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A R T I C L E I N F O
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A B S T R A C T

Time-evolving simulation of sources with partial spatial and temporal coherence is sometimes instructive or
necessary to explain optical coherence effects. Yet, existing time-evolving synthesis techniques often require
prohibitive amounts of computer memory. This paper discusses three methods for the synthesis of continuous
or pulsed time-evolving sources with nearly arbitrary spatial and temporal coherence. One method greatly
reduces computer memory requirements, making this type of synthesis more practical. The utility of all three
methods is demonstrated via a modified form of Young's experiment. Numerical simulation and laboratory
results for time-averaged irradiance are presented and compared with theory to validate the synthesis
techniques.

1. Introduction

In reality, all light is partially (spatially and temporally) coherent.
While fully-coherent or fully-incoherent approximations are sufficient
in some cases, many situations require consideration of light's par-
tially-coherent nature. Primarily motivated by Wolf's seminal work on
the subject [1,2], much work has been performed studying the behavior
of partially-coherent light. Partially-coherent sources have been devel-
oped that produce any desired far-zone irradiance pattern [3–6] and
have customizable polarization and coherence properties [7–15].
Applications of partially-coherent light are many, including particle
manipulation [4,14], remote sensing [16–18], free-space optical com-
munication [19,20], and inertial confinement fusion [21]. The inter-
ested reader is referred to Refs. [22–26] for textbooks and review
papers that summarize the current research involving partially-coher-
ent sources.

Considering their many possible applications, techniques to physi-
cally realize partially-coherent sources with desired coherence proper-
ties are quite numerous [27,8,14,15,28–31,9,32–36]. One approach
uses the coherent mode representation to generate ensembles of
random pulses, where each pulse is independent of all other pulses
[35,36]. More commonly, partially-coherent sources are produced by
synthesizing a set of independent, spatially-correlated complex trans-
mittance or traditional phase screens. The desired moments (often the
mean irradiance or complex degree of coherence) are computed over

the set of random field instances, thus approximating the ensemble
statistics. Assuming ergodicity, this approach produces the long-time
field moments, which are sufficient in many scenarios. However, in
some cases, modeling the time evolution of the partially-coherent
source is important. Examples include high-speed detection of short-
time interference, propagation of optical vortices through turbulence,
and propagation of excimer beams through optical systems [37–39]. In
addition, visualizing the time evolution of the source can yield physical
insight not provided by the ensemble averaging techniques cited above.

Compared to the ensemble averaging approaches, techniques that
model the temporal evolution of partially-coherent sources are rela-
tively few [39,37,40,38]. Of those cited, the works of Rydberg and
Bengtsson [40] and Davis [38] are the most relevant to this paper. Both
the method of Rydberg and Bengtsson and “the separable case” in
Davis produce an instance of a field with a customizable mutual
coherence function (MCF) by filtering a three-dimensional (3D) array
of delta-correlated circular complex Gaussian random numbers. For
computational efficiency, both groups of researchers perform the
filtering operation in the frequency domain using the fast Fourier
transform (FFT) algorithm. The approach discussed in Refs. [40,38] is
very intuitive and permits a broad range of spatial and temporal
coherence functions, but it requires a large amount of computer
resources (in particular, memory) [40]. Indeed, although Rydberg
and Bengtsson do present some results using the approach, the authors
generally dismiss it as being too costly [40].
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In this paper, three techniques to produce time-evolving partially-
coherent sources are presented. The sources need not be cross-
spectrally pure or stationary. The first method, the complex screen
approach, is essentially equivalent to the technique discussed in Refs.
[40,38]. It is presented here for completeness, and more importantly,
because the details are necessary in the development of the other two
techniques, which address two of the major shortcomings of the
complex screen approach. The first of these latter two methods is a
phase-only (i.e., a traditional phase screen) technique. The phase
screen method, easily implemented using a phase-only spatial light
modulator (SLM), is well suited for applications in which control of
field amplitude (required in the complex screen approach) is either
difficult or undesirable. While not new [8], it has not been previously
demonstrated for time-evolving source synthesis, and it is needed for
the experimental portion of this work. The final approach is a novel
hybrid FFT-convolution variant which is applicable to both the com-
plex screen and phase screen techniques. The hybrid FFT-convolution
method significantly reduces the computer memory required to per-
form a time-evolving partially-coherent source simulation or experi-
ment while maintaining good numerical efficiency. For certain pro-
blems, this method avoids the need for resource-intensive distributed-
memory supercomputers, thus offering significant practical benefits.

