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ABSTRACT
In recent years, researchers have expressed a vested interest in the concepts surrounding
flapping wing micro air vehicles (FWMAVs) that are capable of both range and complex
maneuvering. Most research in this arena has found itself concentrated on topics such as
flapping dynamics and the associated fluid-structure interactions inherent in the motion;
however there still remain a myriad of questions concerning the structural qualities
intrinsic to the wings themselves. Using nature as the template for design, FWMAV
wings were constructed using carbon fiber and Kapton and tested under simplified
flapping conditions by analyzing `frozen’ digital images of the deformed wing by
methods of photogrammetry. This flapping motion was achieved via the design and
construction of a flapper that emulates several of the kinematic features that can be seen
in naturally occurring flyers.  The response to this motion was then compared to the
inspiring specimen’s wings, the North American Hawkmoth (Manduca Sexta), under the
same flapping conditions in order to identify some of the key features that nature has
deemed necessary for successful flight. Results showed that though the engineered wing
emulated several of the structural characteristics of the biological wing; it still required
some design modifications to compare more closely to the biological wing in the flapping
motion. Additionally, this research also speaks to the effects of air on the biological wing.

1. INTRODUCTION 
1.1. Motivation
In terms of tactical advantage on the battlefield, the realm of micro air vehicles (MAVs) shows promise.
As warfighters are taxed with ever increasingly difficult situations, it is crucial that they be made aware
of what is to come; whether it be over a hill, in a cave, or in a room of an unknown building [1]. The
MAV will be capable of a multitude of close quarter reconnaissance tasks, ranging from battlefield
operations to safety inspections of civilian structures [2]. The Defense Advanced Research Project
Agency (DARPA) solidifies and enumerates some of the specifics associated with the projected MAV
as is shown in Table 1 [2].

The vision of the optimal, operational MAV as outlined by DARPA allows for creativity in the
construction of this machine despite the specific constraints. The realization of practical MAV
applications is possible due to the ever-decreasing size and weight of payload components such as
video cameras, chemical sensors, and autopilots [3]. One issue that does present itself is the subject of
maneuverability. The MAV, as required by DARPA, should have the ability to negotiate small spaces
and perhaps even hover within close quarters; a near impossible feat for a vehicle that requires forward
motion. When indoors, slower is better [4]. This realization leads one to a nonconventional concept that
has yet to be achieved by man: flapping flight. It can be said that it is perhaps necessary to turn to nature
for answers as it has already found the ability to create small, agile flying machines. Particular interest
is found within insects due to the fact that the wings themselves are rigid and are passively controlled.
Those in Norris et al [5] stated that prior to the mid 1990’s there existed serious interest in the realm of
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flapping, however only about 10% of the research conducted dealt with wing structures. Current
research finds a vested interest in this flapping wing MAV (FWMAV), however science is compelled
to mimic the elegant (and perhaps efficient) designs that nature has already employed for its flapping
wing design [5]. Nothing in nature exhibits fixed wing flight behavior or propeller driven thrust, rather
it is flight through flapping that perhaps is the key to the successful creation of the MAV [4].

Table 1. MAV Specifics as Outlined by DARPA [2]

Specification Requirements Details
Size <15.24 cm Max Dimension
Weight ~100 g Objective GTOW
Range 1-10 km Operational Range
Endurance 60 min Loiter Time on Station
Altitude <150 m Operational Ceiling
Speed 15 m/s Max Flight Speed
Payload 20 g Mission Dependent
Cost $1,500 Max Cost, 2009 USD

GTOW- Gross Takeoff Weight, USD- United States Dollar

1.2. Biological Inspiration
This research aims to further investigate the structural aspects of the FWMAV wing, specifically one in
which is biologically inspired. The medium of inspiration is achieved by the North American Hawkmoth
(Manduca Sexta) due to its availability and size [1] [5]. Additionally, the Manduca Sexta exhibits
remarkably consistent wing beat characteristics [6] during flight, making it the ideal candidate for
consideration as this fact eliminates some of the variability that can be considered influential to flight
through flapping [5]. Figure 1 shows a picture of the inspiring specimen and the wing associated with it. 

FFiigguurree  11:: North American Hawkmoth (Top) and Computed Tomography Scan Image of Forewing Cross-
Section (Lower Left) and Top (Lower Right)

Figure 1 serves to show some of the geometric characteristics of both the moth1 and the forewing. The
main function of any biological being or any flying object for that matter is to transmit energy to the
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external environment during flight in order to become airborne without risking damage to the flight
vehicle itself in the form of bone or muscle damage [7]. This requires that both structure and the
materials used to construct it must be specific to their purposes. It should be of no surprise that nature
integrates varied methods of construction when it comes to the fabrication of materials used as support
structures. Figure 1 shows both the top view of a Manduca Sexta wing, along with a crossectional view
of the wing at the half chord2 . The general shape of the wing is similar to that of other biological beings
in the Insecta class, such as the dragonfly and cicada, both of which can be considered model fliers for
MAV application [8]. The materials used in the biological speciemen are currently under investigation
[9], however it can be said that the wing is composed of two main materials, albeit there are the
presence of a ‘membrane’ that acts as a matrix between ‘vein’ elements. The veins primarily are made
out of a material known as cuticle which is a fibrous composite material. The fibrous component
consists of micro fibrils of chitin, a polysaccharide, and the matrix is protein. Wooton [10] mentions
that the chitin is generally chemically uniform throughout the insect world, but the matrix of protein
varies greatly, disallowing the assumption of universal insecta material properties.

