
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

6-2014

investr: An R Package for Inverse Estimation investr: An R Package for Inverse Estimation

Brandon M. Greenwell

Christine M. Schubert Kabban
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Applied Mathematics Commons

Recommended Citation Recommended Citation
Greenwell, Brandon M. and Schubert Kabban, Christine M., "investr: An R Package for Inverse Estimation"
(2014). Faculty Publications. 174.
https://scholar.afit.edu/facpub/174

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact
richard.mansfield@afit.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/287324596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholar.afit.edu%2Ffacpub%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/facpub/174?utm_source=scholar.afit.edu%2Ffacpub%2F174&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

CONTRIBUTED RESEARCH ARTICLES 90

investr: An R Package for Inverse
Estimation
by Brandon M. Greenwell and Christine M. Schubert Kabban

Abstract Inverse estimation is a classical and well-known problem in regression. In simple terms, it
involves the use of an observed value of the response to make inference on the corresponding unknown
value of the explanatory variable. To our knowledge, however, statistical software is somewhat lacking
the capabilities for analyzing these types of problems. In this paper, we introduce investr (which
stands for inverse estimation in R), a package for solving inverse estimation problems in both linear
and nonlinear regression models.1

Introduction

Consider the regression model Yi = f (xi; β) + εi (i = 1, . . . , n), where f is a known expectation

function (called a calibration curve) that is monotonic over the range of interest and εi
iid∼ N

(
0, σ2).

A common problem in regression is to predict a future response Y0 from a known value of the
explanatory variable x0. Often, however, there is a need to do the reverse; that is, given an observed
value of the response Y = y0, estimate the unknown value of the explanatory variable x0. This is
known as the calibration problem , though we refer to it more generally as inverse estimation. In this
paper, we consider only controlled calibration , where the values of the explanatory variables are fixed
by design. A more thorough overview of the calibration problem, including Bayesian approaches and
multivariate calibration, is given in Osborne (1991).

There are three main functions available in the investr package (Greenwell, 2014):

• calibrate;

• invest;

• plotFit.

calibrate operates on objects of class "lm" and can only be used when the expectation function
has the form f (xi; β) = β0 + β1xi (i.e., the simple linear regression model), where closed-form
solutions are available for calculating confidence intervals for x0. For more complicated models
(e.g., polynomial and nonlinear regression), closed-form expressions are usually not available and
iterative techniques will be required. This is the purpose of the function invest, which calculates
the point estimate and confidence intervals for x0 by calling the function uniroot from the stats
package. The function plotFit produces a scatterplot of the data with fitted regression curve and
the option to add confidence/prediction bands for the response (pointwise or adjusted). It can
be used with single-predictor objects of class "lm" or "nls"; however, for objects of class "nls",
confidence/prediction bands are based on the linear approximation and can be misleading (Bates
and Watts, 1988, p. 65). The development version of investr can be found on GitHub at https:
//github.com/w108bmg/investr. To report bugs or issues, contact the main author or submit them to
https://github.com/w108bmg/investr/issues.

Calibration for straight line regression

Consider the most common calibration model, Yi = β0 + β1xi + εi (i = 1, . . . , n), where xi is fixed and

εi
iid∼ N

(
0, σ2). Suppose we obtain a series of m observations y01, . . . , y0m which are associated with

the same (unknown) x0. It can be shown (Graybill, 1976) that the maximum likelihood (ML) estimator
of x0, also known as the classical estimator , is

x̂0 =
ȳ0 − β̂0

β̂1
, (1)

where β̂0 and β̂1 are the usual ML estimators of β0 and β1, respectively, and ȳ0 = ∑m
j=1 y0j/m.

The classical estimator in general is computed as x̂0 = f−1
(

ȳ0; β̂
)

; that is, by inverting the fitted
calibration curve at ȳ0 (Eisenhart, 1939). Since x̂0 is a ratio of jointly normal random variables, it is not

1The views expressed in this paper are those of the authors, and do not reflect the official policy or position of
the United States Air Force, Navy, Department of Defense, or the U.S. Government.

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

http://CRAN.R-project.org/package=investr
https://github.com/w108bmg/investr
https://github.com/w108bmg/investr
https://github.com/w108bmg/investr/issues

CONTRIBUTED RESEARCH ARTICLES 91

surprising to learn that it does not have any finite moments (think of a standard Cauchy distribution).
The sampling distribution of x̂0 is complicated, but fortunately, not required for setting an exact
100(1− α)% confidence interval on x0. This is discussed in the next section.

