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Abstract

Estimation theory is applied to a physical model of incoherent polarized light

to address problems in polarimetric image registration, restoration, and analysis

for electro-optical imaging systems. In the image registration case, the Cramer-

Rao lower bound on unbiased joint estimates of the registration parameters and the

underlying scene is derived, simplified using matrix methods, and used to explain the

behavior of multi-channel linear polarimetric imagers. This discussion is expanded

to include biased estimators up to the point where the results become registration

algorithm specific.

In the image restoration case, a polarimetric maximum likelihood blind decon-

volution algorithm is derived and tested using laboratory and simulated imagery.

The angle of polarization, polarized and unpolarized components of the scene, and

channel point spread functions are jointly estimated using this approach. The results

of this estimation are combined to unambiguously determine the scene state of linear

polarization.

Finally, a principal components analysis is derived for polarization imaging

systems. This analysis expands upon existing research by including an allowance for

partially polarized and unpolarized light. From these results, a means of detecting

polarizing objects under weakly polarizing obscurations is proposed by discarding

the principal component channels that are insensitive to temporal fluctuations in

scene polarization.
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Statistical Processing Methods

for

Polarimetric Imagery

I. Introduction

This dissertation describes research in three areas of passive polarimetric im-

age processing: image registration, restoration, and optimized analysis. This

chapter provides an overview of polarimetric imaging in remote sensing, describes

the problems addressed in this research, and provides an overview of this document

as a whole.

1.1 Polarimetric Imaging

Polarimetric Imaging (PI) is a form of remote sensing in which an object or

event is characterized in terms of the polarization state of its reflected radiation.

Polarization, which is a fundamental property of electro-magnetic radiation, will be

defined in detail in Chapter II. The purpose of this section is to introduce and

motivate polarimetric imaging as a remote sensing discipline.

Though less common than panchromatic, multispectral, and radar imaging,

polarimetry has been applied successfully to a number of remote sensing problems.

Astronomers have used PI to characterize the surface of planets and their atmo-

sphere, to determine the surface properties of comets and asteroids, and to investi-

gate novae and the interstellar medium [4, 20]. In the earth’s atmosphere, attempts

have been made to characterize clouds and atmospheric aerosols. Additionally, PI

has been applied to earth surface characterization problems such as hydrology and

oceanography as well as inventory and species identification problems in forestry

1



and agriculture [8, 47]. The reader may also be interested in applications of PI in

machine vision [27] and imaging through scattering media [44]. Finally, additional

applications are discussed in texts dedicated to the subject of polarization [5, 42] as

well as general optical texts [3, 16,31].

The military applications of polarimetric imagery include targeting, reconnais-

sance, and intelligence. The targeting and reconnaissance applications are straight-

forward: man-made materials tend to produce more highly polarized reflections than

their surroundings; ergo, polarimetry is a queueing aid. In addition, adversary cam-

ouflage, concealment, and deception techniques are becoming increasingly sophisti-

cated and include those with spectral and radar defeating properties; PI is an addi-

tional discriminator that can be used to defeat these techniques separate from or in

addition to other sensing modalities. PI has also been shown to be a capable detector

of smoke and rocket plumes [7]. Besides intrinsic value as a queueing technique, PI

can potentially be used as a material identification and surface characterization tool

especially when used in conjunction with spectral analysis. As alluded to previously,

PI can be used to characterize asteroids and it has been suggested that PI can be

used to locate and characterize space debris [47]. Finally, Strong makes an argument

for PI as an enabler for space situational awareness [43].

The literature cited in this section is provided as an overview of the existing

work. To facilitate understanding, a more complete literature review on each of

the addressed aspects of polarimetric imaging is included in the beginning of each

chapter.

1.2 Research Contributions

This work is an estimation theory approach to processing polarization imagery.

The references in the preceding section solve problems using polarization imagery

and from a physics-based, phenomenological perspective. In other cases, such as

the works listed in the introduction to Chapter III, estimation problems (e.g. image

2



registration) are treated as equivalent to their polarization insensitive counterparts.

(Noteworthy exceptions to this rule include [43, 51]. Consequently, estimation re-

search into polarization imagery is ripe with possibilities, even in cases that have

been exhausted in traditional image processing literature.

Three polarimetric imaging processing problems are addressed in this disser-

tation: registration, restoration, and optimized analysis. Polarimetric imaging is

inherently a multi-channel discipline. A channel, in this context, refers to an imag-

ing path that is most sensitive to a specific state of scene polarization. Reliable

channel-to-channel registration is therefore a prerequisite for exploitation of polari-

metric data and worthy of further study. Image restoration, which is the process of

estimating the true target scene in the presence of a corrupting transmission media

and noise, is often studied in traditional intensity imaging to improve sensor perfor-

mance without increasing cost, size, and complexity; here, these concepts are applied

to polarization imaging to achieve the same advantages. And, at the end of the pro-

cessing chain, the multichannel nature of these data place an unnecessary burden on

the analyst in cases where some of the channels contain no useful information. If the

unnecessary information can be reduced by eliminating channels (or combinations of

channels) using prior knowledge then a tangible savings to the analyst is achieved.

An attempt to address each of these points is laid out in the following three chapters.

In Chapter III, the effects of polarization diversity, channel noise, and regis-

tration errors on polarization image estimation are considered in the context of the

Cramer-Rao Lower Bound (CRLB). The bound is derived for the N -channel case in

the presence of random translational registration errors. The bound is then used to

study three and four channel polarization imagers and the special case of N misregis-

tered polarization insensitive images. The bulk of this work was originally published

in [24]. Some new material on the bound, including a discussion of external param-

eter measurement versus joint estimation and a correlation based interpretation of

the CRLB, can be found in Appendix B.
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In Chapter IV, a multichannel blind deconvolution algorithm is developed for

polarization imagery. The algorithm is an instance of maximum likelihood estimation

derived from expectation maximization theory. This derivation and some results

using laboratory data are published in [25]. To this work, the later sections of

the chapter are devoted to new material addressing the attributes of the estimator

extracted via simulation. This new work includes a comparison of the multichannel

estimator to a single channel estimator and a discussion of estimator bias with respect

to polarization angle.

In Chapter V, a method is proposed for optimizing combinations of polarimet-

ric imaging channels. Optimization is achieved through identification of combina-

tions of channels that yield the greatest sensitivity to polarization effects, especially

for the case of obscured targets. The remaining data are discarded as superfluous.

These results are obtained using principal components analysis (PCA) and threshold-

ing based on assumed temporal fluctuations in polarization state. Theoretical work

is described for three and four channel systems and simulation is used to demonstrate

utility in the four channel case. This work was originally published in [26].

Additionally, several practical laboratory polarimetric imagers were constructed

and employed during the course of this research. Though not a novel research con-

tribution per se, this design work is anticipated to be of value to future students and

researchers. As such, Appendix D includes the salient design details and a discussion

of sampling.

1.3 Scope

PI has applications in both passive and active sensor systems. These systems

include those with responsiveness to emitted or reflected radiation in all spectral

regimes. The scope of this research, however, is limited to passive electro-optical

remote sensing of incoherent radiation. To avoid repetition, the reader should infer

this restricted definition of PI throughout the remainder of this document.

4



Polarization imagers may be comprised of one or more channels. A single

polarization channel, either stationary or rotating, can serve as an aid for target

queueing [2]. The two channel case, sometimes referred to as polarization difference

imaging, is used for target queueing, coarse material identification, and imaging

through optically scattering media [41, 44]. As shown in Chapter II, a minimum

of three channels is required to unambiguously determine the state of linear polar-

ization and four or more channels can sense both linear and elliptical polarization

states. Since linear polarization is more common than elliptical in remote sensing ap-

plications, the scope of this research is generally restricted to the linear polarization,

three or more channel case.

Polarization imagery is extremely sensitive to the relative orientations of the

source, target, and receiver. Assuming there is motion in the target or receiver, the

validity of the measurements in a multi-channel polarimetric imager have a tem-

poral component. Throughout this research, all measurements are assumed to be

essentially simultaneous on the time scale of the intended target scene.

1.4 Organization

The remainder of this document is organized as follows. Chapter II provides

background on the fundamentals of incoherent polarized light, the mathematical

description of its interaction with matter, and a largely qualitative discussion of

the practical aspects of polarimetric remote sensing. At the end of the chapter,

there is a brief discussion of atmospheric effects on polarimetric imaging systems.

In Chapter III, the Cramer-Rao bound for the estimation of polarimetric imagery is

derived and applied in a series of imaging case studies. The multichannel polarimet-

ric blind deconvolution algorithm is derived and tested using laboratory data and

simulation in Chapter IV. Next, the PCA-based channel optimization procedure is

laid out in Chapter V. The document is summarized and concluded in Chapter VI.

The appendices contain some useful background derivations (A), expansions on the

5



Cramer-Rao bound work (B), some additional derivation for the blind deconvolution

problem (C), and a mechanical description of the polarization imagers constructed

for laboratory use (D).
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II. Overview of Polarimetry

The purpose of this chapter is to provide background on some recurring themes

throughout this research. Chief among these topics is the mathematical for-

malism used here to describe the manipulation of polarized light: the Stokes vectors

and Mueller matrices. These concepts are then used to describe a polarimetric imag-

ing system. A brief section is then devoted to the phenomenology of polarimetric

remote sensing. Finally, an overview of atmospheric effects is provided.

2.1 The Stokes Parameters

The Stokes parameters are a standard tool for describing the polarized state

of light in passive remote sensing literature [6]. The utility of the Stokes parameters

stems from the fact that they can be determined directly from observables. To illus-

trate this critical point, the Stokes parameters are derived here by closely following

the work of Collett [5] but modified slightly using some ideas from statistical optics.

The analytic signal representation of light (plane wave radiation) in a vacuum

is given by two orthogonal electric fields, ux(t) and uy(t), that are both orthogonal

to the direction of propagation [12]:

ux(t) = Ex(t)e
−j2πv0t uy(t) = Ey(t)e

−j2πv0t (2.1)

where Ex(t) and Ey(t) are complex valued functions that modulate the signal center

frequency, v0. This representation adequately describes light of any bandwidth and

any phase relationship including the case where the phase between the x and y field

components are partially or wholly dependent (e.g. polarized light).

The polarization state of this field can be determined by placing two special-

ized optical elements in its path and measuring the result. The first of these two

elements, a retarder, introduces a constant phase delay, φ, between the x and y field

7



(a) A monochromatic plane wave (b) The phase delayed plane wave

(c) The delayed, attenuated plane
wave

Figure 2.1: Polarization transformations on a plane wave

components (figure 2.1b). The second element, a polarizer, transmits the portion of

the field along angle θ (measured with respect to the x axis) and completely atten-

uates the field everywhere else (figure 2.1c). The angle defined by θ is henceforth

referred to as the primary transmission axis. The resulting field along the primary

transmission axis is:

up(t) = ux(t)e
jφ cos θ + uy(t) sin θ (2.2)

The transition from (2.1) to (2.2) is derived in Appendix A.1.

Since semiconductor optical detectors respond to radiant intensity, the signal

corresponding to equation (2.2) at the detector array is given by:

I(θ, φ) = ε0c
〈
up(t)u

∗
p(t)

〉
(2.3)

8



where u∗p is the complex conjugate of up, 〈. . .〉 represents the time average, c is the

speed of light and ε0 is the permittivity of free space. (Henceforth, the term ε0c will

be suppressed). Because v0 is on the order of several terrahertz, equation (2.3) is

well approximated by an infinite time average. This equation can be expanded into

its component parts:

I(θ, φ) = (2.4)
〈
Ex(t)E

∗
x(t) cos2 θ + Ey(t)E

∗
y(t) sin2 θ

+
(
Ex(t)E

∗
y(t)e

jφ + E∗
x(t)Ey(t)e

−jφ
)
cos θ sin θ

〉
,

After applying several well known trigonometric identities:

I(θ, φ) = (2.5)
〈
Ex(t)E

∗
x(t)

1+cos(2θ)
2

+ Ey(t)E
∗
y(t)

1−cos(2θ)
2

+
(
Ex(t)E

∗
y(t) (cos φ + j sin φ) + E∗

x(t)Ey(t) (cos φ− j sin φ)
)

sin(2θ)
2

〉

and collecting like terms:

I(θ, φ) = (2.6)

1

2

〈
Ex(t)E

∗
x(t) + Ey(t)E

∗
y(t)

〉

+
1

2

〈
Ex(t)E

∗
x(t)− Ey(t)E

∗
y(t)

〉
cos (2θ)

+
1

2

〈
Ex(t)E

∗
y(t) + E∗

x(t)Ey(t)
〉
sin (2θ) cos φ

+
j

2

〈
Ex(t)E

∗
y(t)− E∗

x(t)Ey(t)
〉
sin (2θ) sin φ,
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the Stokes parameters are specified to be:

S0 =
〈
Ex(t)E

∗
x(t) + Ey(t)E

∗
y(t)

〉
(2.7a)

S1 =
〈
Ex(t)E

∗
x(t)− Ey(t)E

∗
y(t)

〉
(2.7b)

S2 =
〈
Ex(t)E

∗
y(t) + E∗

x(t)Ey(t)
〉

(2.7c)

S3 = j
〈
Ex(t)E

∗
y(t)− E∗

x(t)Ey(t)
〉

(2.7d)

such that the signal at the detector array is given by:

I(θ, φ) =
1

2
(S0 + S1 cos 2θ + S2 cos φ sin 2θ + S3 sin φ sin 2θ). (2.8)

The Stokes parameters are therefore the intensity observables of the polariza-

tion state of electro-magnetic radiation. Because it is convenient for mathematical

manipulation, the Stokes parameters are often represented in vector notation:

S =
[

S0 S1 S2 S3

]T

(2.9)

It is important to point out that the Stokes parameters were derived with

respect to a specific x and y coordinate system. As a result, agreement between the

raw measurements from a pair of observers is wholly dependent on the orientation

of their reference frame. If the observers agree upon a common coordinate system

in advance then their measurements can be brought into agreement by applying the

proper transformation (to be described later by equation (2.17)). Throughout this

work, the x-axis, or primary axis, will be oriented parallel to the ground plane with

the y-axis, or secondary axis, perpendicular to it. In this way, measurements on the

ground or in the air will have a common reference plane.
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2.2 Interpretation of the Stokes Parameters

By itself, the result in equation (2.8) provides little indication of how the Stokes

parameters should be interpreted. Consequently, the purpose of this section is to

introduce the relevant properties of the Stokes parameters as they pertain to this

research.

Beyond the utility of describing polarization in terms of intensity, the preceding

derivation of the Stokes parameters also implies a number of other important proper-

ties. The use of the analytic signal representation of polychromatic electro-magnetic

radiation in equation (2.1) demonstrates that the Stokes parameters are equally well

defined for radiation of any bandwidth. Consequently, the effective bandwidth limit

of a Stokes measurement is determined by the experimenter’s ability to impose the

same phase shift and directional attenuation at every wavelength in the passband.

The analytic signal representation also demonstrates that the polarization state of

the superposition of two incoherent fields is given by the sum of their Stokes param-

eters.

The physical interpretation of each of the Stokes parameters is also of interest.

Equation 2.7 reveals S0 to be the total intensity of the incident radiation. In other

words, S0 is the intensity that would be observed if the polarizing elements were

removed from the system. As a result, no other Stokes parameter can be greater

in magnitude than S0. The remaining Stokes parameters form a basis in intensity

space spanning all possible polarization states. Table 2.1 summarizes the principle

direction for each of the remaining Stokes parameters. Implied in this table is that

fact that S1, S2, and S3 are signed quantities; S0, being the total intensity, is strictly

positive.

In addition to describing the orientation of polarized radiation, the Stokes

parameters also describe the extent to which the radiation is polarized. Radiation

with no preferred polarization state is said to be unpolarized. If unpolarized light

were to be described using equation (2.1), Ex(t) and Ey(t) would be rapidly varying,
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Table 2.1: Summary of the Stokes Parameters

Normalized
Stokes vector Type of polarization

[
1 1 0 0

]T
linear horizontal[

1 −1 0 0
]T

linear vertical[
1 0 1 0

]T
linear +45o

[
1 0 −1 0

]T
linear −45o

[
1 0 0 1

]T
right hand circular[

1 0 0 −1
]T

left hand circular

independent random processes. This variation is so fast that, during the period

of any practical measurement, the instantaneous polarization state of the radiation

would pass though every possible polarization state many times. Hecht refers to this

state as randomly polarized or natural light [16] and points out, along with [42],

that unpolarized light must be polychromatic to achieve this rapid variation in field

amplitude. A consequence of this rapid amplitude variation is that the net effect of

the retarder and polarizer pair in (2.8) is the same regardless of their orientation.

By inspection, this condition requires that S1, S2, and S3 be zero. Hence the Stokes

vector of unpolarized light is:

S =
[

S0 0 0 0
]T

(2.10)

Partially polarized light can be considered to be the sum of equation (2.10)

with another Stokes vector that represents fully polarized radiation. In all cases

(total, partial, or unpolarized), the following relationship between Stokes parameters

is valid:

S2
0 > S2

1 + S2
2 + S2

3 (2.11)
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This expression is bounded on two sides: total polarization exists when both sides

of the expression are equal and radiation is said to be unpolarized when the right

hand side is zero. Partial polarization occurs in every intermediate state. Equation

(2.11) leads to a natural expression for the extent of polarization:

P =

√
S2

1 + S2
2 + S2

3

S0

(2.12)

P is referred to as the degree of polarization and is bounded between zero (unpolar-

ized light) and one (fully polarized light). When measurements of S3 are unavailable,

its value is assumed to be zero and (2.12) is referred to as the degree of linear po-

larization. Unlike the Stokes parameters themselves, P is equivalent in all reference

frames.

Additionally, it is also often useful to express the angle of linear polarization,

ψ, directly from the Stokes parameters:

ψ =
1

2
tan−1 S2

S1

(2.13)

which stems directly from that fact that:

S1 = PS0 cos 2ψ

S2 = PS0 sin 2ψ
(2.14)

Assuming linearly polarized light, this last pair of relationships allows for decom-

position of I into linearly polarized and unpolarized components (with intermediate

steps worked out in Appendix A.2):

I =
1

2
(1− P ) S0 +

1

2
PS0 (1 + cos 2ψ cos 2θ + sin 2ψ sin 2θ)

=
1

2
λu + λp cos2 (ψ − θ)

(2.15)
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where λu = (1 − P )S0 is the unpolarized component of the signal and λp = PS0

is the polarized component; both quantities are always greater than or equal to 0.