Section 2 presents the theory necessary to implement all three
techniques for synthesizing time-evolving partially-coherent fields.
Section 3 then presents numerical and laboratory results from a
modified Young's interference experiment. Finally, the time-averaged
irradiance patterns are compared to theory for validation.

2. Theory

2.1. Coherence functions

To begin the derivation, consider a scalar source field
ρ ρE t U t πvt( , ) = ( , )exp(−j2 ), where ρ x yx y= + , v is the mean fre-

quency, and U is assumed to vary slowly relative to the complex carrier
πvtexp(−j2 ). Propagation is in the z direction. The slowly-varying field

U is a complex envelope function which defines the spatial and
temporal coherence of the source. Thus, the proceeding analysis
considers only U. The MCF of U takes the following Schell-model form

ρ ρ ρ ρ ρΓ t t I t I t γ τΔ( , , , ) = ( , ) ( , ) ( , ),U 1 2 1 2 1 1 2 2 (1)

where γ is the complex degree of coherence (DoC), I is the average
irradiance, τ t t= −1 2, and ρ ρ ρΔ = −1 2.

Before discussing the hybrid approach, we present two methods for
generating time-evolving partially-coherent sources. The first method,
called the complex screen (CS) approach, assumes a field of the form

ρ ρ ρU t I t T t( , ) = ( , ) ( , ),CS
(2)

where T is an instance of a random field which varies in both amplitude
and phase. The second method, the phase screen (PS) approach, only
requires control of the field phase. The associated field is

ρ ρ ρU t I t ϕ t( , ) = ( , ) exp[j ( , )],PS
(3)

where ϕ is the phase of the random field instance.
Taking the cross-correlations of Eqs. (2) and (3) and comparing

those expressions to the MCF in Eq. (1) yields the following relations:

ρ ρ ργ τ T t T tΔ( , ) = ( , ) *( , )CS
1 1 2 2 (4)

and

ρ ρ ργ τ ϕ t ϕ tΔ( , ) = exp[j ( , )]exp[−j ( , )] .PS
1 1 2 2 (5)

The angle brackets 〈〉 represent the averaging operator. Because we are
working with the complex field envelope U, the above expressions are
centered about zero temporal frequency rather than the mean optical
frequency. Later, we will observe that the present treatment is justified

and greatly eases the numerical analysis.
Note that for the complex screen approach, the cross-correlation of

T directly relates to γCS. Thus, to synthesize partially-coherent fields
using the complex screen approach, one only needs to generate random
numbers whose correlation matches γCS. This is shown in the next
section. On the other hand, for the phase screen approach, the cross-
correlation function of ϕ is not directly related to γPS. Thus, the
derivation of the phase screen approach is more involved than the
complex screen method.

As an example of the extra steps required for the phase screen
method, first assume the field is cross-spectrally pure such that γPS is
separable in space and time. The phase cross-correlation function γϕ

PS

must also be separable. Let the spatial correlation of both the phase
and the field be Gaussian; let the temporal correlation be Lorentzian.
The DoC of the field can then be written as

⎛
⎝⎜

⎞
⎠⎟ργ τ Δρ

δ
πΔv τΔ( , ) = exp − exp(− ),PS

2

2
(6)

where δ is the spatial coherence radius and vΔ is the half-power
bandwidth. For the phase ϕ, let the cross-correlation function be

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ργ τ Δρ

l
τ
τ

Δ( , ) = exp − exp − ,ϕ
ϕ ϕ

PS
2

2
(7)

where lϕ and τϕ are, in essence, the phase spatial coherence radius and

coherence time, respectively. We desire to relate γPS to γϕ
PS. As such,

assume that the phase is Gaussian distributed with zero mean. Then,
Eq. (6) simplifies to

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥
⎫⎬⎭ρ ργ τ σ γ τΔ Δ( , ) = exp − 1 − ( , ) ,ϕ ϕ

PS 2 PS

(8)

where σϕ
2 is the phase variance [8,41].

