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anomalyDetection: Implementation of
Augmented Network Log Anomaly
Detection Procedures
by Robert J. Gutierrez, Bradley C. Boehmke, Kenneth W. Bauer, Cade M. Saie, Trevor J. Bihl

Abstract As the number of cyber-attacks continues to grow on a daily basis, so does the delay in threat
detection. For instance, in 2015, the Office of Personnel Management discovered that approximately
21.5 million individual records of Federal employees and contractors had been stolen. On average,
the time between an attack and its discovery is more than 200 days. In the case of the OPM breach,
the attack had been going on for almost a year. Currently, cyber analysts inspect numerous potential
incidents on a daily basis, but have neither the time nor the resources available to perform such a task.
anomalyDetection aims to curtail the time frame in which anomalous cyber activities go unnoticed
and to aid in the efficient discovery of these anomalous transactions among the millions of daily logged
events by i) providing an efficient means for pre-processing and aggregating cyber data for analysis
by employing a tabular vector transformation and handling multicollinearity concerns; ii) offering
numerous built-in multivariate statistical functions such as Mahalanobis distance, factor analysis,
principal components analysis to identify anomalous activity, iii) incorporating the pipe operator
(%>%) to allow it to work well in the tidyverse workflow. Combined, anomalyDetection offers cyber
analysts an efficient and simplified approach to break up network events into time-segment blocks
and identify periods associated with suspected anomalies for further evaluation.

Introduction

Organizations worldwide rely heavily on the systems of cyberspace, and the wider Internet as a
whole, for commerce, defense operations, infrastructure control systems, financial management,
transportation, and other critical services. Unfortunately, the number of cyber-attacks are growing
on a daily basis and the ability of organizations to spot anomalous cyber activitiy is becoming more
and more delayed (Gutierrez et al., 2017). On average, the time between an attack and its discovery is
more than 200 days (Koerner, 2016). In the case of the 2015 Office of Personnel Management breach, in
which approximately 21.5 million individual records of Federal employees and contractors had been
stolen, the attack had been going on for almost a year prior to the anomalous activity being identified
(U.S. Office of Personnel Management, 2015).

Cyber analysts inspect numerous potential incidents on a daily basis, but lack the time and
resources to scour the high volumes of data in an efficient manner to identify anomalous activity
worth further investigation (Samuelson, 2016). Firewalls and intrusion detection and prevention
systems (IDPS) are one line of defense in identifying and stopping suspicious internet traffic. When a
suspicious event occurs, these devices generate a log file containing details of what preprogrammed
rules were violated and how it was handled (Goodall et al., 2009). Such log files contain details of the
event, (i.e. source and destination IP addresses, port numbers, and protocols), but not the packet and
data that led to the event. A primary activity of cyber analysts is the analysis of these log files to detect
anomalies (Gutierrez et al., 2017). Although a reduced form of anomalous cyber data, these data sets
can still represent millions of cyberspace transactions per minute (Jayathilake, 2012). Unfortunately,
analysis of these log files has, historically, been heavily manual in nature and often leverages subject
matter expertise to find possible threats in logged events to further investigate (Goodall et al., 2009;
Jayathilake, 2012; Samuelson, 2016). This approach is inefficient and can suffer from biased, subjective
assessments (Zamani, 2013). Moreover, much of the related research has focused on anomaly detection
at the device/software level (i.e. Lazarevic et al., 2003; Denning, 1987; Garcia-Teodoro et al., 2009),
with little exploration into anomaly detection in the log files generated from the preexisting devices or
software (i.e McDonald et al., 2012; Winding et al., 2006; Breier and Branišová, 2015). Consequently,
efficient analytic approaches are desirable to help detect anomalous activity in cyber network log data
(Gutierrez et al., 2017).

This research introduces the anomalyDetection package (Boehmke and Gutierrez, 2017) to provide
cyber analysts efficient means for performing anomaly detection in log files. The purpose of the
package is to make identifying abnormal activity more efficient so that cyber analysts can spend
more time researching the potential threat. It is important to note that there is no guarantee that
anomalous activity is evidence of malicious cyber activity; however, identification of anomalous
activity provides cyber security experts a starting point in their search for undetected malicious
activity. anomalyDetection simplifies this process.

