
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

7-2017

The Z-Wave Routing Protocol and Its Security Implications The Z-Wave Routing Protocol and Its Security Implications

Christopher W. Badenhop

Scott R. Graham
Air Force Institute of Technology

Benjamin W. Ramsey
Air Force Institute of Technology

Barry E. Mullins
Air Force Institute of Technology

Logan O. Mailloux
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Badenhop, Christopher W.; Graham, Scott R.; Ramsey, Benjamin W.; Mullins, Barry E.; and Mailloux, Logan
O., "The Z-Wave Routing Protocol and Its Security Implications" (2017). Faculty Publications. 207.
https://scholar.afit.edu/facpub/207

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact
richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/facpub/207?utm_source=scholar.afit.edu%2Ffacpub%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

The Z-Wave routing protocol and
its security implications

Christopher W. Badenhop a,*, Scott R. Graham a, Benjamin W. Ramsey a,
Barry E. Mullins a, Logan O. Mailloux b

a Department of Electrical and Computer Engineering, Air Force Institute of Technology, WPAFB, USA
b Department of Systems Engineering and Management, Air Force Institute of Technology, WPAFB, USA

A R T I C L E I N F O

Article history:

Received 26 October 2016

Received in revised form 28

February 2017

Accepted 7 April 2017

Available online 12 April 2017

A B S T R A C T

Z-Wave is a proprietary technology used to integrate sensors and actuators over RF and perform

smart home and office automation services. Lacking implementation details, consumers are

under-informed on the security aptitude of their installed distributed sensing and actuating

systems. While the Physical (PHY) and Medium Access Control (MAC) layers of the protocol

have been made public, details regarding the network layer are not available for analysis. Using

a real-world Z-Wave network, the frame forwarding and topology management aspects of the

Z-Wave routing protocol are reverse engineered. A security analysis is also performed on the

network under study to identify source and data integrity vulnerabilities of the routing pro-

tocol. It is discovered that the topology and routes may be modified by an outsider through

the exploitation of the blind trust inherent to the routing nodes of the network. A Black Hole

attack is conducted on a real-world Z-Wave network to demonstrate a well-known routing

attack that exploits the exposed vulnerabilities. As a result of the discoveries, several recom-

mendations are made to enhance the security of the routing protocol.

Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:

Z-Wave

Network security

Home automation security

Routing protocol analysis

Reverse engineering

Embedded systems security

1. Introduction

Z-Wave is an implementation of a complete Internet of Things
(IoT) substrate, containing well-defined communication, net-
working, and application layer protocols. The user composes
Z-Wave capable sensors, actuators, controllers, routers, and In-
ternet gateways to provide home and office automation services.
Example automation services include security monitoring, smart
power management, and climate control; still, the device-
level granularity of system composition allows the user to
realize more exotic IoT services. The communication sub-
strate uses a proprietary radio stack, where the PHY layer and
MAC layer are defined in ITU G.9959 (2012). Additionally, a

significant portion of the application layer is revealed in
OpenZwave source code (OpenZwave, 2016). Sitting between
the MAC and application layer is the optional network layer,
which handles multihop routing.

While the specifications of the PHY, MAC, and a portion of
the application layer of the Z-Wave protocol stack are pub-
licly accessible, few details regarding the network layer exist
within the public domain. The most significant reference is
found in Paetz (2013), where the author indicates that Z-Wave
uses static source routing. Moreover, routes are calculated from
a centralized routing table and embedded into routed mes-
sages to dictate their forwarding behavior (Paetz, 2013). In Fuller
et al. (2017), the basic Source Route (SR) forwarding mecha-
nism for Z-Wave is described. Beyond these sources, several

* Corresponding author.
E-mail address: cwbadenhop@gmail.com (C.W. Badenhop).

http://dx.doi.org/10.1016/j.cose.2017.04.004
0167-4048/Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

Available online at www.sciencedirect.com

journal homepage: www.elsevier.com/ locate /cose

ScienceDirect

mailto:cwbadenhop@gmail.com
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/COSE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2017.04.004&domain=pdf

non-peer-reviewed blogs are available that provide support-
ing details on the protocol (Zwave Protocol 1, 2016; Zwave
Protocol 2, 2016). While they correlate with Paetz (2013), they
do not provide new information about the routing protocol. To
date, an open source implementation of Z-Wave routing does
not exist. While OpenZwave is an open source implementa-
tion of a Z-Wave controller for a PC, the routing logic resides
in the firmware of the required USB Z-Wave transceiver dongle.

The contributions of the work herein are as follows. First,
a significant portion of the Z-Wave network routing protocol
is reverse engineered to include a detailed understanding of
the frame forwarding and topology management mecha-
nisms. Second, the aspects of these mechanisms are analyzed
to identify source and data integrity vulnerabilities of the pro-
tocol. The vulnerabilities are exploited to conduct a Black Hole
attack on a real-world Z-Wave network. Several recommen-
dations are provided to enhance the security of the routing
protocol based on the vulnerabilities discovered on the network
under study.

The remainder of this paper is as follows. Section 2 pro-
vides a brief description of the salient aspects of Z-Wave and
related work that is relevant to the paper. Section 3 describes
the data acquisition, exploitation, and analysis methodology
used for reverse engineering and performing a security as-
sessment of the protocol. The reverse engineering results are
composed in Section 4 to provide the most complete and pub-
licly available model of the Z-Wave routing protocol. Section
5 provides the results of the security assessment, including ex-
isting security mechanisms offering some resistance to source
and data integrity attacks. In the presence of the existing se-
curity mechanisms, a Black Hole attack is conducted to
demonstrate the synthesis of discovered vulnerabilities on a
Z-Wave network. Several recommendations to the protocol are
included in this section. This is followed by Section 6, which
provides considerations for future work and conclusions.

2. Z-Wave background

Using the Z-Wave physical layer, messages are asynchro-
nously exchanged over the RF medium as MAC Protocol Data
Unit (MPDU) frames. A MPDU contains a header, consisting of
identification and control fields. The MPDU payload contains
data pertaining to an application layer command, query, or
report. Optional layers exist between the MPDU header and ap-
plication layer, including the network and security layers. Several
other aspects of Z-Wave are provided below.

2.1. Pairing operation

A distinguishing aspect of Z-Wave is the manner in which devices
enter and leave the network.This inclusion or pairing process is
similar to Bluetooth device pairing. A user wishing to add a
device to the network first puts the Z-Wave controller and the
new device into a pairing mode.While placing a device in pairing
mode is device specific, this is commonly achieved by press-
ing a button or physically resetting the device. While in the
pairing mode, the controller adds any device found to also be
in pairing mode. Depending on the controller implementation,

it may present a list of discovered devices and allow the user
to select ones to add. Alternatively, the controller may add all
discovered devices within physical proximity without discrimi-
nation. Examples of each type of controller include the Mi Casa
Verde Vera (Vera, 2016) and Aeon Labs Z-Stick (Z-Stick, 2016),
respectively. Removing a device from a Z-Wave network is ac-
complished in a similar manner.

2.2. Node identification

Z-Wave devices are identified by a 4-byte home ID, which is as-
signed by the controller to a device during the pairing process.
All nodes paired to a given controller share the same home
ID, which is assigned to the controller by the vendor in the
factory.

The second form of identification is the node ID. A node ID
is a byte value also assigned by the controller to a device during
the pairing process. The controller node always has the lowest
node ID of 1. The first device paired to a controller has a node
ID of 2. Subsequent pairing operations result in the assign-
ment of an unused and monotonically increasing node ID.

2.3. Command class

Z-Wave networks are composed of controllers, sensors, and ac-
tuator devices. To ensure device compatibility, the application
layer protocol is well-defined (OpenZwave, 2016); however, not
all devices require the ability to participate in every applica-
tion layer transaction. For example, a light switch does not need
to know how to respond to a request for a temperature reading.
Consequently, the application layer is partitioned by function-
ality into a series of command classes. Within each command
class is a subset of the application layer commands pertain-
ing to the class. A given Z-Wave device belongs to one or more
command classes and the associated application layer proto-
col functionality is included during compilation of its firmware
image. A device announces this set of supported classes to the
controller during the pairing operation. Each command class
is a unique byte value (OpenZwave, 2016). For example, a light
switch may announce that it uses the Binary Switch command
class, which provides commands to get, set, and report the state
of the switch (OpenZwave, 2016). Given the announcement, the
controller is now aware of a subset of commands that the light
switch obeys. Commands sent to the light switch from un-
supported command classes are ignored.

2.4. Related work

While there are publications regarding the reverse engineer-
ing and security assessment of other aspects of Z-Wave
systems, the work herein is the first to examine security vul-
nerabilities of the routing protocol. In Badenhop et al. (2016b),
the non-volatile memory components associated with a
common Z-Wave transceiver chip are extracted and ana-
lyzed. Several data structures, including the node adjacency
table used for route construction by a Z-Wave controller, are
identified. Building on the results from Badenhop et al. (2016b),
the authors analyze the Z-Wave security layer in Badenhop and
Ramsey (2016). They discover the relationship between the

113c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

Advanced Encryption Standard (AES) keys and where they are
stored in the Electronically Erasable/Programmable Read-
Only Memory (EEPROM) of the device. This leads to the
identification of a key extraction vulnerability, where the keys
are extracted from devices lacking physical security and used
to send encrypted and authenticated commands to other secure
devices in the network.