Those in Norris et al [5] recognized the value in using the Manduca Sexta as the model flapping flier
and executed a rigorous investigation of the structural aspects of the biological wing via the modal
analysis. Inspired by the works of Combes and Daniel [11] [12] [13] and others, they too felt that the
structural aspects of the flapping wings required further study. They were particularly interested in the
consistencies that were seen from specimen to specimen. Using a scanning laser vibrometer (SLV),
Norris et al [5] obtained the resonant frequencies (results shown later) of separated Hawkmoth wings
in both air and vacuum in order to gage the dynamic stiffness of the wings. His near consistent results
led him to believe that the slight scatter of results allowed for a larger tolerance of parameters in
construction wherein ‘close is good enough’ for parameter modeling. This grants some leeway in the
fabrication process and speaks to the possibility of damage sustainability [5] of the wings. 

In addition to their findings, Norris et al [5], Combes and Daniel [11] [12] [13], and Ennos [14] [15]
all expressed interest in the aeroelastic response of the wing, specifically questioning the dominance of
inertial (mass distribution dominated) or aerodynamic (pressure distribution dominated) effects on the
wing behavior. This was coined by Norris et al as The Aeroelastic Question. Though those in Norris et
al primary concentration lay deeply in the modal analysis of the wings, they did employ methods of
photogrammetry in a similar fashion to that of Combes and Daniel (see [13]) and Willmont and
Ellington (see [16]) wherein two dimensional images were taken of flapping wings at several angles to
reconstruct their three dimensional coordinates/orientations. This methodology clearly provides the
basis of thinking for this study. 

1.3. Basis of Investigation
Using the combination of several experiments as the basis of methodolology ( Norris et al [5], Combes
and Daniel [13] and Willmont and Ellington [16]), this study aims to investigate the aspects of the wing
that are most important in the construction of a FWMAV. Here, a biologically inspired flapping wing
was constructed. The parameters of the biological wing that were chosen to be emulated by the
engineered wing were the size, vein geometry, mass, and the first resonant frequency (refered to as the
first bending mode by those in Norris et al [5]) . This wing, along with a separated biological wing, was
subjected to both a modal analysis and a dynamic flapping analysis. The flapping motion was achieved
by constructing a flapping mechanism based on biological inspiration and was placed in a vacuum
chamber for both an air and vacuum test. The response of the two wings to the flapping motion was
captured by photographing ‘frozen’ images (via stoboscopy) at several angles of observation to obtain
the three dimensional characteristics of the deformed/deflected wings. 

2. MANUFACTURING 
The manufacturing process of the biologically inspired engineered wing was an iterative process that
was taken through several design considerations (for more information on several of the design
iterations, see DeLeón et al [8]). The finalized design incorporated the adhesion of three layer, cured
carbon fiber that was layed up in a 0-90-0 configuration for a total thickness of .16 mm and 20 µm
Kapton film. The vein formation was extracted by cutting the geometry  into the carbon with a laser. A
standardized process of wing removal from the Manduca Sexta also had to be considered due to the fact
that comparisons had to be made. 
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2.1. Biological Wing Removal
In order to more accurately compare the response of the inspiring specimen to that of its engineered
counterpart, it was necessary to standardize the methods associated with the removal of the wing. It is
important to realize that there is a distinct time dependency associated with a removed wing. Both those
in Norris et al [5]and Combes and Daniel [11] [12] make mention of this issue in that the wing will
essentially ‘dry out’ upon removal from the living creature. Both sources indicate that a wing can be
deemed ‘useless’ within three hours of being removed in that its structural properties appear to stiffen
and become more brittle, much like a tree branch that has been removed. Recent observations indicate
that the wing actually begins to form an unnatural camber within 30 minutes of removal, which can be
compared to that of a drying flower petal that curls when exposed to sunlight. It can thus be stated that
the methods of removal must be executed quickly in order to preserve the integrity of the wings
properties. The experiments here were executed within 1hr, 42 mins. 

Wing removal began by cutting into the thorax and removing the wing and the shoulder, preserving
as much of the structure as possible. Following removal, the wing scales were removed in order to
remove mass and account for the addition of the reference points that will be discussed later. Figure 2
shows the cut location and the removed wing.

FFiigguurree  22:: Cut Location and Removed/de-scaled Manduca Sexta Forewing

Following the removal of the wing, reference points were added to the wing surface in standardized
locations on both sides. Further details on this process will be discussed in section 2.3.

2.2. Carbon Fiber Configuration and Obtaining the Vein Structure
The two dimensional vein orientation was achieved by observing a two dimensional image of the CT
scanned biological wing. Points were identified along the vein geometry and then splined through using
a 2-D spline in a MATLAB code designed by Ryan O’Hara (see [9]) to construct the vein orientation.
Here, the vertices were selected using MATLAB’s built in image recognition software. These vertices
could then be loaded into a computed aided design program SolidWorks, Corel Draw, and MATLAB
now incorporates at TM in order to generate a three dimensional model of the vein formation. The layout
could then be applied to Corel Draw, which would allow for the Epilog 45 Watt CO2 laser to cut out
the formation. Figure 2 depicts the formation of the cutout and the laser used to perform the cuts.

