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A B S T R A C T

This paper presents a method to control both the shape and polarization of a beam in the far field using a vector
Schell-model source. Given a desired far-zone beam shape and polarization, and applying Fourier and statistical
optics theory, we derive the requisite second-order moments of said source, discuss what aspects of the far-zone
beam can be controlled, and develop a step-by-step procedure for synthesizing the required random vector field
instances. We validate this approach with Monte-Carlo wave-optics simulations. The results are found to be in
very good agreement with the desired far-zone beam characteristics. The beam-shaping technique developed in
this paper will find use in optical trapping, optical communications, directed energy, remote sensing, and
medical applications.

Introduction

Designing light’s shape, polarization, and coherence has numerous
applications including optical trapping, optical communications, di-
rected energy, remote sensing, and medicine [1–5]. For this reason, the
literature is replete with scalar and vector sources, with partial spatial
coherence, that have interesting and complex behaviors, e.g., beams
that self focus, self steer, self split, rotate, et cetera [6–13].

Physically realizing, or synthesizing, these sources is also a very
active area of research. The most common approach is to use one or
more spatial light modulators in an interferometer-like set-up to gen-
erate vector field instances [1–4,14–21]. The plethora of vector beams
that can be synthesized using this technique is quite extraordinary
[2,3,14–16,19–23].

The primary objective of these efforts has been to generate the
desired source, i.e., control the field’s shape, polarization, or co-
herence, in the source plane. Few studies have dealt with controlling
these parameters at another axial location—at the focus of a lens, for
instance. This ability is crucial for all the applications listed above. Of
the studies that focused on controlling beam parameters at the focus of
a lens (or equivalently, in the far zone of the source), all have dealt
with scalar partially coherent sources and only controlled beam shape
[24–27].

In this paper, we extend the prior scalar work to control both beam
shape and polarization in the far zone of the source. Using Fourier and

statistical optics theory, we first derive expressions for the spatial
correlation functions (or via Fourier transforms, the spatial power
spectra) of a vector Schell-model source that radiates a beam with
desired, or designed, far-zone shape and polarization properties. We
discuss what aspects of the resulting beam can be controlled, and
develop a procedure (or recipe) to synthesize the required vector field
instances.

Next, we validate the analysis and synthesis procedure with
Monte-Carlo wave-optics simulations. As a proof of concept, we syn-
thesize vector Schell-model sources that radiate far-zone beams with
shapes and polarization parameters that are complex grayscale
images. We quantitatively assess the results by computing the corre-
lation coefficients versus trial number to study the convergence of the
random vector field instances to the desired shape and polarization
images.

Lastly, we conclude with a summary of the work presented in the
paper and a brief list of potential applications.

Theory

Here, we present the underlying Fourier and statistical optics theory
necessary to design a vector Schell-model source that radiates a far-
zone beam with a desired shape and polarization properties. In the first
half of this section, we discuss the theoretical assumptions, present a
model for stochastic vector fields, derive the statistical far-zone
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behavior of the random vector fields, and lastly, show how to generate
vector field realizations with desired statistics. In the latter half of this
section, we delve into the mathematical particulars of controlling the
far-zone beam’s shape and polarization. We derive expressions for the
required statistics of the vector Schell-model source, and discuss what
aspects of the beam can be controlled. We close this section with an
enumerated procedure, which concisely summarizes the theory pre-
sented herein and provides a recipe for generating optical fields that, in
the far field, result in a beam with desired complex shape and polar-
ization characteristics.

Preliminaries

Assumptions
The goal here is to design a vector partially coherent source that

produces a far-zone beam with desired shape (or intensity) and po-
larization properties. To this end, we make two assumptions that
significantly simplify the analysis, while not overly restricting the
applicability. The first is that the shapes of the field’s x and y com-
ponents (also called the component spectral densities, Sx and Sy, re-
spectively) are equal in the source plane. This has the physical con-
sequence that the polarization state across the source is uniform
[4,28,29]. The second assumption is that the vector spatial correlation
functions are much narrower (are fast functions) compared to the
associated component spectral densities. This assumption is known in
the literature as the quasi-homogeneous approximation, and the par-
tially coherent source is referred to as a quasi-homogeneous electro-
magnetic source [4,30]. The cross-spectral density (CSD) matrix W for
such a source is

=
+ +

W S S µ( , )
2 2

( ),ij i j ij1 2
1 2 1 2

1/2

1 2 (1)

whereWij is the i j,th th element of SW, i is the spectral density of the ith

field component, µij is the cross-correlation function between the ith

and jth field components, and =i j x y, , . The transverse position vec-
tors 1 and 2 are = +x yx y1,2 1,2 1,2.

