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a b s t r a c t 

Using deeply recurrent neural networks to account for temporal dependence in electroencephalograph 

(EEG)-based workload estimation is shown to considerably improve day-to-day feature stationarity re- 

sulting in significantly higher accuracy ( p < .0 0 01) than classifiers which do not consider the temporal 

dependence encoded within the EEG time-series signal. This improvement is demonstrated by training 

several deep Recurrent Neural Network (RNN) models including Long Short-Term Memory (LSTM) archi- 

tectures, a feedforward Artificial Neural Network (ANN), and Support Vector Machine (SVM) models on 

data from six participants who each perform several Multi-Attribute Task Battery (MATB) sessions on five 

separate days spread out over a month-long period. Each participant-specific classifier is trained on the 

first four days of data and tested using the fifth’s. Average classification accuracy of 93.0% is achieved us- 

ing a deep LSTM architecture. These results represent a 59% decrease in error compared to the best previ- 

ously published results for this dataset. This study additionally evaluates the significance of new features: 

all combinations of mean, variance, skewness, and kurtosis of EEG frequency-domain power distributions. 

Mean and variance are statistically significant features, while skewness and kurtosis are not. The overall 

performance of this approach is high enough to warrant evaluation for inclusion in operational systems. 

Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Teams composed of both humans and machines can potentially 

work together to mitigate their respective inherent weaknesses. 

A computer’s strength is manifested in its ability to quickly and 

correctly compute answers, while humans exhibit superior flexi- 

bility of response to unexpected situations. Thus, Human-Machine 

Teams (HMTs) promise to mitigate inherent limitations on compu- 

tational decision-making in all-human teams while simultaneously 

reducing the brittleness and inflexibility of fully-autonomous sys- 

tems [11] . Team outcomes are improved when one agent (human 

or computer) assists another in the right way at the right time 

[7] . For computers to help humans in HMTs, they must know the 

human’s cognitive state; this knowledge can be obtained through 
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operator functional state assessment (OFSA) [45] . Several meth- 

ods of OFSA exist, which can generally be broken into two classes 

of measures–objective and subjective. Subjective measures usually 

ask the operator to evaluate themselves either during or after the 

task, while objective measures use a physiological sensor such as 

electroencephalograph (EEG) or electrocardiogram (ECG) to provide 

inputs to an algorithm that assesses the operator’s functional state. 

The benefit of objective measures is that they do not interrupt 

the operator while performing the task [41,42] . Continuous non- 

interrupting state assessment is an important characteristic for vi- 

able HMTs outside the laboratory. 

A key subarea of research within OFSA is mental workload esti- 

mation. Enabling the machine in a human-machine team to unob- 

trusively and continuously ascertain the operator’s mental work- 

load is the first step in closing the machine-to-human augmen- 

tation loop. In order for augmentation to be effective, it must be 

driven by an accurate estimate of mental workload [7] . A common 

http://dx.doi.org/10.1016/j.patrec.2017.05.020 

0167-8655/Published by Elsevier B.V. This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

http://dx.doi.org/10.1016/j.patrec.2017.05.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.05.020&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ryan.hefron@afit.edu
http://dx.doi.org/10.1016/j.patrec.2017.05.020
http://creativecommons.org/licenses/by/4.0/


R.G. Hefron et al. / Pattern Recognition Letters 94 (2017) 96–104 97 

method for estimating mental workload is to first use statistical 

machine learning to fit a model which enables prediction of mental 

workload from the physiological signals, and then use that model 

to make mental workload estimates from newly-gathered physio- 

logical signals [44] . 

The utility of an OFSA system will depend on the benefits of ac- 

curate assessment and the costs of errors. This cost-benefit trade- 

off will be application-specific and different for correctly identify- 

ing high and low workload states depending on the types of aug- 

mentation tied to a given state and the consequences of incor- 

rect/inappropriate activation or lack of activation. These errors di- 

rectly impact an operator’s trust in the automation, in-turn affect- 

ing future utility of that automation in a closed loop-fashion [28] . 

Rouse et al. [35] indicated that a 95% accuracy rate for workload 

estimation may be required for a system to be acceptable. Para- 

suraman et al. [31] went further and suggested that if the system 

does not approach 100% accuracy then the costs of inaccuracy and 

lack of trust may lead to the system being unacceptable, especially 

in safety-critical environments. 

Unfortunately, current state-of-the-art systems are not yet able 

to achieve the required accuracy, due in part to the challenge of 

temporal non-stationarity in psychophysiological signals. This chal- 

lenge relates to variation over longer periods of time and depen- 

dence within shorter periods. Both can negatively impact the gen- 

eralizable long term accuracy of workload assessment systems [7] . 

Within shorter spans of time, signals tend to exhibit hysteresis or 

serial dependence. This suggests that there is inherent structure in 

the statefulness in the brain that can be exploited with appropri- 

ate machine learning techniques. While it is difficult to attribute 

this dependence to any discrete set of factors, some of the likely 

possibilities include consistency in default mode activity [34] and 

hysteresis exhibited by most physiological systems. 

In the context of machine learning, temporal non-stationarity 

can be addressed in two ways. The first is through feature genera- 

tion or selection. A better set of features will exhibit less long-term 

non-stationarity and will lead to better model performance. In this 

work, we examine several feature generation techniques to deter- 

mine empirically if certain feature sets are superior to others. The 

second way to address non-stationarity with machine learning is to 

use algorithms that make different assumptions about the nature 

of the data being processed. As it stands, most published research 

on operator workload estimation implicitly assumed temporal in- 

dependence from one time segment to the next. This is likely a 

poor assumption due to both the factors discussed above as well 

as longer term effects such as fatigue and performance hysteresis 

with mental workload transitions [22] . An example from aviation 

illustrates this nicely. If a pilot has just completed flying an in- 

strument approach in instrument meteorological conditions (IMC) 

when an unexpected emergency requires attention, pilot workload 

will increase differently than if the pilot had the same unexpected 

emergency arise following a period of autopilot-on flight at cruis- 

ing altitude in visual meteorological conditions (VMC). This sim- 

ple example illustrates that what has happened in the recent past 

temporally, matters for operator workload assessment. 