Other related activities include one of the earliest investi-
gations of Z-Wave security, where a vulnerability is exploited
in a Z-Wave door lock device which allows attackers to reset
the Z-Wave communication key. With the key reset and known
by the attacker, the door can be disengaged remotely (Fouladi
and Ghanoun, 2013). In Fuller and Ramsey (2015), a Z-Wave con-
troller is exploited, using its Internet access point and web
server, to add arbitrary rogue devices to a home automation
network. An intrusion detection system is proposed for Z-Wave
in Fuller et al. (2017) to detect outsider activities within the
network. The application protocol is exploited in Hall and
Ramsey (2016) to lower the lifetime of fluorescent bulbs powered
through Z-Wave power switches. The authors find that rapidly
toggling the power to these devices using the Z-Wave appli-
cation protocol reduces operational lifetime of the bulbs. The
susceptibility of Z-Wave networks to passive and active re-
connaissance, device enumeration, and fingerprinting are
explored in Badenhop et al. (2015), Patel and Ramsey (2015),
Bihl et al. (2015), and Hall et al. (2016).

3. Reversing engineering and security
assessment methodology

Reverse engineering and security assessment are performed
using black box analysis (Stutton et al., 2007). The effort con-
sists of a series of experiments, where the network under study
is exposed to stimuli while passively collecting frames emitted
by the devices of the network. The captured frames are ana-
lyzed to reach conclusions that motivate further
experimentation. Stimuli are generated by invoking legiti-
mate network traffic using the devices of the network, which
is especially useful for protocol reverse engineering. Alterna-
tively, a Software Defined Radio (SDR) test platform is used to
interact with devices in the network under study at the network
layer. The test platform has the capability to send and receive
Z-Wave frames, allowing the edge-cases of the protocol to be
examined to discover security vulnerabilities.

3.1. Network under study

The network under study is a collection of four Z-Wave devices
and a single controller, sharing a Z-Wave home ID of 0x018509FF.
An Aeon Z-Stick2 is the Z-Wave controller for the network. It
runs the static controller library version 2.78 and is Node 1.
Nodes 3, 4, and 5 are Aeon appliance power switches. The
devices report using Z-Wave library version 3 and protocol
version 2.78. To avoid a network composed of devices from a
single vendor and firmware version, Node 2 is a GE outdoor
power switch with Z-Wave library version 6 and protocol version
3.67.The four devices are always powered, so they do not require
beaming to wake them up to receive frames (ITU G.9959, 2012).

Each has the capability of routing Z-Wave frames and are de-
picted in Fig. 1.

While several topologies are examined for the work herein,
a single topology is used to provide a consistent demonstra-
tion platform to present the results of the reverse engineering
and security analysis efforts. The demonstration topology of
the network under study is shown in Fig. 2. All devices in the
topology are assumed to transmit at approximately the same
power level. This allows the bi-directional link assumption to
be made for all links of the topology (Narayanaswamy et al.,
2002). The power switches are placed in a ring configuration,
and the controller is only connected to Node 2. The topology
is chosen to provide multiple paths between nodes and to force
multihop routing between the controller and Nodes 3, 4,
and 5.

To enable network-wide passive collection, the devices of
the demonstration topology are physically located within a
single hop distance; however, this results in a fully-connected
mesh topology. The demonstration topology is derived from
the mesh topology using the security vulnerabilities identi-
fied in Section 5. Links are manually removed from the fully
connected topology using Neighbor List (NL) and SR cache
update messages until the topology conforms to Fig. 2. Being
all within transmission range, the nodes in the network under
study observe shorter routes; however, they do not update their

Fig. 1 – Devices used in the network under study. From top
to bottom, this includes an Aeon USB ZStick2, a GE Outdoor
Switch, and three Aeon Appliance Switches.

Fig. 2 – The topology of the network under study used for
demonstrating the results of the reverse engineering and
security analysis findings.

114 c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

topology information with more optimal routes. As a result,
the network topology remains stable.

3.2. The SDR test platform

From ITU G.9959 (2012), there are three data rate configura-
tions R1, R2, and R3. Each configuration provides a unique
combination of symbol rate, center frequency, modulation tech-
nique, and data encoding.To date, open source implementations
of the PHY layer of a Z-Wave transceiver exist for R1 and R2,
but not R3. The two major open source PHY layer implemen-
tations are from Scapy-Radio (2016) and KillerZee (2016). Scapy-
Radio provides a working R2 configuration.

While KillerZee offers both R1 and R2 configurations, the
frame reception rate is observed to be lower than the Scapy-
Radio configuration. Upon analysis of the source code, the
receive buffering mechanism may explain the low reception
rate. When detecting an arriving frame, KillerZee is agnostic
of the end of the frame and demodulates symbols until a fixed
number of bytes are received. During the fixed-byte demodu-
lation, a portion of another frame, such as an Acknowledgement
(ACK), may also be received. While KillerZee looks for mul-
tiple frames in a receive buffer, it is unable to recover
fragmented frames between fixed-byte demodulations. To
account for the low ACK frame reception of KillerZee and lack
of a working R1 configuration for Scapy-Radio, both imple-
mentations are used. Empirically, the majority of Z-Wave traffic
is observed at R2, with R1 traffic being observed in special situ-
ations, including pairing operations.

The SDR test platform refers to a PC running both R1 and R2
SDR transceiver stacks. The stacks coexist on the same host
computer, provided there is at least one USB3 and two other
USB interfaces available. By utilizing disjoint User Datagram
Protocol (UDP) ports, the test platform sends and receives
Z-Wave frames using R1 and R2 configurations. Fig. 3 pro-
vides a portrait of SDR test platform used for the research
herein.

3.2.1. R2 transceiver stack
An architecture diagram of the R2 transceiver stack is pro-
vided in Fig. 4. The Ettus B210 SDR, also known as a Universal
Software Radio Peripheral (USRP), is used to provide a duplex

interface between digitized I/Q baseband signals and analog
RF signals. With regard to the receiver path, the B210 pro-
vides demodulated digital I/Q data of a filtered RF signal,
received at the RX antenna, to a host computer using USB3.
The USB3 data channel is regulated by the host using a USRP
Hardware Driver (UHD) device driver 003.010.000. The I/Q data
are passed to a GNUradio 3.7.5 layer, which is running the R2
transceiver provided by Scapy-Radio. The Scapy-Radio trans-
ceiver filters the digital baseband samples and demodulates
the samples into symbols. It also provides preamble synchro-
nization and Start of Frame (SOF) detection for Z-Wave Physical
Protocol Data Units (PPDUs) at R2.

The Z-Wave MPDUs are extracted from demodulated PPDUs
by the Scapy-Radio transceiver and sent over the local inter-
face of the host computer to UDP port 52002. Any application
listening on this port may receive these Z-Wave frames. For
this effort, the primary recipient includes Wireshark 2.0.1, with
a custom dissector for Z-Wave frames encapsulated in the
Scapy-Radio header. In addition, a custom shared library
libZwave.so is developed so arbitrary applications may send,
receive, and process frames as active participants of a Z-Wave
network.

The transmit path is similar to the receive path, but in the
opposite direction. Applications may transmit a Z-Wave MPDU
by encapsulating it with a Scapy-Radio header and sending it
over the local interface to UDP port 52001. The Scapy-Radio de-
modulator listens for arriving datagrams on this port and
appends the PPDU header, consisting of a preamble and SOF,
modulates the frame at baseband, and sends the digitized signal
to the B210 SDR. The SDR upconverts the digital I/Q data to
an analog RF signal and emits it through the TX antenna.

3.2.2. R1 transceiver stack
An architecture diagram of the R1 transceiver stack is pro-
vided in Fig. 5. The SDR for R1 traffic is the YARD Stick One.
This SDR provides simplex communication, so two are re-
quired to provide duplex communications.The modulation and

Fig. 3 – The SDR Test Platform: The Ettus B210 SDR is
shown in the lower left. The laptop has two YARD Stick One
SDR, shown on the left and right sides of the laptop.

Fig. 4 – Protocol stack for SDR-based Z-Wave R2 transceiver.

115c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

demodulation occur on the SDR. RFCat provides data and
control channels to the SDR. KillerZee 0.1 uses RFCat 1.0 to con-
figure the YARD Stick One to send or receive Z-Wave frames
at either R1 or R2. KillerZee also has an interface to the data
channel of the radio using RFCat.

Two Python scripts are added to the R1 stack to make it com-
patible with the R2 stack. ZwDump is a tool provided in
KillerZee, which is extended to take frames received over the
radio, append a Scapy-Radio header, and send the frame over
the local interface to UDP port 52004. ZwPlay is custom script
added to KillerZee to listen on UDP port 52003. A frame re-
ceived on this port is stripped of its Scapy-Radio header and
sent to the SDR for transmission using the KillerZee inter-
face. This scheme allows Wireshark and libZwave.so to send
or receive R1 traffic without modification.

3.3. Collection and injection techniques

The SDR Test platform is used for passive collection and frame
injection. For the demonstration topology, the SDR test plat-
form is able to observe transmission of the entire network under
study by exploiting the security vulnerabilities identified in
Section 5. In addition to passive collection, the test platform
is used to inject stimuli into the network under study. Tools
are derived to allow byte values of Z-Wave frames to be manu-
ally constructed and injected into the network. Routed frames
are manually constructed, injected into the network, and ob-
served while being forwarded over the network under study.
The observations lead to the identification of data field se-
mantics, which are confirmed by additional frame injection
activities.

In addition to simple frame injection, some aspects of the
protocol are found to require more complex interaction. For
example, to participate in frame forwarding, the test plat-
form must receive, parse, update, and transmit the frame. The
libZwave.so library implements a significant portion of the MAC
and security layers. As routing details are discovered, these are
also added to the library to facilitate more complex interac-
tions between the SDR test platform and the network under

study. Unless otherwise stated, the SDR test platform uses the
node IDs of 10 and 11 in the source field of injected frames to
be distinguishable from the legitimate nodes in the network.

