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A B S T R A C T

We present a method to generate any physically realizable electromagnetic Schell-model source. Our technique
can be directly implemented on existing vector-beam generators that utilize spatial light modulators for co-
herence control, beam shaping, and relative phasing. This work significantly extends published research on the
subject, where control over the partially coherent source’s cross-spectral density matrix was limited.

We begin by presenting the statistical optics theory necessary to derive and implement our method. We then
apply our technique, both analytically and in simulation, to produce two electromagnetic Schell-model sources
from the literature. We demonstrate control over the full cross-spectral density matrices of both partially co-
herent beams. We compare the simulated results of these two sources to the corresponding theoretical or de-
signed quantities to validate our approach. We find, through examination of the two-dimensional correlation
coefficients, that both sources converge to their desired, ensemble (or by ergodicity, “long-time”) statistics
within 500 random field instances.

Our method and subsequent findings will be useful in any application where control over beam shape, po-
larization, and spatial coherence are important. These include but are not limited to free-space/underwater
optical communications, directed energy, medicine, atomic optics, and optical tweezers.

Introduction

Since Emil Wolf’s seminal work on coherence and polarization in
the early 2000s [1,2], many different vector or electromagnetic Schell-
model sources have been developed. These beams have been designed
to have dynamic polarization, coherence, and beam-shape character-
istics for applications from directed energy and free-space optical
communications to atomic optics and optical tweezers [3–14].

Subsequently, techniques to physically realize these sources have
been developed [3–6,15–26]. The most common approach uses spatial
light modulators (SLMs) in a Mach-Zehnder-interferometer-like setup
[3,17–19,22,25,26]. Light from a common source (typically, a laser) is
polarization split into two orthogonal child beams. An SLM or SLMs
placed along the interferometer optical paths control the beam shape,
coherence, and relative phasing of the child beams. The beams are then
recombined to form a stochastic realization of the desired vector Schell-
model source (VSMS). This stochastic field realization is spatially co-
herent. Partial coherence is produced by cycling the SLM commands at
a high rate.

Several recent papers have presented theory and some experimental

results where complex VSMSs have been produced using the above
approach [3,17–20,25,22,26–28]. A key theoretical problem present in
the cited works has been control over the spatial cross-correlation
function of the orthogonal child beams. As will be shown, the cross-
correlation function of the child beams is predominately determined by
their individual self- or auto-correlation functions. Mathematically, this
affects the off-diagonal elements of the cross-spectral density (CSD)
matrix and physically limits the ability to synthesize VSMSs with S2 and
S3 Stokes vector components [29].

For instances, Refs. [3,18,25–27] discuss synthesizing electro-
magnetic Gaussian Schell-model sources (EGSMSs). The EGSMS para-
meter constraints derived therein are much more restrictive than the
physical source realizability conditions derived in Refs. [3,30]. More
extreme examples can be found in Refs. [22,28]. In the former, the
authors find only one condition under which an electromagnetc multi-
Gaussian Schell-model source (EMGSMS) can be produced with off-di-
agonal CSD matrix elements [22]. In the latter, the inability to control
the full CSD matrix limits far-zone beam control to only two Poincaré
sphere parameters—the total intensity S0 and the degree of polarization

S, 0P and the angle of polarization ψ, or S0 and the ellipticity angle χ
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[28].
In this paper, we present a way to control the full CSD matrix and

therefore produce any physically realizable VSMS. Our method does not
require any additional optical components or hardware and can be
directly implemented using the interferometer setup highlighted above
and the more detailed setups described in Refs. [3,18,22].

We begin by presenting the theory underpinning our approach.
Then, as examples, we generalize the work presented in Refs. [22,28],
namely, to produce any physically realizable EMGSMS and an en-
gineered VSMS that radiates a beam with a customizable far-zone po-
larization state, i.e., controllable S ψ, ,0 P , and χ .

