately, we put an order to the supplier, which is available instantly

3. The initial stock plus the incoming order is the product available to satisfy
the demand that comes during the interval

4. The sales come during the interval

5. At the end of the time slot we are sure about the total lost sales (stockout)

The manager must make decisions at the beginning of [t, t+ 1[, before knowing
the demand that will occur during this period. But, he also will be making
decisions once the uncertainty has been revealed.

A decision with index t means that it can only depend on what happened
before t.

4.1.3 Problem variables

The decision variables suffer some changes with respect to previous definitions in
§2.2.1. We classify them in two big categories: state and control variables. State
are partially controllable variables, since they are a result of the random and
control variables. Controls are variable which we can decide in order to change
the system state. Then, we modify the variables index based on considerations of
§4.1.2.

• State variables:

– St stock of product at the beginning of [t, t+1[ and belonging to the
set S =

[
0, S]

]
• Control variables: they are split in two different groups depending if they

are made at the beginning or during and at the end of the time slot
[t, t+ 1[:

The controls made before to the realization of the noise (identified by t
index) are

– Qt ordered product decided at the beginning of [t, t+ 1[ belonging
to Q = Z+ ∪ 0

Moreover, we add the control made once the uncertainty has been revealed
(identified by t+ 1 index):

– Ot+1 sales made during [t, t+ 1[,
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– Ft+1 stockout occurred at the end of [t, t + 1[. We also can present
this variable as the difference between demand and sales:

Ft+1 = Wt+1 −Ot+1. (4.1)

For practicality on notation, we replace Ft+1 in the rest of the document
with the expression in equation (4.1).

Before closing this section, we have to highlight that state and control variables
are also random, due to the direct relations between Demand, Orders, Sales,
Inventory and Stockout, as we will show in §4.2.1.

4.1.4 Criterion

The decision maker aims to maximize the expected profit over the time span, but
its profit depends on the price and costs mentioned in §2.1.2. We sum over T and
consider revenue minus operational costs

E

[∑
t∈T

Lt(St,Qt,Ot+1,Wt+1) +K(ST )

]
, (4.2)

which K is the final profit, obtained according to the stock at the final period
of the horizon, and Lt is called the instantaneous profit:

K(SiT ) = Final profit, period time T,

Lt(St,Qt,Ot+1,Wt+1) = (pt − cpt )Ot+1 − csot (Wt+1 −Ot+1)− cdtQt − cht St︸ ︷︷ ︸
Instaneous profit

. (4.3)

Lt is composed of: revenue, stockout, ordering and inventory holding costs.

4.1.5 Uncertain demand

Stochastic Process: We define the demand as a stochastic process, measurable
with respect to probability space in Remark (2), and denoted by (Wt)t∈T.

In addition, a Scenario Demand is a sequence:

W(·) := (Wt0+1,Wt0+2, . . . ,WT ). (4.4)

Also, we introduce

Ft = σ (Wt0+1,Wt0+2, . . . ,Wt) , (4.5)

as the σ-field generated by the stochastic process of the demand between the
periods {t0, t0 + 1, . . . , t} ∈ T
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White noise assumption: As we will see, Stochastic Dynamic Programming
(SDP) is the resolution method chosen to solve the problem. To use SDP we need
some probabilistic assumptions over the random variables:

• the random variables (Wt0+1,Wt0+2, . . . ,WT ) are independent between them.
Independence is a key assumption on SDP implementations.

• the following marginal distributions describe the behavior of the demand
over the set W:

P{Wt = w} = ξtw, (4.6)

we have noticed that random variables are independent, but not necessarily
identically distributed. This allows us to take into account, for example, seasonal
effects on the demand.

4.1.6 Dynamics

The behavior of the retalier’s stock described in equation (2.5) must be modified
as:

St+1 = ft(St,Qt,Ot+1) ∀ t ∈ T. (4.7)

In this case, the following equations guarantee the flow of the inventory be-
tween subsequent periods of time:

St0 = Sin (4.8a)

St+1 = St + Qt −Ot+1, ∀ t ∈ T (4.8b)

Where Sin is the inventory at the beginning of the time horizon (Initial inven-
tory)

4.1.7 Constraints

On the other hand, we have multiple linear constraints helping us to hold a good
representation of a real-life case

Ot+1 ≤ Wt+1, ∀ t ∈ T (4.9a)

Ot+1 ≤ St + Qt, ∀ t ∈ T (4.9b)

St + Qt ≤ S], ∀ t ∈ T (4.9c)

0 ≤ Qt ≤ Q], ∀ t ∈ T (4.9d)

0 ≤ Ot+1, ∀ t ∈ T (4.9e)

0 ≤ St, ∀ t ∈ T (4.9f)
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The constraints (4.9a) ensure sales less or equal to the demand of the period
[t, t+ 1[. (4.9b) guarantee that sales do not exceed the available quantity of
product. (4.9c) keep the stock under the retailer’s capacity. (4.9d) do not allow
ordering negative or most that the limit quantities of product. (4.9e) and (4.9f)
ensure positives or zero quantities of stock and sales.

4.2 Optimization problem formulation

Using §4.1, we propose the following optimization problem and some considera-
tions about its solution.

4.2.1 Optimization problem

The manager of the company aims to maximize the criterion

max
S,Q,O

E

[∑
t∈T

Lt(St,Qt,Ot+1,Wt+1) +K(ST )

]
, (4.10a)

Subject to:
(4.8), (4.9) and

σ(Qt) ⊂ Ft, ∀ t ∈ T (4.10b)

σ(Ot) ⊂ Ft, ∀ t ∈ T (4.10c)

The objective (4.10a) is to maximize the expected value of the profit under
conditions established in dynamics and constraints presented. Finally, (4.10b)
and (4.10c) are the non-anticipativity constraints expressed as measurability of
the controls with respect to the history of the demand. Recall that σ (X) is the
σ-field generated by the random variable X.