Machine learning algorithms that consider past information as 

well as current information when fitting models should perform 

better. Such algorithms must be able to learn a temporal represen- 

tation of the data. A common model used for modeling temporal 

data is the Recurrent Neural Network (RNN). RNNs are neural net- 

works that are able to learn sequences that are not composed of 

independent, identically distributed observations [16] . Rather, they 

are able to elicit the context of observations within sequences and 

accurately classify sequences that have strong temporal correla- 

tions [16] . Historically, RNNs had limitations when training models 

with more than 10–20 time steps which led to poor performance. 

Incorporating longer time-series data streams would cause compu- 

tational sensitivity problems that stymied RNN training. 

Recent developments have resulted in RNN architectural and 

training advances which mitigate these computational problems 

and allow much longer temporal sequences to be processed. One 

approach is the Long Short-Term Memory (L STM) layer. L STM ar- 

chitectures extend the length of sequences that can be considered 

by a RNN by overcoming computational sensitivities encountered 

during backpropagation [21] . For these reasons, they may offer im- 

proved workload classification accuracy over other methods when 

using EEG data. With these improvements in machine learning, 

there is no longer a reason to avoid incorporating temporal con- 

text in a workload model. We capitalize on these machine learning 

developments in our research. 

The primary contribution of this research is demonstration of 

significantly improved cross-day workload classification accuracy 

by integrating contextually relevant algorithmic architectures with 

improved feature generation techniques. We statistically evalu- 

ate all combinations of mean, variance, skewness, and kurtosis of 

frequency-domain power distributions and contrast a variety of 

RNN architectures, to include deeply stacked LSTMs, with base- 

line algorithms and features. Both linear and Radial Basis Func- 

tion (RBF) Support Vector Machines (SVMs) and single-layer feed- 

forward Artificial Neural Network (ANNs) using mean-only features 

are used as baseline cases. We show that by accounting for tem- 

poral dependence using deep LSTM models trained with new fea- 

ture combinations, we can maximize cross-day workload estima- 

tion accuracy resulting in a 58% reduction in classification error 

over baseline methods and a 59% decrease in error compared to 

the best published results for this dataset. 

2. Background and related work 

Temporal non-stationarity of electroencephalograph (EEG) sig- 

nals within individuals is likely caused by a large number of in- 

trinsic and extrinsic factors. Participant motivation and mental or 

physical readiness are examples of some intrinsic factors; extrinsic 

factors include significant differences in EEG electrode placement, 

changes in conductance, and different motion artifacts [8,23,30] . 

Due to the challenge of handling these factors, cross-day non- 

stationarity of EEG signals has motivated a number of related stud- 

ies including several using the same dataset described below. 

2.1. Dataset 

Data for our investigation was used in the 2011 Cognitive State 

Assessment Competition [13] and was recorded during a prior hu- 

man research study performed by Wilson et al. [43] . Eight partici- 

pants completed scenarios within the Multi-Attribute Task Battery 

(MATB) [10] environment across five test days spread out over a 

month-long period. Monitoring, communication, resource manage- 

ment, and tracking tasks were presented and manipulated to in- 

duce three levels of difficulty: low, medium, and high [8,43] . Re- 

source allocation errors, monitoring task reaction times, and com- 

munication response times were recorded and used to validate 

that participants experienced distinct low and high difficulty lev- 

els. Participants were trained to asymptotic proficiency prior to the 

first test day [43] . 

For each participant, horizontal electrooculogram (HEOG), verti- 

cal EOG (VEOG), and 19 channels of EEG voltages (according to the 

International 10–20 System) were sampled at 256 Hz. On each of 

the five days, each participant performed three five-minute trials at 

low, medium, and high difficulty for a total of nine trials per day. 

Trials were presented in a random ordering with transition periods 

in between. Each participant completed a 30 s resting baseline at 

the start of each session prior to the MATB task. Only six of the 

participants were used in our study due to missing data from two 

of the original eight participants [19] . Similar to Christensen et al. 
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[8] and Casson [5] , we selected data from the low and high work- 

load conditions resulting in a total of 30 conditions–15 low and 15 

high–for each individual. 

2.2. Within-participant cross-day variability 

Many researchers using this dataset focused their efforts on 

cross-participant variability or a combination of cross-participant 

and cross-day models rather than independently investigating 

cross-day variability within individuals. This section will only con- 

sider those works that exclusively examined within-participant 

cross-day variability. 

In the workload literature using this dataset, three research 

teams focused solely on the performance of classifiers in cross- 

day analyses. Hefron and Borghetti evaluated the variance of 

frequency-domain power distributions as a feature and found it 

to improve accuracy for random forest, Linear Discriminant Anal- 

ysis (LDA), and K-Nearest Neighbors (KNN) classifiers for the two- 

class–high versus low workload–problem. Models built with vari- 

ance and mean features exhibited a 5.8% increase in accuracy over 

models built using only the mean of frequency-domain power dis- 

tributions [19] . In their study, it was postulated that the use of 

skewness and kurtosis as features could generate further gains in 

classification accuracy [19] . 