We demonstrate and validate our approach with Monte Carlo si-
mulations, where we generate an EMGSMS which, until now, has been
impossible to produce, and an engineered VSMS that radiates a far-zone
beam with an S ψ, ,0 P , and χ that are complex grayscale images. We
compare the simulated results to the EMGSMS theoretical predictions or
the desired S ψ, ,0 P , and χ images, whichever is applicable. We present
the correlation coefficients versus Monte Carlo trial number to show the
convergence of our method. The correlation coefficient results will be
useful to those who implement our technique for a specific application.
Lastly, we conclude this paper with a summary of our analysis and a
brief list of potential applications.

Theory

The statistical behavior of a wide-sense stationary (WSS), planar,
partially coherent source is fully described by its CSD matrix [2,31],
viz.,

= ⎡
⎣
⎢

⎤
⎦
⎥ρ ρ

ρ ρ ρ ρ
ρ ρ ρ ρ

ω
W ω W ω
W ω W ω

W̲( , , )
( , , ) ( , , )
( , , ) ( , , )
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where ω is the radian frequency (hereafter assumed and suppressed),
̂ ̂= + = ∗ρ x y ρ ρ ρ ρx y W E E, ( , ) ( ) ( )αβ α β1,2 1,2 1,2 1 2 1 2 , and =α β x y, , . Eα is

the stochastic complex amplitude of the optical field’s α polarization
component.

Here, we assume that W̲ takes a Schell-model form [2,31], such that

= −∗ρ ρ ρ ρ ρ ρW τ τ μ( , ) ( ) ( ) ( ),αβ α β αβ1 2 1 2 1 2 (2)

where τα is the deterministic complex amplitude of the α field compo-
nent and μαβ is the complex cross-correlation function of the α and β
field components.

When it comes to physically realizing a particular W̲, controlling
μαβ, where ≠α β (in more direct terms, μxy), has been a challenge.
Overcoming this challenge is the purpose of this paper. In the sections
that follow, we show that μxy can be controlled by spatially varying the
cross-correlation coefficient between the white-noise, Gaussian random
numbers that seed Ex and Ey.

Generating stochastic vector field realizations

We begin with the following model for a stochastic vector field
realization:

̂ ̂= +E ρ x ρ ρ y ρ ρτ T τ T( ) ( ) ( ) ( ) ( ),x x y y (3)

where Tα is a random complex “screen” (for the α field component)
formed from circular complex Gaussian random numbers. Taking the
vector auto-correlation of Eq. (3), i.e.,

=∗ ∗ ∗ρ ρ ρ ρ ρ ρE E τ τ T T( ) ( ) ( ) ( ) ( ) ( ) ,α β α β α β1 2 1 2 1 2 (4)

and comparing the result to Eq. (2) yields the equality

− = ∗ρ ρ ρ ρμ T T( ) ( ) ( ) .αβ α β1 2 1 2 (5)

Thus, a field instance drawn from the WSS process described by W̲
can be generated by producing two correlated complex screens, Tx and
Ty, with correlation functions given by μαβ. The challenge of course, is

generating Tx and Ty when, in general, ≠ ≠μ μ μxx yy xy.
We start with =α β, as this does affect the ≠α β case. The =α β

case concerns the diagonal elements of W̲. Since W̲ is of Schell-model
form, we can generate instances of Tx and Ty with the desired μxx and
μyy, respectively, by filtering delta-correlated circular complex Gaussian
random numbers. For computational efficiency, the filtering operation
is commonly performed in the spatial frequency domain via the con-
volution theorem and the fast Fourier transform (FFT). This process has
been derived in the literature many times [18,22,32–36]. The final
result is

∑ ⎜ ⎟⎜ ⎟= ⎛
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where rα is an ×N Ny x grid of zero-mean, unit-variance circular complex
Gaussian random numbers, i j, are discrete spatial indices, m n, are
discrete spatial frequency indices, and L L,x y are the grid dimensions in
meters in the x and y directions, respectively. Lastly, Φαα is the spatial
power spectrum of Tα, i.e.,

