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Abstract 

While it has been known for a while that some snake species are extremely sensitive to 
acetaminophen, the underlying mechanism for this toxicity has not been reported. To 
investigate if essential detoxification enzymes are missing in snake species that are responsible 
for biotransformation of acetaminophen in other vertebrate species, livers were collected from 
a variety of snake species, together with samples from alligator, snapping turtle, cat, rat, and 
cattle. Subcellular fractions were analyzed for enzymatic activities of phenol-type 
sulfotransferase and UDP-glucuronosyltransferase, total glutathione S-transferase, and N-
acetyltransferase. The results showed that none of the snake species, together with the cat 
samples, had any phenol-type glucuronidation activity, and that this activity was much lower in 
alligator and turtle samples than in the mammalian species. Combined with the lack of N-
acetyltransferase activity in snakes and cats, this would explain the accumulation of the 
aminophenol metabolite, which induces methemoglobinemia and subsequent suffocation of 
snakes and cats after acetaminophen exposure. While previous investigations have concluded 
that in cats the gene for the phenol-type glucuronosyltransferase isoform has turned into a 
pseudogene because of several point mutations, evaluation of genomic information for snake 
species revealed that they have only 2 genes that may code for glucuronosyltransferase 
isoforms. Similarity of these genes with mammalian genes is less than 50%, and suggests that 
the expressed enzymes may act on other types of substrates than aromatic amines. This 
indicates that the extreme sensitivity for acetaminophen in snakes is based on a different 
phylogenetic origin than the sensitivity observed in cats. 

Key words: Acetaminophen, toxicity, biotransformation, UDP-glucuronosyltransferase, N-
acetyltransferase, phylogeny, snake, Reptilia, Mammalia. 

 

1. Introduction 

After the accidental introduction of the brown treesnake (Boiga irregularis) on the island of 
Guam in the 1950’s, the population of this species rapidly expanded because of the lack of 
natural predators and the presence of a bountiful array of prey species (Savidge, 1987). After 
several decades of expansion, a number of indigenous bird species are now considered extinct 
on the island, and the brown treesnake is considered a nuisance species for human activities 
(Rodda et al. 1999; Burnett et al., 2012). This triggered investigations into possible methods to 
contain and eradicate this invasive species. A variety of general wildlife pesticides was tested 
for their toxicity to the brown treesnake, together with several human therapeutic drugs that 
were known to be toxic to some vertebrate species. Surprisingly, the brown treesnake proved 
to be very sensitive to low doses of acetaminophen, and to a lesser extent to aspirin, but not 
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ibuprofen (Savarie et al., 2000). A dose of only 80 mg acetaminophen per animal did kill 100 % 
of the tested snakes within 12-24 h. This knowledge has since been used to control the brown 
tree snake population on Guam by lacing dead mice with acetaminophen, and distributing this 
bait in habitats where the snakes reside. Brown treesnakes do eat dead carrion, and therefore 
this has proven to be an effective and relatively safe management strategy (Johnston et al., 
2002). 

From a comparative toxicology point of view it was unexpected that this species is so sensitive 
to acetaminophen. The compound is used as a common over-the-counter analgesic, and has 
relatively low toxicity to humans and most other mammals (Bertolini et al., 2006). After 
absorption and distribution, a large amount of the compound is processed in the liver, where 
specific isoforms of two enzymes, sulfotransferase (SULT) and UDP-glucuronosyltransferase 
(UGT), rapidly conjugate the acetaminophen with a sulfonate group or a sugar group, and thus 
ready the poorly water soluble substrate for excretion in urine or bile (Bertolini et al., 2006). If 
these enzymatic pathways become saturated, another liver enzyme (cytochrome P-450-2E1) 
can turn the acetaminophen into a highly reactive quinone (NAPQI), which can cause liver 
damage, as seen in people who overdose on the drug (James et al., 2003). The reactive quinone 
can be neutralized by the anti-oxidant glutathione, with help of the enzyme glutathione S-
transferase. But if this pathway becomes saturated after an excessive dose, and accumulation 
of NAPQI occurs, serious liver damage will ensue (McGill & Jaeschke, 2013).  

This well-studied pathology profile of acetaminophen in humans could explain the observed 
toxicity in the brown treesnake if snakes are missing any of the essential enzymes in the 
detoxification pathway of the compound. However, from experiments in which brown 
treesnakes were dosed with acetaminophen, it became clear that they did not die from acute 
liver failure, but from anemic hypoxia (Clark et al., 2018). This rare phenomenon is also seen in 
feline species, like cats, when they are exposed to acetaminophen (Court & Greenblatt, 1997). 
The sensitivity of cats to acetaminophen has been explained by the lack of a functional isoform 
of the UDP-glucuronosyltransferases which conjugates acetaminophen in other mammalian 
species. The gene for this isozyme has several point mutations in cats, which has turned the 
gene into a pseudo-gene (Court & Greenblatt, 2000). Because the lack of a functional phenol-
type UGT isoform leads to acute toxicity in cats, the objective of the current study was to 
investigate if the underlying mechanism for acetaminophen toxicity in cats is the same as in the 
brown treesnake and other snake species, or if phylogenetic signals leading to differentiated 
enzyme expressions are responsible for the sensitivity of reptilians to acetaminophen.  The 
approach to answer this question was to collect liver samples from a variety of snake species, 
and several other vertebrates for comparison, and measure the activities of the enzymes 
involved in acetaminophen metabolism. In addition, we explored existing data in GenBank of 
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investigated or closely related species to compare genetic information on the genes involved in 
these enzymatic pathways. 