As we can see, this problem has a large number of constraints (4.9). Nonethe-
less, all mathematic expressions are linear. Non-anticipativity constraints are
linear, since they can be written as:

Xt = E [Xt|Ft] , (4.11)

for any control variable, in our case orders and sales restricted in (4.10b) and
(4.10c). the mathematical proof of (4.11) can be consulted in Shapiro et. al. [28].

For simplicity, we propose a more compact formulation that allows us to set
our problem in any linear solver under algebraic modeling:
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max
S,Q,O

E

∑
t∈T

Lt(St,Qt,Ot+1,Wt+1) +K(ST )

 (4.12a)

S.t.

St+1 = ft(St,Qt,Ot+1) (4.12b)

G St +H Qt + I Ot+1 ≤ bt (4.12c)

Qt = E [Qt|Ft] (4.12d)

Ot = E [Ot|Ft] (4.12e)

in which (4.12a) and (4.12b) hold the sense shown in dynamics (4.8) and non-
anticipativity constraints respectively. Moreover, the arrays in (4.12c) are defined
as follows:

G =



0
−1
1
0
0
−1
0


H =



0
−1
1
−1
1
0
0


I =



1
1
0
0
0
0
−1


bt =



w
0
S]

0
Q]

0
0


w represents a realization of the demand (Wt) at time t.

4.2.2 Solution space

We tackle the problem using Stochastic Dynamic Programming (SDP). As a result
of this, we get a strategy or a policy.

Policy 1 : is a decision rule (a function); also, a policy, can be shown as a
sequence of measurable functions π = {πq, πo}, where πq = (πq1, π

q
2, . . . , π

q
T−1) and

πo = (πo2, π
o
3, . . . , π

o
T ). For any stock s, we find the controls q and o.

Specifically, an admissible policy is mapping by
πq : T × S → Q; πo : T × S ×W × Q → O, this policy yields uncertain tra-
jectories for states and controls:

S(·) := (St0 , . . . ,ST−1,ST )

Q(·) := (Qt0 , . . . ,QT−1)

O(·) := (Ot0+1, . . . ,OT )

(4.13)

1under the white noise assumptions 4.1.5, solutions can be looked after as policies
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If we restrict the solution to policies, the optimization problem (4.12) can be
re-written as:

max
π

E

∑
t∈T

Lt(St,Qt,Ot+1,Wt+1) +K(ST )

 (4.14a)

S.t.

St+1 = ft(St,Qt,Ot+1) (4.14b)

G St +H Qt + I Ot+1 ≤ bt (4.14c)

Qt = πq(St) (4.14d)

Ot+1 = πo(St,Wt+1,Qt) (4.14e)

Notice that (4.14d) and (4.14e) let us in a not necessarily linear program.
Then, SDP approach is justified as we are going to show.

4.3 Resolution by Stochastic Dynamic Program-

ming

The Stochastic Dynamic Programming method is an algorithm used to find an
optimal solution of (4.14) through the Bellman equation. Here, we introduce the
concept of Value Function and its usability to get optimal policies.

4.3.1 Additive stochastic dynamic programming equation

The optimization problem (4.14) can be solved using dynamic programming method
if we introduce (4.15) the Value Functions (Vt)t∈T as follows:

VT (s) = K(s), (4.15a)

V̂t(s, q, w) = max
ot+1∈Oad

Lt(s, qt, ot+1, w) + Vt+1 ◦ ft(s, qt, ot+1), (4.15b)

Vt(s) = max
qt∈Qad

E
(
V̂t(s, q,Wt+1)

)
(4.15c)
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The solution spaces Qad and Oad are defined as follows:

Oad(s, q, w) =

{
0 ≤ ot+1 ≤ w
ot+1 ≤ s+ qt

(4.16a)

Qad(s) =


s+ qt ≤ S]

0 ≤ qt ≤ Q]

0 ≤ s
(4.16b)

Optimal policies Based on (4.15) and (4.16), the optimal policies at interval
[t, t+ 1[ are got as:

• For sales: πo(s, w, q) = argmax of (4.15b)

• For orders: πq(s) = argmax of (4.15c)

4.3.2 Sketch of the algorithm

We begin using the general structure of the SDP algorithm with a backward path,
which for each possible state we compute the Bellman function defined in (4.15)

For computational experiments in §4.4, the set W is split in a finite number of
elements (n) between the limits: inferior (W [) and superior (W ]). In that case,
the set’s cardinality is equal to n.

Based on the partitioning of the demand set W mentioned above, the Value
function (4.15) can be written as:


VT (s) = K(s),

Vt(s) = max
qt∈Qad

[∑
w∈W

ξw

(
V̂t(s, q, w)

)] (4.17)

Computing the Value Function (4.15)

The maximization problem (4.17) is solved using SDP algorithm performed as in
Algorithm 1
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input : Discretized number of states and time span. An initial stock, price
and costs, A finite number of realizations of W into W

output: The Value Function Vt(s) at each period and each state
1 begin
2 for time t = T to t0 step −1 do
3 for states s ∈ S do
4 for controls q ∈ Q do
5 for uncertain w ∈W do

6 V̂t(s, q, w) = max
ow

[Lt(s, q, ow, w) + Vt+1 ◦ ft(s, q, ow)]

7 end

8
ˆ̂Vt(s, q) =

∑
w∈W

ξw

(
V̂t(s, q, wk)

)
9 end

10 Vt(s) = max
q

ˆ̂Vt(s, q)

11 end

12 end

13 end

Algorithm 1: Stochastic Dynamic Programming to SRLP

Obtaining the optimal policies

During the execution of SDP algorithm the optimal policies are taken as follows:

at time t and state s

πo(s, w, q) = argmax
ow

[Lt(s, q, ow, w) + Vt+1 ◦ ft(s, q, ow)] (4.18a)

and

πq(s) = argmax
q

[
ˆ̂Vt(s, q)

]
(4.18b)

Hence, having the Value Function Vt(s) we can use it to obtain the best deci-
sions (policies) about qt and ot+1 at each time period over the planing horizon.