∫ ∫= −
−∞

∞
f ρ f ρμ π ρΦ ( ) ( )exp( j2 · )d ,αα αα

2
(7)

where ̂ ̂= +f x yf fx y, via the Wiener-Khinchin theorem [31,37].
Moving on to the ≠α β case, evaluating Eq. (6) creates a Tα with

the desired ensemble auto-correlation μαα. For μxy, we need to examine
the cross-correlation of Tx with Ty, namely,
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Recalling Eqs. (4) and (5), clearly, μxy (and subsequently, W̲’s off-
diagonal elements) depend on the diagonal elements of W̲ via Φxx and
Φyy. The moment ∗r m n r m n[ , ] [ , ]x y1 1 2 2 determines the degree of control
over μxy.

In past works,

= − −∗r m n r m n Rδ m m δ n n[ , ] [ , ] 2 [ ] [ ],x y1 1 2 2 1 2 1 2 (9)

where δ x[ ] is the discrete Dirac delta function and R is the correlation
coefficient between the rx and ry random numbers [3,18,22,25–28].
Simplifying Eq. (8) with this result produces
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Thus, to control μxy,

=R m n m n m nΦ [ , ]Φ [ , ] Φ [ , ],xx yy xy (11)

where Φxy is the cross-power spectrum and equal to the Fourier trans-
form of μxy [see Eq. (7)]. With R being constant, there is little flexibility
in controlling μxy. We present an example of this later on in the paper.
Next, however, we allow R to spatially vary and discuss how to generate
rx and ry (ultimately, T T,x y, and E) with a spatially varying R.

Spatially varying R

Returning briefly to Eq. (8), we expand the moment
∗r m n r m n[ , ] [ , ]x y1 1 2 2 in terms of the real and imaginary parts of rx and

ry, namely,
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where the superscripts “r” and “i” refer to the real and imaginary parts,
respectively. The moments in Eq. (12) must be
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to ensure that the generated source W̲ is of Schell-model form—more
accurately, that Tx and Ty are jointly homogeneous or equivalently that

∗T i j T i j[ , ] [ , ]x y1 1 2 2 is a function of only − −i i j j,1 2 1 2 [37]. Substituting
the above into Eq. (8) and simplifying yields
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This last relation leads to an expression similar to Eq. (11), but
much more general:

=R m n
m n

m n m n
[ , ]

Φ [ , ]

Φ [ , ]Φ [ , ]
,xy

xx yy
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(15)

where ∈ −R [ 1, 1]r,i .
The next step is to generate rx and ry with cross-correlation coeffi-

cients Rr,i given in Eq. (15). This can be achieved using Cholesky de-
composition [22,38,39]. We note that using Cholesky decomposition to
generate rx and ry for a general source given by the covariance matrix in
Eq. (12) is impractical for reasonably sized grids. For example, assume
that the desired Tx and Ty are ×512 512 grids, which is a common size
for commercially available SLMs. The covariance matrix, in this case, is
a staggering ×2 220 20 matrix, which requires a supercomputer to store
and compute the Cholesky factors.

Fortunately, there is a much more efficient way to generate rx and ry,
sinceTx andTy are jointly homogeneous. Note that in Eq. (13), the Dirac
delta functions reduce the dimensions of the cross-correlation function
from four to two. Thus, for any = = = =m m m n n n,1 2 1 2 , the covar-
iance matrix is
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where evaluation of r r r r R, , , ,x x y y
r i r i r, and Ri at a particular m n, is im-

plied. Calculating the Cholesky factors for Σ̲ is a relatively straightfor-
ward task, i.e.,
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We can now generate rx and ry by first producing four ×N Ny x grids
of zero-mean, unit-variance, independent Gaussian random
numbers—r r r, ,1 2 3, and r4 in the analysis to follow. Then, using rL̲, x and
ry are

= +
= + −

+ + − −
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Lastly, realizations of T T,x y, and E can be produced using Eqs. (6)
and (3), respectively.

