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Abstract

The focus of this research was to develop a joint pupil and focal plane image

recovery algorithm for use with coherent LADAR systems. The benefits of such a

system would include increased resolution with little or no increase in system weight

and volume as well as allowing for operation in the absence of natural light since the

target of interest would be actively illuminated. Since a pupil plane collection aperture

can be conformal, such a system would also potentially allow for the formation of large

synthetic apertures.

The algorithm developed used many frames of coherent pupil and focal plane

data. The data frames are summed in the respective planes to give two data sets

(one for each plane). Appropriate statistical models are used and a joint Maximum

Likelihood estimator is formed. The algorithm is tested using a Monte Carlo approach.

The system is demonstrated to be robust and in all but extreme cases yields better

results than algorithms using a single data set (such as deconvolution). It was shown

that the joint algorithm had a resolution increase of 70% over deconvolution alone

and a 40% increase over traditional pupil plane algorithms. It was also demonstrated

that the new algorithm does not suffer as severely from stagnation problems typical

with pupil plane algorithms. A stopping criteria based on the statistics of the data

was also developed.
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Joint Image and Pupil Plane Reconstruction Algorithm

based on Bayesian Techniques

I. Introduction

The focus of this research is to explore the problem of coherent image recon-

struction using large synthetic aperture arrays. The benefits would include a large

increase in system resolution for a small increase in system weight and volume. This

type of imaging system would also allow for conformal optical detectors to be placed

on existing platforms. Furthermore since the proposed system is an active imaging

system, it would be able to be used when natural light was not available and would

provide higher theoretical resolution than traditional IR systems.

1.1 Problem Definition

The two primary limiting factors for optical resolution are limited aperture size

and phase error in the propagation paths. The phase error can be broken into two

parts: 1) system static aberrations and 2) turbulence in the propagation path. There

are many methods for characterizing and dealing with static system aberrations; we

will propose a system design to mitigate the other two problems.

Since it is known that the aperture of an imaging system limits spatial reso-

lution, it is desirable to form larger apertures. Large apertures have disadvantages

as well; they are more difficult to manufacture, and due to weight, and size , they

are not feasible for space-based applications [10]. By taking advantage of the coher-

ence properties of laser light, it is possible to form a synthetic aperture array from

many smaller, monolithic apertures. By doing this, one can expect to obtain higher

spatial resolution than can be produced from existing monolithic apertures. Since

it is difficult to recover absolute phase of an optical field, it is desirable to form the

synthetic aperture without interfering light from the subapertures [11]. To accom-

plish this, a joint estimation algorithm using both pupil and image plane data will

1



be formed. The pupil plane data will be collected by the synthetic aperture while

the image plane data will be collected from a reasonable sized monolithic aperture.

The pupil plane estimation algorithm will be based on the correlography methods of

Fienup and Idell [21], while the image plane algorithm will be derived from the de-

convolution methods demonstrated by MacDonald [24]. These methods are combined

in this research to form an improved image retrieval algorithm.

1.2 Previous Image recovery work

1.2.1 Deconvolution. Deconvolution is the process of estimating an unknown

function, f(x), from a noisy measurement of the convolution of f(x) with a known

function h(x). If we have no knowledge of h(x) it must also be estimated and the

problem becomes blind deconvolution.

1.2.2 Phase Retrieval/Imaging Correlography. The term phase retrieval is

used to describe any method of forming an image from the Fourier Modulus of the

object field. The foundational work on phase retrieval was done by J.R. Fienup [7].

In this paper two iterative methods to recover an object from Fourier modulus data

are shown; both methods are derived from the Gerchberg-Saxon algorithm [17]. The

first of these methods is known as the error reduction approach and is shown in

Figure 1.1a. In the error reduction approach the algorithm begins with a random

guess of the object brightness function. This initial estimate is Fourier transformed

and the modulus of the transform is replaced with the measured pupil plane data,

which is then inverse Fourier transformed to form a new estimate. The new estimate is

forced to comply with any known constraints in the object domain. These constraints

include non-negativity of the object and any known object support. The term ”object

support” is used to refer to any area where the object is known to be non-zero. Since

the Fourier domain data is related to the object autocorrelation, the diameter of

the object support is related to the diameter of the Fourier domain data [5, 12]; the

autocorrelation support will not give a unique solution for the object support, but

2



Figure 1.1: Fienup’s phase retrieval algorithms (a) error reduction (b) input-output
method [7]

the union of all possible object support sets can be found. This algorithm is run

for a set number of iterations before exiting. In Figure 1.1b we see the input-output

approach. This method will not be discussed, since the differences are minor and

unimportant in this discussion. Other methods of phase retrieval, such as various

gradient methods [8] and deconvolution techniques [33], can be found in the literature.

Phase retrieval algorithms will often suffer from stagnation or uniqueness problems,

however, efforts have been made to avoid these problems [4, 15].

Another method of forming images from pupil plane data is imaging correlog-

raphy. This technique takes advantage of the fact that the autocorrelation of the

object brightness function and the squared modulus of the Fourier transform of the

object form a Fourier transform pair [2]. An iterative method of recovering images

from correlations was shown by Schulz [32]. Again the details of Schulz’s work are

unimportant to this work other than to demonstrate that images can be recovered

from autocorrelations with some degree of success.

Both of the above techniques benefit from an estimate of the object support.

An algorithm that can directly measure a low resolution image and the pupil plane

intensity was proposed by Fienup [14]. It is important to note he did not derive a

3



joint estimator from both data sets, rather he used the image as a support constraint,

and the technique offered no method for dealing with atmospheric turbulence.

The data model this research uses is found in work by Idell [21]. The model

show that the average of many realizations of the squared modulus of a speckled

autocorrelation will converge (R convergence) to the convolution of the true autocor-

relation and the PSF plus a dc term. Idell used this model and classic phase retrieval

techniques to recover an image. This research differs in that it will use the same data

model, but will form a maximum likelihood (ML) estimator.

1.2.3 Prior Synthetic Aperture efforts. The method of image formation

this research will propose is a lensless imaging technique; this means an image is

not formed by the optics, but rather is calculated from the non-imaged pupil plane

data. Imaging correlography is one method of doing this for incoherent light [13].

To form lensless coherent images other techniques must be employed. If the field

in the pupil plane is measured using heterodyne detection this is a trivial problem

of numerically propagating the field and forming a simulated image in a computer;

however, heterodyne detection at optical wavelengths is challenging and has yet to

be proven feasible for this application. For this reason other methods must be used.

Fienup has proposed applying his phase retrieval algorithm along with a shaped illu-

mination constraint to this problem [11]. This technique has been shown to work well

with sharp-edged illumination patterns, but not as well for soft-edged illumination

patterns [27]. The difficulty is that sharp-edged illumination patterns require large

projection optics. If the large optics are available for beam projection they can also

be used for imaging, neglecting the benefits of the lensless array.

This work is a continuation of initial studies done by Cain [3]. The work by Dr.

Cain was a proof of concept that includes simplifications which will be removed. The

differences in this work include, but are not limited to, using a more complete data

model for the pupil plane data, and using a more accurate model for image plane

statistics.

4



1.3 Significant Contributions

This work resulted in the following significant contributions:

1. Establish a maximum likelihood phase retrieval algorithm

2. Establish a joint estimation algorithm that is appropriate for use with coherent

LADAR imagery

3. Demonstrate the algorithms are less sensitive to atmospheric turbulence that

other methods of image recovery

4. Establish a new stopping/damping criteria for use with existing deconvolution

algorithms which will avoid noise amplification.

1.4 Document Outline

The remainder of this document is organized as follows. Chapter 2 will discuss

applicable optical theory while Chapter 3 will discuss estimation theory. In Chapter 4

a review of deconvolution is included, this chapter will also outline a statistics-based

stopping criteria. Chapter 5 will demonstrate a new pupil plane algorithm. Finally

chapter 6 will combine the algorithms of the previous two chapters and demonstrate

a robust joint algorithm for image recovery.
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II. Optical Theory

Active imaging techniques rely heavily on understanding fundamental properties of

light including propagation, diffraction and coherence. This chapter is dedicated to

providing an overview of these optical properties. Much of this material was adapted

from [22,23].

2.1 Fourier Optics and Wave Propagation

This section is devoted to giving the reader an understanding of Fourier optics

and the physics of wave propagation. It will begin with a discussion of the propagation

of monochromatic light and will conclude with a brief discussion of the properties of

coherent and incoherent illumination. The propagation theory is drawn from [16,20].

2.1.1 Wave Propagation - The monochromatic case. Armed with the knowl-

edge that light can be modeled Electro-Magnetic wave, we can begin to formulate a

model for propagation. We can write an expression for the electric field (for the re-

mainder of the document the term field will be understood to mean electric field),

u(ξ, η, t), in the (ξ, η) plane as

u(ξ, η, t) = A(ξ, η) cos[2πνt+ φ(ξ, η)] (2.1)

where A(ξ, η) is the field amplitude, ν is the optical frequency of the field, t is time,

and φ(ξ, η) is the phase at position (ξ, η). For simplicity of notation we will define

the complex amplitude, U(ξ, η) of the field as

U(ξ, η) = A(ξ, η)ejφ(ξ,η) = |u(ξ, η)|ejφ(ξ,η) (2.2)

For monochromatic light the propagation of the entire field can be accomplished by

adding the appropriate phase delay to each point and summing the resultant phasors

in the (x, y) plane. This is accomplished using the Rayleigh-Sommerfeld diffraction
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integral

U(x, y) =
z

jλ

∫ ∞
−∞

∫ ∞
−∞

U(ξ, η)
ejkr

r2
dηdξ (2.3)

where z is the normal distance between the input and output propagation planes, λ

is the wavelength, k= 2π
λ

, and r is defined as

r =
√

(x− ξ)2 + (y − η)2 + z2 (2.4)

2.1.2 Fresnel and Fraunhoffer Approximations. The Rayleigh-Sommerfeld

formula, Equation 2.3, is computationally expensive (order N4 for a N by N ar-

ray) when implemented in digital simulations. For this reason, we will make some

simplifications that can be applied provided that certain criteria are satisfied.

2.1.2.1 Fresnel Diffraction. The first of these simplifications is the

Fresnel approximation [20]. Using the Maclaurin series expansion of the square root

given by
√

1 + b = 1 +
1

2
b− 1

8
b2 + ... (2.5)

we can rewrite r from Equation 2.4

r ≈ z[1 +
1

2
(
x− ξ
z

)2 +
1

2
(
y − η
z

)2] (2.6)

eliminating terms of higher order than 1(in b). By taking the full form of Equation 2.6

in the exponential term and only the first term in the denominator term Equation 2.3

simplifies to

U(x, y) =
ejkz

jλz

∫ ∞
−∞

∫ ∞
−∞

U(ξ, η)e
jk
2z

[(x−ξ)2+(y−η)2]dξdη (2.7)

By expanding the quadratic terms in the exponential this equation can be rewritten

as

U(x, y) =
ejkz

jλz
e
jk
λz

(x2+y2)F2[U(ξ, η)e
jk
2z

(ξ2+η2)] (2.8)
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where F2 is the 2-D Fourier transform defined by

F2[U(ξ, η)] =

∫ ∞
−∞

∫ ∞
−∞

U(ξ, η)e−j2π(f(ξ)ξ+f(η)η)dξdη (2.9)

evaluated at fξ = x
λz

and fη = y
λz

.

This approximation is valid provided the observation point is located far enough

away from initial plane. This distance is given by [20]

z � max
(x,y)∈X0,(ξ,η)∈Ψ0

3

√
π

4λ
[(x− ξ)2 + (y − η)2]2 (2.10)

where X0 and Ψ0 are variables in R2 that define the non-zero regions in the input and

output planes respectively. The output plane will be limited by an aperture function

to avoid having values everywhere.

2.1.2.2 Fraunhoffer Diffraction. The propagation integral shown in

Equation 2.8 can be further simplified if one recognizes that the quadratic term inside

the transfrom is approximately 1 for large z. This resulting equation is

U(x, y) =
ejkz

jλz
e
jk
λz

(x2+y2)F2[U(ξ, η)] (2.11)

evaluated at fx = x
λz

and fy = y
λz

. Which means the output field is a simple Fourier

transform of the input field. This is valid when

z � max
(ξ,η)∈Ψ0

k(ξ2 + η2)

2
(2.12)

It is desirable whenever possible to work in the Fraunhoffer region due to compu-

tational efficiency (order N2 log2(N) for an NxN array when N is a power of 2 [28])

gained by using the Fourier transform and the fact that we can take advantage of

many properties of the Fourier transform.
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Figure 2.1: Illustration of the phase aberration induced when coherent light is re-
flected from a optically rough surface

2.2 Speckle Statistics

The speckled appearance of coherent light scattered from a rough surface is

a well known phenomenon. This speckle is caused by interference patterns in the

detector plane. Since the surface roughness is random, so is the speckle pattern.

When coherent light is reflected from a rough surface, the shape of the wavefront is

changed in a random manner (see Figure 2.1). The wavefront deformation is modeled

as a uniform random phase (φ ∈ (−π, π]) added to the wavefront. Speckle has some

useful statistical properties.

2.2.1 First Order Statistics. This section is devoted to formulating a statis-

tical model to describe the intensity and phase of propagated optical fields.

2.2.1.1 Assumptions. All statistical models begin with assumptions;

in our model phase and amplitude are considered random variables. First we assume

the target is optically rough; “optically rough” surfaces have roughness (depth and

breadth) on the order of the wavelength of the light. The roughness of these surfaces

is modeled as a uniform random variable from [−π, π]. Second, we assume the target

is illuminated by a plane wave; this assumption is not necessary but will simplify

our math without a loss of generality. Third, we assume the phase and amplitude
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of our field are independent of the other. Finally, we add the assumption that the

phases and amplitudes of all contributing components are independent and identically

distributed.

2.2.1.2 Development. The field at the receiver pupil is modeled as a

linear combination off all the points in the target field:

A =
1√
N

N∑
i=1

aie
jθiejφi = aejθ (2.13)

where ai√
N

is the magnitude of each field component, θi is the phase caused by the

surface roughness, and φi is the phase associated with the atmospheric propagation.

