
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

8-2011

Extracting the Windows Clipboard from Physical Memory Extracting the Windows Clipboard from Physical Memory

James S. Okolica
Air Force Institute of Technology

Gilbert L. Peterson
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Okolica, J. S., & Peterson, G. L. (2011). Extracting the windows clipboard from physical memory. Digital
Investigation, 8, S118–S124. https://doi.org/10.1016/j.diin.2011.05.014

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact
richard.mansfield@afit.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/287324657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F208&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F208&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Extracting the windows clipboard from physical memory

James Okolica*, Gilbert L. Peterson

Air Force Institute of Technology, Wright-Patterson AFB, OH, United States

Keywords:

Windows clipboard

Memory forensics

Reverse code engineering

Windows operating system

Digital forensics

a b s t r a c t

When attempting to reconstruct the events leading up to a cyber security incident, one

potentially important piece of information is the clipboard (Prosise et al., 2003). The clip-

board has been present in Windows since Windows 3.1 and is the mechanism for trans-

ferring information from one application to another through copy and pasting actions.

Being able to retrieve the last file copied or the last password used may provide investi-

gators with invaluable information during a forensic investigation. This paper describes

the Windows clipboard structure and the process of retrieving copy/paste information

from Windows XP, Vista, and Windows 7 (both 32 bit and 64 bit) memory captures with

data from applications including Notepad, Microsoft Word, and Microsoft Excel.

ª 2011 Okolica & Peterson. Published by Elsevier Ltd. All rights reserved.

1. Introduction

While there has been significant research into memory

forensics (Dodge et al., 2010; Dolan-Gavitt, 2008; Okolica and

Peterson, 2010; Schuster, 2006; Walters and Petroni, 2007), to

date there has not been research into extracting Windows

clipboard evidence from a memory capture. Memory analysis

is a key element of digital forensics. A computer’s memory

provides the most up to date snapshot of the machine’s state:

programs are loaded into memory before executing; configu-

ration information is either loaded from disk into memory or

entered directly into memory from the keyboard; and active

network connections are stored in memory (Okolica and

Peterson, 2010). Leveraging memory to determine the state

of the machine at the time of the incident is often critical to

success.

In addition to processes, configuration, and network

activity, clipboard contents are also critical to forensic anal-

ysis (Prosise et al., 2003). Clipboard contents often provides

valuable forensic data, including user passwords, copied

sections of classified documents, and incriminating urls.

However, while there have been a number of tools written to

capture process, configuration and/or network activity (Betz,

2005; Okolica and Peterson, 2010; Schuster, 2006; Walters

and Petroni, 2007), there have not been any tools written to

extract Windows clipboard data from memory dumps. The

existing command line incident response tool that does

display clipboard information is pclip.exe (Carvey, 2007),

which is accessible from sourceforge.net (http://sourceforge.

net/projects/unxutils).

The clipboard has been a part of the Windows O/S family

since Windows 3.1. Windows uses the clipboard to transfer

information between user applications. As a result, it bridges

the gap between O/S user functions (handled by user32.dll)

and O/S kernel functions (handled by win32k.sys). This

dichotomy differentiates the clipboard from the process,

configuration, and network activity, which are O/S kernel

functions. As a result, finding and extracting clipboard data

requires slightly different techniques.

The remainder of the paper presents an overview of the

memory analysis work already done as well as previous

research into the Windows clipboard. It then goes on to

describe a methodology for extracting the Windows clipboard

from multiple Windows operating systems. Finally, it

concludes by successfully applying themethodology to several

memory dumps frommultiple Windows operating systems.

* Corresponding author.
E-mail addresses: jokolica@afit.edu (J. Okolica), gilbert.peterson@afit.edu (G.L. Peterson).

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 1 8eS 1 2 4

1742-2876/$ e see front matter ª 2011 Okolica & Peterson. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2011.05.014

http://sourceforge.net/projects/unxutils
http://sourceforge.net/projects/unxutils
mailto:jokolica@afit.edu
mailto:gilbert.peterson@afit.edu
http://www.sciencedirect.com
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2011.05.014
http://dx.doi.org/10.1016/j.diin.2011.05.014
http://dx.doi.org/10.1016/j.diin.2011.05.014

2. Background

2.1. Memory forensics

Historically, the National Institute of Justice (NIJ) recom-

mended digital forensic process was to pull the plug and

image and analyze the file systems (NIJ, 2009). While this

process is valuable, it overlooks the architecture of computers.