FFiigguurree  33:: Carbon Fiber Layup and Cut Demonstration and Epilog Laser

It should be stated that unlike the methods discussed by Xie and others [17] wherein the carbon fibers
were aligned with the vein geometries, the veins were simply constructed from this cutout. This will
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yield non-homogeneous properties along the length of the veins not aligned with the leading edge or
the carbon fibers. This adds an aura of complexity to the structural analysis and any finite element
simulations of this engineered wing. 

2.2. Construction Process 
A standardized construction process was conceived for this study in order to make evaluations
measurable and repeatable. The carbon fiber laser cutouts of the wing vein geometries were lightly
cleaned to remove any residue that had been left by the cutout process. Following this was the
application of the adhesive, which was 3M 45 Spray Adhesive applied via a small paintbrush. This
allowed for a uniformity in distribution of the adhesive and eliminated the need to apply the adhesive
to the whole of the membrane (20 µm Kapton Film), which was stretched over the carbon cutouts and
allowed to dry. The extra membrane was removed from around the wing with a scalpel. Additionally,
a construction vein that allowed for the trailing edge to end in a membrane like the inspiring specimen
was removed. The wing in its entirety was then placed under a stencil that was constructed from thick
Kapton film that had standardized manufactured holes in it that would allow for standardized reference
point application to the wing (reference points used in photogrammetry and will be discussed later).
Figure 4 shows this process in its entirety. 

FFiigguurree  44:: Process of Engineered Wing Fabrication

Concerning the application of reference points, the goal was for them to be non-intrusive in terms of
mass and first bending mode. Combes and Daniel claim that if reference points were to be applied, they
must affect the total mass by no more than 2% [13], which would affect the first bending mode by no
more than 1%. Several avenues were considered for the material used for reference points, to include
those found in Willmont and Ellington’s experiments [16], fluorescent dyes, and SharpieTM markers.
The material that proved to be the most condicive in terms of mass and modal analysis was the
PentelTMWHITE 100WS Fine Marking Pen, which could mark on both wings. 

2.3. System Identification and Comparision of Wings from a Modal
Standpoint
The crux of this study was to re-examine the realm of the structural characterization of the Manduca Sexta
wing and compare it to that of one that was designed and constructed by man with nature in mind. Previous
research ([5] , [1], [2]) held the modal analysis as the end all-be all of structural characterization. Initial
conjectures that revolved around this study viewed these claims with skepticism since the small displacements
inherent in the modal analysis do not find themselves as a part of the functionality of these wings.
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Despite doubt, it was deemed pertinent to characterize the biological wing under these several
conditions via the modal analysis. This action secures its necessity due to the fact that before this study,
there was no solid method of structural characterization beyond what was seen in Combes and Daniel
[11] and [12] and Norris et al [5] as stated earlier. Using a scanning laser vibrometer, this modal
analysis was carried out to yield the values shown in Table 2.

Table 2

Wing Mass (Clean) Mass (WRP) 1st Mode (air) 2nd Mode (air)
Biological 73.3 mg 68.5 mg 64.75 Hz 110.75 Hz
Engineered 61.7 mg 62.0 mg 59.06 Hz 78.13 Hz

WRP- With Reference Points

In order to more fully understand the results of the modal analysis, Figure 5 shows the first four mode
shapes of the biological wing along with the masses of each of the wings.

FFiigguurree  55:: First Four Mode Shapes of Biological Wing in Air

The mode shapes grant a glimpse of the behavior of each of the resonant frequencies. In Figure 5, the
black grid represents the original wing surface and the colored grid represents the mode shapes of the
wings. The first mode shows bending, and the second is torsional. Table 2 sheds light on the
comparability between the two wings. In terms of mass, it would appear that the wings compare well.
It should be noted that the shoulder was considered to be a part of the mass however the shoulder
member of both wings was clamped as will be shown in Figure 10. It should be pointed out that for the
biological wing, mass was lost during the reference point application process (which lasted 7 minutes).
This loss of mass was indicative of the aforementioned time dependent behavior of the wing. In terms
of the resonant frequency, the engineered wing held a 7.8% difference in the first mode and a 29.6%
difference in the second. What can be gleaned from these values are that the wings are similar, however
stifness may be lacking in the engineered wing in the chordwise direction. 

3. EVALUATION 
In order to evaluate the response of the engineered wing and the biological, it was necessary to devise
a standardized and repeatable process of experimentation so that the wings could be tested in both air
and vacuum. Here, a photogrammetry package known as PhotomodelerTM was used in concordance
with the reference points applied to the wings to evaluate the wings’ responses to flapping motion,
which was achieved by the construction of a flapping mechanism designed to mimic the kinematics of
a flapping Hawkmoth. The image capturing for photogrammetry was achieved via stroboscopes, which
was set to evaluate 12 different angles throughout the stroke amplitude (6 in the downstroke and 6 in
the upstroke). Each specimen was subjected to flapping in both air and vacuum in both air and vacuum
for three trials as is shown in Table 3.

