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This work provides development of Constellation Based DNA (CB-DNA) Fingerprinting for use in systems employing quadrature
modulations and includes network protection demonstrations for ZigBee offset quadrature phase shift keying modulation. Results
are based on 120 unique networks comprised of seven authorized ZigBee RZSUBSTICK devices, with three additional like-model
devices serving as unauthorized rogue devices. Authorized network device fingerprints are used to train a Multiple Discriminant
Analysis (MDA) classifier andRogueRejectionRate (RRR) estimated for 2520 attacks involving rogue devices presenting themselves
as authorized devices. With MDA training thresholds set to achieve a True Verification Rate (TVR) of TVR = 95% for authorized
network devices, the collective rogue device detection results for SNR ≥ 12 dB include average burst-by-burst RRR ≈ 94% across all
2520 attack scenarios with individual rogue device attack performance spanning 83.32% < RRR < 99.81%.

1. Introduction

The need to establish reliable and secure communications
remains a challenge across commercial Industrial Internet
of Things (IIoT) applications that support Critical Infras-
tructure (CI) elements (water treatment, petroleum product
distribution, transportation, etc.) that are commonly oper-
ated through Industrial Control System (ICS) architectures.
ZigBee networks are common within the IIoT and CI/ICS
domains and remain a mainstay for implementing wireless
sensor and automation networks supporting medical, smart
home and building automation, and consumer electronics [1–
3]. The degree of required ZigBee antihacking security varies
with application criticality and will increase as the number
of deployed ZigBee devices under 802.15.4 market expansion
grows to 1 billion units being shipped annually by 2022 and
the next generation multiprotocol 802.15.4/Bluetooth/WiFi
hardware becomes available [4]. As device makers strive to
take advantage of market opportunity and satisfy consumer
wants for the next “greatest” interface device, it remains
unclear that they have taken necessary prudent steps to
address legacy security concerns.

In light of vital asset vulnerability, protection of IIoT
CI and ICS elements has become a national-level priority
for both the public and private sectors [5–7]. Mitigation
strategies against cyberattacks have traditionally focused
on bit-level solutions targeting the higher communication
protocol layers and until recently there has been minimal
emphasis on physical (PHY) layer development [8–10]. This
work addresses hardware device identity (ID) verification as
a means to enhance network security by preventing unau-
thorized access through the PHY doorway through which a
preponderance of malicious cyberattacks occur.The focus on
ZigBee device security is motivated by two factors, including
the following: (1) ZigBee and related 802.15.4 communication
systems are deployed world-wide and (2) ZigBee serves
as a representative protocol for broader IIoT applications
[11, 12]. This work expands previous wireless device ID
discrimination activity that has successfully exploited various
Distinct Native Attribute (DNA) features extracted from
selected signal responses to reliably discriminate transmitting
hardware devices.

The Constellation Based DNA (CB-DNA) development
here is motivated by concepts introduced in [13] used to
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discriminate Ethernet cards with features extracted from
a contrived (nonconventional) binary constellation. The
extension to this earlier work includes (1) formal analytic
development of CB-DNA Fingerprinting for systems using
conventional M-ary Quadrature Amplitude Modulation (M-
QAM) signaling, (2) demonstration of CB-DNAFingerprint-
ing applicability to ZigBee and related 802.15.4 communi-
cation protocols, and (3) proposition of a network device
ID process that incorporates mechanisms of localised RF air
monitors that have been vetted for other wireless networks
[14–17] while achieving security benefits of verification-based
Multifactor Authentication (MFA).This proposition includes
use of wireless MFA processing with success of the first
“something you have” (network compliant device) and sec-
ond “something you know” (authorized device bit-level ID)
checks followed by a final “something you are” (biometric-
like CB-DNA fingerprint) check to boost overall security
[18, 19]. While comparison of the proposed verification-
based rogue detection process with fielded and/or emerging
commercial approaches is certainly of interest, a meaningful
comparison is not viable given that (1) implementation details
of commercial methods are generally proprietary and (2)
the statistical effectiveness of such methods is generally
unpublished. Regardless, the computational efficiency and
speed of biometric-based MFA [18] make it a top-ranked
choice for communication device discrimination [19] and it
is reasonable to expect similar advantages in MFA-based CB-
DNA security applications.

2. Background

2.1. Quadrature Amplitude Modulation (QAM). The general
development for the class of complexM-ary QAMmodulated
signals having in-phase/quadrature-phase (I/Q) components
includes the 𝑚th complex data modulated symbol given by

𝑆𝑚 (𝑡) = 𝐼𝑆𝑚 + 𝑗𝑄𝑆𝑚 , (1)

for 0 < 𝑡 < 𝑇𝑆𝑦𝑚 where 𝑇𝑆𝑦𝑚 is the total symbol duration,𝑚 = 1, 2, . . . ,M, and 𝐼𝑆𝑚 and 𝑄𝑆𝑚 are real-valued modulation
components in the I/Q constellation space with 𝐼𝑆𝑚 ∈[𝐼𝑆1 , 𝐼𝑆2 , . . . , 𝐼𝑆𝑀] and 𝑄𝑆𝑚 ∈ [𝑄𝑆1 , 𝑄𝑆2 , . . . , 𝑄𝑆𝑀]. For complex
symbols given by (1), a transmitted (Tx) burst of 𝑁𝑆𝑦𝑚 QAM
modulated symbols is given by

S𝑇𝑥 (𝑡) = [
[
𝑁𝑆𝑦𝑚∑
𝑚=1

𝑆𝑚 (𝑡 − 𝑘𝑇Sym)]]
exp (2𝜋𝑓𝑐𝑡 + 𝜙𝑇𝑥) ,

S𝑇𝑥 (𝑡) = [
[
𝑁𝑆𝑦𝑚∑
𝑚=1

𝑆𝑚 (𝑡 − 𝑘𝑇𝑆𝑦𝑚)]]
cos (2𝜋𝑓𝑐𝑡 + 𝜙𝑇𝑥)

+ 𝑗[
[
𝑁𝑆𝑦𝑚∑
𝑚=1

𝑆𝑚 (𝑡 − 𝑘𝑇𝑆𝑦𝑚)]]
sin (2𝜋𝑓𝑐𝑡 + 𝜙𝑇𝑥) ,

(2)

for 0 < t < 𝑁𝑆𝑦𝑚X𝑇𝑆𝑦𝑚 with 𝑓𝑐 being the transmitted carrier
frequency and 𝜙𝑇𝑥 = 𝜙/2 accounting for quadrature-phase
error induced by hardware components [21]. The sequence

of ideal transmitted QAM symbols in S𝑇𝑥(𝑡) is denoted by
vector S𝑚 = (𝑆1, 𝑆2, . . . , 𝑆𝑚, . . . , 𝑆𝑁𝑆𝑦𝑚−1, 𝑆𝑁𝑆𝑦𝑚) where 𝑆𝑚 ∈
[𝑆1, 𝑆2, . . . , 𝑆M]. For the case ofM= 4-ary signaling, the QAM𝑆𝑇𝑥(𝑡) expression in (2) can be used to effectively represent the
4-ary Offset Quadrature-Phase Shift Keyed (O-QPSK) used
here for ZigBee demonstration.