Before the computer executes a program, displays a file, or

logs an activity, it first loads the information into memory.

Memory forensics examines a memory capture from the

seized computer.

Forensic memory analysis starts with collecting the

memory from the target machine followed by parsing the

memory dump intomeaningful artifacts. Several tools include

Schuster’s Ptfinder (Schuster, 2006; Schuster, March 2, 2006)

and Betz’s Memparser (Betz, 2005). More recently, Volatility

(Walters and Petroni, 2007) has emerged as an effective tool

for parsingWindows XPmemory dumps. Unfortunately, what

the above tools have in common is a limitation to a particular

operating system (and in many cases, service pack). CMAT

(Okolica and Peterson, 2010) increased flexibility by parsing

much of the same information out of a memory dump from

any of theWindowsNT family of operating systems (including

Windows XP, Vista, and 7).

All of the existing tools are limited to operating system

structures. While Volatility and CMAT provide network infor-

mation, which does not reside in the kernel, the network

driver, tcpip.sys, is still a system level driver. In contrast, the

clipboard is a user-level data structure found in user32.dll.

While there has been previous work on user-level structures

(Stevens and Casey, 2010), it has focused on finding and

carving unique signatures for command line history in

memory dumps without tracking it back to the originating

processes. This is different from the above tools that start with

the processes and use information in them to find other

forensic artifacts (network connections, open files, registry

keys accessed, etc.).

2.2. Windows clipboard

The Windows clipboard is the mechanism that Microsoft

Windows operating systems use to allow data to be shared

between applications. It first appeared in Windows 3.1,

although its functionality has greatly increased since then.

Table 1 shows the standard formats used by the clipboard

(Petzold, 1999). However, Microsoft also provides the ability

for “private data formats”, formats that are application

specific (for example, fonts in a word processing program),

and that could be registered so that other applications could

transfer data in these formats (Petzold, 1999). Two private data

formats that are used extensively are object link embedding

(OLE) (0xC013) and dataobjects (0xC009).

For an application to send data to the clipboard, it first

allocates a block of global memory using GlobalAlloc, Global-

Lock, andGlobalUnlock (Fig. 1). It then opens the clipboard using

OpenClipboard, empties it using EmptyClipboard, places the

clipboard data using SetClipboard and then closes the clipboard

using CloseClipboard (Microsoft.com,). While only one piece of

Table 1 e Predefined clipboard formats.

Constant Value Description

CF TEXT 0x0001 Text format. Each line ends with

a cr/lf combination. Null-

terminated

CF BITMAP 0x0002 A handle to a bitmap

CF METAFILEPICT 0x0003 Handle to a metafile picture format

as defined by the METAFILEPICT

structure

CF SYLK 0x0004 Microsoft Symbolic link format

CF DIF 0x0005 Software Arts’ Data Interchange

Format

CF TIFF 0x0006 Tagged-image file format

CF OEMTEXT 0x0007 Text format containing characters

in the OEM character set. Each line

ends with a cr/lf combination.

Null-terminated

CF DIB 0x0008 A memory object containing

bitmapinfo structure followed by

the bitmap bits

CF PALETTE 0x0009 Handle to a color palette.

Whenever an application places

data in the clipboard that depends

on or assumes a color paletter, it

should place the palette in the

clipboard as well

CF PENDATA 0x000A Data for the pen extensions to

Windows

CF RIFF 0x000B Represents audio data more

complex than can be represented

in a CF_WAVE standard wave

format

CF WAVE 0x000C Represents audio data in one of

the standard wave formats

CFx UNICODETEXT 0x000D Unicode text format. Each line ends

with a CR/LF combination. Null

terminated.

CF ENHMETAFILE 0x000E A handle to an enhanced meta file

CF HDROP 0x000F A handle_t type HDROP that

identifies a list of files

CF LOCALE 0x0010 The data is a handle to the locale

identifier associated with text in

the clipboard

CF DIBVS 0x0017 A memory object containing

a bitmapvsheader structure

followed by the bitmap color space

information and the bitmap bits

Fig. 1 e Transferring Text to the Clipboard.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 1 8eS 1 2 4 S119

http://dx.doi.org/10.1016/j.diin.2011.05.014
http://dx.doi.org/10.1016/j.diin.2011.05.014

data can be present in the clipboard at any given time, it is

possible to send and store that piece of data in multiple

formats by performing multiple SetClipboardData functions.