In another study, Christensen et al. evaluated cross-day clas- 

sification performance of low versus high workload by training 

three classifiers: LDA, Support Vector Machine (SVM), and a single- 

hidden-layer feedforward Artificial Neural Network (ANN) [8] . Two 

SVM implementations were used–one used a radial basis func- 

tion kernel and the other a linear kernel. The authors noted the 

linear kernel performed best and was used for reporting results. 

One portion of the experimental design used leave-one-out cross- 

validation, holding out one day’s data in each case. This proce- 

dure produced five separate testing periods that were used to 

evaluate algorithmic performance. Of note, the SVM achieved 68% 

accuracy, while the ANN attained 83% accuracy [8] . The results 

demonstrated significantly better cross-day performance for the 

neural network compared to more traditional machine learning 

techniques, namely LDA and SVM classifiers. These results indi- 

cated that neural networks may have more capacity to handle non- 

stationarity of feature-to-target mappings. 

In a study very similar to Christensen’s, Casson [5] evaluated 

the effect of temporal stability of feedforward ANNs trained on 

EEG signals with differences of seconds, minutes, hours, and days 

between collection of training data and testing data. While other 

interesting results were presented in the paper, the most relevant 

to our work concerned participant-specific, leave-one-session-out, 

cross-validated models. These models were aimed at producing ex- 

cellent cross-session predictive performance and attained an av- 

erage classification accuracy of 73%. Differences in preprocessing, 

training, and network architecture contributed to the differential 

between these results and ours. 

In all of these investigations, the demonstrated classification 

accuracy fell short of recommendations for use in many opera- 

tional settings. While accuracy requirements will be task specific, 

as discussed in Section 1 , neither Rouse’s desired 95% accuracy 

rate [35] nor Parasuraman’s near 100% accuracy [31] condition 

were met for workload estimation. Since all of these methods as- 

sumed temporal independence between time segments, we believe 

new models that account for temporospatial dependencies and the 

use of new features should be explored. 

2.3. RNNs and LSTMs 

Deep neural networks have been used extensively to achieve 

state-of-the-art results across a wide range of categories including 

Fig. 1. Temporal unfolding of the recurrent unit in the computational graph. On the 

left side is the cyclic graph. All cycles have been removed from the graph on the 

right side by unfolding the cyclic graph in time. Note the weight matrices U , V , and 

W are shared across time. 

image recognition, speech recognition, translation, and image cap- 

tioning [16,17,26,40] . Recurrent Neural Networks (RNNs) are a type 

of deep network where depth is added via a recurrent connec- 

tion in the hidden layer which is used to process sequential data. 

Processing sequential data is fundamentally different than process- 

ing independent identically distributed observations because of the 

distributional dependence on the sequence. In a traditional feed- 

forward ANN, each observation is processed individually and the 

network state does not persist while other potentially sequentially- 

dependent points are processed. Conversely, in a RNN, recurrent 

connections pass state information across time steps allowing pre- 

viously processed observations to affect the subsequent observa- 

tions [29] . 

Feedforward ANNs have a directed acyclic computational 

graph–one layer feeds to another with no cycles. RNNs can be un- 

derstood as an extension to the feedforward structure allowing for 

cycles in the graph structure. Fig. 1 shows how very deep com- 

putational graphs can be created when the recurrent connections 

are unfolded in time. The process of unfolding a recurrent net- 

work simply requires removal of all cycles in the graph to form 

a directed acyclic graph [15] . To allow these networks to learn 

important pieces of information that may be located at different 

positions in the sequential data, the input, recurrent, and output 

weight matrices’ parameters are shared [15] . If different parame- 

ters were used for each time step, no generalization across time 

would be possible; sharing parameters allows the network to keep 

track of state. Since temporal non-stationarity of EEG signals across 

days is a challenge, we needed to ensure the temporal sequences 

supplied to our model did not exceed periods of time over which 

feature-to-target non-stationarity would occur. 

In addition to the depth of a RNN due to unfolding over time, 

depth can be added to the network when recurrent layers are 

stacked in a sequence-to-sequence fashion. This means that the 

output from one layer of a RNN returns a sequence of vectors 

which form the input to the next layer. Graves et al. demonstrated 

that deeply layering RNNs has a more beneficial effect than merely 

adding memory cells [17] . The lower layers transform input se- 

quences into more easily learned representations in the higher lay- 

ers, resulting in better classification accuracy [15] . 

One problem with the simple recurrent structure shown in 

Fig. 1 is a result of shared weights which produce vanishing and 

exploding gradients during backpropagation through time. This 

limits the sequential depth of simple recurrent units to sequences 

of no greater than 10–20 observations because the signal from dis- 

tant positions will not propagate to the current time [15] . A signif- 

icant innovation which solved this problem was Long Short-Term 

Memory (L STM) [14,21] . L STM provides the algorithm fine con- 

trol over what is put into memory and removed from memory 

in the hidden layer. This is achieved by a combination of three 

gates which control flow into and out of the memory cell: an in- 
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Fig. 2. This illustrates the internal structure of a single LSTM memory cell unfolded in time where x t is the windowed sequence input from time t , and h t is the hidden-vector 

state at time t . Weight matrices are labeled using a from-to subscript convention, W from, to . Biases, b , have subscripts associated with their corresponding gate or activation. 

The following operations are annotated symbolically: X represents matrix-vector multiplication, ◦ is a Hadamard (element-wise) product between two vectors, � is used for 

summations of 3 or more vectors, + indicates the addition of two vectors, finally σ and tanh are respectively a sigmoid function and hyperbolic tangent function applied 

element-wise to a vector. The memory cell state vector propagates along the dashed blue line at the top while the input vector and hidden vector buses are connected as 

shown by the gold and black lines respectively. All three of these vectors should be thought of as column vectors. The size of the hidden vector and memory cell state vector 

are equal to the number of “memory cells” specified during initialization of the LSTM layer. Three sigmoid functions act as gates and are labeled: forget, input, and output. 