Considering channel amplitude 𝐴𝐶ℎ and transmitter-to-
receiver propagation delay 𝜏𝐶ℎ factors, the received (𝑅𝑥) burst
corresponding to 𝑆𝑇𝑥(𝑡) in (2) is given by

𝑆𝑅𝑥 (𝑡) = 𝐴𝐶ℎ𝑆𝑇𝑥 (𝑡 − 𝜏𝐶ℎ) (3)

which has baseband received 𝐼𝑅𝑥(𝑡) and 𝑄𝑅𝑥(𝑡) components
that can be expressed as

𝐼𝑅𝑥 (𝑡) = 𝐺𝐼/𝑄[
[
𝑁𝑆𝑦𝑚∑
𝑘=1

𝐼𝑆𝑘 (𝑡 − 𝑘𝑇𝑆𝑦𝑚 − 𝜏𝐷)]]
+ 𝑂𝐼 (𝑡) , (4)

𝑄𝑅𝑥 (𝑡) = 𝐺𝐼/𝑄[
[
𝑁𝑆𝑦𝑚∑
𝑘=1

𝑄𝑆𝑘 (𝑡 − 𝑘𝑇𝑆𝑦𝑚 − 𝜏𝐷)]]
+ 𝑂𝑄 (𝑡) , (5)

where 𝐺𝐼/𝑄 is the I/Q gain imbalance, 𝜏𝐷 accounts for𝜏𝐶ℎ and relative time delay between receiver I/Q channels,
and 𝑂𝐼(𝑡) and 𝑂𝑄(𝑡) represent I/Q offset factors [21]. The𝐺𝐼/𝑄, 𝜏𝐷, 𝑂𝐼(𝑡), and 𝑂𝑄(𝑡) factors in (4) and (5) collec-
tively account for transmitter 𝜙𝑇𝑥 error in (2) and addi-
tional receiver imperfections. The sequence of corrupted
received QAM symbols in S𝑅𝑥(𝑡) is denoted by vector S𝑘 =(𝑆1, 𝑆2, . . . , 𝑆𝑘, . . . , 𝑆𝑁𝑆𝑦𝑚−1, 𝑆𝑁𝑆𝑦𝑚).

The cumulative effect of transmitter-receiver imperfec-
tions and channel errors captured in 𝐼𝑅𝑥(𝑡) and 𝑄𝑅𝑥(𝑡) com-
ponents is a degradation in received QAM symbol estimates,
denoted here as Ŝ𝑘 = (𝑆1, 𝑆2, . . . , 𝑆𝑘, . . . , 𝑆𝑁𝑆𝑦𝑚−1, 𝑆𝑁𝑆𝑦𝑚) for a
given S𝑘, induced by a location shift of receivedC𝑆𝑘= 𝐼𝑆𝑘 +𝑗𝑄𝑆𝑘 QAM constellation points relative to the corresponding
ideal transmittedC𝑆𝑚= 𝐼𝑆𝑚 + 𝑗𝑄𝑆𝑚 constellation points. In
addition to potential QAM symbol estimation error induced
by received C𝑆𝑘 deviation, there are two other receiver
processes that are key for achieving reliable QAM symbol
estimation, including (1) received carrier frequency offset𝑓𝑅𝑥
estimation and (2) phase recovery for symbol constellation
derotation.

2.1.1. Received Carrier Estimation. Following downconver-
sion by 𝑓𝑐 and baseband filtering, samples of the received M-
QAM signal at the receiver’s Matched Filter (MF) output can
be modeled as [22]

𝑆𝑀𝐹 (𝑛) = KR𝑆𝑘 (𝑛) exp (j2𝜋𝑓𝑅𝑥𝑡) + NB (𝑛) , (6)

where 𝑛 = 1, 2, . . . 𝑁𝑀𝐹, K𝑅 is a real-valued scalar, 𝑆𝑘 are
the transmitted QAM symbols in (2), 𝑓𝑅𝑥 is relative received
carrier frequency offset, and NB is communication channel
background noise [22]. The residual 𝑓𝑅𝑥 in 𝑆𝑅𝑥(t) can be
estimated by raising 𝑆𝑀𝐹(𝑛) in (6) to theMthpower to remove
the modulation effects. This effectively creates a multitone
spectral response with a dominant (highest power) tone
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Table 1: Constellation phase derotation algorithm.

Require: Received Constellation Projection C𝑆𝑘
RotationVariances←󳨀 ∞
for 𝑁Δ = 1 to 100 do

𝜃 ←󳨀 (𝑁Δ ⋅ 𝜋)/(2 × 100)
Rot(C𝑆𝑘) ←󳨀 C𝑆𝑘 ⋅ 𝑒j𝜃
Temp ←󳨀 |Re[Rot(C𝑆𝑘)]| + 𝑗|Im[Rot(C𝑆𝑘)]|
RotationVariances (𝑁Δ)←󳨀 Variance(Temp)

end for
𝑁Δ ←󳨀 argmin𝑁Δ [RotationVariances]
return C𝑆𝑘 ⋅ 𝑒j(𝑁Δ ⋅𝜋)/(2×100)

occurring atM×𝑓𝑅𝑥 [23].This is illustrated for 4-QAMwhere𝑆4𝑀𝐹(𝑛) can be expanded as

𝑆4𝑀𝐹 (𝑛) = [KR𝑆𝑚 (𝑛)]4 exp (j8𝜋𝑓𝑅𝑥𝑡)
+ 4 [KR𝑆𝑚 (𝑛)]3 exp (𝑗6𝜋𝑓𝑅𝑥𝑡)NB (𝑛)
+ 4 [KR𝑆𝑚 (𝑛)] exp (𝑗2𝜋𝑓𝑅𝑥𝑡)N3B (𝑛)
+ 6 [KR𝑆𝑚 (𝑛)]2 exp (𝑗4𝜋𝑓𝑅𝑥𝑡)N2B (𝑛)
+N4B (𝑛)

(7)

which includes a dominant 8𝜋𝑓𝑅𝑥 = 2𝜋(4𝑓𝑅𝑥) frequency
component.The estimated received carrier frequency offset is
given by 𝑓𝑅𝑥 = 4[argmax𝑛(F|𝑆4𝑀𝐹(𝑛)|)] whereF(⋅) denotes
the discrete Fourier transform.

2.1.2. Constellation Phase Recovery. Receivers commonly use
a Phase Locked Loop (PLL) to reconstruct the suppressed
carrier via dynamic feedback that autocompensates for
phase errors [24]. While generally beneficial, this within-
burst autocompensation can potentially obscure subtle DNA
feature differences that may help discriminate transmit-
ters. Therefore, burst-by-burst discrete phase estimation and
constellation derotation was implemented here using an
algorithm that rotates the received C𝑆𝑘 constellation points
for each burst from 0 to 𝜋/2 radians in𝑁Δ = 100 increments
and selects the phase rotation angle yielding the minimum
variance between the incrementally rotated pool of received
C𝑆𝑘 and the ideal C𝑆𝑚 constellation points. The pseudocode
for implementing this algorithm is presented in Table 1.