 

2. Materials and Methods 

2.1 Tissue samples 

Eastern diamondback rattlesnake (Crotalus adamanteus) samples (n=2) were kindly donated by 
Darin Rokyta's lab (Florida State University, Tallahassee, FL), ball python (Python regius) and 
corn snake (Pantherophis guttatus) samples (both n=1) were obtained from University of Texas 
Arlington (Todd Castoe lab). Liver samples (n=1 each) of several Colubridae snakes (Nerodia 
clarkii compressicauda, Phyllorhynchus decurtatus, Rhinocheilus lecontei, Thamnophis 
marcianus) and a cottonmouth (Agkistrodon piscivorus) were donated by Chris Parkinson’s lab 
(University of Central Florida, Orlando, FL). Samples of Burmese python (Python bivittatus, n=4) 
were obtained with the help of Frank Mazzotti’s lab (University of Florida, Davie, FL). American 
alligator (Alligator mississippiensis) samples (n=5) were supplied by Lou Gillette’s lab (Medical 
University of South Carolina, Charleston, SC). Snapping turtles (Chelydra serpentine, n=4) were 
collected locally in the Reedy River near Greenville, SC, rat (Rattus norvegicus) samples (n=4) 
were obtained from the Godley Snell animal use facility at Clemson University, cat (Felis catus) 
livers (n=4) were dissected from euthanized feral cats at the Oconee Animal Shelter (Seneca, 
SC) and heifer (Bos taurus) livers (n=6) were obtained from the veterinary school at the 
University of Georgia (Athens, GA). All liver tissue samples were flash frozen in liquid nitrogen 
and stored at -80°C until use. 

Livers were thawed on ice and approximately 2 g of liver tissue was homogenized with a 
Polytron tissue grinder in 10 ml ice-cold Tris buffer (0.05 M, pH 7.4), containing 0.25 M sucrose, 
1 mM ethylenediaminetetraacetic acid (EDTA), 0.1 mM dithiothreitol (DTT) and 0.2 mM 
phenylmethanesulfonyl fluoride (PMSF). Smaller samples were homogenized with a glass 
Potter‐Elvehjem homogenizer in 2 mL of chilled homogenization buffer. Samples were spun for 
20 min at 10,000 g at 4º C to remove cell debris, connective tissue and fat, followed by a 60 min 
cold spin at 100,000 g. The cytosolic supernatant was collected and separated in aliquots; the 
microsomal pellet was then resuspended in 1 ml Hepes buffer (0.01 M, pH 7.4), containing 0.25 
M sucrose, 0.1 mM EDTA, 0.1 mM DTT, and 5% glycerol. Samples were frozen and stored at -
80º C until use. 

2.2 Protein assay 

All protein concentrations were measured with a bicinchoninic acid (BCA) Protein Assay Kit 
(Pierce, Rockford, IL), using bovine serum albumin (BSA) to prepare the standard curve. 
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2.3 UDP-glucuronosyltransferase activity 

UGT activity was measured using 1-naphthol as a substrate (Mackenzie & Hanninen, 1980), 
which is a good substrate for the UGT isoform that is also responsible for the conjugation of 
acetaminophen. The benefit of using 1-naphthol is that this substrate and its metabolite are 
fluorescent, which lowers the detection limit in spectrophotometric analysis (Soikkeli et al., 
2011). After method development experiments with varying concentrations of substrate, 
cofactor, microsomes, and Brij58, and different incubation times, the final assays were 
performed in a 250 µl reaction mixture, containing 0.1 M sodium phosphate buffer pH 7.4, 5 
mM magnesium chloride, 25 µg of microsomal protein, treated with 0.3 mg/mg Brij 58, 0.08 
mM 1-naphthol (20 µl from a 1mM stock solution in 5% DMSO), and 0.1 mM uridine-
diphosphoglucuronic acid (UDPGA). Negative controls consisted of the complete reaction 
mixture, but with a subsample of mixed microsomes that was boiled for 5 minutes to denature 
all proteins and thus inhibit any enzyme activity. The reaction was started by adding the UDPGA 
to the reaction mix. The reaction was performed at room temperature in an all-black 96-well 
microplate, with 3 replicate wells per sample. The production of the glucuronidated conjugate 
of 1-naphthol was measured at 293/335 nm (excitation/emission) over 30 min at 2 min 
intervals, using the kinetic option in SoftMax Pro software with a SpectraMax Gemini plate 
reader from Molecular Devices. The results are presented as Vmax values (mUnits/min). 