Stochastic vector field
Let an instance of a random optical vector field be

= +E x yC A T C A T( ) ( ) ( ) ( ) ( ),x x y y (2)

where Ci is the complex amplitude and Ti is the stochastic complex
transmittance screen for the ith component of the field, respectively. A is
the amplitude function (beam shape) of the source; recall that

= =A A Ax y .
Taking the vector autocorrelation of (2) to form W [4,28,29] pro-

duces

= =W E E C C A A T T( , ) ( ) ( ) ( ) ( ) ( ) ( ) ,ij i j i j i j1 2 1 2 1 2 1 2 (3)

where is the average taken over all complex screen realizations. By
comparing this result to (1), it is clear that

=
=

S C A
µ T T

( ) | | ( )
( ) ( ) ( ) .

i i

ij i j

2 2

1 2 1 2 (4)

Note that C Carg( )x y is generally a free parameter and comes into play
when dealing with circular polarization. We return to these expressions
later in the paper.

Far-zone W( , )
To control the intensity and polarization in the far zone, we require

the far-zone, single-point W, i.e., W evaluated at = =1 2 . This can
be found by propagating the Wij in (3) to the far field (a four-dimen-
sional spatial Fourier transform [28,31]) and evaluating the resulting
expression at = =1 2 . This expression takes the form

=

×

W z
C C

z
A A µ

k
z

( , , )
( )

( ) ( ) ( )

exp j ( )· d d ,

ij
i j

ij2 1 2 1 2

1 2
2

1
2

2 (5)

where =k 2 / , is the wavelength, and z is the distance to the far-
field observation plane. Making the variable transformations =s 1 and

=t 1 2 simplifies (5) to

=

×

t t

s s t

W z
C C

z
µ k

z

A A s t

( , , )
( )

( )exp j ·

( ) ( )d d .

ij
i j

ij2

2 2
(6)

The amplitude function integrals are equal to the autocorrelation of
A, represented hereafter as t( ). Recall that A was assumed to vary
much more slowly (be much broader) than µij—the source was assumed
to be an electromagnetic quasi-homogeneous source. This means that
also varies much more slowly than µij, such that

=

( )
( )

t tW z µ t( , , ) (0) ( )exp j · d

(0) ,

ij
C C

z ij
k
z

C C

z ij z

( )
2

( )

i j

i j

2

2 (7)

where ij, by the Wiener-Khinchin theorem [28,29,31], is the spatial
cross-power spectrum of the ith and jth field components.

Eq. (7) is a specialization of the generalized van Cittert-Zernike
theorem [28,31] and has been used in the past to generate a scalar
Schell-model source which produces any desired shape in the far
field [24–27]. Here, we use it to generate a vector Schell-model
source that radiates a beam with a desired shape and polarization
characteristics.

In contrast to the prior scalar work where any shape could be pro-
duced, here, the correlation functions of the x and y components of the
field (µxx and µyy, respectively) ultimately determine the vector cross-
correlation function µxy. This fundamentally limits what we can control.
We discuss this in more detail in the following sections.

T T,x y, and µxy
To produce an instance of a vector source, given in (2), that

radiates a beam with the far-zone, single-point Wij given in (7), one
must generate Tx and Ty with the proper statistics. The most common
way of achieving this is to spatially filter two, two-dimensional ar-
rays (one representing Tx , the other Ty) of circular complex, Gaussian
random numbers [4,15,17,18,32–34]. The x and y spatial filters are
related to the corresponding vector spatial correlation functions,
namely, µxx and µyy. For computational efficiency, it is best to per-
form the filtering in the spectral domain using the convolution the-
orem.