This paper proceeds as follows. First, we introduce the anomalyDetection functions and the
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security_logs data set that will be leveraged for the illustrative examples. Next, we demonstrate
how anomalyDetection can pre-process a data set for follow on analysis. This includes converting
a data set with non-numeric attributes into numeric data using a tabulated state vector approach.
anomalyDetection further prepares this tabulated state vector by inspecting and correcting for mul-
ticollinearity. We then illustrate how anomalyDetection provides efficient multivariate statistical
analysis processes to help identify anomalous activity. Last, we end with some concluding remarks.

anomalyDetection functions

anomalyDetection provides 13 functions to aid in the detection of potential cyber anomalies, which
are listed in Table 1. The package also incorporates the pipe operator (%>%) from the magrittr package
(Bache and Wickham, 2014) for streamlining function composition. To illustrate the functionality of
anomalyDetection we will use the security_logs data that mimics common information that appears
in security logs and comes with anomalyDetection. Note that we also load the tidyverse package
(Wickham, 2017) for common manipulation and visualization tasks.

Table 1: anomalyDetection Functions

Function Purpose

tabulate_state_vector() Employs a tabulated vector approach to transform security log
data into unique counts of data attributes based on time blocks.

block_inspect() Creates a list where the original data has been divided into blocks
denoted in the state vector.

mc_adjust() Handles issues with multicollinearity.
mahalanobis_distance() Calculates the distance between the elements in data and the

mean vector of the data for outlier detection.
bd_row() Indicates which variables in data are driving the Mahalanobis

distance for a specific row, relative to the mean vector of the data.
horns_curve() Computes Horn’s Parallel Analysis to determine the factors to

retain within a factor analysis.
factor_analysis() Reduces the structure of the data by relating the correlation be-

tween variables to a set of factors, using the eigen-decomposition
of the correlation matrix.

factor_analysis_results() Provides easy access to factor analysis results.
kaisers_index() Computes scores designed to assess the quality of a factor analysis

solution. It measures the tendency towards unifactoriality for both
a given row and the entire matrix as a whole.

principal_components() Relates the data to a set of a components through the eigen-
decomposition of the correlation matrix, where each component
explains some variance of the data.

principal_components_results() Provides easy access to principal component analysis results.
get_all_factors() finds all factor pairs for a given integer.

library(tidyverse)
library(anomalyDetection)

security_logs
# A tibble: 300 × 10
# Device_Vendor Device_Product Device_Action Src_IP
# <chr> <chr> <chr> <chr>
# 1 McAfee NSP Attempt 223.70.128.61
# 2 CISCO ASA Failure 174.110.206.174
# 3 IBM SNIPS Success 174.110.206.174
# 4 McAfee NSP Success 227.12.127.87
# 5 Juniper SRX Success 28.9.24.154
# 6 McAfee NSP Success 28.9.24.154
# 7 McAfee NSP Attempt 28.9.24.154
# 8 McAfee ePO Attempt 223.70.128.61
# 9 McAfee ePO Attempt 174.110.206.174
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# 10 CISCO ASA Attempt 227.12.127.87
# ... with 290 more rows, and 6 more variables: Dst_IP <chr>,
# Src_Port <int>, Dst_Port <int>, Protocol <chr>, Country_Src <chr>,
# Bytes_TRF <int>

Data pre-processing

In order to develop a statistical framework for firewall log analysis, data pre-processing is necessary
prior to applying any multivariate analytic techniques. To assist in this process anomalyDetection
offers two main approaches to pre-process log file data - aggregating the data into a tabulated state
vector and managing multicollinearity concerns.

First, we can employ the tabulated vector approach introduced by Gutierrez et al. (2017). This
approach transforms the security log data into unique counts of data attributes based on pre-defined
time blocks. Therefore, as each time block is generated, the categorical fields are separated by their
levels and a count of occurrences for each level are recorded into a vector. All numerical fields, such as
bytes in and bytes out, are recorded as a summation within the time block. The result is what we call a
state vector matrix .