Simply, at the time period t we must solve (4.17) and take the corresponding
argmax over qt and ot+1, even if some modifications have been done over the
solution spaces Oad and Qad, e.g. It is possible that at any period [t, t+ 1[ the
probability distribution of the demand change, we could replace ξw,∀ w ∈ W
by its new values ξ′w,∀ w ∈ W and solve (4.17) again, getting the corresponding
argmax over qt and ot+1.
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4.4 Computational experiments

After building an appropriate algorithm for the SDP implementation we create
some instances that allow us to conclude about this optimization problem.

We begin by looking at the behavior of computational times regarding the
number of loops and its sizes. If we look the Algorithm 1, the number of cycles
needed to obtain the Value Function would be |T|× |S|× |Q|× |W|. However, this
is not the real number of cycles. Notice that the stock at time t + 1 depends of
stock at time t and also, it is limited by retailer’s capacity. Thus, the number of
cycles over order size also will depend of those data varying through the algorithm
execution. We leave an example of this situation below.

E.g. at time period t, we suppose that the loop over states says that the stock
is 100 units of product, and the control loop is saying that the order size is 90
units. When we go to the uncertainty’s loop, the first run there says that demand
is equal to 20 units. Now, suppose a retailer’s capacity equal to 100. Here, the
selling point can not sell more than 20 units of product, letting as minimum a
future stock, at time t+ 1, a total of 170 units, which is impossible physically. So
we wish to limit the size order respecting the previous situations.

We redesign our algorithm to enforce the capacity constraint using a simple
trick. When, we go to the loop control, the algorithm looks as follows:

1 begin
2 ...

3 for controls q = 0 :
[
Q] − [Current stock]

]
do

4 . . .
5 end
6 . . .

7 end

Algorithm 2: Stochastic Dynamic Programming to RLP modified

The line 3 of the algorithm 2 ensures that we only cover the order sizes to
bring the stock from current until its maximum (retailer’s capacity). The ellipsis
mean that the algorithm remains as was presented in Algorithm 1.

4.4.1 Numerical data

We have generated random instances in two different fronts. For the first we want
to analyze the computational times to solve it. Secondly, we do a sensitive analysis
varying the stockout cost, in that way we can conclude about an important Key
Performance Indicator in supply chain as the service level.



4.4. COMPUTATIONAL EXPERIMENTS 35

In both cases we use the following parameters, expressed as a percentage with
respect to the unitary product cost (cpt ), given that the analysis is made on per-
centage terms too:

• Unitary selling price pt is 200% of cpt

• Unitary transportation cost cdt is 50%

• Unitary stockout cost csot is also 50%

• Unitary inventory holding cost ch is 20%

First instances: we proceed changing the time span, the discrete number of
states (|S|), order sizes (|Q|), amount of demand (|W|). Hereafter, Table 4.1
shows the respective instances:

Instance |T| |S| |Q|
1 12 11 9
2 12 21 17
3 12 51 41
4 24 11 9
5 24 21 17
6 24 51 41
7 36 11 9
8 36 21 17
9 36 51 41

Table 4.1: Instances proposed to study Single RLP

We also work with larger instances, Table 4.2, to show the ”curse of dimen-
sionality” 2 [31]

Instance |T| |S| |Q|
10 72 11 9
11 72 21 17
12 72 51 41
13 72 101 81

Table 4.2: Larger instances for Single RLP study

2Curse of dimensionality: refers to the exponential grow regarding the high-dimensional
spaces, algorithms as Dynamic Programming have a poor performance in those spaces
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We should highlight that the last state and size order represent S] and Q]

respectively, for all proposed instances.

Second instances: Here, we work with only one size of instances, that is |T| =
72, |S| = 51, |Q| = 51, |W| = 41, and we change the stockout cost as a
percentage of unitary product cost as follows:

csot = {0; 0, 05; 0, 1; 0, 15; 0, 2; 0, 25; 0, 3; 0, 35; 0, 4; 0, 45; 0, 5︸ ︷︷ ︸
Each value generates a scenario

} × cpt (4.19)

Thus, we have 11 instances to analyze the service level at the selling point.

4.4.2 Results analysis

Based on the instances presented we have addressed the analysis in two fronts:
computational times and practical considerations.

Computational times. We work with different size instances, recalling the
machine characteristics presented in §3.3.2. To understand the increasing compu-
tation complexity, we calculate the number of loops L needed to solve a particular
instance:

L = |T| × |S| × (|S|+ 1)

2
× |W| (4.20)

In our case |S| = |Q|, such that we can use any of them in calculation (4.20).
In cases where |S| 6= |Q|, the above expressions must be recalculated.

Table 4.3 presents the summary of computational times for whole instances
defined in §4.4.1, we present both case which the policies over Q(·) and O(·) are
saved and not saved.
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Computational times (seconds)

Instance Loops needed Saving policies Not saving policies
1 6, 534 30 17
2 43, 197 246 105
3 598, 026 10, 670 1, 770
4 13, 662 63 39
5 90, 321 577 263
6 1, 250, 418 38, 885 4, 616
7 20, 790 102 59
8 137, 445 992 397

9 1, 902, 810
insufficient memory

over 64, 800
8, 985

10 42, 174 222 108
11 278, 817 2, 864 816

12 3, 859, 986
insufficient memory

over 64, 800
20, 603

13 29, 623, 401
insufficient memory

over 64, 800
406, 500

Table 4.3: Computational times for instances presented in §4.4.1

Maximum sales policy. Intuitively, we might think that the best solution for
the problem can come deciding to sell the maximum quantity of product at each
time period as we can. This assumption means:

ot+1 = min {st + qt, wt+1} , (4.21)

we developed another version of the algorithm using this decision rule, this
can be seen in Algorithm 3

Here, we only have one maximization operation and that decreases the com-
putational times regarding the Algorithm 1, mainly that we do not have to keep
on computer RAM a huge quantity of data as in the case of sales policy (hyper-
matrices). Table 4.4 presents the computational times using the maximum sales
policy.