To progress, let σ ⪢1ϕ
2 . Then, γ ≈ 1ϕ

PS (implying that

ρ l τ τΔ / + / ≈ 0ϕ ϕ
2 2 ) if γPS is to have significant value. This motivates

expanding γϕ
PS in a Taylor series about zero. Keeping only the first two

terms of the expansion yields

ργ τ ρ
l

τ
τ

Δ( , ) ≈ 1 − Δ − .ϕ
ϕ ϕ

PS
2

2
(9)

Now, γPS simplifies to the desired product of Gaussian and Lorentzian
functions:

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤
⎦
⎥⎥ργ τ σ ρ

l
τ
τ

Δ( , ) ≈ exp − Δ + .ϕ
ϕ ϕ

PS 2
2

2
(10)

By comparing Eqs. (6) and (10), γPS achieves the desired form if

l σ δ=ϕ ϕ (11)

and

τ
σ

π v
=

Δ
.ϕ

ϕ
2

(12)

Note that the relations are proportional to the phase variance σϕ
2 or its

square root. So, lϕ and τϕ increase with σϕ and σϕ
2, respectively,

increasing the width of γϕ
PS. Thus, for a given spatial coherence radius

δ and half-power bandwidth vΔ , the grid size required to adequately
sample γϕ

PS without “clipping” will become excessive as σϕ
2 grows.

However, a large value for σϕ
2 is needed to achieve good accuracy with

the truncated Taylor series approximation. The authors propose
σ π= 4ϕ

2 2 as a good general compromise. For this σϕ
2, the root-mean-

square difference between the true γPS [Eq. (8)] and the approximate
γPS [Eq. (10)] is only about 0.005.

From this example, the phase screen method clearly allows
exponential forms for γPS, e.g., Gaussian and Lorentzian. In fact, the
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exponential is limited to powers less than two, as higher powers yield
power spectral densities (PSDs) with non-physical negative values. Of
note, Wang et al. showed that other (non-exponential) coherence
function forms are possible using Gaussian phase screens [42].
However, this flexibility comes at the expense of light [43].

2.2. Source generation

Let us now consider source synthesis starting with the complex
screen method. We will compare the complex degree of coherence to its
discrete equivalent. By taking the Fourier series expansion of T, which
is now assumed to be periodic,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟∑ ∑ρT t π π ny

L
π it

L
( , ) = exp j2 mx

L
exp j2 exp j2 ,

i m n
mni

x y t, (13)

where mni are the Fourier series coefficients, and Lx, Ly, and Lt are the
periods in x, y, and t, respectively. The DoC of this expansion is

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∑ ∑ ∑ ∑ρ ργ t t π
L

it kt

π
L

mx px π
L

ny qy

( , , , ) = * exp j 2 ( − )

× exp j 2 ( − ) exp j 2 ( − ) .

i k m n p q
mni pqk

t

x y

CS
1 2 1 2

, ,
1 2

1 2 1 2
(14)

Also consider the forward Fourier transform of γCS,

∫ ∫ ∫f ρ f ρΦ v γ τ πvτ π ρ τΔ Δ( , ) = ( , )exp(−j2 )exp(−j2 · )d Δ d ,CS

−∞

∞
CS 2

(15)

where f is the spatial frequency vector and v is the temporal frequency.
This expression is the spatial and temporal PSD, which must be both
real and positive. The inverse relation is

∫ ∫ ∫ρ f f ργ τ Φ v π τ π f vΔ Δ( , ) = ( , ) exp(j2 v )exp(j2 · )d d .CS

−∞

∞
CS 2

(16)