If a LSTM returns a sequence, the sequence is a series of the hidden vector states with each corresponding to the output from a particular timestep within the supplied 

temporal window. If a sequence is not returned, typically the last hidden state is returned. (For interpretation of the references to color in this figure, the reader is referred 

to the web version of this article.) 

put gate, a forget gate, and an output gate. Each gate works by 

using an element-wise sigmoid function, σ , to scale each element 

of the gate vector to a value between 0 and 1. The gating func- 

tionality is accomplished by taking this vector of values between 

0 and 1 and performing an element-wise multiplication with an- 

other vector, thus specifying what proportion of the second vector 

passes through the gate; and conversely, determining which parts 

are blocked. Fig. 2 illustrates the internal structure of the LSTM. 

For clarity, we will describe the state of a memory cell at time t 

with recurrent connections from time t − 1 , and to time t + 1 . 

As shown in Fig. 2 , there are two vectors that persist from time 

t − 1 : the hidden vector, h t−1 , and the memory cell state, s t−1 . The 

forget gate f t , as shown in Eq. (1) , determines what to remove from 

the memory cell state. In other words, it forces the memory cell to 

forget things that are not important based on error backpropaga- 

tion: 

f t = σ (W x f x t + W h f h t−1 + b f ) , (1) 

where the weight matrix W xf is the weight matrix from the input x 

to the forget gate f t , x t is the input at time t, W hf is the weight ma- 

trix from the previous hidden vector h t−1 to the forget gate f t , and 

b f is the forget gate bias. The from-to subscript convention is used 

to describe each weight matrix. The input gate i t determines how 

much each element of the candidate update vector, ˜ s t , should be 

added to the corresponding memory cell element at time t based 

on the recurrent connection from the hidden vector h t−1 and the 

sequential input at time t, x t . The gate scales the candidate update 

vector which is the output from a fully-connected tanh layer: 

i t = σ (W xi x t + W hi h t−1 + b i ) (2) 

˜ s t = tanh (W xs x t + W hs h t−1 + b s ) . (3) 

The delicate balance required to maintain memory cell state over 

long sequences is attained by forgetting old information and in- 

corporating new information. Forgetting is accomplished by multi- 

plying the old memory cell state by the output of the forget gate, 

while the new information is supplied by adding the portion of 

each value specified by the element-wise product of the input gate 

with the candidate update: 

s t = i t ∗ ˜ s t + f t ∗ s t−1 . (4) 

Finally, the output gate determines what should be output to the 

hidden vector from the memory cell state, given the temporal con- 

text of the time-step, to minimize error. The output gate, o t , and 

hidden vector, h t , are given by: 

o t = σ (W xo x t + W ho h t−1 + b o ) (5) 

h t = o t ∗ tanh (s t ) . (6) 

2.4. RNN models for EEG analysis 

Despite excellent results in other fields, relatively few re- 

searchers have applied deep neural network techniques to classify 

EEG data. Bashivan et al. [2] trained a deep recurrent-convolutional 

neural network accounting for both temporal and spatial depen- 

dencies in the network. They began by performing a Fast Fourier 

Transform (FFT) on each time-series signal from each electrode 

and estimating the power in the theta (4–7 Hz), alpha (8–13 Hz), 

and beta (13–30 Hz) frequency bands over 3.5 s working mem- 

ory experiment trials with four classes of task difficulty. Then, they 

created a time-series of images by performing a 2-d Azimuthal 

Equidistant Projection (AEP) for power in each of the three dif- 

ferent bands. This preserved distances from each electrode to the 
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center point of the EEG cap, thus accounting for some spatial de- 

pendencies. These images were fed into a series of convolutional 

and max pooling layers. Their best performing model fed the out- 

put from the convolutional portion of the architecture into a 1-d 

convolutional layer, as well as a LSTM layer, and merged the out- 

put from both of these into a fully connected layer. This was then 

connected to a softmax layer which provided the final classification 

result. This complex architecture used 1.62 million parameters and 

was able to reduce the classification error from 15.34% to 8.89%; 

an impressive 42% reduction compared to a baseline radial basis 

function SVM [2] . While a large reduction in error over baseline 

methods was achieved, the complexity and amount of computa- 

tion required to train such a deep network is significant. Our re- 

search sought to examine if similar reductions in error over base- 

line methods could be achieved using different preprocessing tech- 

niques and a less complex deep architecture which only used re- 

current neural networks. 

Two other researchers used a form of the LSTM to analyze EEG 

data. Davidson, et al. found that a small single-layer LSTM was 

able to identify lapses in attention based on EEG spectral data 

better than a tapped delay-line Multilayer Perceptron (MLP) dur- 

ing performance of a visuomotor tracking task [12] . They trained 

their networks in a leave-one-out, cross-subject manner. Their re- 

sults evaluated temporal dependencies out to a length of 6 s and 

showed that accounting for temporal dependence of up to 4 s prior 

to a lapse improved detection. We use an extended temporal win- 

dow of 30 s in this study. In other work, Binz et al. [3] used a 

derivative of the LSTM unit, called Dynamic Cortex Memory (DCM), 

to classify imagined sensorimotor imagery data from a Brain Com- 

puter Interface (BCI) workshop competition [4] . A single hidden 

layer was used with eight DCM units followed by a softmax out- 

put layer. While their results did not achieve state-of-the art accu- 

racy, several advantages were present in their solution. Their net- 

work was able to provide real-time results and their solution did 

not need to specify a time window, since the network learned ap- 

propriate temporally-dependent sequences [3] . Binz’s work largely 

differed from ours since a mixture of within-participant and cross- 

participant models were used to evaluate trials that were sepa- 

rated from the training data by only seconds-to-minutes rather 

than days. The only similarity between our studies was that we 

both used forms of the LSTM architecture to account for temporal 

dependencies in EEG signals. 