To produce a source that radiates a beam in a general polarization
state, µ 0xy , which means that Tx and Ty must be generated from
correlated Gaussian random numbers. To see how the statistics ofTx and
Ty affect µxy, we note that a realization of discrete Tx (or Ty) can be
produced by [15,24,26,32]

=T k l r m n m n
L L N

mk
N

nl[ , ] [ , ] [ , ]
2

exp j2 exp j 2 ,x
m n

x
xx

x y x y (8)

where k l, are discrete spatial indices, m n, are discrete spatial fre-
quency indices, N N,x y are the numbers of grid points in the x y, di-
rections, = =L N L N,x x y y are the lengths of the grid in the x y,
directions in meters, and is the grid spacing. In (8), rx is an ×N Ny x
grid of zero-mean, unit-variance circular complex Gaussian random
numbers and xx is the spatial power spectrum of the x field component,
i.e., the Fourier transform of µxx .

Note that (8) is the inverse Fourier transform of the product of two
Fourier transforms (rx and xx ), and is physically equivalent to fil-
tering white noise. Eq. (8) is in the form of a discrete inverse Fourier
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transform, and therefore, we can use the fast Fourier transform algo-
rithm to quickly realize Tx .

The moment µxy is formed by taking the cross-correlation of (8) with
Ty, namely,

=

× ( ) ( )( ) ( )

T k l T k l

m n m n

m k n l m k n l

[ , ] [ , ]

[ , ] [ , ]

exp j exp j exp j exp j .

x y

m n m n

r m n r m n
L L xx yy

N N N N

1 1 2 2

[ , ] [ , ]
2 1 1 2 2

2
1 1

2
1 1

2
2 2

2
2 2

x y
x y

x y x y

1 1 2 2

1 1 2 2

(9)

The moment =r m n r m n m m n n[ , ] [ , ] 2 [ ] [ ]x y1 1 2 2 1 2 1 2 , where
is the correlation coefficient between the rx and ry random numbers and

n[ ] is the discrete Dirac delta function. This simplifies (9) to

=

×

T k l T k l m n m n

L L N
m k k

N
n l l

[ , ] [ , ] [ , ] [ , ]

1 exp j 2 ( ) exp j 2 ( ) .

x y
m n

xx yy

x y x y

1 1 2 2

1 2 1 2

(10)

Recall from (4) that =µ T T( ) ( ) ( )ij i j1 2 1 2 . For this to be
true, xx yy in (10) must equal xy. In practice, this means that the
“self” power spectra set the cross-power spectrum, and subsequently,
we can only simultaneously control two of the four polarization para-
meters, e.g., the intensity plus the degree of polarization or the intensity
plus the ellipticity angle. We discuss this further below.

Before proceeding to the next topic, we substitute the above result
into (7) as it will be useful in the analysis to follow:

=

=
=

( ) ( )W z

i j
i j

( , , ) (0)

1
0 1 .

ij
C C

z ij xx z yy z

ij

( )
i j

2

(11)

For convenience, we let

=
z

C
z z

| | (0)
( )ii
i

ii
2

2 (12)

transforming (11) to

=W z
z z

( , , ) exp[j( )] ,ij x y ij xx yy
(13)

where = Carg( )i i .

Far-zone polarization control

Here, in the second half of Section “Theory”, we present the ana-
lytical details of controlling the far-zone beam’s shape and polarization.
We also discuss what characteristics of the far-zone beam can be con-
trolled. We begin by introducing the far-zone Stokes and Poincaré
sphere parameters, and derive expressions for them in terms of the self-
power spectra introduced above.

Polarization parameters
With (13), we can derive relations for the far-zone Stokes and

Poincaré sphere parameters in terms of xx and yy. The Stokes para-
meters in terms of the CSD matrix elements and Poincaré sphere
parameters are

= +
=
=
= +
=
=
=

S z W z W z
S z W z W z

S z z z z
S z W z W z

S z z z z
S z W z W z

S z z z

( , ) ( , , ) ( , , )
( , ) ( , , ) ( , , )

( , ) ( , )cos[2 ( , )]cos[2 ( , )]
( , ) ( , , ) ( , , )

( , ) ( , )sin[2 ( , )]cos[2 ( , )]
( , ) j[ ( , , ) ( , , )]