Inversion interval

It can be shown (see, for example, Draper and Smith, 1998, pp. 47–51) that an exact 100(1− α)%
confidence interval for x0 is given by

x̂0 +
(x̂0 − x̄) g±

(
tσ̂/β̂1

)√
(x̂0 − x̄)2 /Sxx + (1− g)

(
1
m + 1

n

)
1− g

, (2)

where Sxx = ∑n
i=1 (xi − x̄)2, g =

(
t2σ̂2) /

(
β̂2

1Sxx

)
and t = tα/2,n+m−3 is the upper 1− α percentile

of a Student’s t-distribution with n + m− 3 degrees of freedom. The inversion interval (2) can also
be obtained using a fiducial argument, as in Fieller (1954). For the special case m = 1, the inversion
interval is equivalent to inverting a 100(1− α)% prediction interval for the response. In other words, if
one draws a horizontal line through a scatterplot of the data at y0, then the abscissas of its intersection
with the usual (pointwise) prediction band for f correspond to the endpoints of the inversion interval
(2). This interval should only be used when the usual F test for testingH0 : β1 = 0 versusH1 : β1 6= 0
can be rejected at the specified α level; in other words, when the regression line is not “too” flat. If
H0 is not rejected, then such a confidence interval for x0 may result in either the entire real line or
two semi-infinite intervals (Graybill and Iyer, 1994, p. 429)—see Figure 2. The plotFit function in the
investr package can be used for drawing scatterplots with the fitted model and confidence/prediction
bands. To calculate the inversion interval for the linear calibration problem, we use the calibrate
function and specify the option interval = "inversion" (the default) as in the following example.

The data frame arsenic contains the true amounts of arsenic present in 32 water samples (Graybill
and Iyer, 1994). Also present, is the amount of arsenic measured by some field test, which is subject to
error. A new water sample is obtained and subjected to the field test producing a reading of 3.0 µg/ml.
It is desired to infer the true amount of arsenic present in the sample. The following code fits a simple
linear regression model to the arsenic data and then uses the calibrate function to compute the ML
estimate and corresponding 90% calibration interval based on Equation (2).

library(investr)
mod <- lm(measured ~ actual, data = arsenic)
(res <- calibrate(mod, y0 = 3, interval = "inversion", level = 0.9))

Figure 1
plotFit(mod, interval = "prediction", level = 0.9, shade = TRUE, col.pred = "skyblue")
abline(h = 3, v = c(res$lower, res$estimate, res$upper), lty = 2)

Running the above block of code produces Figure 1 and the following output to the R console:

estimate lower upper
2.9314 2.6035 3.2587

where estimate is the ML estimate (1), and lower/upper correspond to the lower/upper bounds of
the 90% inversion interval for x0 (2). If instead the new water sample was subjected to the field test
three times, thereby producing three response values corresponding to x0, say 3.17, 3.09, and 3.16
µg/ml, we would simply supply calibrate with a vector of these values as in

calibrate(mod, y0 = c(3.17, 3.09, 3.16), interval = "inversion", level = 0.9)

If interval = "inversion", and the slope of the model is not ignificant at the specified α level, then
finite confidence limits for x0 will not be produced. For example, suppose badfit is an "lm" object for
which the slope is not significant at the α = 0.1 level. Then, as illustrated in Figure 2,

calibrate(badfit, y0 = 10, level = 0.9)

will either produce two semi-infinite intervals, e.g.,

Error: The calibration line is not well determined. The resulting
confidence region is the union of two semi-infinite intervals:
(-Inf , -282.0006) U (393.1267 , Inf)

or the entire real line, e.g.,

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 92

●●
●●

●

●

●
●

●●
●

●

●
●
●
●

●●
●

●

●

●

●●

●●●●

●

●●
●

0 1 2 3 4 5 6 7

0
2

4
6

actual

m
ea

su
re

d

Figure 1: Scatterplot of the arsenic data with fitted calibration line and pointwise prediction band. A
horizontal reference line is drawn through the observed value y0 = 3. The vertical lines identify the
position of the point estimate and 90% confidence bounds for x0.

y0 y0

y0

Figure 2: Hypothetical 1− α (pointwise) prediction bands. Left: Horizontal line at y0 intersects the
prediction band at two points, resulting in a finite interval. Middle: Horizontal line at y0 does not
intersect the prediction band at all resulting in an infinite interval. Right: Horizontal line at y0 only
intersects with one side of the prediction band resulting in two semi-infinite intervals.

estimate lower upper
-97.5987 -Inf Inf
Warning message:
The calibration line is not well determined.

Wald interval

Another common approach to computing calibration intervals is to use the delta method (Dorfman,
1938). It is easy to show that an approximate standard error for the ML estimator (1), based on a
first-order Taylor series approximation, is given by

ŝe (x̂0) =
σ̂∣∣∣β̂1

∣∣∣
√

1
m

+
1
n
+

(x̂0 − x̄)2

Sxx
. (3)

Assuming large sample normality for x̂0 leads to an approximate 100(1− α)% Wald confidence interval
for x0 of

x̂0 ± tα/2,n+m−3
σ̂∣∣∣β̂1

∣∣∣
√

1
m

+
1
n
+

(x̂0 − x̄)2

Sxx
. (4)