There are four different phase angle ambiguities that can
exist after derotating the constellation using the algorithm
in Table 1. These are resolved using estimated rotation
angles of known preamble (training) symbols. The rotated
constellation projections can also be normalized by scaling
(dividing) each Rot(C𝑆𝑘 ) point by the mean (|Rot(C𝑆𝑘)|)
which locates the center of all constellation clusters on the
unit circle.

2.2. ZigBee Communications. The ZigBee Communication
protocol includes a Medium Access Control (MAC) layer,
where device IDs are verified using bit-level credentials, that

Table 2: ZigBee RZUSBSTICK device details showing the device
ID, the digital MAC address, and two unique physical markings
appearing on the device AT86RF230 transceiver chips.

ID MAC Mark 1 Mark 2
ZC1 A0:F6:9F:E7 1442 PH 1R8338-7
ZC2 A0:01:43:70 0923 PH 8P0772
ZC3 A0:01:5D:34 0936 PH 9P0187-2
ZC4 A0:F6:A0:68 1442 PH 1R8338-7
ZC5 A0:F6:A0:4E 1442 PH 1R8338-7
ZC6 A0:F6:9F:FF 1442 PH 1R8338-7
ZC7 A0:F6:A0:0C 1442 PH 1R8338-7
ZC8 A0:F6:A0:04 1442 PH 1R8338-7
ZC9 A0:F6:9F:EA 1442 PH 1R8338-7
ZC10 A0:F6:9F:E0 1442 PH 1R8338-7

interfaces with the RF communications channel through
the PHY layer using RF hardware and firmware [25]. The
PHY layer is implemented according to the IEEE 802.15.4
standard for low data-rate, low-power, and short range RF
communications [20]. It is estimated that more than one
billion 802.15.14 compliant components will be sold by the
end of this decade with a majority of them supporting
localised smart home networks [4]. One such component
is the Atmel AT86RF230 radio transceiver that is hosted
on RZUSBSTICK devices [26]. These are small low-power
devices that support ZigBee operation at 2.4 GHz through an
integrated folded dipole antenna with a net peak gain of𝐺𝐴 =
0 dB. Accounting for 𝐺𝐴 = 0 dB and maximum AT86RF230
output power of POut = +3.0 dBm [27], the effective transmit
power of the RZUSBSTICK is PTx = +3.0 dBm which make
it a viable alternative for not only smart home networks
but other wireless sensor networks, industrial control sys-
tem, and building automation [27]. Details for the specific
RZUSBSTICK devices used for demonstration are provided
in Table 2 which shows the unique ZigBee Communication
(ZC) device IDs assigned for experimentation.

The use of PHY layer O-QPSK modulation is mandatory
for ZigBee operation at 2.4GHz,with theO-QPSKmodulator
preceded by a 4-to-32 (information bit-to-spread chip) Pseu-
dorandom Noise (PN) mapping such that the information
bits are transmitted at an effective rate of (2M Chips/Sec)× (4/32 Bits/Chip) = 250K Bits/Sec [20, 25]. Accounting
for I/Q channel offset processing in the modulator, the
corresponding output O-QPSK communication symbol rate
for a transmitted S𝑇𝑥(𝑡) burst given by (2) is 𝑅𝑆𝑦𝑚 = 1/𝑇𝑆𝑦𝑚 =
(250K Bits/Sec)/(2 Bits/Sym) = 125K Sym/Sec.

The required 4-to-32 PN mapping for 2.4 GHz ZigBee
operation is shown in Table 3 [20]. Given this mapping,
there are specific transmitted O-QPSK S𝑚 symbol sequences
that occur with varying probability. For example, the bold
highlighted {1 0 0 1 0 0} 6-bit pattern in the output chip
sequences in Table 3 is among the most frequently occurring
ones (appears in 13 of 16 chip sequences) and produces the O-
QPSK transmitted symbol sequence S𝑚 = (𝑆2, 𝑆2, 𝑆3, 𝑆3, 𝑆3).
This 5-symbol S𝑚 vector is denoted in Table 4 by an ∗ and
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Table 3: Input-output sequences for ZigBee 4-to-32 premodulation
PNmapping [20]. Bold entries highlight one of 30 highest probabil-
ity 6-bit sequences.

Input {b0, b1, b2, b3} Output Chip Sequence {c0, c1, c2, . . . , c31}
0000 11011001110000110101001000101110
1000 11101101100111000011010100100010
0100 00101110110110011100001101010010
1100 00100010111011011001110000110101
0010 01010010001011101101100111000011
1010 00110101001000101110110110011100
0110 11000011010100100010111011011001
1110 10011100001101010010001011101101
0001 10001100100101100000011101111011
1001 10111000110010010110000001110111
0101 01111011100011001001011000000111
1101 01110111101110001100100101100000
0011 00000111011110111000110010010110
1011 01100000011101111011100011001001
0111 10010110000001110111101110001100
1111 11001001011000000111011110111000

Table 4: 30 highest probability 5-symbol S𝑚 for Table 3 mapping
with ∗ denoting S𝑚 for the output bit sequence {1 0 0 1 0 0}
highlighted in Table 3.

(𝑆1, 𝑆1, 𝑆1, 𝑆1, 𝑆2) (𝑆3, 𝑆1, 𝑆1, 𝑆3, 𝑆3)(𝑆1, 𝑆3, 𝑆3, 𝑆4, 𝑆4) (𝑆3, 𝑆3, 𝑆4, 𝑆4, 𝑆4)(𝑆2, 𝑆2, 𝑆2, 𝑆4, 𝑆3) (𝑆4, 𝑆2, 𝑆2, 𝑆4, 𝑆4)(𝑆2, 𝑆4, 𝑆4, 𝑆4, 𝑆3) (𝑆1, 𝑆3, 𝑆3, 𝑆1, 𝑆2)(𝑆3, 𝑆3, 𝑆4, 𝑆4, 𝑆4)∗ (𝑆2, 𝑆2, 𝑆1, 𝑆3, 𝑆3)(𝑆4, 𝑆2, 𝑆2, 𝑆2, 𝑆2) (𝑆2, 𝑆4, 𝑆4, 𝑆2, 𝑆1)(𝑆1, 𝑆1, 𝑆1, 𝑆3, 𝑆4) (𝑆3, 𝑆1, 𝑆1, 𝑆3, 𝑆4)(𝑆1, 𝑆3, 𝑆4, 𝑆2, 𝑆1) (𝑆4, 𝑆2, 𝑆1, 𝑆1, 𝑆2)(𝑆2, 𝑆4, 𝑆3, 𝑆1, 𝑆1) (𝑆4, 𝑆4, 𝑆3, 𝑆1, 𝑆2)(𝑆3, 𝑆3, 𝑆1, 𝑆1, 𝑆2) (𝑆1, 𝑆3, 𝑆3, 𝑆1, 𝑆2)(𝑆3, 𝑆3, 𝑆4, 𝑆2, 𝑆2) (𝑆2, 𝑆2, 𝑆2, 𝑆2, 𝑆1)(𝑆4, 𝑆2, 𝑆2, 𝑆4, 𝑆3) (𝑆2, 𝑆4, 𝑆4, 𝑆2, 𝑆2)(𝑆1, 𝑆1, 𝑆2, 𝑆4, 𝑆4) (𝑆3, 𝑆1, 𝑆2, 𝑆2, 𝑆2)(𝑆1, 𝑆3, 𝑆4, 𝑆2, 𝑆2) (𝑆4, 𝑆2, 𝑆1, 𝑆3, 𝑆3)(𝑆2, 𝑆4, 𝑆3, 𝑆1, 𝑆2) (𝑆4, 𝑆4, 𝑆3, 𝑆3, 𝑆4)

is among the 30 highest probability transmitted O-QPSK 𝑆𝑚
used for conditional CB-DNA demonstration.