We highlight that, using optimal policies and maximum sales policy we get ex-
actly the same results for Value Function Vt(s) and policies over orders πo(s, q, w)
and sales πq(s).
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input : Discretized number of states and time span. An initial stock, price
and costs, A finite number of realizations of W into W

output: The Value Function Vt(s) at each period and each state
1 begin
2 for time t = T to t0 step −1 do
3 for controls q ∈ Q do
4 for states s ∈ S do
5 for uncertain w ∈W do
6 o = min {s+ q, w}
7 V̂t(q, s) =

∑
w∈W

ξw (Lt(s, q, ow, w) + Vt+1 ◦ ft(s, q, ow))

8 end

9 end

10 end

11 Vt(s) = max
q
V̂t(q, s)

12 end

13 end

Algorithm 3: Stochastic Dynamic Programming to SRLP, maximum sales
as policy

Instance Loops needed Computational times (seconds)
1 6, 534 0.3
2 43, 197 2.4
3 598, 026 29.4
4 13, 662 0.9
5 90, 321 4.3
6 1, 250, 418 60.4
7 20, 790 1.2
8 137, 445 6.5
9 1, 902, 810 92
10 42, 174 1.9
11 278, 817 13.8
12 3, 859, 986 197
13 29, 623, 401 1.472

Table 4.4: Computational times for instances presented in §4.4.1 with max sales
policy implementation
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Figure 4.1: Computational times for SRLP

To complete analysis of computational times, the Figure 4.1 shows the relation
between loops and time to find Value Functions for each instance. Also, we can
note the behavior in logarithmic scale for the optimal computation (saving and
not saving policies) and the policy of max sales at each time period.

Stockout and service level. We select a particular instance to analyze the
effect of stockout cost over the service level; the details were presented in §4.4.1.
The instance describes a selling point where the stock St can be into [0, 50] and
same case for orders Qt ∈ [0, 50]; on the other hand we consider the demand
Wt ∈ [10, 50].

We carry out a Monte Carlo Simulation after to obtain the optimal Value
Function. Then, the figures 4.2 and 4.3 show the averages of stockout by period
and total service level. We can notice when the stockout cost increase, the quantity
of lost sales is reduced, given that the order size for the policy also increase. That
is logical result, because if you have a higher stockout cost, you will try to avoid
it.
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Figure 4.2: Stockout average for SRLP varying sotckout costs

Figure 4.3: Service level comparison for SRLP varying stockout costs
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Given that in some cases we can not find significant differences in service levels
when the increments of stockout cost are made it, we have developed a statistical
test to analyze the situation.

Taking into account that the same scenarios for Monte Carlo simulation were
used for each stockout percentage cost, we develop a t-paired test with a signif-
icance level of 5% to compare (35% µso = 0.6923 σ = 0.2066) and (40% µso =
0.6876 σ = 0.2055) cases. Under those conditions there is no significant evidence
to reject the null hypothesis of parity between means, even taking a higher signif-
icance level.

On the other hand, we have Figure 4.3 presenting the results about service
level, when increasing stockout costs the lost sales amount decrease, which is
equivalent to increase the service. Under conditions presented for the instance
in §4.4.1 and varying the stockout cost between 0% and 50%, the service level is
between 94, 6% and 98, 2%. As in computational times, the simulation did it here
give us exactly the same result with optimal and maximum sales policies.

4.5 Final Considerations

Regarding computational times we can note how the resolution method suffer
the course of dimensionality even for SRLP, that lead us in trouble to tackle the
N-retailers problem as we will see in chapter 5.

The maximum sales policy shows an excellent performance for cases where
prices and costs hold constant over the time horizon. Nonetheless, it would be
interesting to analyze its results in cases whit for example non-linear prices and
costs, or even whenever those parameters are random.

Finally, we find very interesting results in practical implementations of the
algorithm, since the averages of service level and lost sales can be established
according the sotckout cost, keeping the remaining parameters constant. This
model is easy implementable for a single selling point in order to manage its
inventory policy, it is highly useful in order to replace rules as Economic Order
Quantity (EOQ), Minimum Order Quantity (MOQ) or others, given that our
model is versatile to tackle not identically distributed demands between time
periods.



Chapter 5

N-retailers and RLP Stochastic
Programs

In this chapter, we present the statement of problems that involve both more than
one selling point and facility location decisions. Furthermore, we introduce a brief
proposition of a mixed algorithm based upon both of Stochastic Dual Dynamic
Programming and Progressive Hedging.

5.1 N-retailers stochastic program

In chapter 4 we worked with a RLP where only one selling point was taken into
account. Here we present a problem with several selling points managed by the
same company. The optimization problem ingredients and mathematical model
are introduced below.

5.1.1 Optimization problem ingredients

In general, we hold a similar structure as in chapter 4, we will remind general
sections of SRLP in order to highlight the main considerations when we talk
about N-retailers Location Problem (NRLP from now on).

Parameters: These can be seen in §2.1.2

Information’s Structure: We hold the structure presented in §4.1.2.

Variables: We take aspects defined in §2.2.1 and other shown in §4.1.3. In
the SRLP we used variables without i index, but for NRLP we have to include
it, recalling that each element of the set I represents one selling point. On the
other hand, we also consider the general problem statement using transshipments
variable.

42
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• Mijt as the quantity of product delivered from the retailer i to retailer j at
time t, decided once we have received the order Qit (beginning of period
[t, t+ 1[)

Given that we can have control over those quantities of transshipments, these
are included in control variables.

State variables remain as in SRLP. However, the states’ space grow up expo-
nentially. We can explain the phenomenon considering a couple of selling points,
in that case one state is defined by an ordered pair of numbers, each one repre-
senting the stock at one facility.

I.e. if we have 10 possible states for each retailer, the states’ space would be:

s =
{
{s0, s0}, {s0, s1}, . . . , {s0, s9}, {s1, s0}, {s1, s1}, . . . , {s9, s9}

}
.