The idea of decomposing a source into polarized and unpolarized Stokes vectors goes

back to Stokes himself. A recent paper by Wolf explains the conditions under which

this decomposition is viable [49]. Wolf’s conditions are always met when the target

is illuminated by natural light. In Chapter IV, the polarized/unpolarized irradiance

representation (rather than the Stokes vector representation) is employed to ensure

the statistical compatibility of the data model with the measurements.

2.3 Muller Matrix Transformations

This section introduces the mathematical operations used to describe the in-

teraction of a Stokes vector with matter. These operators are called the Mueller

matrices. Given a 4 × 4 Mueller matrix, T , the relationship between the incident

Stokes vector, S, and the transformed Stokes vector, S′, is given by S′ = TS. Mueller

matrices have been defined for all manner of optical elements, however, this discus-

sion will be limited to the the operators that appear in this research: the polarizer

and the rotator [5].

A linear polarizer, or polarization analyzer, is an optical element that absorbs

radiation at rate that is dependent on the orientation of the incident electric field.

This field dependence is defined in terms of α and β which are the field transmission

coefficients along the primary and secondary transmission axes as defined previously

in this chapter. Since α was selected to be the transmission coefficient for radiation

along the primary axis, the following convention will be adopted henceforth: α ≥ β.
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The Mueller matrix of a linear polarizer, T , is given by:

T =
1

2




α2 + β2 α2 − β2 0 0

α2 − β2 α2 + β2 0 0

0 0 2αβ 0

0 0 0 2αβ




(2.16)

Polarizers are the central optical element in this research and are, therefore,

worthy of a more detailed discussion. α and β appear in (2.16) as second order terms

(e.g α2 or αβ) because the Stokes parameters have units of intensity which is propor-

tional to the square of the mean electric field. Laboratory quality polarizers often

have secondary axis transmission coefficients, β, very near zero over the bandpass of

the filter. Conversely, a “polarizer” with α = β is a neutral density filter.

An optical element that rotates the electric field vector through an angle θ is

called a rotator. Besides describing an actual optical element, the rotator is also a

useful mathematical tool for translating Stokes parameters between reference frames.

It is assumed that a rotator does not attenuate the signal in any way during rotation

(i.e. it is an ideal rotator). That being said, the Mueller matrix of an attenuating

rotator can be described by the matrix product of the ideal rotator with a polarizer.

The ideal rotation operator is given by:

R (θ) =




1 0 0 0

0 cos (2θ) sin (2θ) 0

0 − sin (2θ) cos (2θ) 0

0 0 0 1




(2.17)

Thus the rotation operator also provides the mathematical means to describe rotation

of a polarizer by θ:

T (θ) = R−1 (θ) TR (θ) , (2.18)
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which is useful in practice because the problem of characterizing a polarizer in a op-

tical system can be decoupled into the easier problems of measuring the transmission

coefficients and, separately, determining the orientation of the device.

2.4 Mathematical Treatment of Polarization Imaging

The relationship between the at-aperture Stokes parameters and the intensity

sensed at each channel in an imaging polarimeter is described in this section. This

derivation applies to any polarimetric imager that records each channel simultane-

ously. The results provided here are used extensively throughout the remainder of

this document.

In general, measurement of the Stokes parameters requires four intensity mea-

surements with θ and φ chosen such that four unique instances of (2.8) are realized.

In practice, the S3 term is approximately zero (or, more precisely, φ = 0o) in remote

sensing applications (see section 2.5). Consequently, only unique measurements are

required to extract the relevant Stokes parameters and, as shown below, the optical

element responsible for the phase shift in (2.2) may be dropped.

A channel model provides the transformation between the incident Stokes vec-

tor image (or simply, Stokes image), S, and intensity on the detector array, repre-

sented by Iθ. In this arrangement, θ is the orientation of the channel polarization

filter measured with respect to the axis of the first channel. After this transforma-

tion is complete, only the total intensity reaching the detector, (i.e. the S0 term

after transmission through the polarizing element) is of interest. Together, the total

intensities of each channel are represented by an N × 1 vector, I. Mathematically, if

S′ (θ) = T (θ)S (2.19)
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then

S ′0(θ) =
1

2

[(
α2 + β2

)
S0 +

(
α2 − β2

)
cos (2θ) S1 +

(
α2 − β2

)
sin (2θ) S2

]
(2.20)

and

I =
[

S ′0(0) S ′0(θ1) ... S ′0(θN−1)
]T

=
[

I0 Iθ1 ... Iθ(N−1)

]T (2.21)

where the change of variables from S ′0(θ1) to Iθ1 is simply to avoid confusion later

on between the Stokes vector of the at-aperture signal and the actual intensity that

reaches the focal plane. The reader may compare this result to the ideal case in

equation (2.8).

Using equation (2.20), a matrix transformation, M , can be defined to calculate

I directly from S:

M =
1

2




α2
1 + β2

1 (α2
1 − β2

1) cos (2θ1) (α2
1 − β2

1) sin (2θ1)
...

...
...

α2
N + β2

N (α2
N − β2

N) cos (2θN) (α2
N − β2

N) sin (2θN)


 (2.22)

such that I = MS. Note that subscripts have to been added to α and β to indicate

that they can, in general, vary from polarizer to polarizer (though the convention

remains that α > β). Naturally, the inverse (or pseudoinverse) of M can also be

used to calculate S directly from I:

S = M−1I (2.23)

α and β represent a channel analyzer in a less than ideal case. That is to say, the

preferred signal may be partially attenuated while, at the same time, the remaining

signal is not completely suppressed. As a practical matter, the intensity equation is

better represented with weights on the Stokes parameters that are determined via
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lab calibration rather than separate measurements of α and β:

M =




a10 · · · a12

...
. . .

...

aN0 · · · aN2


 (2.24)

2.5 Polarization in Remote Sensing

The purpose of this section is to provide an overview of polarimetric remote

sensing in practice. Besides providing a general feel for the discipline, a primary goal

of this section is to emphasize the point that naturally occurring objects with a high

degree of polarization are unusual. This is the motivation for using polarization in

targeting and reconnaissance.

Polarimetric imagery is highly dependent on the relative orientation of the

source, target, and sensor. Referring to figure 2.2, the maximum polarization re-

sponse for natural materials tends to occur when the phase angle, ρ, is near 100o [7].

Likewise, polarization is more likely to occur in the principal plane (the plane that

passes through the source and target surface normal) than out of it. Broadening out

at bit, stronger polarization response is more likely to occur in the forward scattering

direction than in the back scattering (source side) direction.

Plane (i.e. linear) polarization is more likely to occur in nature than elliptical

polarization [6,7]. Consequently, S3 is approximately zero and, as such, is generally

not measured in remote sensing applications. To help visualize this point, consider

the common case of reflection at a smooth dielectric surface. Using the familiar

Fresnel equations, Collett [5] shows that the Mueller matrix transformation of this

physical process is identical in form to equation (2.16), the Mueller matrix of a linear

polarizer. In this case, α and β are determined by the angle of incidence and the

indices of refraction of the materials at their boundary. Reflection on bare metals,

on the other hand, can produce elliptical polarization under the right conditions;
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Figure 2.2: The geometry of polarimetric imaging

however, this and other birefringent materials are the exception rather than the

rule.

Multiple scattering processes reduce the extent to which light is polarized

[8, 16]. Multiple scattering processes in a gas or aerosol cloud can be thought of

as the random absorption, re-emission, and recombination of light. For solid sur-

faces, especially those that are semi-transparent, multiple scattering can be thought

of as the net result of many individual reflections from randomly oriented surfaces.

Consequently, smooth surfaces produce higher polarization states than diffuse sur-

faces [6]. Scattering off of a blackbody, which is the ultimate diffuse surface, has

no preferred polarization state even when illuminated with polarized light. Because

man-made materials tend to have smooth, machined surfaces, they tend to reflect

higher polarization states than their surroundings (water is an obvious exception to

this rule).

2.6 Atmospheric Effects

The purpose of this section is to briefly introduce the effects of the atmosphere

on polarimetric imaging sensors. Atmospherically induced polarization and depolar-

19



ization are discussed qualitatively to provide awareness of the issues. Second, the

effects of the atmosphere on image formation are provided as a primer for the chapter

on blind deconvolution.

Rayleigh scattering in the atmosphere produces polarized sky shine [16]. On a

molecular level, this scattering induces a preferred polarization that increases with

increasing angle away from the original direction of propagation. When viewed from

the ground, the net effect of this molecular scattering is that the sky takes on a

preferred polarization that is at a maximum along azimuths that are perpendicular

to the azimuth of the sun. Simultaneously, multiple scattering due to atmospheric

aerosols and haze tend to act as depolarizing agents. In remote sensing, this polarized

sky shine can be reflected off of the ground and into the sensor. The most dramatic

example of this effect can be found in the polarized reflection from ground targets

in shadows.

In the same way that they effect sky shine, aerosols, dust, and haze also tend to

diminish target polarization signatures as seen from an airborne sensor. The details

of this interaction are beyond the scope of this dissertation; however, the extent

of aerosol depolarization is determined by the type, depth, and number of aerosol

species in the intervening atmosphere.

Though not a polarization effect per se, the atmosphere plays an important

role in the formation of any incoherent image. In the absence of atmospheric effects,

image formation is given by a convolution operation:

i(x) = [o⊗ h] (x) (2.25)

where h(x) is the sensor induced point spread function and o(x) is the magnified (or

minified) target image as defined by geometric optics. The summation form of (2.25)

can be found at (4.1). The point spread function, even under ideal conditions, acts as

a low pass filter on the geometric image and is a strong function of wavelength and
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aperture diameter. When the atmosphere is introduced, uneven air temperature

distributions cause spatially varying fluctuations in index of refraction which, in

turn, modify the wavefront of the image reaching the sensor. The net result of this

perturbation is a modified image formation equation:

i(x) = [o⊗ (h⊗ hatm)] (x) (2.26)

where hatm is the atmospheric operator on the image. The grouping of the point

spread function with the atmospheric operator is mathematically unnecessary but,

physically, it highlights the notion that the atmosphere acts on the image in the

same manner that the point spread function does.

Mathematically, the atmospherically corrupted wavefront is represented as a

surface of relative wavefront phase delays, sometimes referred to as a phase screen,

ϕ:

[h⊗ hatm] (x) =

∣∣∣∣∣
∑

u

A(u)eiϕ(u)e−i2πkux

∣∣∣∣∣

2

(2.27)

where A is a complex function that represents the sensor aperture and any sensor

dependent phase errors. For a diffraction limited system, A(u) = 1 for all u in the

aperture and A(u) = 0 otherwise. An explanation of what constitutes a typical

atmospheric phase screen can be found in [34].

These spatial variations in refraction index change over time. Consequently,

hatm has a characteristic correlation time, the duration of which is determined by

the turbidity in the atmosphere. Realizations of hatm are independent of each other

from one correlation time to the next. When the exposure time of an image is one

correlation time or less, these index variations are effectively stationary. In this

regime, referred to as short exposure imaging, the dominant effect of the atmosphere

is to shift the image, though this is also accompanied by other forms of degradation.
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A physical model of polarization imaging has been described in this chapter. In

the following two chapters, this model will be placed in a statistical context through

which the contributions of this research are described.
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III. Fundamental Estimation Bounds for Polarimetric Imagery

Precise channel-to-channel registration is a prerequisite for effective exploitation

of passive polarimetric imagery. In this chapter, the Cramer-Rao bound is

employed to determine the limits of registration precision in the presence of scene

polarization diversity, channel noise, and random translational registration errors

between channels. The effects of misregistration on Stokes image estimation are

also explored in depth. Algorithm bias is discussed in the context of the bound,

without being estimator specific. Finally, case studies are presented for polarization

insensitive imagery (a special case) and linear polarization imaging systems with

three and four channels. An optimum polarization channel arrangement is proposed

in the context of the bound.

This work was originally published in [24]. Some additional research on the

CRLB appears in Appendix B. Included in this appendix is a discussion of external

measurement versus joint estimation, an interpretation of the bound using corre-

lations, and a method for transforming the bound derived here so that it may be

applied to the model in Chapter IV.

3.1 Polarimetry in the Context of the Cramer-Rao Bound

When derived from imagery, target polarization state estimates are inherently

prone to both channel noise and registration errors. In this chapter, we examine the

combined effects of misregistration and channel noise in the statistical framework of

the CRLB.

For the present purpose, systems responsive to linear polarization are consid-

ered. Persons et al. noted that, among common means of collecting polarimetric

imagery, translational and rotational registration errors between channels are most

prevalent [32]. In this context, Persons and others [23, 48] have made limited at-

tempts to characterize the effects of registration errors on polarimetric imagery us-
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ing established (but polarization insensitive) registration algorithms. In addition, a

recent registration study has also been conducted for the related problem of Mueller

matrix imaging [14]. The results of these studies range from successful registration

within stated tolerances to complete failure. Each of these efforts is a useful ref-

erence point, however, they lack the depth required to make complete comparisons

across algorithms or imaging scenarios. Indeed, what is most lacking is a theoretical

context in which to place these results.

The first step in providing this context is to identify the problem of estimating

the polarimetric signature of a target scene as a joint estimation of the misregistration

between channels and of the scene itself. Second, channel noise and misregistration

are random variables, therefore, this framework must be statistical in nature. Finally,

this framework must account for the influence of deterministic parameters such as

channel orientation and spacing as well as polarization diversity in the scene. In this

paper, the CRLB is derived for this joint estimation problem and expounded as a

theoretical framework that meets all of these criteria.

The CRLB determines the lower limit on the variance of any estimator. The

form of the bound is different for biased and unbiased cases. With the exception

of section 3.5, this research focuses mainly on bounds for unbiased estimators. The

utility of the CRLB for unbiased estimators is well described by Kay [18]; his argu-

ments may also be tailored to this specific case: if a new estimator is devised, it is

more efficient to compare it to a single bound rather than to attempt to simulate

results for many different existing estimators. Alternatively, the bound can be used

to determine if any existing algorithm meets this best case scenario. If no such al-

gorithm exists, the bound can motivate the search for a better estimator. Similar

studies via simulation (e.g. Monte Carlo methods) lack the theoretical foundation

which the CRLB readily provides. In the present work, the bound is also shown to

provide insight into the relationship between the sensor, target scene, and estimator.

24



Inspiration for applying this approach to the polarimetric imagery estimation

problem comes from two recent works. Robinson and Milanfar [33] applied the CRLB

to the problem of estimating the translational misregistration between pairs of (po-

larization insensitive) images in cases where the underlying scene is not estimated

as a parameter. Yetik and Nehorai expanded this work to describe limits for other

common misregistration issues (e.g. rotation, affine transformation) and for both

feature based and intensity based registration algorithms [50]. Aside from insensi-

tivity to polarization effects, the underlying scene assumption shared by both sets

of authors obviates the need for a joint estimator and is therefore inadequate for the

present purpose.

The bound derived in this work is most applicable to so called “feature match-

ing, area-based” or “template matching” registration estimators. Common among

these methods is that registration is achieved by comparing image intensities with-

out regard to specific objects in the scene. A survey of these methods can be found

in [52].

The newly derived bound determines the minimum achievable variance on es-

timates of the translational misregistration between channels and of the polarization

state at each point in the scene. The inclusion of polarization effects and removal

of the known image assumption from Robinson and Milanfar leads to a bound cal-

culation that is computationally impractical using direct methods. As such, matrix

theory is applied to the newly derived bound so that extraction of the relevant terms

becomes tenable. Additionally, many well known polarization insensitive image reg-

istration algorithms exhibit bias and, in fact, some biased estimators have been

shown to outperform unbiased estimators in theory and in practice. Though no such

study has been conducted with polarimetric imagery, a biased estimator form of the

CRLB is provided in anticipation of a similar eventual result.

The bound stands on its own as an algorithm evaluation metric, however, it

may also be used in a quantitative evaluation of system design criteria. To this end,
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the bound is used to determine the conditions under which it is necessary to generate

the channel registration parameters externally (as opposed to including them in the

estimator). Furthermore, the polarization insensitive case is actually a special case

of this new bound. As a consequence, Robinson and Milanfar’s bound is generalized

to the case where the underlying image is unknown.

Finally, the bound can also be used to suggest optimal channel configurations.

Several researchers have shown that optimum configuration (in terms of maximizing

SNR) is achieved by distributing the channels evenly across all possible polariza-

tion states. In the most recent of these attempts, Tyo improved on this theory by

considering the optimization problem in the presence of random channel calibration

errors [46]. In perhaps the most directly related research, Tyo also showed that

channels that are evenly spaced across all linear polarization states are optimal in

a principal components sense [45]. The analysis presented here complements this

body of research in that it demonstrates the same conclusion under different sets of

assumptions and using different metrics.

3.1.1 A Quick Example. Building upon the previous section, the results

of a simple laboratory experiment are presented in order to illustrate some issues

regarding the registration of polarimetric imagery. The underlying assumption in

many registration algorithms of the aforementioned “template matching” category

(e.g. cross-correlation and variants) is that the images under test contain the same

scene content but are translated and corrupted by noise. Other methods in this

category, such as registration via mutual information, are perhaps more suited toward

the registration of polarimetric imagery in that a statistical dependence between

intensity values in each image is assumed rather than a direct correspondence in

intensity. To illustrate these differences, the following example was contrived to

show how a registration algorithm can utterly fail when strong polarization content

violates its underlying assumptions.
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Figure 3.1 contains the result of an attempt to register the three channels of

an imaging polarimeter using cross-correlation. The target scene contains two fully

polarized bars from a resolution target oriented such that the bars have orthogonal

polarization states. The channels are spaced such that each is most sensitive to

polarization at 0o, 60o, or −60o. The target polarization is rotated slightly (≈ 10o)

out of the sensor reference frame so that each bar appears (to a greater or lesser

extent) in each channel. False color and an arrow are used to accentuate the weak

signal of the top bar in the 0o channel.

(a) The misregistered 0o

channel
(b) The 60o channel (c) The −60o channel

Figure 3.1: The misregistered polarimetric images.

Clearly, these three channels do not contain the same scene content which

is in violation of the assumptions built into the cross-correlation algorithm. As a

consequence, the bottom bar in channel 0o has been misregistered to the top bars in

the 60o and −60o channels. The Stokes parameter images of this scene (figure 3.2)

provide an explanation of this behavior.

Recall that S1 and S2 can take on negative values; the reader should interpret

the dark regions in the S1 and S2 images in this way. This behavior is unlike S0,

which is strictly positive. The comparatively higher contrast in the S1 image occurs

because the signal in S2 is much weaker than in S1. If the sensor were not sensitive

to polarization then the captured image in each channel would be the S0 image.