( , ) ( , )sin[2 ( , )],

xx yy

xx yy

xy yx

yx xy

0

1

0

2

0

3

0 (14)

where S0 is the total average intensity, 0 1 is the degree of po-
larization, </2 /2 is the angle of polarization, and

/4 /4 is the ellipticity angle [4,29,35]. For brevity, we drop
the functional dependencies of the Stokes parameters, Poincaré sphere
parameters, and CSD matrix elements. Henceforth, their dependence on
and z is assumed and suppressed. Substituting (13) into the above

expressions and simplifying yields

= +
= =

= =

= =

S
S S

S S

S S

cos(2 )cos(2 )

2cos( ) sin(2 )cos(2 )

2sin( ) sin(2 ).

xx yy

xx yy

x y xx yy

x y xx yy

0

1 0

2 0

3 0 (15)

In this form, it is clear that only two polarization parameters can be
controlled at a time. It turns out that only S0 and one other parameter
can be controlled—the others , , and are dependent on each other.
In the next three sections, we derive equations for xx and yy in terms
of S0 and S, 0 and , and S0 and , respectively.

Controlling S0 and
The applicable expressions for S0 and are

= +

= =
+ + +

+

S

.

xx yy

S S S
S

0

( ) 4xx yy xx yy

xx yy

1
2

2
2

3
2

0

2 2

(16)

Solving the S0 equation for yy, substituting the resulting expression
into , and solving for xx produces

+ =S S4(1 ) 4 (1 ) (1 ) 0.xx xx
2 2

0
2

0
2 2 (17)

Using the quadratic equation yields the desired result:

= ±

= =

S

S S

1 1

1 1 .

xx

yy xx

1
2 0

1
1

0
1
2 0

1
1

2
2

2
2 (18)

Since both xx and yy must be real and positive, . Thus, ’s
minimum value is set by . This means that < 1 or cannot be
controlled.

Both roots in (18) are physical. The “+” root of xx (hereafter re-
ferred to as just the “+” root) corresponds to the case when

> >S, 0xx yy 1 , and the beam is polarized predominately in the
horizontal direction. The “ ” root of xx (hereafter referred to as just
the “ ” root) corresponds to the opposite case— < <S, 0xx yy 1 , and
the beam is polarized predominately in the vertical direction. Since S1 is
squared in (16), the root choice is irrelevant and both produce the
desired S0 and . Note that the root choice does affect the associated ,
but we are not concerned with that quantity here.

Controlling S0 and
The applicable expressions for S0 and are

= +

= =

S

.

xx yy

S
S

0

sin(2 )
cos(2 )

2 cos( )x y xx yy

xx yy
2
1 (19)

Solving the S0 equation for yy, substituting the resulting expression
into tan(2 ), and solving for xx produces

+ + + =S C C S S C C S S4( ) 4 ( ) 0,xx xx
2 2 2 2 2

0
2 2 2 2

0
2 2 (20)

where = =S Csin(2 ), cos(2 ), and =C cos( )x y . Again, ap-
plying the quadratic equation and simplifying yields the final result:
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= ±

= =

+

+

S

S S

1 1

1 1 .

xx
S

S C C

yy xx
S

S C C

1
2 0

0
1
2 0

2

2 2 2 2

2

2 2 2 2
(21)

There are several aspects of (21) that warrant discussion. If = 0,
then = = S /2xx yy 0 . This situation physically corresponds to un-
polarized light, and is undefined. Thus, > 0 or cannot be con-
trolled.

A similar thing happens when = ± m /2x y , where m is an odd
integer. Here again, = = S /2xx yy 0 ; however, in this situation, the
resulting beam is circularly polarized. When it comes to controlling ,
circular polarization is no different than random polarization, and

± m /2x y or cannot be controlled.
Lastly, inspection of (19) reveals that the signs of xx yy and C

determine the range of physically meaningful (or possible) values of .
Fig. 1 shows how these signs affect the range of . The figure depicts
in the S1-S2 plane. The polarization angle is physically limited to
( /2, /2]. For <| | /4, the beam is more horizontally polarized
than vertically polarized. This corresponds to positive >S , xx yy1 , and
the “+” root in (21). For >| | /4, the opposite is true: the beam is
more vertically polarized than horizontally polarized, < <S 0, xx yy1 ,
and the “ ” root in (21) is applicable. These are labeled in Fig. 1 as well
as the special angles = ± /4.