This is equivalent to taking g = 0 in the inversion interval (2). Unlike the inversion interval, though,
the Wald interval always exists and is symmetric about x̂0. This symmetry is attractive, but not always
realistic, such as when the calibration curve f is nonlinear and has horizontal asymptotes. To obtain a
Wald-type interval we specify interval = "Wald" in the call to calibrate. For instance,

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 93

calibrate(mod, y0 = 3, interval = "Wald", level = 0.9)

produces the output

estimate lower upper se
2.9314 2.6040 3.2589 0.1929

The point estimate remains unchanged (as expected) but the calibration interval is slightly different.
The major benefit of using the delta method to compute calibration intervals is that it always exists and
provides us with an asymptotic estimate of the standard error, which in this case gives ŝe = 0.1929. The
bootstrap, as discussed in Section Bootstrap calibration intervals, also provides calibration intervals
and an estimate of the standard error, but does not require large samples or specific distribution
assumptions.

Confidence interval for a specified mean response

Instead of inferring the value of x0 that corresponds to an observed value of the response y0, suppose
we want to infer the value of x0 that corresponds to a specified value of the mean response, say
f (x0; β) = µ0. The obvious ML estimate of x0 is

x̂0 =
µ0 − β̂0

β̂1
, (5)

which is the same as Equation (1) but with ȳ0 replaced with µ0, a fixed population parameter. This is
analogous to the difference between (i) predicting a future value of the response corresponding to a
given value of the explanatory variable and (ii) estimating the mean response that corresponds to a
particular value of the explanatory variable. Thus, the point estimates (1) and (5) are the same but
the former has greater variability inherited from the variance of Y0. This is sometimes referred to
as regulation (as opposed to calibration) and is described in more detail in Graybill and Iyer (1994,
Chap. 6). The confidence interval formulas for x0 corresponding to a specified mean response (i.e.,
regulation) are the same as those given in Equations (2) and (4), but with 1/m replaced with 0 and
tα/2,n+m−3 replaced with tα/2,n−2. For instance, the Wald interval for x0 corresponding to µ0 is simply

x̂0 ± tα/2,n−2
σ̂∣∣∣β̂1

∣∣∣
√

1
n
+

(x̂0 − x̄)2

Sxx
,

where x̂0 is calculated as in Equation (5). To obtain calibration intervals corresponding to a
specified mean response, use the option mean.response = TRUE.

To illustrate, consider the crystal growth data taken from Graybill and Iyer (1994, p. 119). These
data are from an experiment in which the weight in grams of 14 crystals were recorded after letting
the crystals grow for different (predetermined) amounts of time in hours. The weight of each crystal
is plotted against time in Figure 3. Suppose we want to estimate the growth time in hours that
corresponds to an average weight of 8 grams; that is, we want to estimate x0 corresponding to µ0 = 8.
The following code chunk fits a simple linear regression model to the crystal growth data and then
computes the ML estimate and a 95% calibration interval for x0.

mod <- lm(weight ~ time, data = crystal)
(res <- calibrate(mod, y0 = 8, mean.response = TRUE))

Figure 3
plotFit(mod, interval = "confidence", pch = 19, shade = TRUE, col.conf = "plum",

extend.range = TRUE)
abline(h = 8, v = c(res$lower, res$estimate, res$upper), lty = 2)

The output for this code chunk should be

estimate lower upper
15.8882 14.6590 17.1596

Thus, in order to produce crystals with an average weight of 8 grams, they should be grown for
an estimated 15.8882 hours. A 95% confidence interval for the growth time is (14.6590, 17.1596).
Obviously, if mean.response = TRUE, then y0 can only take a single value; otherwise, an error will be
displayed as in the following:

calibrate(mod, y0 = c(8, 9), mean.response = TRUE)

which displays the message

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 94

●

●

●
● ●

●

●

●
●

●
●

●

●

●

5 10 15 20 25

0
5

10
15

time

w
ei

gh
t

Figure 3: Scatterplot of the crystal growth data with fitted calibration line and pointwise confidence
band. A horizontal reference line is drawn at µ0 = 8. The vertical lines identify the position of the
point estimate and 95% confidence bounds for the growth time x0.

Error in calibrate.default(cbind(x, y), ...) :
Only one mean response value allowed.

This type of calibration problem is similar to computing the median effective dose (ED0.5), or more
generally EDp where 0 < p < 1, in binary response models. In R, these models are usually fit with
the glm function from the stats package. The function dose.p from the MASS package (Venables and
Ripley, 2002) can then be used to compute the ML estimate of EDp for specified p. An estimate of the
asymptotic standard error based on the delta method is also given which can be used to calculate a
Wald-based confidence interval for EDp. A future release of investr will likely make an inversion-type
interval available for these models as well (i.e., by inverting a confidence interval for the mean response
on the link scale). The package drc (Ritz and Streibig, 2005), for fitting dose-response curves, may also
be of interest.