In the next section, we present examples showing how to apply the
above analysis to generate any physically realizable EMGSMS and an
engineered VSMS that radiates a far-zone beam with controllable
S ψ, ,0 P , and χ (hereafter referred to as the engineered VSMS).

Examples

EMGSMS
The CSD matrix elements of an EMGSMS are [3,7]

∑
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where Aα and σα are the amplitude and r.m.s width of the α field
component, δαβ is the cross-correlation width, Bαβ is the complex cross-
correlation coefficient, and C0 is a normalization factor equal to

∑= −

=

−( )C M
m m

( 1) .
m

M m
0

1

1

(20)

For the above source to be physically realizable, the EMGSMS
parameters must satisfy [3,7]

= = ⩽ = =

⩽ ⩽
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B| |
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We note that when =M 1, the EMGSMS simplifies to an EGSMS, and
thus, this example includes EGSMSs as a special case.

Comparing Eq. (4) to Eq. (19), we see that
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where Cα is a complex constant, such that =C A| |α α. When =α β,
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When ≠α β, we find that

∑
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(24)

We can now apply the analysis in Sections “Generating stochastic
vector field realizations” and “Spatially varying R” to generate
EMGSMS field instances. Using Eq. (7), the spatial power spectrum Φαα

Table 1
Simulated EMGSMS Parameters.

Ax 1.5
Ay 1
σx 0.5mm
σy 0.8mm
Bxy 0.5 − πexp( j /6)
δxx 0.6mm
δyy 0.4mm

δxy 0.6464mm
M 40
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Fig. 1. Theoretical (left column) and simulated (right column) EMGSMS Stokes vector results—(a) S0
thy, (b) S0

sim, (c) S1
thy , (d) S1

sim, (e) S2
thy, (f) S2

sim, (g) S3
thy , (h) S3

sim,
and (i) two-dimensional correlation coefficients C of the simulated Stokes parameters versus trial number. The inset in (i) shows C from trials 1000–50,000.
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is

∑= − −

= − − −
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We now find the required Rr,i using Eq. (15):

∏
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where = +f m L n L( / ) ( / )x y
2 2 is the discrete spatial frequency. With

Rr,i, we use Eq. (18) to find r r,x y, Eq. (6) to generate T T,x y, and lastly,
Eq. (3) to form an EMGSMS field instance.

It is important and insightful to check if ∈ −R [ 1, 1]r,i . Clearly, Ri

satisfies this condition. For Rr, we recall the realizability criteria given
in Eq. (21), and for convenience, let =R ag f( )r , where

=

=
∏

− − −

− − −
=

a δ

g f( ) .

xy
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δ δyy
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2 2 2 1/2

(27)

Considering the fork inequality on the second line of Eq. (21),
⩽ ⩽a0 1, where =a 0 when =B 0xy and =a 1 when δxy equals its

maximum physically allowed value. For g, even if δxy equals its
minimum value, the numerator of g is a faster (narrower) function of f
than the denominator, and therefore, ⩽ ⩽g f0 ( ) 1 for all f. The above
conditions on a and g imply that ⩽ ⩽R0 1r . Most importantly, since all
δxy satisfying the fork inequality in Eq. (21) map to an ∈ −R [ 1, 1]r,i , all
physically realizable EMGSMSs can be generated using the procedure
and analysis presented in the previous paragraph.

To demonstrate the significance of this contribution, we briefly
discuss generating EMGSMSs using the approach in Refs.
[3,25,22,18,26–28]. As discussed in Section “Generating stochastic
vector field realizations”, in past works, Eq. (11) was used to determine
a spatially invariant (or constant) R to control μxy. Reference [22]
considered an EMGSMS and derived the following condition:

∏ − − −

= − − −
=

δ δ R π δ f

B δ π δ f

{1 [1 exp( 2 )] }

| | {1 [1 exp( 2 )] },

xx yy
α x y

αα
M

xy xy xy
M

,

2 2 2 1/2

2 2 2 2
(28)

which must hold for all f and is satisfied in only two cases. Letting
=R B| |xy ,