In a medical application, several research groups 

[18,27,36,39] successively improved performance of epilepsy 

diagnosis using RNNs. All four groups used various input features 

to train small Elman RNNs in a cross-subject manner using the 

dataset described by Andrzejak et al. [1] . The Elman RNN archi- 

tecture has limited temporal representational capacity compared 

to the networks trained in our investigation. Like our study, each 

research group demonstrated the superiority of an RNN com- 

pared to other neural networks that did not incorporate temporal 

dynamics. However, unlike our experiment, the data sequences 

analyzed did not span temporal lengths great enough to examine 

day-to-day variability. Finally, Guler and Ubeyli both demonstrated 

that summary statistics (min, max, mean, standard deviation) of 

time-varying feature distributions can be useful input features for 

a recurrent model; however, no comparison to a baseline feature 

set was provided in either case. 

The primary difference between previous research and ours is 

that we demonstrate improved within-participant, day-to-day fea- 

ture stationarity by accounting for temporal dependencies in cog- 

nitive activity; whereas the aforementioned studies do not address 

day-to-day variability. Another difference is that the preceding re- 

search focused on either medical uses or state estimation unrelated 

to workload. A final differentiating factor was that many previous 

studies were conducted prior to breakthroughs that enabled drastic 

Table 1 

Test matrix of all combinations of mean, variance, 

skewness, and kurtosis features. ∗ Denotes feature 

sets that were included in models that incorporated 

the mean while all others are models that did not 

incorporate the mean. 

Test run Features included in dataset 

1 ∗ Mean 

2 Variance 

3 Skewness 

4 Kurtosis 

5 ∗ Mean, Variance 

6 ∗ Mean, Skewness 

7 ∗ Mean, Kurtosis 

8 Variance, Skewness 

9 Variance, Kurtosis 

10 Skewness, Kurtosis 

11 ∗ Mean, Variance, Skewness 

12 ∗ Mean, Variance, Kurtosis 

13 ∗ Mean, Skewness, Kurtosis 

14 Variance, Skewness, Kurtosis 

15 ∗ Mean, Variance, Skewness, Kurtosis 

improvements in network performance such as advances in initial- 

ization, optimization, and regularization techniques, as well as the 

rise of abundant computational capacity via Graphics Processing 

Unit (GPU) computing which enables the training of larger, deeper 

networks. 

3. Methodology 

The goal of producing several workload models to evaluate the 

efficacy of new features and LSTM based classification algorithms 

required preprocessing of the EEG data to convert it into the fre- 

quency domain and to extract power in different frequency bands 

as outlined by [19] . Raw EEG data was transformed into features 

in clinical frequency bands (delta (1–4 Hz), theta (4–8 Hz), alpha 

(8–14 Hz), beta (15–30), and gamma (30–55 Hz) to conduct time- 

frequency analysis using the following process: The power spectral 

density was determined for 30 points spread out over a logspace 

from 3 Hz to 55 Hz by extracting power from complex Morlet 

wavelets [9] . Each wavelet was 2 s in length and the number of 

wavelet cycles increased logarithmically from 3 to 10 in conjunc- 

tion with the frequencies. Mean power in each band was deter- 

mined by averaging each power value for the evaluated frequen- 

cies within each of the clinical bands. Power was then aggregated 

over a ten second sliding window with 9 s of overlap, allowing for 

a new update each second. 

Final features were generated by determining the mean, vari- 

ance, skewness, and kurtosis of the power distribution in each of 

these ten second windows for all 19 EEG electrode sites across the 

five frequency bands. This process yielded 380 features for each 

second and approximately 90 0 0 observations per individual for the 

five day period. These features were then centered and scaled by 

session so that each session had a mean of zero and variance of 

one since none of the algorithms used for analysis were scale in- 

variant. The data were split such that the first four days were used 

for training and cross-validation while the last day was reserved 

for testing. 

To examine the effect of inclusion/exclusion of particular types 

of features, the test matrix shown in Table 1 was constructed to 

document features included in each test run. A total of six algo- 

rithms were used to train models: linear SVM (SVM-L), Radial Ba- 

sis Function (RBF) SVM (SVM-R), feedforward ANN (ANN), deeply 

stacked simple RNN (RNN-D), single L STM (L STM-S), and deeply 

stacked L STM (L STM-D). All model development used 4-fold cross- 

validation to select hyperparameters for each model and then final 

models were trained using all data from days 1–4. This process was 
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repeated for each feature set in Table 1 resulting in 90 final mod- 

els for each algorithm. Final models were trained using each set of 

features and differences in classification accuracy due to choice of 

algorithm and feature set were considered. It is important to note 

that the cross-validation data was split so that each fold was a full 

day rather than splitting the folds by random selection of observa- 

tions from the entire dataset. There were two compelling reasons 

for this choice. The first reason was that randomly selected cross- 

validation points allow for too many temporally adjacent points to 

be split between the training and test sets which artificially in- 

flates cross-validation accuracy due to the non-stationarity of the 

datasets. The second reason was to preserve temporal context of 

the data for processing when using RNNs. 