Eq. (16) must equal Eq. (14). Equating the two [after discretizing Eq.
(16)] reveals the autocorrelation of the Fourier series coefficients in
terms of the PSD of the field,

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥Φ m

L
n
L

i
L L L L

δ m p δ n q δ i k* = , , 1 [ − ] [ − ] [ − ],mni pqk
x y t t x y

CS

(17)

where v i L= / t , f m L= /x x, f n L= /y y, and δ is the discrete Dirac delta
function. Thus, the variance of the Fourier series coefficients is

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥Φ m

L
n
L

i
L L L L

= , , 1 .mni
x y t t x y

2 CS

(18)

The generating function of T is then

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

∑ ∑T g h l r m n i
L L L

Φ m
L

n
L

i
L

π mg
N

π nh
N

π il
N

[ , , ] = [ , , ] 1
2

, ,

× exp j2 exp j2 exp j2 ,

i m n x y t x y t

x y t

,

CS

(19)

where x, y, and t are discretized as x gL N= /x x, y hL N= /y y, and
t lL N= /t t , and r is a delta-correlated matrix of circular complex
Gaussian random numbers with zero mean and unit variance in each
of the real and imaginary parts. Note that Eq. (19) is a three-
dimensional inverse discrete Fourier transform. So, we can use the
numerically efficient FFT algorithm to generate T. Alternately, by using
the convolution theorem, we can write Eq. (19) as a convolution
operation in the physical domain. Thus, the inverse Fourier transform

of the positive square root of the PSD acts as a linear shift-invariant
filter [40,38]. The filtering operation preserves the Gaussian distribu-
tion of r so that the source is thermal or chaotic light, such as a highly
multi-mode laser [44]. The total field formed from T is given by Eq. (2).
In this equation, ρI t( , ) is the beam shape in space and time, e.g., a
pulsed Gaussian beam.

Field synthesis using the phase screen method is very similar. In
Section 2.1, we related γPS to γϕ

PS. Now, following the same general
procedure used in the derivation of the complex screen method, we
write the Fourier series expansion of the phase and compute its cross-
correlation. Let the PSD of the phase be Φϕ

PS. Equating the Fourier

series expansion of γϕ
PS to γϕ

PS, written as the inverse Fourier transform

of Φϕ
PS, we solve for the variance of the Fourier series coefficients. Using

this variance in the Fourier series expansion produces

⎪

⎪

⎧
⎨⎪
⎩⎪

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟
⎫
⎬
⎭

∑ ∑ϕ g h l r m n i
σ

L L L
Φ m

L
n
L

i
L

π mg
N

π nh
N

π il
N

[ , , ] = Re [ , , ] , ,

×exp j2 exp j2 exp j2 .

i m n

ϕ

x y t
ϕ

x y t

x y t

,

PS

(20)

Note that only the real part of Eq. (20) is retained here. This is because
ϕ must be real. One could also use the imaginary part of Eq. (20).
Because r is circular complex Gaussian, both the real and imaginary
parts are independent and identically distributed. Like Eqs. (19), (20)
can be efficiently evaluated using the FFT. The time-evolving source
produced by this phase field is given in Eq. (3).

2.3. Hybrid FFT-convolution

Thus far, we have presented two methods for synthesizing time-
evolving partially-coherent sources. They involve spectral filtering
operations, allowing use of the efficient FFT algorithm. Because T is
a 3D matrix, the memory requirements are considerable for wide
sources with many time samples. The third method we present is a
hybrid FFT-convolution approach. The 2D spatial filtering is still
applied using the FFT, but the 1D time filtering is applied as a
convolution operation which typically only requires the screens from
tens of previous time steps. Thus, a much smaller 3D matrix is stored.
At each simulated time step, the matrix is shifted, the oldest screen is
removed, and a newly generated screen replaces it, as illustrated in
Fig. 1. This hybrid FFT-convolution approach can be applied to both
the complex screen and phase screen methods. Because the convolu-
tion operation is O N( )2 for an array with N elements, while the FFT is
O N N( log ), this hybrid approach is less efficient than full spectral
filtering. Thus, memory requirements are greatly reduced at the
expense of computation time.