1. If =B W0, ̲xy is diagonal.
2. If ≠B W| | 0, ̲xy is full and = =δ δ δxx yy xy.

Fig. 2. EMGSMS x xW̲( , 0, , 0)1 2 results—(a) real (top) and imaginary (bottom) parts of Wxx
thy, (b) real (top) and imaginary (bottom) parts of Wxx

sim, (c) real (top) and
imaginary (bottom) parts ofWxy

thy , (d) real (top) and imaginary (bottom) parts ofWxy
sim, (e) real (top) and imaginary (bottom) parts ofWyx

thy , (f) real (top) and imaginary
(bottom) parts of W yx

sim, (g) real (top) and imaginary (bottom) parts of Wyy
thy, and (h) real (top) and imaginary (bottom) parts of W yy

sim.
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Thus, this prior method can only produce a small subset of physi-
cally realizable EMGSMSs. This stands in sharp contrast to the tech-
nique developed in this paper.

Engineered VSMS
Here, we design an electromagnetic Schell-model source that radi-

ates a far-zone beam with completely controllable Poincarè sphere
parameters—S ψ, ,0 P , and χ . This extends the work in Ref. [28], where
using Eq. (11), only two of the parameters could be controlled si-
multaneously.

We begin with the random optical field given in Eq. (3). Like in Ref.
[28], we assume that = =τ τ τx y and that E is a realization of an
electromagnetic quasi-homogeneous source [3,40].

Following the procedure in Ref. [28], we take the vector auto-cor-
relation of Eq. (3), propagate the resulting W̲ to the far-zone, and then
evaluate the far-zone W̲ at = =ρ ρ ρ1 2 producing

≈ ⎛
⎝

⎞
⎠

ρ ρ ρW z
λz λz

( , , ) (0)
( )

Φ ,αβ αβ2
T

(29)

where λ is the wavelength, z is the distance to the far-zone observation
point, Φαβ is the auto- or cross-power spectrum [recall Eq. (7)], andT is
the auto-correlation of τ .

The Stokes parameters in terms of the CSD matrix elements are

= +
= − =
= + =
= − =

S W W
S W W S ψ χ
S W W S ψ χ
S W W S χ

cos (2 ) cos (2 )
sin (2 ) cos (2 )

j( ) sin (2 ),

xx yy

xx yy

xy yx

yx xy

0

1 0

2 0

3 0

P

P

P (30)

where S0 is the total average intensity, ⩽ ⩽0 1P is the degree of po-
larization, − < ⩽π ψ π/2 /2 is the angle of polarization, and
− ⩽ ⩽π χ π/4 /4 is the ellipticity angle [2,3,29]. The functional de-
pendencies of the Stokes parameters, Poincaré sphere parameters, and
CSD matrix elements on ρ and z are assumed and suppressed. Sub-
stituting in Eq. (29) and simplifying produces

̂ ̂
̂ ̂

̂
̂

= +

= − =

= =

= =

S

S S ψ χ

S Re S ψ χ

S Im S χ

Φ Φ

Φ Φ cos (2 ) cos (2 )

2 (Φ ) sin (2 ) cos (2 )

2 (Φ ) sin (2 ),

xx yy

xx yy

xy

xy

0

1 0

2 0

3 0

P

P

P (31)

where ̂ = λzΦ Φ (0)/( )αβ αβ
2T .

We know from Eq. (15) that ̂ ̂ ̂= RΦ Φ Φxy xx yy
r,i r,i , such that

̂ ̂
̂ ̂

̂ ̂
̂ ̂

+ =

− =

=

=

S

S ψ χ

R S ψ χ

R S χ

Φ Φ

Φ Φ cos (2 ) cos (2 )

2 Φ Φ sin (2 ) cos (2 )

2 Φ Φ sin (2 ).

xx yy

xx yy

xx yy

xx yy

0

0

r
0

i
0

P

P

P (32)

We can now solve these equations for ̂ ̂ RΦ , Φ ,xx yy
r, and Ri in terms of

the Poincarè sphere parameters to yield the desired result:

̂
̂

= +

= −

=

=

−

−

S χ ψ

S χ ψ

R

R

Φ [1 cos (2 ) cos (2 )]

Φ [1 cos (2 ) cos (2 )]

.

xx

yy

χ ψ

χ ψ

χ

χ ψ

1
2 0

1
2 0

r cos (2 ) sin (2 )

1 cos (2 ) cos (2 )

i sin (2 )

1 cos (2 ) cos (2 )

2 2 2

2 2 2

P

P

P

P

P

P (33)

With Eq. (33), we use Eq. (18) to find r r,x y, Eq. (6) to generateT T,x y,
and lastly, Eq. (3) to form a vector field realization. To observe the
desired Poincarè sphere parameters, we must propagate many vector
field instances to the far zone and compute the Stokes parameters
averaged over the ensemble of random field realizations [see Eq. (30)].
From these Stokes parameters, we then compute S ψ, ,0 P , and χ .

It is instructive to explore some special polarization cases. We start
with unpolarized light, where = 0P . We see at once from Eq. (33) that

̂ ̂= = SΦ Φ /2xx yy 0 and = =R R 0r i . These values make physical sense
considering that for unpolarized light, the field’s vector components, Ex
and Ey, have equal average powers ( ̂ ̂=Φ Φxx yy) and are statistically
uncorrelated ( =R 0).

Proceeding to circular polarization ( = 1P and = −χ π π/4, /4), we
see again that ̂ ̂= = SΦ Φ /2xx yy 0 , but this time =R 0r and = −R 1, 1i

depending on whether the polarization ellipse rotates to the right or to
the left. Again, these values are intuitive. Like unpolarized light, cir-
cularly polarized light requires Ex and Ey to have equal powers. In
addition, it requires that Ex and Ey be perfectly correlated ( =R| | 1), and
Ex to lead or lag Ey in phase by °90 ( =R 0r and = −R 1, 1i ).

We now examine special linear polarization states. For ± °45 line-
arly polarized light, = =χ1, 0P , and = −ψ π π/4, /4. Examining Eq.
(33), we find, like unpolarized and circularly polarized light, that

̂ ̂= = SΦ Φ /2xx yy 0 . The cross-correlation coefficient takes on the values
= −R 1, 1r and =R 0i . To physically produce ± °45 linearly polarized

light, Ex and Ey must have equal powers, must be perfectly correlated,
and must be in phase or in antiphase ( = −R 1, 1r and =R 0i ). The va-
lues of ̂ ̂ RΦ , Φ ,xx yy

r, and Ri are clearly consistent with ± °45 linear po-
larization states.

Lastly, we examine horizontally and vertically polarized states. The
Poincarè sphere parameters take on the values = =χ1, 0P , and

Fig. 3. Polarization ellipses across the beam’s profile—(a) theory and (b) si-
mulation (results after 500 trials).
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=ψ π0, /2 for horizontally and vertically polarized light, respectively.
Substituting these values into Eq. (33) produces ̂ ̂= =S SΦ , 0, Φ 0,xx yy0 0,
and Rr,i is undefined. Like the other polarization states discussed above,
these values make physical sense: For horizontally polarized light, all
power is in Ex ( ̂ = SΦxx 0 and ̂ =Φ 0yy ); the opposite is true for vertically
polarized light, i.e., all power is in Ey ( ̂ = SΦyy 0 and ̂ =Φ 0xx ). Since all
the field’s power is exclusively in Ex or Ey, the cross-correlation R is
irrelevant. This can cause numerical problems using Eq. (33) because

=R 0/0r,i is an indeterminate form. To avoid this, we need to check if
= =χ1, 0P , and =ψ π0, /2, and if so, let Rr,i be any number in −[ 1, 1].

Simulation

In this section, we generate an EMGSMS and an engineered VSMS
with controllable far-zone S ψ, ,0 P , and χ using the expressions derived
in Sections “EMGSMS” and “Engineered VSMS”, respectively. Before
presenting and analyzing the results, we briefly discuss the simulation
setup.