2.3. Device Classification and Device ID Verification. Device
discrimination (classification and ID verification) is per-
formed using DNAfingerprints with aMultiple Discriminant
Analysis/Maximum Likelihood (MDA/ML) process adopted
from [11]. This includes MDA model training for N𝐶𝑙𝑠
classes (ZC devices) with components of (1) an N𝐹 x N𝐶𝑙𝑠-
1 dimensional matrix W for projecting 1x 𝑁𝐹 dimensional
input fingerprints (F) into the N𝐶𝑙𝑠-1 discrimination space
containing fingerprint projection PF = FW; (2) an 1x 𝑁𝐹
dimensional fingerprint scaling vector 𝛼; and (3) the N𝐶𝑙𝑠

training means (𝜇) and covariances (Σ). MDA models are
generated using a pool of 4400 total fingerprints per class
that are equally divided into 𝑁𝑇𝑁𝐺 = 2200 Training (even
indexed fingerprints) and𝑁𝑇𝑆𝑇 = 2200 Testing (odd indexed
fingerprints) subsets. The even-odd indexing assignment
ensures the models account for temporal channel variation,
collection bias, etc., effects occurring during the course of
emission collection.

The TNG fingerprints at a given SNR are used for MDA
model training that includes 𝐾 = 5-fold cross-validation
[Dud1] with the best projection matrix WBest selected as the
fold W producing the highest cross-validation accuracy. The
TST fingerprints are then input to the model and a 1 versus𝑁𝐶𝑙𝑠 best match ML classification decision is made based
on a selected classification test statistic (𝑍𝐶𝑙𝑠). The trained
class yielding highest conditional probability P(ZC𝑖 | 𝑍𝐶𝑙𝑠)
for all 𝑖 = 1, 2, . . . , 𝑁𝐶𝑙𝑠 is the called class (right or wrong)
assigned to the unknown input fingerprint F. Classification
performance at a given SNR is presented in an 𝑁𝐶𝑙𝑠 x 𝑁𝐶𝑙𝑠
(input versus called) classification confusion matrix, with
(1) average cross-class percent correct classification (%C)
calculated as the sum of diagonal (correct) matrix entries
divided by the total number of classification trials (𝑁𝐶𝑙𝑠 x𝑁𝑇𝑆𝑇) and (2) individual class %C for each class C𝑖 calculated
as the sum of 𝑖th row entries divided by 𝑁𝑇𝑆𝑇. Alternately,
classification performance is presented in %C versus SNR
plots.

The device ID verification process uses the selected
MDA model components (W, 𝛼, 𝜇, and Σ) and device
TST fingerprints to estimate both (1) authorized network
device True Verification Rate (TVR) (true positive) and
(2) unauthorized device Rogue Rejection Rate (RRR) (true
negative). For a given claimed (unknown) authorized device
ID to be verified, the process includes the following: (1)
projecting TST F fingerprints for the device under test into
the 𝑁𝐶𝑙𝑠-1 discrimination space using PF = 𝛼 ⊗ FW
where ⊗ denotes element-by-element vector multiplication,
(2) calculating the selected verification test statistic (𝑍V) for𝑁𝑇𝑆𝑇 total fingerprints using training 𝜇 and/or Σ for the
claimed authorized device ID, (3) forming a normalized (unit
area) Probability Mass Function (PMF) using 𝑁𝑇𝑆𝑇 total𝑍V, (4) overlaying a desired training verification threshold
(𝑡V), and (5) calculating the PMF area above/below 𝑡V to
estimate the desired verification rate. Common 𝑍V measures
of similarity include (1) distance-based metrics such as the
Euclidean distance between projected PF and the claimed
training class mean 𝜇 and (2) probability-based metrics that
map the calculated PF Euclidean distance to a normalized
multivariate Gaussian probability distribution having mean
𝜇 and covariance Σ. Euclidean distance is perhaps the most
easily conceptualised and was chosen here for proof-of-
concept demonstration.

The PMFs in Figure 1 are used to illustrate Device ID ver-
ification for Euclidean distance “lower-is-better” measure of
similarity [11]. Given these PMFs, the ID verification process
includes (1) using network ZC TNG fingerprint 𝑍V to set the
training verification threshold 𝑡V(𝑖) shown in Figure 1(a) to
achieve the desired TVR (blue PMF1 area) where PMF1 is for
ZCi TNG and PMF2 is based on accumulated TNG 𝑍V for
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Figure 1: PMFs showing device dependent 𝑡V(𝑖) set to achieve desired network ZC𝑖 TVR (true positive) given by blue PMF1 area in (a) and
resultant RRR (true negative) for ZR𝑗 device given by blue PMF2 area in (b) [11].
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(b) Rogue ZR Testing ROCs

Figure 2: ROC curves for Figure 1 PMFs with indicated operating points based on desired TVR = 90%.

all “other” network ZCk (𝑘 = 1, 2, . . . , 𝑁𝐶𝑙𝑠 and 𝑘 ̸= 𝑖) and
(2) calculating the corresponding RRR (true negative, blue
PMF2 area) in Figure 1(b) where PMF1 is the same and PMF2
is based on TST fingerprint 𝑍V for the rogue ZR𝑗 device. ID
verification performance can be based on TNG 𝑡V(𝑖) set for
either (1) equal error rate conditions with False Verification
Rate (FVR) given by FVR = 1-TVR or (2) a specific desired
authorized TVR.

The authorized TVR (true positive) versus FVR (false
positive) trade-off is effectively captured in a Receiver Oper-
ator Characteristic (ROC) curve [Faw1] as shown in Figure 2
using Figure 1 PMFs with varying the TNG verification
threshold 𝑡V varied from Min[𝑍V] to Max[𝑍V]. Figure 2(a)
shows TVR versus FVR with the indicated operating point
(◼) corresponding to desired TVR = 90% and yielding FVR≈ 1.2%. Figure 2(b) shows TVR versus RAR where Rogue

Accept Rate (false positive) is used to estimate the RRR ≈ 1-
RAR shown along the x-axis for three arbitrary ZR devices
(󳶃, 󳵳, and 󳶳) and the TVR = 90% operating point.

3. CB-DNA Fingerprinting Development

Time domain RF-DNA Fingerprinting has historically
exploited statistical features extracted from partial-burst
responses where invariant (data independent) synchronisa-
tion and channel estimation (preamble, midamble, etc.)
symbols are transmitted [15, 28–30]. The CB-DNA Finger-
printing method developed here differs considerably and
exploits features extracted from full-burst responses, includ-
ing regionswhere variant (data dependent) symbols are trans-
mitted. The CB-DNA Fingerprinting development here is
motivated by concepts first used in [13] to discriminate
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Figure 3: Illustration of unconditional and conditional 4-QAM constellation processing.