The convolution filter's scaling and coefficients were derived pre-
viously [45]. For brevity, the derivation is not shown here. Consider an
instance of a discrete random field T formed by the time convolution of
an instance of a unit-variance, zero-mean random field r with a filter
function W,

∑ρ ρT t W t r t t t( , ) = ( ′) ( , − ′)Δ ,
t′ (21)

where r is spectrally filtered in space and delta-correlated in time. The
time spacing is tΔ . Assume that the temporal PSD t is separable from
the spatial PSD—an oft-used assumption which does limit this method
to cross-spectrally pure fields. The filter function needed to realize the
desired t can be found by manipulating the autocorrelation of T,
resulting in

W t
t

v( ) = 1
Δ

( ( ) ),t
−1

(22)

where −1 represents the inverse Fourier transform. This discrete filter
produces a time autocorrelation consistent with t . Because of the
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Fourier transform relationship between the convolution filter and the
PSD, the width of the filter is on the order of one coherence time. So,
the stored field's number of time steps is comparable to the number of
samples per coherence time. The exact relation depends on the source's
lineshape. Because most simulations run over many coherence times,
this method greatly reduces the size (number of time steps) of the field
stored to memory. The hybrid-FFT convolution process is summarized
as follows:

1. Initialize the inputs to the time filtering process by applying spectral
filtering in space to the required number of 2D matrices of delta-
correlated circular complex Gaussian random numbers ρr t( , )i .

2. For the current time step, generate one new spatial screen through
spectral filtering.

• Shift the new screen into memory and remove the oldest screen.
3. Compute T using the discrete convolution expression given in Eq.

(21).
4. Repeat steps 2–4 once for each time step of the simulation.

3. Validation

3.1. Young's experiment

To demonstrate the scope and utility of the time-evolving source
generation methods presented here, we use a modified version of
Young's classic interference experiment, both for numerical simula-
tions and a laboratory experiment. The layout is shown in Fig. 2. In this
section, an analytical result for the propagation of synthesized time-
evolving fields through this layout is compared to a rigorously-derived
solution to validate our treatment of the source.

Consider the geometry depicted in Fig. 2. The light from the source
is truncated by two circular pinholes of diameter d and separation D in
an opaque screen. The path to one pinhole is optically longer than the
other path by distance Δ. This optical path difference (OPD) allows
temporal coherence to affect the interference pattern, even for points
along the optical axis. The light transmitted by the two pinholes is
focused onto the observation plane by an achromatic lens of focal
length f.

By rigorously applying optical coherence theory, the time-averaged
observation plane irradiance is [2,44]

⎪

⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥
⎫
⎬
⎭

ρI f πd
λ f

k d ρ
f

I D I D

I D I D πv t Dx
fc

γ D t Dx
fc

( , ) =
4

jinc
2 2

, 0 + −
2

, 0

+ 2
2

, 0 −
2

, 0 cos 2 +

× Re , 0; + ,

d

d

theory
2 2

2

(23)

where x J x xjinc( ) = 2 ( )/1 [46], I x y( , ) is the mean irradiance of the source
field, t c= Δ/d is the time delay of the longer path, and c is the speed of
light in vacuum. Here, the field is assumed to be wide-sense stationary,
Schell-model, and quasimonochromatic. Also, the spatial coherence
diameter is assumed to be much larger than the pinholes.

Unlike this rigorous solution, the derivations of the source genera-
tion methods considered only the complex envelope, not the total
optical field. Deriving the average irradiance from the complex
envelope changes the result slightly. In this case, the field just past
the pinhole mask is