3.4. Reverse engineering process

A direct approach to reverse engineering is to extract and stati-
cally analyze firmware, memory, and other non-volatile artifacts
(Mesbah et al., 2017; Tellez et al., 2016). While it is possible to
extract the firmware of Z-Wave devices, the reverse engineer-
ing challenges identified in Badenhop et al. (2016b), such as
the proprietary special function registers, make it challeng-
ing to isolate the routing functionality using static analysis.
A network protocol is inherently extrinsic, so the semantics
may be derived by collecting and analyzing protocol mes-
sages (Matthies et al., 2015). In general, the forwarding and
topology management aspects of the Z-Wave routing proto-
col are reverse engineered using a manual black-box analysis
process and protocol fuzzing (Stutton et al., 2007), guided by
available open-source literature such as Paetz (2013) and
Badenhop et al. (2016b). The following steps are taken:

1. Normal protocol traffic is collected from the network under
study.

2. Network traces are analyzed to identify differences in frames
to isolate network protocol fields.

3. The semantics of the isolated fields are identified by in-
jecting crafted frames into the network and observing the
response. Through trial and error, the behavior of a field
emerges. The semantics are confirmed by observing the
network react as predicted to several variations of a given
field.

4. Unknown fields are fuzzed, where frames are injected with
arbitrary field values to discover semantics. Cases where a
field’s purpose remains hidden are otherwise noted herein.

5. Having identified a sufficient number of fields, the reverse
engineering process focuses on the meaning of the mes-
sages containing the fields. Again, the SDR test platform
injects targeted network messages into the network under
study. The responses are observed and analyzed to esti-
mate semantics. The semantics are confirmed by injecting
similar frames into the network and observing predict-
able behavior.

6. Protocol transactions are realized as a composition of known
network messages. The meaning of transactions are dis-
covered and confirmed using the same techniques
performed for fields and messages.

3.5. Security analysis process

Through reverse engineering, a model of the forwarding and
topology management aspects of the Z-Wave routing proto-
col is realized. The security state of the model is evaluated by
inspection (Andel and Yasinsac, 2007) for its susceptibility to
classic integrity-based routing attacks performed by an out-
sider node. Device impersonation, manipulation of forwarded
frames, and topology state corruption are all explored using
the SDR test platform and network under study. Assuming the
Z-Wave protocol is resistant to the identified integrity-based

Fig. 5 – Protocol stack for SDR-based Z-Wave R1 transceiver.

116 c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

routing attacks, the goal of the security analysis activity is to
discover violations to the assumptions. Similar to the reverse
engineering process described in Section 3.4, violations are dis-
covered interactively through an iterative process of injecting
a given stimulus into the network, observing the network re-
sponse, and analyzing the results to guide the subsequent
experiments.

4. The reverse engineered Z-Wave
routing protocol

The results of the reverse engineering analysis on the proto-
col are provided in the following sections. First, the forwarding
mechanisms are presented. This is followed by details of to-
pology and route management, including the data structures
and protocol coordination messages.

4.1. Source routing

Routed Z-Wave frames use a network header, located between
the MPDU header and application layer. Fig. 6 shows the fields
of the network header.The first two bytes of the network header
are divided into four 4-bit nibbles. The first nibble is the failed
hop, used only for route error messages to declare the hop where
the error occurred and is otherwise zero for other types of
routed frames. The second nibble holds the SR type, which is
used by routing nodes to determine how to forward the SR.
The third nibble holds the length of SR in bytes. The fourth
nibble holds the hop index field, which maintains the state of
the SR while it is forwarded. The remaining bytes are the SR.
The ith byte in the SR is the node ID of the ith hop in the route.
The SR only contains the inner nodes of the route, relying on
the MPDU header to provide the node IDs of the route end-
points. The SR is limited to four inner node hops (Paetz, 2013).
Considering the implicit final hop to the destination, Z-Wave
routes may be up to five hops in length.

4.1.1. Forwarding behavior
As with Dynamic Source Routing (DSR), the forwarding be-
havior of the inner nodes of a route is simple (Johnson et al.,
2007). Since the routing layer is optional, the state of the routed
flag in the control field of the MPDU header is used to resolve
the presence of the network header (ITU G.9959, 2012). Upon
receipt of a frame with this bit set, a node determines if it is
responsible for forwarding the frame. The hop index field in
the network frame provides the byte offset in the SR of the next
hop. If a node’s ID is located at this position, then the node
updates the hop index field according to the route type field,
recalculates the frame checksum, and retransmits the frame.

Table 1 summarizes which node is responsible for forward-
ing a routed frame as a function of the hop index, where N is
the SR length. Since hop index is a byte offset, it is zero-
based rather than a hop count. The destination realizes it is
supposed to receive the frame when the hop index value
matches the SR length field. While routed frames are nor-
mally forwarded to the destination, certain types of routing
frames are reverse-routed to the source node.The source is able
to recognize that it is the intended recipient when the hop index
is 0xf. Since the hop index field is a 4-bit value, the field incurs
an underflow when the node at hop index zero decrements
the hop index before forwarding to the source.

4.1.2. Routing frame types
Three types of routing frames are summarized in Table 2. Ap-
plication frames are routed from a source to destination using
routing frame type 0x00. The other two routing frame types
are used to inform the source node of the state of a routed ap-
plication frame. A route ACK is issued by the destination node
to confirm a given routed application frame is received. A route
No-Acknowledgement (NACK) is issued by an inner node when
a forwarding error is detected. The routing behavior for each
type is described in the following subsections.

4.1.3. Routed application frame
When a source node needs to send a message to a target that
is not a one-hop neighbor, it creates a routed application frame.
The destination field of the MPDU header is set to the target
of the frame and the routed bit is set. A network header is in-
serted between the MPDU header and application payload. The
source node selects a route from a SR cache, embeds the SR

Fig. 6 – The Z-Wave Network Header format.

Table 1 – Forwarding targets for a SR of length N,
1 ≤ N ≤ 4.

Hop index value Next hop target

0 to N − 1 In the SR, indexed by the hop index
N Destination node in MPDU header
0xf Source node in MPDU header

Table 2 – Known types of routing frames.

SR type value Description Hop index behavior

0x00 Application frame Increments
0x03 Route ACK Decrements
0x05 Route NACK Decrements

117c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

into the network header, and sets the route length field to the
length of the selected route. The route type field is set to 0x00
to designate it as a routed application frame. The hop index
field is set to zero to designate the next hop recipient as the
first node identified in the SR. Finally, the source transmits the
application frame. The first hop node identifies itself as re-
sponsible for forwarding the frame. Before retransmitting the
frame, the hop index field is incremented to designate the node
listed at the one byte offset of the SR as the next hop.The source
and destination fields of the MPDU are not updated while the
frame is forwarded. The destination realizes it is the recipi-
ent when it receives a routed application frame where the hop
index is equal to the route length.

4.1.4. Route acknowledgment
A source node receives confirmation that a routed frame arrives
at a destination node when it receives a route acknowledg-
ment. Similar to MAC layer ACKs, the sender makes up to three
attempts to send a routed application frame before giving up.
Retries are conducted after failing to receive a route ACK within
a certain time interval.

Upon receipt of a routed frame, the destination node pre-
pares a route ACK. The route ACK MPDU header and network
header are copied from the received application frame. The
source and destination fields of the MPDU are swapped. The
SR type field is set to 0x03 to designate it as a route ACK and
the hop index is decremented before transmitting the route
ACK. Without having to reverse the ordering of the SR in the
header, the message traverses the reverse path of the SR by
having each hop decrement the hop index field before retrans-
mitting the frame. The source receives the route ACK when the
hop index field is 0xf and uses the sequence number field in
the MPDU header of the route ACK to identify the routed ap-
plication frame being confirmed.

A routed application frame and associated route ACK are
demonstrated on the network under study. The controller is
invoked to toggle the switch state of Node 3 to ON. Fig. 7 shows
the observed traffic. Frames 1–3 show the command message
being routed from the controller to Node 3, where the hop index
is incremented at each hop. Upon receipt of the command
message, Node 3 sends a route ACK back to the controller.
Frames 4–7 show the hop index decrementing as it is retrans-
mitted, arriving back at the controller at frame 6.

To provide further clarity, Fig. 8 depicts the observed frames
as a protocol activity timeline.The nodes along the SR are listed
at the top. Each arrow corresponds to an observed frame in

Fig. 7. The state of the source route is included below each
frame.The figure shows the application frame being routed from
Node 1 to 3. After receiving the routed application frame, Node
3 replies with a route ACK back to Node 1.

4.1.5. Route error
Nodes forwarding an application frame are responsible for de-
tecting and reporting observed routing errors to the source node.
After forwarding a routed frame, a node awaits confirmation
that the frame is received by the next hop. In all cases except
for the last hop, confirmation is made by witnessing the next
hop appropriately forwarding the message to its next hop. Since
the last inner hop node does not observe forwarding beyond
the destination, it sets the acknowledgment required flag in the
MPDU header before forwarding the frame to the destina-
tion. Receipt, in this case, is confirmed by receiving a MAC layer
ACK from the destination. If no confirmation is observed in a
given time interval, the node assumes the next hop failed to
receive the frame and attempts to resend. After at least three
attempts, the node gives up and reports a routing error.

The node discovering a routing error uses a route NACK
message to notify the source node. The route NACK is similar
to the route ACK because it is routed in reverse of the SR in
the network header. The route NACK is composed of the MPDU
and network headers of the offending frame, where the source
and destination fields are swapped. The SR type field is set to
0x5 to designate it as a route NACK. The hop index of node

Fig. 7 – The frames observed in the network under study when a SR is routed from Node 1 to 3 and the corresponding route
ACK taking the reverse route back to Node 1.

Fig. 8 – A protocol activity diagram of a SR routed from
Node 1 to 3 and the route ACK taking the reverse route
back to Node 1.