By writing the sum in this form, and including the scale factor of 1√
N

we can use

random phasor sums to proceed with the development. We are only concerned with

the sum of these two phases, which when phase is represented modulo 2π, can be seen

to possess a uniform distribution over [−π, π]. This is the same as the distribution

on θ so we will drop φ for convenience. A is complex can also be written as

A = α + jβ (2.14)

As N approached infinity, we can apply the central limit theorem and assume α and

β are Gaussian. Therefore if we can calculate the mean and variance of α and β and

their correlation coefficient, ρ, we can write the joint probability distribution function

for α and β. We begin by finding the mean values

E[α] =
1√
N

N∑
i=1

E[ai]E[cos θi] = 0 (2.15)

since the expectation is taken over θi ∈ [−π, π]. By the same argument β is also zero

mean. The variances are calculated as follows:

E[(α− ᾱ)2] = E[α2] (2.16)
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E[α2] =
1

N

N∑
i=1

N∑
k=1

E[aiak cos θi cos θk] (2.17)

Now for each i, choose ci ∈ R such that θk = ciθi then

E[α2] =
1

N

N∑
i=1

N∑
k=1

E[aiak]E[cos θi cos θk] (2.18)

E[α2] =
1

N

N∑
i=1

N∑
k=1

E[aiak]E[cos θi cos ciθi] (2.19)

using trigonometric identities can be written as

E[α2] =
1

N

N∑
i=1

N∑
k=1

E[aiak]E

[
cos(θi − ciθi) + cos(θi + ciθi)

2

]
(2.20)

The second expectation is easily shown to be

E

[
cos(θi − ciθi) + cos(θi + ciθi)

2

]
=

 1
2

ci = 1→ i = k

0 otherwise
(2.21)

which yields a final result of

E[α2] =
E[a2

i ]

2
(2.22)

In a similar fashion we can show that α and β are uncorrelated. The values calculated

above allow us to write the joint pdf of α and β

pα,β(α, β) =
1

πE[a2
i ]

exp

{
−α

2 + β2

E[a2
i ]

}
(2.23)

We have come up with a joint pdf of the real and imaginary parts of the field

in the pupil, but we want a marginal pdf on intensity, and if possible a marginal pdf

for the phase. The next step to get there will be to transform pα,β(α, β) to a pdf on
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amplitude and phase. The resulting joint pdf is

pA,Θ(a, θ) =
a

πE[a2
i ]
e
− a2

E[a2
i
] (2.24)

by integrating out the other variable we can get marginal pdfs on phase and amplitude

pA(a) =
2a

E[a2
i ]
e
− a2

E[a2
i
] (2.25)

pΘ(θ) =
1

2π
(2.26)

Finally we can find the pdf on intensity by noting that I = A2 and doing another pdf

transformation which yields

pI(i) =
1

2σ2
e−

i
2σ2 (2.27)

This is a negative exponential distribution and has the property that E[i] = 2σ2 which

allow us to rewrite the pdf as

pI(i) =
1

E[i]
e−

i
E[i] (2.28)

The above argument applies to the pdf of instantaneous intensity, but since all de-

tectors have a finite integration time we are interested in the statistics of integrated

intensity. The reader is referred to chapter 6 of reference [19] for a more complete

development. The resulting pdf of integrated intensity is

pW (W ) =

(
M
W̄

)M WM−1exp
(
−MW

W̄

)
Γ(M)

(2.29)

where W is the integrated intensity, W̄ is the expected value of the mean intensity, and

M is the speckle parameter of the light. By recognizing that there will be detection

noise we can transform this PDF one final time. The detection noise is poisson and
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the final pdf for the number of photocounts in the integration time is given below:

p(K) =
Γ(K +M)

Γ(K + 1)Γ(M)

[
1 +
M
K

]−K [
1 +

K

M

]−M
(2.30)

where Γ is the well known Γ-function. This is the negative binomial distribution and

accurately models photocount statistics [19].

2.3 Coherent Imaging

This section will develop a model of coherent imaging and contrast it with

incoherent imaging. An understanding of linear systems will be needed and will

therefore be provided up front.

2.3.1 Linear Systems Review. In order to understand linear system analysis

we must first define what we mean by a system. A system is defined as a mapping of a

set of input functions to a set of output functions [20]. For optical imaging problems

the set of input and output functions can represent either real-valued intensity or

complex-valued field amplitude; in either case the functions are defined in 2-D variable

space.

A convenient way to represent a system is as a mathematical operator, S{},

which will operate on a 2-D function to produce an output that is also a 2-D function

g2(x, y) = S{g1(ξ, η)} (2.31)

It is important to note that this relation can be many to one or one to one, but since

for now we will limit our scope to deterministic systems it can not be a one to many

mapping.

Now that we have defined a system, we must proceed to define the more re-

strictive case of linear systems. A system is referred to as linear if the superposition
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principle is obeyed for all input functions p and q and all complex constants a and b

S{ap+ bq} = aS{p}+ bS{q} (2.32)

The advantage of linearity is the ability to express the output of a system in terms of

a sum of ”decomposed” inputs. To further this idea we can look at the response of a

system to a displaced delta function, δ(x1 − ξ, y1 − η)

h(x, y; ξ, η) = S{δ(x− ξ, y − η)} (2.33)

The function h is referred to as the impulse response of the system. This allows us to

relate the input and output by

g2(x, y) =

∫ ∞
−∞

∫ ∞
−∞

g1(ξ, η)h(x, y; ξ, η)dξdη (2.34)

From here we will further restrict our interest to linear shift-invariant systems. A

shift-invariant system is a system whose impulse response is only dependent on the

separation of points in space and not the points themselves. For such systems we can

write the impulse response as

h(x, y; ξ, η) = h(x− ξ, y − η) (2.35)

Using this result we rewrite the Equation 2.36 as

g2(x, y) =

∫ ∞
−∞

∫ ∞
−∞

g1(ξ, η)h(x− ξ, y − η)dξdη (2.36)

which is recognized to be a 2-D convolution of the input function with the impulse

response. For convenience in later chapters we define short hand notation for convo-

lution as

g2(x, y) = [g1 ∗ h](x, y) (2.37)
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2.3.2 Imaging - A linear systems approach. Equation 2.7 can be rewritten

as

Ui(x, y) =

∫ ∞
−∞

∫ ∞
−∞

h(x− ξ, y − η)Uo(ξ, η)dξdη (2.38)

where Ui is the field in the image plane, Uo can be thought of as a geometric prediction

of the field in the image plane and h(u, v) = ejkz

jλz
e
jk
2z

[u2+v2]. This is easily recognized to

be a convolution. By writing the propagation process as a convolution we can infer

that the process is linear in complex field and space invariant [16]. For a coherent

system the instantaneous intensity in the receiver plane can be found by

Ii(x, y) =

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

h(x− ξ, y − η)Uo(ξ, η)dξdη

∣∣∣∣2 (2.39)

As mentioned before, all detectors integrate for a time period and therefore average

resulting in

E[Ii(x, y] =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

E[Uo(ξ1, η1)U∗o (ξ2, η2)]h(x−ξ1, y−η1)h∗(x−ξ2, y−η2)dξ1dη1dξ2dη2

(2.40)

where the expectation is taken over the phase of Uo. However we know from above

that for a single speckle realization this is a deterministic value and the expectation

can be dropped.

2.3.2.1 Incoherent Imaging Systems. It is necessary to take a brief

look at incoherent imaging systems. The expectation in Equation 2.40 represents the

mutual intensity. We have used the time average and ensemble averages interchange-

ably here since the random parameter is a time varying phase value. For incoherent

light this mutual intensity is

E[Uo(ξ1, η1)U∗o (ξ2, η2)] = δ(ξ1 − ξ2, η1 − η2)Io(ξ1, η1) (2.41)
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Using this result along with Equation 2.40 we are able to write an expression relating

the the object and image intensities

Ii(x, y) =

∫ ∞
−∞

∫ ∞
−∞

s(x− ξ, y − η)Io(ξ, η) (2.42)

where the point spread function, s, is given by

s(x, y) = |h(x, y)|2 (2.43)

It is important to recall that Io is not the true intensity distribution of the object,

but rather a geometric image of the object in the image plane.

2.3.2.2 Multiframe Coherent Imaging. Incoherent imaging is impor-

tant due to the fact that as many independent speckle realizations are imaged and

summed in a coherent system the result approaches that predicted by an incoherent

system [21].

2.4 Imaging through turbulence

The above propagation theory applies to light propagating in a medium with

uniform index of refraction. In the atmosphere this is not the case. The consequence

of this is that atmospheric turbulence becomes the limiting factor for resolution for

most optical systems that require a long propagation through the atmosphere. In

long exposure imaging, the point spread function (PSF) of the imaging system is very

broad and smooth; while in short exposure imaging, known as speckle imaging, the

PSF is not quite as broad but suffers from a modulated (speckled) irradiance pattern.

In either of these two cases angular resolution is severely limited [31].

Turbulence effects result from random spatial and temporal fluctuations in in-

dex of refraction in the atmosphere, which in turn cause a random variation in optical

path length (OPL). These variations in OPL result in phase abberations on the wave-

front, which in turn become intensity variations after the wave has propagated. Since
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atmospheric turbulence is not easily modeled as a deterministic process, statistical

models are required to understand and model these effects. The first of these models

was created in the 1940’s by A.N. Kolmogorov.

The atmosphere can be considered a viscous fluid, and therefore it has two

distinct states of motion - laminar and turbulent. The distinction between these two

states is that laminar flow is smooth and regular while turbulent flow is unstable and

acquires random subflows called turbulent eddies. The separation between these two

regimes is defined by the Reynolds number:

Re =
vavgl

kv
(2.44)

where vavg is the average air velocity, l is the scale size, and kv is the viscosity of the

air. When the Reynolds number exceeds some critical value the flow is said to be

turbulent. As an example, the viscosity of air is kv = 1.5 × 10−5m2

s
, and assuming a

scale size of l = 10m and a velocity of vavg = 1m
s

, a Reynolds number of 6.7 × 105

is found. This example demonstrates that atmospheric air flow is essentially always

turbulent [31].

In Kolmogorov’s theory, he suggested the structure of the atmosphere, for large

Reynolds numbers, was homogenous and isotropic within the inertial subrange. Inside

the inertial subrange the atmosphere is comprised of eddies that interact and exchange

energy to form and divide into smaller eddies. An eddy is defined as a pocket of air

that has a uniform temperature and pressure [31]. The inertial subrange is defined

by eddy sizes bounded by the inner scale, l0, and the outer scale, L0.

Index of refraction variations in the atmosphere result from temperature inho-

mogeneities caused by turbulent air motion. Since temperature fluctuations are a

function of location in space, R, and time, t, so is the index of refraction:

n(R, t) = n0 + n1(R, t), (2.45)
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where n0 ≈ 1 is the mean value of the index of refraction and n1(R, t) is the deviation

about this mean. The index of refraction time dependence can be ignored since the

rate of change of the atmosphere is slow when compared to the typical timescales of

turbulence moving across the beam (Taylors Frozen Flow) [1]. Using these simplifi-

cations, the index of refraction can be represented by

n(R) = 1 + n1(R), (2.46)

Using Equation 2.46, it is possible to arrive at the structure function describing the

index of refraction variations in the atmosphere.

Because it is not possible to exactly describe the index of refraction random

process for all positions in space, the structure function is necessary. There are

too many random behaviors and variables to account for in a closed form solution.

The index can only be described in reference to stationary random functions. Over

long spatial periods, the index of refraction is not a stationary random process, but

over short spatial periods of interest to applications of laser propagation, the index is

considered to have stationary increments [1]. In other words, it is possible to treat the

index random process as stationary with emphasis on the function n(R+R1)−n(R1).

Intuitively, the structure function of the index of refraction is the mean squared

difference between the index of refraction at one point in space and the index at a

point with some separation distance from the first point. The structure function of

n(R) is defined by:

Dn(R1,R2) = 〈[n(R1)− n(R2)]2〉 (2.47)

where R1 and R2 are vectors describing points in space and 〈·〉 denotes the ensemble

average. By starting with the structure function of wind velocity Kolmogorov was

able to determine the structure function of the index of refraction to be:

Dn(R) =

 C2
nR

2/3 , lo � R� Lo

C2
nl
−4/3
o R2 , R� lo

(2.48)
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where l0 and L0 are the inner and outer scale sizes, R = |R2 −R1|, and C2
n is the

atmospheric structure constant. At small scale sizes below lo, the structure func-

tion follows a squared relationship (second part of Equation 2.48) which is found by

performing a Taylor Series expansion on the structure function for small separation

distances [1]. The structure function is dependent on the separation distance R and

has units of radians squared; it can be written in terms of the atmospheric Fried

parameter:

Dn(R) = 6.88

(
R

ro

)5/3

, (2.49)

where ro relates to turbulence strength and is defined and discussed in a later section.

The structure function is related to the autocorrelation function of the index of

refraction, Γn, by:

Dn(R) = 2[Γn(0)− Γn(R)] (2.50)

Further the autocorrelation function, when it exist, is related to the power spectral

density (PSD) , Φn(κ) by the Wiener-Khinchin theorem :

Γn(R) =

∫ ∞
−∞

Φn(~κ)ej~κ·Rd~κ (2.51)

From this relation a spectral model for the atmosphere can be developed.

The statistical distribution of size and number of turbulent eddies is described

by the PSD of n, Φn(~κ) where ~κ is the spatial wavenumber vector. The PSD can be

thought of as a measure of the relative abundances of turbulent eddies at a given scale

size. Using the assumption that the index of refraction is homogenous and isotropic,

the PSD can be written as a function of the scalar wavenumber, κ [31]. Kolmogorov’s

theory only predicts a form for the PSD inside the inertial subrange:

Φn(κ, z) = 0.033C2
n(z)κ

−11
3 (2.52)
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where C2
n(z) is the structure constant of the atmosphere as a function of location in

the propagation path, z.

The Kolmogorov spectrum is not valid for all wavenumbers so a more complete

model is required. For a more complete model the modified atmospheric spectrum will

be used and is given by [1]:

Φn(κ, z) = 0.033C2
n(z)

[
1 + 1.802 (κ/κl)− 0.254 (κ/κl)

7/6
]

exp(−κ2/κ2
l )

(κ2+κ2
o)

11/6 , 0 ≤ κ ≤ ∞

(2.53)

where κl = 3.3
lo

and κ0 = 1
Lo

. The atmospheric model can be tailored by selecting

appropriate inner scale, outer scale, and C2
n values depending on the laser beam

propagation scenario.