Thus, for our security_logs data we can create our state vector matrix based on our data being
divided into 10 time blocks. What results is the summary of instances for each categorical level in
our data for each time block. Consequently, row one represents the first time block and there were
2 instances of CISCO as the device vendor, 1 instance of IBM, etc. By adjusting the block_length,
level_limit, and level_keep arguments, the user can refine the level of aggregation and variables to
retain and analyze.

tabulate_state_vector(security_logs, 10)
# A tibble: 30 × 43
# CISCO IBM Juniper McAfee `Palo Alto Networks` NA1 ASA ePO
# <int> <int> <int> <int> <int> <int> <int> <int>
# 1 2 1 1 6 0 0 2 2
# 2 0 2 4 2 2 0 0 2
# 3 2 4 2 2 0 0 2 2
# 4 5 1 2 1 1 0 5 1
# 5 3 1 1 3 2 0 3 1
# 6 2 1 2 4 1 0 2 1
# 7 2 2 1 3 2 0 2 0
# 8 3 3 1 3 0 0 3 2
# 9 0 1 4 3 2 0 0 1
# 10 2 2 2 4 0 0 2 3
# ... with 20 more rows, and 35 more variables: Firewall <int>, NSP <int>,
# SNIPS <int>, SRX <int>, NA2 <int>, Attempt <int>, Failure <int>,
# Success <int>, NA3 <int>, `174.110.206.174` <int>,
# `223.70.128.61` <int>, `227.12.127.87` <int>, `28.9.24.154` <int>,
# `89.130.69.91` <int>, NA4 <int>, `145.114.4.203` <int>,
# `151.194.233.198` <int>, `219.142.109.8` <int>, `32.73.26.223` <int>,
# `56.137.121.203` <int>, NA5 <int>, TCP <int>, UDP <int>, NA6 <int>,
# China <int>, India <int>, Korea <int>, Netherlands <int>,
# Russia <int>, `United Kingdom` <int>, US <int>, NA7 <int>,
# Src_Port <int>, Dst_Port <int>, Bytes_TRF <int>

The state vector matrix provides us with a numerical construct to analyze our log file data; however,
prior to proceeding with any multivariate statistical analyses we should inspect the state vector for
multicollinearity, to avoid issues such as matrix singularity, rank deficiency, and strong correlation
values, and remove any columns that pose an issue. We can use mc_adjust() to handle issues with
multicollinearity by first removing any columns whose variance is close to or less than a minimum
level of variance (min_var). Then, it removes linearly dependent columns. Finally, it removes any
columns that have a high absolute correlation value equal to or greater than that defined by the user
(max_cor).

(state_vec <- security_logs %>%
tabulate_state_vector(10) %>%
mc_adjust())

# A tibble: 30 × 26
# CISCO IBM Juniper McAfee `Palo Alto Networks` ePO Attempt Failure
# <int> <int> <int> <int> <int> <int> <int> <int>
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# 1 2 1 1 6 0 2 5 1
# 2 0 2 4 2 2 2 4 2
# 3 2 4 2 2 0 2 3 3
# 4 5 1 2 1 1 1 0 5
# 5 3 1 1 3 2 1 3 3
# 6 2 1 2 4 1 1 4 1
# 7 2 2 1 3 2 0 3 3
# 8 3 3 1 3 0 2 6 2
# 9 0 1 4 3 2 1 4 4
# 10 2 2 2 4 0 3 3 0
# ... with 20 more rows, and 18 more variables: `174.110.206.174` <int>,
# `223.70.128.61` <int>, `227.12.127.87` <int>, `28.9.24.154` <int>,
# `145.114.4.203` <int>, `151.194.233.198` <int>, `219.142.109.8` <int>,
# `32.73.26.223` <int>, TCP <int>, China <int>, India <int>,
# Korea <int>, Netherlands <int>, Russia <int>, `United Kingdom` <int>,
# Src_Port <int>, Dst_Port <int>, Bytes_TRF <int>

By default, mc_adjust() removes all columns that violate the variance, dependency, and correlation
thresholds. Alternatively, we can use action = "select" as an argument, which provides interactivity
where the user can select the variables that violate the correlation threshold that they would like to
remove.