118 c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

failing to confirm its receipt is copied to the failed hop field,
the hop index field is decremented, and the frame is sent to
begin traversal back to the source node. Upon receipt, the source
node may use the failed hop field to select a new route from
its SR cache that avoids the failed hop. As with a route ACK,
the sequence number field in the MPDU header of the route
NACK is used to associate the error with a recently transmit-
ted frame.

To demonstrate a route NACK, the SDR test platform injects
a single routed frame into the network under study.The source
and destination fields are set to unused node IDs to force a
routing error when the last hop of the route attempts to forward
to the destination node. Fig. 9 shows the results of the frame
capture during the route error event. In frames 1–5, the frame
is routed over the inner nodes of the SR. Since the destina-
tion is fictitious, the last inner node never receives a MAC layer
ACK of its forwarded frame. After three failed forwarding at-
tempts, shown at frames 5–7, Node 5 generates a route NACK
that is routed back to the source node in frames 8–11.The NACK
in the figure identifies the fourth hop as the failed node, which
is the destination node. A protocol activity timeline of the ob-
served frames is provided in Fig. 10.

4.2. Network management

Fig. 11 depicts the data structures and activities necessary for
topology maintenance and route discovery. Local topology

information resides in each routing node as a one-hop NL. The
global topology state resides in the adjacency table main-
tained by the controller. The adjacency table is updated by
polling each node for its NL (Paetz, 2013). Each node also stores
several caches of SRs. New routes are generated on demand
by the controller, where a routing node makes a request for a
SR to a given target. Having the global adjacency table, the con-
troller is able to realize multiple routing solutions and provide
them to the requesting node, where they are cached.

In addition to a NL and several SR caches, routing nodes
also have a backbone SR cache to be able to reach the con-
troller. OpenZwave defines a route from the node to the
controller as a reverse route; herein, it is designated as a back-
bone route to more appropriately describe its criticality. A node
oblivious of backbone routes is unable to request new routes
from the controller.

From a holistic perspective, the routing protocol has prop-
erties found in both reactive and proactive routing protocols.
Like the proactive routing protocol Optimized Link Source
Routing (OLSR), the Z-Wave routing protocol collects local to-
pology state information from each node before any routes are
needed. Like the reactive routing protocol DSR, routes are dis-
covered at the request of the source node; however, the
discovery is performed by the controller using its global to-
pology state. Having aspects of both reactive and proactive
routing protocols, Z-Wave can be considered a hybrid routing
protocol. The following subsections describe the observed data
structures, coordination messages, and transactions involved
in maintaining topology state.

4.2.1. Coordination messages
Several coordination messages are identified as being associ-
ated with topology management and route discovery, which
are summarized in Table 3. Note that all of the coordination
messages belong to command class 0x01. This command class
provides commands outside of the scope of network routing,
including pairing operations, network and node ID assign-
ments, and interactions between primary and secondary
controllers. Open source literature such as OpenZwave (2016)
do not name this command class, so it is designated herein
as the System command class.

Several coordination messages utilize one of two identi-
fied primitive data structure formats. The first data structure
is the NL primitive. It is used to convey topology state within
topology management coordination messages, and its basic
structure is shown in Fig. 12. The first byte of the primitive

Fig. 9 – Captured frames as the result of the SDR platform injecting a SR frame into the network under study using
imaginary source and destination IDs. Because Node 10 does not exist, Node 5 fails to forward the frame and generates a
route NACK that takes the reverse route back to the source. The NACK frame indicates the fourth hop failed.

Fig. 10 – A protocol activity diagram of a SR routing from
Node 11 to 10. Because Node 10 does not exist, Node 5 is
unable to successfully forward the frame. It generates a
route NACK, which takes the reverse route back to source
Node 11.

119c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

indicates the length of the remaining bytes. The length field
is followed by a variable length bitfield.

The structure of the bitfield is consistent with the record
structure of the adjacency table (Badenhop et al., 2016b), where
each bit corresponds to a particular node ID. The exact as-
signment is NodeID = 8i + j + 1, i = 0, …, n − 1; j = 0, …, 7, where
i is the byte offset from the first byte of the bitfield and n is
the length of the bitfield in bytes. For each byte, j is the bit offset.
The bits in each byte are big-endian and j is indexed from least
to most significant bit. This is illustrated in Fig. 12 to show that
the node IDs are not monotonically increasing when reading
the bitfield from left to right.

The command byte of the message determines the impli-
cation of the bit value at each node ID position. For example,
when a node provides its local NL to a controller, a high bit
indicates that the sender is adjacent to the node ID corre-
sponding with that bit position.

The second data structure is the SR cache entry primitive.
It is used to exchange SR and its format is described in Fig. 13.
The first byte designates the destination target of the SR. The
second byte is composed of an upper and lower nibble. The
upper nibble stores the cache entry index, which tells the re-
cipient where to store the record in the cache region associated
with the destination target.The lower nibble provides the length
of the SR. This is followed by the variable length list of inner
node hops of the SR.

The last byte of the primitive has an impact on route se-
lection; however, only two values are observed. When this byte
is 0x10, the route is used by the recipient node. When the byte
is 0x08, some devices avoid using the route entirely. Other
devices give an entry with a status of 0x08 a lower priority, using
it only after routes marked with a status of 0x10 are ex-
hausted. While the behavior is consistent with a status or
priority indicating field, the true meaning of this field may not
be discovered until the firmware is fully reverse engineered.

4.2.2. NL updates
A node updates its NL based on the results of NL tests, initi-
ated upon the receipt of a Do NL Test message. The payload
of this message contains a NL primitive, which describes how
the tests are to be conducted. A set bit in the NL primitive in-
structs the node to perform a NL test on the corresponding node
ID. When the node encounters a bit that is not set, this tells
the node to remove that node ID from its NL. Thus, messages
with a NL primitive of a string of zero bits that covers all node
IDs in the network clears the node’s NL. Alternatively, a string
of set bits covering all node IDs of the network forces the re-
cipient to perform a NL test on every node ID.

A node conducts a NL test on a given target using a Do NL

Test message.The node sends this message to the target using

Fig. 11 – The Z-Wave Network Management Architecture.

Table 3 – Known network commands of the System
command class.

Command Description Parameters

0x04 Do NL test NL primitive
0x05 Get NL Target node ID
0x06 Report NL NL primitive
0x07 NL test done None
0x0C SR cache assignment SR cache entry primitive
0x14 Backbone cache

assignment
SR cache entry primitive

0x15 SR request Target node ID
0x18 NL test Unknown parameter

Fig. 12 – Neighbor list primitive containing the first 16 node
IDs. Fig. 13 – SR cache entry primitive.

120 c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

rate configuration R1, regardless of the de facto PHY rate con-
figuration. The NL test passes if the target replies with an ACK.
The test fails if, after three attempts, no ACK is received. The
test message has a single byte as a parameter; however, its
meaning is not yet known. Once a node has performed a NL
test on every requested node, it sends a NL Test Done to the
sender of the Do NL Test message.

4.2.3. Adjacency table updates
The adjacency table is updated when a controller queries a node
for its NL. The query is performed by sending a Get NL message
to a target. The target replies with a Report NL message, which
contains the node’s NL. The format of the NL primitive is con-
veniently consistent with the adjacency table (Badenhop et al.,
2016b). Updating the adjacency table is as simple as perform-
ing a direct memory copy of the NL primitive to the memory
location holding the adjacency record of the sender.

The controller adjacency table is updated when the device
is rebooted or in response to a user invoked request to repair
the network. Unsolicited Report NL messages are ignored by
the controller of the network under study to prevent external
manipulation of the adjacency table structure.

4.2.4. Route request
A node may request a route to a target using the SR Request

message, where the destination node ID of the route is the only
parameter. The response to this request depends on the ca-
pabilities of the recipient. A controller replies with a sequence
of SR Cache Assignment messages in cache entry index order.
The routes also appear to be in shortest-length-first order. The
controller may also follow these messages with a set of Back-
bone Cache Assignment messages to freshen the node’s cache
of critical routes to the controller.

If a SR Request is received by a routing node that is not a
controller, the node replies to the sender with its backbone
cache as a sequence of Backbone Cache Assignment mes-
sages. Having an updated backbone cache, the requesting node
may now query routes from the controller. The behavior pro-
vides a recovery mechanism for nodes with stale or corrupted
backbone SR caches.

The SR Request message is discovered through protocol
fuzzing of command byte values for the System command class.
While the SDR test platform can cause a node to facilitate a
route request, the activity is not observed during normal op-
erations of the network under study. As a result, the conditions
necessary for a legitimate node to invoke a route request are
not yet known.

A node is capable of caching multiple routes for each target.
By injecting SR Request messages into the network under study,
observations of the resulting cache assignment messages have

never exceeded four entries per target. Without dynamic and
static analysis of the device firmware, further aspects of the
cache remain hidden.

4.2.5. Route selection
A node consults its SR cache when it requires a multihop route.
When more than one solution is available, the source node must
make a selection. If the selected route fails, the source node
must select an alternative route. The selection process is re-
peated until the cache solutions are exhausted or the source
node gives up. The route selection behavior is studied by iso-
lating a node from the network under study and causing it to
attempt to route an application frame to a target. As the source
node incurs routing failures, it selects alternative routes and
eventually concedes. The observations are compared with the
node’s SR cache for the given target to reveal the route selec-
tion behavior.

For the experiment, Node 3 is the isolated node that at-
tempts to send a routed application frame to Node 2. Fig. 14
shows three cache assignment messages sent to Node 3 prior
to the injected frame.The first cache entry holds a path to Node
2 through Node 5.The second cache entry holds a route to Node
2 through Node 4.The third entry is empty and marked invalid.

