
 
Pakistan Journal of Engineering Technology and Science (PJETS) 

                  Volume 8, No 1, Month 2018  

22 

 

Automatic Speaker Identification 

System for Urdu Speech 
 

Fatima Yousaf1,2, Muhammad Javaid Iqbal2, Hassan Raza2, Agha Ali Raza1, Muhammad 

Shahid Iqbal2 
1Department of Computer Science, Information Technology University, Lahore, Punjab 

54000, Pakistan 
2Computer Systems Engineering Department, Mirpur University of Science and 

Technology, Mirpur 10250, Pakistan 

 
Abstract- Speaker recognition is the process of recognizing a speaker from a verbal phrase. Such 

systems generally operate in two ways: to identify a speaker or to verify speaker’s claimed identity. 

Availability of valuable research material witnessed efforts paid to Automatic Speaker Identification 

(ASI) in East Asian, English and European languages. But unfortunately languages of South Asia 

especially “Urdu” have got very less attention. This paper aims to describe a new feature set for ASI in 

Urdu speech, achieving improved performance than baseline systems. Classifiers like Neural Net, Naïve 

Bayes and K nearest neighbor (K-NN) have been used for modeling. Results are provided on the dataset 

of 40 speakers with 82% correct identification. Lastly, improvement in system performance is also 

reported by changing number of recordings per speaker. 
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I.   INTRODUCTION 

Automatic Speaker Identification (ASI) has two variants: Text-Independent and Text-dependent 

speaker identification. Text-independent includes different utterances during enrollment and 

verification while text-dependent involves same set of utterances during both steps [1-3]. There is 

normally a trade- off between accuracy and enrollment samples. Greater the duration of the 

utterances recorded and lesser the number of enrolled models, more will be the accuracy of the 

system and vice versa [4]. Speaker Identification is further classified into closed-set speaker 

identification or open-set depending upon its application. Open-set identification is close to speaker 

verification. In closed-set, test speakers are known to the system. While in open-set, test speaker 

may not be a part of system and the test user is usually identified by defining a threshold [5, 6]. For 

instance, if similarity measure of the test user is greater than the threshold, access is guaranteed to 

the user and vice versa. Speaker Identification has various applications including voice dialing, 

banking transaction over telephone network, telephone shopping, database access services, 

information and reservation system,  security  control  for  confidential  information  areas,  voice  

mail  and  improving  customer experience [7]. While designing automatic speaker identification 
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system (ASI) we have to predefine certain constraints on the speaker data that include language, 

age, gender, channel and environment on which our system has to be trained [8]. 

A. Generic Speaker Identification 

Speaker Identification broadly involves two phases: Enrollment and verification. Enrollment is 

the step in which the voice of a speaker is recorded and feature vector (set of features that uniquely 

identify each speaker) is extracted from each frame which constitutes a template or model e.g. pitch 

or frequency etc. Enrollment is further divided into two steps: voice recording and feature 

extraction[9, 10]. In first step, Speech data (we call it S) is acquired using the dedicated hardware 

like telephone or microphone, and then preprocessed to visualize the acoustic patterns of speech in 

the form of frequency-time waveform. Speaker dependent features like frequency, pitch and 

loudness are then extracted from the waveform. Later, this voice recording (S) is divided into cut-

out samples of equal length of 10ms, called frames. Hamming window, that remove the 

discontinuities at the edges is then applied to remove the discontinuities at the edges. Lastly, speaker 

dependent features, collectively known as a feature vector are extracted from one interval of speech 

(frame). These feature vectors are then trained for each speaker to form a template or model of that 

speaker and stored in the database. In verification, the utterance is compared with the multiple 

existing templates to find the optimal match. Verification is also accomplished in two steps that 

involves pattern matching and decision. In pattern matching, a test sample (T) is compared with the 

stored speech model (SM) to calculate match score that defines resemblance of the input feature 

vector of the newly recorded sample (T) with the known templates stored in a database. Thus, match 

score counts the number of features of the test sample (T) that have been matched with the 

recognized speaker model. Different pattern matching algorithms are used for this purpose of which 

most common are Hidden Markov Model, NN method and Dynamic Time Warping [11, 12]. Lastly 

based on the matching score, the speaker model (T) is either accepted or rejected (Decision). 