Multivariate statistical analyses

With our data adjusted for multicollinearity we can now proceed with multivariate analyses to identify
anomalies in our log file. First we’ll use the mahalanobis_distance() function to compare the distance
between each observation by its distance from the data mean, independent of scale. This is computed
as

MD =
√
(x− x̄)C−1(x− x̄) (1)

where x is a vector of p observations, x = (x1, . . . , xp), x̄ is the mean vector of the data, x̄ =

(x̄1, . . . , x̄p), and C−1 is the inverse data covariance matrix. Here, we include output = "both" to
return both the Mahalanobis distance and the absolute breakdown distances and normalize = TRUE
so that we can compare relative magnitudes across our data.

state_vec %>%
mahalanobis_distance("both", normalize = TRUE) %>%
as_tibble

# A tibble: 30 × 27
# MD CISCO_BD IBM_BD Juniper_BD McAfee_BD
# <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 0.4548638 0.005536981 0.013005457 0.016020254 0.021822626
# 2 4.3843567 0.024664733 0.005573767 0.044055697 0.008985787
# 3 0.3604934 0.005536981 0.042732214 0.004005063 0.008985787
# 4 0.8456701 0.050839552 0.013005457 0.004005063 0.016687890
# 5 3.3541555 0.020637838 0.013005457 0.016020254 0.001283684
# 6 1.0900635 0.005536981 0.013005457 0.004005063 0.006418419
# 7 0.6769615 0.005536981 0.005573767 0.016020254 0.001283684
# 8 0.6968967 0.020637838 0.024152991 0.016020254 0.001283684
# 9 0.9910771 0.024664733 0.013005457 0.044055697 0.001283684
# 10 5.7822393 0.005536981 0.005573767 0.004005063 0.006418419
# ... with 20 more rows, and 22 more variables: `Palo Alto
# Networks_BD` <dbl>, ePO_BD <dbl>, Attempt_BD <dbl>, Failure_BD <dbl>,
# `174.110.206.174_BD` <dbl>, `223.70.128.61_BD` <dbl>,
# `227.12.127.87_BD` <dbl>, `28.9.24.154_BD` <dbl>,
# `145.114.4.203_BD` <dbl>, `151.194.233.198_BD` <dbl>,
# `219.142.109.8_BD` <dbl>, `32.73.26.223_BD` <dbl>, TCP_BD <dbl>,
# China_BD <dbl>, India_BD <dbl>, Korea_BD <dbl>, Netherlands_BD <dbl>,
# Russia_BD <dbl>, `United Kingdom_BD` <dbl>, Src_Port_BD <dbl>,
# Dst_Port_BD <dbl>, Bytes_TRF_BD <dbl>

We can use this information in a modified heatmap visualization (Figure 1) to identify outlier
values across our security log attributes and time blocks. Brighter columns represent time blocks
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deserving greater attention and further investigation. Larger circles represent variables within a time
block that have more anomalous activity. Thus, the larger and brighter the dot the more significant the
outlier is and the more it deserves attention.

state_vec %>%
mahalanobis_distance("both", normalize = TRUE) %>%
as_tibble %>%
dplyr::mutate(Block = 1:n()) %>%
gather(Variable, BD, -c(MD, Block)) %>%
ggplot(aes(factor(Block), Variable, color = MD, size = BD)) +
geom_point()

Figure 1: Modified heatmap for time block and feature outlier detection.