The strength of turbulence in the atmosphere, C2
n, depends on height above

ground and the model chosen. Total turbulence strength for the entire path is found

by integrating C2
n(z) over the path that laser light would travel to the sensor. To

accomplish this task, the Hufnagel-Valley (H-V) model is chosen describing C2
n. Like

the modified spectrum for the atmosphere, the H-V model is most commonly used

for generic conditions describing C2
n, as it is based on real data of various seasons,

altitudes, and geographic locations [1]. The H-V model used is

C2
n(h) = 0.00594(v/27)2(10−5h)10 exp(−h/1000) + 2.7× 10−16 exp(−h/1500)

+A exp(−h/100)
,

(2.54)

where h is the height above the ground, v is the root-mean-square wind speed in

(m/s) and A is the value of C2
n(0) at the ground in m−2/3.

2.4.1 Atmospheric Parameters. Three atmospheric parameters are often

used to describe turbulence strength: the Fried parameter, r0; the isoplanatic angle,

θ0; and the Rytov variance, σ2
1. Each of these parameters is a different moment of C2

n
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and is defined below:

r0 = 1.67

[
k2

∫ L

0

C2
n(z)dz

]−3/5

(2.55)

θ0 =

[
2.91k2

∫ L

0

z5/3C2
n(z)dz

]−3/5

(2.56)

σ1 = 2.25k7/6

∫ L

0

C2
n(z)z5/6dz (2.57)

where z = h
cos θz

and θz is the zenith angle. The Fried parameter defines the roll off

of the OTF of the atmosphere [31]; another way of saying this is that little is gained

in resolution for aperture sizes larger than r0. In this research r0 is the parameter we

will use to describe turbulence strength.

2.5 Phase Screens

For long propagations through a non-uniform media it is necessary to have a way

of modeling the phase perturbations as discrete layers of phase that can be added to

the unperturbed wave. This type of model is called a phase screen. Depending on the

effects to be modeled and the level of accuracy required one phase screen may or may

not be sufficient. If more than one phase screen is used the strength of each screen

must be adjusted accordingly. If r0 is used to define the strength of the atmosphere

then each phase screen can be assigned a strength according to

r
−5/3
0 =

N∑
i=1

r
−5/3
0i (2.58)

where r0i is the Fried parameter of the individual phase screens [31, 72].

2.6 Phase Screen Creation

Modeling the atmosphere using knowledge of the scenario and power spectrum

allows phase screens to be produced to represent the atmospheric random process.

Several methods exist for producing phase screens using the power spectrum. Two

common methods involve using the Zernike polynomial basis set to produce phase
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screens and using the inverse Fourier transform of the power spectrum with Gaussian

random variables to produce phase screens. One disadvantage in the Fourier transform

method is that for simulations over longer time periods, an increasingly large screen

must be computed. Additionally, the Fourier transform method produces screens that

lack low frequency accuracy. In other words, the modified spectrum to be modeled

contains a large percentage of power in the low frequency components. In taking

the inverse Fourier transform, these low frequency regions are not allocated enough

samples, so low frequencies are under-represented. To alleviate these two problems, a

modification to the Fourier transform method is used called the “generalized Fourier

series method ” [26].

To facilitate understanding the Fourier series method, the power spectrum must

be discussed in relation to random processes. Intuitively, the power spectrum of a

random process is the average amount of power in each frequency component com-

posing the random process. For this case, the random process is phase variation

induced by the atmosphere. The power spectrum is related to the covariance of the

phase variation, Bn (R) by the Wiener-Khintchine theorem (recall Equation 2.51).

Starting with the modified power spectrum representing the atmosphere (Equa-

tion 2.53), one can finely sample the PSD the low frequency region and then give

fewer samples to the high frequency region. In this way, the frequency regions that

have a larger power are sampled more often. The PSD is then randomized using

Gaussian variables with the appropriate variance. The result is an array of complex

coefficients describing the frequency composition of a phase screen iteration. The

complex coefficients exhibit circular complex Gaussian statistics with a variance cor-

responding to the previously sampled PSD. All that remains is to sum sinusoids of

corresponding frequencies to produce the desired phase screen. Implementing this

procedure is accomplished by the inverse Fourier series given by

φk(x, y) =
∞∑

n=−∞

∞∑
m=−∞

cn,me
j2π(fxnx+fymy), (2.59)
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where (x, y) are spatial coordinates of the screen, cn,m are randomized complex co-

efficients from the PSD of interest, and (fxn , fym) are spatial frequency components

from the PSD. Note that the sum is calculated rather than using a Fast Fourier

Transform (FFT); this is necessary due to the nonlinear sampling method. By ran-

domizing the real part of the PSD using a circular complex Gaussian random variable,

complex coefficients cn,m are created containing a random phase. Therefore, each

phase screen iteration φk(x, y) is unique and possesses a unique random phase in the

Fourier domain.

An advantage in this method appears for applications requiring a sequence of

screens to represent longer time periods (several seconds). Instead of calculating

one large phase screen and moving the area of interest around the screen as time

progresses, it is only necessary to calculate the screen exactly where it is needed.

Although the generalized Fourier series method cannot take advantage of fast Fourier

transform algorithms, calculations are still saved by only calculating the screen area

of interest. To implement the Fourier series method, a PSD for the turbulence of

interest is calculated using l0, L0, r0 and the spatial frequency region of concern. The

Fourier series coefficients are then calculated for frequency components of interest

(calculating more low frequency components). Afterward, the coefficients are used

to construct the phase screen by summing sinusoids with different weights at any

location desired.
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III. Estimation Thoery

Estimation theory is a well defined method for inferring values of unknown parameters

based on available observations which are corrupted by noise or incomplete. The

estimate is formulated based on a cost function that weights the penalty for incorrect

guesses. The basic estimation problem has four main components: a parameter space,

a probabilistic mapping, an observation space and an estimation rule (see Figure 3.1).

The parameter space is made up of all possible parameters values, including the

set that corresponds to reality. The parameter values generated by the estimation

rule are also contained in the parameter space and hopefully lie ”close” to the ”true”

data. The probabilistic mapping is a statistical model of the process (or processes)

that describes how uncertainty is incorporated in the model for the data. The map-

ping is posed in the form of probability distribution functions of the data given the

observations. The observation space is composed of all possible observations and may

or may not intersect the parameter space. Finally, the estimation rule is the mapping

used to map elements of the observation space to elements of the parameter space.

The parameter and observation spaces as well as the probabilistic mapping are

all determined by the problem to be solved and cannot be changed. The task for the

designer is to develop an estimation rule that gives acceptable results. The theory on

estimation in this chapter is taken from [29,34]

3.1 Bayes Estimation

If the parameter to be estimated, a, is a random variable one could choose

Bayesian estimation as a means to develop an estimation rule. The first step in this

estimation procedure it to define a cost function. The cost function will be used to

weight estimates, â. The cost function, C(a, â(R)) (R is a vector of observations), is

a function of the true data and the estimate; however, it is usually sufficient to write
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Figure 3.1: Diagram showing relationships between parameter and observation
spaces and mapping/decision rules

the cost as a function only of the error of the estimate, aε

aε = â(R)− a (3.1)

This cost function, C(aε), is a function of a single variable and is more convenient to

work with.

Three common cost functions are the squared error, the absolute error, and the

uniform cost function. The squared error cost function,

C(aε) = a2
ε , (3.2)

clearly emphasizes large errors. The absolute error cost function,

C(aε) = |aε| , (3.3)
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is directly proportional to the magnitude of the error. Finally the uniform cost func-

tion,

C(aε) =

 0 |aε| < ∆
2

1 |aε| ≥ ∆
2

, (3.4)

gives no weight to the magnitude of the error, but rather gives a uniform penalty if

the error surpasses a threshold, ∆. The cost function is chosen by the designer based

on the problem; for example a tracking system might chose the squared error cost

function to penalize extreme errors, while a targeting system would choose a uniform

cost function since anything outside of a certain error is unacceptable.

When using Bayesian estimation, it is necessary to have a known or estimated

a priori probability distribution (prior) for the variable to be estimated; later section

will discuss how to deal with estimation problems when the prior is unknown. Once

we have selected a cost function, an expression for the risk is formed

R ≡ E{C[a, â((R)]} =

∫ ∞
−∞

∫ ∞
−∞

C[a, â((R)]pA,R(a, r) (3.5)

The Bayes estimate is simply the estimate that minimizes the risk function. The dif-

ficulty is that the joint probability, pA,R(a, r), is normally not available. To overcome

this we recognize that the joint probability can be rewritten as

pA,R(a, r) = pR(r)pA|R(a|r) (3.6)

This is further complicated by the fact that pA|R(a|r) is also normally not defined,

however it can be found via Bayes rule

pA|R(a|r) =
pR|A(r|a)pA(a)

pR(r)
(3.7)

We will see later it is not necessary to have pR.
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This leads to the important question of how to handle problems where the prior

of the parameter to be estimated, pA(a), is unknown. The next section on maximum

likelihood estimation addresses how to approach this problems.

3.2 Maximum Likelihood Estimation

Recall from above that R is a vector of observations and A is the true value

we are attempting to estimate. If we have no knowledge of the distribution function

of A, the method in the previous section cannot be used. Instead we choose as our

estimate the value of A that most likely led to the observed values of R. The first

step in this process is to define the log-likelihood function

L(a) = ln
[
pR|A(r|a)

]
(3.8)

The maximum likelihood estimate is the value of a where this function is maximized.

If the maximum exist in the range of a, and L(a) has a continuous first derivative,

then âml is found by
dL(a)

da

∣∣∣∣
a=âml

= 0 (3.9)

Often this derivative is difficult to solve in closed form and we must resort to iterative

methods; one such method is the Richardson-Lucy Algorithm and it is discussed in

the next section.

3.3 Richardson-Lucy Algorithm

The Richardson-Lucy [30] algorithm is a modified gradient ascent method used

for finding the maximum of Poisson likelihood functions, where dL(a)
da

is the gradient of

the likelihood function L(a). A typical gradient ascent algorithm begins by assuming

L(a) is maximum at amax. Next an arbitrary starting point, a0, is chosen and the

value of dL(a)
da
|a=a0

is found; if this value is positive then amax > a0, if it is negative
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then amax < a0. We now calculate a1 according to

an = an−1 + κ
dL(a)

da
|a=an−1 (3.10)

This algorithm iterates until dL(a)
da
|a=an

≈ 0. The positive constant, κ, must be

sufficiently small to allow for convergence.

The Richardson-Lucy algorithm performs gradient ascent by breaking dL(a)
da

into

positive and negative parts

dL(a)

da
|a=an

=
dL(a)+

da
|a=an

+
dL(a)−

da
|a=an

(3.11)

It should be clear that if dL(a)+

da
|a=an

> dL(a)−

da
|a=an

then dL(a)
da
|a=an

is positive and

therefore amax > an, conversely if dL(a)+

da
|a=an

< dL(a)−

da
|a=an

then dL(a)
da
|a=an

is nega-

tive and amax < an. The R-L algorithm forms a ratio of dL(a)+

da
|a=an

: dL(a)−

da
|a=an

and

updates an according to

an = an−1

dL(a)+

da
|a=an−1

dL(a)−

da
|a=an−1

(3.12)

3.4 Estimator Quality

Once we have established an estimation routine, we would like to determine the

quality of our estimator. To do this we would attempt to find the bias and the variance

of the estimator. The bias of our estimator is defined by the following equation

B(a) = E [â(R)− a] (3.13)

If the bias is zero we say we have an unbiased estimator, if it is non-zero and not a

function of a we have a known bias, if it is a function of a we have an unknown bias.

For an iterative Richardson-Lucy (R-L) algorithm, the bias cannot be directly

calculated. To find the bias for this estimator, we take advantage of the fact that for

Poisson statistics the R-L algorithm converges to the maximum likelihood solution
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[35]. If we can show that a maximum likelihood estimate is unbiased, the R-L estimate

will also be unbiased.

Even an unbiased estimator can give unacceptable results for a particular trial;

the estimator may indeed have a pdf centered on the true value, but a large variance.

It is desirable for an estimator to have a small variance in the estimated values. It

is often difficult to calculate the variance of an estimator; it is usually much easier

to calculate a lower bound on the estimator variance and then compare the actual

performance of the algorithm to this lower bound. One lower bound for unbiased

estimators is the Cramér-Rao bound defined by

Var [â(R)− a] ≥

(
E

{[
∂ ln pR|A(r|a)

∂a

]2
})−1

(3.14)

or equivalently

Var [â(R)− a] ≥
(
−E

[
∂2 ln pR|A(r|a)

∂a2

])−1

(3.15)

where the first and second partial derivatives are assumed to exist and be absolutely

integrable. Any estimate that satisfies this bound is called an efficient estimate. The

inverse of the bound is referred to as the Fisher information.

3.5 Multiple Parameter Estimation

All of the above techniques can be applied to multiple parameter estimation

problems by simply forming a vector of parameters to be estimated. This section is

dedicated to demonstrating this and to defining a few operators to simplify notation.

Let a = [a1 a2 a3 .... ai]
T be a vector of parameters that we wish to estimate.

From this we can write a joint log-likelihood function

L(a) = ln
[
pR|A(r|a)

]
(3.16)
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The maximum likelihood estimate is found by

∇a [L(a)] |a=â (3.17)

where

∇a ≡
[
∂

∂a1

∂

∂a2

∂

∂a3

...
∂

∂ai

]T
(3.18)

3.5.1 Estimator Quality.

Bias. Since we have an estimate vector, we will also have a bias

vector. The bias vector is defined as

B(a) ≡ E[aε(R)] (3.19)

where

aε(R) = â(R)− a (3.20)

and the expected value of the vector is defined by

E[a] = [E[a1] E[a2] E[a3] ...E[aN ]]T (3.21)

We call an estimate unbiased if each component of the bias vector is zero.