Fig. 4. Theoretical (left column) and simulated (right column) engineered VSMS results—(a) S0
thy, (b) S0

sim, (c) thyP , (d) simP , (e) ψthy, (f) ψsim, (g) χ thy , (h) χ sim, and
(i) two-dimensional correlation coefficients C of the simulated Poincarè sphere parameters versus trial number. The inset in (i) shows C from trials 1000–50,000.
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Setup

For these simulations, we used = =N N 1024x y grids with a grid
spacing =Δ 15 μm. To simulate a Meadowlark Optics Model P512-635
liquid crystal SLM [41], we “windowed” the source plane field in Eq.
(3), such that

̂ ̂= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

+E ρ x ρ ρ y ρ ρrect x
D

rect y
D

τ T τ T( ) [ ( ) ( ) ( ) ( )],x x y y (34)

where =D rect x7.68mm, ( ) was the rectangle function defined in Ref.
[42], and τα was

=
⎧

⎨
⎩

−( )ρτ
C

( )
exp EMGSMS

1 Engineered VSMS
α

α
ρ
σ4 α

2

2

(35)

The simulated wavelength was =λ 632.8nm.
The complex screens, Tx and Ty, were generated using the proce-

dures described in Sections “EMGSMS” and “Engineered VSMS”. The
simulated EMGSMS parameters are given in Table 1. The desired
S ψ, ,0 P , and χ were grayscale images (photographs) shown in
Fig. 4(a), (c), (e), and (g), respectively.

We generated 50,000 EMGSMS and engineered VSMS field in-
stances and propagated each to the far zone using FFTs [32,33]. For the
EMGSMS, we compared the theoretical far-zone Stokes parameters and
W x x( , 0, , 0)αβ 1 2 to the corresponding simulated results. The theoretical
far-zone ρ ρW ( , )αβ 1 2 is

∑

⎜ ⎟

=

× ⎛
⎝

− ⎞
⎠

⎡
⎣

− ⎤
⎦

=

−

−
− +

−

−( )ρ ρW z M
m( , , )

exp ,
ρ ρ

αβ

ρ ρ

λ z

A A B
C

m

M

m

π
a a b

π
λz

a ρ b a ρ
a a b

1 2

exp ( )

1

( 1)

2

2 ·

π
λz α β αβ m

α αβ β αβ αβ

β αβ αβ α αβ

α αβ β αβ αβ

j
1
2

2
2

2 2 0

1

2

, , 2 2
, 1

2
1 2 , 2

2

, , 2
(36)

where = +a σ b1/(4 )α αβ α αβ,
2 and =b mδ1/(2 )αβ αβ

2 [22]. For the en-
gineered VSMS, we compared the simulated S ψ, ,0 P , and χ to their
desired images.

Results

EMGSMS
Figs. 1 and 2 show the far-zone EMGSMS Stokes parameters and

W x x( , 0, , 0)αβ 1 2 results, respectively. In Fig. 1, the left column of images
shows the theoretical (superscript “thy” in the figure captions) Stokes
parameters; the right column shows the simulated (superscript “sim” in
the figure captions) results. The Stokes parameters are organized along
the rows—S0 in row 1 proceeding incrementally to S3 in row 4. Row
headings have been added to aid the reader. The theoretical and si-
mulated Stokes parameters are plotted on the same color scale defined
by the color bars at the end of each row. Lastly, row 5 shows the cor-
relation coefficient C, i.e.,

∑

∑ ∑
=

− −

− −

=

= =

C
S k S S k S

S k S S k S

( [ ] )( [ ] )

( [ ] ) ( [ ] )

,k

N N

i i i i

k

N N

i i
k

N N

i i

1

sim sim thy thy

1

sim sim 2

1

thy thy 2

x y

x y x y

(37)

where N Nx y is the number of pixels in an image, k is a pixel index,
=i 0, 1, 2, 3, and Si is the average value of the ith Stokes vector element.