We can build onto this with the bd_row() function to identify which security log attributes in
the data are driving the Mahalanobis distance. bd_row() measures the relative contribution of each
variable, xi, to MD by computing

BDi =

∣∣∣∣∣ xi − x̄i√
Cii

∣∣∣∣∣ (2)

where Cii is the variance of xi. Furthermore, bd_row() will look at a specified row and rank-order
the columns by those that are driving the Mahalanobis distance. For example, the plot above identified
block 17 as having the largest Mahalanobis distance suggesting some abnormal activity may be
occurring during that time block. We can drill down into that block and look at the top 10 security
log attributes that are driving the Mahalanobis distance as these may be areas that require further
investigation.

state_vec %>%
mahalanobis_distance("bd", normalize = TRUE) %>%
bd_row(17, 10)

# Src_Port_BD Bytes_TRF_BD Dst_Port_BD 32.73.26.223_BD
# 3.2733887 2.1016995 1.3575754 1.3398650
# 223.70.128.61_BD McAfee_BD IBM_BD Korea_BD
# 1.2376147 1.0828415 1.0372208 0.9979392
# Russia_BD Juniper_BD
# 0.9937290 0.8478386

Next, we can use factor analysis as a dimensionality reduction technique to identify the underlying
structure of the data and identify factors (features) in the data that appear abnormal. Factor analysis
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relates the correlations between variables through a set of factors to link together seemingly unrelated
variables. The basic factor analysis model is

X = Λ f + e (3)

where X is the vector of responses X = (x1, . . . , xp), f are the common factors f = ( f1, . . . , fq), e
is the unique factors e = (e1, . . . , ep), and Λ is the factor loadings. Factor loadings are correlations
between the factors and the original data and can thus range from -1 to 1, which indicate how much
that factor affects each variable. Values close to 0 imply a weak effect on the variable. For the desired
results, anomalyDetection uses the correlation matrix in its factor analysis computation.

A factor loadings matrix can be computed to understand how each original data variable is related
to the resultant factors. This can be computed as

Λ =

[√
λ1 ∗ e1, . . . ,

√
λp ∗ ep

]
(4)

where λ1 is the eigenvalue for each factor, ei is the eigenvector for each factor, and p is the number
of columns. Factor scores are used to examine the behavior of the observations relative to each factor
and can be used to identify anomaly detection. Factor scores are calculated as

f̂ = XsR−1Λ (5)

where Xs is the standardized observations, R−1 is the inverse of the correlation matrix, and Λ is
the factor loadings matrix. To simplify the results for interpretation, the factor loadings can undergo an
orthogonal or oblique rotation. Orthogonal rotations assume independence between the factors while
oblique rotations allow the factors to correlate. anomalyDetection utilizes the most common rotation
option known as varimax. Varimax rotates the factors orthogonally to maximize the variance of the
squared factor loadings which forces large factors to increase and small ones to decrease, providing
easier interpretation.

To begin using factor analysis, the dimensions of the reduced state vector matrix are first passed
to horns_curve(), which computes Horn’s Parallel Analysis (Horn, 1965) to determine the factors to
retain within a factor analysis.

horns_curve(state_vec)
# [1] 3.421431145 2.920860390 2.562571534 2.260732869 2.007756392
# [6] 1.789346403 1.595986779 1.418585893 1.255915765 1.106646364
# [11] 0.968567809 0.844067782 0.730563435 0.628690131 0.534405206
# [16] 0.450673920 0.374269067 0.306115502 0.244354685 0.191335630
# [21] 0.144295808 0.103873773 0.070143272 0.043042783 0.022553583
# [26] 0.008092665

Next, the dimensionality is determined by finding the eigenvalues of the correlation matrix of the
state vector matrix and retaining only those factors whose eigenvalues are greater than or equal to
those produced by horns_curve(). We use factor_analysis() to reduce the state vector matrix into
resultant factors. The factor_analysis() function generates a list containing five outputs:

$fa_loadings numerical matrix with the original factor loadings

$fa_scores numerical matrix with the row scores for each factor

$fa_loadings_rotated numerical matrix with the varimax rotated factor loadings

$fa_scores_rotated numerical matrix with the row scores for each varimax rotated factor

$num_factors : numeric vector identifying the number of factors

state_vec %>%
horns_curve() %>%
factor_analysis(state_vec, hc_points = .) %>%
names()