Covariance Matrix. For the single parameter case we define the

spread of the error by the variance of the estimate; for the multiple parameter case

the analogous quantity is the covariance matrix

Λε = E[(aε −B(a))(aε −B(a))T ] (3.22)

Much like in the single parameter case, it is not always practical to try and calculate

the values in Λε. Instead we will calculate a lower bound. First we find the Fisher
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information matrix, J , whose elements are found by

Jij ≡ E

[
∂ ln

[
pR|A(r|a)

]
∂ai

·
∂ ln

[
pR|A(r|a)

]
∂aj

]
(3.23)

which can also be written as

Jij ≡ −E

[
∂2 ln

[
pR|A(r|a)

]
∂ai∂aj

]
(3.24)

Now let K = J−1. The lower bounds on the variance of ai are

Λii ≥ Kii (3.25)
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IV. A Review of Deconvolution

4.1 Introduction

The purpose of this chapter is to report the results of work done by MacDonald

[23]; the work is foundational to this research and is therefore worth including. Much

of this chapter is adapted from his dissertation. This chapter will also demonstrate a

modified stopping method for the algorithm that we believe to be more accurate and

reliable.

4.2 Problem description and geometry

As stated previously, deconvolution is one method for recovering images using

image plane data; a simple imaging system is shown in Figure 4.1. Most deconvolu-

tion methods are applicable to incoherent imaging, however this research deals with

imaging coherently illuminated objects. A coherent speckled image cannot be di-

rectly processed using traditional deconvolution techniques. To use deconvolution an

incoherent image must be formed (or approximated) from many frames of coherent

imagery [25].

4.2.1 Geometry. The coordinate system for the deconvolution problem will

use (x, y) to describe positions in the object plane and (u, v) to describe position in

the image plane. To simplify notation, we will define the following variable in R2 to

represent the ordered pairs

X = (x, y)

U = (u, v)

Figure 4.1: Illustration of a simple imaging system
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4.2.2 Data and statistical models. In order to derive an estimator one must

have information on the statistics of the data, as well as understand what the ideal

image that would be formed in the absence of noise.

4.2.2.1 Data Model. The model for the image plane irradiance takes

advantage of the fact that the multi-frame average of laser speckle images converges to

the incoherent model [24]. This is due to the assumption that the phase at the target

is random and independent from observation to observation in a manner consistent

with the time varying phase distribution produced by incoherent light. By capitalizing

on this, the image plane model becomes a convolution of the geometric image of the

source irradiance and a Point Spread Function (PSF). The PSF would include the

effects of the optical system and the path turbulence. This convolution is written

discretely to facilitate the derivation of a computer algorithm for image recovery.

i(U) = [o ∗ si](U) =
∑
X

o(X)si(U −X) (4.1)

where o(X) is the geometric image of the source intensity and si(U) is the image plane

PSF. Since in cases of interest to this research, the aperture is large with respect to

the Fried parameter of the turbulence, the PSF is dominated by atmospheric effects.

The long exposure PSF must be used since the Signal to Noise Ratio (SNR) of fully

developed speckled frames is always equal to 1; making tip-tilt removal problematic.

To complete the data model, we must look at the dominate noise sources in the

system, and form an appropriate statistical model to describe the corrupted data.

4.2.2.2 Statistical Model. To facilitate forming a statistical model we

will define a single frame of image plane data as

d
(k)
i (U) = i(U) + n

(k)
shot(U) + n

(k)
speckle(U) (4.2)
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where i is the ideal incoherent image, n
(k)
shot is noise associated with random photon

arrivals, and n
(k)
speckle is a noise term that captures the effects of speckle and any other

deviations from the model resulting from the coherent illumination. Both speckle

and shot noise are assumed independent from pixel to pixel; this assumption allows

for computational efficiency. The assumption for shot noise is common and will not

be rigorously justified; however, for the case of speckle noise we will investigate the

validity of this assumption in Appendix C. If we sum M frames of speckle image

data, dki , we have a new random variable, di. We are interested in describing the

statistics of di. When M = 1 the dominate noise is nspeckle and di is exponential

distributed. As M → ∞ then nshot becomes the dominate noise source and di is

Poisson distributed. It would be desirable to have a single distribution that was valid

for all M. The distribution that best captures all of these effects is the negative

binomial distribution [19]

p(K) =
Γ(K +M)

Γ(K + 1)Γ(M)

[
1 +
M
K

]−K [
1 +

K

M

]−M
(4.3)

where K is a random variable representing photocounts and K is the mean number

of photocounts.

4.3 Derivation

Start with the likelihood function based on the negative binomial distribution [23]

L(o) =
∑
U

di(U) ln[i(U)]− [di(U) +M] ln[i(U) +M] (4.4)

Since we are summing multiple frames of coherent data, the likelihood function of

partially coherent data is used, where M is the number of frames. The model for

i(U) is the incoherent model, which is easily described as a convolution

i(U) =
∑
X

o(X)si(U −X) (4.5)
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Using this definition of i(U) we can write L(o) to show the dependance on o

L(o) =
∑
U

di(U) ln[
∑
X

o(X)h(U−X)]−[di(U)+M] ln[
∑
X

o(X)h(U−X)+M] (4.6)

Recall that a maximum likelihood estimate is defined by

dL(o)

do
|o=ô = 0 (4.7)

Solving for the required derivative we arrive at

dL(o)

do
=
∑
U

di(U)

i(U)
h(U −X)− di(U) +M

i(U) +M
h(U −X) (4.8)

Next we implement a Richardson-Lucy type algorithm to solve for o

onew(X) = oold(X)

∑
U
di(U)
i(U)

h(U −X)∑
U
di(U)+M
i(U)+M h(U −X)

(4.9)

Implementation is simplified by recognizing that this can be written in terms of cor-

relations

onew(X) = oold(X)
[di
i
? h](X)

[di+M
i+M ? h](X)

(4.10)

where ? is used to represent the correlation operation.

4.4 Stopping the algorithm

In order for this algorithm to be useful, we have to be able to stop it at or near

the optimal iteration. MacDonald demonstrated one technique [23], but it relied on

some assumptions that we would like to remove. Any stopping criteria should be

based on the statistics of the data and not require a priori knowledge of the object.

Since we cannot reliably use estimation to remove the noise, the algorithm should be

stopped when the variance of the data, di, around the estimated mean, i, are close to
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the variance of the data around its sample mean

K−1

K∑
k=1

(dki − î)2 < ασ2
i (4.11)

where î is the image estimate, σ2
i is the variance of the data around the sample mean,

and α is a parameter that lets the user choose the degree of damping. This parameter

will be discussed later. When the above condition is satisfied for a given pixel, the

iterations for that pixel are terminated. In order to stop each pixel independently we

add a binary mask,mi, to our algorithm

ô = ôold

[[
(1−mi)

di
î

+mi

]
? si

]
[[

(1−mi)
di+M
î+M +mi

]
? si

] (4.12)

When the algorithm begins mi, is a matrix of zeros; the algorithm is then checked at

each iteration to find the pixels that satisfy Equation 4.11. When a pixel its found

that satisfies the damping criteria mi is set to one for that pixel. This effectively stops

the iteration at that pixel by forcing di(U0) = î(U0).

The damping parameter, α, gives the user flexibility to choose the level of damp-

ing. When α is chosen too low, it is possible to over-iterate and amplify noise; if α

is chosen too high the iteration will slow considerably. In order to provide some

guidance on choosing α, we turn to the strong law of large numbers [6] which states

that for independent, identically distributed random variables the sample mean will

approach the true mean, with probability 1, as the number of sample increases. For

our purposes this means α is inversely proportional to the number of frames; this re-

lationship is assumed to be linear for simplicity. The relationship is not truly linear,

but it is believed a simple relationship will work over the range of frame numbers

for this research. Using this as a starting point, an attempt was made to empirically

determine a function to give an ”ideal” value for α.

α = 1 +
α̂

M
(4.13)
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Figure 4.2: Satellite image used as the truth data in simulated data sets

where α̂ will be optimized experimentally.

4.5 Data Simulation

The simulated data sets were created using Matlabr . Each set consists of 200

independently created frames of both pupil plane and image plane data. In order

to create the frames of data a field magnitude was defined in the object plane; the

magnitude in the object plane is shown in Figure 4.2. A random phase (uniform on

(−nπ, nπ]) was added to every point in the field to model the surface roughness. Each

phase is constructed to be independent of every other phase in the field. The target

was sampled at the Nyquist rate required by the pupil plane aperture. The sample

rate, ∆, is calculated according to

∆ =
λz

2D
(4.14)

where λ is the optical wavelength, z is the propagation distance, and D is the diam-

eter of the aperture. This field is then propagated to the pupil plane using a Fourier
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transform. It can be shown that due to the random phase in the target field any

propagation, regardless of propagation length, can be modeled as a Fraunhoffer prop-

agation and therefore a simple Fourier transform. The imaging aperture function and

the turbulence phase screen are then applied to the pupil plane field and an inverse

Fourier transform was performed to give us the image plane field; the magnitude

squared gives us the image plane intensity. In equation form this would be:

i(U) =
∣∣F−1 {F {U(X)}P exp{jθ}}

∣∣2 (4.15)

where P is the aperture function and θ is the phase screen.

To account for detection noise processes, both Gaussian-distributed read noise

and Poisson distributed shot noise were applied to the data. Gaussian detector noise

was characterized by the standard deviation σd. The average detection SNR was then

defined by

SNR =
p√
p+ σ2

d

(4.16)

where p is the average number of photo-electrons per pixel in the data set. To gen-

erate data with a desired detection SNR, Equation 4.16 was inverted and the data

scaled to the required average p. The scaled data was then used to generate Poisson-

distributed random numbers with mean p. Uncorrelated Gaussian random numbers

with a standard deviation of σd were then added to each pixel. SNR was defined in

this manner to be consistent with earlier work [22].

4.6 Results and Conclusions

With the deconvolution algorithm derived and implemented, the next step is to

characterize its performance. The approach taken for performance characterization

was to use a Monte-Carlo simulation consisting of 100 data sets of 200 frames each

at four different turbulence levels. It is often difficult to chose metrics to quantify the

quality of a recovered image, since for almost any metric an object estimate can be

chosen that is much better or worse than the chosen metric implies. Initially mean
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absolute error (MAE) was chosen as a metric. MAE is defined as

MAE = (NM)−1

N,M∑
n=1,m=1

|o− ô| (4.17)

This metric was quickly discarded as the errors were excessively large for estimates

that were shifted with respect to the truth object. To avoid this problem we choose

a slightly more complicated metric that is translation invariant

Er = min
u0,v0

∑
|ô(u− u0, v − v0)− o(u, v)|2∑

|o(u, v)|2
(4.18)

which is more easily calculated as

Er =
rôô(0, 0) + roo(0, 0)− 2 maxu0,v0 Re{roô(u0, v0)}

roo(0, 0)
(4.19)

where roo and rôô are autocorrelations of the object and the estimate, and roô is the

cross correlation. In general correlation function are defined as

rab(u, v) =
∑
x

∑
y

a(x, y)b(u+ a, v + b) (4.20)

For a more complete explanation see [9]. An estimator will seek to minimize this

metric, Er.

The first step in characterization was to find an optimal value for the damping

parameter; this was done using a single turbulence value and then assumed to be

correct at any turbulence level; α̂ = 15 was chosen. The damping parameter was

chosen by running the simulation at various values of α̂ and choosing the best value.

Once the damping parameter was determined, the image recovery algorithm was run

on all the data sets and the results are presented below.

4.6.1 Baseline results. In order to determine the effects that certain system

parameters (frames, turbulence) have on system performance we need to define and
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Figure 4.3: Sum of 200 frames of raw image plane data

characterize a baseline case. For this research the baseline case is a 200 frame data

set generated in turbulence described by D
r0

= 10. The sum of one set (200 frames)

of raw image plane data is shown in Figure 4.3. A sample image recovered from this

scenario can be seen in Figure 4.4 Clearly the recovered image is improved over the

raw data, however no high spatial frequency details have been recovered. We have

a better idea of the shape and extent of the object, but little information about the

fine structure. To quantify the improvement, the error function (Er) was calculated

at each iteration. This was done for 100 data sets and Er was plotted with error bars

representing +/- one standard deviation. The results are shown in Figure 4.5

4.6.2 Effects of varying the number of data frames. Recalling from the ear-

lier development that the model for the data was based on the incoherent convolution

model, it should stand to reason that as the number of frames increases the data will

more closely match the model and therefore the recovered images should be better.

The effects of the number of frames will be quantified by running the deconvolution

algorithm on data sets of 50 and 100 frames and comparing the recoveries to the
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Figure 4.4: Sample image recovered using 3500 iterations of deconvolution

Figure 4.5: Er versus iterations for baseline simulation. The mean of 100 recoveries
was plotted with error bars representing +/- one standard deviation
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200 frame reconstructions. Figure 4.6 shows images recovered using 50, 100 and 200

frames of data; while the differences are not dramatic, clearly the quality of the image

improves with additional frames. To really understand the benefit of increasing the

number of data frames we look at the variance of Er for the object estimates. As seen

in Figure 4.7, the variance increases dramatically as the number of frames decrease.

What this means from a practical viewpoint is that as the number of frames increases

so does the reliability of the algorithm.

4.6.3 Effects of turbulence strength on the recovered image. While it should

be obvious to the informed reader that the strength of the atmospheric turbulence will

have a direct impact on the quality of the recovered image, it will still be quantified

here. It is shown to illustrate that the joint algorithm (see Chapter 6) will be less

affected by turbulence. Figure 7.2 shows Er for the recovered image at each iteration

for 4 different turbulence strengths. As expected turbulence has a large impact on

the quality of the reconstruction.

4.6.4 Ability to recover varied intensity images. This section seeks to quan-

tify the ability of the deconvolution algorithm to correctly recover the various inten-

sities in a single image accurately. A truth image consisting of five squares of varying

intensity is shown in Figure 4.9; the center square has an intensity of 1, while the

other four have intensities of 0.1, 0.25, 0.5, and 0.75 (starting in the upper left and

moving clockwise). In the recovered image it is desired for the ratios of intensity in

each corner to the intensity of the center square to be accurately recovered. The re-

covered image can be seen in Figure 4.10. The mean intensities in each corner square

(as a percentage of the mean intensity in the center square) in the recovered image are

9.78%, 23.7%, 48.8% and 73%. Clearly the algorithm can recover the proper intensity

values in gray scale images. It is further noted that greater than 90% of the energy

in the field of view is in the image.
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(a) 50 Frames

(b) 100 Frames

(c) 200 Frames

Figure 4.6: Images recovered using different numbers of data frames.
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Figure 4.7: Variance of the estimate for varying numbers of frames of data

Figure 4.8: Er of recovered images shown for varying turbulence levels

44



Figure 4.9: Truth image used for quantifying intensity recovery accuracy

Figure 4.10: Recovered gray scale image.
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4.6.5 Quantification of resolution of the algorithm. To define the resolution

of the algorithm, various bar targets are imaging. The system resolution is defined

as the pixel spacing between bars in the targets when the algorithm can just resolve

them; the bars will be said to be resolved when the intensity of the valleys fall to

less than half that of the peaks, and any additional bars in the recovered image

are suppressed by at least a factor of 5. The deconvolution algorithm was able to

resolve the bars when they were separated by 10 pixels. The results are shown in

Figurea s4.11-4.12. One could argue that the human eye can separate the bars in

the raw data, however the criteria for resolution is the valleys must have less than

half the photons of the peaks. This is clearly not the case for the raw data, but is

satisfied by the deconvolved case. The slices that are plotted in Figures 4.11b) and

(4.12b are the mean of 20 vertical slices from the center of the image data.