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ρ ρ

ρ

U z t U z t
x D y

d

U z t t
x D y

d
πvt

( , = 0 , ) = ( , = 0 , )circ
( − /2) +

/2

+ ( , = 0 , − )circ
( + /2) +

/2
exp(j2 ),d d

+ −
2 2

−
2 2

(24)

where circ is the circle function with radius d /2 [46]. Recall that U is the
complex envelope, which is centered about zero temporal frequency.
Because of this, the factor πvtexp(j2 )d is artificially added. This factor
adds the proper “fringe steering” to the final result while avoiding the
need to sample the optical frequency, which, because of the Nyquist
sampling criterion and v v⪢Δ , is numerically unpalatable. The time-
averaged observation plane irradiance 〈I 〉sim can now be found by
propagating U in Eq. (24) to the focal/observation plane, taking the
magnitude squared of the resulting field to derive the instantaneous
irradiance, and then time averaging. The resulting expression is
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Fig. 1. Illustration of the hybrid FFT-convolution method. Here, 15 screens are stored in
memory to feed the convolution operation at each simulated time step. At each time step,
the oldest screen is removed from memory and a new screen replaces it.

Fig. 2. Young's interference experiment diagram. A source of arbitrary spatial and
temporal coherence is truncated by an opaque mask with two circular pinholes. The light
reaching one pinhole experiences an optical path difference Δ. An achromatic lens
focuses all wavelengths toward the same point in the observation plane. Note that this
interference experiment was also analyzed in Ref. [40].
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Note that there is only one difference between I theory and I sim. Namely,
γRe[ ] in I theory includes a Dx fc/( ) term, while the same factor in I sim does

not. This term accounts for the possible reduction in coherence due to
the OPD between the paths from each pinhole and the observation
point. The loss of this Dx fc/( ) term in I sim is caused by neglecting the
mean optical frequency.

At this point, it is logical to consider whether neglecting Dx fc/( ) is
acceptable. The irradiance pattern I theory is the classic Airy pattern plus
fringes due to interference. Because the side lobes of the Airy pattern
are much weaker than the main lobe, a vast majority of the energy is
contained within the width of the main jinc lobe. Thus, the effective
maximum value of Dx fc/( ) is that term evaluated at λf d1.22 / :

t Dx
fc

λDf
fcd

λD
cd

= = 1.22 = 1.22 .p
(26)

A reasonable set of conditions might involve a 1 μm wavelength,
D=10 mm, and d=1 mm. In this case, t ≈ 41 fsp . Thus, the correspond-
ing OPD is only 12 μm. In comparison, a coherence length of 1 mm is
quite short for a laser. So, 12 μm of OPD will have a negligible impact
on the observed irradiance pattern. If we assume a source with a
Gaussian line shape and a 1 mm coherence length,
γ t( = 41fs) ≈ 0.99976p , which is trivially different from unity. For a
rectangular line shape, γ t( = 41 fs) ≈ 0.99997p . Thus, the approximate

solution I sim [Eq. (25)] is sufficient.

3.2. Numerical young's experiment

Let us now consider the numerical propagation of source fields
through the modified Young's experiment shown in Fig. 2. The source
is generated using the complex screen method. The time delay is
realized by referencing an earlier time step of the source for the delayed
path compared to that used for the non-delayed path. To propagate the
field from the source plane to the observation plane, the Fresnel
diffraction integral is discretized and executed using the FFT algorithm
in a computer. This process is repeated for each time step of the
simulation. Thus, the observation plane irradiance pattern is produced
as a function of time. Taking the average over many coherence times
produces an irradiance pattern which can be compared to theory [Eq.
(23)].

Fig. 3 shows the comparisons of theory and the time-averaged
simulation results. Here, cross-section plots of the irradiance are
shown along x at y=0. The conditions are uniform 1 W/m2 mean
source irradiance, 1 μm wavelength, 256 grid points per side, 3 cm
spatial grid extent, and 30,000 time steps over 100 ns. Cross spectral
purity is assumed. The line shape of the source is rectangular with

vΔ = 30GHz; the associated coherence time is 33.3 ps [44]. The
source's spatial coherence function is Gaussian with a
δ e= 0.707 mm1/ (coherence) radius. The DoC of the source is

⎛
⎝⎜

⎞
⎠⎟ργ τ ρ

δ
vτΔ( , ) = exp − Δ sinc(Δ ),

2

2
(27)

where x πx πxsinc( ) = sin( )/( ) [46]. The pinholes are 117 μm in diameter
and are separated by 352 μm. The lens focal length is 1 m. From left to
right in Fig. 3, the time delays td are 16.7 ps, 33.3 ps, and 50.0 ps,
respectively.