Fig. 15 shows the reaction of Node 3 in response to the in-
jected frame and after the other nodes are disabled. The first
frame in the capture is the frame sent by the SDR test plat-
form, which spoofs as Node 2 asking Node 3 for its state. After
replying with a route ACK, Node 3 attempts to send the ap-
plication layer response through Node 5 in frames 5–7, which
is the first cache entry for Node 2. After not receiving a route
ACK from Node 2, it makes three attempts to route through
Node 4, which is the second cache entry for that target. After
this fails, it gives up.

The experiment is repeated; however, Node 2 becomes the
isolated node attempting to send an application frame to Node
3 over the network. The SR cache in Node 2 for Node 3 is iden-
tical to the SR cache in Node 3 for Node 2, as shown in Fig. 14.
With all nodes disabled except for Node 2, the SDR test platform

Fig. 14 – SR cache assignments for Node 3.

Fig. 15 – Route selections for Node 3 (Aeon Appliance
Switch).

121c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

injects the same frame and the observed behavior is shown
in Fig. 16. In frame 2, Node 2 initially selects the reverse route
of the received frame as the SR of the reply message. After the
reverse route fails once, it uses its first and second cache entries.
After they fail, it makes several more attempts to use the reverse
route of the request in frames 9–11. The last three frames of
the figure show Node 2 attempting to reach Node 3 locally,
where a SR is not used. Although both nodes have the same
route entries in their SR cache, the route selection behavior for
Node 2 is different from Node 3. The difference may be ex-
plained because Node 2, the GE switch, has a newer library and
protocol version than Node 3, as reported in Section 3.1.

5. Security analysis on Z-Wave routing
protocol

In this section, the integrity and reliability implications of
Z-Wave the routing protocol are analyzed. Several vulnerabili-
ties are discovered on the network under study using the SDR
test platform.

5.1. Existing security in Z-Wave

Z-Wave utilizes several security mechanisms, which include
cryptographic, policy-driven, behavior detection, and out of band
mechanisms.They are summarized in the following subsections.

5.1.1. Security command class
Z-Wave provides a confidentiality, source integrity, and data
integrity service through the Security command class. Appli-
cation frames may be encapsulated in a security frame that
is both encrypted and signed. The frame is secured through
symmetric encryption using AES and three shared keys, known
by every node of the network requiring the security service.
The operations of the Security command class are described
in detail in Fouladi and Ghanoun (2013) and Badenhop and
Ramsey (2016).

During network inclusion, the device specifies which of its
supported command classes must use the security layer. When
an application layer command is exchanged for one of the des-
ignated command classes, it must be embedded within a secure
frame. Otherwise, the frame is ignored by the device (Badenhop
and Ramsey, 2016).

Empirical evidence shows that the utilization of the secu-
rity service is proportional to the purpose of the device. For
example, physical security related devices such as door locks,

motion detectors, and alarms are more likely to use the se-
curity service than smart energy devices such as light bulbs,
appliance switches, and thermostats.

The Security command class has particular limitations when
used. First, only the application layer message is encrypted.
The fields in the MPDU header, network layer, and security
frame header are not encrypted. Data integrity is provided
through signature checking, which only applies to the fields
being signed. In addition to the application payload, this in-
cludes the MPDU source node ID, destination node ID, and
MPDU length field (Badenhop and Ramsey, 2016). Note that none
of the network header fields are involved in the signature, so
these fields may be modified in transit without causing the sig-
nature check to fail. Since all paired devices use the same
authentication key, source integrity at the node ID resolution
is not possible. Instead, devices may only discriminate between
messages originating from trusted and untrusted sources.

While none of the devices in the network under study utilize
the Security command class, the Yale Z-Wave door lock ana-
lyzed in Badenhop and Ramsey (2016) possesses this capability.
While the door lock silently drops door unlock commands sent
by the SDR test platform, it responds to System command class
messages. The implication is that the System command class
is not required to use the security layer.

5.1.2. Out of band triggers
Many of the critical activities lack a way to be initiated over
the network. Instead, they require physical proximity and
human intervention for invocation. For example, pairing op-
erations require the user to reset a device, press a button, or
reinsert batteries to force a node into pairing mode. Another
example of an out of band protection involves updates to the
adjacency table in the controller. Since unsolicited NL reports
are ignored, an attacker attempting to corrupt the topology state
must react to a request from the controller. Known ways of
causing a controller to update its adjacency table include re-
booting the device or requesting a network healing action
through the controller’s user interface. Ways of forcing these
events through the Z-Wave network remain unknown; however,
network healing may be susceptible to the rogue controller vul-
nerability found in (Fuller and Ramsey, 2015). If Z-Wave devices
are powered through Z-Wave switches, the switches may be
remotely toggled to induce a reset event. While the Z-Wave
serial API has the ability to reset a Z-Wave transceiver
(OpenZwave Defs.h, 2016; Badenhop et al., 2016b), an attack
vector to utilize the API through the Z-Wave network has not
yet been discovered.

5.1.3. Privileged controller
The controller is privileged because it possesses both global
topology information and node capability information for each
node that is paired to the network. A controller may identify
and react to integrity-based attacks by correlating events with
its global knowledge. Conversely, non-controller nodes are less
secure because they do not have access to global information
necessary to identify inconsistencies. For example, the con-
troller ignores messages sent from the SDR test platform if the
source ID is of a node that is never paired to the network. The
other nodes in the network under study are unable to recog-
nize outsider nodes. As a result, they respond to unsolicited

Fig. 16 – Route selections for Node 2 (GE Outdoor Switch).

122 c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

frames from arbitrary sources so long as the source node ID
is in a valid range (i.e., 1 to 232) (ITU G.9959, 2012).

5.1.4. Watchdog routing
Route error messages are generated by a forwarding node when
it fails to observe the next hop forwarding the message within
a time interval. The node observing the forwarding node is
known as a watchdog. Having each previous hop monitor the
protocol compliance of the next hop assists in the identifica-
tion of malicious or non-cooperative forwarding nodes within
the network (Bhalaji and Shanmugam, 2009; Hao et al., 2004;
Tiwari et al., 2009). The capabilities of watchdog routing for
Z-Wave are examined in Section 5.2.5.

5.2. Vulnerabilities

The Z-Wave protocol, as observed in the network under study,
is analyzed for security weaknesses in data and source integ-
rity. The results are described in the following subsections.

5.2.1. Impersonation
Impersonation attacks violate the source integrity of the pro-
tocol. With the exception of the controller, Z-Wave devices
implicitly trust the source and destination fields of the MPDU
frame. This makes it trivial to impersonate frames originat-
ing from the controller or another device. To demonstrate
impersonation, a single frame is injected into the network using
the SDR test platform. The injected frame is a request; observ-
ing a response to the forged request implies that the replying
node accepts the message as legitimate.

The injected frame is a Get NL message to Node 2. The
source ID field in the MPDU header is also set to Node 2 to make
it clear that the message originates from an artificial source.
The assumption is that a node will not have to use its radio
to query and respond to itself for data residing in its memory.
The frame is emitted into the network and the responding
frames are observed in Fig. 17.

The injected frame is shown as frame 1. While Node 2 ac-
knowledges the forged frame, this only means that the MPDU
header and checksum checks are valid. Proof of the imper-
sonation vulnerability is in the remaining frames, where Node
2 attempts to tell itself its NL in response to the unsolicited
request. An interesting observation is that Node 2 acknowl-
edges frame 1 but does not acknowledge frames 3, 4, and 5.
Although each of these frames has Node 2 as the destina-
tion, the node is able to avoid acknowledging frames it actually
sends.This capability may be extended to identify Sybil attacks
occurring on the network, where a node alerts the controller
when it receives a message from itself that it did not send.

Devices using the Z-Wave security layer have some protec-
tion against outsider impersonation. Devices specify, at a
command class granularity, which command messages must
use the secure frame. Secure frames are signed and en-
crypted using keys exchanged during network inclusion. An
outsider who is not in possession of the authentication and
encryption keys is unable to transmit a valid secure frame. Re-
gardless of the chosen source ID, the outsider is unable to
impersonate the origin of a command message if the desti-
nation requires that it is sent in a secure frame. However, the
outsider may still perform impersonation attacks on the device
using commands from a supported command class that is not
required by the device to use the security layer.

5.2.2. Arbitrary NL modification
Routing nodes, including the controller, are vulnerable to having
their NLs manipulated by an external source. This is shown
using the SDR test platform in the network under study. Acting
as outsider Node 10, the SDR test platform interacts with Node
3 to add itself to the NL of Node 3. This is performed in two
steps. First, a process is executed on the SDR test platform to
listen and acknowledge received frames at R1 sent to Node 10.
Second, a separate process on the laptop sends Node 3 a Do

NL Test message with Node 10 set as the target. This initi-
ates the NL add activity, which is captured using Wireshark.
Fig. 18 shows the combined results of the activity at R1 and
R2.

In frame 1, the NL is requested from Node 3 to demon-
strate that Node 10 is currently not a neighbor. The NL is
reported at frame 3, having Nodes 4 and 5 as one-hop neigh-
bors. The Do NL Test is sent by the SDR test platform at frame
5, where the targets include the original NL and Node 10. Frames
7–10 are received at R1 and involve Node 3 testing each re-
quested node from lowest to highest node ID. Frame 7 shows
Node 3 testing if Node 4 is a one-hop neighbor; however, due
to the poor reception rate of the R1 SDR stack, the response
is not captured. The test frame sent to Node 5 is not captured
either; however, frame 8 shows Node 5 responding to the test
request message. Fortunately, a complete test is captured in
frames 9 and 10. In frame 9, Node 3 is testing Node 10 as a one-
hop neighbor. The SDR test platform responds with an ACK at
R1 in frame 10. Node 3 announces that the tests have com-
pleted in frame 11.The NL of Node 3 is again requested by Node
10 in frame 13. The response shows that its NL now includes
Node 10, along with the original neighbors of Node 4 and 5.