Comparing the Stokes images in figure 3.2 with the intensity equation (2.4),

the bottom bar in the 0o channel image is bright because its preferred polarization
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(a) Bars in S0 (b) Bars in S1 (c) Bars in S2

Figure 3.2: The Stokes parameter images of the bar target.

state is nearly parallel to the preferred polarization state of the channel. In this

region I ≈ 1
2
(S0 + S1) where S1 is a positive quantity. The small contribution from

S2 in this channel is ignored. The top bar is orthogonally polarized to channel 0o

and in this region the form of the intensity equation is the same but S1 is negative.

A similar analysis could be conducted for the remaining channels but the point of

this section has already been made: the phenomenology of polarization imagery is

different than that of traditional intensity imagery and as such, the rules developed

for image registration must be reevaluated in this new context.

3.2 Bound Definition and Data Model

In this section, the CRLB is defined and the components required to calculate

the bound are identified. These components are then specified for the specific prob-

lem of calculating the bound for a joint registration and Stokes parameter estimator.

3.2.1 Definition of the Cramer-Rao Bound. Let Z be a vector of random

variables that is parameterized by vector θ. Define θ̂ to be any unbiased estimate

of these parameters and z to be one realization of Z. The Cramer-Rao inequality

provides the lower bound on this estimator’s error covariance matrix in terms of the

Fisher Information Matrix (FIM), J :

Cov[θ̂] ≥ J−1, (3.1)
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where

J = −E

[
∂

∂θ

(
∂

∂θ
L(θ, z)

)T
]

(3.2)

and L(θ, z) is the data log-likelihood function [36]. Note that E[. . .] represents the

expected value operation over Z. The minimum variance for the estimate of each

parameter in θ is given by the diagonal elements of J−1. When J is not positive

definite the CRLB is not defined.

The concept of a log-likelihood function may require some elaboration. A likeli-

hood function describes how the probability density for a given measurement changes

as θ changes. Hence, calculation of the likelihood function requires knowledge of the

probability density function for Z, pθ (z), at each measured z. The log-likelihood

function is simply the natural log of the likelihood function

L(θ, z) = ln pθ (z) . (3.3)

3.2.2 Data Model. The bound described in the previous section is defined

in terms of a set of random variables Z, parameter vector, θ, and their corresponding

log-likelihood function, L(θ, z). The purpose of this section is to define these items

for the specific problem of generating polarimetric imagery from noisy, misregistered

data.

In this scenario, the collected images are realizations of Z. Consistent with [33]

and [50], the images to be registered are modeled as sampled, noisy versions of

the continuously varying underlying target scene. Channel-to-channel point spread

function variations are assumed to be minimal, sampling is at the Nyquist frequency

or better, and noise in the scene is zero-mean, Gaussian and IID. The sampled

coordinates in the (arbitrarily selected) first imaging channel, f1, are taken to be the

reference by which the remaining channels, f2 to fN , are specified. Mathematically,

the collected image zi for channel i at pixel mn is given by:
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zi(mn) = fi(mn) + εi(mn), (3.4)

where mn is the 2-dimensional coordinates of a given pixel in the image plane and

εi(mn) is a realization of the channel noise. The boundaries of mn are determined

by the region over which the collected images overlap. This overlap is assumed to be

square (1 ≤ n ≤ p2 for a p × p image). In a departure from the cited research, the

image content in each channel is determined by a shared Stokes parameter mapping

rather than a common intensity mapping:

f1(mn) =
2∑

j=0

a1jSj(mn)

fi(mn) =
2∑

j=0

aijSj(mn − vi),
(3.5)

where vi is the 2-dimensional translational misregistration between fi and f1 and the

parameter weights aij come from equation 2.24.

For each channel, there is a one-to-one correspondence between the 2-dimensional

image and a 1-dimensional vector:

zi = [zi(m1) . . . zi(mp2)]T

fi = [fi(m1) . . . fi(mp2)]T ,
(3.6)

which, in turn, allows for a very compact expression of the following results.

As previously stated, the per-pixel channel noise is zero mean, IID and Gaus-

sian; consequently, the data log-likelihood function is given by:

L(θ, z) =
−1

2σ2

N∑
i=1

(zi − fi)
T (zi − fi) + ξ (3.7)

where σ2 is the noise variance and ξ is a constant term that is not dependent on

θ. It is clear from this equation that the log-likelihood is dependent on the region

of overlap defined by the intersection of all images fi. This region of intersection is,
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in turn, dependent on the relative misregistration between the images. Following

the lead of Yetik, this overlap region is assumed to be constant. The efficacy of this

assumption is greatest when the relative misregistration between images is small

when compared to the dimensions of the overlap region; it is reasonable to assume

that a multi-channel polarimeter will be operating in this regime.

Additionally, calculation of the Fisher information matrix requires an unam-

biguous ordering in the parameter vector θ. Since the goal is to place a bound on

a joint estimator of the translational shifts between images and the values of the

Stokes parameters at each pixel in the image, this parameter vector will be very

large indeed:

θ =
[

vT
2 . . .vT

N ST
0 · · ·ST

2

]T

, (3.8)

where, analogous to the vectorized form of the channels mean images, fi, each Stokes

parameter vector is given by:

Si = [Si(m1) . . . Si(mp2)]T . (3.9)

Scharf [36] provides an expression for the Fisher information matrix for m

observations of an multivariate, normally distributed random vector with covariance

matrix, R, and mean, f :

Jij = m
∂fT

∂θi

R−1 ∂f

∂θj

(3.10)

As shown in (3.7), there is one observation (i.e. m = 1) for each of N random images.

Each image i has a covariance matrix R = σ2I and mean fi. It is straightforward to

show that the FIM in this case is simply a sum of N instances of (3.10):

Jij =
1

σ2

N∑
n=1

∂fT
n

∂θi

∂fn
∂θj

(3.11)
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3.3 Fisher Information for the Joint Estimator

The Fisher information matrix from (3.11) is developed in this section by

partitioning J into submatrices. Matrix partitioning is used to exploit the inherent

symmetry in the Fisher information matrix and to lend insight into the physical

interpretation of J . In [35], Scharf and McWhorter show that a FIM in the form of

(3.11) may be partitioned so that the subset FIMs of the parameter space may be

considered individually. In this work, it is useful to partition the parameter space

such the sub-FIM V describes covariances amongst the translational registration

parameters and the sub-FIM S describes covariances between Stokes parameters.

Define:

J =


 V HT

H S


 (3.12)

where H, to use Scharf and McWhorter’s parlance, relates the intercorrelations be-

tween the registration and Stokes partitions in θ. In what follows, each of V , H, and

S are described in detail.

The first matrix, V , is actually the FIM for an unbiased estimator of the

misregistration between channels when the underlying Stokes images are known a

priori. The inverse of V is the CRLB for the registration estimator under this “known

prior” condition. In the two channel polarization insensitive case, V is the bound

from Robinson and Milanfar. V is composed of (N − 1)2 submatrices of the form:

Vij =





1
σ2

(
∂

∂vi
fT
i

)(
∂

∂vj
fT
j

)T

if i = j,

02×2 if i 6= j

(3.13)
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where 02×2 is a 2× 2 zero matrix. Though it does not appear explicitly in (3.12), it

is also useful to define Ṽ with the same form as V but with entries:

Ṽij =





02×2 if i = j,

1
σ2

(
∂

∂vi
fT
i

)(
∂

∂vj
fT
j

)T

if i 6= j

(3.14)

The role of Ṽ will be demonstrated in the following section. For now, consider that

the form of V demonstrates that errors in the estimates of the misregistration param-

eters are uncorrelated between channels when perfect knowledge of the underlying

scene exists. When this perfect knowledge does not exist, Ṽ will be used to describe

the nature of the correlation between channels.

In the lower right quadrant of (3.12) is the 3p2× 3p2 matrix S. Note that S is

the FIM that would be used to estimate the bound on a unbiased Stokes estimator if

the relative shifts between the collected images were known a priori. S divides into

3×3 submatrices of size p2×p2 corresponding to combinations of Stokes parameters

(images).

Sjk =
1

σ2
(Ip2×p2)

N∑
i=1

aijaik (3.15)

where Ip2×p2 is an identity matrix of rank p2. The block symmetry in S allows for

substantial further simplification by defining the matrix:

C =




c00 · · · c02

...
. . .

...

c20 · · · c22


 , cjk =

N∑
i=1

aijaik (3.16)

in which case:

S = 1
σ2 C ⊗ Ip2×p2 (3.17)
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where ⊗ is the Kronecker product [13]. This Kronecker product representation

significantly simplifies inversion of the S matrix.

S−1 = σ2C−1 ⊗ Ip2×p2 (3.18)

In other words, the inversion of the 3p2× 3p2 matrix S is solved by simply inverting

the 3× 3 matrix C.

Connecting the matrices V and S is the 3p2 × 2(N − 1) matrix H. Physically,

if H were the zero matrix then the bounds on the registration and Stokes param-

eters could be determined independently of each other. Proof of this statement is

provided in section (3.4). In the process of defining H, it becomes obvious that

this independence condition is never met. H is composed of 3 × (N − 1) readily

identifiable submatrices:

Hij =
aji

σ2

(
∂

∂vj

fT
j

)T

. (3.19)

Unless the collected image is constant everywhere (i.e. the derivative of the image is

zero everywhere) then H is non-zero and the covariance bounds must be determined

jointly. More on the relationship between H, V and Ṽ can be found in Appendix

B.1.

3.4 Bound Derivation

The Fisher information matrix has been shown to contain [2(N − 1) + 3p2]×
[2(N−1)+3p2] entries. To put the enormity of this matrix into perspective, consider

the bound calculation for a four channel polarimeter used to estimate the first three

Stokes parameters. Assuming a 512×512 overlap region, the corresponding FIM has

approximately 6.18 × 1011 entries. Inversion of such a large matrix is prohibitive.

In this section, the partitioning of the Fisher information matrix from the previous

section is exploited to make this inversion problem tractable.
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3.4.1 Block Matrix Inversion. As previously discussed, the variance bound

for each parameter in θ is given by the diagonal entries of J−1. Consequently,

computational expense can be significantly reduced by avoiding the unnecessary

calculation of many of the off diagonal terms in the inverse. A trivial rearrangement

of the partitioned inverse of a block matrix in [15] provides the following:

Bv =
(
V −HT S−1H

)−1
(3.20)

and

BS = S−1 + S−1
(
HBvH

T
)
S−1 (3.21)

where Bv and BS, which are submatrices of J−1, identify the bounding covariance

matrices on the shift parameters and Stokes images. As an aside, if H = 0 then

Bv = V −1 and BS = S−1, thus demonstrating the physical interpretation of H put

forth in the previous section.

Equations (3.20) and (3.21) readily demonstrate how uncertainty in the mis-

registration between channels impacts uncertainty in the Stokes image estimates and

vice versa. Similar to the H = 0 case, if the underlying Stokes images are known per-

fectly then the CRLB on the misregistration estimates would simply be Bv = V −1.

Likewise, if perfect knowledge of the registration parameters existed then BS = S−1.

Consequently, it is clear that Bv and BS are always larger than V −1 and S−1 in the

absence of perfect knowledge.

3.4.2 Simplified Registration Parameter Bound. Matrix Bv is addressed

first because it is required to calculate BS. As preliminary work, note that:

HT S−1H = σ2HT
(
C−1 ⊗ Ip2×p2

)
H. (3.22)

35



Consequently, HT S−1H can itself be partitioned into a matrix, D, such that:

Dhk = σ2

2∑
i=0

2∑
j=0

C−1
ij HT

ihHjk. (3.23)

which provides the opportunity to profitably apply equations (B.1) and (B.2) from

Appendix B.1:

Dhk =





2∑
i=0

2∑
j=0

C−1
ij ahiahjVhh if h = k,

2∑
i=0

2∑
j=0

C−1
ij ahiakjṼhk if h 6= k

(3.24)

Furthermore, it is mathematically expedient to add and then subtract V into the

definition of D such that:

D = −Wv •
(
V + Ṽ

)
+ V (3.25)

where • is the Hadamard product and all sensor dependent terms have been bundled

into:

Wv =
(
I(N−1)×(N−1) − AC−T AT

)⊗ 12×2 (3.26)

The matrix A is formed of the 2 to N rows of M , the matrix of per channel Stokes

weighting parameters from (2.24). The bound on the shift estimates can now be

expressed concisely:

Bv = (V −D)−1 =
[
Wv •

(
V + Ṽ

)]−1

(3.27)

As anticipated, Ṽ has indeed provided the constituents for the cross-covariance terms

in Bv.

3.4.3 Simplified Stokes Parameter Bound. The impetus behind much of the

preceding section was to avoid having to manipulate an unwieldy Fisher information

matrix directly while still achieving the CRLB on the registration parameters. The
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goal in this section is to do the same for the bound on the Stokes image estimators,

BS. We propose that the variance bound on the Stokes parameter estimate for any

one pixel in the image is of less interest than the average bound across the image.

In turn, this calculation is significantly simplified by applying properties of the trace

and of the Kronecker product as shown in Appendix B.2, where the bound is derived

in detail. What follows are the highlights of this derivation.

Define BSi, the covariance matrix for an estimator of Stokes image Si, to be

a submatrix of BS. Equivalently, let Γi be the submatrix of S corresponding to the

Stokes image Si:

Γ−1
i = σ2C−1

ii ⊗ Ip2×p2 (3.28)

and define:

Φ−1
i = σ2C−1

i ⊗ Ip2×p2 (3.29)

where

C−1
i =

[
C−1

i0 · · · C−1
i2

]
(3.30)

then the average bound for Stokes image Si is defined to be:

〈BSi〉 =
1

p2
tr (BSi) (3.31)

Expanded out, the trace term is:

tr (BSi) = tr
(
Γ−1

i

)
+ tr

[
Φ−1

i

(
HBvH

T
)
Φ−T

i

]
(3.32)

and because of the implicit symmetry of V and Ṽ :

tr
[
Φ−1

i

(
HBvH

T
)
Φ−T

i

]
= σ2vec

[
WSi •

(
V + Ṽ

)]T

vec (Bv)

= σ2tr
[
WSi •

(
V + Ṽ

)
Bv

] (3.33)
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where

WSi = A
(
C−T

i C−1
i

)
AT ⊗ 12×2 (3.34)

this result can be folded back into (3.31) to produce:

〈BSi〉 = σ2C−1
ii +

σ2

p2
tr

[
WSi •

(
V + Ṽ

)
Bv

]
(3.35)

Hence, substantial simplification of the bound calculation is achieved. The similar-

ities between 〈BSi〉 and Bv are clear. The terms in BS that are not contained in

BSi can be ignored because they do not influence the trace. Also, it is interesting

to note how the sensor itself (realized by WSi and Wv in Bv) plays opposing roles in

equation (3.35) analogous to multiplication and division if this were a purely scalar

case.

3.5 Biased Estimators

A study of estimator bias in the registration of polarimetric imagery has not

been addressed in the literature. However, there are several well known examples

of estimator bias in traditional, polarization insensitive registration algorithms. In

anticipation of this future work, what follows is a discussion of incorporating bias

into the results from sections 3.4.2 and 3.4.3.

According to Scharf [36], the CRLB on the covariance matrix of a biased esti-

mator is given by:

Cov
[
θ̂
]
≥ ∆T J−1∆ (3.36)

where, J , is the Fisher information matrix (identical to the unbiased case), θ̂ is the

estimate of θ and

∆ =
∂

∂θ
E

[
θ̂
]T

(3.37)

is the partial derivative of the expected value of the estimator. The expected value

of θ̂ is estimator specific (i.e. registration algorithm specific) and, furthermore,
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the CRLB of a biased estimator may be higher or lower than that of an unbiased

estimator. Note that in the unbiased case, ∆ = I and equation (3.36) reduces to

equation (3.1). In what follows, a specific partition of ∆ is defined via subscript.

For instance, ∆v refers to a partition of ∆ dealing strictly with estimates of the

registration parameters whereas ∆S0 refers to estimates of the Stokes image S0.

The biased estimator bound for the registration parameters, B̃v, is easily

achieved by combining (3.27) with (3.36):

B̃v = ∆T
v

[
Wv •

(
V + Ṽ

)]−1

∆v (3.38)

which is made possible by exchanging J−1 in (3.36) with its submatrix Bv (from the

unbiased case). In what appears to be a very small step, this equation shows that

the CRLB can be decomposed into an scene specific part, V + Ṽ , a sensor specific

part Wv, and an estimator specific part, ∆v. This separation may not be complete

in that the channel spacing effects V + Ṽ and, more than likely, bias in the estimator

will be to some extent affected by scene polarimetric content.

Without the context of a specific registration algorithm, interpretation of the

biased CRLB for a Stokes estimator is less straightforward. Combining (3.32) with

(3.36) reveals that the trace on the biased Stokes bound is:

tr
(
B̃Si

)
= tr

(
∆T

SiΓ
−1
i ∆Si + ∆T

SiΦ
−1
i

(
HBvH

T
)
Φ−T

i ∆Si

)
(3.39)

which may be reduced somewhat by substituting ∆T
SiΦ

−1
i in for Φ−1

i in Appendix

B.2 and noting that:

Φ−T
i ∆Si∆

T
SiΦ

−1
i = σ4C−T

i C−1
i ⊗∆Si∆

T
Si (3.40)
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resulting in:

tr
(
B̃Si

)
= tr(∆T

SiΓ
−1
i ∆Si) + σ4tr

(
HT

(
C−T

i C−1
i ⊗∆Si∆

T
Si

)
HBv

)
(3.41)

which is, if not quite as simple as the registration parameter case, certainly more

computationally efficient than directly inverting the FIM. In terms of interpretation,

the trace is composed of the sum of two terms, the first of which depends only on the

estimator and the sensor. Later, in section 3.6.2, it is shown that the equivalent to

this term in the unbiased case dominates the solution to the problem of an optimum

channel spacing. It will be left to future work to show that this is the case for specific

biased estimators.

Though there are currently no studies of bias in the registration of polarimetric

imagery, the interested reader will be well served by referring to [33] for an in depth

discussion of bias in gradient based registration algorithms for polarization insensitive

imagery.

3.6 Example Bound Calculations

In the examples that follow, an unbiased estimator is assumed throughout.

3.6.1 Bounds on Polarization Insensitive Imagery. Bounds on polarization

insensitive imagery are presented here as a special case of the results derived in

section 3.4. This case serves as both a practical example of how the CRLB can be

applied effectively and as a bridge between this work and the work of Robinson and

Milanfar.