Theory and simulation results agree very well. The overall patterns
are Airy disks due to the circular shape of the pinholes. Within the Airy
disks, fringes of constructive and destructive interference form.
Complete nulls will not occur, even if Δ = 0, as D δ≈ ; thus, spatial
coherence reduces fringe visibility. In all cases shown, td is comparable
to the coherence time, so fringe visibility is further reduced by temporal
coherence. Note that fringe visibility vanishes for the 33.3 ps delay
(Fig. 3b), which equals one coherence time. This value is the first null of
the sinc temporal coherence function. Fringes reappear in Fig. 3c, as
the time delay falls between the first and second nulls of the sinc
function. Also note that the fringe locations change with the time delay.
This steering in the numerical results matches the theory quite well due
to the inclusion of πvtexp(j2 )d in Eq. (24).

In Fig. 3a, numerical complex screen results are shown for both the
standard implementation and the hybrid FFT-convolution variant.
Both show excellent agreement with theory. The sinc function for
temporal coherence is somewhat poorly suited to the hybrid approach,
as its tails retain significant value for large time differences. Here, only
the values of the sinc function inside the first five side lobes are
retained, making the filter (W) 219 weights (coefficients) long. Often,
significantly fewer coefficients can be used. Even so, the run times and
memory requirements of the standard and hybrid FFT-convolution
approaches are quite different. Both simulations are executed using
MATLAB® 2013A on a computer with dual Intel Xeon E5-2690
processors and 192 GBytes of random access memory (RAM). The
standard implementation requires 181 s and 116 GBytes of RAM, while
the hybrid FFT-convolution approach requires 9,160 s but only
0.7 GBytes of RAM. Of note, the hybrid's memory requirement will
not increase with the total number of time samples, as it depends only
on the spatial samples and filter coefficients. Thus, the hybrid FFT-
convolution method greatly reduces memory requirements at the
expense of computation time.

At this point, it is worth noting that the hybrid FFT-convolution
method developed in this work offers tremendous practical benefits.
The memory needs of the complex screen and phase screen methods
can be very expensive. For example, Rydberg and Bengtsson use the
complex screen method to measure the accuracy of an alternate
numerical approach [40]. They do this for about 107 time samples
but only a single point in space. If spatial variation is also important,
such as for propagation through turbulence, then the field must be
simulated in space as well as time. If 256 spatial points per side are

Fig. 3. Time-averaged irradiance slices along x at y=0 for both theory and simulation. Moving from left to right, the time delays td are 16.7 ps (a), 33.3 ps (b), and 50.0 ps (c),
respectively. As Δ increases, the fringes are steered, and their visibility varies according to the sinc temporal coherence function.
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needed, then 107 time samples will require about 38.7 TBytes of RAM
using the standard complex screen method. Such computations are
possible via distributed-memory FFT algorithms (e.g. FFTW) running
on supercomputers. However, distributed-memory simulations require
orders of magnitude more resources than runs on a conventional
computer, and scheduling such simulations can be troublesome, as
multiple research teams often compete for the same resources. On the
other hand, the hybrid implementation would still require only about
0.7 GBytes of RAM, which is easily supplied by a conventional
computer. Such a computer can readily be connected directly to
laboratory hardware, as demonstrated in the next section. Notably,
the time steps of the hybrid method are usually only limited by how
long one is willing to wait for the simulation to complete. Thus, the
hybrid method offers very significant practical benefits.

3.3. Laboratory young's experiment

In addition to the numerical simulations, a laboratory Young's
experiment was performed using an SLM. The SLM is flood illuminated
by a highly-coherent 532 nm laser, as shown in Fig. 4. Because the SLM
can easily control phase, while control of both amplitude and phase is
more difficult, the phase screen method is used to simulate the source.
More specifically, the hybrid FFT-convolution variant is used, as the
computer controlling the SLM cannot support sufficient memory for
the other methods. The source phase is placed on the SLM at each
simulated time step. Also, a grating phase is placed on the SLM such
that all light striking the pinholes is directed into the desired first
diffraction order. Finally, rather than using a physical lens, the lens
phase is also added to the SLM.