This allows applications that handle data in different ways to

all have access to it (e.g., text in Microsoft Word with or

without formatting). Once data is in the clipboard, the block of

global memory belongs to the clipboard and other pointers to

it become invalid. Getting data from the clipboard (Fig. 2) is

even easier and involves opening the clipboard, determining

which of the available clipboard formats to retrieve (this is an

application specific task), retrieving a handle to the data, and

then closing the clipboard.

2.3. Windows data objects

For copying more complex data than text to the clipboard,

Windowsmakes available several APIs whichmake extraction

muchmore difficult. The original method for exchanging data

between applications was dynamic data exchange (DDE). In

1990, Microsoft released object linking and embedding (OLE)

(Allan, 2001) enabling compound files. Compound files have

most of the file in a primary format (for example, a Microsoft

Word document) and smaller sections in one or more other

formats (Microsoft Excel, Microsoft PowerPoint, text, etc.)

either linked in (kept in it’s original, separate file) or

embedded. Microsoft quickly extended OLE to a Compound

Object Model (COM) architecture and then in 1994 released

OLE 2.0 that sits on top of COM. OLE 2.0 added, among other

things, uniform data transfer (UDT) and Drag and Drop

(Microsoft.com). UDT and Drag and Drop enables the func-

tionality used by the Windows Clipboard today to transfer

files, images, and other objects between applications. For

example, when a file is dragged fromWindows Explorer to the

Desktop, this is accomplished internally via the Windows

clipboard. This functionality has changed over the years, first

with the creation of ActiveX and most recently with the

advent of the .NET framework. The result is a complex

combination of legacy and new functions cobbled together to

enable all of the functionality created and changed over the

past twenty years to work together.

3. Methodology

Identifying the method required for extracting clipboard

information from a Windows memory dump consists of four

steps (Fig. 3). First, one or more of the functions in user32.dll or

win32k.sys that accesses the clipboard data is found. The

functions described in (Petzold, 1999) provide a good starting

point for selecting specific functions. Then, we reverse engi-

neer each function to identify the clipboard structures. The

third step adds the ability to search for the structures into

a memory analysis program. Finally, testing of the program

against memory dumps from multiple Windows operating

systems using textual data transferred to the clipboard from

several programs verifies the programs functionality.

3.1. Clipboard functions

While there is a large amount of documentation

(Microsoft.com; netez.com; Petzold, 1999) on how to use and

access the Windows clipboard via application programmer

interfaces (APIs), there is no documentation on the underlying

structures used in user32.dll to manage the clipboard. There-

fore, the reverse engineering process begins with the func-

tions in Fig. 1. It then analyzes the functions statically and

dynamically.

The analysis process creates an analysis profile in a virtual

machine. Using an application (e.g., Notepad) to transfer data

to the clipboard provides an environment with known data.

After capturing amemory dump and transferring the dump to

the host machine, the dynamic analysis begins. Observe that

the transfer of the memory dump is done such that the file is

not loaded into the clipboard (e.g., by moving the file within

Windows Explorer). Once the dumpfile is on the hostmachine

and the virtual machine halted, the dynamic analysis process

places instruction breakpoints at the beginning of the Get-

ClipboardData function. Although not necessary, performing

dynamic analysis while having a memory dump allows the

investigators to make changes to the program at the same

time they are performing reverse code analysis on the clip-

board functions.

GetClipboardData begins with the standard saving of regis-

ters and resetting of the stack pointer. As shown in Fig. 4, it

then makes a call to NtUserGetClipboardData to retrieve the

pointer to the clipboard data. This is actually an interrupt that

moves the process from user space to kernel space. NtU-

serGetClipboardData is a kernel function that begins by

retrieving a pointer to the Windows Station object for the

Fig. 2 e Transferring Text from the Clipboard.