The sign of C — Csgn( ), where xsgn( ) is the signum function—de-
termines whether is restricted to the upper or lower quadrant of the
right-half S1-S2 plane. When =Csgn( ) 1, the physically possible values
of are between [0, /2]. This corresponds to the green region in Fig. 1.
When =Csgn( ) 1, can take on the values in the blue region,
namely, ( /2, 0].

The utility of Fig. 1 is best illustrated through an example. Let
= 0.5 and = 2 /3x y . We want to generate a vector Schell-

model source that radiates a beam with an S0 and that are grayscale
images, which are arbitrarily scaled. The S0 image scale is irrelevant;
however, the image must be mapped to a set of values that are
physically possible given Csgn( ). Here, =Csgn( ) 1, the blue region
in Fig. 1 is applicable, and the image values should be mapped to
( /2, 0]. For all values of the image less than /4, the “ ” root in
(21) should be chosen; for all values greater than /4, the “+” root in
(21) should be chosen.

Controlling S0 and
The applicable expressions for S0 and are

= +

= =
+ +

S

.

xx yy

S
S S

0

sin(2 )
cos(2 )

2 sin( )

( ) 4 cos ( )

x y xx yy

xx yy x y xx yy

3

1
2

2
2 2 2 2 (22)

Solving the S0 equation for yy, substituting the resulting expression
into tan(2 ), and solving for xx produces

+

+ + =

S C S S C

S S C S S C S S

4( )

4 ( ) 0,
xx

xx

2 2 2 2 2 2 2 2

0
2 2 2 2 2 2 2

0
2 2

(23)

where = = =S C Csin(2 ), cos(2 ), cos( )x y , and =S
sin( )x y . Once again using the quadratic equation and simplifying
yields the final result:

= ±

= =

+

+

S

S S

1 1

1 1 .

xx
S

S C S S C

yy xx
S

S C S S C

1
2 0

0
1
2 0

2

2 2 2 2 2 2 2

2

2 2 2 2 2 2 2
(24)

Like the S0 and section above, both the “+” and “ ” roots in (24)
are physical and correspond to the same scenarios described therein.
Since S1 is squared in (22), the root choice is again irrelevant and both
produce the desired S0 and .

Exactly the same as when controlling S0 and >, 0 or cannot be
controlled. = 0 corresponds to unpolarized light, and has no phy-
sical meaning.

Lastly, since xx and yy must be real and positive,
+S S C S S C2 2 2 2 2 2 2 2 . Simplifying this relation leads to the in-

equality S S . The ellipticity angle is physically limited to
[ /4, /4], and therefore, S| | |arcsin( )/2|. Thus, | |’s maximum
value is set by the value of x y wrapped into the region [ /2, /2].
The sign of S S, sgn( ), determines whether the resulting beam is right-
hand circular or left-hand circular polarization dominant—positive in
the former case, negative in the latter.

Fig. 2 shows how Ssgn( ) affects the physically meaningful (or
possible) values of . The figure shows the S2-S3 plane; the picture in
the S1-S3 plane is identical. As already stated, must be between
[ /4, /4], hence the solid lines at those angles. is further bounded
by the values ± S|arcsin( )/2|, which are represented on the figure as
dashed lines. As an example, assume that =Ssgn( ) 1. This corre-
sponds to the blue region in Fig. 2 and shows that

Fig. 1. S1-S2 plane showing the physically realizable values of .

Fig. 2. S2-S3 plane showing the physically realizable values of .
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S[ |arcsin( )/2|, 0]. The green region in Fig. 2 is associated with
=Ssgn( ) 1.

To illustrate the utility of Fig. 2, we refer back to the example dis-
cussed in the S0 and section. Let = 0.5 and = 2 /3x y . Our
goal is to generate a vector Schell-model source that radiates a beam
with an S0 and that are grayscale images, which are arbitrarily scaled.
Again, the scale of the S0 image is irrelevant. The image must be
mapped to a set of values that are physically possible given Ssgn( ).
Here, =Ssgn( ) 1, the blue region in Fig. 2 is applicable, and the
image values should be mapped to S[ |arcsin( )/2|, 0]. As previously
discussed, the root choice in (24) is irrelevant.