The conditions of the experiment include Gaussian forms for the
spatial and temporal coherence functions such that the DoC is given by
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(28)

Here, δ = 4.24 mm, while vΔ = 99.5 GHz. The pinholes are d = 1 mm in
diameter with a center-to-center separation of D = 1.5 mm. Source
sampling is defined by the 6.4 μm pixel pitch of the Holoeye LETO
SLM. The experiment runs for a total of 500 coherence times with a
time sampling of 0.667 ps (1/10th the coherence time), and the field
emitted from one of the pinholes is delayed by 1/2 the coherence time.
The focal length is 2 m. The optical detector is a Lumenera Lw135RM
with a 4.65 μm pixel pitch, which defines the observation plane
sampling. Flat-fielding and dark frame subtraction are used to improve
the quality of the results.

Fig. 5 compares the experimental time-averaged irradiance to
theory. The agreement is excellent with only minor differences in both
the 2D irradiance images and the slice plots. Further, the associated
video file, Visualization 1, shows the time-evolving irradiance for the
first 100 coherence times of the experiment. It shows how the fringes
shift over time due to phase changes across the pinholes. These changes
are caused by the partial spatial and temporal coherence of the source.
Observing the time evolution of the fringes provides physical insight
into the formation of the time-averaged irradiance.

Fig. 5 appears to show very little noise. Potential sources of noise
include pixel non-uniformity, dark current, stray light, read-out noise,
and registration. Non-uniformity is greatly reduced by flat-fielding,
while dark current is mitigated by dark frame subtraction. Spatial
filtering of the first-order grating reflection and use of an enclosure
help with stray light, while post-processing is used to estimate and
remove the remainder. The post-processing simply involves measuring
the mean irradiance at points five diffraction lobes away from the
center of the fringe pattern. That mean value is then subtracted from
the images, almost entirely removing the stray light. The read-out noise
is largely removed by the time-averaging operation. Finally, registra-
tion effects are visible but small, indicated by the slight spatial shift
between the experimental and theoretical fringe patterns in Fig. 5c.

4. Conclusion

In this paper, three methods were presented for the synthesis of
continuous-wave or pulsed time-evolving fields with partial spatial and
temporal coherence. The complex screen and phase screen approaches
involve filtering in the frequency domain, allowing use of the numeri-
cally efficient FFT algorithm. The complex screen method permits a
wide range of coherence functions, even coherence functions which are
not separable in space and time, but its memory requirements are
demanding. The phase screen method generates fields which are
random in phase only, which is helpful for some applications, such
as field generation using an SLM. However, producing partially-
coherent fields with non-exponential (i.e., not Gaussian or
Lorentzian) DoCs can be difficult. The third method is a different
implementation of the first two. It combines spectral filtering in space
with convolution in time, greatly reducing the memory requirements at
the expense of computation time. This implementation greatly eases
synthesis of large sources by avoiding the need for distributed-memory
supercomputers.

Simulations and experiments were performed to test the validity of
all three synthesis methods. Using a modified Young's interference
experiment, all methods showed excellent agreement with theory in
both the numerical and laboratory experiments. These results demon-
strated the accuracy of the three simulation methods.

The work presented here will be useful in applications where the
time evolution of a partially-coherent source is important. These
applications include scenarios involving high-speed electronics/detec-

Fig. 4. Diagram of the Young's experiment. The SLM is flood illuminated by a highly
coherent 532 nm laser. A grating phase is applied to the SLM region representing the
pinholes. The first-order reflection passes through a 4-f optical system with an iris in the
focal plane to spatially filter out the undesired diffraction orders. The field then
propagates to the detector.
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tors, propagation of optical vortices through turbulence, et cetera. In
addition to its practical uses, this work can also be used as an
educational tool, in which watching the source temporally evolve can
provide more insight than theory alone.
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