Table 3

Wing Angles Per Stroke Air Vacuum Trials Total Trials
Biological 12 angles 1 1 3 72
Engineered 12 angles 1 1 3 72
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3.1. The Flapper
A flapping mechanism was designed based off of the kinematics and design of the Manduca Sexta.
Figure 6 [18] shows the progression of thought in the design of the mechanism which is meant to
mimick what is seen on the inspiring specimen. 

FFiigguurree  66:: Biological Design as Approximated by Four Bar Mechanisms

The top picture in Figure 6 shows the biological design. The bottom left and middle show how a Crank-
Rocker mechanism can be used to approximate the kinematics of the inspiring design as seen by those in
Anderson et al [18] who used piezoelectric materials to achieve the flapping motion. This study uses this
concept by achieving similar motion by using mirrored Crank-Rocker mechanisms. Figure 7 shows the
kinamatic breakdown of the flapping mechanism with the associated SolidWorks given aTM conception. 

FFiigguurree  77:: Mirrored Crank-Rocker Mechanism For Flapping Motion

The total flapping amplitude achieved by this design was 107.9 degrees. This was based off of data
taken from Willmont and Ellington [16] which measured the flapping amplitude of a flying Manduca
Sexta and traced a point off of the leading edge of the wing. Figure 8 shows a comparison of the rigid
body analysis of the flapping mechanism shown here, the flapper previously used made by those in
Norris et al [5], and the data achieved by Willmont and Ellington. The left plot shows the Willmont and
Ellington data as compared to the rigid body analyses of the old and new flapping mechanisms. The
right plot depicts the accelerations of the aforementioned data.
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FFiigguurree  88:: Kinematic Analyses of Flappers Compared to Experimental Data

A regression analysis was carried out to reveal that in terms of angular displacements, the flapper
shown in Figure 7 compares better than the flapper conceived by Norris et al [5]. In terms of angular
accelerations however, the flapper shown in 7 exhibits far lower amplitudes than that of the biological
or flapper conceived by Norris et al in [5]. One possible advantage of this lack of amplitude would be
the fact that less force would be applied to each wing tested in the new flapper, thus allowing for more
wings to be tested. 

The final flapping mechanism is shown in Figure 9. The flapper was materialized using the Connex
500 3d Printing machine, which places 16 µm layers of a photopolymer down at a time to construct a
3d object based off of a 3d CAD drawing. In order to drive the mechanism, and MPI HIMAXX 600
Watt brushless motor was used in conjunction with a PheonixTM ICE 50 speed controler. 

FFiigguurree  99:: Physical Flapping Mechanism

Atop of the flapping mechanism are additional, non-translating reference points that were
manufactured into the flapping mechanism for the purpose of scaling and axis determination in the
photogrammetry process. 

Another detail of the flapping mechanism tht should be stated would be the boundary condition that
acted as the interface between wing and flapper. The clamp used was considered a rigid clamp [1] in
that the wing would sit in between two manufactured pieces that were lined with a foam that would
allow for some give in the flapping motion. This configuration, which was also used by those in Norris
et al [5], can be seen in Figure 10. 
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FFiigguurree  1100:: Depiction of the Rigid Clamp Incorporated for Analysis

Though the clamp in Figure 10 does not accurately mimic the boundary condition of the insect, it did
provide a simplified, standardized method of evaluation that could be applied to both wings regardless
of geometry.

3.2. Experimental Setup
The basic premise of this study is a comparison of the manufactured wing to the biological wing.
However, there is a chance here to also consider the aeroelastic question, a topic that has presented
itself throughout this literature and within many more. In order to examine this, it is not only pertinent
to flap these wings in air, but also in vacuum. This will serve to evaluate the inherent differences
between purely inertial deformations and displacements and those that present themselves only in the
presence of aerodynamic effects. Figure 11 shows the experimental setup as a whole. 

FFiigguurree  1111:: Experimental Setup

The first piece of equipment to consider is one that grants the ability to evaluate in both air and vacuum,
be it the vacuum chamber, which is a the center of Figure 11 and will contain both the signal generator
(for modal analysis) and the flapper. The same Abbess Instruments Vacuum Chamber was used by
Norris et al [5], however due to the new flapper, slight modifications had to be made to accommodate
the motor. As it turned out, the Phoenix ICE 50 speed controller held within it electrolytic capacitors
which cannot handle vacuum conditions. As a result, it was determined that all speed control had to
happen outside of the the chamber, and thus the speed controller had to be removed. This was done by
utilizing one of the vacuum chamber’s built in ports that allowed wires to pass through from ambient
to the chamber conditions.

On either side of the chamber in Figure 11, two blue light guns can be observed on stands facing flapper
inside the vacuum chamber. These are the stroboscopes that have been referred to previously in this paper.
Their primary function is to display a ‘frozen’ image for the purpose of photographing a test subject while
flapping. The stroboscopes (two of them were used) used for this experiment were MonarchTM Phaser
Strobes. The stroboscopes retained the ability to measure/mimic the phases of moving objects. This was
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done via an Optical LED sensor that obtained feedback from a strip of reflective tape on the Flywheel
depicted as the driving link in Figure 7. Every time this tape passed the field of the sensor’s LED (light-
emitting diode) light, the signal generated by the reflection fed phase information to the stroboscope.