The layout of Fig. 2 mimics the ×2 2 CSD matrix W̲. Each “element”
is labeled for the reader’s convenience and composed of a ×2 2 group
of images. In each group, the theoretical W x x( , 0, , 0)αβ 1 2 are in column
1; the simulated results are in column 2. The real and imaginary parts of
W x x( , 0, , 0)αβ 1 2 are in rows 1 and 2, respectively. Both the theoretical
and simulated results are plotted on the same false color scale defined
by the color bars at rows’ end in each group.

The results in Figs. 1 and 2 speak for themselves. Examining Fig. 1(i)
shows that the simulated Stokes parameters converge to their theore-
tical counterparts in roughly 500 trials. To investigate this further,
Fig. 3 shows S0 and the polarization ellipses at several locations across
the far-zone beam’s profile. The polarization ellipse equations can be
found in Ref. [3]. Fig. 3(a) and (b) show the theoretical and simulated
results (after 500 trials), respectively. The agreement between Fig. 3(a)
and (b) is qualitatively excellent.

Engineered VSMS
Fig. 4 shows the results for the engineered VSMS. The layout of the

figure is similar to Fig. 1; however, here, the Poincarè sphere para-
meters are shown along the rows. Row headings have again been added
to aid the reader, and the theoretical, or desired (left column) and si-
mulated (right column) S ψ, ,0 P , and χ are plotted on the same color
scale defined by the color bars at rows’ end. Lastly, row 5 reports C [see
Eq. (37)] for each of the Poincarè sphere parameters.

Like the EMGSMS results, the agreement between theory and si-
mulation is excellent. Fig. 4(i) shows convergence to the desired
Poincarè sphere parameters occurs within approximately 500 trials.
Fig. 5 shows the engineered VSMS results corresponding to those in
Fig. 3. The results in Figs. 4 and 5 as well as the EMGSMS simulation
results validate the electromagnetic Schell-model source synthesis
method presented in this paper.

Conclusion

In this paper, we presented a method to produce any physically

Fig. 5. Polarization ellipses across the beam’s profile—(a) theory and (b) si-
mulation (results after 500 trials).
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realizable electromagnetic Schell-model source by controlling the full
CSD matrix W̲ of the partially coherent beam. In prior works focused on
producing electromagnetic Schell-model sources, there was very limited
control over the off-diagonal elements of W̲, which negatively affected
producing VSMSs with S2 and S3 Stokes vector components.

We overcame this limitation by using a spatially varying cross-
correlation coefficient R between the random numbers that seeded the
field’s polarization components. We showed both analytically and
through examples how a spatially varying R allowed full control over
W̲. In particular, we generalized the work presented in Refs. [22,28] by
demonstrating how to produce any physically realizable EMGSMS and
an engineered VSMS that radiated a far-zone beam with customizable
Poincaré sphere parameters.

We validated our approach with Monte Carlo simulations, where we
produced the two electromagnetic Schell-model sources discussed
above, both of which required full W̲ control. For the EMGSMS, we
demonstrated independent control over all EMGSMS parameters. For
the engineered VSMS, we demonstrated full control over the far-zone
S ψ, ,0 P , and χ , which were complex grayscale images. We examined
the convergence of the stochastic vector field instances to the theore-
tical or desired quantities by reporting the correlation coefficients for
both sources versus Monte Carlo trial number. We found that both
sources converged within 500 field instances. This result will be useful
to those who implement our approach for a particular application.

The method we developed in this paper will be useful in SLM-based
techniques to synthesize electromagnetic Schell-model sources. Our
approach does not require any additional hardware and can be directly
implemented on existing setups that produce vector beams
[3–5,18,22,43–46]. By expanding the domain of VSMSs that can be
generated using existing setups, our work increases the utility of these
systems for vector-beam and beam-shaping applications such as free-
space optical communications, directed energy, atomic optics, particle
manipulation, and optical tweezers.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.rinp.2019.102663.
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