We seek the bound on a joint estimator of a scene and the registration pa-

rameters amongst N noisy samples of this image. Recall that S0 represents total

scene intensity, therefore, S0 is the only Stokes image of interest. In this scenario,

the matrix in equation (3.16) reduces to a scalar, C = N , because there is only one

parameter per pixel to be estimated. The channel transmission coefficient, ai0, is
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assumed to be unity for each channel. In that case, M = 1(N−1)×1. Therefore, each

of Wv and WS0 are the 2 (N − 1)× 2 (N − 1) matrices:

(Wv)ij =





1− 1
N

if i = j,

− 1
N

if i 6= j

(3.42)

and

WS0 =
σ2

N2
⊗ 12(N−1)×2(N−1). (3.43)

To reiterate an important point, both V and Ṽ are image dependent. That

being said, the overall bound’s behavior with increasing N can be predicted by the

behavior of Wv and WS0 for any image. Equation (3.42) shows that Bv = 2V −1 in

the two channel case and Bv = V −1 in the limit of N . Essentially, the Ṽ matrix

is suppressed by the 1/N terms in Wv as N increases. These suppressed terms

represent the decreasing influence of each individual image as the true underlying

image emerges. In this limit, the bound parameters for each image asymptotically

achieve the bound predicted by Robinson and Milanfar in their 2004 work. Assuming

a few images do not differ substantially from the rest of the ensemble (e.g. due to a

large translational error or parallax) then the results follow a
(
1− 1

N

)−1
progression.

Likewise, the progression of the estimated image toward the true image can be

ascertained from the behavior of 〈BS0〉. Again, we consider the endpoints. In the

two channel case:

〈BS0〉|N=2 =
σ2

p2
+

σ2

2
(3.44)

and the large N case:

〈BS0〉|N→large =
σ2

p2

2 (N − 1)

N2
+

σ2

N
(3.45)
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It would appear that the behavior of the this bound is dominated by σ2

N
. As shown

in figure 3.3, the broad applicability of the preceding observations can be verified

experimentally.

Twenty realizations of two test images, each with unique spatial characteristics,

are generated with white Gaussian noise statistics and an uniformly distributed

random shift error between ±5 pixels in any direction. The scene average signal-

to-noise ratio is 3. The bound on the average pixel value estimates, 〈BS0〉, and

the average misregistration bound (i.e. tr(Bv)/(N − 1)) are normalized and plotted

against the number of frames, N . Normalization is carried out to illustrate the 1
N

behavior of the intensity variance bound and the
(
1− 1

N

)−1
behavior of the shift

estimator bound. For comparison, each of these predicted curves are shown as a red

dashed line underneath the data.

The expected behavior of the bound with increasing N is confirmed for these

disparate examples. The deviation of average registration parameter bound in the

G.G. Stokes image from the expected trend demonstrates the slight influence of

changes in image overlap area on the results.

3.6.2 The Four Channel, Three Stokes Case. Unambiguous determination

of a linear polarization state requires three or more polarization imaging channels.

In the following section, we demonstrate that a minimum of four channels is required

for the joint registration and Stokes parameter estimation problem. In this section,

example Cramer-Rao bounds are calculated as a function of polarization channel

orientation for three distinct imaging scenarios. The purpose of this exercise is to

illustrate the effects of channel orientation on the CRLB and, in this context, to

describe the optimum channel configuration.

Along with scene content, the orientation of each polarization channel can be

expected to affect the bound of the estimated Stokes parameters. As discussed in the

introduction, Tyo has shown that an optimum combination of polarization channels

42



(a) George Gabriel
Stokes

(b) Geometric pattern

5 10 15 20
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 v
ar

ia
nc

e

Number of frames

 

 

average registration parameter bound
average intensity bound
expected trend

(c) G.G. Stokes portrait normalized
bounds

5 10 15 20
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 v
ar

ia
nc

e

Number of frames

 

 

average registration parameter bound
average intensity bound
expected trend

(d) Geometric pattern normalized
bounds

Figure 3.3: Polarization insensitive imagery and its estimation bounds

exists in a principal components sense for monochromatic, fully polarized radiation

that is uniformly distributed over all states of linear polarization (e.g. not image

specific) [45]. Tyo’s optimum combination of channels, in the four channel case,

corresponds to a spacing of 45o. Since his work was brought about from different

assumptions and desired outcomes, it is of interest to compare this result to the

optimum configuration as defined by the CRLB.

Examples from three real-world polarization imagers are selected to represent

the diversity of polarization imaging scenarios. The first case is the bar target from

figure 3.2 which was collected in the lab using a three channel imaging polarimeter

in the visible regime. The ultraviolet astronomical data of galaxy Markarian 3 comes
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from the (now decommissioned) Faint Object Camera that was aboard the Hubble

Space telescope until 2002. Finally, the machine vision example of a printed circuit

board is taken from laboratory data collected in the visible regime (using a different

polarimeter than in the the bar target case). The Stokes images for the Markarian

3 and PC board cases are shown in the following figures.

(a) Markarian 3 in S0 (b) Markarian 3 in S1 (c) Markarian 3 in S2

Figure 3.4: The Markarian 3 test scene

(a) PC board in S0 (b) PC board in S1 (c) PC board in S2

Figure 3.5: The printed circuit board test scene

The bound characteristics are determined by varying the angular spacing be-

tween polarization elements in one degree increments. The separation angle between

channels is measured with respect to the first channel, which is held fixed. Each

channel is evenly spaced and, in the plots that follow, this channel spacing is used

to index the bound results. For example, the reader can infer that a channel spacing

of 5o corresponds to an orientation of 5o, 10o, and 15o for the second, third, and

fourth channels with respect to the first. Figure (3.6) shows the average bound on
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the Stokes parameters for each of the three test cases. Each plot is normalized by

σ−2 since it may be divided out of equation (3.35).

As should be expected, the largest variances in Stokes image estimates occur

when the polarization channels are closely spaced. Somewhat less expected is the

observation that scene content appears to have little influence on individual results

for the Stokes estimator in terms of the overall trends. Though there are small scale

differences, the Stokes parameter bounds for all images closely follow the evolution of

C−1
ii with increasing channel spacing. This result is significant for two reasons. First,

there appears to be global agreement as to which channel spacing is most preferable,

at least for the test cases sampled here. Second, it would appear that each BSi is

very well approximated by direct interrogation of S−1, at least in an average sense.

In other words, the Stokes parameter bounds are effectively scene independent with

respect to channel spacing. Recall that S−1 is, by itself, the CRLB on the Stokes

estimates when perfect knowledge of the misregistration parameters is available,

consequently, these observations apply equally to that scenario.

The bound for the S1 and S2 estimates meet at Tyo’s predicted optimal channel

spacing of 45o, however, S1 has a minimum bound at a somewhat closer channel

spacing. Consequently, there is no global minimum bound for all Stokes parameters.

Rather, the 45o spacing is the point where there is no preferred parameter. This

point is significant because, as stated previously, the Stokes parameters are defined

with respect to some coordinate system and, as this system changes in relation to

the target (e.g. through camera motion) then scene content can shift between S1

and S2. With this qualifier, a 45o channel spacing can be said to be optimal for a

four channel system.

Figure (3.6) also contains a plot of the average registration parameter bound

for each of the three channels. As before, σ2 has been normalized out. Unlike the

bounds on the Stokes parameters, these bounds depend both on scene content and

channel orientation. Consistent with the Robinson and Milanfar analysis of V in
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the polarization insensitive two channel case, the difference in bound magnitude

correlates with the amount of high spatial frequency content in the test images.

The PC board image, with its multi-faceted geometric features, generates the lowest

bound while the galaxy Markarian 3, which has largely diffuse features, generates

the highest bound.
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(a) Markarian 3 Stokes bounds
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(b) Bar target Stokes bounds
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(c) PC board Stokes bounds
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Figure 3.6: Bound results for the four channel case

3.6.3 The Three Channel, Three Stokes Case. The three channel case is

important because it is the minimum number of channels required to completely

describe linear polarization (i.e. S0, S1, S2). The interested reader may easily verify

this three channel prerequisite for themselves by attempting to calculate BS with

only two channels. Three channel polarimeters are also common in practice; all

46



examples in the previous section were originally collected by different three channel

systems. In this section, the three channel polarimeter is examined from a joint

estimation perspective.

First, consider the bound matrix Bv for some combination of three polarimeter

channels represented by weight matrix A. Immediately, a mathematical difficulty

arises:

Wv = 04×4 (3.46)

in which case equation (3.27) is uninvertible or, in other words, the CRLB for the

joint estimator (biased or unbiased) is infinity.

At first glance, the result in (3.46) appears to be inconsistent with the fact that,

three channel polarimeters are routinely employed in practice. The key difference,

however, is that the data from these systems are not reduced using joint estimation

algorithms. Rather, shift estimation and Stokes estimation are treated as separate

problems. In other words, external measurement of the registration parameters is

always required in the three channel case.

In terrestrial remote sensing applications, it is often the case that much of the

scene is dominated by weakly polarized content (an obvious exception is a target

scene composed over the water). In this case, the channel-to-channel registration

problem for each pair of images is well approximated by the two channel polarization

insensitive case described in section (3.6.1).

Assuming external measurement of the registration parameters by whatever

means, there is likely a regime where S−1 will dominate equation (3.21), analogous

to the four channel joint estimation examples. Following the prescribed method in

the previous section, the diagonal terms in J−1
S will be jointly minimized for S1 and

S2 when the angular separation between channels is 60o. In this sense, the CRLB

for the Stokes estimates can be compared across the three and four channel cases.
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Table 3.1: Average bounds on Stokes parameter estimates in the S−1 dominant
regime

Parameter 3-channel case 4-channel case
S0

1
3
σ2 1

4
σ2

S1
2
3
σ2 1

2
σ2

S2
2
3
σ2 1

2
σ2

Note from table 3.6.3 that S0 follows the 1
N

pattern established for the polarization

insensitive case while S1 and S2 go by 2
N

.

3.7 Chapter Summary

In this chapter, the Cramer-Rao lower bound is derived for the problem of

jointly estimating Stokes images and random misregistration parameters in the pres-

ence of channel noise. Direct inversion of the prohibitively large Fisher information

matrix is bypassed by applying matrix theory to express the resulting bounds in a

tractable form. The effects of estimator bias on the bound are discussed up to the

point where it becomes necessary to identify a specific estimator. The bound is then

used to describe three and four channel polarimetric imaging systems as well as the

special case of registering N polarization insensitive images. The bound itself is a

useful evaluation metric because it incorporates both sensor and estimation algo-

rithm effects and can be used to describe these effects theoretically in a way that

pure simulation can not. In addition, the following general conclusions can be drawn

from the results:

• The minimum achievable estimator variance is scene and channel orientation

dependent in the unbiased case. The estimator itself also effects the bound in

the biased case.

• The bounds on the registration and Stokes parameters are dependent.

Furthermore, specific conclusions can be drawn from the section 3.6 case studies:
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• In the polarization insensitive case, the CRLB derived by Robinson and Mi-

lanfar [33] is shown to be the asymptotic limit of the joint estimation bound

as the number of frames approach infinity.

• In the three channel case, the CRLB for any joint estimator is infinity. Con-

sequently, the registration parameters and Stokes images must be estimated

separately.

• The form of the bound suggests that the optimum channel spacing is 60o and

45o respectively in the three and four channel cases. Optimum, in this context,

refers to a joint minimum bound for S1 and S2. These arrangements do not

guarantee that the bound on the registration estimator is minimized.
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IV. Blind Deconvolution of Polarimetric Imagery

A maximum likelihood blind deconvolution algorithm is derived for incoherent

polarimetric imagery using expectation maximization. In this approach, the

unpolarized and fully polarized components of the scene are estimated along with the

corresponding angles of polarization and channel point spread functions. The scene

state of linear polarization is determined unambiguously using this parameterization.

Results are demonstrated using laboratory data and simulation.

The preponderance of this chapter was originally published in [25]. In an

expansion of this original work, sections 4.6 and 4.7 include an algorithm comparison

and an attempt to better understand polarization angle estimation, both in the

context of simulation. To bridge this chapter with the last, the Cramer-Rao bound

for the ML estimator derived here can be found in the appendix, section B.5.

4.1 Polarimetric Image Restoration

However polarization information is conveyed, it is generally the result of a

fusion of multiple latent images, each collected through a different polarization an-

alyzer. In the presence of strong polarization features, these channels may generate

images with substantial content variations between them. In this sense, the fusion

of polarization imagery is similar to fusion across spectral regimes or perhaps among

medical imaging modalities. To some extent, these analogies are imperfect because

the relationship between channels in polarimetric imagery can be accurately modeled

without knowledge of the target itself.

Like all imaging systems, the sensor limits the ability of the image to faithfully

reproduce the intended target. These limits are manifested by noise and by the blur-

ring effects of the channel point spread function. Additionally, it is often the case

in remote sensing that the response of each channel varies due to the wavefront cor-

rupting effects of the atmosphere. The problem of estimating the true target image
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in the presence of unknown atmospheric corruption is known as blind deconvolution

and has been studied extensively in the traditional imaging (i.e. polarization insensi-

tive) case. An excellent overview of the discipline can be found in references [21,22];

however, there are also more recent examples in the literature. In this paper we

derive and test a maximum likelihood blind deconvolution algorithm for incoherent

polarimetric imagery.

The proposed blind deconvolution algorithm is a generalization of the work of

Schulz on multiframe blind deconvolution [38,39] in the polarization insensitive case.

In the present case, the joint-likelihood of the combined polarization channels is pa-

rameterized by the linear polarization state of the underlying scene and the channel

point spread functions. This likelihood function is recast using the generalized ex-

pectation maximization (GEM) algorithm which, in turn, decouples the estimators

amongst the parameters of interest.

Before proceeding, it is worth mentioning some other recent advances in po-

larization imagery estimation. In [51], a maximum a posteriori Stokes parameter

estimator is derived and tested. Unlike the present case, the estimator is not in-

tended to account for sensor or atmospheric point spread function (PSF) variations

between imaging channels and, furthermore, relies up prior knowledge that is not

assumed here. In his dissertation, Strong derives a blind maximum likelihood esti-

mator of a target scene and a lumped polarization parameter [43]. This estimator

combines observations from one polarization channel and one polarization insensitive

channel and is loosely based on an expectation maximization approach. This differs

significantly from the present work in that, here, the polarization state of the target

scene is determined without ambiguity in degree or angle of polarization and in that

any number of polarization channels may be combined to improve the estimate.

The chapter begins with a brief introduction to the GEM algorithm and a

mathematically description of polarized light in section 4.2. In section 4.3, the

polarization image estimator is derived and the case is made for estimating channel
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point spread functions using Schulz’s original method. For completeness, a brief

overview of the PSF estimator is also included. Finally, the algorithm is tested using

a laboratory imaging polarimeter in section 4.4.

4.2 Preliminary Notes

The purpose of this section is to introduce and motivate the use of the GEM

algorithm for this estimation problem. In addition, a model is produced for polarized

radiation that best compliments the GEM approach.

4.2.1 The GEM Algorithm. In maximum likelihood (ML) estimation, one

or more parameters of an assumed probability distribution for variable X are esti-

mated directly from observations of X. The generalized expectation maximization

algorithm is an iterative method for achieving an ML estimate. The present prob-

lem is well served by the GEM approach because an ML approach that directly

estimates the desired parameters is impractical to implement. The seminal paper on

the GEM algorithm is found at [1] and a very readable overview at [29]. In what fol-

lows, some basic steps are outlined to the extent necessary to understand the GEM

implementation in the sections that follow.

As the name suggests, the GEM algorithm consists of two parts: an expec-

tation step and a maximization step. In the build up to the expectation step, the

measured data (henceforth referred to as the incomplete data) is represented as the

aggregate of some underlying random variables (the complete data). The complete

data may or may not have physical significance but, in every case, the aggregated

complete data have the same probability distribution as the incomplete data. In the

expectation step (E-step), the expected value of the likelihood of the complete data

is determined when conditioned upon both the incomplete data and the estimate

from the previous iteration. In the maximization step (M-step), each estimated pa-

rameter is selected such that it either maximizes the expected likelihood (i.e. the
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result from the E-step) or at least increases its value over the previous iteration.

The algorithm is stopped when the latest iteration of the algorithm meets some

predetermined stopping criteria.

In section 4.3, Schulz’s complete data for the polarization insensitive case is

decomposed into polarized and unpolarized constituents for each polarimeter imaging

channel. As such, the Poisson distributed incomplete data (photons counted at the

detector array) are found to be the sum of many independent Poisson distributed

polarized and unpolarized parts. In the following section, the physical model for this

decomposition is described.

4.3 Estimator Derivation

In this section, the broad concepts introduced in section 4.2.1 are applied to the

polarimetric blind deconvolution problem. The section begins with the incomplete

data log likelihood to demonstrate the difficulties encountered when attempting to

achieve an ML estimate directly from the probability distribution of the measured

data.

4.3.1 The Complete Data Log-likelihood. The incomplete data are the

collected images themselves, d. Define dc(y) to be an element in d where the subscript

c specifies the channel in question and y specifies a location in the imaging space.

Each dc(y) is modeled as an independent Poisson random variable. Using the same

convention, the mean of d is i which is a function of the scene, o, and the collection

of channel point spread functions, h. Consequently, the mean of each dc(y) is ic(y),

given by the convolution of oc and hc:

ic (y) =
∑

x

oc (x) hc (y − x) (4.1)

which is simply the summation form of equation (2.25). To capture the variation

between channels due to scene polarization content, each oc is decomposed into its
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polarized constituents:

oc(x) =
1

2
λu(x) + λp(x) cos2 (α(x)− θc) (4.2)

Equation (4.2) demonstrates how polarization information is shared between

channels in the log-likelihood. Now we postulate a formulation for the polarized

and unpolarized components of the complete data, d̃uc(y, x) and d̃pc(y, x), which will

alleviate the mathematical difficulties incurred by maximizing the likelihood of dc(y)

directly. To meet the requirements of the GEM algorithm, the complete data are

also Poisson random variables such that:

dc(y) =
∑

x

d̃uc(y, x)+
∑

x

d̃pc(y, x) (4.3)

and

E
[
d̃uc(y, x)

]
=

1

2
λu(x)hc (y − x) (4.4a)

E
[
d̃pc(y, x)

]
= λp(x) cos2 (α(x)− θc) hc (y − x) (4.4b)

Hence the complete data log-likelihood, LCD, is:

LCD (λu, λp, α, h) =
∑

c

∑
y

∑
x

{
d̃uc(y, x) ln

[
1

2
λu(x)hc (y − x)

]
− 1

2
λu(x)hc (y − x)

}
+

∑
c

∑
y

∑
x

{
d̃pc(y, x) ln

[
λp(x) cos2 (α(x)− θc) hc (y − x)

]− λp(x) cos2 (α(x)− θc) hc (y − x)
}

(4.5)

plus a term that does not depend on λu, λp, α or hc and is therefore of no consequence

to the estimator.