Fig. 17 – SDR impersonates Node 2 by requesting the NL of
Node 2, to which Node 2 replies. Fig. 18 – SDR is adding fake Node 10 to the NL of Node 3.

123c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

Thus, a fake node is added as a neighbor to the NL of a routing
node.

This attack may be used to add nodes into the topology
without formally conducting network inclusion with the
controller. The possibility that a modified NL ends up in the
adjacency table depends on the behavior of the controller. The
controller used in this network under study sends a Do NL Test

message before sending a Get NL request and only sets the
IDs of the nodes that have performed network inclusion in the
NL primitive of the NL test message. Thus, rogue insertions get
masked out of the target’s NL by the controller during initial-
ization and network healing operations.

The attack requires the outsider node to be one hop from
the target node. If the outsider is more than one hop away, it
is unable to successfully ACK the NL test frame sent over R1.
Attempts to route MAC layer ACK frames are silently dropped
by the forwarding nodes.

5.2.3. Outsider topology discovery
While the outsider may passively observe routing frames over
a long period of time to realize the topology of the target
network, a more direct approach is to use the NL request
message to learn the NL of every node. Unlike the controller,
an outsider may not be aware of every node in the network.
Nodes more than one hop from the outsider require a SR to
reach them; however, constructing a SR requires an existing
topology model. These problems are addressed using the To-
pology Discovery algorithm shown in Algorithm 1. In this
algorithm, the outsider learns of all of its one-hop neighbors
by first broadcasting a NL Request message. The outsider col-
lects NL reports of its one-hop neighbors to construct a two-
hop topology. In turn, each node in the two-hop topology that
has not provided its NL is queried to learn of its neighbors. The
outsider uses the two-hop topology model to realize valid SRs
to send NL Request messages to each target. The responses
are added to the two-hop topology model to create a three-
hop topology model. Again, the new nodes discovered in the
three-hop topology model are queried for their NLs to expand
the three-hop model to a four-hop topology model. The algo-
rithm continues until a NL for every discovered node is acquired.
Upon termination and assuming the network is not parti-
tioned, the derived topology model represents the target Z-Wave
network. Moreover, the outsider realizes its location within the
network topology.

Algorithm 1 is implemented in C++ using libZwave.so to in-
teract with the network under study. SRs are derived from the
topology model using Dijkstra’s Shortest Path algorithm. Fig. 19
provides the console output of the algorithm running on the
SDR test platform as Node 10, physically located within the
network.The figure is divided into three regions.The top region
shows the results of the outsider deriving its NL using a local
broadcast request, of which Nodes 1, 4, 5, and 2 provide replies.
In the middle section, the algorithm realizes that Node 3 is the
only observed node in the two-hop topology model without a
known NL. The algorithm sends a request message using a SR
derived from the two-hop topology model that routes through
Node 4. The NL report from Node 3 indicates it is adjacent to
Nodes 4 and 5. After the topology model is updated, the algo-
rithm terminates because every discovered node has provided
its NL.

Fig. 19 – Results of the SDR test platform performing the
Topology Discovery algorithm on the network under study.

124 c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

The bottom portion of the figure reports the derived topol-
ogy model as a list of adjacencies in node ID order. The learned
adjacencies between legitimate nodes are consistent with Fig. 2,
which defines the demonstration topology of the network. Since
the reported topology model includes the adjacencies for Node
10, the outsider is able to launch multihop attacks over the
network.

5.2.4. Arbitrary SR cache modification
Due to the centralized command and control structure of the
routing protocol, nodes are assigned routes using SR Cache

Assignment messages. The outsider may use this message to
change the routing behavior of target source nodes. The vul-
nerability is demonstrated on the network under study, and
the results are shown in Fig. 20. The figure initially shows an
application frame taking a route through Node 2 in frames 1–7.
In frame 8, the first entry of the source node’s routing cache
for Node 5 is modified by the outsider. In frames 10–19, another
application frame is sent from Node 1 to Node 5. The figure
shows the application frame taking the route provided by the
outsider.

5.2.5. Modification of routed frames
Using the SR cache modification attack, the outsider can direct
application frames to flow through a Man-In-The-Middle (MITM)
node, where they may be modified. The extent of the manipu-
lation is contingent on the satisfaction of the watchdog node
observing the MITM node. Failing to adequately forward a frame
results in the watchdog alerting the frame originator with a
route NACK. Upon receipt of the NACK, the source node may
select an alternative route that does not include the MITM node.
Thus, the outsider must avoid invoking any route NACKs to
remain stealthy and maximize the lifetime of its advantage
(Badenhop and Mullins, 2014). For this purpose, several ma-
nipulations are explored to identify conditions where the frame
is forwarded by a MITM node without tripping the watchdog.

The case without frame modification is shown in Fig. 21.
In the figure, a forged routed frame is injected into the network
from Node 2 to Node 3, using a route that traverses through
Nodes 4 and 10. Acting as the outsider node, the SDR test plat-
form correctly forwards the frame to the destination without
alerting the watchdog (i.e., Node 4). The watchdog is satisfied
because Node 10 only modifies the hop count field and recal-
culates the checksum before forwarding. Note that Node 10 is

also able to correctly decrement and forward the route ACK
in frames 5 and 6 without alerting the watchdog.

A counter example is provided in Fig. 22. Upon receiving
frame 2, Node 10 correctly updates the hop index field but fails
to recalculate the checksum before forwarding. While the des-
tination receives frame 3, it does not provide an ACK because
the received frame does not pass the checksum test. As the
watchdog, Node 4 also detects the checksum error and resends
the forwarded frame to Node 10 two additional times. Node
10 makes additional transmission attempts in frames 5 and
7. Since the checksum is invalid, these are also ignored by the
recipient. After observing three failures, Node 4 generates a route
NACK in frame 8, reporting Node 10 (i.e., hop index 1) as the
offender.

An outsider node can modify the application payload
without triggering the watchdog. With respect to the applica-
tion layer of a frame, the first two bytes are the most significant,
defining the command class and the command to be ex-
ecuted, respectively. By modifying these bytes, the intent of the
frame is drastically changed.To show this on the network under
study, the MITM node is modified to write nulls to the first two
bytes, turning any frame into a harmless Hello message. Again,
the test frame is injected into the network and the response
is captured in Fig. 23. Frame 3 shows that Node 10 forwards
the injected frame but changes its meaning to be a Hello

message. Node 3 replies with a route ACK, allowing Node 2 to
believe Node 3 received the switch state update. Meanwhile,
the watchdog does not detect the tampering of the applica-
tion layer, so a route NACK is not generated.

Fig. 20 – The routing behavior of Node 5 is modified by the
SDR test platform to take an alternate route.

Fig. 21 – The SDR test platform is forwarding routed frames
without error.

Fig. 22 – A route NACK is triggered when the SDR test
platform forwards a frame with an invalid checksum.

Fig. 23 – MITM Attack: Changing the meaning of a
forwarded frame without detection.

125c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

Several other fields are modified by the outsider node to test
the detection capability of the watchdog, with mixed results.
It is discovered that the MITM node may modify the destina-
tion or next inner node hop without triggering the watchdog.
Conversely, modifying the hop count to have a value beyond
the SR length is detected and reported by the watchdog. A rig-
orous study on the MPDU header, network layer, and application
layer fields is required to completely understand the detec-
tion rules of the watchdog.

In addition to the watchdog, the Z-Wave security layer, de-
scribed in Section 5.1.1, allows a destination to determine if
several fields of a secure frame have been tampered with while
being forwarded. Consequently, a MITM modifying the payload
or destination field of a secured application frame is de-
tected by the destination upon checking the signature of the
frame before the application message is processed. Given the
destination finds the frame to be tampered, it does not gen-
erate a route ACK. After a timeout is observed by the source
node, it retransmits the secure frame. If the MITM attack con-
tinues to modify the secure frame, consecutive timeouts allow
the source node to conclude the route is flawed. Eventually,
the source node selects an alternative SR from its cache. De-
pending on the topology, the new route may not include the
MITM node.

5.2.6. Black Hole attack
By exploiting the impersonation, topology discovery, watch-
dog subversion, and SR cache modification vulnerabilities, a
Black Hole attack may be conducted on a Z-Wave network for
a given source and destination pair. A Black Hole attack is a
frame dropping attack where a node under the influence of
the attacker, a Black Hole Node (BHN), silently drops applica-
tion frames when it is expected to forward them (Badenhop
et al., 2016a). Active Black Hole attacks exacerbate frame loss
by manipulating topology state information in the network to
increase the number of routes that flow through the BHN
(Badenhop and Mullins, 2014). For protocols where routing
options are competitive, such as Ad-hoc On-Demand Dis-
tance Vector (AODV) and DSR, the BHN may exaggerate its
connectedness to other nodes to provide a more lucrative option
than those realized through legitimate route discovery.

The Black Hole attack predicate in Badenhop et al. (2016b)
states that a Black Hole attack is possible if the shortest hop
distance path between the source node and BHN is less than
the shortest hop distance path between the source and

destination node. With respect to Z-Wave, routes are not com-
petitive; rather, they are assigned by the controller. In this case,
the predicate is relaxed to where a Black Hole attack is pos-
sible if there exists at least one path between the BHN and the
source that does not contain the destination node. The path
may not contain the destination node because, after append-
ing the destination node to the end of the route, the resulting
route is not loop-free. Due to the route length constraint of
Z-Wave routing, this path must be no longer than four hops;
otherwise, the BHN is unable to append the destination to the
end of the route.