Where s0 = 0 and s9 = S]. In that way, the total number of possible states
for NRLP is

|S| =
∏
i∈I

|Si| ,

wherein |Si| represents the number of possible states at each retailer i.

Criterion: we use the mathematical expression presented in (2.6) removing the
strategic decisions handled by variable Yi and including the expected value con-
sidering the stochasticity on the demand

E

∑
i∈I

∑
t∈T

Lit(Sit,Qit,Oi,t+1,Mijt,Wi,t+1) +Ki(SiT )

 , (5.1)

we recall §4.1.4 that K is the final profit, obtained according to the stock at
the final period of the horizon, and Lt is called the instantaneous profit:

Ki(SiT ) = Final profit, facility i period time T,

Lit(Sit,Qit,Oi,t+1,Mijt,Wt+1) =

(pt − cpt )Oi,t+1 − csot (Wi,t+1 −Oi,t+1)−
cdtQit − cht Sit −

∑
j∈I

ceijtMijt︸ ︷︷ ︸
Instantaneous profit

(5.2)
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Uncertain demand: we defined the stochastic process of demand in 4.1.5, the
same concepts are applied in NRLP adding that we work with a set of stochastic
process, one by each selling point i

Wi(·) := (Wi,t0+1,Wi,t0+2, . . . ,Wi,T ), ∀i ∈ I (5.3)

Also, we need to clarify the σ-field generated by stochastic processes of the
demand

Wt = (W1,t,W2,t, . . . ,WI,t) (5.4)

Then, using (5.4), notation introduced in 4.5 can be hold, keeping on mind
that for this case at each time t, the demand Wt contains every random variable
associated with locations i ∈ I.

Further on, we propose a mixed SDDP algorithm, which we hold the assump-
tions of white noise in §4.1.5.

Dynamics: The NRLP dynamics go through some modifications generated by
the transshipments variables

Si,t+1 = ft(Sit,Qit,Oi,t+1,Mijt) ∀ t ∈ T, (5.5)

or explicitly

Si,t0 = Si,in (5.6a)

Si,t+1 = Sit + Qit −Oi,t+1 −
∑
j∈I

[Mijt −Mjit], ∀ i ∈ I, t ∈ T (5.6b)

Constraints: Transshipments also have an effect here, shown as follows

Oi,t+1 ≤ Wi,t+1, ∀ i ∈ I, t ∈ T (5.7a)

Oi,t+1 ≤ Sit + Qit −
∑
j∈I

[Mijt −Mjit], ∀ i ∈ I, t ∈ T (5.7b)

−S]i ≤ −Sit −Qit +
∑
j∈I

[Mijt −Mjit], ∀ i ∈ I, t ∈ T (5.7c)

0 ≤
∑
j∈I

Mijt ≤ Sit + Qit, ∀ i ∈ I, t ∈ T (5.7d)

0 ≤ Qit ≤ Q], ∀ i ∈ I, t ∈ T (5.7e)

0 ≤ Oi,t+1, ∀ i ∈ I, t ∈ T (5.7f)

0 ≤ Sit, ∀ i ∈ I, t ∈ T (5.7g)

0 ≤ Mijt, ∀ i, j ∈ I, t ∈ T (5.7h)
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Ultimately, each constraint holds the same sense that in SRLP; we only add
index i and transshipments considerations in equations which require that. We
only add (5.7d) to ensure that transshipments do not exceed quantity of product
and (5.7h) to declare transshipments as positive variable.

5.1.2 Optimization problem formulation

In this section we take all elements defined in §5.1.1 until to present the Value
Function to contextualize SDP and SDDP implementations.

Mathematical modeling: Gathering elements presented up to this point we
can formulate NRLP as follows

max
S,Q,O,M

E

∑
i∈I

∑
t∈T

Lit(Sit,Qit,Oi,t+1,Mijt,Wi,t+1) +K(SiT )

 , (5.8a)

Subject to:

(5.6), (5.7) and

σ(Qit) ⊂ Ft, ∀ i ∈ I, t ∈ T (5.8b)

σ(Oit) ⊂ Ft, ∀ i ∈ I, t ∈ T (5.8c)

σ(Mijt) ⊂ Ft, ∀ i, j ∈ I, t ∈ T (5.8d)

Value Function: The optimization problem (5.8) is solved using the concept
of Bellman function as was presented in SRLP

VT (s) =
∑
i∈I

Ki(si), (5.9a)

V̂t(s, q,m,w) = max
oi,t+1∈Oad

∑
i∈I

[Lit(sit, qit, oi,t+1,mijt, wi,t+1)

+Vt+1 ◦ ft(sit, qit, oi,t+1,mijt)] ,

(5.9b)

Vt(s) = max
qt,mt∈Qad

E
(
V̂t(s, q,m,Wt+1)

)
(5.9c)
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The solution spaces Qad and Oad are defined as follows:

Oad(s, q,m,w) =

 0 ≤ oi,t+1 ≤ wi, ∀ i ∈ I
oi,t+1 ≤ sit + qit −

∑
j∈I

[mijt −mjit] ,∀ i ∈ I (5.10a)

Qad(s) =



sit + qit −
∑
j∈I

[mijt −mjit] ≤ S], ∀ i ∈ I

0 ≤
∑
j∈I

mijt ≤ sit + qit, ∀ i ∈ I

0 ≤ qit ≤ Q], ∀ i ∈ I
0 ≤ sit, ∀ i ∈ I
0 ≤ mijt, ∀ i, j ∈ I

(5.10b)
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5.2 Retail Location Problem

At this point, we can use all definitions of SRLP and NRLP for the final multi-
stage stochastic program to Retail Location Problem. We are going to introduce
a stochastic location variable, as the possibility of opening a new selling point ac-
cording to stochastic demands, and then the corresponding optimization problem.

Holding the structure: The NRLP in §5.1 has the scheme necessary to propose
the RLP formulation. We hold parameters, information’s structure, uncertainty
and dynamics as before, and the remaining concepts suffer small modifications.