Simultaneous calibration intervals

The calibration intervals discussed so far are one-at-a-time intervals. If k new values of the response
are observed where each corresponds to a different unknown, say x01, . . . x0k, then we need to adjust
the critical value used in the inversion and Wald intervals accordingly. The simplest approaches
are of course, the Bonferroni and Scheffé procedures. These can be computed by specifying the
adjust option which can take any of the following arguments: "none" (the default), "bonferroni", or
"scheffe". The value k also needs to be specified. See Miller (1981, Chap. 3) for more details.

Nonlinear and polynomial calibration

In application, many relationships are nonlinear (e.g., dose-response curves). The classical estimator
along with the inversion and Wald intervals can easily be extended to such nonlinear calibration
curves. However, classical inference in these models (such as prediction intervals) are based on large
samples and linear approximations (see Bates and Watts, 1988, Chap. 2). Thus, for nonlinear calibration
curves, the inversion interval provides only an approximate 100(1− α)% confidence interval for x0 as
does the Wald interval. Calibration in nonlinear models is discussed in further detail in Schwenke
and Milliken (1991), Seber and Wild (2003, pp. 245–250), and Huet (2004, Chap. 5). For calibration in
polynomial models, see Brown (1993, pp. 47–88) and Seber and Lee (2003, p. 172).

The invest function can be used for inverse estimation with any univariate regression model in R
that inherits from class "lm" or "nls" (with the exception of weighted fits). For instance, consider the
regression model Yi = f (xi; θ) + εi (i = 1, . . . , n), where f may or may not be linear in θ. If we wish

to estimate x0 given an observation y0, then the point estimate x̂0 is given by solving y0 = f
(

x; θ̂
)

for
x. The solution will be unique as long as f is monotonic in the region of interest. The invest function

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

http://CRAN.R-project.org/package=MASS
http://CRAN.R-project.org/package=drc

CONTRIBUTED RESEARCH ARTICLES 95

computes x̂0 by calling the stats functions predict and uniroot to solve

y0 − f
(

x; θ̂
)
= 0

numerically for x.

Approximate confidence intervals

Equation (2) gives a closed-form expression for the inversion interval for the case of simple linear
regression. In more complicated cases, such an expression is not available and the interval must be
found numerically. It can be shown (see, for example, Seber and Wild, 2003, pp. 245–246) that

Tx0 =
Y0 − f

(
x0; θ̂

)
{

σ̂2 + Ŝ2
x0

}1/2
·∼ tn−p, (6)

where Ŝ2
x0

is the estimated variance of f
(

x0; θ̂
)

. An approximate 100(1− α)% confidence interval for
x0 is then given by the set {

x : tα/2,n−p < Tx < t1−α/2,n−p

}
. (7)

Essentially, invest finds the lower and upper limits for this interval by solving the equations

Tx − tα/2,n−p = 0 and Tx − t1−α/2,n−p = 0

numerically for x0. For the special case of the simple linear regression model, these limits coincide
with Equation (2) and the coverage probability is exactly 1− α.

The Wald interval for x0 is also easily extended. It has the basic form: x̂0 ± tα/2,n−p ŝe (x̂0), where
p is the dimension of θ. The estimated standard error ŝe (x̂0) is based on a first-order Taylor series
approximation. For the special case of the simple linear regression model, this approximation results
in Equation (3).

Since the point estimate and confidence intervals for x0 are obtained numerically using uniroot,
invest has the additional options lower, upper, tol, and maxiter. See the reference manual for details.

To get an idea of how invest works, consider the data in Figure 4 which were generated from
the model Y = 5 + x− sin(x) + 1.5Z , where Z is a standard normal random variable. Suppose we
want to estimate x0 given a new observation, say y0 = 22. Fitting a model of the form f (x; θ) = θ1 +

θ2 [x− sin(x)] to the sample, we obtain f̂ (x) = 5.490 + 0.941 [x− sin(x)], which is certainly invertible,
but f̂−1 cannot be expressed in closed-form using a finite number of terms; thus, x̂0 = f̂−1(y0 = 22)
must be obtained numerically. The following chunk of code generates the sample data, calculates x̂0
and an approximate 95% Wald interval for x0 using the invest function.

set.seed(101) # for reproducibility
x <- rep(seq(from = 0, to = 25, by = 2), each = 2)
d <- data.frame(x, y = 5 + x - sin(x) + rnorm(length(x), sd = 1.5))
mod <- lm(y ~ I(x - sin(x)), data = d)
res <- invest(mod, y0 = 22, interval = "Wald")

Figure 4
plotFit(mod, interval = "prediction", shade = TRUE, col.pred = "seagreen1",

extend.range = TRUE)
abline(h = 22, v = res$estimate, lty = 2)

The point estimate is x̂0 = 16.7053 with an estimated standard error of 0.8909. The code used by
invest for obtaining the point estimate is essentially

uniroot(function(x) predict(mod, newdata = list("x" = x)) - 22,
lower = min(d$x), upper = max(d$x))$root

The code for obtaining the standard error used in the Wald interval is slightly more involved:

Write x0.hat as function of parameters (theta1.hat, theta2.hat, Y0)
x0.fun <- function(params, object = mod) {
object$coefficients <- params[1:2]
uniroot(function(x) predict(object, list("x" = x)) - params[3],

lower = 0, upper = 25, tol = 1e-10)$root

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 96

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

0 5 10 15 20

5
10

15
20

25
30

x

y

Figure 4: Scatterplot of simulated data with fitted calibration line and pointwise prediction band. A
horizontal reference line is drawn through the observed value y0 = 22. The vertical line identifies the
position of the point estimate x̂0.