To avoid the watchdog of the BHN reporting frames being
dropped, the BHN may insert a fictitious hop between the BHN
and the destination in the cache assignment message it sends
to the source node. In this way, the watchdog is able to observe
the BHN forwarding the routed frame as expected without
improper modification. At this point, the BHN is supposed to
serve as the watchdog for the protocol. Instead of alerting the
source to the failure, the BHN allows the frame to be silently
lost by the fictitious node.To conduct this variation of the Black
Hole attack, a route must exist between the BHN and source
node that is no more than three hops and does not contain
the destination node. This allows both the BHN and imagi-
nary node to be appended as inner hops of the assigned SR
to the destination.

The BHN initiates the attack on the network under study
by performing topology discovery to derive a local adjacency
table. The table is used to determine if a path exists between
the source node and the BHN that is no more than three hops
in length and does not contain the destination node. If a path
meeting these criteria is found, a SR Cache Assignment

message is sent to the source node, where the inner hops in
the cache entry primitive include all inner hops from the source
node to the BHN, the BHN itself, and imaginary Node 11. The
target field of the cache assignment message is set to the des-
tination node ID, the cache index is set to zero, and the status
byte is set to 0x10 to give the route the highest preference when
the source node selects a route to the destination.

In Fig. 24, the attack is demonstrated for a route from Node
5 to Node 1 on the network under study. Prior to the first frame,
the BHN (i.e., Node 10) performs the Topology Discovery algo-
rithm. In frame 181, the BHN updates the SR cache of Node 5
using a route that contains both Nodes 10 and 11. Using the
human–controller interface, the switch of Node 5 is remotely
toggled to invoke network traffic between Nodes 1 and 5. The

Fig. 24 – Black Hole attack on Z-Wave network where Node 10 is dropping frames sent from Node 5 to Node 1.

126 c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

toggle switch command is routed to Node 5 in frames 183–
187. To be sure that the command is honored, Node 1 requests
the switch state of Node 5 in frames 188–192. Node 5 gener-
ates a reply and routes it through the BHN in frames 193–
196. The Black Hole attack is observed at frame 194, where the
BHN forwards the frame to non-existent Node 11. To close the
loop with the source node, the BHN forges the route ACK from
the destination in frame 195 of the figure. Being satisfied that
Node 1 received its update, Node 5 makes no attempts to resend
its state information using an alternative route.

The scope of the attack is limited to the network layer. While
frames are silently dropped, the application layer expects a re-
sponse to its query and may repeatedly attempt to resend the
request. Not shown in Fig. 24 is that the controller makes several
repeated attempts to query the state of Node 5 every 40 seconds.
Since no routing errors have been detected, the source node
continues to use the route containing the BHN. While the BHN
successfully drops the reply to each repeated request, the
human controller interface may eventually notify the user of
the communication problems with the remote node. This, in
turn, may provoke the use of network healing in attempt to
remedy the failure.

5.3. Recommendations

Common to all of the discovered vulnerabilities is the exploi-
tation of the hierarchical relationship between the controller
and routing nodes. The issue is that routing nodes rely on ex-
ternal direction from a controller or arbitrary neighbor that is
trusted without authentication. As a result, the topology and
routes can be arbitrarily modified to benefit the attacker. For
example, the Black Hole attack may be used on these net-
works to prevent home security sensors from reporting intrusion
events or drop frames that would otherwise actuate an alarm
to alert the user. Given these vulnerabilities, several improve-
ments may be made to the protocol.

The primary recommendation is to mandate the use of the
Security command class for all System command class mes-
sages. This prevents an outsider who does not have the AES
keys from forging messages to control the topology. At a
minimum, this policy increases the cost of routing attacks, re-
quiring physical access to a device EEPROM to extract the
encryption and authentication keys (Badenhop and Ramsey,
2016).

Given the available global topology information, the con-
troller should be the only node to send SR cache assignments
to other devices. Unfortunately, devices are unable to authen-
ticate at the node ID resolution with the current symmetric
key capability. A second recommendation is to move to an
asymmetric key system, where each node has a public and
private authentication key. The intent for Z-Wave is to be a low
cost home automation system (Paetz, 2013), so a full Public Key
Infrastructure (PKI) may not be feasible. At a minimum, the con-
troller should use an asymmetric key pair so that devices may
authenticate messages from the controller. This allows the
policy to be enforced, where a device updates its cache only
if the source authenticated assignment message originates from
the controller. As with the network key (Badenhop and Ramsey,
2016), the controller’s public key may be exchanged with a
device during the pairing operation.

In the event that a full PKI implementation exists for Z-Wave,
more secure routing is possible. For example, following the prac-
tices found in Secure Ad-hoc On-Demand Vector (SAODV), the
destination may sign the route ACK to make forgery more dif-
ficult (Guerrero-Zapata, 2006). Moreover, each hop of a source
route may, in turn, sign the message to ensure the SR, se-
lected by the source node, is taken. Hop by hop authentication
is already found in the Ariadne routing protocol (Andel and
Yasinsac, 2007; Hu et al., 2002), which is a more secure form
of DSR.

6. Conclusion

Being a reverse engineering effort, a complete understanding
of the routing protocol, even if achievable, is resource intensive.
There are several aspects of the routing protocol still requir-
ing reverse engineering and security analysis. Future work
should examine the role of secondary controllers, the exis-
tence of a route discovery mechanism similar to DSR as reported
in Paetz (2013), multipath routing, Z-Wave to IP gateway ac-
tivities, and System command class messages not identified in
Table 3. Once the proprietary I/O mechanisms of the Z-Wave
transceiver chip are identified, static analysis of the firmware
may reveal further details of the routing protocol.

As of 2014, new Z-Wave devices may support Z-Wave Plus,
which is an extended capability beyond the standard Z-Wave
protocol. The Z-Wave Alliance has revealed little about the im-
plications of the capability other than it is to provide “a whole
new level of smart home capabilities” using a new hardware
platform (Z-Wave Plus, 2016). To date, the availability of open
source literature and analysis tools, such as an R3 SDR trans-
ceiver, is limited for the new technology. None of the devices
in the network under study support Z-Wave Plus, so it is not
yet known if the vulnerabilities discovered herein extend to
the new hardware platform. Until Z-Wave Plus devices become
ubiquitous and analysis tools become available, the evalua-
tion of the security implications of Z-Wave Plus is left as future
work.

The work performed herein is a result of an observational
study on a limited set of Z-Wave devices. While the contribu-
tions of this work provide supporting evidence that the Z-Wave
protocol has security flaws, conclusive evidence requires a ran-
domized experiment where devices are randomly sampled from
the market. Simply evaluating more devices results in a larger
observational study with a marginal improvement in scope;
therefore, a randomized experiment should be conducted as
future work to determine if the discovered vulnerabilities are
limited to a particular vendor, firmware version, topology con-
figuration, or hardware version.

The Black Hole attack provided in this work applies to a
single source and destination pair. Future work should extend
this capability to provide a network-wide attack, which at-
tempts to maximize the number of source and destination pairs
affected by the Black Hole attack. With a network-wide attack
capability, the applicability of the analytical Black Hole attack
model to predict frame loss in Z-Wave networks, developed in
Badenhop and Mullins (2014) and Badenhop et al. (2016b), may
be explored.

127c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

In this paper, several contributions have been made re-
garding the security implications of the Z-Wave routing protocol
for IoT applications. The forwarding and topology mecha-
nisms of the Z-Wave routing protocol are reverse engineered
using passive and active observations on a real-world Z-Wave
network. A security assessment of this protocol on the network
under study reveals that the hierarchical relationship between
the routing nodes and controller may be exploited by a mali-
cious outsider. Not only can an outsider impersonate other
nodes, it also has the ability to discover and manipulate the
topology, modify route caches of nodes, and manipulate frames
in transit. The vulnerabilities are exploited to conduct a Black
Hole attack on the network under study, where it is shown that
frames are silently discarded for a given source and destina-
tion.The Black Hole attack can be used to prevent sensor reports
or actuating commands between the controller and devices,
inhibiting the functionality of the IoT automation system. The
results of the security analysis suggest the Z-Wave routing pro-
tocol is vulnerable to integrity-based attacks; however, a more
rigorous study is required to characterize the classes of Z-Wave
devices possessing the identified vulnerabilities.

Acknowledgments

The views expressed in this article are those of the authors
and do not reflect the official policy or position of the United
States Air Force, Department of Defense, or the United States
Government. This article is approved for public release under
case number 88ABW-2016-5241.

R E F E R E N C E S

Andel T, Yasinsac A. Surveying security analysis techniques in
MANET routing protocols. IEEE Commun Surv Tut
2007;9(4):70–84.

Badenhop C, Mullins B. A black hole attack model using topology
approximation for reactive ad-hoc routing protocols. Int J
Secur Netw 2014;9(2):63–77.

Badenhop C, Ramsey B. Carols of the Z-Wave security layer; or,
robbing keys from Peter to unlock Paul. Int J PoC 2016;12:6–12.

Badenhop C, Fuller J, Hall J, Ramsey B, Rice M. Evaluating ITU-T
G.9959: wireless systems in the critical infrastructure. In:
Butts J, Shenoi S, editors. Critical infrastructure protection IX,
IFIPS WG 11.10, vol. 9. Springer; 2015. p. 61–79.

Badenhop C, Ramsey B, Mullins B. An analytical black hole attack
model using a stochastic topology approximation technique
for reactive ad-hoc routing protocols. Int J Netw Secur
2016a;18(4):667–77.

Badenhop C, Ramsey B, Mullins B, Malloux L. Extraction and
analysis of non-volatile memory of the ZW0301 module, a
Z-Wave transceiver. Digit Invest 2016b;17:14–27.

Bhalaji N, Shanmugam A. Association between nodes to combat
blackhole attack in DSR based MANET. In: WOCN 2009
proceedings of the sixth international conference on wireless
and optical communications networks. 2009. p. 403–7.