Once final models were produced, classification accuracies for 

the holdout day 5 test set were determined for each individual 

and the algorithm average was calculated across participants. This 

enabled by-algorithm and by-feature set comparisons. Due to con- 

founding effects of algorithm selection and feature sets on clas- 

sification accuracy, an ANOVA test with five factor outcomes was 

performed to elicit the effect of varying levels of each factor. The 

first factor was algorithm selection which had six levels corre- 

sponding to each of the aforementioned algorithms. The remain- 

ing four factors grouped the feature sets in a binary fashion based 

on whether a feature was included or excluded from a particu- 

lar test run. For example in Table 1 , all asterisked runs produced 

models that included the mean, while the others were models that 

excluded mean features. Interaction effects were not examined. A 

significance level of α = 0 . 05 was used to indicate if a factor had a 

statistically significant impact on classification accuracy. The Tukey 

Honest Significant Difference (HSD) test was performed following 

the ANOVA to determine which classification accuracies were dif- 

ferent from each other in the six-level algorithm factor, and to de- 

termine the direction and magnitude of differences across all two- 

level factor comparisons. 

All neural networks were created using the Keras [6] and 

Theano [38] frameworks. The feedforward ANN had a single hidden 

layer that was fully connected with the input layer and the output 

layer. The input consisted of the appropriate number of features for 

a given test run, while the output layer was a single node with a 

sigmoid activation function which forced a classification as either 

high or low workload. Mini-batch gradient descent was performed 

using 600 observations per batch for all neural network imple- 

mentations, and the Adam optimizer was chosen to optimize mini- 

batch gradient descent due to its ability to handle non-stationary 

targets and noisy data [25] . A binary cross-entropy loss function 

was selected as the cost function [15] . The number of nodes in 

the hidden layer was tuned by performing 4-fold cross-validation 

while varying the number of nodes from 50 to 800 in steps of 50. 

This resulted in 3960 cross-validation models being trained. The 

lowest cross-validation error rate was used to determine both the 

number of nodes to use in the hidden layer and how many epochs 

to train the network. 

As illustrated in Fig. 3 , the deep LSTM architecture consisted of 

an input layer, the first sequence-to-sequence LSTM layer, a many- 

to-one LSTM layer, a 20% dropout layer, and a final sigmoid ac- 

tivation function for binary classification. The first hidden layer 

contained 50 LSTM units while the second hidden layer used 10 

units. With unlimited resources, we would have tuned the num- 

ber of hidden layer nodes exhaustively using grid cross-validation. 

However, due to computational resource constraints, several hid- 

den layer sizes were tested for each layer on smaller representative 

sets of data and it was found that reducing the number of LSTM 

units in each layer improved generalization and that empirically, 

50 and 10 appeared to work well. Each network had a lookback of 

30 s of pre-processed features or, for the case of the second layer, 

features generated from the output of the first LSTM layer. Dropout 

Fig. 3. Deep LSTM Architecture: This illustrates the size of the tensor in terms of 

batch size, temporal depth in seconds, and number of features used at each level 

of the network. P represents the number of features used based on the test matrix 

shown in Table 1 , and ranged from 90 to 380 features. Since LSTM 2 does not return 

a sequence, the tensor becomes two-dimensional at that point. 

on the input gates to each LSTM layer and between the final LSTM 

and fully-connected sigmoid layer served as a method of regular- 

ization and was set to 20% [15,37] . Dropout prevents co-adaptation 

of the hidden units by temporarily removing a percentage of ran- 

domly selected nodes, including their input and output, in a given 

layer during a training pass [ 20 ]. This forces hidden units to learn 

features without depending upon particular nodes to correct mis- 

takes made during learning [ 20 ]. While dropout is the most widely 

used regularization method for deep neural architectures, it is also 

important to understand when it is not appropriate to use. The re- 

current connections within the LSTM structure are one such case. 

The purpose of the recurrent connection in a LSTM is to store im- 

portant long-term dependencies. Pham et al. [33] showed that if 

dropout is applied to the recurrent connection, then the long term 

memory becomes corrupted and inhibits learning rather than im- 

proving generalization. Similar to Zaremba et al. [46] , we found 

using a dropout of 20% on the input gates and between the fi- 

nal LSTM output and the sigmoid classification layer provided bet- 

ter results than the typically recommended 50% dropout for fully 

connected layers. The number of training epochs was tuned using 

cross-validation as previously specified in this section. The length 

of training with the lowest cross-validation error rate for each 

participant/feature set combination was selected for final network 

training. All training data was then used to retrain the network. To 

ensure that anomalous behavior was not present in the reported 

results from day 5, all other combinations of cross-validation with 

hold-out test day were performed for the deeply stacked LSTM 

model. No significant deviations from the reported upon results in 

Section 4 were observed due to permuting the test and training 

days. 

Two recurrent networks were trained which were derivatives 

of the deep LSTM architecture. The differences between the archi- 

tectures are detailed next. The deeply stacked simple RNN used 

the same architecture as the deep LSTM except that instead of us- 

ing LSTM units, simple recurrent units were used. Due to param- 

eter sharing in the weight matrix for the recurrent connections 

and a lack of gating functions, the vanishing gradient problem was 

present and restricted the effective temporal period to 10–20 s for 

this model despite 30 s of data being provided as input [15] . The 

second network consisted of an input layer, a many-to-one LSTM 

layer using 50 hidden units, and a sigmoid output layer. Training 

and classification methods using these networks mirrored those of 

the deep LSTM architecture. 

Two categories of SVMs were trained, one with a linear kernel 

as recommended by Christensen et al. [8] , and one using a RBF ker- 

nel. The resulting models were used to compare neural network 

results to those from a more traditional machine learning algo- 

rithm. To train the linear SVM, the appropriate number of features 
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Table 2 

ANOVA table with five factors. Algorithm is a six-level factor indicating the algorithm used: 

L STM-D, L STM-S, RNN-D, ANN, SVM-L, or SVM-R. The final four factors have two levels and 

indicate the feature was either included or excluded. 