Theory summary

In summary, to produce a vector Schell-model source that radiates a
beam with a desired shape and polarization properties.

1. ChooseC C, ,x y , and A ( ). To some extent, these parameters can be
used to control the beam shape and polarization in the source plane.
Recall that C, arg( )x , and Carg( )y affect the polarization state in the
far zone.

2. Choose the desired S0 and , , or images.
3. Use (18), (21), or (24) (whichever is applicable) to find xx and yy.

Fig. 3. Simulation results demonstrating control of S0 and —(a) desired (or truth) S0, (b) simulated S0, (c) desired (or truth) , (d) simulated , and (e) cumulative
correlation coefficients of the simulated S0 (blue trace) and (red trace) with their associated desired quantities versus Monte-Carlo trial number. The inset in (e)
shows a “close-up” view of from trials 1000–20,000. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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(a) For controlling S0 and , the values of the desired image
should be mapped into the range [ , 1].

(b) For controlling S0 and , use Fig. 1 to determine the values to
which the desired image should be mapped.

(c) For controlling S0 and , use Fig. 2 to determine the values to
which the desired image should be mapped.

4. Use a multivariate Gaussian random number generator to produce
correlated rx and ry. The means and covariance matrix are

= = = =

= =

= +
= +

r r r r

r r r r r r r
r r r r r r r
r r r r r r r
r r r r r r r

r r r
r r r

0

( )
( )

( )
( )

1 0 0
0 1 0

0 1 0
0 0 1

j
j ,

x x y y

x x x x y x y

x x x x y x y

y x y x y y y

y x y x y y y

x x x

y y y

r i r i

r 2 r i r r r i

i r i 2 i r i i

r r r i r 2 r i

i r i i i r i 2

r i

r i
(25)

where the superscripts “r” and “i” stand for real and imaginary
parts, respectively.

5. Use (8) to generate instances of Tx and Ty. Recall that xx and yy are
related to xx and yy by (12).

6. Use (2) to generate a vector Schell-model source field realization.
7. Synthesize field realization using spatial light modulators
[2,3,15,19–21].

We demonstrate and validate the use of the above procedure via
simulation in the next section.

Validation

Here, we perform Monte-Carlo wave-optics simulations to validate
the analysis of the previous section. Before proceeding to the results, we
discuss the simulation particulars so that the interested reader can re-
produce our results, or perform a similar simulation for their own
purposes.

Simulation description

For these simulations, we used computational grids that were
= =N N 1024x y points on a side with grid spacings = 15 µm. The si-

mulated source plane field was

= +E x yx
D

y
D

T T( ) rect rect exp j 2
3

( ) ( ) ,x y (26)

where =D 7.68 mm and xrect( ) was [36]

=
<
=x

x
xrect( )

1 | | 1/2
1/2 | | 1/2
0 otherwise

.
(27)

The rectangular shape and D were chosen to correspond with a popular
model of liquid crystal spatial light modulator [37]. The simulated
wavelength was = 632.8 nm.

The Tx and Ty were generated following the procedure in Section
“Theory summary”. The desired S0 was the Celtic cross image shown in
Figs. 3–5(a); the desired , , and were the Air Force Institute of
Technology logo shown in Figs. 3–5(c), respectively. Recall that to
control <, 1 and to control or >, 0. Here, we arbitrarily chose

= 0.5.
We generated 20,000 realizations of the vector field in (26) and

propagated each to the far field using fast Fourier transforms [38,39].
We then computed the far-zone, single-point CSD matrix elements
and, from these, computed the Stokes and Poincaré sphere parameters
using (14). We lastly compared the simulated S0 and , , or to the
desired images. We performed the simulations using MATLAB®

version R2017a; the scripts (.m files) are included as supplementary
materials.