46



(a)

(b)

Figure 4.11: Raw image data of a resolution target. 10 pixels separate the bars
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(a)

(b)

Figure 4.12: Deconvolved image data of a resolution target. 10 pixels separate the
bars
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V. Maximum Likelihood Pupil Plane Image Recovery

5.1 Introduction

This chapter will demonstrate a high resolution pupil plane imaging system.

The algorithm proposed here is a Maximum Likelihood pupil plane algorithm.

5.2 Problem description and geometry

We have previously described methods for recovering images from pupil plane

intensity measurements. This can have many advantages since the arrays can be

made large and conformal. This raises the theoretical resolution limit without a large

increase in system volume. However, pupil plane systems suffer from some widely

known stagnation problems [15]. This chapter derives and implements a new pupil

plane algorithm. This new algorithm does not eliminate the existing stagnation issues,

but is formed in a manner that will allow it to be easily fused with the image plane

system of chapter 4.

5.2.1 Geometry and Assumptions. The coordinate system for all the fol-

lowing derivations will use (x, y)functions for positions in the object plane, (α, β) in

the pupil plane, (u, v) in the image plane, and (ξ, η) for shifts in the autocorrelations.

However to simplify notation, we define the following variables in R2 to represent the

ordered pairs

X = (x, y)

Λ = (α, β)

Ψ = (ξ, η)

U = (u, v)

It also must be pointed out that for the entire paper any matrix product is a Hadamard

(or element wise) product.
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5.2.2 Pupil Plane Data Model. The pupil plane model is based on work

from Fienup and Idell [21], which relates the autocorrelation of the object brightness

function to the average magnitude squared of the Fourier transform of the pupil plane

intensity. The autocorrelation of the object brightness function is given by

R0(Ψ) =
∑
X

o(X)o(Ψ +X) (5.1)

Image recovery begins with estimating the average energy spectrum of the observed

speckle pattern by averaging the squared moduli of many independent speckled au-

tocorrelations

R
(k)
0 (Ψ) = F−1

Λ,Ψ

[
|FλzX,Λ[f (k)(X)]|2H(Λ)

]
(5.2)

where f (k) is the kth realization of the field reflected from the object and the aperture

function, H defines the region over which the speckle pattern is observed in the pupil

plane, F−1
Λ,Ψ in an inverse Fourier transform which operates in a function in Λ and

returns a function of Ψ, and FλzX,Λ is a Fraunhoffer propagation operator [20]. It has

been shown that as the number of independent speckle realizations, J , increases the

average energy spectrum converges to [21]

lim
K→∞

K−1

K∑
k=1

|R(k)
0 (Ψ)|2 = bsp(Ψ) + cR0(Ψ) ∗ sp(Ψ) (5.3)

where b and c are constants, and sp(Ψ) = |h(Ψ)|2 is the PSF of the pupil plane

aperture.

The intensity in the pupil plane is related to the object field by

pupil(k)(Λ) = |FλzX,Λ{fk(X)}|2 + n
(k)
shot(Λ) + n

(k)
speckle(Λ) (5.4)

where n
(k)
shot is shot noise from random photon arrival times and n

(k)
speckle is the speckle

noise associated with coherent systems. It is convenient at this point to define a
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variable to represent a single frame of transformed pupil plane data

d(k)
r (Ψ) =

∣∣∣F−1
Λ,Ψ

{
|FλzX,Λ{f (k)(X)}|2 + n

(k)
shot(Λ) + n

(k)
speckle(Λ)

}∣∣∣2 (5.5)

where k is the frame number. According to Equation 5.2, we can average many

frames of this transformed data to represent the average speckled autocorrelation of

the object brightness function.

dr(Ψ) = K−1

K∑
k=1

d(k)
r (Ψ) (5.6)

Provided that K is large dr will be approximately Gaussian with mean R(Ψ) =

b|h(Ψ)|2 + cR0(Ψ) ∗ |h(Ψ)|2. From this we can write an equation for the probability

distribution of a single pixel

pDr(Ψ)(dr(Ψ)) =
exp

{
−[dr(Ψ)−R(Ψ)]2

2σ2

}
√

2πσ
(5.7)

If we also assume that the noise in each pixel is independent of the noise in all the

other pixels we can write the equation for the probability of realizing an entire ”scene”

pDr(dr|o, h) =
∏
Ψ

exp
{
−[dr(Ψ)−R(Ψ)]2

2σ2

}
√

2πσ
(5.8)

5.3 Image Recovery Algorithm

The algorithm development begins by defining the log-likelihood function

L(o, b, c) = ln pDr(dr|o, sp) =
∑

Ψ

−[dr(Ψ)−R(Ψ, b, c)]2

2σ2(Ψ)
(5.9)

where

R(Ψ, b, c) = bsp(Ψ) + c[R0 ∗ sp](Ψ) (5.10)

.

51



The maximum likelihood (ML) estimator is defined by [34]

∇L(A)|A=â = 0 (5.11)

where A = [o b c]T and â = [ô b̂ ĉ]T

An estimate of o is difficult to find in closed form, but rather can be solved

iteratively after we have initial estimates of b and c.

5.3.1 Estimates of b and c. To solve for initial estimates of b and c we

restate the problem as the likelihood function of b and c conditioned on o

L(b, c|o) =
∑

Ψ

−[dr(Ψ)− bsp(Ψ)− c[R0 ∗ sp](Ψ)]2

2σ2(Ψ)
(5.12)

The new estimation routine is defined by

∇L(A)|A=â = 0 (5.13)

where A = [b c]T and â = [b̂ ĉ]T . These estimates will be updated as the value of o is

refined. To find values of b̂ and ĉ we must find the gradient of L(A)

∇L(b, c) =

[
∂L(b, c)

∂b

∂L(b, c)

∂c

]T
(5.14)

Solving these two derivatives separately and setting them equal to zero gives us a set

of simultaneous equations.

∂L(b, c)

∂b
=
∑

Ψ

[dr(Ψ)− bsp(Ψ)− c[R0 ∗ sp](Ψ)]sp(Ψ)

σ2(Ψ)
= 0 (5.15)

∂L(b, c)

∂c
=
∑

Ψ

[dr(Ψ)− bsp(Ψ)− c[R0 ∗ sp](Ψ)][R0 ∗ sp](Ψ)

σ2(Ψ)
= 0 (5.16)
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Next we solve Equation 6.22 for c as a function of b

c =

∑
Ψ[dr(Ψ)− bsp(Ψ)][R0 ∗ sp](Ψ)∑

Ψ[R ∗ sp]2(Ψ)
(5.17)

Substitute Equation 6.23 into Equation 6.21 and solve for b

b̂ =

∑
Ψ dr(Ψ)sp(Ψ)− ρ1

∑
Ψ sp(Ψ)[R0 ∗ sp](Ψ)∑

Ψ s
2
p(Ψ)− ρ2

∑
Ψ sp(Ψ)[R0 ∗ sp](Ψ)

(5.18)

where

ρ1 =

∑
Ψ′ dr(Ψ

′)[R0 ∗ sp](Ψ′)∑
Ψ′ [R0 ∗ sp]2(Ψ′)

(5.19)

and

ρ2 =

∑
Ψ′ h(Ψ′)[R0 ∗ sp](Ψ′)∑

Ψ′ [R0 ∗ sp]2(Ψ′)
(5.20)

Finally, substitute the value of b̂ into Equation 6.23 to calculate a value for ĉ.

5.3.2 Estimation algorithm for o. Next we will build an iterative algorithm

to solve for o. It is informative here to write the log-likelihood function to show the

dependance on o. We do this by recognizing

[R0 ∗ sp](Ψ) =
∑
U

∑
X

o(X)o(U +X)sp(Ψ− U) (5.21)

Combining this result with Equation 5.10 and (6.14) we are able to write

L(o|b, c) =
∑

Ψ

−[dr(Ψ)− bsp(Ψ)− c
∑

U

∑
X o(X)o(U +X)sp(Ψ− U)(Ψ)]2

2σ2(Ψ)
(5.22)

Next we take the derivative of this log-likelihood with respect to o

∂L(o|b, c)
∂o

=
∑

Ψ

[dr(Ψ)− bsp(Ψ)− c[R0 ∗ sp](Ψ)]c
∑

U
∂R0

∂o
sp(Ψ− U)

σ2(Ψ)

where
∂R

∂o
= o(X + U) + o(X − U) (5.23)
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Below are a few definitions to simplify this equation

c
∑
U

∂R0

∂o
sp(Ψ− U) = c{[o ∗ sp](Ψ +X) + [o ? sp](Ψ−X)} (5.24)

Φ1(Ψ +X) = [o ∗ sp](Ψ +X)

Φ2(Ψ−X) = [o ? sp](Ψ−X) (5.25)

ρ(Ψ) =
bsp(Ψ) + c[R0 ∗ sp](Ψ)

σ2(Ψ)
(5.26)

Using the above definitions (and some further simplification) we are able to

write a R-L algorithm

onew(X) = oold(X)
c
[
dr
σ2 ? Φ1

]
(X) + c

[
dr
σ2 ∗ Φ2

]
(X)

[ρ ? Φ1] (X) + [ρ ∗ Φ2] (X)
(5.27)

5.3.3 Stopping the Algorithm. Image recovery techniques built around a

Richardson-Lucy algorithm are often ran for a set number of iterations and then ex-

ited. It would be better to have an optimized method of exiting the iterations. It is

fairly well known that iterating beyond an optimal point can lead to noise amplifica-

tion. This is due to the fact that all Maximum likelihood techniques attempt to fit

the data as closely as possible given the constraints of the problem. This leads to the

question of when do we stop our algorithm. Rather than stop the algorithm we will

look at methods to damp the iteration to avoid over iteration regardless of how long

the algorithm is run. This means one can iterate for as long as time allows with some

assurance that iteration z + 1 will never be worse that iteration z.

The damping routine looks at the statistics of the data set and compares it to

the model’s statistics. When the variance of the model is near the variance of the
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data that pixel is damped. Stated mathematically

K−1

K∑
k=1

(dkr − R̂)2 < ασ2
r (5.28)

where σ2
r is the measured variance of the data set and α is a user chosen value to de-

termine the degree of damping (guidance for choosing α can be found in section(4.4));

R̂ is defined as

R̂(Ψ) =
∑
X

onew(X)onew(Ψ +X) (5.29)

Using the above criteria we can create a binary map, mr, that will damp the

iteration for the pixels where the criteria are satisfied. The values of the binary map

will be set 1 for every pixel where the criteria are satisfied, otherwise the value is

zero. The maps are updated at each iteration. The maps are applied to the update

equation so that where ever the map equals 1 the data and the model are forced to

be equal, essentially stopping that pixel from changing for that iteration. Using these

criteria we restate Equation 5.26 and 5.27

ρ(Ψ) = bsp(Ψ) + c

[
(1−mr)[R0 ∗ sp](Ψ) +mr

[
dr − bsp

c

]]
(5.30)

onew(X) = oold(X)
c [dr ? Φ1] (X) + c [dr ∗ Φ2] (X)

[ρ ? Φ1] (X) + [ρ ∗ Φ2] (X)
(5.31)

where mr is the binary map applied to the pupil data.

5.4 Results

This section will compare the results of the proposed joint image recovery algo-

rithm to that of deconvolution. This simulated data sets were created in a manner

identical to that outlined in Chapter 4. After the data sets were created, two image

recovery algorithms were run: 1) deconvolution [25] and 2)the pupil plane algorithm.

The pupil plane algorithm is an intermediate step to a more complete joint algorithm

that will be discussed in later chapters; for this reason the pupil plane analysis is not
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as thorough as the deconvolution. The analysis will only consist of evaluating the

resolution of the algorithm and the ability of the algorithm to recover varied inten-

sity images. A section will also be devoted to showing some of the limitations of the

algorithm as motivation for the remaining work.

5.4.1 Quantifying resolution. The simulation was run in the absence of

turbulence to get a diffraction limited image which is shown in Figure 5.1a. Clearly

in the absence of turbulence the imaging system would have no problem resolving

the bars in the target. The simulation is then run with D/r0 = 10 and the resulting

image is shown in Figure 5.1b. In this case none of the bars are resolved. In order

to try and regain the lose resolution we apply the deconvolution algorithm and let it

run to convergence; the resulting image is shown in Figure 5.1c and again the bars

cannot be resolved. Figures 5.1d-e show the results of the pupil algorithm; clearly

we have satisfied the resolution criteria from chapter 4. In chaper 4, it was shown

that deconvolution had a resolution limit of 10 pixels; the pupil plane algorithm has

a resolution limit of 5 pixels for the given turbulence scenario.

5.4.2 Ability to recover varied intensity images. In section(4.6.4) it was

shown that deconvolution algorithms are able to accurately recover various intensities

in a single image. That same analysis was performed for the pupil plane algorithm

with very different results. The pupil plane algorithm results are shown in Figure 5.2.

Figure 5.2a shows the truth image and the recovered image is shown in Figure 5.2b.