Find a Relevant

Function

Extract Relevant

Structures

Code Structures into

Memory Analysis

Program

Run Memory Analysis

on Memory Dumps

Fig. 3 e A Process for Reverse Engineering Clipboard Data

Structures.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 1 8eS 1 2 4S120

http://dx.doi.org/10.1016/j.diin.2011.05.014
http://dx.doi.org/10.1016/j.diin.2011.05.014

current thread. It then calls xxxGetClipboardData, passing

along the pointer to the Windows Station and the requested

clipboard format. xxxGetClipboardData then iterates through

the different formats stored in the clipboard until it finds the

matching one. The clipboarddata is then placed in allocated

memory and returned back to GetClipboardData. If the clip-

board data was already present in the process (either because

it originated there or due to a previous paste operation), the

symbol gphn points to the allocated memory. If not, new

memory is allocated and the “pointer” returned by NtU-

serGetClipboardData is converted into an actual pointer by

NtUserCreateLocalMemHandle.

gphn is the head of a linked list of clipboard records. There

are four variables in each clipboard record (Table 2). The first is

a pointer to the next element in the linked list (null if it is the

last element in the list). The second, at offset 0x04 (0x08 on 64-

bit machines) is the format of the current record. The third, at

offset 0x08 (0x10 on 64-bit machines) is unknown. Finally, the

fourth at offset 0x0c (0x18 on 64-bit machines) is a handle to

the data. The code loops through the linked list until it finds

the correct record. Once the data is ready for return to the

requesting application, GetClipboardData allocates space on

the heap. Finally, depending on the requested format, it loads

the appropriate data into the space. For text, the handle is

a unicode string. The function then sends this handle to the

requesting application.

3.2. Tools

There are two open source tools that the clipboard structure

extraction can be implemented in. The first, the Volatility

Framework (The Volatility Framework,), is “a completely open

collection of tools, implemented in Python under the GNU

General Public License for the traction of digital artifacts from

volatile memory (RMA) samples.” that extract forensic arti-

facts from memory dumps. The second, CMAT (Okolica and

Peterson, 2010) is a C program that extracts forensic artifacts

from memory dumps or from a Xen virtual machine (Dodge

et al., 2010). Depending on the specifics of the application,

either tool would suffice. This study uses CMAT.

In order to reach the clipboard, the process on the user side

shown in Fig. 5 iterates through each process sorted by session

ID (Okolica and Peterson, 2010). For each process, CMAT first

locates the loader table and then iterates through it to find

user32.dll. If user32.dll is not loaded for a given process (e.g.,

because it has no user interface), then that process does not

have access to the clipboard. Once the loader entry for

user32.dll is found,the PDB file for user32.dll is downloaded

from the Microsoft symbol server, assuming it is not already

resident locally. Next, the offset for the gphn symbol is located

in the PDB file. This offset provides a location to find gphn

within the user32.dll virtual address space.

It is possible that the user closed the application after

copying data to the clipboard. Recall that the clipboard

bridges user space and kernel space. While each process has

a local copy of the clipboard once it has accessed the clip-

board functions, the kernel also has the clipboard. Therefore,

until overwritten, clipboard data for a closed process is still

GetClipboardData

Input: Format

NtUserGetClipboardData

Input: Format

CheckClipboardAccess

Output: *WindowStation

xxxGetClipboardData

Input: Format, *WindowStation

Output: Handle to Clipboard Data

Populate gphn data structure with clipboard data

gphn

already

exists

CreateLocalMemHandle

Input: Handle

Output: Pointer

NtUserCreateLocalMemHandle

Input: Handle

Output: Pointer

Return pointer to pgphn record with requested

format

no

yes

Fig. 4 e GetClipboardData Process Flow.

Table 2 e Clipboard structure.

32 Bit Offset 64 Bit Offset Data type Field name

0x00 0x00 gphn* next

0x04 0x08 uint16_t format

0x08 0x10 unknown unknown

0x0c 0x18 void* handle

gphn* means a pointer to the gphn structure and void* means an

arbitrary pointer.

Find next process

(sorted by session ID)

Find first entry in

loader table

Find

first

process

Find next entry in

loader table

If entry = user32.dll

Open user32.pdb

(download if necessary)

Locate gphn symbol offset

Locate gphn in user32.dll

data section

Check if current entry has

clipboard information

Display

clipboard

information
Find next entry in gphn

linked list

YesNo

More

Entries

No More Entries

More

Entries

No More En
End

tries

Yes

No

Fig. 5 e Clipboard Extraction Process Flow (User side).