}

Variance-covariance matrix of (theta1.hat, theta2.hat, Y0)'
covmat <- diag(3)
covmat[1:2, 1:2] <- vcov(mod)
covmat[3, 3] <- summary(mod)$sigma^2

Numerically evaluate gradient
params <- c(coef(mod), y0 = 22)
grad <- attr(numericDeriv(quote(x0.fun(params)), "params"), "gradient")

Calculate standard error
(se <- sqrt(grad %*% covmat %*% t(grad)))

The following example uses the nasturtium data from the drc package. These data were analyzed
in Racine-Poon (1988) using an approximate Bayesian approach. Bioassays were performed on a type
of garden cress called nasturtium. Six replicates of the response (plant weight in mg after the third
week of growth) were measured at seven preselected concentrations of an agrochemical. The weights
corresponding to three new soil samples, all sharing the same (unknown) concentration x0, were
observed to be 309, 296, and 419 mg. The block of code below fits a log-logistic model

f (x; θ) =

{
θ1, x = 0,
θ1/ [1 + exp {θ2 + θ3 ln(x)}] , x > 0,

and computes an approximate 95% inversion interval for x0.

Load package containing nasturtium data
library(drc)

Fit log-logistic model
mod <- nls(weight ~ theta1/(1 + exp(theta2 + theta3 * log(conc))),

start = list(theta1 = 1000, theta2 = -1, theta3 = 1),
data = nasturtium)

plotFit(mod, interval = "prediction") # figure not shown

Compute approximate 95% inversion interval
invest(mod, y0 = c(309, 296, 419), interval = "inversion")

The interval obtained is (1.7722, 2.9694) with a point estimate of 2.2639. We can check the point

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 97

estimate manually. Some algebra gives

x̂0 = exp

 log
(

θ̂1/ȳ0 − 1
)
− θ̂2

θ̂3

 = 2.2639.

A Wald interval can also be obtained by running the following line of code:

invest(mod, y0 = c(309, 296, 419), interval = "Wald")

the output for which is

estimate lower upper se
2.2639 1.6889 2.8388 0.2847

In certain cases (i.e., when x̂0 can be written in closed-form), one can use the very useful deltaMethod
function from the car package (Fox and Weisberg, 2011) to compute the approximate standard error
used in the Wald interval. For the nasturtium example, the minimal code to obtain ŝe (x̂0) is

Using the deltaMethod function in the car package
library(car)
covmat <- diag(4)
covmat[1:3, 1:3] <- vcov(mod)
covmat[4, 4] <- summary(mod)$sigma^2 / 3 # since length(y0) = 3
(se <- deltaMethod(c(coef(mod), y0.bar = mean(c(309, 296, 419))),

g = "exp((log(theta1 / y0.bar - 1) - theta2) / theta3)",
vcov. = covmat)$SE)

which produces an estimated standard error of 0.2847019, the same as that obtained automatically by
invest.

As indicated by the bootstrap distribution obtained in the next section, the symmetric Wald
interval obtained here seems unrealistic for this problem. In the next section, we show how to obtain
a bias-corrected and accelerated (BCa) bootstrap confidence interval for x0 using the boot package
(Canty and Ripley, 2014).

Bootstrap calibration intervals

The bootstrap (Efron, 1979) provides an alternative means for computing calibration intervals. This
is useful in nonlinear calibration problems where inference traditionally relies on large samples,
approximate normality, and linear approximations. A practical guide to the bootstrap is provided
by Davison and Hinkley (1997) and the companion R package boot, and bootstrap resampling for
controlled calibration is discussed in Jones and Rocke (1999). Although it is likely for a "bootstrap"
option to appear in a future release of investr, it is quite simple to set up using the recommended boot
package. First, we discuss a naive approach to calculating bootstrap calibration intervals.