Bihl T, Bauer K, Temple M, Ramsey B. Dimensional reduction
analysis for physical layer device fingerprints with
application to Zigbee and Z-Wave devices. In: MILCOM. 2015.
p. 360–5.

Fouladi B, Ghanoun S. 2013. Security evaluation of the Z-Wave
wireless protocol. Presented at Blackhat USA.

Fuller J, Ramsey B. Rogue Z-Wave controllers: a persistent attack
channel. In: SenseApp. IEEE; 2015. p. 734–41.

Fuller J, Ramsey B, Rice M, Pecarina J. Misuse-based detection of
Z-Wave network attacks. Comput Secur 2017;64:44–58.

Guerrero-Zapata M. 2006. Secure On-Demand Distance Vector
(SAODV) Routing.

Hall J, Ramsey B. 2016. Breaking bulbs briskly by bogus
broadcasts. Presented at ShmooCon, Washington, DC.

Hall J, Ramsey B, Rice M, Lacey T. Z-Wave network
reconnaissance and transceiver fingerprinting using
software-defined radios. In: International conference on cyber
warfare and security. 2016. p. 163–71.

Hao Y, Haiyun L, Fan Y, Songwu L, Lixia Z. 2004. Security
challenges in mobile ad hoc networks: challenges and
solutions. IEEE Wireless Communications.

Hu YC, Perrig A, Johnson DB. Ariadne: a secure on-demand
routing protocol for ad hoc networks. In: The 8th annual
international conference on mobile computing and
networking. 2002. p. 12–23.

ITU G.9959, 2012. ITU Recommendation G.9959: short range
narrow-band digital radiocommunication transceivers – PHY
and MAC layer specifications.

Johnson D, Hu Y, Maltz D. 2007. The Dynamic Source Routing
Protocol (DSR) for Mobile Ad Hoc Networks.

KillerZee. Github – joswr1ght/killerzee: Killerzee: tools for
attacking and evaluating z-wave networks; 2016. Available
from: https://github.com/joswr1ght/killerzee. [Accessed 21
April 2017].

Matthies C, Pirl L, Azodi A, Meinel C. Beat your mom at solitaire –
a review of reverse engineering techniques and
countermeasures. In: 2015 6th IEEE international conference
on software engineering and service science (ICSESS). 2015. p.
1094–7.

Mesbah A, Lanet JL, Mezghiche M. Reverse engineering a java
card memory management algorithm. Comput Secur
2017;66:97–114.

Narayanaswamy S, Kawadia V, Sreenivas RS, Kumar PR. Power
control in ad-hoc networks: theory, architecture, algorithm
and implementation of the compow protocol. In: European
wireless conference. 2002. p. 156–62.

OpenZwave. Open Z-Wave homepage; 2016. Available from:
http://www.openzwave.com/home. [Accessed 21 April
2017].

OpenZwave Defs.h. Openzwave defs.h; 2016. Available from:
http://www.openzwave.com/dev/Defs_8h_source.html.
[Accessed 21 April 2017].

Paetz C. Z-Wave basics. Lexington, KY: CreateSpace Independent
Publishing Platform; 2013.

Patel J, Ramsey B. Comparison of parametric and non-parametric
statistical features for Z-Wave fingerprinting. In: MILCOM.
2015. p. 378–82.

Scapy-Radio. Github – bastilleresearch/scapy-radio: scapy-radio
(from original hg repo); 2016. Available from: https://
github.com/BastilleResearch/scapy-radio. [Accessed 21 April
2017].

Stutton M, Greene A, Amini P. Fuzzing: brute force vulnerability
discovery. Upper Saddle River, NJ: Addison-Wesley; 2007.

Tellez M, El-Tawab S, Heydari MH. IoT security attacks using
reverse engineering methods on WSN applications. In: 2016
IEEE 3rd world forum on Internet of Things (WF-IoT). 2016. p.
182–7.

Tiwari M, Arya V, Choudhari R, Choudhary K. Designing intrusion
detection to detect black hole and selective forwarding attack
in WSN based on local information. In: International
conference on computer sciences and convergence
information technology. 2009. p. 824–8.

Vera. Vera: smarter home control; 2016. Available from: http://
getvera.com. [Accessed 21 April 2017].

128 c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0010
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0010
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0010
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0015
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0015
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0015
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0020
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0020
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0025
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0025
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0025
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0025
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0030
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0030
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0030
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0030
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0035
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0035
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0035
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0040
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0040
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0040
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0040
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0045
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0045
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0045
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0045
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0050
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0050
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0055
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0055
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0060
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0060
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0065
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0065
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0070
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0070
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0075
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0075
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0075
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0075
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0080
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0080
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0080
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0085
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0085
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0085
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0085
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0090
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0090
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0090
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0095
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0095
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0100
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0100
https://github.com/joswr1ght/killerzee
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0105
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0105
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0105
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0105
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0105
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0110
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0110
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0110
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0115
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0115
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0115
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0115
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0120
http://www.openzwave.com/home
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0125
http://www.openzwave.com/dev/Defs_8h_source.html
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0130
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0130
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0135
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0135
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0135
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0140
https://github.com/BastilleResearch/scapy-radio
https://github.com/BastilleResearch/scapy-radio
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0145
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0145
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0150
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0150
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0150
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0150
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0155
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0155
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0155
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0155
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0155
http://getvera.com
http://getvera.com

Z-Stick. Z-Wave USB stick; 2016. Available from: http://
aeotec.com/z-wave-usb-stick. [Accessed 21 April 2017].

Z-Wave Plus. Z-Wave plus; 2016. Available from: http://
www.zwaveproducts.com/learn/z-wave/z-wave-plus.
[Accessed 21 April 2017].

Zwave Protocol 1. Z-Wave protocol stack – Z-Wave protocol layer
basics; 2016. Available from: http://www.rfwireless-world
.com/Tutorials/z-wave-protocol-stack.html. [Accessed 21 April
2017].

Zwave Protocol 2. Understanding Z-Wave networks, nodes &
devices; 2016. Available from: http://www.vesternet.com/
resources/technology-indepth/understanding-z-wave
-networks. [Accessed 21 April 2017].

Christopher W. Badenhop is a PhD student of computer engineer-
ing at the Air Force Institute of Technology. He received a Masters
in cyberspace operations from the Air Force Institute of Technol-
ogy in 2012 and a Masters in computer engineering from Wright
State University in 2006. His research interests include computer
network security, embedded system security, reverse engineer-
ing, and RF communication.

Scott R. Graham is an assistant professor of computer engineer-
ing at the Air Force Institute of Technology. He received the PhD
degree in electrical engineering from the University of Illinois at

Urbana-Champaign in 2004. His research interests center on cyber
physical systems, looking at the interaction of computer architec-
ture, networks, and security for critical infrastructure protection.

Benjamin W. Ramsey is a former faculty member at the Air Force
Institute of Technology. He received the PhD degree in computer
science from the Air Force institute of Technology in 2014. His re-
search interests include wireless network security and critical
infrastructure protection.

Barry E. Mullins is a professor of computer engineering at the Air
Force Institute of Technology. He received the PhD degree in elec-
trical engineering from Virginia Polytechnic Institute and State
University in 1997. His research interests include cyber opera-
tions, critical infrastructure protection, computer/network/
embedded systems security, wired/wireless networking, and reverse
code engineering.

Logan O. Mailloux, CISSP, CSEP (BS 2002, MS 2008, PhD 2015) is
a commissioned officer in the United States Air Force and assis-
tant professor at the Air Force Institute of Technology. His research
interests include system security engineering, complex informa-
tion systems, and quantum based cyber security systems. He is a
member of Tau Beta Pi, Eta Kappa Nu, INCOSE, ITEA, the ACM, and
IEEE.

129c om pu t e r s & s e cu r i t y 6 8 (2 0 1 7) 1 1 2 – 1 2 9

http://aeotec.com/z-wave-usb-stick
http://aeotec.com/z-wave-usb-stick
http://www.zwaveproducts.com/learn/z-wave/z-wave-plus
http://www.zwaveproducts.com/learn/z-wave/z-wave-plus
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0175
http://www.rfwireless-world.com/Tutorials/z-wave-protocol-stack.html
http://www.rfwireless-world.com/Tutorials/z-wave-protocol-stack.html
http://refhub.elsevier.com/S0167-4048(17)30079-2/sr0180
http://www.vesternet.com/resources/technology-indepth/understanding-z-wave-networks
http://www.vesternet.com/resources/technology-indepth/understanding-z-wave-networks
http://www.vesternet.com/resources/technology-indepth/understanding-z-wave-networks

	The Z-Wave Routing Protocol and Its Security Implications
	Recommended Citation

	 The Z-Wave routing protocol and its security implications
	 Introduction
	 Z-Wave background
	 Pairing operation
	 Node identification
	 Command class
	 Related work

	 Reversing engineering and security assessment methodology
	 Network under study
	 The SDR test platform
	 R2 transceiver stack
	 R1 transceiver stack

	 Collection and injection techniques
	 Reverse engineering process
	 Security analysis process

	 The reverse engineered Z-Wave routing protocol
	 Source routing
	 Forwarding behavior
	 Routing frame types
	 Routed application frame
	 Route acknowledgment
	 Route error

	 Network management
	 Coordination messages
	 NL updates
	 Adjacency table updates
	 Route request
	 Route selection

	 Security analysis on Z-Wave routing protocol
	 Existing security in Z-Wave
	 Security command class
	 Out of band triggers
	 Privileged controller
	 Watchdog routing

	 Vulnerabilities
	 Impersonation
	 Arbitrary NL modification
	 Outsider topology discovery
	 Arbitrary SR cache modification
	 Modification of routed frames
	 Black Hole attack

	 Recommendations

	 Conclusion
	 Acknowledgments
	 References