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 1 8eS 1 2 4 S121

http://dx.doi.org/10.1016/j.diin.2011.05.014
http://dx.doi.org/10.1016/j.diin.2011.05.014

available in the clipboard. Because there may be this data,

the kernel module, win32k.sys is used to locate and retrieve

the clipboard. As shown in Fig. 6, CMAT first locates

win32k.sys in PsLoadedModuleList and then uses its debug

section to retrieve win32k.pdb. Using win32k.pdb, the location

of gSharedInfo is found. CMAT then iterates through the table

of clipboard formats pointed to by an entry in the Windows

Station. Once CMAT finds the appropriate format and its

associated handle, CMAT converts the handle (if it was not

already) into a memory pointer to the clipboard data. Finally,

CMAT retrieves the clipboard.

3.3. Datasets

Two publically available memory dumps exist for testing and

validating memory analysis tools. The Digital Forensics

Research Workshop (DFRWS) 2008 Forensic Rodeo created

a forensic challenge involving a trusted insider suspected of

accessing proprietary data. As part of the challenge two

Windows XP 32 bit memory dumps were created (Digital

Forensics Research Workshop, 2008). In addition, the National

Institute of Standards and Technology (NIST) developed the

Computer Forensic Data Sets (CFReDS) datasets for digital

evidence (National Institute of Standards andTechnology). Part

of this dataset contains memory images from Windows 2000,

Windows 2003, Windows XP, and Windows Vista.

In addition to these two publically available datasets, the

testing uses additional memory dumps that include known

clipboard objects. There are two reasons for this. First, none

of the publically available datasets were created with clip-

board data in mind. Therefore, there is no way to know if the

clipboard contains any information to find. Second, none

of these datasets include Windows 7 or any 64 bit operating

system. For completeness, we created additional memory

dumps forWindows 7, Windows Vista, andWindows XP (both

32 bit and 64 bit). Each of these dumps include clipboard data

from Notepad, Microsoft Word, and Excel. For this initial

investigation, the only data types implemented are ASCII and

Unicode strings. Implementation of additional data types

such as OLE objects, and the reverse engineering of the

dynamic link libraries and drivers that implement them, is left

for future work.

4. Results

As shown in Table 3, the results are very good. Testing of the

modified CMAT code on the DFRWS dataset uncovers the

statement “pp -B -p -o out.pl file” from the clipboard. This is

a command line statement for creating a standalone Perl

program. When run on the CFReDS dataset, in two cases, it

fails to find any clipboard data. Unfortunately, there is no way

to know if there is clipboard data that was not found or if there

is no clipboard data. In the third case, a clipboard entry does

appear. Unfortunately, instead of being text, it is an object

linking and embedding (OLE) private data format.

Testing of themodified CMAT code on the datasets created

for testing the clipboard extraction produces perfect results. In

Iterate through PsLoadedModuleList to find win32k.sys

Extract Debug Data & use that to retrieve win32k.pdb

Retrieve the location of symbol gSharedInfo

Retrieve the WindowStation pointer for the current process

Iterate through table of clipboard formats until the correct format is found

Starting Location: (32 bit: WindowStation + 0x58, 64 bit: WindowStation + 0x2c)

Increment: (32 bit: 0x10, 64 bit: 0x18)

Handle: (32 bit: offset 0x04, 64 bit : offset = 0x08

Convert Handle to pointer to clipboard data

low16 = low 16 bits of the handle

32 bit:

recsize = gSharedInfo + 0x08

baseaddress = gSharedInfo + 0x04

64 bit:

recsize = gSharedInfo + 0x10

baseaddress = gSharedInfo + 0x08

Vista and XP 64 bit: offset = low16 * 0x03 * 0x08

Vista and XP 21 bit: offset = low16 * 0x03 * 0x04

Windows 7 64 bit: offset = low16 * recsize

Windows 7 32 bit: offset = low16 * recsize

POINTER = baseaddress + offset

Retrieve the unicode string

64 bit: POINTER + 0x14

32 bit: POINTER + 0x0c

Fig. 6 e Clipboard Extraction Process Flow (Kernel side).