A simple, but ultimately wrong approach to resampling in controlled calibration is demonstrated
in the following example for the nasturtium data:

library(boot)

Function to compute estimate of x0
x0.fun <- function(object, y) {
theta <- unname(coef(object))
exp((log(theta[1] / mean(y) - 1) - theta[2]) / theta[3])

}

Bootstrap setup
y0 <- c(309, 296, 419)
res <- resid(mod) - mean(resid(mod)) # center the residuals
n <- length(res)
boot.data <- data.frame(nasturtium, res = res, fit = fitted(mod))
boot.fun <- function(data, i) {
boot.mod <- nls(fit + res[i] ~ theta1 / (1 + exp(theta2 + theta3 * log(conc))),

start = list(theta1 = 1000, theta2 = -1, theta3 = 1), data = data)

Make sure the original estimate also gets returned

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

http://CRAN.R-project.org/package=car
http://CRAN.R-project.org/package=boot

CONTRIBUTED RESEARCH ARTICLES 98

if (all(i == 1:n)) x0.fun(mod, y0) else x0.fun(boot.mod, y0)
}

Run bootstrap simulation (takes about 50s on a standard laptop)
set.seed(123) # for reproducibility
res <- boot(boot.data, boot.fun, R = 9999) # collect 9,999 bootstrap samples
boot.ci(res, type = "bca") # obtain BCa confidence interval for x0

This produces an approximate 95% BCa calibration interval of (2.04, 2.52), quite shorter than the ones
produced by the inversion and Wald methods in the previous section. Did the bootstrap really do that
well? The answer here is no, but it is not the bootstrap’s fault. Recall that ȳ0 is an observed value of the
random variable Y0 which has variance σ2/m. This source of variability is ignored in the bootstrap
Monte Carlo simulation above, which treats ȳ0 as a fixed constant. Compare the interval just obtained
with the output from

invest(mod, y0 = mean(c(309, 296, 419)), mean.response = TRUE)

We can get a hold of this extra source of variability by again sampling with replacement from the
centered residuals. In particular, we resample the responses y0j (j = 1, 2, . . . , m), by randomly selecting
m additional residuals e?j from the centered residuals and calculating the bootstrap responses

y?0j = ȳ0 + e?j , j = 1, 2, . . . , m.

Let ȳ?0 = ∑m
j=1 y?0j/m. The correct bootstrap replicate of x0 is given by x̂?0 = f−1

(
ȳ?0 ; θ̂?

)
. To implement

this, all we need to do is make the following changes to boot.fun (the changes are colored magenta):

boot.fun <- function(data, i) {
boot.mod <- nls(fit + res[i] ~ theta1 / (1 + exp(theta2 + theta3 * log(conc))),

start = list(theta1 = 1000, theta2 = -1, theta3 = 1), data = data)

Simulate the correct variance
Y0 <- y0 + sample(data$res, size = length(y0), replace = TRUE)

Make sure the original estimate also gets returned
if (all(i == 1:n)) x0.fun(mod, y0) else x0.fun(boot.mod, Y0)

}

Rerunning the previous example with the modified boot.fun function produces a more realistic 95%
confidence interval for x0 of (1.818, 2.950) and an estimated standard error for x̂0 of 0.2861 (similar to
that obtained by the delta method earlier). Figure 5 shows a histogram and normal Q-Q plot of the
9,999 bootstrap replicates of x̂0. The bootstrap distribution of x̂0 is comparable to the approximate
posterior density of x0 given in Racine-Poon (1988, Fig. 9). The bootstrap distribution is skewed to the
right and clearly not normal, suggesting that the Wald interval may not be realistic for this problem.

x̂0

D
en

si
ty

1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
4

0.
8

1.
2

●

●

●

●

●
●

●●

●●

●●●
●

●

●

●

●

●

●
●

●●
●

●

●●
●

●
●

●
●●

●●●
●●●

●●
●

●

●
●

●
●●

●

●●
●

●

●

●

●

●●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●
●

●●●

●

●

●
●

●

●

●●

●

●

●

●●●
●

●

●●●

●
●
●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●●●●

●

●

●

●
●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●
●

●

●●

●

●●
●

●

●
●

●●●
●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●
●

●
●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●●
●

●●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●
●●

●

●

●●

●

●
●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●●

●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●●
●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●●

●●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●●

●
●

●●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●

●

●
●●

●
●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●●

●

●

●
●

●●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●
●●●

●

●
●

●
●

●

●
●

●●

●
●

●●

●

●●●
●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●●

●●
●●●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●●

●

●
●●

●

●
●

●
●

●
●

●

●

●●

●●
●●●●

●

●

●

●●
●

●
●

●

●

●●

●

●
●

●
●

●

●●
●●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●●

●●

●●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●●

●

●

●
●●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●
●

●●

●
●

●

●

●

●
●

●

●●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●
●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●●

●

●

●

●
●●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●●

●●

●

●
●

●

●
●

●

●

●

●●●
●

●

●

●
●●

●

●
●

●
●●

●●

●

●

●●

●

●

●

●
●

●●
●

●●

●
●●

●

●

●
●

●●
●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●●

●

●●

●
●

●●

●

●

●

●

●
●

●
●●

●

●

●
●●

●
●●

●

●
●

●

●

●●

●

●

●

●
●

●

●●●

●
●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●●●●
●

●

●

●
●

●●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●

●●
●

●
●

●
●●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●
●●

●

●●

●
●

●

●

●
●

●●
●

●

●
●

●
●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●
●●

●
●

●
●

●
●

●

●

●

●●

●

●
●●

●

●

●

●
●●

●

●

●●●

●●

●●

●

●
●

●

●
●

●●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●
●

●

●

●

●●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●
●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●●●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●●
●