# [1] "fa_loadings" "fa_scores" "fa_loadings_rotated"
# [4] "fa_scores_rotated" "num_factors"

For easy access to these results we can use the factor_analysis_results() parsing function. The
factor_analysis_results() function will parse the results either by their list name or by location. For
instance to extract the rotated factor scores you can use factor_analysis_results(data, results =
fa_scores_rotated) or factor_analysis_results(data, results = 4) as demonstrated below.
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state_vec %>%
horns_curve() %>%
factor_analysis(state_vec, hc_points = .) %>%
factor_analysis_results(4) %>%
as_tibble

# A tibble: 30 × 11
# V1 V2 V3 V4 V5 V6
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 -0.362674625 0.3348386 0.6915550 0.08187007 -0.09327471 1.6577954
# 2 -0.006043119 -0.4959245 -1.7713249 1.48113530 0.75941566 0.4949437
# 3 0.783216952 -0.8394997 -0.4961150 1.31512814 0.97310016 -0.4546721
# 4 0.462460483 1.3648730 -0.1082969 -2.54886990 -0.42566777 -1.9486609
# 5 0.175061099 -0.8789010 1.2417347 -0.36983659 1.55454286 -0.5180766
# 6 -0.207615911 1.2025271 0.2300188 0.40146898 1.23209508 0.3752129
# 7 0.731099082 -1.9734310 -0.9490889 -0.62509695 1.04029889 -0.3571424
# 8 0.030558029 -1.2308883 1.1503857 0.08635927 -1.60839067 1.9569930
# 9 0.265720779 -0.0830922 -1.7467551 -0.13258281 0.47299019 -0.4580762
# 10 -0.875234891 -1.5917696 0.8289798 -1.23316029 1.25799551 0.3656262
# ... with 20 more rows, and 5 more variables: V7 <dbl>, V8 <dbl>,
# V9 <dbl>, V10 <dbl>, V11 <dbl>

To evaluate the quality of a factor analysis solution, Kaiser (Kaiser, 1974) proposed the Index of
Factorial Simplicity (IFS). The IFS is computed as

IFS =
∑i
[
q ∑s λ4

js − (∑s λ2
js)

2]
∑i
[
(q− 1)(∑s λ2

js)
2
] (6)

where q is the number of factors, j the row index, s the column index, and λjs is the value in the
loadings matrix. Furthermore, Kaiser created the following evaluations of the score produced by the
IFS as shown below:

In the .90s Marvelous

In the .80s Meritorious

In the .70s Middling

In the .60s Mediocre

In the .50s Miserable

Less than .50 : Unacceptable

Thus, to assess the quality of our factor analysis results we apply kaisers_index() to the rotated
factor loadings and, as the results show below, our output value of 0.702 suggests that our results are
“middling”.

state_vec %>%
horns_curve() %>%
factor_analysis(data = state_vec, hc_points = .) %>%
factor_analysis_results(fa_loadings_rotated) %>%
kaisers_index()

# [1] 0.7018006

Furthermore, Figure 2 visualizes the factor analysis results to show the correlation between the
columns of the reduced state vector to the rotated factor loadings. Strong negative correlations are
depicted as red while strong positive correlations are shown as blue. This helps to identify which
factors are correlated with each security log data attribute. Furthermore, this helps to identify two or
more security log data attributes that appear to have relationships with their occurrences. For example,
this shows that Russia is highly correlated with IP address 223.70.128 since both these attributes are
strongly correlated with factor 5. If there is an abnormally large amount of instances with Russian
occurrences this would be the logical IP address to start investigating.

fa_loadings <- state_vec %>%
horns_curve() %>%
factor_analysis(state_vec, hc_points = .) %>%
factor_analysis_results(fa_loadings_rotated)

row.names(fa_loadings) <- colnames(state_vec)
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gplots::heatmap.2(fa_loadings, dendrogram = 'both', trace = 'none',
density.info = 'none', breaks = seq(-1, 1, by = .25),
col = RColorBrewer::brewer.pal(8, 'RdBu'))

Figure 2: Modified factor analysis heatmap to identify correlated attributes.