Source DF Sum of squares R 2 F Ratio Prob > F 

Algorithm 5 0.7876 0.2774 29.4052 < 0.0 0 01 

Categorized by mean 1 1.2113 0.4266 226.1277 < 0.0 0 01 

Categorized by variance 1 0.2579 0.0908 4 8.144 8 < 0.0 0 01 

Categorized by kurtosis 1 0.0033 0.0011 0.6235 0.4301 

Categorized by skewness 1 0.0028 0.0 0 09 0.5252 0.4689 

Table 3 

Tukey HSD results for all pairs of algorithm levels. 

Model 1 Model 2 Diff Std Err t Ratio Prob > | t | 95% Conf Int 

LSTM-D ANN 0.089 0.011 8.19 < 0.0 0 01 0.058 to 0.121 

LSTM-D SVM-L 0.088 0.011 8.06 < 0.0 0 01 0.057 to 0.119 

LSTM-D SVM-R 0.078 0.011 7.12 < 0.0 0 01 0.046 to 0.109 

LSTM-D RNN-D 0.020 0.011 1.82 0.4536 −0.011 to 0.051 

LSTM-D LSTM-S 0.010 0.011 0.89 0.9493 −0.022 to 0.041 

LSTM-S ANN 0.080 0.011 7.31 < 0.0 0 01 0.049 to 0.111 

LSTM-S SVM-L 0.078 0.011 7.17 < 0.0 0 01 0.047 to 0.109 

LSTM-S SVM-R 0.068 0.011 6.23 < 0.0 0 01 0.037 to 0.099 

LSTM-S RNN-D 0.010 0.011 0.93 0.9382 −0.021 to 0.041 

RNN-D ANN 0.070 0.011 6.37 < 0.0 0 01 0.038 to 0.101 

RNN-D SVM-L 0.068 0.011 6.24 < 0.0 0 01 0.037 to 0.099 

RNN-D SVM-R 0.058 0.011 5.30 < 0.0 0 01 0.027 to 0.089 

SVM-R ANN 0.012 0.011 1.08 0.8906 −0.019 to 0.043 

SVM-R SVM-L 0.010 0.011 0.94 0.9351 −0.021 to 0.041 

SVM-L ANN 0.001 0.011 0.13 1 −0.03 to 0.033 

for a given test run were provided for each observation supplied to 

the SVM. The tuning parameter C set a tolerance for number and 

severity of margin and hyperplane violations–effectively determin- 

ing smoothness of the decision surface [24,32] . This hyperparam- 

eter was optimized using a cross-validated grid search across ex- 

ponentially spaced values of C from 10 −4 to 10 2 resulting in 2520 

cross-validation models for the linear SVM. Nearly all C values se- 

lected for the final models were either 10 −4 or 10 −3 . All training 

data was then used to retrain the linear SVM with the selected 

values for C . The procedure for training the RBF SVM was nearly 

the same as in the linear case, except a cross-validated grid search 

over values of γ and C was performed where the hyperparameter 

γ controlled the radius of influence for a single observation. The 

same range of C values were evaluated while γ was exponentially 

varied from 10 −3 to 10 2 , resulting in 15,120 cross-validation models 

for the RBF SVM. The best hyperparameters were selected and the 

final models were trained. This procedure ensured proper tuning 

to establish a valid baseline for comparison with new techniques. 

4. Results 

Results of the five-factor ANOVA indicate that algorithm type, 

mean features, and variance features had a statistically significant 

effect on classification accuracy (all p -values < 0 . 0 0 01 ). Skewness 

and kurtosis in the presence of mean and variance were not sig- 

nificant ( p -values > 0.43). Table 2 summarizes the results from 

the ANOVA while Tables 3 and 5 display the post hoc Tukey HSD 

results. Results from the Tukey HSD test showed that the ANN 

Table 4 

Cross-participant averaged classification accuracy for each model and feature 

set. Mean, variance, skewness, and kurtosis features are denoted by M, V, S, 

and K respectively. Bold values are models with greater than 90% classification 

accruacy. 

Feature set SVM-L SVM-R ANN LSTM-S RNN-D LSTM-D 

M 0.823 0.834 0.816 0.871 0.884 0.891 

V 0.762 0.769 0.754 0.865 0.850 0.861 

S 0.680 0.694 0.678 0.757 0.760 0.765 

K 0.672 0.686 0.662 0.732 0.736 0.762 

M/V 0.836 0.846 0.844 0.911 0.866 0.911 

M/S 0.823 0.836 0.828 0.878 0.861 0.897 

M/K 0.831 0.843 0.830 0.896 0.884 0.908 

V/S 0.762 0.771 0.748 0.847 0.869 0.862 

V/K 0.758 0.769 0.757 0.863 0.833 0.882 

S/K 0.716 0.733 0.709 0.834 0.770 0.807 

M/V/S 0.839 0.840 0.848 0.909 0.890 0.927 

M/V/K 0.835 0.837 0.838 0.907 0.918 0.930 

M/S/K 0.824 0.838 0.831 0.897 0.911 0.918 

V/S/K 0.759 0.771 0.753 0.846 0.847 0.863 

M/V/S/K 0.835 0.842 0.836 0.913 0.899 0.930 

and both SVM models’ mean classification accuracies were not sta- 

tistically different with p -values ranging from 0.8906 to 1. The 

deep LSTM models demonstrated statistically significant accuracy 

increases of 8.9% over ANN results as well as 8.8% and 7.8% over 

linear and RBF SVM results respectively (all p -values < 0 . 0 0 01 ). 