3.3. Experimental Procedure
As mentioned, twelve angles/phases throughout the stroke amplitude were observed for this study. The
stroboscopes discussed in the previous section, in addition to having the ability to retain phase information,
also had the ability to incorporate a phase delay from 0-360 degrees. This feature allowed for the
observance/gathering of data at the 12 angles, which can be seen in Figure 12 which depicts the rigid body
motion of the flapping mechanism, overlayed with vertical lines which represent the angles observed. 

FFiigguurree  1122:: Phases Observed

The wings were first flapped in vacuum, then in air at a flapping frequency of 12.5 Hz. Three pictures
were taken of each strobed wing three times (for averaging) for each of the phases shown in Figure 12.
The three pictures taken at differet angles of the same phase were used to generate the three
dimensional characteristics of the wing’s reference point. Photomodeler yielded the coordinates of
points in space which could later be used to analyze the wing behavior. Figure 13 grants a glimpse of
some of the picture taking methods incorporated in this study, along with examples of some of the
pictures that were used for the three dimensional characterization. 

FFiigguurree  1133:: Photomodeler Application Methods
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It was conceived that the camera angles depicted in Figure 13 would grant the best resolution in all
three dimensions of the ‘flapping but frozen wing’. The camera used in the data gathering process was
a NIKON D80 with a PromasterTM Digital XR EDO Aspherical LD (IF) 17-50 mm 1:2.8 Macro _ 67
lense. For this operation, the zoom, focus, aperature, and fstop all had to remain fixed for each
photograph taken. 

Once all the photographs were taken (data gathering) it was then necessary to extract the three
dimensional positions of the reference points on the wings. To do this, PhtomodelerTM was utilized in
a standardized manner. 44 reference points existed within the system (33 on the wing, 11 nontranslating
reference points on the flapper), all of which were identified in each of the photographs, referenced to
each other, and then processed for triangulation [19]. The 11 reference points on the flapping
mechanism were used to form the axes. Figure 21(at the end of this paper) shows the surface fitted hard
photomodeler data of the downstroke and upstroke of both wings flapping at the 48 degree angle. 

4. NUMERICAL METHODS 
To display the results of the aforementioned procedure, it is necessary to  discuss the numerical
methods associated with the data extraction. Originally, the goal of the procedure was to execute a
‘point-to-point’ comparison wherein the three dimensional positions of the corresponding points on the
two wings under the two conditions (air and vacuum), would be compared to each other. However the
differences in behavior were so vast, that new considerations had to be made. Data was first organized
into a manageable fashion, splined through using a Cardinal (Catmul-Rom) Spline [20], then the
residuals were analyzed for each point to determine the reliability of the points used. Then the torsional
and angular displacements were considered via a vector analysis.

4.1. Cardinal Spline
A cardinal spline interpolant is not a new method of splining, rather it utilizes the averaging methods
incorporated in such processes as `overlapping’ data. This means that a cardinal spline interpolant
observes the 3 dimensional positions of a `current point’ of investigation/consideration and the previous
and next point. The interpolant then averages the positions using a parameter known as a Tension value.
This Tension value is typically between zero and one and it acts literally like the tension in a string or
wire. A higher tension value would simply yield a straight line in between the points to be splined as it
would simulate an `infinitely tense’ wire [19]. Interestingly enough, the cardinal spline would treat
these discontinuous lines as one function much like the cubic spline, but of a higher order.

4.2. Residual Calculations
Before any comparisons or calculations could be made, it was necessary to first understand which
reference points on the wing could be considered reliable or trustworthy in order to actually quantify
the error. Unfortunately, Photomodeler would lack resolution in the spanwise direction (due to the
limited ability of the camera angles used to capture the images, not the limitation of the program).
Instead of examining all points, it was conceived that a more useful and pertinent comparison could be
made by examining a few points that could define the characteristics of the wing such as torsional
deformation and deflection/flapping angle. This would eliminate all issues concerning dimensionality
due to the simple fact that it would not even be considered.

Before these points could be selected however, a residual calculation was performed. Photomodeler
outputs its residuals in units of pixels, which to someone using Photomodeler makes sense as a
reference point is defined on a single pixel, however in  physical sense it is almost meaningless as a
pixel count is dependent on the resolution of the camera and camera position. It was determined that in
order to obtain the conversion from pixels to a physical parameter, it was necessary to re-consider
Figure 9 which showed the standardized (non-translating) reference points on the physical flapping
mechanism. These were separated by 6 mm center to center. Photomodeler allows for the observance
of the ‘pixel position’ as it were for each photograph. In order to convert from pixels to mm, it was
necessary to observe the pixel count in both the x and y direction  between two of these reference
points. The magnitude of that distance could then be applied to the pixels that separated them to gain a
conversion between pixels and mm. 