Ethernet cards but it fundamentally differs in that work in
[13] is based on features extracted from a contrived (noncon-
ventional) binary constellation while the development here is
for any application using conventional M-QAM signaling as
introduced in Section 2.1.The development for unconditional
and conditional fingerprinting is supported by the process
depicted in Figure 3.

For ideal transmitted symbols having constellation pro-
jections C𝑆𝑚 such as those shown in Figure 3(a), the kth
received QAM symbol in burst 𝑆𝑅𝑥(𝑡) of (3) is denoted as 𝑆𝑘
for 𝑡𝑘 < 𝑡 < 𝑡𝑘 + 𝑇𝑆𝑦𝑚 where 𝑡𝑘 is the symbol start time, 𝑇𝑆𝑦𝑚
is the symbol duration, and 𝑘 = 1, 2, . . . , 𝑁𝑆𝑦𝑚 where 𝑁𝑆𝑦𝑚
is the total number of symbols in a received burst. Following
synchronisation to the kth symbol interval, the QAM receiver
extracts symbol 𝑆𝑘 and projects it to a single point C𝑆𝑘 in the
QAM constellation space (Figure 3(b)). The corresponding
estimated transmitted symbol is determined as 𝑆𝑘 = 𝑆𝑚 :
argmin𝑚|C𝑆𝑘 − C𝑆𝑚 | for 𝑆𝑚 ∈ [𝑆1, 𝑆2, . . . , 𝑆M] (Figure 3(c)).
For generating unconditional CB-DNA statistical fingerprint
features, the 𝑁𝑆𝑦𝑚 received C𝑆𝑘 in each 𝑆𝑅𝑥(𝑡) burst are
grouped based on their corresponding 𝑆𝑘 = 𝑆𝑚 estimate
with the group of C𝑆𝑘 yielding the𝑚th QAM symbol estimate
denoted by the sequence {𝐶𝑆𝑘𝑚 } for𝑚 = 1, 2, . . . ,M.

While some prior works have investigated constellation
error differences as a means for device discrimination [31],
e.g., mean and variance, of Euclidean distances between
received C𝑆𝑘 and ideal C𝑆𝑚 , the approach here exploits
constellation spatial statistical differences in {𝐶𝑆𝑘𝑚 } groups
which are induced by channel propagation and hardware

variability (e.g., I/Q imbalance) resulting from component
differences (oscillator phase noise, spurious mixer tones,
manufacturing processes, etc.) [21]. The exploitation of these
differences was first demonstrated for the contrived binary
constellation work in [13] which showed that the statistical
distribution of {𝐶𝑆𝑘𝑚 } elements around the corresponding ideal
C𝑆𝑚 point is conditional, i.e., the location of a given C𝑆𝑘𝑚 for 𝑆𝑘
in the received QAM constellation space is dependent upon
symbols received just prior to and immediately following 𝑆𝑘;
these two symbols are denoted as 𝑆𝑘-1 and 𝑆𝑘+1, respectively.

The device discrimination improvement in [13] using
conditional fingerprint features from the contrived binary
constellation motivated formal development of themultisym-
bol constellation conditioning (subgrouping) method for M-
QAM signaling. For the 𝑆𝑘 dependent {𝐶𝑆𝑘𝑚 } group sequences,
the basic process includes considering multiple consecutive
received QAM symbols in a 𝑆𝑅𝑥(𝑡) burst which are denoted
here by vector S𝑘 = (. . . , 𝑆𝑘−2, 𝑆𝑘−1, 𝑆𝑘, 𝑆𝑘+1, 𝑆𝑘+2, . . .)where 𝑆𝑘
is the central reference symbol. These received symbols have
corresponding estimates that are used to form vector Ŝ𝑘 =(. . . , 𝑆𝑘−2, 𝑆𝑘−1, 𝑆𝑘, 𝑆𝑘+1, 𝑆𝑘+2, . . .) where Ŝ𝑘 is the estimate for
reference symbol S𝑘. Multisymbol constellation conditioning
involves parsing each of the unconditional{C𝑆𝑘𝑚 } groups into
conditional{C𝑆𝑘(𝑛)𝑚 } subgroups for 𝑛 = 1, 2, . . . , 𝑁𝑆𝐺 total
subgroups with 𝑆𝑘(𝑛) denoting the 𝑛th subgroup. The parsing
of unconditional{C𝑆𝑘𝑚 } sequences and selection of 𝑁𝑆𝐺 sub-
groups is somewhat arbitrary but performed with a goal of
maximising cross-subgroup distribution differences that will
be captured in statistical fingerprint features.
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The subgrouping of {C𝑆𝑘𝑚 } is illustrated (as shown in
Figure 3(d)) by considering three received symbols of S𝑘 =(𝑆𝑘−1, 𝑆𝑘, 𝑆𝑘+1) and a set of N𝑆𝐺 desired subgroup condi-
tioning vectors 𝐺𝑛 of equivalent dimension and denoted
by G𝑛 = (𝐺𝑛1 , 𝐺𝑛2 , 𝐺𝑛3) where 𝐺𝑛𝑖 ∈ [𝑆1, 𝑆2, . . . , 𝑆M]. The
process for assigning each element of the 𝑚th {C𝑆𝑘𝑚 } group
to one of N𝑆𝐺 subgroups based on G𝑛 conditions includes
(1) taking each received S𝑘 producing C𝑆𝑘𝑚 , (3) estimating
received 𝑆𝑘−1 and 𝑆𝑘+1 and forming Ŝ𝑘 = (𝑆𝑘−1, 𝑆𝑘, 𝑆𝑘+1),
and (4) comparing the resultant Ŝ𝑘 with each desired G𝑛. If
|Ŝ𝑘 − G𝑛| = 0 for some 𝑛 = 1, 2, . . . , 𝑁𝑆𝐺 the C𝑆𝑘𝑚 under
evaluation is assigned to the𝑛th conditional {C𝑆𝑘(𝑛)𝑚 } subgroup.
If |Ŝ𝑘 − G𝑛| ̸= 0 for all 𝑛 the C𝑆𝑘𝑚 under evaluation is
assigned to an “other” conditional subgroup. Formation of
the 𝑁𝑆𝐺 + 1 “other” subgroup is required when all possible
combinations of estimated Ŝ𝑘 symbols are not included
as desired G𝑛 conditions and ensures that all elements of{C𝑆𝑘𝑚 } are accounted for. Accounting for all possible M-QAM
symbols, the total number of conditional subgroups formed
for fingerprint generation is either M × N𝑆𝐺 or M × N𝑆𝐺+1 if
an “other” subgroup is required.