Results and discussion

Figs. 3–5 show the S0 and S, 0 and , and S0 and results, re-
spectively. The figures are organized as follows: (a) and (c) show the
desired S0 and , , or (whichever is applicable), respectively.
Subfigures (b) and (d) show the corresponding simulated results.
Lastly, (e) shows the cumulative two-dimensional correlation coeffi-
cients of the simulated S0 and , , or (whichever is applicable)
with their corresponding desired images versus trial number. The inset
shows a “close-up” view of from trials 1000–20,000. Figs. 3–5(a) and
(b), the S0 images, are plotted on the same false color scale [0, 1]
shown in the color bars above subfigures (a) and (b). Figs. 3(c) and
(d), 4(c) and (d), and 5(c) and (d) are plotted on false color scales

=[ , 1] [0.5, 1], [ /2, 0], and =S[ |arcsin( )/2|, 0] [ /6, 0], respec-
tively.

The agreement between the desired images and the simulated re-
sults is very good. The results in Figs. 3–5 validate the theoretical
analysis presented in Section “Theory”.

The simulated S0 and , , or converge to their asymptotic values
within approximately 1000 trials. The in Figs. 3–5(e) asymptote at
approximately the same level, i.e., between 0.97 and 0.984. These
numbers are not likely to appreciably increase, even with running many
more trials, because of a theoretical assumption we made in Section
“Theory”.

Recall (6), which is rewritten below for the reader’s convenience:

= = t t tW z S z
C C

z
µ k

z
t( , , ) ( , )

( )
( ) ( )exp j · d .ij ij

i j
ij2

2
(28)

In the analysis, we assumed that the partially coherent source was a
quasi-homogeneous electromagnetic source. In other words, we as-
sumed that (the autocorrelation of the source’s shape) was much
broader than µij, such that could be evaluated at =t 0 and removed
from the integral, leaving Sij being (approximately) proportional to the
spatial cross-power spectrum ij (or equivalently, the spatial Fourier
transform of µij). This assumption was necessary to derive the closed-
form expressions later in Section “Theory” that comprised the main
contributions of this paper.

Although it is not possible to derive the expressions presented in the
latter half of Section “Theory” and include source shape, we can gain a
physical understanding of how source shape affects S0 and , , or by
examining (28) more closely. Eq. (28) is the Fourier transform of the
product of two functions. By the convolution theorem, (28) is equiva-
lent to the convolution of ij with the Fourier transform of (hereafter,
). Thus, the true far-zone Sij is a spatially filtered version of ij; the

filter is . For broad, or slowly varying (as assumed in Section
“Theory”), is narrow or fast, and in the asymptotic limit, Sij is pro-
portional to ij. For narrow or fast , is broad or slow, and Sij is
proportional to in that asymptotic limit.

The simulated results include the effects of source shape [recall the
simulated source field in (26)]. Thus, the above discussion explains the
results in Figs. 3–5(e). It also explains the minor qualitative differ-

ences in Figs. 3–5(a) and (b), and (c) and (d). More importantly, the
above discussion provides the user with a physical understanding of the
actual, true performance of the beam shaping technique developed in
this paper.

Conclusion

In this paper, we developed a method using a vector Schell-model
source to control the far-zone beam shape and polarization. This re-
search extended prior scalar Schell-model source work which only
controlled beam shape.
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By applying Fourier and statistical optics theory, we derived ex-
pressions for the vector power spectra, necessary to generate a vector
Schell-model source that radiates a beam with designer far-zone shape
and polarization properties. We discussed what aspects of the far-zone
beam—S , ,0 , and —can be controlled. We also developed a step-
by-step procedure that described how to synthesize random vector field
instances with the proper statistics.

Lastly, we presented Monte-Carlo simulation results to validate our
analysis. We successfully demonstrated the concept by generating vector
Schell-model sources that radiated beams with shapes (S0) and Poincaré
sphere parameters ( , , or ) that were complex grayscale images.

The beam-shaping method introduced in this paper will be useful in
optical trapping, optical communications, directed energy, remote
sensing, and medical applications.

Fig. 4. Simulation results demonstrating control of S0 and —(a) desired (or truth) S0, (b) simulated S0, (c) desired (or truth) , (d) simulated , and (e) cumulative
correlation coefficients of the simulated S0 (blue trace) and (red trace) with their associated desired quantities versus Monte-Carlo trial number. The inset in (e)
shows a “close-up” view of from trials 1000–20,000. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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