4.3.2 The E-step. The expectation step, or E-step, defines the objective

function that is to be maximized by careful selection of arguments in the following
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maximization step. Consequently, there is an obvious analogy between the role of

this objective function and that of the likelihood function in traditional maximum

likelihood estimation. For iteration n + 1, this objective function, Qn+1, is the

conditional expectation of the complete data log likelihood. This expected value

over the complete data is conditioned upon the measurements (i.e. the incomplete

data) and the most recent estimates of h, λu, λp and α:

Qn+1 (λu, λp, α, h) = E
[
LCD (λu, λp, α, h) |d, λn

u, λ
n
p , αn, hn

]
(4.6)

and, for convenience, define:

ψn+1
kc (y, x) = E

[
d̃kc(y, x)|dc, λ

n
k , αn, hn

c

]
(4.7)

where k refers to either u or p depending on whether the unpolarized or polarized

components are under test. As shown by [40] for a related problem, the complete

data with these conditions are binomially distributed even though the complete data

with no conditions are Poisson. The means of these distributions are therefore:

ψn+1
pc (y, x) =

dc(y)

inc (y)
λn

p (x) cos2 (αn(x)− θc) hn
c (y − x) (4.8a)

ψn+1
uc (y, x) =

1

2

dc(y)

inc (y)
λn

u(x)hn
c (y − x) (4.8b)

The form of Qn+1 may be written out explicitly by substituting the ψn+1
kc (y, x) terms

for the d̃kc terms in (4.5).

4.3.3 The M-step. The dividends of maximizing Qn+1 in lieu of the incom-

plete data log likelihood are realized in this section. First, the expected likelihood

of the polarization components at pixel x0 are maximized by finding the zero of the
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first partial derivatives:

∂Qn+1

∂λp(x0)
=

∑
c

∑
y

ψn+1
pc (y, x0)

λp(x0)
−

∑
c

cos2 (α(x0)− θc) = 0 (4.9a)

∂Qn+1

∂λu(x0)
=

∑
c

∑
y

ψn+1
uc (y, x0)

λu(x0)
− C

2
= 0 (4.9b)

∂Qn+1

∂α(x0)
= −2

∑
c

∑
y

ψn+1
pc (y, x0) tan (α(x0)− θc) +

∑
c

λp(x0) sin [2 (α(x0)− θc)] = 0

(4.9c)

where C is the number of available channels. Buried in each of these results is the

assumption that
∑

y hc(y) = 1 for all c and y; the conditions for this statement

will be explained in section 4.3.4. At this point, the proper selection of channel

orientation angles, θc, is critical. When θc is evenly distributed over all possible

linear polarization states (e.g. 0o, 60o, −60o for a three channel system or 0o, 45o,

−45o, 90o in the four channel case) the following trigonometric identity holds for all

possible α(x0):

∑
c

cos2
(
αn+1(x0)− θc

)
=

C

2
(4.10a)

∑
c

sin
[
2
(
αn+1(x0)− θc

)]
= 0 (4.10b)

As a result, equations (a) and (c) in (4.9) are simplified and the estimators decouple

entirely across the parameters. Hence the estimators for λu, λp are of the form:

λn+1
k (x0) =

2

C

∑
c

∑
y

ψn+1
kc (y, x0) (4.11)

where k is u or p for the unpolarized and polarized components respectively and the

n + 1 superscript is added to signify that the estimate has been updated.

The reader may easily verify that each ψn+1
pc is actually the fully polarized

component of image c. As such, it is appropriate to introduce an intermediate
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Stokes vector Sn+1:

Sn+1 = M−1Ψp (4.12)

such that

αn+1(x0) =
1

2
tan−1 Sn+1

2 (x0)

Sn+1
1 (x0)

(4.13)

where Ψp represents the vector of fully polarized components ψn+1
pc . Equation (4.13)

agrees with intuition but the proof is nontrivial; the details for the three channel

case are worked out in Appendix C. The second derivative test may be applied to

the equations in (4.9) to verify that these estimates do indeed maximize Qn+1.

4.3.4 Incorporating Schulz’s GEM PSF Estimator. What remains then is

to estimate the point spread function for each channel. The first partial derivative

of Qn+1 with respect to an individual channel PSF at pixel z = y − x is:

∂Qn+1

∂hc(z)
=

∑
y

ψn+1
pc (y, y − z) + ψn+1

uc (y, y − z)

hc(z)
−

∑
y

on+1
c (y − z) (4.14)

which is identical to the partial derivative with respect to the PSF of the objec-

tive function in the polarization insensitive case. Consequently, we may directly

incorporate Schulz’s PSF estimator (specifically, in [39] section 5) into the present

case. What follows are the salient points of the original estimator with notes on

some minor modifications; the reader is referred to the original article for a thorough

derivation and an explanation of the advantages of this approach. Define:

hc(x, ϕn+1
c ) =

∣∣∣∣∣
∑

u

A(u) exp
[
iϕn+1

c (u)
]
e−i2πkux

∣∣∣∣∣

2

(4.15)

where A(u) is the aperture function of the imaging system (constrained such that
∑

u A(u) = 1), k is a constant related incorporating both wavelength and sampling

effects, and ϕn+1
c is the current estimate of the atmospherically induced phase func-
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tion at the aperture for channel c. In the case of a circular aperture with radius r,

A(u) = 0 when ‖u‖ > r.

This definition of hc, which varies from Schulz’s original, allows for
∑

y hc(y) =

1 in equation (4.9). Though this is a necessary step before successfully invoking the

trigonometric identities in (4.10), it comes with drawbacks. In the Schulz model,

channel to channel gain variations, ac, such that
∑

y hc(y) = ac, are accounted for in

the joint estimator. Here, an ac term would be useful for modeling total transmission

variations between channels. Total transmission, in this context, is equivalent to the

action of an unknown neutral density filter. Modification of the estimator to allow

for these variations is left to future work.

Since the aperture function is known in advance, the PSF estimation problem

is recast into estimation of the phase screen, ϕc via one (or more) iterations of the

Gerchberg-Saxton (GS) phase retrieval algorithm [11]:

ϕn+1
c =





ϕ̃c if
∑
x

ξ(x) ln hc(x, ϕ̃c) ≥
∑
x

ξ(x) ln hc(x, ϕn
c ),

ϕn
c otherwise

(4.16)

where

ξ(x) =
hc(x, ϕn

c )

Dc

∑
y

dc(y)

inc (y)
on

c (y − x) (4.17)

given

Dc =
∑

x

on+1
c (x) =

∑
y

dc(y) (4.18)

and one iteration of the GS algorithm:

ϕ̃c = ph
{

F−1
[√

ξ(x, ϕn
c ) exp (i · ph (hc(x, ϕn

c )))
]}

(4.19)

where F−1 is the inverse Fourier transform operator and “ph” is an operator that

extracts the phase angle from a complex number. Equation (4.18) is a statement
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of energy conservation. This term does not exist in its present form in the original

paper; instead, there was an additional constraint in Schulz’s derivation:
∑

x o(x) =

1. The reader may easily verify, however, that this change is wholly consistent.

4.4 Test Results from Laboratory Data

In this section, the polarimetric blind deconvolution algorithm is put to the

test using data from a laboratory imaging polarimeter. The test sensor consists of a

Photometrics Cascade 512B camera, a single 250 mm focusing lens, and a variable

polarization analyzer. The camera array is 512 × 512 pixels with a 16 um pitch,

is cooled to −30o C, and has an approximately uniform response of 4 photons per

count at 660 nm. Aside from quantization noise, the imager also exhibits “dark”

noise and bias. At the irradiance levels shown below, this noise is weak compared to

the photon dominated noise of the target. An average dark bias is subtracted from

the data in post processing. The lens is stopped down to 3.175 mm to ensure proper

sampling. In the configuration under test, the effective system magnification is 0.22.

The test target consists of two fully polarized parallel bars, 2 mm in length,

and back illuminated by a red (660 nm center wavelength) diode. The polarization

angles of the two bars are approximately orthogonal: 2o for the top bar and −83o for

the bottom bar (all angles are in reference to the horizontal direction in the imagery).

The diode light passes through a diffuse screen prior to being polarized in order to

even out the illumination across the target.

The collected data consists of three images, each collected at a different an-

alyzer orientation: 0o, 60o, and −60o. The 60o and −60o collections are corrupted

by a random plastic phase screen placed at the aperture. This plastic screen is

weakly birefringent. Between the 60o and −60o collections, the orientation of the

phase screen is rotated. In this way, each channel is presented with a different PSF

analogous to the atmospheric short exposure imaging case. Before processing, the
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images were cropped down to 200 × 200 pixels and coarsely registered. These data

are shown in figure 4.1.

(a) the 0o channel (b) the 60o channel (c) the −60o channel

Figure 4.1: The estimator test data.

In the 0o case, only one bar appears in the image because the −830 bar is

almost fully suppressed by the channel analyzer. In the other cases, phase error

dominates. For comparison to 3.1b and 3.1c, the aberration free data for the 60o,

and −60o channels are shown in figure 4.2.

(a) the 60o channel (b) the −60o channel

Figure 4.2: The 60o, and −60o channels in focus.

From the data in figure 4.1 the algorithm derives an initial guess at the po-

larized and unpolarized parts of the scene, as shown in figure 4.3a and 4.3b. The

remaining images in figure 4.3 show the results of the algorithm after 500 iterations

(at which point the algorithm stagnates).

Recall that the true target image is fully polarized. Consequently, the restored

λu should contain essentially no signal; as shown in figure 4.3c, this appears to be
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the case. Quantitatively, λu contains 9.34× 107 photons in the initial estimate, and

only 1.09× 105 photons in the final estimate.

(a) initial λu estimate (b) initial λp estimate

(c) final λu estimate (d) final λp estimate

Figure 4.3: The unpolarized and polarized scene components before and after restora-
tion.

Restoration of the fully polarized bar targets is achieved. What remains then,

is to consider the restored angle of polarization. From equation (4.13), we see that

an angle is estimated for every pixel whether or not the pixel contains meaningful

polarization content. As an interpretably aid, figure 4.4 shows the on-target esti-

mated angles masked off with the image in 4.3d. The estimated angles are −8o for

the top bar and −72o for the bottom bar.

The ultimate cause of this angle bias, which has been observed across a multi-

tude of measurements with different phase screens, is elusive. One possible cause for

this discrepancy is that several real world effects are not taken into account in the

model. For instance, the polarizers are less than ideal (extinction ratio of ≈ 106).

In addition, unmitigated optical activity, Fresnel losses, or unmodeled signal atten-

uation at the phase screen may be bias contributors as well. In the latter case,
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Figure 4.4: The recovered target angle of polarization (on target pixels only).

inclusion of a Schulz ac like term could possibly be helpful. It is certainly possible

that the remaining photons in the unpolarized image, if restored properly, could

possibly compensate for this bias.

Finally, it is of interest to present the estimated point spread functions (figure

4.5). Sub-figure 4.5a contains the initial guess PSF for all channels, arbitrarily

selected to contain 1 wavelength of defocus aberration. The remaining figures show

the final estimates of the channel PSFs at the conclusion of the restoration. Each

PSF in this figure is magnified ×2 compared to the scale in figure 4.1. Note that the

rotation of the phase screen is evident between the 60o and −60o channels. The 0o

channel, which is essentially unaberrated, tends toward a diffraction limited PSF.

4.5 Technique Variations: Prior Knowledge and Multiple Frames

Many variations of this estimator are readily achieved by incorporating priors.

For instance, prior knowledge of the channel point spread functions would be particu-

larly useful in terms of speeding up algorithm convergence and increasing the overall

fidelity of the restored images. In this case, section 4.3.4 would be ignored and the

given PSFs could be substituted directly into (4.11). In a sense, this known PSF case

provides a polarimetric, multichannel version of the Richardson-Lucy algorithm.

There may also be the case where the intended target is known to be fully

polarized or unpolarized (against a dark background). In the fully unpolarized case
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(a) initial hc estimate (all
channels)

(b) final 0o PSF estimate

(c) final 60o PSF estimate (d) final −60o PSF esti-
mate

Figure 4.5: Close up of the estimated point spread functions.

(i.e. λp(x) = 0 for all x), the estimator reduces to Schulz’s estimator. In the fully

polarized case, the rule λu(x) = 0 for all x is enforced and only λp, α, and h are

estimated. In more exotic variations, prior distributions could be imposed on the

angle or degree of polarization based on source-target-sensor geometry.

In perhaps the most obvious extension, multiple frames could be collected

for each channel. The added noise and PSF diversity (assuming the PSF is non-

stationary) would “sharpen” the likelihood function and could be expected to im-

prove the estimator. Implementation of this improvement is achieved by summing

over an additional index of frames in (4.11) with an appropriately modified per-frame

weighting (i.e. for N frames per channel, 2
NC

instead of 2
C
).

4.6 Improvements Over Single Channel Deconvolution

The results in the previous section demonstrate the viability of the polarimet-

ric blind deconvolution algorithm. What remains then, is to determine how the
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algorithm compares to the alternatives. Though this estimator has no peer in the

literature, it is possible to estimate each channel image and point spread function

individually (i.e. without knowledge of the other channels) and then combine the

result in the end to estimate λu, λp and α or any equivalent representation. In this

section, simulated polarimetric imagery is used to compare the new joint estima-

tor with Schulz’s polarization insensitive blind deconvolution algorithm applied on

a per-channel basis.

As a historical note, Schulz did not address the problem of estimating an

image and a point spread function from a single frame of data in his original work.

However, in the single channel case, the image estimator in the Schulz algorithm

is indistinguishable from the Richardson-Lucy algorithm which has been applied to

the single channel blind problem (see, for instance, [10]). The difference between

these two approaches lies in how the PSFs are estimated. Since there is no obvious

advantage to choosing one PSF estimator over the other, the Schulz PSF estimator

is used here for consistency.

4.6.1 Target Simulation. Similar to the laboratory data, the simulated

target consists of two fully polarized bar targets that are each 20 pixels in length,

3 pixels in width, and separated by 3 pixels. The bars appear against a dark field

of 128× 128 pixels. Each illuminated pixel contains 104 photons before it is blurred

by the PSF, attenuated by the channel polarizers, and corrupted by Poisson noise.

The angle of polarization for each bar is pulled from a uniform distribution of all

possible polarization angles. The phase for each channel point spread function is

generated from a random combination of the first 9 Zernike polynomial coefficients

[34]. Each Zernike coefficient is normally distributed with zero mean and a variance

of 1 wavelength (i.e. a phase of 2π radians). The blurring and channel attenuation

action of the simulated sensor results in a wide variety of image signal-to-noise ratios

even without varying the illumination rate. The sensor itself is in the previously
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described 0o, 60o, and −60o configuration. Example simulated channels are shown

in figure 4.6.

(a) the 0o channel (b) the 60o channel (c) the −60o channel

Figure 4.6: Example simulated channels.

4.6.2 Deconvolution Algorithm Implementation. Recall that the polari-

metric deconvolution algorithm reduces to Schulz’s algorithm in the case where the

target is known to be fully unpolarized a priori. This is also true when only a single

channel image and PSF are estimated. In this case, the channel images are esti-

mated individually from equation (4.11) for λu with c = 1. The PSF estimator is as

shown in section 4.3.4. After each algorithm iteration is complete, the Stokes vectors

are formed from (2.23). Similarly, the Stokes parameters at each iteration can be

calculated from λu, λp, and α for each iteration of the multichannel estimator:

S0 = λu + λp (4.20a)

S1 =
λp√

1 + tan2 α
·





1 −45o < α < 45o

−1 otherwise

(4.20b)

and, given this result, S2 can be calculated from (2.13).

Both the single and multichannel algorithms are given the same aperture size

and initial PSF guess (arbitrarily selected to be 1 wave of defocus). Both algorithms

are run for 100 iterations for 1500 separate realizations of the target and noise.
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4.6.3 Results. Normalized Mean Squared Error (NMSE) is routinely used

as a image deconvolution evaluation metric [21]. For a true image intensity, f , and

an estimated image, f̂ , NMSE is defined to be:

NMSE =

∑
x

[
f(x)− f̂(x)

]2

∑
x

f 2(x)
(4.21)

where x is the 2-dimensional coordinates in the image plane. It is clear from (4.21)

that a smaller NMSE represents a better estimate of f . Typically, the NMSE is

plotted against iteration number to convey both the accuracy and rate of convergence

of the estimator. In the present case, it is desirable to convey the accuracy and

rate of convergence for both the image itself and its polarimetric properties. In

previous sections, image polarization content is conveyed through λu, λp, and α.

Clearly, NMSE applied to an α “image” would be uninterpretable. Instead, the

Stokes parameters (which all have units of intensity) are fed into the NMSE equation

for consistent representation. Finally, the goal is to represent the aggregate results

of many simulated targets; therefore, the following plots contain the median (second

quartile) NMSE with error bars representing the first and third quartiles of these

data. Quartiles are used in lieu of mean and standard deviation to avoid error bars

with negative values at low NMSE. The NMSE is shown for each Stokes parameter

in figure 4.7.

It is clear from these results that the multichannel estimator provides both

a better median restoration of the target (in all cases) and a substantially smaller

interquartile range on the restoration in the S1 and S2 cases. Recall that parameters

S1 and S2 carry all the polarization information about the scene. Figures 4.7b and

4.7c for the single channel estimator show that, after around 25 iterations, the NMSE

actually increases slightly for S1 and S2; in other words, the single channel algorithm

produces a median estimate that is getting farther from the truth with additional

iterations.
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Figure 4.7: NMSE quartiles for the Simulated Stokes images.

Equation (4.9) helps to explain the observed behavior. In the multichannel

case, information is shared between channels via the estimates of λu, λp, and α.

Mathematically, this information transfer occurs during the sum over c in (4.9). The

result of this transfer is a more constrained estimator. These image constraints also

indirectly translate into improved PSF estimates even though the PSFs themselves

do not share information across channels. In the single channel case, without this

shared information, the number of possible combinations of PSFs and images that

maximize Q increases, resulting in more estimator error on average. One obvious
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extrapolation of this argument is that the restoration would be improved further if

additional channels were added to the estimator.

4.7 Further Analysis of the Angle Bias Issue

In this section, simulation is used to determine whether or not the linear polar-

ization angle error shown in section 4.4 is a symptom of an actual bias in a statistical

sense. The simulated data is as described in section 4.6. In this case, the multichan-

nel deconvolution algorithm is run for 200 iteration over 1500 realizations of the

data. (200 iterations are used is this case to ensure near convergence of the results.)