We can also visualize the rotated factor score plots as in Figure 3 to see which time blocks appear
to be outliers and deserve closer attention.

state_vec %>%
horns_curve() %>%
factor_analysis(state_vec, hc_points = .) %>%
factor_analysis_results(fa_scores_rotated) %>%
as_tibble() %>%
dplyr::mutate(Block = 1:n()) %>%
gather(Factor, Score, -Block) %>%
dplyr::mutate(Absolute_Score = abs(Score)) %>%
ggplot(aes(Factor, Absolute_Score, label = Block)) +
geom_text(size = 2) +
geom_boxplot(outlier.shape = NA)

This allows us to look across the factors and identify outlier blocks that may require further
intra-block analysis. If we assume that an absolute rotated factor score ≥ 2 represents our outlier
cut-off then we see that time blocks 4, 13, 15, 17, 24, 26, and 27 require further investigation. We saw
block 17 being highlighted with mahalanobis_distance() earlier, but these other time blocks were not
as obvious, so by performing and comparing these multiple anomaly detection approaches we can
gain greater insights or confirm prior suspicions.

An alternative, yet similar approach to factor analysis is principal component analysis. These two
approaches can produce similar outcomes, especially when the error component in equation 4 is close
to zero (Fabrigar et al., 1999). However, the results often differ and there are important distinctions
in the interpretation of these results (Park et al., 2002). First, a primary difference between the two
approaches is that factor analysis estimates errors while principal component analysis does not. This
indicates that principal component analysis assumes that the measurement is without error. Second,
the goal in factor analysis is to explain the covariances or correlations between the variables. Therefore
anomaly detection using factor analysis will identify time blocks and variable attributes in which their

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 362

Figure 3: Detecting outlier time blocks based on rotated factor analysis scores.

abnormal behavior is highly correlated to one another. This allows you to identify latent features
in the data. By contrast, the goal of principal component analysis is to explain as much of the total
variance in the variables as possible. Therefore, if your goal is to reduce the log file variables into a
composite component for further analysis, principal component analysis would be appropriate. To
maintain clarity between these two approaches the following discussion leverages different notation.

The first principal component of a set of features X1, X2, . . . , Xp is the normalized linear combina-
tion of the features

Z1 = φ11X1 + φ21X2 + · · ·+ φp1Xp (7)

that has the largest variance. By normalized , we mean that ∑
p
j=1 φ2

j1 = 1. We refer to the elements
φ11, . . . , φp1 as the loadings of the first principal component; together, the loadings make up the
principal component loading vector, φ1 = (φ11, φ21, . . . , φp1)

T . The loadings are constrained so that
their sum of squares is equal to one, since otherwise setting these elements to be arbitrarily large in
absolute value could result in an arbitrarily large variance. After the first principal component Z1
of the features has been determined, we can find the second principal component Z2. The second
principal component is the linear combination of X1, . . . , Xp that has maximal variance out of all linear
combinations that are uncorrelated with Z1. The second principal component scores z12, z22, . . . , zn2
take the form

z12 = φ12xi1 + φ22xi2 + · · ·+ φp2xip (8)

where φ2 is the second principal loading vector, with elements φ12, φ22, . . . , φp2. This continues
until all principal components have been computed. Therefore anomaly detection using PCA will
maximize the difference in behaviors across time blocks and variable attributes. Thus, identifying
anomalies with PCA will identify those attributes that behave very differently than all the other
features. To perform a principal components analysis we use principal_components() which will
create a list containing:

$pca_sdev the standard deviations of the principal components (i.e., the square roots of the eigen-
values of the covariance/correlation matrix, though the calculation is actually done with the
singular values of the data matrix).