●●

●

●
●

●
●

●●

●

●

●

●

●

●●●●

●
●

●
●●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●
●●

●●
●

●

●
●

●

●

●
●

●●

●●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●●
●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●●

●●

●

●●

●

●●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●●

●●●

●●

●

●●●
●

●

●

●

●●
●

●
●

●

●●

●

●

●

●
●

●

●●●●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●
●●

●●●

●

●

●●
●●

●
●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●
●

●●

●●

●
●

●

●

●
●

●
●●

●●

●

●●●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●●●

●

●
●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●
●

●●

●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●
●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●●
●●

●
●

●●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●
●

●

●●

●

●
●

●

●

●●

●
●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●●

●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●
●

●

●●●
●

●●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●●

●●●

●●

●
●

●

●
●

●
●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●●
●

●

●
●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●
●●●

●

●

●●
●

●

●
●●

●●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●
●

●

●

●●

●

●●

●●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●●

●

●
●

●

●

●
●

●

●●●
●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●

●●
●

●
●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●
●

●

●●

●

●●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●●

●

●●

●●

●

●●
●

●

●●

●

●
●

●

●

●
●●

●

●

●●

●

●

●
●

●
●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●
●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●
●

●

●●
●

●
●●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●●

●

●●

●
●

●

●

●
●●

●

●

●

●●
●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●●

●

●●
●

●

●
●

●●

●

●
●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●
●●

●
●●

●

●

●
●●

●

●

●

●

●●

●

●●

●

●

●●

●●
●●●

●

●
●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●●●

●

●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●●
●

●

●
●

●

●
●

●

●
●

●

●

●●●

●
●

●●●●

●●

●●

●

●●
●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●●

●

●

●

●●●●

●●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●●●

●

●

●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●

●●

●●●●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●●
●

●
●

●●
●●

●●

●●

●

●
●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●●

●

●●

●

●●

●●●

●●
●

●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●
●●●

●●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●●

●●
●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●●
●

●●●

●

●

●
●

●

●●●

●

●

●
●

●
●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●●●

●

●

●

●●

●
●

●
●

●●
●

●

●

●●

●●●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●
●●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●●●
●

●●

●

●

●

●

●
●

●●
●

●

●
●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●
●●

●●
●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●●
●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●
●

●

●

●
●

●
●

●
●

●

●●●●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

●
●

●

●
●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●●

●
●

●●

●

●●
●

●●

●
●

●

●
●

●
●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●
●●

●
●●

●

●●
●

●

●●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●●

●

●

●
●

●
●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●●●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●
●●

●

●

●

●●
●

●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●
●●

●

●●
●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●●
●

●●

●

●

●●

●

●

●
●●

●

●
●

●

●

●●

●●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●●●
●●●

●
●

●●
●

●

●

●
●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●●
●●

●

●
●

●

●

●●●
●●●●

●

●

●

●●
●

●●

●

●●

●

●

●

●●
●●

●●
●

●

●
●

●
●●

●

●

●

●
●

●
●

●
●

●●●

●

●●
●●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●●
●

●

●
●

●
●●

●

●

●

●
●

●●
●

●

●

●●

●
●

●

●

●

●

●●●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●●●

●

●

●

●

●

●●

●●
●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●
●

●
●●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●●●
●

●

●●●

●

●

●

●
●

●●

●
●●

●

●

●
●

●

●
●

●
●●

●

●
●

●

●●
●

●

●

●●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●

●
●●

●

●

●●

●●

●
●

●
●

●

●

●
●●

●●●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●●

●

●
●

●●

●

●

●

●●

●
●

●

●
●

●

●
●●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●●

●

●

●

●
●

●

●
●●

●

●

●●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●

●●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●●
●●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●

●
●●●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●●●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●
●

●●

●●
●

●
●

●●

●

●

●
●

●●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●●

●●●

●

●

●

●

●

●●●
●●●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●
●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●●

●●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●
●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●
●●

●
●

●

●●●

●

●
●

●

●

●

●●

●

●
●

●
●

●●

●

●●

●

●●
●

●

●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●
●●

●
●

●

●
●●

●

●●
●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●●

●

●

●
●

●
●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●●

●

●
●●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●●
●

●●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●

●
●●

●●
●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●●●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

−4 −2 0 2 4

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Standard normal quantile

x̂ 0

Figure 5: The left panel shows a histogram of the bootstrap replicates with a vertical line indicating
the position of the original estimate x̂0. The right panel shows a normal Q-Q plot of the bootstrap
replicates.