B.   Motivation 

In Pakistan, with the growing trend of e-commerce and online transactions, maintaining and 

improving the customer experience is one of the core challenges of business and banks. Identifying 

the speaker over telephone is a challenging area mainly in our telecoms and banking sector. Most 

of the users, specifically who are semi-literate or non-literate are uncomfortable with remembering 
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passwords and pins so they often keep their passwords and sensitive information along with them 

which increases the theft and fraud rate in Pakistan every year. 

A lot of work has been done in speaker identification in subsequent languages including English, 

Tamil, Japanese and Portuguese [13] . But not sufficient work has been done so far in Urdu and 

work has been done using features like formants only that when used alone will give us very limited 

information about speaker. However, systems that have been trained for other languages can’t be 

used for Urdu language because each language has its own phonemes and all are designed on their 

native speakers. 

C.    Overview 

This introductory section has been presented with a goal to describe general framework and need 

for speaker identification. The endeavor trains different classifiers with the aim to determine such a 

feature set that cannot only uniquely recognize a speaker but also provide better results as compared 

to the previous researches which has been conducted within the context of other languages. This has 

been accomplished by evaluating our dataset on different measures i.e. changing value of K and 

changing number of utterances etc. 

Figure 1 describes the block diagram of ASI. Our research is based on system that is text-

dependent and specific for Urdu Language. Section 2 gives an overview of datasets used in existing 

researches and gives a detailed description on requirements for collecting data set. Section 3 gives 

an insight on features i.e., MFCCS, Pitch and formants.  Section 4 demonstrates training of speaker 

identification algorithms effectively used for ASI. Section 5 describes the results that comes from 

evaluation of data set and algorithms and section 6 gives conclusion and future prospects. 
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Figure. 1 Block Diagram of Automatic Speaker Identification 

II.    INPUT DATA REQUIREMENTS 

Data collection for speaker identification poses certain constraints like number of speakers, 

language, medium of recording, size, gender distribution, text selection etc. [14]. Summary of 

different datasets used in multiple researches for Non-Urdu Languages is shown in the table 1. 

TABLE I 
SUMMARY OF DATA SETS IN EXISTING RESEARCHES 

Number 

of 

Speakers 

Gender 

Distribution 

Text Spoken(Language 

medium, sentence, 

word) 

Number of 

sentence/word(per 

speaker) 

Medium of 

recording 

Accuracy 

10 Females only “May we all learn a 

yellow lion roar" 

6 utterances High quality 

microphone 

80%  

50 Females+ 

Males 

Isolated digits 

(1-10) 

NA Microphone 71% 

40 22 males + 18 

females 

Telephone speech 

English corpus 

20 utterances Telephone 68.5% 

51 Males only Telephone quality 

version of Japanese 

speech 

10 utterances High quality 

microphone 

96.80% 

26 Males only English Vowels 3 utterances Recordings 

done in 5 

months 

72% 
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Urdu is a phonetically rich language with a large directory of 44 consonants, 7 long nasal vowels, 

7 long oral vowels, 3 short vowels and various diphthongs [15]. All these consonants, vowels are 

made up of phonemes.  

Fundamental distinct unit of language is called phoneme[16]. Phoneme is distinct in a sense that 

it separates words of a language. Following are major groups of phoneme: Vowel, nasal, fricative, 

consonants and stops. Our study aims towards vowels and their speaker dependent characteristics. 

We have recorded five words that cover all vowels as shown in Table 2.  Atal et al., 1976 mentioned 

that larger the number of utterances, larger the accuracy would be[4]. Practically, collecting large 

number of recordings imposes huge computation but accuracy increases.  