Clearly the pupil algorithm cannot recover the varied intensity in the image. This

is easily explained by looking at Figure 5.2c, which shows the autocorrelation of

the truth object. Since the pupil algorithm estimates the image from a corrupted

measurement of the autocorrelation (which is symmetric) and the autocorrelation to

object relationship is not one to one, the algorithm will choose an object that satisfies

the known constraints. In the absence of information to the contrary, the algorithm

will recover a symmetric object.
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(a)

(b) (c)

(d) (e)

Figure 5.1: Results of image recovery algorithms on a bar target where 5 pixels
separate the bars. (a) show a diffraction limited image (b) show the raw data in the
presence of turbulence (c) shows the results of deconvolution (d) shows the results of
the pupil algorithm and (e) shows a slice throught (d)
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(a)

(b) (c)

Figure 5.2: (a) Image with intensity variations (b) Image recovered using pupil
algorithm (c) autocorrelation of the truth object

58



5.4.3 Limitations of pupil plane algorithms. The primary limitation to be

discussed here is the inability of pupil plane algorithms to recover complex targets in

the absence of good object support. The reason for this stems from the fact that the

algorithms are generally based on using the object autocorrelation in the data model.

Since an autocorrelation function is always symmetric and does not possess a one to

one mapping with the underlying object, algorithms seeking to recover images from

autocorrelations will have severe twin image stagnation problems. This can been seen

in Figure 5.3; the satellite body is ’recovered’ in both the lower right and the upper

left of the satellite, while the smaller structures (antennas) are lost entirely.

(a) (b)

Figure 5.3:
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VI. Joint Data Algorithm

6.1 Introduction

The chapter documents the fusion of the algorithms listed in the prior chapters.

The algorithms are fused using Bayesian methods. The algorithm proposed here will

use an image plane data set in conjunction with a pupil plane data set. From the

two data sets a Maximum likelihood estimator will be formed. The use of image data

with correlography methods is not new. Fienup suggested the use of image plane data

in conjunction with pupil plane measurements [14], but these sets of data were not

fused using Bayesian methods to estimate an image.

Much of the information from previous chapters will be repeated for clarity.

6.2 Geometry and Assumptions

The coordinate system for all the following derivations will use (x, y)functions

for positions in the object plane, (α, β) in the pupil plane, (u, v) in the image plane,

and (ξ, η) for shifts in the autocorrelations. However to simplify notation, we define

the following variables in R2 to represent the ordered pairs

X = (x, y)

Λ = (α, β)

Ψ = (ξ, η)

U = (u, v)

It also must be pointed out that for the entire paper any matrix product is a Hadamard

(or element wise) product.
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6.3 Image and Pupil Plane Data Models

This section is devoted to describing the statistical models for both data sets

with the goal of providing probability density functions (pdf) for the measurements

in both planes.

6.3.1 Image Plane Data Model. The model for the image plane intensity

takes advantage of the fact that the multi-frame average of laser speckle images con-

verges to the incoherent model [24]. This is due to the assumption that the phase at

the target is random and independent from observation to observation in a manner

consistent with the time varying phase distribution produced by incoherent light. By

capitalizing on this, the image plane model becomes a convolution of the geometric

image of the source intensity and a Point Spread Function (PSF). The PSF would

include the effects of the optical system and the path turbulence. This convolution

is written discretely to facilitate the derivation of a computer algorithm for image

recovery.

i(U) =
∑
X

o(X)si(U −X) (6.1)

where o(X) is the geometric image of the source intensity and si(U) is the image

plane PSF. Since the imaging aperture is large with respect to the Fried parameter

of the turbulence, the PSF is dominated by atmospheric effects. The long exposure

PSF is used since the Signal to Noise Ratio (SNR) of fully developed speckled frames

is always equal to 1; making tip-tilt removal problematic.

The convolution model provides the mean of the image plane data. Since we are

approximating an incoherent image using a multi-frame average, the Probability Mass

Function (PMF) of the image plane data is best modeled by the PMF of partially

coherent light corrupted by photon noise [19], the negative binomial distribution best

describes the probability of receiving di(U) photons shown below as

pDi(U)(di(U)|o,M, si) =
Γ[di(U) +M]

Γ[di(U) + 1]Γ[M]

[
1 +

M
i(U)

]−di(U) [
1 +

i(U)

M

]−M
(6.2)
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where Γ is the gamma function, di(U) is the measured data, Di(U) is a random

variable representing the image plane data, and M is the number of coherent data

frames used in the formation of the data, di(U). Because the noise in each pixel is

assumed to be independent and identically distributed (iid) we can write the joint pdf

of the entire scene as

pDi(di) =
∏
U

Γ[di(U) +M]

Γ[di(U) + 1]Γ[M]

[
1 +

M
i(U)

]−di(U) [
1 +

i(U)

M

]−M
(6.3)

6.3.2 Pupil Plane Data Model. The pupil plane model is based on work

from Fienup and Idell [21], which relates the autocorrelation of the object brightness

function to the average magnitude squared of the Fourier transform of the pupil plane

intensity. The autocorrelation of the object brightness function is given by

R0(Ψ) =
∑
X

o(X)o(Ψ +X) (6.4)

Image recovery begins with estimating the average energy spectrum of the observed

speckle pattern by averaging the squared moduli of many independent speckled au-

tocorrelations

R
(k)
0 (Ψ) = F−1

[
|F [f (k)(X)]|2H(Λ)

]
(6.5)

where F is a Fourier transform, fk is the kth realization of the field reflected from

the object and the aperture function,and H defines the region over which the speckle

pattern is observed in the pupil plane. It has been shown that as the number of

independent speckle realizations, K, increases the average energy spectrum converges

to [21]

lim
K→∞

K−1

K∑
k=1

|R(k)
0 (Ψ)|2 = bsp(Ψ) + c[R0 ∗ sp](Ψ) (6.6)

where b and c are constants, ∗ is the convolution operator, and sp(Ψ) is the PSF of

the pupil plane aperture.
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The intensity in the pupil plane is related to the object field by

pupil(k)(Λ) = |FλzX,Λ{fk(X)}|2 + n
(k)
shot(Λ) + n

(k)
speckle(Λ) (6.7)

where n
(k)
shot is shot noise from random photon arrival times and n

(k)
speckle is the speckle

noise associated with coherent systems. It is convenient at this point to define a

variable to represent a single frame of transformed pupil plane data

d(k)
r (Ψ) =

∣∣∣F−1
Λ,Ψ

{
|FλzX,Λ{f (k)(X)}|2 + n

(k)
shot(Λ) + n

(k)
speckle(Λ)

}∣∣∣2 (6.8)

where k is the frame number. According to Equation 6.5, we can average many

frames of this transformed data to represent the average speckled autocorrelation of

the object brightness function.

dr(Ψ) = K−1

K∑
k=1

d(k)
r (Ψ) (6.9)

Provided that K is large dr will be approximately Gaussian with mean

R(Ψ) = bsp(Ψ) + c[R0 ∗ sp](Ψ) (6.10)

This results from the central limit theorem since we are adding many independent,

identically distributed random variables [6]. From this we can write an equation for

the probability distribution of a single pixel

pDr(Ψ)(dr(Ψ)) =
exp

{
−[dr(Ψ)−R(Ψ)]2

2σ2

}
√

2πσ
(6.11)

If we also assume that the noise in each pixel is independent of the noise in all the

other pixels we can write the equation for the probability of realizing an entire ”scene”

pDr(dr|o, h) =
∏
Ψ

exp
{
−[dr(Ψ)−R(Ψ)]2

2σ2

}
√

2πσ
(6.12)
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6.4 Joint Algorithm

The algorithm development begins by defining a joint log-likelihood function

L(o, b, c) = Lp(o, b, c) + Li(o) (6.13)

where

Lp(o, b, c) = ln pDr(dr|o, sp) =
∑

Ψ

−[dr(Ψ)−R(Ψ, b, c)]2

2σ2(Ψ)
(6.14)

where

R(Ψ, b, c) = bsp(Ψ) + c[R0 ∗ sp](Ψ) (6.15)

and

Li(o) = ln pDi(di|o, si,M) =
∑
U

di(U) ln[i(U)]− [di(U) +M ] ln[i(U) +M ] (6.16)

The maximum likelihood (ML) estimator is defined by [34]

∇L(A)|A=â = 0 (6.17)

where A = [o b c]T and â = [ô b̂ ĉ]T

An estimate of o is difficult to find in closed form, but rather can be solved

iteratively using initial estimates of b and c.

6.4.1 Estimates of b and c. To solve for initial estimates of b and c we

restate the problem as the likelihood function of b and c conditioned on o

L(b, c|o) =
∑

Ψ

−[dr(Ψ)− bsp(Ψ)− c[R0 ∗ sp](Ψ)]2

2σ2(Ψ)
(6.18)

The new estimation routine is defined by

∇L(A)|A=â = 0 (6.19)
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where A = [b c]T and â = [b̂ ĉ]T . These estimates will be updated as the value of o is

refined. To find values of b̂ and ĉ we must find the gradient of L(A)

∇L(b, c) =

[
∂L(b, c)

∂b

∂L(b, c)

∂c

]T
(6.20)

Solving these two derivatives separately and setting them equal to zero gives us a set

of simultaneous equations.

∂L(b, c)

∂b
=
∑

Ψ

[dr(Ψ)− bsp(Ψ)− c[R0 ∗ sp](Ψ)]sp(Ψ)

σ2(Ψ)
= 0 (6.21)

∂L(b, c)

∂c
=
∑

Ψ

[dr(Ψ)− bsp(Ψ)− c[R0 ∗ sp](Ψ)][R0 ∗ sp](Ψ)

σ2(Ψ)
= 0 (6.22)

Next we solve Equation 6.22 for c as a function of b

c =

∑
Ψ[dr(Ψ)− bsp(Ψ)][R0 ∗ sp](Ψ)∑

Ψ[R0 ∗ sp]2(Ψ)
(6.23)

Substitute Equation 6.23 into Equation 6.21 and solve for b

b̂ =

∑
Ψ dr(Ψ)sp(Ψ)− ρ1

∑
Ψ sp(Ψ)[R0 ∗ sp](Ψ)∑

Ψ s
2
p(Ψ)− ρ2

∑
Ψ sp(Ψ)[R0 ∗ sp](Ψ)

(6.24)

where

ρ1 =

∑
Ψ′ dr(Ψ

′)[R0 ∗ sp](Ψ′)∑
Ψ′ [R0 ∗ sp]2(Ψ′)

(6.25)

and

ρ2 =

∑
Ψ′ sp(Ψ

′)[R0 ∗ sp](Ψ′)∑
Ψ′ [R0 ∗ sp]2(Ψ′)

(6.26)

Finally, substitute the value of b̂ into Equation 6.23 to calculate a value for ĉ.

6.4.2 Estimation algorithm for o. Next we will build an iterative algorithm

to solve for o. It is informative here to write the log-likelihood function to show the
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dependance on o. We do this by recognizing

[R0 ∗ sp](Ψ) =
∑
U

∑
X

o(X)o(U +X)sp(Ψ− U) (6.27)

Combining this result with Equation 6.15 and (6.14) we are able to write

Lp(o|b, c) =
∑

Ψ

−[dr(Ψ)− bsp(Ψ)− c
∑

U

∑
X o(X)o(U +X)sp(Ψ− U)(Ψ)]2

2σ2(Ψ)

(6.28)

We further must recognize

i(U) =
∑
X

o(X)si(U −X) (6.29)

Combining this result with Equation 6.16 we write

Li(o) =
∑
U

di(U) ln[
∑
X

o(X)si(U −X)]− [di(U) +M ] ln[
∑
X

o(X)si(U −X) +M ]

(6.30)

This gives a joint log-likelihood of

L(o|b, c) =
∑

Ψ

−[dr(Ψ)− bsp(Ψ)− c
∑

U

∑
X o(X)o(U +X)sp(Ψ− U)(Ψ)]2

2σ2(Ψ)

+
∑
U

di(U) ln[
∑
X

o(X)si(U −X)]

− [di(U) +M ] ln[
∑
X

o(X)si(U −X) +M ] (6.31)

Next we take the derivative of this log-likelihood with respect to o

∂L(o|b, c)
∂o

=
∑

Ψ

[dr(Ψ)− bsp(Ψ)− c[R0 ∗ sp](Ψ)]c
∑

U
∂R0

∂o
sp(Ψ− U)

σ2(Ψ)

+
∑
U

di(U)

i(U)
si(U −X)− di(U) +M

i(U) +M
si(U −X) (6.32)
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where
∂R

∂o
= o(X + U) + o(X − U) (6.33)

Below are a few definitions to simplify this equation

c
∑
U

∂R0

∂o
sp(Ψ− U) = c{[o ∗ sp](Ψ +X) + [o ? sp](Ψ−X)} (6.34)

Φ1(Ψ +X) = [o ∗ sp](Ψ +X)

Φ2(Ψ−X) = [o ? sp](Ψ−X) (6.35)

ρ(Ψ) =
bsp(Ψ) + c[R0 ∗ sp](Ψ)

σ2(Ψ)
(6.36)

Using the above definitions (and some further simplification) we are able to

write a ML algorithm

onew(X) = oold(X)

[
di
iold

? si

]
(X) + c

[
dr
σ2 ? Φ1

]
(X) + c

[
dr
σ2 ∗ Φ2

]
(X)[

di+M
i+M

? si
]

(X) + c [ρ ? Φ1] (X) + c [ρ ∗ Φ2] (X)
(6.37)

6.4.3 Stopping the Algorithm. Image recovery techniques built in a manner

similar to the Richardson-Lucy [30] algorithm are often run for a set number of iter-

ations and then exited. It would be better to have an optimized method of exiting

the iterations. It is fairly well known that iterating beyond an optimal point can

lead to noise amplification [36]. This is due to the fact that all Maximum likelihood

techniques attempt to fit the data as closely as possible given the constraints of the

problem. This leads to the question of when do we stop our algorithm. The approach

presented here involves a method designed to damp the iteration, thus avoiding noise

amplification regardless of how long the algorithm is run. This means one can iterate

for as long as time allows with some assurance that iteration n+ 1 will not be worse

than iteration n.
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The damping routine looks at the statistics of each data set and compares it

to the models statistics. When the variance of the model approaches the variance of

the data, that pixel is damped. Stated mathematically for the image plane and pupil

plane respectively

K−1

K∑
k=1

(dki − î)2 < α ∗ σ2
i (6.38)

K−1

K∑
k=1

(dkr − R̂)2 < β ∗ σ2
r (6.39)

where σ2
i and σ2

r are the measured variance of each data set and α and β are user

chosen values to determine the degree of damping; î and R̂ are defined as

î(U) =
∑
X

onew(X)si(U −X) (6.40)

R̂(Ψ) =
∑
X

onew(X)onew(Ψ +X) (6.41)

Using the above criteria we can create two binary maps, mi and mr, that will

damp the iteration for the pixels where the criteria are satisfied. The values of the

binary maps will be set 1 for every pixel where the criteria are satisfied, otherwise

the value is zero. The maps are updated at each iteration. The maps are applied to

the update equation so that where ever the map equals 1 the data and the model are

forced to be equal, essentially stopping that pixel from changing for that iteration.