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 1 8eS 1 2 4S122

http://dx.doi.org/10.1016/j.diin.2011.05.014
http://dx.doi.org/10.1016/j.diin.2011.05.014

all cases, the tool recovers the text information in the clip-

board. In addition to the text information, the tool identifies

several other formats, including OLE private objects and ida-

taobjects. For instance, for Microsoft Excel, the data exists in

a total of eleven formats in the clipboard. Although not part of

this experiment, parsing these additional formats would have

allowed the extraction of additional formatting information.

5. Conclusions and future work

The methodology successfully retrieved the text from several

different applications, which included Notepad, Microsoft

Word, and Microsoft Excel. There is no reason to believe the

methodology would be any less successful at retrieving clip-

board text stored from any other application. In addition, the

codeworkedunchanged forWindowsXP,Vista, and7withonly

modifications for 32 and 64 bit. This suggests that the under-

lying clipboard structures have not changed for a long time.

Unfortunately, there are many undocumented structures

including dataobjects and OLE Private Objects and while the

methodology worked great for text, it was unable to retrieve

information from these data objects. Specifically, when the

methodology was applied to copying files to the clipboard,

the methodology was unable to determine the file name.

Further work is required to determine the format of these

structures.

Much of the work in memory forensics to date has focused

on kernel structures. While these structures are a prerequisite

to any further analysis, they are only a first step. Forensic

analysis of user-level structures is a critical next step in

memory forensics. Fig. 3 provides a process for reversing

Windows drivers and dynamic link libraries to extract the

structures needed for analysis of user-level data. Further work

is required to develop and generalize this methodology.

Acknowledgements

This work is supported by the Air Force Research Lab/Informa-

tionGridDivision (AFRL/RIG)and theAirForceOfficeofScientific

Research/Dynamics and Control (AFOSR/RSL) project #2311/FX.

The views expressed in this paper are those of the authors and

do not represent the views or policies of AFRL/RIG, AFOSR/RSL,

the United States Air Force, or the Department of Defense.

r e f e r e n c e s

Allan R. History of the Personal computer: the People and the
Technology. Allan Publishing; 2001.

Betz C. memparser, http://sourceforge.net/projects/mem-parser;
2005.

Carvey H. Windows forensic analysis. Syngress Publishing; 2007.
Digital Forensics ResearchWorkshop. 2008 forensics Rodeo, http://

www.dfrws.org/2008/rodeo.shtml; 2008 [accessed 19.02.11].
Dodge D, Mullins B, Peterson G, Okolica Simulating J. Windows-

Based cyber Attacks using Live virtual machine Introspection
Summer computer Simulation Conference (SCS10); 2010.
550e555.

Dolan-Gavitt B. Forensic analysis of the Windows registry in
memory, Proceedings of the 2008 digital forensic research
Workshop (DFRWS); 2008. 26e32.

Microsoft.com How to add data to the clipboard, http://www.
microsoft.com/windowsxp/using/setup/tips/clip-book.mspx,
[accessed 8.02.11].

Microsoft.com OLE Background, http://msdn.microsoft.com/en-
us/library/aa271002(v¼VS.60).aspx, [accessed 14.04.11].

National Institute of Standards and Technology The CFReDS
project. http://www.cfreds.nist.gov, [accessed 19.02.11].

netez.com Data Objects and the clipboard, http://netez.com/
2xExplorer/shellFAQ/adv_clip.html, [accessed 8.02.11].

Table 3 e Results.

Dataset Memory image Results

DFRWS2008 dfrws “pp -B -p -o out.pl file” command found

CFReDS vista-beta2.img No Clipboard Data Found

CFReDS xp-laptop-2005-06-25.img No Clipboard Data Found

CFReDS xp-laptop-2005-07-04-1430.img Non-textual Clipboard Data Found

(format:0xC013: OLE Private Data)