2.4 Sulfotransferase activity 

Phenol-type sulfotransferase activity was measured based on the method published by Arand 
et al. (1987). After initial experiments to optimize substrate, cytosol, and cofactor 
concentrations, and incubation times, the assay mixture for the reported results consisted of 80 
µl of a 1M potassium phosphate buffer, pH 7.4, 200 µl of cytosol, adjusted to 1 mg/ml protein, 
and 100 µl of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) of 0.1 mM, which was purified by 
retaining it on a Sep Pak Accell Plus QMA column (Waters Corporation, Milford, MA), and 
eluted with 150 mM sodium chloride. Negative controls consisted of the complete reaction 
mixture, but a subsample of mixed cytosol was boiled for 5 minutes to denature all proteins 
and thus inhibit any enzyme activity. The reaction was started by adding 20 µl of 1mM β-
naphthol in 5% dimethyl sulfoxide. The reaction mixture was incubated for 10 min. at 37°C, 
after which the reaction was stopped by adding 600 µl of 0.4 M glycine solution, acidified with 
10% trichloroacetic acid to pH 2.2. The reaction products were separated by adding 5 ml of 
chloroform, vortexing for 30 sec. and centrifuging at 2000 g for 5 min. to separate the phases. 
One hundred µl of the upper phase was mixed with 140 µl of 1 N sodium hydroxide in all-black 
96-microwell plates, and fluorescence was measured at 285/335 nm excitation/emission 
wavelengths in a Biotek plate reader. Reaction rates were calculated using a 0.625 – 10 mM 
standard curve of 2-naphthyl sulfate potassium salt. 
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2.5 Glutathione S-transferase activity 

GST activity was measured as the conjugation of glutathione with 1-chloro-2,4-dinitrobenzene 
(CDNB) by cytosolic protein (Habig et al., 1974). Assay method was optimized using varying 
substrate, cytosol and CDNB concentrations over different incubation times, and final reaction 
mixtures consisted of 250 µl contained 0.1 M HEPES buffer (pH 7.6), 1 mM glutathione (GSH), 
and 25 µg of cytosolic protein. Negative controls consisted of the complete reaction mixture, 
with a subsample of mixed cytosol that was boiled for 5 minutes to denature all proteins and 
thus inhibit any enzyme activity. The reaction was started by adding CDNB (1 mM final 
concentration). Formation of the CDNB conjugate was measured at room temperature by 
taking absorption readings on a SpectraMax 190 plate reader (Molecular Devices Corporation, 
CA) using the Vmax kinetics option at 9 s intervals for 2 min at 344 nm, and was quantified by 
using the molar absorptivity of 9.6 mM-1 for the enzymatic product.  

2.6 N-acetyltransferase activity 

N-acetyltransferase activity was measured according to Andres et al. (1985). After method 
optimization experiments with varying substrate, cytosol and cofactor concentrations, and 
incubation times, the final reaction assay mixture included 60 µl of cytosol of 2 mg/ml protein, 
and 20 µl of working solution, consisting of 0.25 M Tris buffer (pH 7.5), 4 mM 1,4-dithiothreitol, 
4 mM ethylenediaminetetraacetic acid, 22.5 mM acetyl phosphate, 5 units of 
phosphotransacetylase/ml of working solution, and 500 µM of p-aminobenzoic acid. Negative 
controls consisted of the complete reaction mixture, but with a subsample of mixed cytosol 
that was boiled for 5 minutes to denature all proteins and thus inhibit any enzyme activity. 
After the reaction mixture was allowed to come to room temp, the reaction was started by 
adding 20 µl of 1 mM acetyl-coenzyme A, and transferring the reaction tube to a 37°C heating 
block. Reaction tubes were incubated for 30 min. The reaction in each tube was stopped by 
adding 50 µl of 20% trichloroacetic acid. Tubes were centrifuged at 20,000 g for 3 min to pellet 
the denatured proteins, after which 500 µl of 5% dimethylaminobenzaldehyde in acetonitrile 
was added. Samples were vortexed and spun again at 14,000 rpm for 1 min, after which 2 
replicates of 250 µl were transferred to a clear 96-well microplate and absorption was 
measured at 450 nm.   

2.7 Data analysis 

Because only a limited amount of liver samples could be obtained for the snake species, with 
only one specimen for several species, data for the snake species were grouped into the 
following clusters, based on taxonomic and ecophysiological relatedness: the venomous snakes 
(Crotalus adamanteus, Agkistrodon piscivorus, n=3 for the group), the python samples (Python 
bivittatus, Python regius, n=5), the water snakes (WS) (Nerodia clarkii compressicauda, 



7 
 

Thamnophis marcianus, n=2), and other snakes (Phyllorhynchus decurtatus, Rhinocheilus 
lecontei, Pantherophis guttatus, n=4) . All data were analyzed using the GraphPad Prism 4 
software package. After sample mean and standard error were calculated data were log 
transformed to approach homogeneity of variance before statistical analysis. One-way ANOVA 
was applied on transformed data, followed by Tukey's Multiple Comparison Test to identify 
significant differences between species (p<0.05). To analyze the genomic information, relevant 
glucuronosyltransferase isoforms sequences were obtained from the NCBI database 
(http://www.ncbi.nlm.nih.gov/). The program CLC Main workbench version 7.6.4 was used for 
BLASTing and alignment of the found glucuronosyltransferase sequences. 
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3. Results 

3.1 UDP-glucuronosyltransferase activity 

 

 

Figure 1. UDP-glucuronosyltransferase activity in microsomes from liver homogenates of snakes and 
other vertebrates. Species and numbers (n) in each group are listed under Data Analysis. Box and 
whiskers indicate the median, 25-75th percentile and range of data. Groups not connected by the same 
letter are significantly different from each other (p < 0.05). 