$pca_loadings the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).
$pca_rotated the value of the rotated data (the centered, and scaled if requested, data multiplied by

the rotation matrix) is returned.
$pca_center the centering used.
$pca_scale a logical response indicating whether scaling was used.

principal_components(state_vec) %>% names
# [1] "pca_sdev" "pca_loadings" "pca_rotated" "pca_center"
# [5] "pca_scale"

For easy access to these results we can use the principal_components_result parsing func-
tion. The principal_components_result will parse the results either by their list name or by lo-
cation. For example, to extract the computed component scores as outlined in Eq. 8 you can use
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principal_components_result(data, results = pca_rotated) or principal_components_result(data,
results = 3) as demonstrated below.

state_vec %>%
principal_components() %>%
principal_components_result(pca_rotated) %>%
as_tibble

# A tibble: 30 × 26
# PC1 PC2 PC3 PC4 PC5 PC6
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 1326.436 -285.25443 36.72628 3.2968478 -0.2977835 -1.3016917
# 2 20404.603 420.02358 236.94988 3.8917064 2.1798436 2.4849683
# 3 1884.370 -229.68499 45.39825 1.2682210 2.4212424 1.2380853
# 4 1555.892 171.11547 116.14809 -6.0588320 -0.5539837 -0.1773544
# 5 -37890.373 -470.91871 55.73837 -0.9419323 -0.3674156 -0.7529821
# 6 -19041.547 -307.40718 -44.48265 0.3985038 -1.2587089 -2.3739508
# 7 -19117.070 130.64729 30.69814 -2.1478778 3.1516592 1.0870282
# 8 21346.072 35.75772 12.44375 1.5784997 2.8835997 -2.4794129
# 9 -18901.619 -251.41102 55.19655 0.1510258 -0.3283588 4.0431385
# 10 -37321.917 -848.69603 -77.71478 2.1905376 2.3692681 -0.3439843
# ... with 20 more rows, and 20 more variables: PC7 <dbl>, PC8 <dbl>,
# PC9 <dbl>, PC10 <dbl>, PC11 <dbl>, PC12 <dbl>, PC13 <dbl>, PC14 <dbl>,
# PC15 <dbl>, PC16 <dbl>, PC17 <dbl>, PC18 <dbl>, PC19 <dbl>,
# PC20 <dbl>, PC21 <dbl>, PC22 <dbl>, PC23 <dbl>, PC24 <dbl>,
# PC25 <dbl>, PC26 <dbl>

We can then follow the principal components analysis with similar visualization activities as
performed post-factor analysis to identify features that exhibit abnormal behavior. Since visualizing
principal components analysis to identify anomolies mirrors that which we performed in the factor
analysis section, we will leave this to the reader as an independent exercise.

Conclusion

Cyber attacks continue to be a growing concern for organizations. Unfortunately, the process of
analyzing log files has, historically, been unorganized and lacked efficient approaches. The presented
anomalyDetection package makes the log file analysis process more efficient and facilitates the
identification and analysis of anomalies within log files.

First, anomalyDetection improves the pre-processing of cyber data. The package offers functions
that help to narrow down abnormal behavior by aggregating internet traffic data into customizable
time blocks. Aggregated activity at a higher-level time block should be easier to analyze while still
offering a map to suspicious areas to drill down using smaller time blocks. For very large data sets,
the analyst can tune the function parameters to start with less blocks and more aggregated data and
then iteratively drill down into less aggregated data. Furthermore, anomalyDetection improves the
process of adjusting for multicollinearity concerns.

Second, anomalyDetection improves the modeling process to perform multivariate statistical
analysis by offering built-in functions to perform Mahalanobis distance, factor analysis, and principal
components analysis along with functions to improve the efficiency of extracting and assessing the
results from these multivariate approaches.

Third, we demonstrated how the anomalyDetection incorporates the pipe operator (%>%) to allow
it to work well in the tidyverse workflow, which helps to improve the overall efficiency of the data
analysis process.

It is also important to note that although the authors’ focus with this package was to target and
improve the analysis of network log-file data, anomalyDetection can also be used for other large data
sets that contain arbitrary features that require data aggregation and anomaly analysis. Furthermore,
as with any package, we readily admit that further improvements to the package can be made. Future
versions of anomalyDetection plan to integrate additional multivariate and time series approaches
to offer analysts a wider suite of modeling tools. Integrating plotting functions are also planned for
future iterations to further enhance the efficiency of visualizing analytic results. Furthermore, future
updates could explore how anomalyDetection could interact with distributable systems such as spark
by integrating capabilities from packages such as SparkR. This would improve anomalyDetection’s
ability to work with Big data architectures.
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