The restored target polarization angles, α̂, are taken to be the average over the true

bar target area and the bias is defined as:

b = α− α̂ (4.22)

where b is defined between −90o and 90o (example: α− α̂ = 120o ⇒ b = −60o). The

simulation results show an average bias of 0.50 with a standard deviation of 16.30.

Consequently, even in the absence of calibration and unmodeled noise errors, the

laboratory results in section 4.4 are typical, at least in the sense that the reported

angle errors are within a standard deviation of the mean error in this simulated case.

A histogram of the angle bias results (bin width: 3.66o) is shown in figure 4.8.
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Figure 4.8: Results of the angle bias simulation.
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4.8 Chapter Summary

In this chapter, a maximum likelihood multichannel blind deconvolution esti-

mator is developed from the generalized expectation maximization algorithm. The

efficacy of the algorithm is demonstrated using test data from a three channel imaging

polarimeter in a laboratory setting and in simulation. The laboratory reconstructed

test imagery is very close to the true underlying target scene in terms of the es-

timated total polarized and unpolarized content though somewhat biased in terms

of angle of polarization. Though it is difficult to identify the cause precisely, this

type of error has been observed across several such experiments with different phase

screens. In simulation, the polarization angle estimator is shown to be unbiased

under ideal image acquisition conditions. Possible error sources include unmodeled

noise and calibration errors in the target, phase screen, or sensor.
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V. Detection through Obscurations Using Optimized Temporal

Polarization Imaging

In this chapter, temporal fluctuations in polarization signature are maximized by

forming linear combinations of polarization-sensitive intensity channels. These

combination channels, which are the result of a principal components analysis, are

also reduced in rank and therefore optimized for further processing. Temporal fluc-

tuations are emphasized as a means to detect polarizing objects under substantial

but weakly polarizing obscurations that would otherwise preclude detection in a tra-

ditional intensity image. The theoretical work, which is an expansion of previously

published research, is demonstrated for three and four channel polarization imaging

systems. Finally, the theory is tested through simulated examples using an empirical

target obscuration model.

5.1 Target Detection in Obscurations

Several remote sensing techniques have been applied to the problem of target

detection in the presence of heavy obscurations. Recent examples of modes applied to

this problem include radar [30], hyperspectral imaging [17], and LIDAR [37] among

others. The present work takes the first steps toward addressing the obscured target

detection problem by exploiting temporal fluctuations in target polarization signa-

ture due to time varying obscurations. What follows is a description of a methodol-

ogy believed to optimize a polarization imaging system to tackle this obscured target

problem.

Consider a passive incoherent imaging system with any number of distinct

channels. Each channel is most responsive to a different orientation of linear polar-

ization. Under these constraints, a sensing modality is developed to detect polarizing

targets through weakly polarized or unpolarized obscurants. A realistic example of

this scenario would be detection of vehicles under heavy forest canopy from an air-
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borne polarization imaging system. Canopy motion or the movement of the aircraft

will provide the sensor with small, transient, polarized reflections off the target.

Taken individually (i.e. from a single frame), these transient events may be statisti-

cally indiscernible from the obscurants in the space around them. Now consider an

ensemble of these frames, all registered to the same scene. The obscured target pix-

els should have an appreciably larger variance than those pixels filled with obscured

natural background (which is also largely unpolarized). The premise of this research

is realized by determining the configuration of the polarization imager that is best

suited to detect this target variance in polarization state while suppressing other

sources of scene fluctuation (for instance, variance in total intensity) and correlation

between channels.

J.S. Tyo published a method for optimizing a multi-channel polarization imag-

ing system using principal components analysis [45]. His work provides the founda-

tion for this research, but not without modification. Specifically, Tyo’s derivation re-

quires all incident radiation to be monochromatic. In doing so, this work is applicable

to all permutations of elliptically and linearly polarized light but not, unfortunately,

to unpolarized light, which is of specific interest here (unpolarized light is, among

other things, polychromatic [42]). To reconcile this deficiency, section 5.2 applies this

Stokes model to Tyo’s optimization strategy. This result is then extended further

to define the optimum combination of channels for detecting temporal fluctuations

in polarization state. Section 5.3 applies this strategy to two notional polarization

imaging systems including one of Tyo’s examples, which is shown to be equivalent

in this new formulation. Section 5.4 describes an empirical obscured target model

which is employed in a simulated case study.

5.2 Channel Optimization

As in each of the previous chapters, the polarization imaging system is com-

posed of N channels, each of which is most responsive to a different orientation of
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linearly polarized light. Optimized combinations of these channels are generated

(either through hardware or software implementation) and passed onto an image

accumulator where a to-be-determined number of frames are stored until statisti-

cal relevance is achieved. In this case, the stored images are then used to form a

standard deviation image for each of the optimized combination channels.

Equipped with a Stokes description of intensity at the detector array, Tyo’s

method, which is presented below, can be employed to construct a set of channel

combinations that are uncorrelated, possibly reduced in rank, and hence simplified

for further processing. These uncorrelated combination channels are then further

optimized for maximum response to temporal fluctuations in polarization state.

5.2.1 Tyo’s Method. The total intensity measured for each channel is rep-

resented by an N×1 vector, I. The correlation matrix for an N channel polarization

imaging system is given by:

C = Eξ[I · IT] (5.1)

where Eξ[·] is the expected value taken over all possible polarization states.

Following Tyo’s prescription, decorrelation of these channels is achieved by solving

for a matrix X such that

XT CX =





λk i = j

0 i 6= j



 (5.2)

where λk are the N eigenvalues of C and i, j are the row and column coordinates of

XT CX. In other words, XT CX is a diagonal matrix whose diagonal entries are the

eigenvalues of C. In this arrangement, these eigenvalues are also the second moment

of the (yet to be formed) uncorrelated combination channels. This fact will be useful

later on. To achieve the required solution for (5.2), the columns of X are taken to
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be the N normalized eigenvectors of C, vk:

X = [v1...vN] (5.3)

Having determined X, the transformed channels (eigenchannels), Z, are given

by:

Z = XT I (5.4)

The channels Z are uncorrelated over the ensemble of possible linear polarization

states thus an expansion of Tyo’s original work is achieved. What remains is to find

a subset of Z that is most sensitive to temporal fluctuation in polarization state.

5.2.2 Temporal Polarization Expansions. If this were a true principal

components analysis, the next step would be to select a subset of Z to form a basis

of possibly reduced rank to represent all of I. Selection for this new basis would be

determined from the magnitude of the associated eigenvalues [28]. Instead, channels

in Z are selected based on their ability to maximize signal variance due to temporal

fluctuations in degree of polarization. More succinctly, if γ, some minimum allowable

variance threshold, is set, then an eigenchannel in Z is retained if:

Eξ

[
EP

[(
Zi − Zi

)2
]]

> γ (5.5)

where

Zi = EP [Zi] (5.6)

where the subscript P indicates expectation over degree of polarization. Recalling

that

λi = Eξ

[
Z2

i

]
(5.7)

equation (5.5) can be simplified by rearranging the order of expectations:
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EP [λi]− Eξ

[
Zi

2
]

> γ (5.8)

This expectation rearrangement is acceptable because there is no reason to believe

that angle of polarization and degree of polarization are statistically dependent quan-

tities.

Methods for choosing γ can vary, especially if a priori knowledge of the dis-

tribution in P is available. Without this knowledge of P however, it will be shown

that selecting γ = 0 is sufficient in several useful cases.

5.3 Example Polarization Imaging Sensors

The previously described methodology is completely general. The following

examples contain a number of simplifications that are not required to gain a solu-

tion but do allow for more compact results. Each polarizer is assumed to be ideal.

Additionally, it will be assumed that all incident radiation is linearly polarized,

unpolarized or partially linearly polarized. In other words, there is no elliptically

polarized light and S3 = 0. Next, it is assumed that the distribution in total intensity

is independent from the distribution of linear polarization states (this assumption is

always true for unobscured targets).

Since there is now only linear polarization to consider, the angle of linear

polarization, ξ, will be defined as in Chapter II. Finally, it is assumed that the

polarized channels are evenly spaced on the same interval as ξ. In addition to be

being a simplifying step, this assumption also ensures that one of the eigenchannels

in Z is the sum of all the original intensity channels (as shown by Tyo).

5.3.1 The 3-Channel Case. The 3-channel case is presented here for two

reasons; the first is because it reduces the number of steps required to attain infor-

mative results and, second, it provides an example of how the derivation in [45] is

equivalent to the case presented here.
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Intensity detected by our 3-channel imaging polarimeter is given by substitu-

tion into equation (2.8):

I0 =
S0

2
(1 + Pcos2ξ) (5.9a)

I60 =
S0

2

(
1− P

cos2ξ −√3 sin 2ξ

2

)
(5.9b)

I−60 =
S0

2

(
1− P

cos2ξ +
√

3 sin 2ξ

2

)
(5.9c)

where the subscripts 0, 60 and −60 indicate the angle of polarization (in degrees)

preferred for transmission through the channel polarizer. To reiterate a previous

point, the orientations of these filters are not arbitrary, they are selected such that

they are evenly spaced on the interval of ξ.

Given i and j as indices of the row and column entries in the 3× 3 correlation

matrix:

Cij =
1

π

π/2∫

−π/2

IiIjdξ (5.10)

such that i or j = 1 corresponds to I0, i or j = 2 corresponds to I60, and so on. The

matrix C has eigenvalues

λ1 =
3S2

0

4

λ2 = λ3 =
3P 2S2

0

16

(5.11)

and (normalized) eigenvectors

v1 = 1√
3




1

1

1


 v2 = 1√

2




−1

0

1


 v3 = 1√

6




1

−2

1


 (5.12)
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Note that several other eigenvectors with eigenvalues equal to λ2 are possible, but

all are equivalent. This eigenvector result is in agreement with the special case of

the 3-channel derivation in [45].

Moving on, the eigenchannels are given by substitution of (5.9) into (5.3) and

(5.4):

Z =




1√
3
(I0 + I60 + I−60)

1√
2
(I−60 − I0)

1√
6
(I0 − 2I60 + I−60)


 (5.13)

Since there is no a priori knowledge about how these eigenchannels are distributed

with respect to P , the test from equation (5.8) will be executed with γ = 0. First,

note that

Z1 = Ep

[
1√
3
(I0 + I60 + I−60)

]

= Ep

[√
3S0

2

]
=

√
3S0

2

(5.14)

hence, for the first uncorrelated channel at least, the exact distribution of the degree

of polarization is irrelevant. This result can be readily substituted into the test from

equation (5.8):

Ep

[
3S2

0

4

]
− Eξ




(√
3S0

2

)2

 = 0 (5.15)

Interestingly, even though this channel would be the largest contributing principal

component in a traditional sense (by virtue of its dominating eigenvalue), it fails to

exceed the γ = 0 variance threshold and therefore must be discarded.

The eigenvalues of the two remaining channels are equal and both dependent

on P so, for any meaningful distribution on P , their variance will exceed a threshold

of γ = 0. Consequently, both of these channels are retained as part of the scheme to

maximize temporal variation in degree of polarization.

5.3.2 The 4-Channel Case. A 4-channel imaging polarimeter (with equally

spaced polarization channels) is of interest because three of the Stokes parameters
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can be calculated directly using addition and subtraction on combinations of the

channel outputs [5]:

S0 = I0 + I90

S1 = I0 − I90

S2 = I45 − I135

(5.16)

In this case, the eigenvalues of the correlation matrix are given by:

λ1 = S2
0

λ2 = 0

λ3 = λ4 =
P 2S2

0

4

(5.17)

and corresponding eigenchannels:

Z =




1√
4
(I0 + I45 + I90 + I135)

1√
4
(I0 − I45 + I90 − I135)

1√
2
(I135 − I45)

1√
2
(I90 − I0)




(5.18)

Now the variance threshold test in (5.8) is applied to Z. No additional manipulation

is required to show that the sum channel (λ1 = S2
0) will not pass the threshold

test for the same reasons that the sum channel did not pass in the 3-channel case.

Furthermore, the channel corresponding to λ2 = 0 contains no useful information

and would be discarded by both a traditional principal components analysis and the

temporal variance maximization analysis presented here.

The channels corresponding to λ3 and λ4 remain. Observation of (5.18) shows

that these channels are actually just scaled versions of the Stokes parameters S2 and

S1 as seen in (5.16). This result may suggest that it is only required to cast the

measurements into S2 and S1 to maximize sensitivity to fluctuations in degree of

polarization. Proof of this assertion is left to future work.
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5.4 Analysis Using Simulated Data

The purpose of this section is to demonstrate the utility of the imaging scheme

derived in section 5.3 using simulation. The simulation consists of a two plane

obscured target model that varies in time in a statistically predictable way. The test

data are presented along with the results from each eigenchannel.

5.4.1 Obscured Target Model. The simulation consists of a simple empir-

ical obscuration model for a Stokes vector image in the object plane and an image

plane model found using an arbitrary point spread function. Each point in the object

plane, S ′(u, n), can be decomposed into two basis planes: f(u, n), the front or obscu-

ration plane, and b(u, n), the back or target plane. Here, u is the two-dimensional

coordinates in the object plane and n is the frame number. Each point in both f and

b is described by a 4-dimensional Stokes vector corresponding to the case where each

basis plane is directly illuminated by the source. Whenever the scene is illuminated

by natural light, each point in S ′ can be represented as a linear combination of f

and b. Specifically:

S ′(u, n) = t(u, n)f(u, n)+

[1− t(u, n)] r(u, n)b(u, n)
(5.19)

where f and b are scaled by t(u, n), the fraction of a pixel obscured by f , and r(u, n),

the fraction of the maximum possible b that is actually reflected. At each position u,

S ′ is a realization of a random process defined by the four underlying processes: f ,

b, t and r. Processes f and b are each assumed to have two components. The larger

component varies slowly with the respect location of the illumination source (i.e.

the sun) while the smaller component varies rapidly with small changes in surface

orientation. The slowly varying components of f and b are treated as constants.

Conversely, t and r vary with each frame and depend partially on the density of the

obscurant. In cases where the obscurant is a natural media (e.g. a forest canopy),
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the obscurant is assumed to be weakly polarized when compared to the underlying

target.

Having previously established a requirement for incoherent illumination, the

Stokes image at the detector is given by

S(x, n) = [h⊗ S ′] (x, n) (5.20)

where h is the sensor specific point spread function. Equation (5.20) can be readily

derived for each entry in S. Consider the formation of an incoherent image, I,

without regard to the polarization of the incident light:

I = h⊗ S ′0 (5.21)

where, borrowing from the definition of the Stokes vector, S ′0 is the total intensity

of the scene as predicted by geometrical optics. S ′0 can be decomposed into parts

that represent orthogonal polarization states and, since convolution is distributive,

so can I:

I = h⊗ (
I⊥ + I‖

)
= h⊗ I⊥ + h⊗ I‖ (5.22)

By careful selection of the orthogonal components in this equation (refer to equation

(5.16)), one can form any of the other terms in the Stokes vector. For instance:

S1 = h⊗ I0 − h⊗ I90 = h⊗ S ′1 (5.23)

Similarly, the same process can be used to define S2 in terms of S ′2 and so on for S3.

Equation (5.19) is the simplest possible model for mixing two images and

does not include polarization effects. Instead, polarization effects are added in later

through judicious selection of Stokes vectors for different classes in the scene.
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Additionally, the model in (5.19) contains no noise terms. Though not neces-

sary to demonstrate the concepts from the previous section, a realistic noise model

would be critical for establishing limits on the effectiveness of this obscuration de-

tection scheme.

Furthermore, equation (5.19) ignores the effects of thickness and/or depth in

the obscuration “plane”. To illustrate the limitations on this model, consider the

case where the primary obscuration is much nearer to the sensor than the target.

In this case, the obscurations would effect the formation of the average h(x) as well

as S′. These effects on h(x) are well described in [12]. At a minimum, the ratio of

the target-to-obscuration distance over sensor-to-target distance should be << 1 for

model applicability in this sense. More specific bounds on model applicability are

left to future work.

5.4.2 Test Data Sets. As described in the previous section, the obscured

target model requires a front plane (figure 5.1), containing the primary obscura-

tion, and a back plane figure (5.2), which contains the targets and some natural

background.

Figure 5.1: The front plane or foliage image used during the simulation.

For the purposes of simulation, these images are broken down into three pri-

mary classes: targets, foliage and grass. Obviously, more classes exist in both of these
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Figure 5.2: The unobscured back plane image containing the targets used during the
simulation.

images. These additional classes have been ignored for expediency and, regardless,

the ideas put forward in section 5.3 can be tested without them.

Each class is assigned an average Stokes vector:

Sgrass =
[

1 −.05 .05 0
]T

Sfoliage =
[

1 .03 .03 0
]T

Starget =
[

1 −.46 0 0
]T

(5.24)

Each of the grass and foliage classes have an average degree of polarization of only a

few percent while the target, which is made to represent a near specular reflection,

is significantly higher.

The average percent pixel obscuration, E[t(u, n)], is 99.9% with a standard

deviation of 0.03%. In other words, even though the front plane is “flat” it almost

completely obscures the back plane at all times. Likewise, the average percentage of

the maximum possible reflection off the backplane, E[r(u, n)] is 50% with a standard

deviation of 10%. The purpose of r(u, n) is to partially capture the effects of depth

in the obscuration by forcing the backplane to be only partially illuminated with

significant overall fluctuation.
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The point spread function used to blur the composite Stokes image is shown in

figure 5.3 in the same scale as the image. These parts come together under equation

(5.20) to form simulated Stokes images in the detector plane.

Figure 5.3: Simulated PSF.

5.4.3 Results. All simulated results are shown with a 100% linear stretch

and the MATLAB default color map. Figure 5.4 shows a single simulated image

from the Z1 through Z4 channels given by equation (5.18). Though present in the

data, the locations of the obscured targets are imperceptible.

True to the predicted eigenvalues for the 4-channel case in equation (5.17); Z1

appears to contain the most information (largest eigenvalue), Z2 contains virtually

no information (0 eigenvalue), while Z3 and Z4 both contain some information (but

still no indication of the targets). Equation (5.24) shows that the targets are most

highly polarized in S1 so, if the targets could be detected, it would likely occur in

eigenchannel Z4 (figure 5.4d). Regardless of channel, target detection through the

provided obscuration using only a single frame appears unlikely.

Figure 5.5 contains the standard deviation images of channels Z1 through Z4.

Each standard deviation image is calculated from 25 separate realizations of an

eigenchannel image. Each additional image is generated with a different randomized

t(u, n) and r(u, n). Perfect registration between images is assumed throughout.
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(a) Z1 (b) Z2

(c) Z3 (d) Z4

Figure 5.4: A single frame of the simulated eigenchannels.