 

The results of the glucuronidation assay on 1-naphthol demonstrate that none of the snake 
samples had any statistically significant glucuronidation activity towards the substrate (Figure 
1). This lack of glucuronidation activity was also observed in the cat samples. The alligator and 
turtle samples had significant glucuronidation activity compared to the snake and cat samples 
(0.36-0.44 mU/mg/min), but this activity was much lower than in the rat and bovine samples 
(2.2-2.3 mU/mg/min).  
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3.2 Sulfotransferase activity 

 

Figure 2. Phenol-type sulfotransferase activity in cytosol from liver homogenates of snakes and other 
vertebrates. Species and numbers (n) in each group are listed under Data Analysis. Box and whiskers 
indicate the median, 25-75th percentile and range of data. Groups not connected by the same letter are 
significantly different from each other (p < 0.05). 

 

The results of the sulfotransferase assay with β-naphthol showed that the bovine samples had 
significant higher activity (1.04 nmol/mg/min) than any of the other tested species (Figure 2). 
On the other hand, cats had significantly lower activity (0.20 nmol/mg/min) than any of the 
other species. Most snake species had average activity (0.43-0.51 nmol/mg/min), comparable 
to alligator, turtle and rat samples (0.50, 0.49 and 0.57 nmole/mg/min respectively). The only 
snakes that had significantly higher activity were the two Natricinae species (Nerodia and 
Thamnophis, grouped together as WS) with 0.80 nmol/mg/min. 
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3.3 Glutathione S-transferase activity 

 

 

Figure 3. Total glutathione S-transferase activity in cytosol from liver homogenates of snakes and other 
vertebrates. Species and numbers (n) in each group are listed under Data Analysis. Box and whiskers 
indicate the median, 25-75th percentile and range of data. Groups not connected by the same letter are 
significantly different from each other (p < 0.05). 

 

The glutathione S-transferase assay revealed a fairly constant activity of around 600 
nmol/mg/min for most species (Figure 3). The turtle samples were on average a little higher 
(759.4 nmol/mg/min), but this was not statistically significant. The only group that is 
significantly different from the others were the venomous snakes (Crotalus and Agkistrodon), 
which had on average about double (1170 nmol/mg/min) the activity of the other snake 
groups.  
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3.4 N-acetyltransferase activity 

 

 

 

Figure 4. N-acetyltransferase activity in cytosol from liver homogenates of snakes and other vertebrates. 
For all groups n=3; except “Other Snakes” for which n=6. Box and whiskers indicate the median, 25-75th 
percentile and range of data. Groups not connected by the same letter are significantly different from 
each other (p < 0.05). 

 

Activity of N-acetyl transferase was extremely low in most species tested (0.01 – 0.18 
nmol/mg/min), except for the rat, which had an average activity of 1.27 nmol/mg/min (Figure 
4). There were no statistically significant differences between any of the other taxa tested.  

Genomic information on the UGT and NAT enzymes studied in the different species were 
obtained through comparison of published protein sequences 
(www.ncbi.nlm.nih.gov/Genbank). So far, complete genomes have been sequenced for 4 snake 
species: Burmese python (Python bivittatus), king cobra (Ophiophagus hannah), brown spotted 
pitviper (Protobothrops mucrosquamatus), and common garter snake (Thamnophis sirtalis). 
Apart from the king cobra, all other 3 species are reported to have a UGT 1A1 and a UGT2A1-
like gene The two UGT isoforms in snakes have 83 – 90 % similarity, while the snake UGT1A1 
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has only 41 – 42 % similarity to the mammalian species we investigated (SI Figure 1). The snake 
UGT2A1 isoform has 65 -69 % similarity to the mammalian forms (SI Figure 2). 

The American alligator (Alligator mississippiensis) genome showed, apart from the UGT1A1 and 
2A1 isoforms that are also present in snakes, an additional UGT2C1 isoform. The genome that is 
taxonomically closest to the common snapping turtle (Chelydra serpentina) is the green sea 
turtle (Chelonia mydas). In addition to the UGT isoforms found in snakes (UGT1A1 and 2A1) it 
has genes that correspond to UGT1A6 and 1A8. 

In rats and humans two basic forms of NAT are present, each with different polymorphisms that 
determine the enzymatic efficiency of the isoforms (SI Figures 3 and 4). Screening of published 
genome information for the four earlier mentioned snake species showed that Python and 
Probothrops have genes that code for an “arylamine NAT2-like” protein (SI Figure 4), but this 
NAT sequence is less than 40% similar to the mammalian forms (SI Figure 4). The other snake 
species, Thamnophis and Ophiophagus, do not have any genomic sequences that resemble NAT 
isoforms. For other reptilians, like Alligator and Chelonia, no arylamine NAT genes were found 
in their genomes. Screening the cow genome revealed that cows have only genomic 
information for the NAT1 isoenzyme, while the gene for NAT2 is missing. The similarities 
between bovine NAT1 and human and rat NAT1 are 83% and 81% respectively (SI Figure 3). 