TABLE II 
WORDS TAKEN FOR RECORDINGS 

Words Pronunciation Phones (CISAMPA) 

A /e:/  A_Y 

E /i:/  I_I 

I /ɑ:/ /i:/  A_A I_I 

O /o: / O_O 

U /j/ /u:/ J U_U 

 

Initially we make recordings of 11 speakers. For each speaker, we took 25 recordings so that 

maximum data against single speaker must be preserved. Later, following this research we found 

that 11 speakers were not sufficient for making any strong argument and comparing accuracy. So 

taking all these researches as baseline and for analysis and evaluation purpose, we have taken 

average of all researches that have been done so far in the domain of speaker recognition and these 

researches has been conducted on around 40 numbers of speakers (18 females and 22 males).  

III. FEATURE EXTRACTION 

Once the data collection is completed the next step involved in the simulation environment is to 

train the system. In order to efficiently train the system, we need to have a feature set. Usually 

acoustic signals in the waveform contains a lot of parameters that can be either directly extracted or 

after transforming signal from spectral to frequency domain [17]. For successful speaker 

identification the most important step is extraction of such parameters from the acoustic signal that 

represent the maximum user dependent information. Extensive research is available regarding 
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selection of efficient speech parameters. Ideally, the selective parameters must be efficient enough 

to represent speaker information and should have some properties like time-stable, easy to compute, 

occur frequently in acoustic signal, environment independent and least subjected to mimicry [14]. 

For audio classification, speech features that have been widely used are Mel-frequency cepstral 

coefficients (MFCC), formants and pitch [18]. The idea behind is to report the accuracy difference 

by using either MFCC alone or MFCC along with formants and pitch.  

A. Mel-frequency Cepstral Coefficients 

MFCCs [9, 19]  provides the best representation of speech signal and proves more efficient 

recognition performance. As human ears doesn’t follow frequency contents on a linear scale so for 

each sound with some frequency, f, in Hz, a subjective frequency is calculated on a scale named as 

‘Mel’ scale [9]. The Mel scale has a linear frequency spacing below 1000Hz and logarithmic spacing 

above 1000Hz. Like a tone with 1 KHz and 40 dBs above the perceptual hearing threshold defined 

to have a pitch of 1000 Mel’s. So, for a given frequency f in Hz, following formula can be used to 

calculate the Mel’s. 

                                            Mel (f) = 2595*log10 (1 + f/700)                                                    (1) 

We have used filter bank to simulate subjective spectrum where there is one filter for every Mel-

frequency component. This filter bank consists of spacing and triangular band pass frequency 

response as well as bandwidth is calculated by a constant Mel-frequency interval. This Mel scale 

bank has a sequence of triangular band pass filters deigned to perform the band pass filtering 

supposed to happen in auditory system. This leads to a sequence of band pass filters on Mel-

frequency scale having constant bandwidth and spacing. In last step, the log Mel spectrum is 

converted back to time and in result we get the Mel-frequency Cepstral coefficients (MFCC). 

We can do discrete cosine transformation in order to transfer back the Mel coefficients to time 

domain.                                                                                                                         

 

                                                                                                                                                         (2)   
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B. Pitch and Formants 

Pitch is also a user-dependent feature and has been supported in research [18] but pitch is easily 

to mimic within same gender so using this feature alone doesn’t gave fruitful results. Formants are 

the spectral peaks of the signal and Peterson and Barney have measured first and second formants 

for a large set of speakers and have documented 60% accuracy. As per above discussion, lesser the 

number of features, lesser would be the results. Formants are generally calculated as first, second 

and third only so they gave not much information against single speaker. 