The results of this analysis ultimately lead into the next topic of discussion: The torsional
deformation angle comparison along the span as a function of the flapper’s intended angle. One
conceivable issue that can be seen here is the fact that as the residuals stand, their units exist in (mm).
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0.5 mm of error can be considered a small error for some applications, but it was deemed necessary to
consider the actual effect that said errors would have on the solution in terms of ‘percentage’ of effect.
The wing itself is 58 mm long in the spanwise direction (as seen in Figure 10), however this dimension
does not represent the range of values in (mm) that the measurements for some aspects of this study
would exhibit. In order to quantify the affected dimensions, it is necessary to consult Section 5.1 which
describes the torsional deformation of the wing during the flapping motion by comparing the three
dimensional positions of the leading and trailing edge to each other by means of a vector analysis.

Using the results of Section 5.1, a range of torsional deformation values could be determined (in
mm) by taking the average chord of the wing (see [21]) and the magnitude of the torsional deflection
(taken by subtracting the maximum and minimum values in mm). These angles could be considered a
chordwise deflection (3 positions along the spanwise axis), which can be averaged to obtain a general
feel for how the specimen would deflect. The maximum and minimum deflection angles could be
obtained from this `average deflection along the stroke’ to yield a range angle θrange:

(1)

Which could then be applied to the general arc length equation:

(2)

The average chord was measured to be  18.153 mm, which was gained by only considering the points
associated with the torsional deformation angles. The arc length srange represents the range of
deflections (in mm) that will be the parameter that will be scaled against the residuals (in mm) to obtain
a ‘percent of effect’ on the results in the following manner:

(3)

This percentage could then be applied to each of the positions associated with the spanwise torsional
deformations. Their values will be represented as error bars in the torsional deformation data sets. 

4.3. Torsional Deformation/Spanwise Deflection Angle Calculations. 
It was conceived that due to the fact that a series of reference points (points in space) was the product
of the data organization, it was necessary to consider the topic of vector mechanics. Theoretically
speaking, a vector can be defined by two points. Should two vectors share a single point, then those
vectors can ultimately define a plane. Taking the crossproduct of the two vectors that share that single
point will yield a vector at the common point that is orthogonal to the plane defined by the previous
two vectors. Normalization of this vector gives potential to comparison to other vectors.

If one were to do the same for a standardized, global axis system (that has been normalized), it
would create a normalized, global vector for comparison. The angle with respect to the dot product of
this would yield the directional cosine of the angle between them, which essentially represents the
orientation of that plane with respect to a global axis.

The point at which the local vector was formed was the common point of the two vectors used to
make the plane that existed on the flapping wing. This would be essentially indicative of the wing’s
deflection in the spanwise direction. The right hand picture in Figure 14 is a two dimensional
illustration of this concept as it essentially uses the information presented on the left hand side of Figure
14 and applies it to a top view of the wing (a view along the spanwise direction/crossectional view).

Figure 14 serves to show the points used for this analysis and the pictorial representation of the
points on the wings. Figure 15 shows the corresponding residual values for each of these points used
in terms of a percent uncertainty based on total deformation.
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FFiigguurree  1144:: Torsional Deflection/Spanwise Deformation Demonstration

FFiigguurree  1155:: Torsional Deformation Angle Point Percent Uncertainty

Due to the fact that none of the points utilized for the analysis lie above 7% uncertainty, it grants
confidence to the results that will be shown in Section 5.

4.4. Flapper Angular Displacement vs. Wing Angular Displacement: A
Likeness to Rigid Body Motion
Similar to that of the previous analysis, it was deemed pertinent to investigate the effect of the flapping
in the spanwise direction, that is to compare the angle that the flapper saw as opposed to that of what
the wing emulated. This sheds light on the spanwise deflections inherent in the flapping motion and
serves as a basis of comparison to what was seen in Willmont and Ellington’s data (See Figure 8). This
analysis is somewhat simplified in that it requires little or no effort to construct the vectors for
investigative purposes. Needless to say, it is necessary to show here the vectors utilized as the
normalized global vector can be represented by the y-axis alone. The vector in question would be the
one represented by points 4 and 9 on the wings as it finds itself on the leading edge of the wing. This
is seen in Figure 16.
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FFiigguurree  1166:: Angular Displacement Vector Analysis

This will be considered the final avenue of comparison between the engineered and biological wing. 

5. RESULTS 
The biological and engineered wings were flapped in both air and vacuum at a flapping frequency of
12.5 Hz. The same methodologies were apploed to each case allowing for data comparison. This
section will reveal the results that were gained from the execution of the procedures detailed in section
3 and the mathematical manipulations in section 4.

5.1. Torsional Deformation and Angular Displacement Comparison of
Biological Wing to Engieered Wing
Figure 17 depicts the comparison of both wings flapping in vacuum. Error bounds were conceived in
the residual analysis from section 4.2. Upon immediate observation, it becomes clear that there is a
stark difference in the behavior of the engineered wing as compared to the biological. On the
downstroke, the biological wing appears to exhibit far less torsional deflection as compared to the
engineered wing, which completely envelopes the bio-data. Furthermore, in the upstroke, the
engineered wing appears to completely reverse direction (observe y-axis) in terms of the chordwise
deflection.