 

4. Discussion 

In this study we investigated if snakes species have different detoxification pathways for 
phenolic compounds like acetaminophen than other vertebrate species, which could explain 
the observed unusual toxicity of acetaminophen in snake species like the brown treesnake and 
the Burmese python (Savarie et al., 2000; Mauldin & Savarie, 2010). In humans and other 
mammalian species, acetaminophen metabolism has been well studied, and the activities of 
different enzymes involved have been described (Bertolini et al., 2006). Under low dosing 
scenarios most of the acetaminophen is glucuronidated in the liver, with a small amount being 
sulfated (Figure 5). The conjugated metabolites are then excreted in urine or bile. However, 
during an overdose event, these two pathways can get saturated, which leads to an 
accumulation of acetaminophen that can then be metabolized by CYP2E1 into N-acetyl-p-
benzoquinoneimine (NAPQI), a highly reactive intermediate. The NAPQI intermediate is a 
substrate for glutathione S-transferase (GST), which conjugates the electrophilic metabolite to 
glutathione, and is then excreted. When the GST enzyme gets saturated, or glutathione 
reserves are rapidly depleted, an accumulation of NAPQI can occur, which leads to acute liver 
and kidney damage (Hart et al., 1991).  
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Figure 5. Metabolism of acetaminophen, after McConkey et al. (2009) 

 

To compare the activities of the enzymes involved in acetaminophen metabolism, snake liver 
samples were analyzed, together with samples from 2 other reptiles (American alligator and 
snapping turtle) and 3 mammalian species (cat, rat, cow).  The results showed that none of the 
snake samples had any glucuronidation activity, while sulfation and glutathione conjugation 
activities were comparable to the other species. A limitation of this study is that we did not use 
acetaminophen (or aminophenol for NAT) as a substrate in the enzyme assays, but used 
comparable substrates that were better suited for the chosen methods, and therefore the 
conclusion about severe acetaminophen toxicity in snakes is indirect. 
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The results indicated that snakes in general do not have a functional UGT isoform that can 
conjugate phenolic compounds, like acetaminophen. While the activity of a sulfotransferase 
isoform could compensate for this lack of UGT activity by conjugating phenolic compounds with 
a sulfonate group, it is generally accepted that sulfotransferases have a high substrate affinity, 
but relatively low activity compared to glucuronosyltransferases, presumably because of a slow, 
rate-limiting synthesis of the sulfonate donating cofactor PAPS (James, 2014). This means that 
that snakes exposed to acetaminophen would rapidly accumulate this compound in their liver. 
As in mammals, this could lead to the production of the highly reactive NAPQI metabolite by 
CYP isoforms, followed by liver damage. However, when brown treesnakes were exposed to 
acetaminophen they appeared to die from methemoglobinemia and not from liver damage 
(Clark et al., 2018), which indicates that another process is likely responsible for the sensitivity 
in snakes.  

A pathway that may explain the occurrence of methemoglobinemia is the accumulation of 
aminophenol as a metabolite of acetaminophen. Aminophenol is a known inducer of 
methemoglobinemia, but generally does not appear to occur as a result of acetaminophen 
exposure. In humans the deacetylation process of acetaminophen by amidase has been 
observed, and can cause toxicity in kidneys, but is usually rapidly reversed by the activity of N-
acetyltransferase (NAT) (Nicholls et al., 1995), although in rare cases of severe overdose 
methemoglobinemia has been observed (Kanji et al., 2013). If in snakes this process is inhibited 
or non-existent, it would lead to an accumulation of aminophenol, which could then reduce 
hemoglobin in red blood cells, and induce methemoglobinemia. We therefore measured NAT 
activity in the liver samples, and indeed found that the snake livers have no significant NAT 
activity, which would explain the observed hypoxia in acetaminophen exposed brown 
treesnakes (Clark et al., 2018).  

The same phenomenon of methemoglobinemia after acetaminophen exposure has been 
observed in cats and other felines, who also lack an active UGT isoform that can metabolize 
acetaminophen, and in addition, as shown in our results and has been reported by others, cats 
also lack NAT enzyme activity, which leads to the accumulation of aminophenol and the 
consequent occurrence of methemoglobinemia (Nash et al., 1984; McConkey et al., 2009).  

The low SULT activity towards phenolic compounds in cats has been described before, but is 
not entirely absent because sulfated metabolite is excreted by cats when dosed with 
acetaminophen (Gregus et al., 1983; Watkins et al., 1986; Savides et al., 1984). 

The total lack of UGT activity in snakes appears not to be universal in reptiles; the results 
presented here demonstrate that the samples of the American alligator and the snapping turtle 
did have measurable UGT activity compared to the snakes, but this activity was much lower 
than the rat and cow samples we tested. This would imply that alligators and turtles would be 
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less sensitive to acetaminophen toxicity, but it has been reported that the Nile monitor lizard, 
another reptilian species, is still sensitive to acetaminophen (Mauldin & Savarie, 2010), which 
may be explained by a slow UGT conjugation rate combined with a lack of NAT activity, as was 
demonstrated in this study. Little is known about conjugating enzymes in turtles, but given the 
broad spectrum of ecological niches that the taxonomical order of Testudines occupy and the 
variety of food sources they use, it would be very interesting to investigate the expression of 
conjugating enzymes in a broad variety of turtles.  