Using these criteria we restate Equations 6.36 and 6.37

ρ(Ψ) =
bsp(Ψ) + c

[
(1−mr)[R0 ∗ sp](Ψ) +mr

[
dr−bsp

c

]]
σ2(Ψ)

(6.42)

onew(X) = oold(X)

[[
(1−mi)

di
iold

+mi

]
? si

]
(X) + c

[
dr
σ2 ? Φ1

]
(X) + c

[
dr
σ2 ∗ Φ2

]
(X)[[

(1−mi)
di+M
iold+M

+mi

]
? si

]
(X) + c [ρ ? Φ1] (X) + c [ρ ∗ Φ2] (X)

(6.43)
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where mi and mr are the binary maps applied to the image and pupil data sets

respectively.

6.5 Results

The simulated data sets were created using Matlabr . Each set consists of 200

independently created frames of both pupil plane and image plane data. In order

to create the frames of data a field magnitude was defined in the object plane. A

random phase (uniform on (−nπ : nπ]) was added to every point in the field. Each

phase is independent of every other phase in the field. The target was sampled at the

Nyquist rate required by the pupil plane aperture. The sample rate, ∆, is calculated

according to

∆ =
λz

2Dpupil

(6.44)

where λ is the optical wavelength, z is the propagation distance, and Dpupil is the

diameter of the aperture. This field is then propagated to the pupil plane using a

Fourier transform. It can be shown that due to the random phase in the target field

any propagation, regardless of propagation length, can be modeled as a Fraunhoffer

propagation and therefore a simple Fourier transform. The pupil plane aperture

function was then imposed on the field; after taking the magnitude squared of the

field and adding photon and read noise we arrive at our raw pupil plane data. The

imaging aperture function and the turbulence phase screen was then applyed to the

pupil plane field and another Fourier transform was performed to give us the image

plane field; the magnitude squared gives us the image plane intensity. Photon and

read noise were added in the image plane.

After the data sets were created, three image recovery algorithms were run: 1)

deconvolution [25], 2)Correlography [21] and 3)the joint algorithm. For each algorithm

the raw image data is used as the initial estimate. It is often difficult to chose metrics

to quantify the quality of a recovered image, since for almost any metric an object

estimate can be chosen that is much better or worse than the chosen metric implies.
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Initially mean absolute error (MAE) was chosen as a metric. MAE is defined as

MAE = (NM)−1

N,M∑
n=1,m=1

|o− ô| (6.45)

This metric was quickly discarded as the errors were excessively large for estimates

that were shifted with respect to the truth object. To avoid this problem we choose

a slightly more complicated metric that is translation invariant [9]

Er = min
u0,v0

∑
|ô(u− u0, v − v0)− o(u, v)|2∑

|o(u, v)|2
(6.46)

which is more easily calculated as

Er =
rôô(0, 0) + roo(0, 0)− 2 maxu0,v0 Re{roô(u0, v0)}

roo(0, 0)
(6.47)

where roo and rôô are autocorrelations of the object and the estimate, and roô is the

cross correlation. An estimator will seek to minimize this metric, Er.

The truth target, seen in Figure 6.1 was coherently illuminated and the reflected

energy was propagated along a turbulent path to a imaging system seen in Figure 6.2.

The measured intensity was recorded and sent to the image recovery algorithms.

6.5.1 Baseline Results. Figure 6.3 show the results of the joint algorithm

compared to the results of the deconvolution algorithm for 3500 iterations with D
r0

=

10. As predicted the joint algorithm give better results at every iteration. For this

comparison each algorithm was run with the same data set and using the same starting

image. Figure 6.4 show the recovered image from each algorithm; clearly the joint

algorithm recovers much more of the high frequency detail.

To fully quantify how well the joint algorithm works we must look at more than

just a single data set. One hundred different data sets were created and the joint

algorithm run for 3500 iterations on each; the results are shown in Figure 6.5. This

graph demonstrates that the algorithm results have a reasonably low variance.
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(a) Truth

(b) Raw Data

Figure 6.1: Truth image used for all simulations and one realization of raw image
data
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Figure 6.2: Notional system architecture

Figure 6.3: Plot showing how the results of the joint algorithm compares to the
results from deconvolution
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(a) Deconvolution

(b) Joint

Figure 6.4: Recovered image from each algorithm at 3500 iterations
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Figure 6.5: Results joint algorithm run on 100 data sets. The mean was plotted
with error bars showing one standard deviation of the data.

The next step in algorithm validation was to verify that the damping of the

algorithm was working properly. Figure 6.6 shows Er for 3500 iterations of both the

damped and the undamped joint algorithm. It should be clear that without damping

a very accurate stopping criteria would be needed. The damped algorithm removed

the need for a stopping criteria at the expense of speed. Both algorithms ultimately

give about the same quality of recovered image. Figure 6.7 show the recovered images

at varying number of iterations; it is important to note that the image is very stable

and very little change occurs between 3500 and 10000 iterations. From an application

stand point the damped algorithm is run for as long as time allows without the fear

of over iterating. In real time applications the undamped algorithm can be used for

speed, but with the risk of iterating beyond an optimal solution.

In order to compare the results of the new algorithm to existing pupil plane

method a 500 frame data set was simulated and processed using traditional imaging

correlography techniques [21]. The results of these simulations are shown in Figure 6.8.
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Figure 6.6: Plot showing how the results of the undamped joint algorithm compare
to the results of the damped joint algorithm

Clearly the images recovered by the new algorithm have less speckle. Correlography

requires many more frames of data to overcome this speckled appearance. It should

also be noted that the new algorithm does not require a human in the loop; correl-

ography techniques require the removal of a dc term (from the PSF of the aperture)

to be removed from the data prior to image recovery, while the new algorithm does

this automatically. Further the new algorithm also provides a repeatable result by

damping the iterations.

6.5.2 Varying the number of data frames. In order to fully understand

algorithm performance it is necessary to show results as a function of the number of

frames of data. Figure 6.9a shows Er as a function of the number of frames. There

should be two things you notice from this plot: (1) Er increases as the number of

frames decreases and (2) the damping criteria appears to break down for low frame

counts. The fact that Er increases with lower frame counts should come as no surprise;

our model is based on the limit as the number of frames increases without bound,
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(a) 1500 Iterations (b) 3500 Iterations

(c) 5000 Iterations (d) 7500 Iterations

(e) 10000 Iterations

Figure 6.7: Recovered image for varying number of iterations
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(a) 1500 iterations

(b) 10000 iterations

Figure 6.8: Results of imaging correlography using a 500 frame data set
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(a) (b)

Figure 6.9: Plots showing the effects of varying the number of available data frames.
(a) shows Er as a function of frames and iterations while (b) show the variance of the
estimate at each iteration for different numbers of data frames

therefore more frames gives data that more closely matches the model. Also more

frames will yield a higher SNR. As for the damping criteria breaking down, the

method does not break down, but rather we have just not chosen the optimal value

for the damping. It was hypothesized earlier in the chapter that the choice of the

damping parameter would be related to the number of frames. This reinforces that

thought, but demonstrates that it is not the linear relationship used. Figure 6.9b

shows the variance of Er as a function of frames. Clearly the variance will rise with

fewer frames of data. The reason for this is that the SNR goes down as the number

of frames goes down.

6.5.3 Effects of varying the strength of the turbulence. Since the algo-

rithm uses both pupil and image plane data, turbulence should have some effects on

the output, but not as much as a it would for a image plane only algorithm. The

joint algorithm was run for four different turbulence values; the results are shown

in Figure 6.10. Stronger turbulence clearly gives a higher error metric, however the

difference is much less pronounced than for deconvolution. To further evaluate the

effects of turbulence we turn to a subjective look at reconstructed images. Looking

at Figure 6.11 we can see that the effects of turbulence are present, but the image

degrades slowly with increasing turbulence.
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Figure 6.10: Plot showing how the results of the joint algorithm are impacted by
turbulence strength

6.5.4 Ability to recover varied intensities. Figure 6.12 shows the results of

running the recovery algorithm on a gray scale image. In the truth image the center

area has a intensity of 1 while the other regions (moving clockwise from the upper left)

have intensities of 0.1, 0.25, 0.5, and 0.75. The algorithm is not designed to recover

absolute radiometry, but it is important to be able to recover relative intensity values.

The outer regions in the recovered image have intensities of 10%, 22.6%, 44.1% and

70.8% given as a ratio to the center region intensity. Further the image contains

greater than 90% of the energy in the field of view.

6.5.5 Quantifying system resolution. The final analysis step is to define the

system resolution in a manner consistent with what was done in Chapters 4 and 5,

which was to image progressively smaller bar targets and define the system resolution

as the smallest separation that could be resolved. Recall that our criteria for resolution

is only three bars are in the recovered image and the intensity in the valleys must be
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(a) D
r0

= 5 (b) D
r0

= 7.5

(c) D
r0

= 10 (d) D
r0

= 20

Figure 6.11: Recovered image for varying turbulence strengths

80



(a) Truth Object (b) Recovered image

Figure 6.12: Gray Scale recovered images

less than half the intensity of the peak. The results are shown in Figure 6.13; the

joint algorithm was able to resolve bars separated by only three pixels.

6.6 Conclusion

The joint algorithm proposed here provides an image recovery method that is

less affected by turbulence than deconvolution and suffers from fewer stagnation prob-

lems than other pupil plane algorithms. The algorithm design also avoids problems

such as noise amplification and image decimation commonly associated with over

iterating.

This work was performed as an initial step in implementing a high resolution

LADAR system using multiple data sets. In the simulations for this paper the image

plane and pupil plane data sets were collected through identical apertures; this does

not have to be the case. A major benefit to this algorithm is the pupil plane data

can be collected using a conformal array, while the imaging portion is made small

enough to be installed in current imaging platforms. This has the potential to allow

for higher resolution images without greatly increasing system volume. Since the

changes to the imaging chain are only software changes the pupil plane array could

be added to augment existing imaging systems rather than building entirely new.
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(a) Truth Object (b) Raw Image Data

(c) Recovered Image (d) Slice through the recovered
image

Figure 6.13: Quantification of the resolution of the joint algorithm
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VII. Conclusion

Three image recovery algorithms for use with coherent illumination have been derived

and implemented. The first was a minor modification to the stopping criteria of a

previous work [23], while the other two are new work entirely. All the algorithms

are based on maximum likelihood methods. Each algorithm was evaluated using

Monte Carlo simulations. The improvement of the joint algorithm over the image

plane (deconvolution) algorithm or pupil plane algorithm alone will provide a jump

in operational capability. The design of the algorithm should also allow for easy

hardware implementation.

7.1 Summary of results

In the previous chapters the results of each algorithm were analyzed and docu-

mented. The analysis for each included

1. Quantifying the resolution of each algorithm under identical conditions

2. Quantifying the ability of each algorithm to recover relative radiometry

3. Showing the effects of turbulence strength on the recovered images

4. Showing the effects of the number of data frames on the recovered images

The resolution of each algorithm was defined in terms of pixels using simple bar

targets. For identical aperture sizes and turbulence parameters the resolution of each

system is 10 pixels for deconvolution, 5 pixels for the pupil algorithm and 3 pixels

for the joint algorithm. Figure 7.1 shows the smallest resolvable bar target for each

algorithm.; clearly the gained resolution is significant.

Both deconvolution and the joint algorithm were able to recover the relative ra-

diometry while the pupil algorithm was not. This is easily explained by the symmetry

of the data model for the pupil plane data. This shows the importance of the image

plane to the joint algorithm.

For deconvolution and the joint algorithm the effects of turbulence were ana-

lyzed. In both cases stronger turbulence gives a degraded reconstruction, but the
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(a) Deconvolution (b) Pupil Algorithm

(c) Joint Algorithm

Figure 7.1: Comparison of resolution of each algorithm. Each sub figure shows the
smallest resolvable bar target for each algorithm
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degradation is much less for the joint algorithm. Figure 7.2 shows the error in the

reconstruction for varying turbulence strengths. Only in the case of very week tur-

bulence does the joint algorithm not outperform deconvolution. Although in weak

(a) D
r0

= 20 (b) D
r0

= 10

(c) D
r0

= 7.5 (d) D
r0

= 5

Figure 7.2: Comparison of turbulence effects on each algorithm.

turbulence deconvolution numerically out performs the joint algorithm, a subjective

look at two recovered images, Figure 7.3, shows the difference is negligible.

Finally in all cases the results are improved dramatically by adding more frames

of data. This is due to the fact that both image plane and pupil plane data models

are based on limit functions as the number of frames goes to infinity.
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(a) Deconvolution (b) Joint Algorithm

Figure 7.3: Comparison of images in weak turbulence (D
r0

= 5).

7.2 Significant Contributions

1. A new more robust stopping criteria was established for use with deconvolution

algorithms. The stopping criteria is based on the statistics of the data and the

model and requires no a priori knowledge of the object being imaged.

2. A new pupil plane imaging algorithm was developed. The new algorithm has a

unique stopping criteria and can deal with the dc term imposed on the data by

the aperture function without a human in the loop.

3. A joint image and pupil plane algorithm was developed. This algorithm capital-

izes on the strengths of both algorithms and has been shown to be more robust

to turbulence than the other algorithms. The joint algorithm consistently pro-

vides better results (in terms of our chosen metric) than the other algorithms

except in the case of extremely weak turbulence.

4. The joint algorithm was shown to be much less sensitive to turbulence than

image plane algorithms. This was shown in both simulation and analytically

(see Appendix B).
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7.3 Recommended Future Work

1. Develop an optimized rule for selecting the damping parameter. This work

has demonstrated some relationship between the damping parameter and the

number of frames, but it is not optimized and breaks down at low frame counts.

2. Use a pupil array larger than the imaging aperture. The original intent of

this effort was to form a large synthetic array; by letting the pupil array be

larger than the imaging aperture it may be possible to recover additional high

frequency details

3. Investigate the benefits of adding a phase diversity plane. This will likely yield

little or no improvement since it will be blurred by turbulence much the same

as the focal plane, however it may be interesting to look at.