Generated 32 bit Vista w/Notepad Notepad Clipboard Data found

Generated 32 bit Vista w/MS Word Microsoft Word Clipboard Data found

Generated 32 bit Vista w/MS Excel Microsoft Excel Clipboard Data found

Generated 64 bit Vista w/Notepad Notepad Clipboard Data found

Generated 64 bit Vista w/MS Word Microsoft Word Clipboard Data found

Generated 64 bit Vista w/MS Excel Microsoft Excel Clipboard Data found

Generated 32 bit XP w/Notepad Notepad Clipboard Data found

Generated 32 bit XP w/MS Word Microsoft Word Clipboard Data found

Generated 32 bit XP w/MS Excel Microsoft Excel Clipboard Data found

Generated 64 bit XP w/Notepad Notepad Clipboard Data found

Generated 64 bit XP w/MS Word Microsoft Word Clipboard Data found

Generated 64 bit XP w/MS Excel Microsoft Excel Clipboard Data found

Generated 32 bit Windows 7 w/Notepad Notepad Clipboard Data found

Generated 32 bit Windows 7 w/MS Word Microsoft Word Clipboard Data found

Generated 32 bit Windows 7 w/MS Excel Microsoft Excel Clipboard Data found

Generated 64 bit Windows 7 w/Notepad Notepad Clipboard Data found

Generated 64 bit Windows 7 w/MS Word Microsoft Word Clipboard Data found

Generated 64 bit Windows 7 w/MS Excel Microsoft Excel Clipboard Data found

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 1 8eS 1 2 4 S123

http://sourceforge.net/projects/mem-parser
http://www.dfrws.org/2008/rodeo.shtml
http://www.dfrws.org/2008/rodeo.shtml
http://www.microsoft.com/windowsxp/using/setup/tips/clip-book.mspx
http://www.microsoft.com/windowsxp/using/setup/tips/clip-book.mspx
http://msdn.microsoft.com/en-us/library/aa271002(v=VS.60).aspx
http://msdn.microsoft.com/en-us/library/aa271002(v=VS.60).aspx
http://msdn.microsoft.com/en-us/library/aa271002(v=VS.60).aspx
http://www.cfreds.nist.gov
http://netez.com/2xExplorer/shellFAQ/adv_clip.html
http://netez.com/2xExplorer/shellFAQ/adv_clip.html
http://dx.doi.org/10.1016/j.diin.2011.05.014
http://dx.doi.org/10.1016/j.diin.2011.05.014

NIJ. Electronic Crime Scene investigation: an On-the-Scene
Reference for first Responders. US Department of Justice; 2009.

Okolica J, Peterson G. Windows operating systems Agnostic
memory analysis. In: Proceedings of the 2010 digital forensic
research Workshop (DFRWS); 2010. p. 48e56.

Petzold C. programming Windows: Fifth Edition. Microsoft Press;
1999.

Prosise C, Mandia K, Pepe M. Incident response & computer
forensics. 2 ed. McGraw-Hill/Osborne; 2003.

Schuster A. Searching for processes and Threads in
MicrosoftWindowsmemorydumps. In: Proceedingsof the 2006
digital forensic research Workshop (DFRWS); 2006. p. 10e6.

Schuster A. PTfinder, http://computer.forensikblog.de/en/2006/
03/ptfinder_0_2_00.html; March 2, 2006.

Stevens R, Casey E. Extracting Windows command line Details
from Physical memory. In: Proceedings of the 2010 digital
forensic research Workshop (DFRWS); 2010. p. 57e63.

The Volatility Framework: Volatile memory artifact extraction
utility framework www.volatilesystems.com/default/volatilty,
[accessed 15.04.11].

Walters A, Petroni N. Volatools: Integrating volatile memory
forensics into the digital investigation process. Blackhat Hat
DC, www.blackhat.com/presentations/bh-dc./bh-dc-07-
Walters-WP.pdf; 2007.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 1 8eS 1 2 4S124

http://computer.forensikblog.de/en/2006/03/ptfinder_0_2_00.html
http://computer.forensikblog.de/en/2006/03/ptfinder_0_2_00.html
http://www.volatilesystems.com/default/volatilty
http://www.blackhat.com/presentations/bh-dc./bh-dc-07-Walters-WP.pdf
http://www.blackhat.com/presentations/bh-dc./bh-dc-07-Walters-WP.pdf
http://dx.doi.org/10.1016/j.diin.2011.05.014
http://dx.doi.org/10.1016/j.diin.2011.05.014

	Extracting the Windows Clipboard from Physical Memory
	Recommended Citation

	 Extracting the windows clipboard from physical memory
	1 Introduction
	2 Background
	2.1 Memory forensics
	2.2 Windows clipboard
	2.3 Windows data objects

	3 Methodology
	3.1 Clipboard functions
	3.2 Tools
	3.3 Datasets

	4 Results
	5 Conclusions and future work
	 Acknowledgements
	 References