There are many possible symbol combinations that could
be used for conditioning 𝐺𝑛 vectors and formation of con-
ditional subgroups. In light of noted M-QAM I/Q phase
imbalance effects, there are some specific G𝑛 that may accen-
tuate cross-subgroup differences based on how the phase in
consecutive 𝑆𝑅𝑥(𝑡) symbols changes during QAM signaling.
The two extreme phase changes are captured using (1) G𝑛 =(𝑆𝑘, 𝑆𝑘, 𝑆𝑘)which represents the case of no symbol-to-symbol
phase change across Ŝ𝑘 symbols and (2) G𝑛 = (−𝑆𝑘, 𝑆𝑘, −𝑆𝑘)
which represents the case ofmaximum± 180 degrees’ symbol-
to-symbol phase change across Ŝ𝑘 symbols. Considering 4-
QAMand accounting for all possible symbol combinations in
the 1x3-dimensional G𝑛 vectors, there are a total of𝑁𝑆𝐺 = 16
conditional {C𝑆𝑘(𝑛)𝑚 } subgroup sequences for𝑚 = 1, 2, 3, 4with
no “other” subgroup formed. The effect of conditional sub-
grouping is illustrated with the aid of Figure 4 which shows
an unconditioned QAM received constellation for an 𝑆𝑅𝑥(𝑡)

burst at SNR = 12 dB and containing approximately 𝑁𝑆𝑦𝑚 ≈
3400 total symbols (approximately 850 C𝑆𝑘𝑚 projections per
quadrant).

Considering the S1 quadrant and selected conditional
G𝑛 symbol vectors yields the pairwise conditional {C𝑆𝑘(𝑛)1 }
projections plotted in Figure 5. Of note in Figure 5 is that all
plots are presented on the same scale over the same I-Value
and Q-Value ranges. Thus, the observable similarities and/or
differences in the illustrated conditional {C𝑆𝑘(𝑛)1 } subgroups
exhibit behavior that is indicative of I/Q imbalance and
increase the potential for device characterisation. Assum-
ing identical channel conditions and receiver imperfection
effects (I/Q imbalance, etc.) during the signal collection
interval, the visually discernable differences in conditional
{C𝑆𝑘(𝑛)1 } subgroup distributions in Figure 5 are attributable
to transmitter component differences and aid in uniquely
identifying transmitting devices using conditional CB-DNA
Fingerprinting.

Statistical features of unconditional{C𝑆𝑘𝑚 } sequences
and conditional{C𝑆𝑘(𝑛)𝑚 } sequences are used to form
CB-DNA fingerprints. The construction processes for
unconditional(FUNC

CB ) and conditional(FCND
CB ) CB-DNA

fingerprint vectors are identical and presented for an
arbitrary complex sequence {X} having 𝑁𝑋 elements. The
fingerprint statistics are calculated using (1) polarmagnitude
(Mag) and angle (Ang) components and (2) rectangular
real (Re) and imaginary (Im) components of {X}. While any
number of statistics could be used, the specific statistical
CB-DNA features used for polar representation include
variance (𝜎2), skewness (𝛾), and kurtosis (𝜅) statistics
of both the magnitude {𝑀𝑎𝑔[X]} and angle {𝐴𝑛𝑔[X]}
sequences for a total of 6 polar statistics. For the rectangular[𝑅𝑒{X}:𝐼𝑚{X}]2×𝑁𝑋 matrix representation, the calculated
statistics include three unique covariance 𝜎2𝜎2(1:3) values,
two nontrivial coskewness moments 𝛾𝛾(1:2), and three
nontrivial cokurtosis 𝜅𝜅(1:3) moments [32]. Accounting for
all possible statistics, the Statistical Fingerprint vector for
complex sequence {X} is formed as

FX = [𝜎2Mag(X) 𝛾Mag(X) 𝜅Mag(X) 𝜎2Ang(X) 𝛾Ang(X) 𝜅Ang(X) 𝜎𝜎2X(1:3) 𝛾𝛾X(1:2) 𝜅𝜅X(1:3)]1×𝑁𝑆𝑡𝑎𝑡 , (8)

where𝑁𝑆𝑡𝑎𝑡 = 14 if all indicated statistics are included.
For unconditional CB-DNA Fingerprinting FX in (8) is

calculated for all 𝑚 = 1, 2, . . . ,M constellation symbols with{X} = {C𝑆𝑘𝑚 } and the resultant FX
𝑚 concatenated to form

the final composite unconditional CB-DNAFingerprint vector
FUNC
CB given by

FUNC
CB = [FX

1

... FX
2 ⋅ ⋅ ⋅ FX

M]
1×𝑁𝑈𝑁𝐶𝐹

, (9)

where𝑁𝑈𝑁𝐶
𝐹 = 𝑁𝑆𝑡𝑎𝑡×M is the total number of unconditional

CB-DNA features.

For conditional CB-DNA Fingerprinting FX in (8) is
calculated for all 𝑛 = 1, 2, . . . , 𝑁𝑆𝐺 subgroups of each 𝑚 =
1, 2, . . . ,M constellation symbol using {X} = {C𝑆𝑘(𝑛)𝑚 }. The
resultant FCND

SG(𝑚,𝑛) vectors are used form the 𝑚th Conditional
CB-DNA Fingerprint vector FCND

𝑚 given by

FCND
𝑚

= [FCND
SG(𝑚,1)

... FCND
SG(𝑚,2)

... ⋅ ⋅ ⋅ ... FCND
SG(𝑚,𝑁𝑆𝐺)]

1×(𝑁𝑆𝑡𝑎𝑡×𝑁𝑆𝐺)

,
(10)
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which are concatenated for all 𝑚 = 1, 2, . . . ,M to form the
composite conditional CB-DNA Fingerprint vector

FCND
CB = [FCND

1

... FCND
2

... ⋅ ⋅ ⋅ ... FCND
M ]

1×𝑁𝐶𝑁𝐷𝐹

, (11)

where 𝑁𝐶𝑁𝐷
𝐹 = 𝑁𝑆𝑡𝑎𝑡 × 𝑁𝑆𝐺 × M is the total number of

conditional CB-DNA features. In general, unconditional and
conditional CB-DNA fingerprint features can be generated
using all or a subset of noted statistics, calculated for all
or a subset of available projected {C𝑆𝑘𝑚 } groups or {C𝑆𝑘(𝑛)𝑚 }
subgroups. The choice of which statistics and which groups
to use may vary with the specific communication application
(fixed, mobile, urban, city, etc.) and determines the final
number of𝑁𝑈𝐶𝐵

𝐹 and𝑁𝐶𝐶𝐵
𝐹 features generated.

4. CB-DNA Fingerprinting Demonstration

ZigBee transmissions were collected for all RZUSBSTICK
devices listed in Table 2 using an X310 Software Defined
Radio (SDR) having an RF bandwidth of𝑊𝑅𝐹 = 10 MHz and
operating at a sampling rate of 𝑓𝑆 = 10 MSps in both the I/Q
channels. Subsequent postcollection signal processing was
performed using MATLAB and included burst-by-burst (1)
center frequency estimation, (2) baseband (BB) downcon-
version and filtering using a 16th-order Butterworth filter
having a -3 dB bandwidth of𝑊𝐵𝐵 = 2 MHz, (3) constellation
phase derotation, and (4) unconditional and conditional CB-
DNA fingerprint generation per Section 3. The CB-DNA
fingerprints were used to generate demonstration results
for a total of 𝑁𝑁𝐶 = 10-choose-3 = 120 unique network
configurations with the 𝑁𝑍𝑅 = 3 chosen devices serving as
unauthorized attacking ZigBee Rogue (ZR) devices and the
remaining𝑁𝑍𝐶 = 7 devices serving as authorized ZC network
devices.