The derivation in section 5.3 for the 4-channel case predicts that channels Z1

and Z2 should be discarded because their variance is 0 with respect to P , which is

assumed to the variable driving fluctuation from image to image. Figures 5.5a and

5.5b, the standard deviation images of Z1 and Z2, appear to generally uphold this

prediction with some interesting exceptions.

First, note the foreground grass in figure 5.5a. No portion of the background

scene penetrates this portion of the image and, consequently, the variance across this

region is very low (the regional variance is low but not zero because of point spread

function effects). In other words, since the grass here is impenetrable, it violates

the original assumptions made about the obscuration and hence its behavior in the

standard deviation image is not predictable by this model.

Second, there is some indication of the right-most target in the Z1 standard

deviation image even though this optimization method predicts that there should be
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(a) Z1 (b) Z2

(c) Z3 (d) Z4

Figure 5.5: Standard deviation images of the eigenchannels.

none. To explain this apparent incongruity, recall that the distribution over all pos-

sible intensities was assumed to be separable from the distribution of possible linear

polarization states. This assumption is required by equation (5.10) for formation of

the multi-channel covariance matrix but is violated later when the obscured target

model is defined. Additionally, variance that occurs purely due to fluctuation in total

intensity is ignored throughout this development. Though clearly this assumption

is not entirely accurate, it still appears to be a reasonable approximation, especially

when the information content in this channel is compared with that in the Z3 and

Z4 channels.

For the same reasons, the Z2 channel and corresponding standard deviation

image also contain some information content though none of it is apparently useful.

Little further commentary is required to show that, as predicted by this opti-

mization method with γ = 0, channels Z3 and Z4 clearly contain the most informa-
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tion about the obscured targets. Consequently, no target information would have

been lost if channels Z1 and Z2 had been discarded completely.

Up to this point, no consideration has been given to the original (i.e. correlated)

intensity channels. Figures 5.6 and 5.7 contain a single frame and standard deviation

image for the I90 channel, which, for the targets as defined, should contain the most

target signal.

Figure 5.6: A single simulated frame from the I90 channel.

Figure 5.7: The I90 standard deviation image.

The I90 standard deviation image does show some evidence of the targets

though the quality of the information present is far inferior to that contained in
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the Z4 standard deviation image. For brevity’s sake, the other intensity channels are

not shown because the results are much the same as the I90 channel.

5.5 Summary

A principal components analysis of a polarimetric imaging system is derived

for the case of polarized, partially polarized, and unpolarized radiation. This result

is then applied to the problem of imaging through obscurations by discarding the

eigenchannels that are likely to be insensitive to temporal fluctuations in polariza-

tion state. The optimized temporal polarization imaging method presented in this

research provides a viable scheme for target detection in the presence of obscura-

tions. Defense of this assertion is provided in the theoretical development and tested

against a simulated dataset.

In the simulated example, with no prior knowledge of the target, this method

reduces the number of channels required for effective target detection from 4 to 2

with relatively trivial pre- and post-processing requirements. This notional sensor

was configured such that three of the Stokes parameters can be calculated directly

from the measured intensities. Under these circumstances, the channel reduction

result is expected since only two of the three Stokes parameters depend on degree

of polarization. Referring back to the derivation at (5.18), perhaps the more inter-

esting result from this example is that Stokes parameters are also shown to be the

optimum combination channels. Finally, this example is a special case; the demon-

strated method allows for calculation of the optimum combination channels for any

polarization imaging sensor.

While the results are compelling, the simulation ignores three important diffi-

culties that will arise in real world applications. First, image to image registration

is assumed to be perfect for all channels at all times. Second, real targets in this

scenario may be obscured in part by objects that are completely opaque at all times,

effectively breaking up the target in the standard deviation image. Third, all signals
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were assumed to be noiseless. Compensation for these difficulties, and more minor

unnamed others, will be fleshed out in future work using field data.

87



VI. Conclusion

The three preceding chapters address problems involving polarimetric image

registration, restoration, and analysis in the presence of noise and a non-

deterministic channel. Unlike the bulk of the related literature, these problems

are approached from an estimation theory perspective combined with a complete

physical model of polarization. As is demonstrated, this combination is fertile with

research opportunities that draw upon research in traditional, polarization insensi-

tive image processing. In this section, the previous chapters are summarized and

concluding remarks are presented.

In chapter III, the Cramer-Rao lower bound on image registration errors by

Robinson and Milanfar is generalized to the case of multichannel polarimetric im-

agery. In doing so, the problem is posed as a joint estimation of both the translational

registration errors and of the polarimetric image itself. The primary difficulty in cal-

culating the bound directly is that the result requires inversion of an enormous (even

by the standards of desktop computers) Fisher information matrix. This inversion

is made tractable by applying matrix theory to the FIM. In doing so, the bounds

largely decompose into components that are easily identifiable in the processing

chain: target, receiver, and estimator.

The bound is also used to describe three and four channel polarimetric imaging

systems and the special case of N polarization insensitive images. For N frames of

polarization insensitive imagery, the Cramer-Rao bound derived by Robinson and

Milanfar is shown to be the limit of the bound as N becomes large. In the three

channel polarization case, the Cramer-Rao bound for any joint estimator is infinity.

Consequently, the registration parameters and Stokes images must be estimated

separately. An additional treatment of joint estimation versus external measurement

can be found in appendix B.3. Finally, the form of the bound suggests that the
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optimum channel spacing is 60o and 45o respectively in the three and four channel

cases.

In chapter IV, an iterative maximum likelihood blind deconvolution algorithm

is derived using expectation maximization. This algorithm leverages a complete

data model based on the polarized and unpolarized components of the scene and a

uniform spacing between channels to decouple the joint estimator into four separate

estimators of the polarized intensity, angle of polarization, unpolarized intensity,

and point spread function. The resulting algorithm is shown to be viable using

imagery collected in the laboratory. Simulated data is used to demonstrate the

improvement gained using this multichannel approach when compared to the only

viable alternative, blind deconvolution of each channel individually. Finally, the

estimated errors in polarization angle from the laboratory data are shown to be

typical of results found in simulation.

In chapter V, a principal components analysis of polarization imagery is com-

bined with temporal variation thresholding for polarimetric imagery. The goal of

this effort is to reduce the number of channels required to detect potential targets

in the presence of obscurations. Results are demonstrated theoretically for the three

and four channel cases. In the three channel case, the PCA optimized channels

are shown to agree with previous research in which only fully polarized radiation

is considered. In the four channel case, the PCA and temporal variation optimized

channels are shown to be the Stokes parameters S1 and S2. This four channel case

is then validated using simulation and a simple random obscuration model.

6.1 Research Extensions

The Cramer-Rao bound research opens the possibility for substantial future

work. This research could follow the lead of Robinson and Milanfar [33] and address

the problem of registration estimator bias for a specific algorithm as it applies to

polarimetric imagery. Additionally, Yetik and Nehorai’s work could be expanded to
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include a polarimetric bound for other types of image deformation (e.g. rotation,

shearing, etc.) or bounding estimator error for polarimetric registration algorithms

that use feature extraction techniques. Additionally, a search could be conduced for

a joint estimator that meets the Cramer-Rao bound. Finally, the idea of representing

bounds on image registration as a realization of underlying parameters (in this case,

as the weighted sum of the Stokes parameters) may be used to derive bounds for

registering multi-modal images if a similar underlying relationship exists.

In addition to the estimator variations presented in section 4.5, the blind de-

convolution research should be expanded to include sensor noise and the effects of

non-ideal polarization analyzers. The angle bias question may possibly be addressed

by systematically eliminating calibration issues or incorporating them into the es-

timator. Compensation for between channel (neutral density) transmission differ-

ences is also desirable. Additionally, the algorithm is readily expanded to included

sensitivity to elliptical states of polarization. Finally, it may be of interest to the

astrophysical community to reevaluate polarization imagery from the Hubble Faint

Object Camera in the context of this new tool.

The optimized analysis research can be expanded in a number of directions.

First, the PCA-thresholding research must be tested against field data to account

for real-world variations in targets and obscurations. Such a test would be relatively

easy to conduct and far superior to simulation. The reasons for this necessity, if not

obvious, are discussed in section 5.5. Second, the distribution of possible polarization

states (used to calculate the channel correlation matrix) can be improved to include

knowledge of the sensor location and possibly the source with respect to the target

area. In one possible scenario, the location of the aircraft mounted sensor and

the position of the sun can be used to approximate likely polarization states for

“flat” dielectric or metal targets underneath trees. The physical mechanisms for

this distribution are discussed qualitatively in chapter II. Finally, an actual target
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detector (in the classical sense) can be added to the output of the optimized channels

to possibly eliminate or reduce the need for a human analyst.
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Appendix A. Useful Background Derivations

The purpose of this appendix is to expand on some of the intermediate results from

Chapter II.

A.1 The Field Along the Transmission Axis of an Ideal Retarder-Polarizer Pair

At first glance, the result in equation (2.2), which is the scalar sum of orthog-

onal electric field components after passing through a retarder and polarizer, may

appear to be in error. Here, the result is shown to be accurate using the Jones

matrices for polarized light. A full accounting of the Jones calculus can be found in

many general optics texts (for instance: [3, 16, 31]). Jones matrices describe direct

manipulation of the electric field and are therefore quite useful for building up to

the definition of the Stokes parameters. After this point, the Jones matrices are

abandoned and the Stokes parameters are manipulated directly.

The vector representation of the field in (2.1) is given by:

E =


 ux (t)

uy (t)


 (A.1)

At the sensor, this field passes through a retarder (or waveplate), which imposes

a phase shift of φ between the x and y components, and then a polarizer, which

has a primary transmission axis along angle θ. Each of these optical elements is

represented by a 2× 2 Jones matrix:

E′ =


 cos2 θ cos θ sin θ

cos θ sin θ sin2 θ




︸ ︷︷ ︸
polarizer


 ejφ 0

0 1




︸ ︷︷ ︸
waveplate

E (A.2)

The resulting field, E′, can be expressed in a rotated coordinate system (using an-

other Jones matrix) where one of the principal axes is also the polarizer transmission
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axis:

Et =


 cos θ sin θ

− sin θ cos θ




︸ ︷︷ ︸
rotation

E′ (A.3)

such that, in this new coordinate system:

Et =


 ux (t) ejφ cos θ + uy (t) sin θ

0


 (A.4)

which is the result in equation (2.2).

A.2 The Decomposition of Partially Linearly Polarized Light

The decomposition of partially linearly polarized light into its constituents

is of great importance in Chapter IV. Consequently, the result in equation (2.15)

is derived here in detail. Partially polarized light with Stokes vector, S, can be

represented as the sum of two Stokes vectors: Su, the unpolarized component, and

Sp, the fully polarized component.

S = Su + Sp (A.5)

where

Su = (1− P ) S0




1

0

0

0




(A.6a)

Sp = PS0




1

cos 2ψ

sin 2ψ

0




(A.6b)
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where ψ is the angle of polarization (equation 2.13) and P is the degree of polarization

in (2.12). From equation (2.7), the measured intensity for the unpolarized component

is therefore:

Iu = (1− P )S0 = λu (A.7)

and, likewise, the measured intensity for the polarized component is:

Ip =
1

2
PS0 (1 + cos 2ψ cos 2θ + sin 2ψ sin 2θ)

=
1

2
PS0 [1 + cos 2(ψ − θ)]

= PS0 cos2(ψ − θ)

(A.8)

and so, by defining λp = PS0, the total intensity at the detector is given by:

I = Iu + Ip =
1

2
λu + λp cos2 (ψ − θ) (A.9)

which is equation (2.15).
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Appendix B. More on the Polarimetric Cramer-Rao Bound

The first two sections of this appendix are devoted to developing mathematically

necessities for the bound derivation in Chapter III. The remaining three sections are

devoted to expansions on this theme that were not part of the originally published

work.

B.1 More on the V and Ṽ Matrices

The matrices V and Ṽ play a central role in the bound calculation. In addi-

tion, the V matrix provides the connection between the previous work by Robinson

and Milanfar [33] and the generalization provided here. Consequently, some useful

properties of these matrices are developed in this section.

First, there is an important connection between the V , Ṽ , and Hij:

(Hij)
T Hkj =

ajiajk

σ4

(
∂

∂vj

fT
j

)(
∂

∂vj

fT
j

)T

=
ajiajk

σ2
Vjj (B.1)

and

(Hlj)
T Hki =

ajlaik

σ4

(
∂

∂vj

fT
j

)(
∂

∂vi

fT
i

)T

=
ajlaik

σ2
Ṽji (B.2)

for all i 6= j.

Second, each vi is established in the plane of the image. Therefore, a common

direction vector, x, for all relevant derivatives can be defined via the chain rule:

∂

∂vi

fT
i =

∂

∂x
fT
i . (B.3)

Consequently, each entry in V and Ṽ is defined in a common coordinate system.
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B.2 Detailed Derivation of the Stokes Parameter Bound

The average bound can be determined by calculating the trace of equation

(3.21) via application of the following properties of the trace and the Kronecker

product. For the trace [13]:

tr (A + G) = tr (A) + tr (G) (B.4a)

tr (CGD) = tr (DCG) (B.4b)

tr (EF ) = vec
(
ET

)T
vec (F ) (B.4c)

where A and G are square matrices and C, D, E, and F are any matrices such that

CGD and EF are square matrices. Operator tr represents the trace and, for any

matrix A, vec(A) is defined to be an ordered stack of the columns of A. For the

Kronecker product (also from [13]):

vec (AGC) =
(
CT ⊗ A

)
vec (G) (B.5a)

(A⊗ C) (G⊗D) = (AG⊗ CD) (B.5b)

both of which always hold whenever AGC, AG, and CD are defined. Finally, note

that, in contrast to regular matrix multiplication:

(A⊗G)T = AT ⊗GT (B.6a)

(A •G)T = AT •GT (B.6b)
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Armed with the preceding formulae, derivation of the average bound for each Stokes

image is straightforward. Starting with the second term in equation (3.32):

tr
[
Φ−1

i

(
HBvH

T
)
Φ−T

i

]
= tr

[
Φ−T

i Φ−1
i

(
HBvH

T
)]

= vec
(
Φ−T

i Φ−1
i

)T
vec

(
HBvH

T
)

= vec
(
Φ−T

i Φ−1
i

)T
(H ⊗H) vec (Bv)

= vec
[
HT

(
Φ−T

i Φ−1
i

)
H

]T
vec (Bv)

(B.7)

Fortunately, expression HT
(
Φ−T

i Φ−1
i

)
H is identical in form to equation (3.22) and

can therefore be simplified in the same manner:

HT
(
Φ−T

i Φ−1
i

)
H = σ4HT

(
C−T

i C−1
i ⊗ Ip2×p2

)
H

= σ2WSi •
(
V + Ṽ

) (B.8)

where

WSi = M
(
C−T

i C−1
i

)
MT ⊗ 12×2 (B.9)

Invoking the implicit symmetry of WSi, V , and Ṽ :

tr
[
Φ−1

i

(
HBvH

T
)
Φ−T

i

]
= σ2vec

[
WSi •

(
V + Ṽ

)]T

vec (Bv)

= σ2tr
[
WSi •

(
V + Ṽ

)
Bv

] (B.10)

This result can be folded back into (3.31) to produce:

〈BSi〉 =
1

p2

[
tr

(
Γ−1

i

)]
+

σ2

p2
tr

[
WSi •

(
V + Ṽ

)
Bv

]

= σ2C−1
ii +

σ2

p2
tr

[
WSi •

(
V + Ṽ

)
Bv

] (B.11)

which is identical to equation (3.35).

97



B.3 External Measurement Versus Joint Estimation

The bounds derived in III provide the minimum achievable variance for an

unbiased estimator in each of the following cases:

• estimates of translational misregistration when the underlying Stokes parame-

ters are known

• estimates of the Stokes images when the registration parameters between chan-

nels are known

• joint estimates of registration and Stokes parameters

What remains then is to specify a bound for the cases where misregistration and

Stokes estimates are determined separately. This bound can be compared to the

joint estimation bound to determine which of these paths yields the best estimator.

For the unrelated problem of bounding estimates on dispersive wave param-

eters, Kimball (et al.) [19] provides a definition for the total error achieved when

Cramer-Rao bounds are considered in conjunction with errors in externally provided

parameters. Like in the present work, Kimball employs the natural partitioning of

the Cramer-Rao bound using block matrix methods. Going a step further, Kimball

then replaces the Cramer-Rao bound for a subset of the parameters with a externally

measured covariance matrix. In this way, errors in externally provided parameters

can be propagated into the expression for errors in the estimates of the remaining

parameters.

To apply Kimball’s ideas to the present problem, define ε2
v to be an externally

determined covariance matrix for the channel registration parameters. Note that ε2
v

may be less than V if the misregistration between images has a strong deterministic

component. The “total error” matrix for the Stokes image estimates is determined

by replacing V with ε2
v in equation (3.21):

ε2
S = S−1 + S−1Hε2

vH
T S−1 (B.12)
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which, in turn, may be simplified using the matrix methods presented in section

3.4.3:
〈
ε2
Si

〉
= σ2C−1

ii +
1

p2
tr

[
WSi •

(
V + Ṽ

)
ε2
v

]
(B.13)

where the i subscript indicates which Stokes parameter is under test.

Equation (B.13) provides the means for evaluating the impact of alternate

forms of misregistration correction on Stokes image estimation. This analysis can

be used when considering design trade-offs in conjunction with other factors such as

cost, processing power, weight, and so on.