Variables: We recall the binary variable Yi as in §2.2.1. Yi or location decision
can be classified as control variable. Nonetheless, we have to be careful considering
that is made only once at the beginning of the time span t0. Consequently,
location variables are not indexed by time t.

The remain variables, state(stocks) and controls (orders, transshipments, sales)
are handled in the same way as NRLP.

Criterion: We modify definition in §2.3.2 only adding the expected value at-
tached to stochastic programs. Keeping NRLP notation, we present:

E

∑
i∈I

J(Yi) +
∑
t∈T

Lit(Sit,Qit,Oi,t+1,Mijt,Wi,t+1) +Ki(SiT )

 , (5.11)

Each term in (5.11) is:



Ki(SiT ) = Final profit, facility i period time T,

Lit(Sit,Qit,Oi,t+1,Mijt,Wt+1) =

(pt − cpt )Oi,t+1 − csot (Wi,t+1 −Oi,t+1)−
cdtQit − cht Sit −

∑
j∈I

ceijtMijt,

J(Yi) =− cfi Yi

(5.12)
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Constraints: Some modification are needed here

Oi,t+1 ≤ YiWi,t+1, ∀ i ∈ I, t ∈ T (5.13a)

Oi,t+1 ≤ Sit + Qit −
∑
j∈I

[Mijt −Mjit],∀ i ∈ I, t ∈ T (5.13b)

−YiS
]
i ≤ −Sit −Qit +

∑
j∈I

[Mijt −Mjit], ∀ i ∈ I, t ∈ T (5.13c)

0 ≤
∑
j∈I

Mijt ≤ Sit + Qit, ∀ i ∈ I, t ∈ T (5.13d)

Mijt ≤ YiS
]
i , ∀ i ∈ I, t ∈ T (5.13e)

0 ≤ Qit ≤ YiQ
], ∀ i ∈ I, t ∈ T (5.13f)

0 ≤ Oi,t+1, ∀ i ∈ I, t ∈ T (5.13g)

0 ≤ Sit, ∀ i ∈ I, t ∈ T (5.13h)

0 ≤ Mijt, ∀ i, j ∈ I, t ∈ T (5.13i)

Basically, these are the same constraints as in SRLP. We only modify (5.13a),
(5.13c), (5.13f) adding Yi variable to take into account if the selling point is open
or close. Furthermore, we add (5.13e) to forbid transshipments if the retailer is
closed.

Optimization problem: The previous considerations lead us

max
Y,S,Q,O,M

E

∑
i∈I

J(Yi) +
∑
t∈T

Lit(Sit,Qit,Oi,t+1,Mijt,Wi,t+1) +Ki(SiT )

 (5.14a)

Subject to:
(5.6), (5.13) and

σ(Qit) ⊂ Ft, ∀ i ∈ I, t ∈ T (5.14b)

σ(Oit) ⊂ Ft, ∀ i ∈ I, t ∈ T (5.14c)

σ(Mijt) ⊂ Ft, ∀ i, j ∈ I, t ∈ T (5.14d)

(5.14e)

5.3 New resolution method

We propose in a mixed resolution method using principles of Stochastic Dual
Dynamic Programming [32] and Progressive Hedging (PH) [33] algorithms. This
section presents the general framework to implement this kind of algorithm
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As in NRLP we can write again the Value Function

VT (s) =
∑
i∈I

Ki(si), (5.15a)

Vt(s) = max
qt,mt∈Qad

E

(
max

oi,t+1∈Oad

∑
i∈I

[Lit(sit, qit, oi,t+1,mijt, wit)

+Vt+1 ◦ ft(sit, qit, oi,t+1,mijt)]

) (5.15b)

In fact, (5.15b) has a two stage stochastic program within itself. Thus, we can
induce a SDDP with Progressive Hedging inside it to calculate the Value Function
at time t and state s.

5.3.1 Generalization of notation:

Given that we have a set of control variables at the beginning of interval [t, t+ 1[
and other during and at the end of the same interval, we introduce a general
notation for this problem and for any other that could be tackle using our proposed
method.

Controls at the beginning of the interval: These controls are

Uit = {Qit,Mijt}, ∀ i, j ∈ I (5.16)

Controls during or at the end of the interval: The controls are

U+
i,t+1 = {Oi,t+1}, ∀ i ∈ I (5.17)

Notice that (5.16) and (5.17) lead us a decision-hazard-decision framework.
This is characterized to the decisions are made before to disclosure the uncertain
demand (decision-hazard framework). Then, the realization of demand comes and
we again make some decision (hazard-decision framework).

Generalized value function: We can generalize the optimization problem with
its respective value function using states (St), two types of controls (Ut, U+

t+1)
and stochasticity (Wt+1).
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In addition, the sets Uad
B and Uad

A contain linear constraints associated with
special characteristics for a given problem.

VT (s) = K(s), (5.18a)

Vt(s)= max
ut∈Uad

B

E

(
max

u+t+1∈Uad
A

Lt(st, ut, u
+
t+1, wt+1) + Vt+1 ◦ ft(st, ut, u+t+1)

)
(5.18b)

The equation (5.18b) is in fact a two stage stochastic program that can be
written as

Vt(s) = max
ut, u

+w
t+1,∈Uad

∑
w∈W

ξw
[
Lt(st, ut, u

+w
t+1,, wt+1) + Vt+1 ◦ ft(st, ut, u+w

t+1)
]
, (5.19)

where Uad = UBad ∩ UAad. Here, we present and study ut as reserve variable
and u+w

t+1 as recourse variable.

5.3.2 Method presentation

Now, we are going to present a DOASA implementation (Dynamic Outer Approx-
imation Sampling Algorithm) as well SDDP is structured in [34]. But in addition,
we plug in a implementation of PH algorithm into the calculation of value function
at time t and state s.

Foundations:

• SDDP: This method is based on the utilization of duality theory to build
cuts, for the convex value function, in a stochastic case when the model is
decomposed stage by stage, as was shown by [32] and [35].