Interestingly, while some amphibians also appear to lack UGT activity towards phenolic 
compounds, and predominantly use sulfation as a biotransformation pathway, other 
amphibians have active UGT-like glucusidation enzymes, that use glucose instead of glucuronic 
acid as cofactor (Ueda et al., 2011). The use of glucose as a cofactor for UGT enzymes is also 
seen in invertebrates, and therefore considered a more primitive process than the use of 
glucuronic acid, which is found in higher vertebrates (Mackenzie et al., 1997)  

Now that more and more complete annotated genomes are available, the enzymatic activity 
results obtained in this study can be compared to genomic information on the presence of 
specific genes that code for these enzymes in different species. As of now, complete genomes 
have been sequenced for 4 snake species: Burmese python (Python bivittatus), king cobra 
(Ophiophagus hannah), brown spotted pitviper (Protobothrops mucrosquamatus), and common 
garter snake (Thamnophis sirtalis). Apart from the king cobra, all other 3 species are reported to 
have a UGT 1A1 and a UGT2A1-like gene (www.ncbi.nlm.nih.gov/Genbank). For the king cobra 
only a partial UGT 2A2 like gene was reported. In mammals the UGT1A1 isoform is mostly 
involved with conjugating bilirubin, while UGT2A1/2A2 is active in conjugating bile salts and 
steroid hormones. The lack of other UGT isoforms in snakes, especially UGT1A6 which has 
simple phenolic compounds as preferred substrates, would explain the lack of activity seen in 
our experiments towards 2-naphthol, and as a consequence towards acetaminophen. A protein 
BLAST revealed that the two UGT isoforms in snakes have 83 – 90 % similarity, while the snake 
UGT1A1 has only 41 – 42 % similarity to the mammalian species we investigated (SI Figure 1). 
The snake UGT2A1 isoform has 65 -69 % similarity to the mammalian forms (SI Figure 2). Even if 
the mammalian UGT isoforms are promiscuous and accept other substrates than their 
preferred substrate, the considerable structural differences between the mammalian and the 
snake isoforms may be an additional reason why snakes cannot glucuronidate simple phenols 
like naphthol and acetaminophen.     

In the other reptilians we tested for UGT activity towards 2-naphthol, more UGT coding genes 
are found. The American alligator (Alligator mississippiensis) genome is also available, and 
shows apart from the UGT1A1 and 2A1 isoforms that are also present in snakes, an additional 
UGT2C1 isoform, which may explain the slightly higher observed UGT activity in our alligator 
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samples. The completely sequenced genome that is taxonomically closest to the common 
snapping turtle (Chelydra serpentina) that we investigated, is the green sea turtle (Chelonia 
mydas). This species has a greater variety of UGT isoforms; in addition to the ones found in 
snakes (UGT1A1 and 2A1) it has genes that correspond to UGT1A6 and 1A8. This makes it 
plausible that the common snapping turtle also has more UGT isoforms than snake species.      

 Based on what is known about the role of N-acetyltransferase (NAT) in causing 
methemoglobinemia in cats, it is relevant to investigate the presence of NAT genes in the 
animal models used in this study. In rats and humans two basic forms of NAT are present that 
conjugate an acetyl group to arylamines like aminophenol, each with different polymorphisms 
that determine the enzymatic efficiency of the isoforms (SI Figures 3 and 4). In cats only one 
isoform (NAT1X2) is found (www.ncbi.nlm.nih.gov/Genbank), and because we did not measure 
any significant activity towards p-aminobenzoic acid in the cat samples, this one isoform is 
probably not functional towards aminophenols, but may be able to metabolize other substrates 
(McConkey et al., 2009).  

The lack of NAT activity in our snake samples would imply that snakes could also be missing the 
genes for NAT isoforms. Screening of published genome information for the four snake species 
for which complete genomes are available showed that Python and Probothrops have genes 
that code for a “arylamine NAT2-like” protein (SI Figure 4), while Thamnophis and Ophiophagus 
do not have any genomic sequences that resemble NAT isoforms. Given the lack of NAT activity 
towards p-aminobenzoic acid in the snake samples we tested, it can be concluded that the 
NAT2-like gene that is found in some snakes is not coding for a functional enzyme, although it 
may be able to other types of substrates. The sequence in GenBank is less than 40% similar to 
the mammalian forms (SI Figure 4). In addition, for other reptilians, like Alligator and Chelonia, 
no arylamine NAT genes are found in their genomes (www.ncbi.nlm.nih.gov/Genbank), which 
further supports the assumption that functional forms of these genes towards arylamine 
substrates are absent in reptilians.  

While the rat samples had good NAT activity in the samples tested in this study, it was initially 
concerning that no activity was found in the cow samples. However, screening the cow genome 
revealed that cows have only genomic information for the NAT1 isoenzyme, while the gene for 
NAT2 is missing (Glenn et al., 2010). In other mammals, like rat and human, both NAT1 and 
NAT2 can use p-aminobenzoic acid as substrate, although the polymorphisms in these genes 
result in a wide variety of actual enzymatic activities (Sim et al., 2008). The absence of NAT 
activity in our cow samples may be explained by both these factors: the lack of NAT2 enzyme, 
and a slow, or non-functional NAT1 isoform.  The similarities between bovine NAT1 and human 
and rat NAT1 are 83% and 81% respectively (SI Figure 3). 
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From a phylogenetic point of view, it is very interesting to analyze why certain taxa do not have 
functional genes for the conjugation of phenolic compounds. It is assumed that UGT isozymes 
have evolved as a result of the herbivore-plant arms race in which selective pressure benefitted 
plants with potentially toxic phenolic compounds, and increasing the fitness of herbivores with 
effective detoxification pathways for these chemicals (Bock, 2016). This coevolution of plants 
and herbivores presumably resulted in plants rich in poor tasting, toxic phenolic deterrents and 
animals with a wide variety of detoxifying enzymes. In cats and other felines the phenol-type 
UGT gene is present, but has suffered several point mutations which made the gene non-
functional (Court & Greenblatt, 2000). The investigations presented here indicate that snakes 
do not seem to have a coding sequence at all for a phenol-type UGT isoform. These two 
different genomic origins for the sensitivity to acetaminophen are most likely a result of 
evolutionary processes related to feeding strategies. Both felines and snakes are top predators, 
with limited or no exposure to plant derived phenolic compounds (Shrestha et al., 2011). This 
would mean that there is no selective pressure on having, or maintaining, a functional enzyme 
system that detoxifies phenolic compounds.  