For each network configuration, the RRR was estimated
for the N𝑍𝑅 = 3 rogue devices using the device ID veri-
fication process detailed in Section 2.3. For each network
configuration, each of the N𝑍𝑅 = 3 ZR devices presents
false ID credentials for all N𝐶𝑙𝑠 = 7 authorized ZC network
devices for a total of 7 × 3 = 21 ZRj:ZCi assessments per
network configuration. Considering all networks, a total
of 120 × 21 = 2520 ZRj:ZCi device ID verification (rogue
detection) assessments were completed. Alternately, each ZC
device in Table 2 served as an attacking ZR device 36 times
for a total of 36 × 7 = 252 ZRj:ZCi device ID verification
assessments per RZUSBSTICK device. The RRR estimates
are based on a total of 4400 fingerprints per ZR device
that are presented on a fingerprint-by-fingerprint basis for
ID verification; the assessments here do not include nor
account for envisioned benefits to be realised by averaging
fingerprints, features, etc., prior to making a final authorized
versus rogue verification decision. For presentation brevity,
limited results are presented herein that are representative
of the poorest (lowest RRR) and best (highest RRR) results
obtained across all N𝑁𝐶 = 120 network configurations and
are sufficient for supporting proof-of-concept demonstration
conclusions.

4.1. Authorized Network Device Classification. Device clas-
sification is first required to generate the MDA/ML models
(W, 𝛼, 𝜇, and Σ) required for device ID verification. The CB-
DNA Fingerprinting results in Figure 6 were generated using
unconditional and conditional features for all N𝑁𝐶 = 120
networks. Results show %C versus SNR for all 120 networks
along with cross-network average %C (solid lines) and
extreme bounds (dashed lines with I markers) for highest
and lowest %C. The benefit of constellation conditioning is
evident by comparing cross-network averages which show
that the %C = 90% benchmark is achieved for conditional
features (◼) at SNR ≈ 11 dB and unconditional features
(󳵳) at SNR ≈ 14 dB. For presentation brevity, additional
results in this section are presented for conditional CB-DNA
Fingerprinting only given its superiority.

For conditional CB-DNA Fingerprinting at SNR = 12 dB
in Figure 6(b), the extreme results include (1) lowest %C ≈
86.78% performance for Model #1 (excludes ZC1, ZC2, and
ZC3 devices) and (2) highest %C ≈ 98.75% performance
for Model #90 (excludes ZC4, ZC5, and ZC10 devices). The
classification confusion matrices for these extreme cases are
provided in Tables 5 and 6 and suggest that the inclusion
of ZC4, ZC5, ZC6, and ZC10 devices in Model #1 is most
detrimental (italic entries in Table 5). Of note from Table 2
is that package markings for the ZC2, ZC3 pair differs
from all other package markings. Thus, Model #1 versus
Model #90 performance is consistent with historical DNA
discrimination given that the ZC2, ZC3 pair is (1) excluded
in the poorest Table 5 results (model includes all like-model,
similarly marked devices) and (2) included in the highest
Table 6 results (model includes a higher number of like-
model dissimilarly marked devices).

4.2. Authorized Network Device ID Verification. SNR depen-
dent MDA/ML model components (W, 𝛼, 𝜇, and Σ) from
Section 4.1 are used to assess authorized network ZC device
ID verification at selected verification SNRV. Results are
presented for conditional CB-DNA fingerprints at SNRV =
12 dB where average MDA/ML performance in Figure 6(b)
achieves the %C ≈ 90% benchmark. For each network, device
TNGfingerprints are used to set device dependent 𝑡V (𝑖) for all
authorized devices to achieve TVR ≈ 95%. 𝑡V(𝑖) for the worst
and best performing MDA/ML models in Figure 6(b) are
shown in Figure 7(a) (Model #1) and Figure 7(b) (Model #90).𝑡V(𝑖) are overlaid with Euclidean distance TNG statistics (𝑍V)
and ID verification identified as either accept (I) or reject (X)
decisions. The accept/reject decisions and final performance
are based on 𝑍V forN𝑇𝑁𝐺 = 2200 fingerprints per authorized
device with 𝑍V < 𝑡V(𝑖) (I markers) representing correct
ID verification (proper access granted) and 𝑍V > 𝑡V(𝑖)
(X markers) representing incorrect ID verification (improper
access denial). The resultant TVR for individual ZC devices is
shown along the x-axis and yields an overall cross-ZC average
TVR ≈ 94.84% for both models.

4.3. Unauthorized RogueDevice Detection. Accounting for all𝑁𝑁𝐶 = 120 network configurations with each of the 𝑁𝑍𝑅 = 3
held-out ZRj (𝑗 = 1, 2, . . . , 10, 𝑗 ̸= 𝑖) devices serving in an
attacking ZRj:ZCi role a total of 252 times (includingmultiple
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(a) Results for𝑁𝑈𝑁𝐶𝐹 = 36 unconditional features with conditional mean
from Figure 6(b) overlaid for comparison

Conditional CB-DNA, 120 Models, CI = 95%
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(b) Results for 𝑁𝐶𝑁𝐷𝐹 = 270 conditional features with unconditional
mean from Figure 6(a) overlaid for comparison

Figure 6: Classification for 120 networks with (a) unconditional and (b) conditional CB-DNA features. Mean results show that the %𝐶 = 90%
benchmark is achieved at SNR ≈ 14 dB (unconditional) and SNR ≈ 11 dB (conditional).

Table 5: Confusion matrix for lowest performing Model #1 in Figure 6(b) at SNR = 12 dB with %C ≈ 86.78% (sum of diagonals divided by
15,400 trials) and italic to highlight the largest error contributors (ZC4, ZC5, ZC6, and ZC10).

CALLED CLASS
ZC4 ZC5 ZC6 ZC7 ZC8 ZC9 ZC10

INPUT CLASS

ZC4 1868 152 64 16 0 0 100
ZC5 152 1700 236 4 0 0 108
ZC6 128 232 1608 12 0 0 220
ZC7 4 0 0 2188 8 0 0
ZC8 0 0 0 24 2172 4 0
ZC9 0 0 0 8 4 2120 68
ZC10 100 108 264 8 0 12 1708

Table 6: Confusion matrix for highest performing Model #90 in Figure 6(b) at SNR = 12 dB with %C ≈ 98.75% (sum of diagonals divided by
15,400 trials) and italic to highlight the largest error contributors (ZC6 and ZC7).