FFiigguurree  1177:: Downstroke (Left) and Upstroke (Right) of Biological (Red) and Engineered (Cyan) Wings
Flapping in Vacuum in Terms of Local Angles of Attack Along Wingspan

It would appear that if the biological wing were taken to be the standard, the engineered wing lacks
support in the chordwise direction which may be a function of construction or material properties, but
in all, the performance of the engineered wing appears to overshoot what was done by the biological
wing. It is helpful to compare this data with Figure 18 which depicts the same operation but in air.The
presence of error in both cases makes the upstroke data difficult to discern however since all of the error
bars appear to overlap. This presents challenges when attempting to draw conclusions about overall
behavior of the wings when compared to each other.

Possibly one of the more important data sets that can be gleaned from this study is the comparison

162 The Evaluation of a Biologically Inspired Engineered MAV Wing Compared to the
Manduca Sexta Wing under Simulated Flapping Conditions

International Journal of Micro Air Vehicles



between the wings in air. Figure 18 provides a glimpse of the behaviors associated with the flapping in
air of both wings:

FFiigguurree  1188:: Downstroke (Left) and Upstroke (Right) of Biological (Red) and Engineered (Cyan) Wings
Flapping in Air in Terms of Local Angles of Attack Along Wingspan

The air observation proves itself interesting simply due to the fact that the non-uniformity of the
torsional deformation about the spanwise direction associated with the deflection of the wing in air is
still present in both data sets as in the deflection in the spanwise direction is less uniform than in
vacuum. Once again the engineered wing appears to lack the stiffness in the chordwise direction to
maintain the lack of relative deflection as observed by the biological wing for the upstroke. This may
be in error however due to the fact that the uncertainty associated with the upstroke proffers little
reliability.  

The observation of Figure 19 compares the rigid body motion of the biological and engineering wing
in vacuum and in air

FFiigguurree  1199:: Vacuum  (Left) and Air (Right) of Biological (Red) and Engineered (Cyan) Flapping Wings in
Terms of Angular Displacement of Leading Edge

Compared to the engineering wing, the biological wing more closely emulates the rigid body motion
as the engineering wing (as discussed) may have been at a disadvantage in its construction and ‘not as
snug’ boundary condition since the biological wing appeared to have a more tight fit in the clamp and
the engineered wing fit slightly easier. The ‘Padded’ region of the data represents the section of this
study that was not captured by photogrammetry. This section would have been representative of the
‘flip’ between downstroke and upstroke. 
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5.2. Observance of Overall Wing Behavior

FFiigguurree  2200:: Overall Wing Behavior of Biological (Top Vacuum and Air) and Engineered (Bottom Vacuum
and Air) in Terms of Local Angles of Attack Along Wingspan

The purpose of this section is to observe the differences in the torsional deformations of the biological
wing; comparing the upstroke and downstroke. This analysis was performed for the purpose of future
construction. The top portion of Figure 20 points towards the differences in stroke behavior within air
and vacuum. It is important to note that the biological wing appears to have an antisymmetric motion
associated with the upstroke and downstroke in air, but in vacuum this is not seen as the case as the
torsional deformations seem almost symmetric. The first observation of the top of Figure 20 in the
realm of vacuum, the data suggests that although not exact, the aforementioned conjecture of the
asymmetric torsional deformation can be put to rest. Other than the slightly greater amplitude of
deformation seen in the upstroke, it would appear that in vacuum the wing does in fact have a
downstroke similar to that of the upstroke in terms of this torsional motion. The ‘purely inertial’ answer
to the Aeroelastic Question would say that the wing will behave like this in air as well, wherein the
symmetric downstroke/upstroke should appear not as prominently as the presence of air damping has
been a continuous parameter.

In the realm of air for the biological wing, the data demonstrates problematic or challenging results.
Brief inspection would indicate that the effect of air causes the biological wing to behave far differently
than that of the wing in vacuum. Though flapped at the exact same frequency, air seems to illicit a
unique and complex reaction from the natural wing as the downstroke exhibits a tighter, more uniform
twist along the span, `scooping’ the air beneath it, and the upstroke sees a non-uniform, higher
amplitude twist which is indicative of allowing air to pass over the wing (as previously discussed),
essentially dodging the need to move through the medium of air and exposing less surface area to the
‘oncoming’ velocity of air to essentially cut down on drag produced by the moving wing flapping
upward.
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FFiigguurree  2211:: Overall Wing Behavior of Biological (Top Vacuum and Air) and Engineered (Bottom Vacuum
and Air) Surface Fits Gained from Photomodeler (Illustrative Purposes)

This presents a rather unique problem for future engineers who wish to properly emulate the efficient,
elegant motion of the wing. This is not the only study that has exposed these ‘novel principles’
exhibited by naturally occurring, flapping wings [21]. This comparison in air of the biological wing
shown in Figure 21 brings these novel principles to light as the wing naturally exhibits this dynamic
behavior- even when exposed to simplified flapping. If a higher frequency had been studied, there is no
doubt that even more dramatic effects would be observed in terms of torsional deformation and
deflection, paving way to future studies as materials get smarter and methods become more refined.
This should grant a deeper appreciation for what was originally thought as a trivial problem as few have
deemed this area of study pertinent for study and understanding.