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 99

Summary

We introduced the investr package for computing point estimates along with inversion and Wald-
based confidence intervals for linear and nonlinear calibration problems with constant variance. We
also showed how the boot package can be used for constructing approximate 100(1− α)% calibration
intervals, which for convenience, may be incorporated into a future release of investr. The authors
are currently working on extending the package to handle the case of heteroscedastic errors, random
coefficient models (e.g., objects of class "lme" from the recommended nlme package; Pinheiro et al.,
2014)), and even multivariate calibration problems (e.g., objects of class "mlm").

Acknowledgements

The authors would like to thank two anonymous reviewers and the Editor for their helpful comments
and suggestions.

Bibliography

D. M. Bates and D. G. Watts. Nonlinear Regression Analysis and its Applications. Wiley Series in Probability
and Statistics: Probability and Statistics Section. John Wiley & Sons, New York, 1988. [p90, 94]

P. Brown. Measurement, Regression, and Calibration. Oxford Science Publications. Clarendon Press, 1993.
[p94]

A. Canty and B. Ripley. boot: Bootstrap R (S-Plus) Functions, 2014. URL http://CRAN.R-project.org/
package=boot. R package version 1.3-11. [p97]

A. C. Davison and D. V. Hinkley. Bootstrap Methods and their Applications. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1997. [p97]

R. Dorfman. A note on the δ-method for finding variance formulae. The Biometric Bulletin, 1:129–137,
1938. [p92]

N. R. Draper and H. Smith. Applied Regression Analysis. Wiley Series in Probability and Mathematical
Statistics: Applied Probability and Statistics. John Wiley & Sons, New York, 1998. [p91]

B. Efron. Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7(1):1–26, 1979. [p97]

C. Eisenhart. The interpretation of certain regression methods and their use in biological and industrial
research. Annals of Mathematical Statistics, 10(2):162–186, 1939. [p90]

E. C. Fieller. Some problems in interval estimation. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 16:175–185, 1954. [p91]

J. Fox and S. Weisberg. An R Companion to Applied Regression. Sage, Thousand Oaks CA, second edition,
2011. URL http://socserv.socsci.mcmaster.ca/jfox/Books/Companion. [p97]

F. A. Graybill. Theory and Application of the Linear Model. Duxbury Classic Series. Duxbury, Pacific
Grove, CA, 1976. [p90]

F. A. Graybill and H. K. Iyer. Regression Analysis: Concepts and Applications. Duxbury Press, Belmont,
CA, 1994. [p91, 93]

B. M. Greenwell. investr: Functions for Inverse Estimation with Linear and Nonlinear Regression Models in
R, 2014. URL https://github.com/w108bmg/investr. R package version 1.0.2. [p90]

S. Huet. Statistical Tools for Nonlinear Regression: A Practical Guide with S-PLUS and R Examples. Springer
Series in Statistics. Springer, 2004. [p94]

G. Jones and D. M. Rocke. Bootstrapping in controlled calibration experiments. Technometrics, 41(3):
224–233, 1999. [p97]

R. Miller. Simultaneous Statistical Inference. Springer Series in Statistics. Springer-Verlag, 1981. [p94]

C. Osborne. Calibration: A review. International Statistical Review, 59(3):309–336, 1991. [p90]

J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team. nlme: Linear and Nonlinear Mixed Effects
Models, 2014. URL http://CRAN.R-project.org/package=nlme. R package version 3.1-117. [p99]

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

http://CRAN.R-project.org/package=boot
http://CRAN.R-project.org/package=boot
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
https://github.com/w108bmg/investr
http://CRAN.R-project.org/package=nlme

CONTRIBUTED RESEARCH ARTICLES 100

A. Racine-Poon. A Bayesian approach to nonlinear calibration problems. Journal of the American
Statistical Association, 83(403):650–656, 1988. [p96, 98]

C. Ritz and J. C. Streibig. Bioassay analysis using R. Journal of Statistical Software, 12(5):1–22, 2005. URL
http://www.jstatsoft.org/v12/i05/. [p94]

J. R. Schwenke and G. A. Milliken. On the calibration problem extended to nonlinear models. Biometrics,
47(2):563–574, 1991. [p94]

G. Seber and A. Lee. Linear Regression Analysis. Wiley Series in Probability and Statistics. John Wiley &
Sons, 2003. [p94]

G. Seber and C. Wild. Nonlinear Regression. Wiley Series in Probability and Statistics. John Wiley &
Sons, 2003. [p94, 95]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth edition,
2002. URL http://www.stats.ox.ac.uk/pub/MASS4. [p94]

Brandon M. Greenwell
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433
United States of America
brandon.greenwell@afit.edu

Christine M. Schubert Kabban
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433
United States of America
christine.schubertkabban@afit.edu

The R Journal Vol. 6/1, June 2014 ISSN 2073-4859

http://www.jstatsoft.org/v12/i05/
http://www.stats.ox.ac.uk/pub/MASS4
mailto:brandon.greenwell@afit.edu
mailto:christine.schubertkabban@afit.edu

	investr: An R Package for Inverse Estimation
	Recommended Citation

	tmp.1579899136.pdf.5lNRs