• PH: We can explain the idea behind o fthis algorithm based on Figure 5.1.
Progressive Hedging is also a resolution method for large scale optimization,
where a second stage decision depends of the first one. The algorithm allows
to make different decisions at first stage rather than only one, and step by
step all those first decision are forced to converge the same result. For a
detailed explanation [36] can be consulted.
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Figure 5.1: Progressive Hedging structure

Stochastic Dual Dynamic Programming framework

Recursively, we build lower approximations V̌
(k)
t (s) of the value functions Vt(s),

defined in equation (5.18), as the supremum of a number of affine functions. Each
one of this affine function is called a cut. Here, super index k represent the stage
of the algorithm; we will give more details about it further on.

Furthermore, we assume the following necessary conditions for the algorithm:

• convexity on functions (5.1) and (5.4), and

• linearity on the constraints (5.7)

Bellman operator: We introduce the following operator to simplify notation
and provide a better understanding of the resolution method. For any time t and
some function B mapping the set of states and demands into R, we define the
stochastic Bellman operator Tt:

Tt(B)(s) = max
ut,u

+w
t+1∈Uad

Ew
[
Lt(st, ut, u

+w
t+1, wt+1) +B ◦ ft(st, ut, u+w

t+1)
]

(5.20)
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In that way, the value function simply reads:{
VT (s) = −K(s),

Vt(s) = Tt(Vt+1)(s)
(5.21)

This Bellman operator respect the following properties.

Monotonicity. For any couple of functions (V, V )

∀ s ∈ S, V (s) ≤ V (s)⇒ ∀ s ∈ S, (T V )(s) ≤ (T V )(s). (5.22)

Convexity. For any function V , if Lt is jointly convex in (s, ut, u
+w
t+1), if V is

convex and if ft is affine, then

s 7→ (T V )(s) is convex. (5.23)

Linearity. For any piecewise linear function V , if Lt is jointly convex in
(s, ut,

+w ) and is piecewise linear function, and if ft is affine, then

s 7→ (T V )(s) is a piecewise linear. (5.24)

Duality theory: Assuming that we are at iteration k of the algorithm and
having a lower approximation V̌

(k)
t+1(s) of V

(k)
t+1(s), we consider the problem

max
xt,ut,u

+w
t+1

∑
w∈W

ξw

[
Lt(st, ut, u

+w
t+1, wt+1) + V

(k)
t+1 ◦ ft(st, ut, u+w

t+1)
]
, (5.25a)

s.t s = s
(k)
t , (5.25b)

and β
(k+1)
t the optimal value of (5.25a), and λ

(k+1)
t an optimal multiplier of

the constraint (5.25b), their corresponding mathematical expressions are:{
β
(k+1)
t = Tt(V̌ (k)

t+1)(s
(k)),

λ
(k+1)
t ∈ ∂Tt(V̌ (k)

t+1)(s
(k)),

(5.26)

Then, we can build an affine minorant function of Bellman equation based on
monotonicity, convexity and linearity properties already presented

β
(k+1)
t + 〈λ(k+1)

t , s− s(k)t 〉 ≤ Tt(V̌
(k)
t+1)(s) ≤ Tt(Vt+1)(s) = Vt(s), ∀s ∈ S. (5.27)
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This ensures that s 7→ β
(k+1)
t + 〈λ(k+1)

t , s− s(k)t 〉 is a cut, i.e an affine function
below Vt(s), updating the approximation of value function we obtain:

V̌
(k+1)
t = max

{
V̌

(k)
t , β

(k+1)
t + 〈λ(k+1)

t , s− s(k)t 〉
}
. (5.28)

In addition, we can go to the next time step using ft function

s
(k)
t+1 = ft

(
s
(k)
t , u

(k)
t , u

+w (k)
t+1

)
. (5.29)

Progressive Hedging implementation

Going to equation (5.25) problem. We observe a two stage stochastic program
with reserve and recourse variables, which can be decomposed and expressed as

max
xt,ut,u

+w
t+1

∑
w∈W

ξw

[
Lt(st, u

w
t , u

+w
t+1, wt+1) + V

(k)
t+1 ◦ ft(st, uwt , u+w

t+1)
]
, (5.30a)

s.t s = s
(k)
t , (5.30b)

uwt =
∑
w′∈W

ξw′uw
′

t (5.30c)

This problem can be solved using the Progressive Hedging algorithm as in [35].
Furthermore, (5.30) allows us to keep the general structure of SDDP to get cuts

with β
(k+1)
t the optimal value of the problem, and λ

(k+1)
t the optimal multiplier of

the constraint (5.30b).

SDDP-PH algorithm

At the beginning of step k, we suppose that we have, for each time step t, an
approximation of V̌

(k)
t of V

(k)
t satisfying

• V̌ (k)
t ≤ V

(k)
t ,

• V̌ k
t = K,

• V̌ (k)
t is convex.
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input : Discretized states and time span. An initial stock, Linear Lt
function, A finite number of realizations of W into W

output: The approximated Value Function V̌t(s) at each period and each
state

1 begin
2 Generate L initial cuts V̌t(s) of Vt(s) (Backward phase)
3 for cuts l = 1 to L do
4 for time t = T to t0 step −1 do
5 Solve the problem (5.30) with a PH implementation as 5

β
(k+1)
t = optimal value of (5.30)

λ
(k+1)
t = associate multiplier of constraint (5.30b)

V̌
(k+1)
t (s) = max

{
V̌

(k)
t (s), β

(k+1)
t + 〈λ(k+1)

t , s− s(k)t 〉
}

6 end

7 end
8 while Stopping rule is not reached do
9 Forward phase

10 for time t = t0 to T do
11 Generate a random scenario wt0 , . . . , wT−1 ∈W
12 Define a trajectory (s