 

5. Conclusions 

Based on the investigations presented here, snake species do not have a functional phenol-type 
glucuronidation enzyme, and they are also lacking acetylation activity. These observations were 
in concordance with the lack of genomic coding sequences for these enzymes. The lack of these 
enzymes make snakes very susceptible to toxicity of phenolic compounds like acetaminophen, 
and explains the observed methemoglobinemia observed in brown treesnakes exposed to 
acetaminophen. While the toxic effects of acetaminophen in snakes appear to be the same as 
has been observed in cats and other felines, the underlying mechanism is different in that 
snakes appear to be missing the gene for a phenol-type UGT, whilst in felines this gene has 
mutated into a pseudogene. It is unclear if snakes ever had a functional phenol-type UGT gene, 
and further comparisons of genomic information and enzyme activities with other reptilians 
could shed more light on the phylogenetic history of these enzymes. 

 

6. Acknowledgements 

A lot of the samples used for this study were graciously donated by colleagues from a variety of 
institutions; many thanks go out to the following people who were involved in supplying us with 
these samples: Ben Parrot (MUSC), Mark Margres (FSU), Daren Card (UT Arlington), Jason 
Strickland (UCF), Mike Rochford (UF), Susan Duckett (UGA), Melody Willey (CU). The enzyme 
essays were performed as part of a multi-semester Clemson University Creative Inquiry project, 



18 
 

in which the following students were involved: Charmaine Jenkins, Alexander Bischoff, Lisa 
Emerson, Casey Cummings, Lydia Krause. Matt Turnbull is thanked for critically reviewing this 
manuscript. Funding to support this project was supplied by the Clemson University Creative 
Inquiry program. 

 

7. References 

Arand M, Robertson LW, Oesch F. (1987) A fluorometric assay for quantitating phenol 
sulfotransferase activities in homogenates of cells and tissues. Anal Biochem. 
163(2):546-51. 

Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S. (2006) Paracetamol: new vistas of 
an old drug. CNS Drug Rev. 12(3-4):250-75 

Bock KW. (2016) The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects 
and plants: Animal-plant arms-race and co-evolution. Biochem Pharmacol 99:11-7 

Burnett K, Pongkijvorasin S, Roumasset J (2012) Species invasion as catastrophe: the case of the 
brown tree snake. Environ Resource Econ. 51: 241-254 

Clark L, Clark C, Siers S, (2018) Brown Tree Snakes Methods and Approaches for Control. USDA 
National Wildlife Research Center - Staff Publications 2032.  

Court MH, Greenblatt DJ. (1997) Molecular basis for deficient acetaminophen glucuronidation 
in cats. An interspecies comparison of enzyme kinetics in liver microsomes. Biochem 
Pharmacol 53(7):1041-7. 

Court MH, Greenblatt DJ. (2000) Molecular genetic basis for deficient acetaminophen 
glucuronidation by cats: UGT1A6 is a pseudogene, and evidence for reduced diversity of 
expressed hepatic UGT1A isoforms. Pharmacogenetics 10(4):355-69 

Emeigh Hart SG, Beierschmitt WP, Bartolone JB, Wyand DS, Khairallah EA, Cohen SD. (1991) 
Evidence against deacetylation and for cytochrome P450-mediated activation in 
acetaminophen-induced nephrotoxicity in the CD-1 mouse. Toxicol Appl Pharmacol. 
107(1):1-15. 

Glenn AE, Karagianni EP, Ulndreaj A, Boukouvala S. (2010) Comparative genomic and 
phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase 
enzyme family. FEBS Lett 584(14):3158-64 

 



19 
 

Gregus Z, Watkins JB, Thompson TN, Harvey MJ, Rozman K, Klaassen CD. (1983) Hepatic phase I 
and phase II biotransformations in quail and trout: comparison to other species 
commonly used in toxicity testing. Toxicol Appl Pharmacol. 67(3):430-41. 

James LP, Mayeux PR, Hinson JA. (2003) Acetaminophen-induced hepatotoxicity. Drug Metab 
Dispos. 31(12):1499-506. 

James MO (2014) Enzyme kinetics of conjugating enzymes: PAPS sulfotransferase. Methods Mol 
Biol. 1113:187-201 

Johnston JJ, Savarie PJ, Primus TM, Eisemann JD, Hurley JC, Kohler DJ. (2002) Risk assessment of 
an acetaminophen baiting program for chemical control of brown tree snakes on Guam: 
evaluation of baits, snake residues, and potential primary and secondary hazards. 
Environ Sci Technol 36(17):3827-33. 