CALLED CLASS
ZC1 ZC2 ZC3 ZC6 ZC7 ZC8 ZC9

INPUT CLASS

ZC1 2184 4 0 12 0 0 0
ZC2 0 2132 0 16 40 4 8
ZC3 0 0 2200 0 0 0 0
ZC6 12 24 0 2164 0 0 0
ZC7 0 36 0 0 2156 8 0
ZC8 0 0 0 0 4 2192 4
ZC9 0 4 0 8 8 0 2180

attacks against a given ZCi device present in multiple net-
works), the cumulative per ZRj RRR performance averaged
across all networks for 8 ≤ SNRV ≤ 20 dB is shown in
Table 7. Of note here is the average cross-ZRj RRR ≈ 89.42%
at SNRV = 12 dB which is approximately the same SNR where
MDA/ML device classification in Figure 6(b) achieves the
%C = 90% benchmark. As shown in Table 7 SNRV = 12 dB

results, the lowest RRR occurs for ZR4 and ZR6 devices and
the highest RRR occurs for ZR1 and ZR3 devices. Excluding
SNRV = 8 dB performance, collective rogue device results for
SNRV ≥ 12 dB include (1) cumulative cross-ZR RRR ≈ 94%
across all ZR:ZC attack scenarios and (2) individual cross-ZR
performance across 252 attacks spanning 83.32% < RRR <
99.81%.
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(b) Model #90 Authorized Network Devices

Figure 7: Authorized device ID verification for Conditional CB-DNA Fingerprinting at SNR𝑉 = 12 dB for (a) worst case Model #1 and (b) best
case Model #90 MDA/ML classification in Figure 6(b). Device dependent training thresholds 𝑡V (horizontal lines) set for TVR = 95% with
resultant per device TVR shown along the x-axis.

Table 7: Conditional rogue ID verification performance showing cumulative average RRR (%) for indicated ZRj.The highest and lowest RRR
per SNRV and row/column averages are denoted by bold text and italic, respectively.

SNRV (dB) ZR Rogue ID Cross-ZR Ave
ZR1 ZR2 ZR3 ZR4 ZR5 ZR6 ZR7 ZR8 ZR9 ZR10

8 95.55 65.76 97.90 67.74 72.40 69.69 85.82 94.86 83.60 71.38 80.47
12 99.24 83.17 99.60 79.17 82.16 76.29 97.78 98.80 95.78 82.24 89.42
16 99.64 92.78 99.84 88.72 89.49 82.77 99.83 99.80 99.37 92.96 94.45
20 99.66 98.64 99.99 95.93 95.65 90.90 99.99 99.99 99.95 98.34 97.90
Cross- SNRV Ave 99.51 91.53 99.81 87.94 89.10 83.32 99.20 99.53 98.37 91.18 93.95

For the overall poorest ZR4 and ZR6 results in Table 7
at SNRV = 12 dB there are eight network models (#17, #45,
#66, #86, #91, #92, #93, and #94) that include both ZR4 and
ZR6 serving as rogue devices. Considering only thesemodels,
the cumulative ZR4 and ZR6 results include RRR ≈ 85.25%
and RRR ≈ 82.03%, respectively. The overall poorest ZR4 and
ZR6 RRR results for these eight models at SNRV = 12 dB are
presented in Figure 8 and occur for Model #45 with ZC1,
ZC3, ZC5, ZC7, ZC8, ZC9, and ZC10 authorized devices. As
estimated by averaging individual ZRj:ZCi RRR presented
along Figure 8 x-axes, the average performance for ZR4:ZCi
is RRR ≈ 84.14% and for ZR6:ZCi is RRR ≈ 77.56%.These are
higher than the cumulative 120 model averages in Table 7 and
thus do not represent the overall poorest ZR4 and ZR6 device
results.

For completeness, the overall poorest ZR4 and ZR6 RRR
results across all 120 models are presented in Figure 9 which
shows that the lowest RRR results are obtained for separate
models and include average RRR ≈ 73.27% in Figure 9(a) for
ZR4withModel #19 and averageRRR≈ 64.84% inFigure 9(b)
for ZR6 with Model #4. While it is not immediately obvious
why these are the two poorest cases, these ID verification
results are consistent with the increased MDA/ML classifi-
cation challenge noted in Section 4.1 for models based on

similarly marked authorized devices. Specifically, the poorest
RRR < 80% results in Figure 9 are all attributable to ZCj:ZCi
combinations of similarly marked ZC4, ZC5, ZC6, and ZC10
devices.

For the overall best RRR ZR1 and ZR3 results in Table 7
at SNRV = 12 dB there are eight network models (#1, #9,
#10, #11, #12, #13, #14, and #15) that include both ZR1 and
ZR3 serving as rogue devices. The overall best rogue ZR1
and ZR3 detection results for these models at SNRV = 12
dB are presented in Figure 10 and include assessments for
Model #11 with ZC2, ZC4, ZC5, ZC7, ZC8, ZC9, and ZC10
authorized devices. As estimated by averaging the individual
ZRj:ZCi RRR indicated along Figures 10(a) and 10(b) x-axes,
the average RRR performance across best case ZR1:ZCi is
RRR ≈ 99.31% and across all ZR3:ZCi is RRR ≈ 99.98%;
this best case cross-ZRj RRR was observed for a majority of
models and ZRj:ZCi considered.

5. Conclusion

An analytic development of CB-DNAFingerprinting for con-
ventional QAM features is presented as well as its application
to verification-based rogue detection demonstrated using
ZigBee RZSUBSTICK communication devices. Results are
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Figure 8: Rogue ID verification for (a) ZR4 and (b) ZR6 devices attackingModel #45 with ZC1, ZC3, ZC5, ZC7, ZC8, ZC9, and ZC10 network
devices and contributing to poorest (minimum) RRR shown in Table 7 at SNRV = 12 dB.
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Figure 9: Overall poorest Rogue ID verification performance across 120 models for (a) ZR4 and (b) ZR6 with indicated network devices and
contributing to poorest (minimum) RRR shown in Table 7 at SNRV = 12 dB.

based on experimentally collected signals with postcollection
fingerprint generation and authorized versus rogue device ID
verification performed for 120 unique networks consisting
of seven authorized and three unauthorized attacking rogue
devices. Collective authorized device discrimination results
for all 120 network configurations using an MDA classifier
included (1) average cross-class percent correct classification
of %C > 90% achieved for SNR ≥ 12 dB and (2) identification

of device dependent verification thresholds yielding True
Verification Rates (true positive) of TVR = 95% for all
authorized network devices. TheMDA network models were
used for rogue device ID verification and Rogue Rejection
Rate (RRR) (true negative) estimated for all rogues presented
to the networks. Collective rogue device detection results for
SNR ≥ 12 dB included (1) cumulative average burst-by-burst
RRR ≈ 94% across 2520 total rogue attack scenarios and (2)
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(a) ZR1 versus Model #11: Average RRR ≈ 99.31%
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(b) ZR3 versus Model #11: Average RRR ≈ 99.98%

Figure 10: Rogue ID verification for (a) ZR1 and (b) ZR3 devices attackingModel #11 with ZC2, ZC4, ZC5, ZC7, ZC8, ZC9, and ZC10 network
devices and contributing to best (maximum) RRR shown in Table 7 at SNRV = 12 dB.

performance across 252 attacks per individual devices span-
ning 83.32% < RRR < 99.81%. As a first successful proof-of-
concept demonstration using CB-DNA Fingerprinting with
conventional communication constellation features, these
results are promising and further research is warranted.
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