(k)
t )t=t0,...,T solving by PH 5

13 max
xt,ut,u

+w
t+1

∑
w∈W

ξw

[
Lt(st, u

w
t , u

+w
t+1, wt+1) + V

(k)
t+1 ◦ ft(st, uwt , u+w

t+1)
]
,

14 s.t uwt =
∑
w′∈W

ξw′uw
′

t

15 Use s
(k)
t+1 = ft

(
s
(k)
t , u

(k)
t , u

+w (k)
t+1

)
to define the stock trajectory

16 end
17 Backward phase

18 Using trajectory (s
(k)
t )t=t0,...,T obtained in forward phase

19 for time t = T to t0 step −1 do
20 Solve the problem (5.30) with a PH implementation as 5

β
(k+1)
t = max

xt,ut,u
+w
t+1

(5.30)

λ
(k+1)
t = associate multiplier of constraint (5.30b)

V̌
(k+1)
t (s) = max

{
V̌

(k)
t (s), β

(k+1)
t + 〈λ(k+1)

t , s− s(k)t 〉
}

21 end
22 Check the stopping rule for the algorithm

23 end

24 end

Algorithm 4: Stochastic Dual Dynamic Programming with Progressive
Hedging implementation
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The Algorithm 4 needs two additional clarifications: The stopping rule of the
algorithm and the Progressive Hedging implementation

The problem to must be solved in backward phase and every step of the algo-
rithm is an adequate adaptation of (5.30) as PH suggests

max
st,uwt ,u

w
t+1

[
Lt(st, u

w
t , u

w
t+1, wt+1) + V

(k)
t+1 ◦ ft(st, uwt , uwt+1)

−Λ(k)
w

(
u
w(k+1)
t − uw(k)t

)
− r

2

∥∥∥∥uw(k+1)
t − uw(k)t

∥∥∥∥2
]
,

(5.31a)

s.t s = s
(k)
t , (5.31b)

input : penalty r defined as in [33], initial multipliers
{

Λ
(0)
w

}
w∈W

,

discretized set W into W
output: Optimal first decision ut

1 begin
2 repeat
3 for uncertainty w ∈W do
4 Solve the deterministic problem (5.31),

5 and obtain optimal decision u
w(k+1)
t ;

6 end
7 Update the mean of reserve decisions

u
w(k)
t =

∑
w∈W

ξwu
w(k+1)
t ;

8 Update the multiplier of the measurability penalization by
9

Λ(k+1)
w = Λ(k)

w + r
(
u
w(k+1)
t − uw(k)t

)
,∀ w ∈W;

10 until u
w(k+1)
t −

∑
w′∈W

ξw′uw(k+1) = 0, ∀ w ∈W;

11 end

Algorithm 5: Progressive Hedging implementation into SDDP
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Stopping rule of SDDP-PH: Defining upper and lower bound we can get
the stopping rule of our algorithm, we use the proposal presented by De Lara et.
al [35].

Lower bound, for the approximation as step k is given by V̌
(k)
0 (s0). On the

other, hand, the upper bound is a more complicated to calculate. We do a
Monte-Carlo simulation and computing the expected cost (m̂

(k)
n ) and its respec-

tive standard deviation en, build a confidence interval with α% significant level[
m̂

(k)
n − en, m̂(k)

n + en

]
.

Finally, for the stopping rule, we choose an a priori error ε > 0 and stop the
algorithm when the upper bound m̂

(k)
n + en of the confidence interval, built as in

the previous paragraph, is smaller than ε above the exact lower bound V̌
(k)
0 (s0).

In that way, we have a chance of 1− α that the approximate policy given by the
algorithm yields a value less than ε over the optimal value.

5.3.3 Final considerations

The algorithm presented in §5.3 could be useful to tackle the NRLP problem,
several instances should be studied to analyze its performance. Nonetheless, we
need another kind of method to solve the RLP. Currently, a new research project
is being proposed to extend the SDDP-PH 4 algorithm in order to gather and mix
it with L-Shaped method, which has been proved to solve mixed integer stochastic
programs as can be seen in Birge et. al. [37].



Chapter 6

Conclusions and Future Research

In this report we have outlined a model for the Retail Location Problem. The
model which has been studied in different ways shows us features deserving several
analysis. First, we have been able to show in what the deterministic problem is
not a good representation of real life cases. Since the demand can be anticipated,
the results of the model yield a certain degree of bias in the analysis of the final
company’s profit.

Turning into stochastic programs, we find that RLP is a highly complex model,
considering its features as mixed integer program, time span and general informa-
tion’s structure decision. When we could build the value function for the SRLP,
we tackle the problem with a special implementation of stochastic dynamic pro-
gramming for this kind of problem, which includes a two stage stochastic program
at each time period [t, t+ 1[ (decision-hazard-decision framework). Nonetheless,
the results show a highly computational complexity for this implementation. In-
tuitively, we developed a policy (maximum sales policy) where the second stage is
reduced and consequently, we get value functions with similar or equal profit re-
sults regarding the optimal proposed previously. Likewise, we study the behavior
of stockout and service level versus established value of stockout cost. It is pretty
clear that each real life case will have prices and costs that generate its proper
service level, however, our proposed instances shown how we can produce levels
between 93% and 98%.

On the other hand, we present the NRLP and RLP stochastic programs. We
mentioned before the complexity of these problems. Thus, we are proposing a new
resolution method that allows us to overcome the ”curse of dimensionality” in [31],
a mix between SDDP and Progressive Hedging (SDDP-PH) is posed to study
frameworks of decision-hazard-decision structure. Currently, implementations of
our proposal in §5.3 are being conducted to measure its performance in high
dimension problems.

57



58 CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

Furthermore, the RLP which involves strategic decisions to new locations is
still an open issue, it could be interesting to create new resolution methods in-
tegrating e.g. L-Shaped and SDDP-PH algorithms. Nonetheless, this is no the
only way to study that problem, other implementations can be proposed in future
research projects using for example approximate dynamic programming.

Finally, we can present other possibles extensions of our research including for
example: stochastic costs, prices or lead times. The RLP presented here, only
is able to handle open decisions at the beginning of the time span, it would be
interesting to propose a new model that considers these decisions at any time
period across the whole time span. That model is interesting for business which
work with rented facilities.
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