The bottom portion of Figure 21 is shown in the similar fashion of the last two as the comparison of
downstroke and upstroke of the engineered wing. It can be seen here that the deflection amplitudes here
exist at much higher values than those seen in the biological wing. This is ever more evident here as
the amplitudes of deflection appear to be damped by the presence of air- a behavior not observed in
such magnitude by the biological wing. Here, the presence of air does not seem to affect the non-
uniformity of deflection as was seen by the biological wing, but rather for the engineered wing it would
appear that the uniformity is not necessarily affected nearly as much as the amplitude. The plots
displayed in Figure 19 show an even clearer picture of the lack of similarity between the engineered
and biological wing.

6. CONCLUSIONS
The purpose of this research study is the recognition of the complexities and structural aspects of the
FWMAV. As the title of this project indicates there were two areas of interest which involve
manufacturing and evaluation.  This research secures the necessity for these two arenas to be coupled
due to the fact that manufacturing is always subservient to the testing. Clearly this research calls for
future studies to focus on more investigation into the realm of construction and mechanical
considerations as was shown in the results. 
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The following sections will illuminate some of the specifics of the above generally stated
conclusions. For this project, two wings, the separated biological wing and the biologically inspired
engineered wing, were flapped at 12.5 Hz in both air and vacuum to determine their dynamic
characteristics when faced with said conditions, to include a clamped, rigid base condition [1].

6.1. Manufacturing of FWMAV Wings
An efficient manufacturing technique of FWMAV wings has been developed. A single, biologically
inspired MAV wing was constructed with the Manduca Sexta as the inspiring specimen. The main
features that were chosen to be emulated were the wing/vein geometry, weight, and modal properties
as these were considered very pertinent in the realm of proper emulation and construction
considerations. The technique in this study utilized 3-layer, cured carbon fiber that was arranged in a
90-0-90 degree formation wherein the stiffer direction was chosen to run the span of the wing. In terms
of the membranous material, 20 micron Kapton film was used due to its availability and low density.
The combination of these two produced a flat, rigid wing that allowed for both spanwise and chordwise
flexion yet held its rigidity and modal properties which ended up being similar to those of the
Hawkmoth wing in air.

6.2. Manufacturing of Evaluation Techniques
Simplified flapping conditions were applied to a wing using an in-house constructed flapper that
retained the ability to mimic both frequency and flapping amplitude. A careful kinematic analysis
suggested that the flapping device came closest to emulating the angular displacement exhibited by the
Manduca Sexta which is based on data gathered by Willmont and Ellington [16]. However, in terms of
accelerations, the new AFIT flapper did not mimic the behaviors as exhibited by other, previous
flappers based on a careful regression analysis executed in [22] and as can be seen on the right hand
side of Figure 8. As a result of these findings, the fallibility in the realm of accelerations of the new
AFIT flapper opened up a window of accessibility for study in that the amplitude of acceleration was
shown to be far less than other flappers. This lack of acceleration may have in fact contributed to the
ability to actually test more wings since the flapper did not overstress them.  

Using Photomodeler, a program that employs algorithms based on photogrammetry and three
dimensional triangulation, the three dimensional characteristics of the wing deformations were
determined by effectively ‘freezing’ the flapping wing at 12 different phases within the stroke.
Photogrammetry was enabled by the placement of reference points on the wings that proved non
intrusive and extremely useful for data analysis. This method was applied to both a biological wing and
the aforementioned engineered wing.

6.3. Modal vs. Flapping Analysis
The modal analysis proved to be very useful in providing a standardized, repeatable, and reliable
process of evaluation of the two different wings that were tested. The results clearly demonstrated that
though the goal of nearly matching the first resonant frequency of the biological specimen, differed
from the biological wing when subjected to the flapping conditions set forth in the procedure.  

6.4. The Importance of Aerodynamics
It should come as no surprise that the engineered wing requires more consideration in order to compare
to the biological specimen, despite similar geometry and structural qualities (especially in the first
vibrational mode). This significant finding demonstrates the wide area of inquiry that focuses on the
effects of aerodynamics in this study. Trials of the biological wing in vacuum showed a passive rotation
that was very similar in the upstroke as was the downstroke. This symmetry in strokes due to purely
inertial loading would normally yield zero lift if that behavior was observed in air as well, but as was
seen at the end of Chapter 5, this certainly was not the case.

In both cases (air and vacuum), passive rotation was observed in both wings but in air, the biological
wing appeared to exhibit a non-uniform, spanwise deflection that was not observed in vacuum,
effectively spreading data over a wider range of torsional deflection angles. This may be due to the
presence of air in that the tip of the wing (which can be seen to be geometrically wider) presents a
greater area to the medium of air, allowing the motion to have more of an effect on the deflection of
the wing within that area. Furthermore, in air the wing exhibits far different torsional deflection
behavior in the upstroke than in the downstroke- deforming more perhaps to allow for the ‘scooping’
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of air to create lift, then leading to the reduction of negative lift in the upstroke. This behavior is
significant to consider due to the fact that this naturally occurring motion was once thought to be the
product of the Hawkmoth’s shoulder joint/naturally occurring boundary conditions. As mentioned, this
presents quite the issue for those who wish to engineer such an efficient FWMAV wherein the boundary
conditions will be far less complex— owing to the abilities of the wing. For a more detailed description
of the methodology and findings presented in this article, please consult [22]
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