IV.  TRAINING OF CLASSIFIER 

It has been studied that different classification models have been proposed [20-22] to train the 

system. The classification models are dependent upon their preference/priority which are presented 

as follows: 

 Naïve Bayes 

 K-Nearest Neighbor  

 Neural Network 

First, we have taken the MFCCs features without normalization. By this, we mean that as each 

recording has different number of frames depending upon the user characteristics like speed of 

uttering word because different speakers utter the same word with different speed [23]. Taking 

MFCCs without normalization doesn’t leads to useful results.  

Therefore, in the second experiment, we take the mean of each Mel cepstral co-efficient for all 

frames and combine the results of all recordings of a single speaker. This is like let we have a 

recording of user consisting of 13 * 95 vectors. We first convert it into 13 * 1 vector then do this for 

all 25 recordings of the single user. Then we make a single file of 13 * 25 vector for a single user. 

This normalization technique resulted in comparatively better results than without normalization. 

In the third experiment, we took normalized MFCCs along with pitch and formants and trained 

them on different classifiers to compare the accuracy in order to deduce that which set of features 

gave us the best accuracy. This experiment proved to be the best set of features for speaker 

identification task.  
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Figure. 2 Accuracy Results of all classifier 

 

As shown in figure 2, it can be seen that KNN with K= 3 was able to produce the better results in 

both techniques. So there is a high probability to utilize the KNN with K= 3 classification model for 

training. We have got the best accuracy of 85.50% again by using the K-NN classifier with a 

combined feature set of MFCC, pitch and formants. 

V. ANALYSIS OF RESULTS 

After training different models, additional experiments were made on data to ensure that the 

accuracy that have been achieved is sustainable or not. For this, following analysis were made on 

the dataset: 

1. Changing value of K  

2. Reducing number of utterances 

A. Changing value of K 

The NN, or more general k-NN, method can be used to estimate the probability density function 

(PDF) of the data within a class or itself can be used as a classifier. According to our analysis, the 

results suggest that the speaker population should directly be proportional to k. This is logical since 

for large populations, there will be more confusion among the nearest neighbors.  
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Figure. 3 Effect by changing NN k factor 

The experiment has been conducted for identifying the change that might occur in accuracy by 

changing k factor. Data set has been trained and tested on odd values of k because setting odd value 

of k supports us in deciding the class label of the test utterance [23, 24]. It has been clear from the 

simulation results that excessive increase in the nearest neighbor results in drop of accuracy. As 

shown in Figure 3, accuracy falls as the value of k on the x-axis increases. 

B. Reducing number of utterances 

Reference [25], experiment has been conducted to measure the effect of reducing number of 

recordings within the context of classification model. There are two categories of recordings which 

has been utilized in the experiment such as “18 utterances/speaker and 25 utterances/speaker”.  
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Figure. 4 reducing number of utterances 

 

After conducting the experiment results as shown in Figure 4, it can be visualized that increasing 

the number of utterances per speaker helps us improving the accuracy measure. The figure clearly 

demonstrates that all classifiers have resulted in better and improved accuracy against 25 utterances 

rather than 18 utterances. Additionally, among all of them, k-NN classifier again here has been able 

to provide the best accuracy as compared to others for both set of utterances. The results obtained 

by the technique on both set of speakers are 56.67% on 18 utterances/speaker and 84.42% on 25 

utterances/speaker.  

VI. CONCLUSION 

We came up with a new feature set for ASI that are not simple, robust and easily computable but 

also gives us high accuracy. We have shown that more competitive system can be made by using 

MFCC along with pitch and formants rather than using MFCC alone. Using pitch and formants 

(highly speaker dependent features) clearly demonstrates inter speaker and intra speaker variability. 

Use of K-NN as a pattern matching classifier has also shown significant improvement. Due to time 

constraints we have developed a text dependent system so in future we will try to improve the system 

to text independent system.  
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As future recommendations, it is highly recommended that porting code to C will also help in 

efficiency improvement of Automatic Speaker Identification System for Urdu Speech. In addition, 

Psychological studies have shown that human speech varies over a period of 2-3 years so speaker’s 

data must be updated to maintain the accuracy of the system.   
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