Kanji HD, Mithani S, Boucher P, Dias VC, Yarema MC. (2013) Coma, metabolic acidosis, and 
methemoglobinemia in a patient with acetaminophen toxicity. J Popul Ther Clin 
Pharmacol. 20(3):e207-11 

Mackenzie PI, Hänninen O. (1980) A sensitive kinetic assay for UDPglucuronosyltransferase 
using 1-naphthol as substrate. Anal Biochem 109(2):362-8 

Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Bélanger A, Fournel-Gigleux S, Green 
M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury JR, Ritter JK, 
Schachter H, Tephly TR, Tipton KF, Nebert DW. (1997) The UDP glycosyltransferase gene 
superfamily: recommended nomenclature update based on evolutionary divergence. 
Pharmacogenetics. 7(4):255-69 

Mauldin RE, Savarie PJ (2010) Acetaminophen as an Oral Toxicant for Nile Monitor Lizards 
(Varanus niloticus) and Burmese Pythons (Python molurus bivittatus). Wildlife Research 
37, 215–222 

McConkey SE, Grant DM, Cribb AE. (2009) The role of para-aminophenol in acetaminophen-
induced methemoglobinemia in dogs and cats. J Vet Pharmacol Ther. 32(6):585-95. 

McGill MR, Jaeschke H. (2013) Metabolism and disposition of acetaminophen: recent advances 
in relation to hepatotoxicity and diagnosis. Pharm Res. 30(9):2174-87. 

Nash SL, Savides MC, Oehme FW, Johnson DE. (1984) The effect of acetaminophen on 
methemoglobin and blood glutathione parameters in the cat. Toxicology 31(3-4):329-34. 



20 
 

Nicholls AW, Caddick S, Wilson ID, Farrant RD, Lindon JC, Nicholson JK. (1995) High resolution 
NMR spectroscopic studies on the metabolism and futile deacetylation of 4-
hydroxyacetanilide (paracetamol) in the rat. Biochem Pharmacol. 49(8):1155-64 

Rodda GH, Sawai Y, Chiszar D, Tanaka H. (1999) Problem snake management: the habu and the 
brown treesnake. Cornell University Press, Ithaca, New York, USA 

Savides MC, Oehme FW, Nash SL, Leipold HW. (1984) The toxicity and biotransformation of 
single doses of acetaminophen in dogs and cats. Toxicol Appl Pharmacol. 74(1):26-34. 

Savarie PJ, York DL, Hurley JC, Volz S, Brooks JE. (2000). Testing the dermal and oral toxicity of 
selected chemicals to brown treesnakes. Pp 139–145 in T. P. Salmon and A. C. Crabb, 
eds. Proceedings of the 19th Vertebrate Pest Conference. University of California, Davis. 

Shrestha B, Reed JM, Starks PT, Kaufman GE, Goldstone JV, Roelke ME, O'Brien SJ, Koepfli KP, 
Frank LG, Court MH. (2011) Evolution of a major drug metabolizing enzyme defect in the 
domestic cat and other felidae: phylogenetic timing and the role of hypercarnivory. PLoS 
One. 6(3):e18046. 

Sim E, Walters K, Boukouvala S. (2008) Arylamine N-acetyltransferases: from structure to 
function. Drug Metab Rev. 40(3):479-510 

Soikkeli A, Kurkela M, Hirvonen J, Yliperttula M, Finel M. (2011) Fluorescence-based high-
throughput screening assay for drug interactions with UGT1A6. Assay Drug Dev Technol 
(5):496-502. 

Ueda H, Ikenaka Y, Nakayama SM, Tanaka-Ueno T, Ishizuka M. (2011) Phase-II conjugation 
ability for PAH metabolism in amphibians: characteristics and inter-species differences. 
Aquat Toxicol 105(3-4):337-43. 

Watkins JB 3rd, Klaassen CD. 1986 Xenobiotic biotransformation in livestock: comparison to 
other species commonly used in toxicity testing. J Anim Sci. 63(3):933-42. 

 

  



21 
 

Supplemental Information 



22 
 

 



23 
 

Figure 1. Alignment of human (Uniprot: P22309), rat (Uniprot: Q64550), Heifer (Uniprot: A7YWD3), cat 
(Uniprot: BAA24692), American alligator (Uniprot: A0A151N9S0), Burmese python (NCBI: 
XP_007434974), common garter snake (NCBI: XP_013913257) and brown spotted pit viper (NCBI: 
XP_015678725) UDP-glucuronosyltransferase 1A1 protein. 
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Figure 2. Alignment of human (Uniprot: Q9Y4X1), rat (Uniprot: P36510), Heifer (NCBI: NP_001092414), 
cat (NCBI: XP_003985357), American alligator (Uniprot: A0A151MIX4), Burmese python (NCBI: 
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XP_015745339), common garter snake (NCBI: XP_013929149) and brown spotted pit viper (NCBI: 
XM_015815164)  UDP-glucuronosyltransferase 2A1 protein. 

 

 

Figure 2 (continued). Alignment of human (Uniprot: Q9Y4X1), rat (Uniprot: P36510), Heifer (NCBI: 
NP_001092414), cat (NCBI: XP_003985357), American alligator (Uniprot: A0A151MIX4), Burmese python 
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(NCBI: XP_015745339), common garter snake (NCBI: XP_013929149) and brown spotted pit viper (NCBI: 
XM_015815164)  UDP-glucuronosyltransferase 2A1 protein. 

 

 

Figure 3. Alignment of human (Uniprot: CAA34905), rat (Uniprot:P50297), heifer (Uniprot: Q1JPA6) and 
cat (Uniprot: O62696) arylamine N-acetyltransferase 1 protein. 
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Figure 4. Alignment of Human (Uniprot: P11245), rat (Uniprot: P50298) and python (NCBI: 
XP_007442853) the arylamine N-acetyltransferase 2 protein. 
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