The participant averaged classification accuracies for each model 

and feature set in Table 4 show that there are 6 feature combi- 

Table 5 

Tukey HSD results comparing models where the feature of interest was included versus 

those where it was excluded. 

Model 1 Model 2 Diff Std Err t Ratio Prob > | t | 95% Conf Int 

Mean -Mean 0.096 0.006 15.04 < 0.0 0 01 0.083 to 0.108 

Var -Var 0.044 0.006 6.94 < 0.0 0 01 0.032 to 0.057 

Skew -Skew 0.005 0.006 0.72 0.4689 −0.008 to 0.017 

Kurt -Kurt 0.005 0.006 0.79 0.4301 −0.007 to 0.018 
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nations that result in classification accuracies greater than 90% us- 

ing the deep LSTM architecture. The highest accuracy feature set 

was attained using all features with the deep LSTM model. This 

model achieved an average classification accuracy of 93.0% across 

participants. This compares favorably to 84.8% and 84.6% for the 

best ANN and SVM cross-participant feature set performance. Fur- 

thermore, this represents a 58% decrease in error compared to the 

best baseline case–the mean-only RBF SVM. These results illus- 

trate the importance of accounting for temporal dependencies in 

workload data. Further examining the results shows that the influ- 

ence of using a temporally-stateful model on classification accuracy 

for workload estimation cannot be understated. In all cases tested, 

every temporally-stateful model outperformed the best perform- 

ing non-stateful model and were found to be significantly different 

than all non-stateful models with Tukey HSD p -values all < 0 . 0 0 01 

( Table 3 ). 

Statistically, inclusion of mean and variance were significant, 

while skewness and kurtosis were not. ANOVA results show a sig- 

nificant effect dependent upon inclusion or exclusion of mean fea- 

tures (p < 0 . 0 0 01) . Post hoc comparisons using the Tukey HSD test 

indicate that average classification accuracy for models including 

the mean features results in an accuracy increase of 9.6% versus 

models excluding the mean features ( Table 5 ). A significant effect 

is also present dependent upon inclusion or exclusion of variance 

features ( p < .0 0 01). The Tukey HSD test shows that average classi- 

fication accuracy for including the variance features increased 4.4% 

versus excluding the variance features. ANOVA and Tukey HSD re- 

sults for skewness (p = 0 . 4689) and kurtosis (p = 0 . 4301) were 

not significant. However, by comparing models with and without 

a single feature, these results merely indicate that kurtosis does 

not add significantly to a model with skewness included and vice- 

versa. We hypothesize that skewness and kurtosis may be more 

important in situations involving workload transitions. We did not 

investigate workload transitions in our research, but expect that 

transitions between different workload levels may first become ap- 

parent in the tails of the distributions. 

5. Conclusion and future work 

Cross-day workload estimation based on EEG is a difficult do- 

main due to temporal non-stationarity of feature-to-target map- 

pings. Previous research on cross-day workload estimation implic- 

itly assumed independence of a participant’s workload from one 

instance to the next due to the algorithms used for analysis. The- 

ory and practical experience show that workload can build in a 

cumulative fashion and that a temporal dependence exists. Recur- 

rent Neural Network (RNN) models, in particular those that use 

Long Short-Term Memory (LSTM) architectures, can account for 

both long-term and short-term temporal dependencies inherent in 

brain activity data. This work also statistically evaluated the util- 

ity of mean, variance, skewness, and kurtosis of frequency-domain 

power distributions and found only the mean and variance to be 

statistically significant. 

This research demonstrated the utility of deep RNN mod- 

els and particular feature sets for cross-day workload estima- 

tion and showed that drastically improved model accuracy can be 

achieved over Support Vector Machine (SVM) and feedforward Ar- 

tificial Neural Network (ANN) models when working with non- 

independent data. Previously, the best accuracy achieved using this 

dataset was 83%. Our models built with deep LSTMs increased that 

accuracy to 93.0%, representing a 58% reduction in classification er- 

ror over baseline methods and a 59% decrease in error compared 

to the best published results for this dataset. This pushed us closer 

to the 95% threshold where adaptive operator augmentation may 

become feasible. 

There is an abundance of future work to be pursued in this 

area. Due to time constraints and computational complexity, only a 

select number of deep architectures were examined during this re- 

search. A thorough evaluation of different deep RNN architectures 

to include variations in the depth of hidden layer recurrent con- 

nections, stacking of different sized LSTM layers, and interleaving 

fully-connected feedforward layers between sequence-to-sequence 

recurrent layers may yield additional improvement. 

Another enhancement for future work would be to include 

workload transitions. We believe that skewness and kurtosis may 

be relevant in datasets where the target workload is transition- 

ing across high and low workload conditions since distributional 

changes may first become evident in the tails of the distributions. 

Other ideas to pursue include creating ensembles of deep RNNs. 

This would almost certainly improve results as long as enough di- 

versity could be added to the ensemble. In our research, we only 

supplied 30 s sequences to the recurrent networks. Exploring vari- 

ations in temporal length supplied to a RNN to examine station- 

arity of target-to-feature mapping for workload estimation using 

electroencephalograph (EEG) would also be an interesting subject 

for future work. Deep RNN architectures could also be used to im- 

prove cross-participant and cross-day classification simultaneously 

by training and testing on all participants grouped together rather 

than individually. Finally, significant improvement could be real- 

ized if time-series data augmentation methods are developed ca- 

pable of forcing a learned invariance to the sources of temporal 

non-stationarity. 
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