B.4 Interpreting the CRLB Using Correlations

Assume that the collected images are bandlimited, sampled at the Nyquist

frequency or higher, and periodic. Under these conditions Robinson and Milanfar

show that, in the two image case, the terms in the matrix V are independent of

the translational error between the images. Proof of this fact is accomplished in

the spatial frequency domain via Parseval’s theorem. This result can be readily

generalized to the present N channel case. Consider Parseval’s theorem applied to

a non-zero submatrix in V :

1

σ2

(
∂

∂x
fT
k

)(
∂

∂x
fT
l

)T

=
1

2πσ2

∞∫

−∞

[
jωFk (ω) e−j(vT

k ω)
] [
−jωT F ∗

l (ω) ej(vT
l ω)

]
dω

(B.14)

where Fi(ω) is the Fourier transform of image fi at frequency coordinates ω. The jω

terms in the right hand side are a result of differentiation in the left hand side and

the e−j(vT
k ω) terms are the Fourier shift theorem representation of the registration

errors. Unlike the two image case, it is not immediately clear from this result that

the Fisher information matrix is independent of the unknown translations between

the images, vk and vl. To resolve the issue, the integral on the right hand side of
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(B.14) can be rearranged,

=
1

2πσ2

∞∫

−∞

ωωT Fk (ω) F ∗
l (ω)e−j(vT

k −vT
l )ωdω (B.15)

and treated as an inverse Fourier transform evaluated at the origin of x:

=
1

2πσ2

∞∫

−∞

ωωT Fk (ω) F ∗
l (ω)e−j(vT

k −vT
l )ωe−jxT ωdω

∣∣∣∣∣∣
x=02×1

. (B.16)

Bringing this all together:

1

σ2

(
∂

∂x
fT
k

)(
∂

∂x
fT
l

)T

=
−1

σ2

∂

∂x

(
∂

∂x
[fk ? fl] (x)

)T
∣∣∣∣∣
x=vk−vl

(B.17)

where ? is the correlation operation. Evaluation of the correlated images at x =

vk − vl is equivalent to evaluation of the registered images at the origin; in other

words, the Fisher Information matrix does not depended on the translation between

images and the generalization of the two image case is confirmed.

The observation that V and Ṽ can be calculated from the second order deriva-

tives of the cross-correlation is also of interest. First, correlation is not a one-to-one

mapping over all possible image pairs. As such, two unique ensembles of images have

the same Fisher information matrix if their cross-correlations are the same. Indeed,

the cross-correlations need only to be equal near x = vk − vl since only the second

derivative behavior at this point is of consequence. Heuristically, this result means

that images with similar second order statistics, for instance imagery over similar

terrain, will result is similar bounds.
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For the joint Stokes restoration problem, the cross-correlation between images

can be recast in terms of the Stokes vectors:

∂

∂x

(
∂

∂x
[fk ? fl] (x)

)T

=
∂

∂x

(
∂

∂x

[∑
i

∑
j

akialj (Si ? Sj)

]
(x)

)T

(B.18)

It is therefore clear that polarization channel orientation may serve to suppress or

reenforce the contribution to the correlation amongst the individual Stokes images.

B.5 A CRLB for the Blind Deconvolution Polarization Parameterization

As demonstrated throughout this dissertation, it is often useful to switch be-

tween parameterizations of polarization state in order to best suit a particular prob-

lem. In Chapter IV, the Stokes vector parameterization was replaced with an in-

tensity and angle parameterization in order to meet the requirements of the com-

plete data model. As a bridge between these two chapters, this section describes

a mechanism for transforming the Stokes parameterized CRLB into one using the

intensity-angle parameterization.

Recall that the original Stokes image parameter vector has the form:

θ =
[

vT
2 . . .vT

N ST
0 · · ·ST

2

]T

, (B.19)

where vectors vx are registration parameters and Sx are the true Stokes parameter

values for each point in the image. Similarly, a likelihood parameterization must be

defined for the intensity-angle parameterization:

w =
[

vT
2 . . .vT

N λT
u λT

p
αT

]T

(B.20)

where the vx vectors are the same as before and each of λu, λp, and αT represent

the unpolarized intensities, polarized intensities, and angles of polarization for each

point in the image. Note that both θ and w have the same dimensions. Using
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these parameter vectors, the transformed Fisher information matrix, J ′, is defined

by Scharf [36] as:

J ′ = GJGT (B.21)

where J is the FIM in equation (3.1) and the elements of G are given by:

Gij =
∂θj

∂wi

(B.22)

where i, j are the row and column indices of G. As before, the CRLB in the unbiased

case is given by the inverse of J ′.

What remains then is to define the entries in G. First, note that the registration

terms are the same in both parameterizations; in that case:

∂vT
j

∂vi

=





I2×2 if i = j,

02×2 if i 6= j

(B.23)

which, together over i, j = 2 to N , form a submatrix of G, henceforth referred to as

g1.

Next we note that the translation parameters and the intensity parameters

(in either form) are not dependent on each other. Thus the partial derivatives of

any of these parameters with respect to any translational parameter is zero (e.g.

∂ST
0

∂v2
= 02×p2 , ∂αT

∂v2
= 02×p2 , etc).

The remainder of the terms describe the transformation between the Stokes

and intensity-angle parameters. At each point mn, the Stokes parameters can be
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described as:

S0(mn) = λu(mn) + λp(mn) (B.24a)

S1(mn) =
λp(mn)√

1 + tan2 α(mn)
Υ(α(mn)) (B.24b)

S2(mn) = S1(mn) tan(2α(mn)) (B.24c)

where

Υ(α) =





1 −45o < α(mn) < 45o

−1 otherwise

(B.25)

which, all together, can be used to populate the remaining components of G. A

number of these derivative terms can be expressed analytically. Assuming n = k, for

the unpolarized component:

∂S0(mn)

∂λu(mk)
= 1 (B.26a)

∂S1(mn)

∂λu(mk)
=

∂S2(mn)

∂λu(mk)
= 0 (B.26b)

the polarized component:

∂S0(mn)

∂λp(mk)
= 1 (B.27a)

∂S1(mn)

∂λp(mk)
=

Υ [α(mn)]√
1 + tan2 α(mn)

(B.27b)

∂S2(mn)

∂λp(mk)
=

∂S1(mn)

∂λp(mk)
tan [2α(mn)] (B.27c)

and the polarization angle:
∂S0(mn)

∂α(mk)
= 0. (B.28)

Note that ∂S1(mn)
∂α(mk)

and ∂S2(mn)
∂α(mk)

do not have a simple, closed form solution. Finally, in

all cases with n 6= k, the partials in B.26, B.27, and B.28 are all zero. This region of
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G is collectively referred to as g2. Thus:

G =


 g1 02(N−1)×3p2

03p2×2(N−1) g2


 (B.29)
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Appendix C. Derivation of the polarization angle estimator for the

three channel case

Here we derive the polarization angle estimator for the case of polarization analyzers

oriented at 0o, 60o, and −60o. Three trigonometric identities are required:

tan (α− θc) =
tan α− tan θc

1 + tan α tan θc

(C.1a)

tan 2α =

(
1

cos 2α
+ 1

)
tan α (C.1b)

sin 2α =
2 tan α

tan2 α + 1
(C.1c)

Apply the first identity to equation (4.9) part (c), divide out the common denomi-

nator, and evaluate the result at each θc:

√
3 (Ψ3 −Ψ2)

[
tan2 α + 1

]
+ 4 (Ψ1 + Ψ2 + Ψ3) tan α− 3Ψ1 tan α

[
tan2 α + 1

]
= 0

(C.2)

where for compactness, Ψk =
∑

y ψn+1
pk (y, xo) and α = αn+1(x0). This result is

reduced further by applying (4.12):

Sn+1
0 =

2

3
(Ψ1 + Ψ2 + Ψ3) (C.3a)

Sn+1
1 =

2

3
(Ψ1 −Ψ2 −Ψ3) (C.3b)

Sn+1
2 =

2√
3

(Ψ2 −Ψ3) (C.3c)

such that (C.2) becomes:

−3

2
Sn+1

2 + 3Sn+1
0

2 tan α

tan2 α + 1
+

3

2

(
Sn+1

0 + Sn+1
1

)
tan α = 0. (C.4)
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Now apply (2.14), along with the remaining identities to achieve:

−3

2
Sn+1

2 + 3Sn+1
2 +

3Sn+1
1

2
tan 2α = 0 (C.5)

which, when solved for α, becomes equation (4.13).
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Appendix D. Practical Laboratory Polarimetric Imagers

Laboratory collected imagery plays an important role in the bound examples from

chapter III and in the validation of the deconvolution algorithm in Chapter IV.

For completeness and as an aid to future progression of this work, the laboratory

system are described in detail in this appendix. The constructed sensors fall into

two categories based on how the data are collected: serial (each channel is collected

sequentially) and parallel (all channels are collected simultaneously). The tradeoffs

between these configurations will be discussed in the sections that follow. Obviously,

there are many practical polarimetric imaging collection schemes other than those

addressed here; these particular configurations represent two simple and effective

approaches that can be obtained with minimal cost and time investment.

D.1 The Serial Imager

The serial imager consists of a variable analyzer, focusing lens, aperture stop,

and focal plane array (field stop). The basic setup is shown in figure D.1. The re-

quired sequence of images is collected by manipulating the analyzer between frames.

Figure D.1: Diagram of the single channel polarimetric imager.

The variable polarization analyzer, aperture stop, and focusing lens are all co-

located. The front and back of this assembly are shown in figure D.2. The variable
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analyzer determines the orientation of the preferred angle of polarization with respect

to some reference (in this case, the plane of optical bench). The preferred orientation

is adjusted by mechanically rotating the polarizing element between images.

(a) the target side (b) the camera side

Figure D.2: The serial imager analyzer-stop-lens assembly.

For a convex focusing lens with focal length f , the thin lens equation gives us:

1

f
=

1

o
+

1

i
(D.1)

where o is the distance from the focusing lens to the target and f is the focal length

of the lens. Overall target magnification, mT is given by:

mT =
i

o
(D.2)

In this scenario, the image at the focal plane will be real and inverted.

The aperture stop is located between the variable analyzer and the focusing

lens. In this scenario, the primary purpose of the aperture stop is to ensure proper

sampling of the point spread function. Somewhat counter-intuitively, proper sam-

pling of the PSF in the image plane is ensured by only considering the sampling in

the aperture. In the quasi-monochromatic Fresnel diffraction regime, sampling in

the aperture plane, ∆u, is related to sampling in the frequency space of the image,

∆ζ, and is given by [9]:
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∆u = ∆ζλz =
λz

N∆x
(D.3)

where λ is the center wavelength of the illumination, z is the distance between the

exit pupil and the imaging plane, N is the number of samples across the imaging

plane, and ∆x is the sampling in the image plane (fixed by choice of the FPA). It is

worth noting that, unless the optics in question are very large or z is very short, this

imager will always be operated in the Fresnel regime. Furthermore, it is assumed

that the FPA is square. In this setup, the exit pupil is always the aperture stop itself

and z = i in figure D.1.

For incoherent image formation, the PSF is proportional to the magnitude

squared of the Fourier transform of the aperture function (see equation 4.15). From

[9], the maximum spatial frequency passed by this optical system (i.e. the cutoff

frequency) in this scenario is:

ζc =
2R

λz
(D.4)

where R is the radius of the aperture stop. Hence, to exceed the Nyquist threshold

for sampling, N∆ζ > 2ζc or, in other words:

R <
λz

4∆x
(D.5)

It is also often convenient to express this result as N > 4 R
∆u

.

Finally, the aperture stop and focusing lens together also determine the irra-

diance that reaches the FPA (throughput). According to [31], the irradiance at the

FPA is proportional to
(

2R
f

)2

(i.e. the inverse of the f-number squared). For a fixed

focal length, reducing the aperture radius by a factor of 2 means that only 1
4

of the

photons reach the FPA. Therefore, the camera integration time must be 4 times as

long to achieve the same photon (and noise) levels.
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Table D.1: A workable serial polarimetric imager.

f o i R ∆x
25 cm 29 cm 133 cm 1.588 mm 16 um

The choice of focusing lens and aperture stop is a trade-off between the space

available for the laboratory setup, the desired target magnification, the sampling

requirements imposed by the FPA, and throughput. The polarization analyzer itself

plays no particular role in this analysis. As a guideline, the greatest system flexibility

is achieved by choosing the largest possible aperture given the available FPA, lenses

and lab space. Magnification is a secondary issue (unless the image exceeds the space

on the FPA) and one may always reduce the size of the aperture without violating the

sampling requirements in (D.5). An additional benefit to selecting larger apertures

is that larger apertures are easier to aberrate (which is useful primarily for testing

blind deconvolution algorithms). Table D.1 contains the design used to produce the

laboratory example in Chapter IV.

D.1.1 Advantages and Disadvantages. Besides ease of setup, the other

advantages of the serial imager include precise and easily verifiable angular channel

positioning without speciality machined parts. Additionally, each channel may be

focused and/or stopped individually with minimal extra effort. Assuming the same

focal plane is used in both configurations, more pixels are available per channel

which translates into improved resolution or increased field of view depending on

the specific configuration.

There are also disadvantages to the serial imager. First, the variable polarizer

must be adjusted between collections for each channel. This substantially increases

time spent in the laboratory and often requires that collected images be registered

in post processing. Second, the target must remain static between collections.

110



D.2 The Parallel Imager

The imaging polarimeter described in this section captures both target in-

tensity and polarization state simultaneously. The optical system consists of three

primary components: the channel lens array, an image reducing optic, and field stop.

The aperture stop and channel analyzers are co-located with the lens array. These

components are arranged as shown in figure D.3.

Figure D.3: Diagram of the parallel polarimetric imager.

The target scene, defined by the limits of the field stop, is imaged separately

by each of the lenses in the channel lens array. Each channel is most sensitive to

polarization in a different way. Consequently, the intermediate images formed by the

lens array communicate different target polarization information. The intermediate

images are spatially separated from each other by the diameter of the lenses them-

selves. This composite of images is made to fit onto the focal plane array via the

reducing optic. Once digitized, the composite image is processed to form a single

polarization image.

The channel lens array is an optical component that produces three separate

images of the target scene each of which responds to polarized light in a different

way. Each of three channels consist of an aperture stop, polarizing filter (analyzer)

and a small diameter lens. Baffling is placed around the array and in the small
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region in the array center to reject unintended illumination from the target. Each

channel is identical except for the orientation of the analyzer (0o, 60o, and −60o).

The radius of the stop is determined again by (D.5) to meet sampling requirements,

though calculation of z is somewhat more complicated (as shown below). The front

and back of this array are shown in figure D.4.

(a) the target side (b) the camera side

Figure D.4: The parallel imager channel lens assembly.

The three images formed by the lens array alone (along with the empty space

between images) are much too large to fit on a typical CCD array therefore a reducing

optic is required to achieve the requisite size. The reducing optic is used to minify the

composite image formed by the channel lens array such that it fits entirely within

the confines of the focal plane array. The reducing optic must be large enough

(compared to the size of the focal plane array) to ensure that the reducing optic

does not inadvertently define the system field stop.

The field stop defines the limits of the target scene for each channel image

on the FPA. As shown in figure D.3, the channel stop is implemented in the target

plane. This stop can be realized physically by either placing an aperture in front

of the illuminating source or by placing an aperture between the target and lens

array (though still in the target plane). The former option allows for either front

or back illumination of the target and is therefore the preferred method. Target

illumination is provided by an LED source. Though LEDs are highly directional,

target illumination will be uniform so long as the solid angle defined by the limiting
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aperture is small compared to the LED viewing angle (which is, by convention, the

angle between half intensity points on either side of direct viewing).

D.2.1 System Design Restrictions. Despite the relatively small number

of components involved, there are a number of important restrictions considered

during the design process. These restrictions include the location and size of the

system stops, the size and spacing of the composite image on the FPA, and the

space available in the lab for layout of the system end to end. The following section

describes each of these restrictions in detail.

As mention previously, each stop in the channel array is intended to serve as

an aperture stop. The image of the optical element in object space that subtends

the smallest angle at the on-axis position of the target is the entrance pupil. The

physical element that corresponds to the entrance pupil is the aperture stop [31].

This criterion is satisfied when:

Ds <

∣∣∣ fc

d−fc

∣∣∣ Dro

o− dfc

d−fc

(D.6)

where Dr and Ds are the diameters of the reducing lens and channel stops, fc

is the focal length of the channel lenses, and o and d are as defined in figure D.3.

In actual application this criterion is almost always met because the stops in the

channel array are of a much smaller diameter than the reducing lens. The upper

limit on Ds is the width of a channel lens.

Additionally, the focal plane array must serve as the composite image field stop.

The image in object space of the optical element that subtends the smallest angle

at the on axis position of the entrance pupil is the entrance window. The physical

element that corresponds to the entrance window is the field stop [31]. Consequently,

the reducing lens meet the following condition:
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Dr >
d

o

WFPA

M
(D.7)

where WFPA is the width of the focal plane array, M is the overall system

magnification, and Dr is the diameter of the reducing lens. Implicit in equation (D.7)

is the assumption that the channel array is, in fact, the location of the aperture stop.

The sensor design requires that all channels be imaged simultaneously on a

single focal plane array. As shown in figure D.5, several new quantities are required

to mathematically define this requirement in addition to those already defined: the

width of the field stop, Dfs, and the magnification of the channel lens alone, Mc.

Figure D.5: The projected image on the FPA.

Figure D.5 demonstrates two obvious restrictions on the optical setup. First

the longest dimension of the composite image must be less than the width of the

focal plane:

MM−1
c Dc + MDfs ≤ WFPA (D.8)

where Dc is the diameter of a channel lens (which is, in general, different than the

diameter of the aperture stop). Second, the images themselves must not overlap:
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Dc

Dfs

≥ Mc (D.9)

Ideally, Mc should be made as large as possible to ensure a maximum number of

samples across the target image (i.e. the most efficient use of available detectors on

the focal plane array.)

The sensor as described is primarily intended to be a lab instrument therefore

compact packaging requirements are not as restrictive as those for field instruments.

Regardless, lengthy optical systems are more difficult to align and lab space is often

lacking. As such, overall system length, L, is an important design criterion.

L = o + d + i (D.10)

where o, d, and i are defined in figure D.3. Given the requirement for a specific

system magnification and an object distance, both i and d can be solved for by

repeated application of the thin lens equation as shown in [16]:

M = fci
d(o−fc)−ofc

i =
frd−fcfro

o−fc

d−fr− fco
o−fc

(D.11)

where the only thing yet to be defined is fr, the focal length of the reducing lens.

Within these confines, it is best to maximize the total system magnification

(once the required field stop diameter is determined) to ensure a maximum number

of pixels across the target. This step should not be confused with the PSF sampling

requirements from D.5, which are still necessities. Recall that PSF sampling depends

on the radius of the aperture stop and can be made quite small at the cost of reduced

throughput. Table D.2 contains the design used to produce the laboratory example

in Chapter IV.
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Table D.2: A workable parallel polarimetric imager

fc Dc Ds fr Dr

25 cm 12.5 mm 2.38 mm 10 cm 5.08 cm
o i d Dfs ∆x

55 cm 8 cm 5 cm 2.5 cm 16 um

D.2.2 Advantages and Disadvantages. The primary advantage of this sys-

tem, which should not be understated, is the fact that all channels image simul-

taneously. The primary disadvantages are added complexity and reduced field of

view (when compared to a single channel imager) and the necessity of placing the

field stop at the target. This design could readily be improved by incorporating a

field stop into the optical system. To do so, a stopped, intermediate image could be

formed at the location of the target in the current design.
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