4. Choose a better maximization algorithm. This algorithm seeks to maximize a

likelihood function using a type of gradient accent similar to what was used by

Richardson and Lucy. This may not be the best maximization algorithm; other

methods may be better or faster.

7.4 Possible Applications of this Research

There are three primary application areas for this research

1. Augment existing imaging systems by adding a pupil plane detection capability

2. Build light weight imaging systems using conformal arrays

3. Implement synthetic aperture ladar systems for space based applications

Each of these application areas will be discussed briefly.

7.4.1 Augmentation of existing systems. Since the addition of the pupil

plane data does not affect the image plane data, this algorithm could be applied

to existing imaging systems by simply adding a pupil plane detector. This is an

important consideration in terms of development cost and schedule. For example a
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space observation telescope (like the Starfire Optical range) that already images space

objects through the atmosphere could add a beam splitter in the optical path and re-

image the pupil plane and collect the pupil data without interfering with the imaging

path (other than refocusing the system). This would allow for higher resolution

imagery at a lower cost than a full system redesign. One implied assumption is that

the telescope is imaging laser illuminated objects. This gives an upgraded capability

for Space Situational Awareness (SSA).

7.4.2 Conformal Arrays. Many of the Air Forces ISR assets are being flown

on Unmanned Aerial Systems (UAS). Since these systems are small (as compared to

more traditional collection platforms), there is a need for the optical systems to be

light weight. This precludes the use of traditional large aperture imaging systems.

Also ISR assets have to deal with turbulence so some mitigation is needed. A con-

formal array to collect pupil plane data, which (like the above scenario) could be

used to augment the existing imager, could be added to the skin of the aircraft. This

gives a larger (turbulence resistant) aperture capability will very little added weight

or volume.

7.4.3 Synthetic aperture LADAR. The final application area to be discussed

is synthetic aperture LADAR. This is a challenging problem due to the difficulty of

measuring the phase in optical systems. The algorithm proposed by this research

avoids that problem by implementing a pupil plane recovery algorithm that does not

require a phase measurement. An array of sub-apertures could be formed to collect

pupil intensity and this intensity used along with a low resolution image. The real

benefit of synthetic aperture ladar would be in building space based systems where

high resolution is needed, but it is not feasible to use large monolithic apertures.

88



Appendix A. Important Proofs

A.1 Introduction

This appendix is intended to provided detailed proofs of critical equations.

A.2 Equation 6.6

Prove:

lim
J→∞

J−1

J∑
n=1

|Rn(ξ)|2 = b|h(ξ)|2 + cR(ξ) ∗ |h(ξ)|2 (A.1)

where ξ is a two dimensional variable in the object plane.

Proof :

Given: Rn(ξ) is a single frame of speckled autocorrelation data, |h(ξ)|2 is the

point spread function, b and c are constants and R(ξ) is the true autocorrelation of

the obejct brightness function.

It is helpful to notice that the left side of Equation A.1 is an ensemble average

of speckled object autocorrelations. Since that phase associated with the surface

roughness of the target is the only random part, and it changes each coherence time,

we can rewrite this ensemble average as a time average (assuming we average over

many coherence times).

〈
|Rn(ξ)|2

〉
= b|h(ξ)|2 + cR(ξ) ∗ |h(ξ)|2 (A.2)

The speckled autocorrelation, Rn can be written as

Rn(ξ) = [fn(ξ, t) ? fn(ξ, t)] ∗ h(ξ) (A.3)

where ? and ∗ represent correlation and convolution respectively, and fn(ξ, t) =

a(ξ)ejφ(ξ,t) is the object field distribution. By applying the autocorrelation theorem

this can be rewritten as

Rn(ξ) = F−1
{
|F {fn(ξ, t)} |2H(x)

}
(A.4)
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By plugging Equation A.4 in to the left side of Equation A.2 we get

〈
|F−1

{
|F {fn(ξ, t)} |2H(x)

}
|2
〉

(A.5)

First we will expand the inner magnitude squared term

|F {fn(ξ, t)} |2 =

∫ ∞
−∞

∫ ∞
−∞

a(ξ1)a(ξ2)ej[φ(ξ1,t)−φ(ξ2,t)]e−jkx(ξ1−ξ2)H(x)dξ1dξ2 (A.6)

where k = 2π
λz

. Next we take an inverse Fourier transform

F−1
{
|F {fn(ξ, t)} |2

}
=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

a(ξ1)a(ξ2)ej[φ(ξ1,t)−φ(ξ2,t)]e−jkx(ξ1−ξ2)H(x)ejkξxdξ1dξ2dx

(A.7)

Now taking the magnitude squared of this value we arrive at

|F−1
{
|F {fn(ξ, t)} |2

}
|2 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

a(ξ1)a(ξ2)a(ξ′1)a(ξ′2)

ej[φ(ξ1,t)−φ(ξ2,t)−φ(ξ′1,t)+φ(ξ′2,t)]e−jkx1(ξ1−ξ2)ejkx2(ξ′1−ξ′2)

H(x1)H∗(x2)ejkξ(x1−x2)dξ1dξ2dξ
′
1dξ
′
2dx1dx2 (A.8)

Taking the time average yields

〈
|F−1

{
|F {fn(ξ, t)} |2

}
|2
〉

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

a(ξ1)a(ξ2)a(ξ′1)a(ξ′2)〈
ej[φ(ξ1,t)−φ(ξ2,t)−φ(ξ′1,t)+φ(ξ′2,t)]

〉
e−jkx1(ξ1−ξ2)ejkx2(ξ′1−ξ′2)

H(x1)H∗(x2)ejkξ(x1−x2)dξ1dξ2dξ
′
1dξ
′
2dx1dx2 (A.9)

Looking at just the time dependent piece it we notice that

〈
ej[φ(ξ1,t)−φ(ξ2,t)−φ(ξ′1,t)+φ(ξ′2,t)]

〉
= δ(ξ1 − ξ′1, ξ2 − ξ′2) + δ(ξ1 − ξ2, ξ

′
1 − ξ′2) (A.10)
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where δ is a Dirac delta function. Taking advantage of the sifting property of the

Dirac delta function, we now can write

〈
|Rn(ξ)|2

〉
=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

a2(ξ1)a2(ξ′1)H(x1)H∗(x2)ejkξ(x1−x2)dξ1dξ
′
1dx1dx2

+

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

a2(ξ1)a2(ξ2)e−jk(x1−x2)(ξ1−ξ2)

H(x1)H∗(x2)ejkξ(x1−x2)dξ1dξ2dx1dx2(A.11)

Next we make the following substitutions

u = x1 − x2 (A.12)

dx2 = −du (A.13)

w = ξ1 − ξ2 (A.14)

dξ2 = −dw (A.15)

which allows us to write

〈
|Rn(ξ)|2

〉
= −

∫ ∞
−∞

∫ ∞
−∞

a2(ξ1)a2(ξ′1)dξ1dξ
′
1

∫ ∞
−∞

∫ ∞
−∞

H(x1)H∗(x1 − u)dx1e
jkξudu

+

∫ ∞
−∞

∫ ∞
−∞

a2(ξ1)a2(ξ1 − w)dξ1

∫ ∞
−∞

∫ ∞
−∞

H(x1)H∗(x1 − u)dx1e
−jku(w−ξ)dudw(A.16)

Since H is the pupil function, we know (from Fourier Optics) that the autocorrelation

of H is the Optical Transfer Function (OTF), H, defined as

H(u) =

∫ ∞
−∞

H(x1)H∗(x1 − u)dx1 (A.17)

and the inverse Fourier transform of the OTF is the point spread function (PSF)

times a constant

F−1 {H(u)} = K|h(ξ)|2 (A.18)
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Using this relationship and taking advantage of the symmetry of the PSF we can

write

〈
|Rn(ξ)|2

〉
= b|h(ξ)|2 +

∫ ∞
−∞

∫ ∞
−∞

a2(ξ1)a2(ξ1 − w)dξ1K|h(w − ξ)|2dw (A.19)

Finally we must recognize that

R(w) =

∫ ∞
−∞

a2(ξ1)a2(ξ1 − w)dξ1 (A.20)

is the autocorrelation of the object intensity. Using this we can arrive at

〈
|Rn(ξ)|2

〉
= b|h(ξ)|2 + c

∫ ∞
−∞

R(w)|h(w − ξ)|2dw (A.21)

which is simply

〈
|Rn(ξ)|2

〉
= b|h(ξ)|2 + cR(ξ) ∗ |h(ξ)|2 (A.22)
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Appendix B. Algorithm insensitivity to atmosphere

B.1 Problem Statement

Given a field at a laser illuminated target, g(X) = a(X)ejφ(X,t), where a is the

amplitude of the field and φ is a random phase distributed uniformly on (−π, π] that

is statistically independent in both space and time. Now add a Kolmogorov phase

screen at the target, θ(X, t), and aperture, ψ(Λ), plane. Prove that the time average of

the modulus squared of the Inverse fourier transform of the intensity at the receiving

aperture in the Fraunhofer region is unaffected by these two phase screens.

B.2 Solution

The field in the aperture plane is found by taking a Fourier Transform of the

field in the target plane:

F2

{
a(X)ejφ(X,t)

}
=

∫ ∞
−∞

a(X)ejφ(X,t)ejθ(X,t)e−
2π
λz

(XΛ)dX (B.1)

where θ is the phase imparted by the phase screen at the target. adding the phase

screen at the aperture and taking the magnitude squared of this quantity yields

∫ ∞
−∞

∫ ∞
−∞

a(X1)a(X2)ej(φ(X1,t)+θ(X1,t)−φ(X2,t)−θ(X2,t)) · · ·

e−
2π
λz

[(X1−X2)Λ]dX1dX2 · · ·

ej(ψ(Λ,t)−ψ(Λ,t)) (B.2)

where ψ is the phase screen in the aperture. It should be clear that it has no influence

in the result since

ej(ψ(Λ,t)−ψ(Λ,t)) = 1 (B.3)

Equation B.2 represents a short exposure intensity in the aperture plane. The next

step in the proof is to take the inverse Fourier transform of this quantity and then
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take the modulus squared of that result

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

a(X1)a(X2)a∗(X ′1)a∗(X ′2) · · ·

ej(φ(X1,t)+θ(X1,t)−[φ(X2,t)+θ(X2,t)]−[φ(X′1,t)+θ(X
′
1,t)]+φ(X′2,t)+θ(X

′
2,t)) · · ·

e−
2π
λz

[(X1−X2)Λ1]e
2π
λz

[(X′1−X′2)Λ2] · · ·

e
2π
λz

[(Λ1−Λ2)Ψ]dX1dX2dX
′
1dX

′
2dΛ1dΛ2 (B.4)

Next we take the time average of this quantity

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

a(X1)a(X2)a∗(X ′1)a∗(X ′2) · · ·〈
ej(φ(X1,t)+θ(X1,t)−[φ(X2,t)+θ(X2,t)]−[φ(X′1,t)+θ(X

′
1,t)]+φ(X′2,t)+θ(X

′
2,t))
〉
· · ·

e−
2π
λz

[(X1−X2)Λ1]e
2π
λz

[(X′1−X′2)Λ2] · · ·

e
2π
λz

[(Λ1−Λ2)Ψ]dX1dX2dX
′
1dX

′
2dΛ1dΛ2 (B.5)

It was possible to move the time average operation inside the integrals due to the fact

that both are linear operations and only φ and θ have a time dependence.

To eliminate the effects of the phase screen at the target we need to show that

the composite random variable, z = φ+θ, is uniform and uncorrelated. The first step

is to write the joint pdf of z at two points in space. If this pdf is uniform and has a

no spatial correlation we have shown that θ does not change the phase distribution.

pz(z1, z2) =

∫ ∫
pθ(z1 − φ1, z2 − φ2)pφ(φ1, φ2)dφ1dφ2 (B.6)

We were given that φ is uniform on (−π, π] and we know the phase screens have joint

Gaussian statistics and are defined for all values of phase. This makes it necessary

to redefine the density of φ to cover all phase values. We can simplify a little by

recognizing that the area under a Gaussian curve becomes very small in the tails; this
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allows us to define the uniform density function over a finite range of phase

p′φ(φ1, φ2) =
1

2nπ
(B.7)

where φ1 ∈ (−nπ, nπ] and φ2 ∈ (−nπ, nπ] where n is an integer. The value of n is

chosen such that ∫ nπ

−nπ

∫ nπ

−nπ
pθ(θ1, θ2) ≈ 1 (B.8)

By plugging eq(B.7) into eq(B.6) it can be shown that

pz(z1, z2) =
1

2nπ

∫ nπ

−nπ

∫ nπ

−nπ
pθ(z1 − φ1, z2 − φ2)dφ1dφ2 (B.9)

If we plug in θ1 = z1 − φ1, θ2 = z2 − φ2, dφ1 = −dθ1, and dφ2 = −dθ2 we can write

pz(z1, z2) =
1

2nπ

∫ nπ

−nπ

∫ nπ

−nπ
pθ(θ1, θ2)dθ1dθ2 (B.10)

which gives us

pz(z1, z2) ≈ 1

2nπ
(B.11)

which is clearly uniform and uncorrelated.
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Appendix C. Investigation of the spatial independence of speckle noise

For speckle noise to be truly independent from pixel to pixel the average speckle size

must be smaller than a pixel. We have to test this assumption in both the image

plane and the pupil plane. We will look first at the pupil plane.

Dr. Joseph Goodman developed a measure for the average size of a speckle lobe

in any non-imaged plane [18]. By assuming the object has uniform brightness one can

find the average area of a speckle lobe by

Sc =
λ2z2

A
(C.1)

where λ is the wavelength of the optical radiation, z is the propagation length, and A

is the area of the target. If we lift the uniform brightness restriction the expression is

Sc = λ2z2

∫∞
−∞

∫∞
−∞ I

2(u, v)dudv[∫∞
−∞

∫∞
−∞ I(u, v)dudv

]2 (C.2)

The above equations give an expression for the area of a speckle lobe. There is no

expression for the linear dimensions of a speckle lobe, but taking the square root of

the area will yield a good approximation.

The speckle size in the image plane is found by assuming the pupil aperture is

a uniformly bright source and using the image distance as the propagation distance.

For the geometry used in this research, the speckle correlation extends over a

few pixels (3-5), so the assumption of independence is not strictly true, but does not

depart from it significantly.
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