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ABSTRACT 

The goals of this thesis are twofold, 1) to review the existing literature on positive 

interactions, and 2) to experimentally test the role of biotic context in a freshwater 

reproductive interaction. First, my co-authors and I have conducted a review of positive 

interactions in freshwaters to establish a direction for future research. By outlining case 

studies and causal mechanisms, we illustrate the diversity of positive interactions, and set 

the stage for a comprehensive look at the role of context in shaping interaction outcomes. 

Our research directive focuses on the value of both basic life history and experimental 

research, then using those findings to investigate these interactions under different 

contexts, in different levels of ecosystem structure, and at multiple geographic scales. 

Applications of positive interactions are discussed in regards to conservation, restoration, 

biological invasions, and in aquaculture production. Following this review, I 

experimentally investigate context dependency in the nest associative interaction between 

two stream fishes. By using three treatments of partner density while maintaining 

otherwise consistent conditions, shifts in interaction outcomes can be directly attributed 

to context dependency. Findings are incorporated into our understanding of this novel 

study system, and their contribution to broader ecological theory is discussed.  
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GENERAL INTRODUCTION 

Interactions between species have intrigued naturalists for centuries, and classical 

ecology rightly looked to these interactions to understand patterns of biodiversity. 

Historically, only antagonistic interactions were considered meaningful contributors to 

population dynamics, but new understanding of ecological processes has revealed, in 

part, the significance of positive interactions (Boucher et al. 1982). Positive biotic 

interactions, which include mutualism, commensalism, and facilitation are important 

drivers of population abundance and community structure (Boucher et al., 1982; 

Stachowicz, 2001; Bruno et al., 2003), yet remain understudied relative to negative 

interactions (competition, predation, and parasitism; Bronstein, 1994a, b, 2009). There is 

a dearth of knowledge related to positive interactions which relates directly to a lack of 

research, perhaps nowhere as pronounced as it is in freshwaters. 

The history of positive interactions in ecological research started primarily with 

studies of mutualistic interactions involving plants (Way 1963, Janzen 1966, Galil and 

Eisikowitch 1968). Some plant systems have now been examined to the point where met-

analyses are appropriate (Rosumek et al. 2009, Hoeksema et al. 2010), yet positive 

interactions in freshwaters remain in a state of relative infancy in comparison. In recent 

years though, we have seen an increased focus on mutualism, commensalism, and 

facilitation and their roles in freshwaters. Owing to a few well-studied systems which will 

be discussed at length in this thesis, the study of positive interactions in freshwaters 

appears to have reached a point of critical mass. It now seems a worthwhile endeavor to 

review what has been accomplished so far and that which still needs our research 

attention. In recent years, positive interaction research in freshwaters have identified 
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significant roles of ontogeny, host control, partner density, and the presence of third-party 

taxa in shaping interaction outcomes, just to name a few. Through the incorporation of 

concepts borrowed from other disciplines and the synthesis of novel freshwater research, 

we can provide a research directive to further the study of positive interactions in 

freshwaters.  

An important feature of positive interactions that has generated much research 

interest is that interaction outcomes can shift as a result of changing context (Bronstein, 

1994b; Noë and Hammerstein, 1995). Positive interactions typically have reduced 

interaction strength when compared to antagonistic interactions that often have one-way 

transfers of energy (Sachs and Simms, 2006; Moore et al., 2006). Resource exchanges 

that characterize positive interactions require a balance of costs and benefits, and while 

these interactions appear quite stable evolutionarily (Frederickson, 2017), they are often 

quite complex and subject to specific environmental or biotic conditions (Chamberlain et 

al., 2014). There are many demonstrable environmental changes which the natural world 

is currently subjected to, and anthropogenic impacts are unlikely to cease. As the context 

in which species interactions occur shifts, it is vital that ecologists understand the 

responses of those taxa and that we are able to predict the impacts of future changes. 

Determining how costs and benefits of biotic interactions change as a result of context 

will improve general ecological models, and work in freshwater systems has already 

begun to contribute to a more comprehensive understanding of this phenomena. Future 

examinations of context dependency should address broad scales, from shaping responses 

of individuals and populations (Horn et al., 2011) to the processes of communities 

(Brown et al., 2002; Nakano et al., 2005) and ecosystems (Moore, 2006). 
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One study system especially well suited to examinations of context dependency is 

nest association, a common positive interaction among North American freshwater fishes. 

In this partnership, ‘associate’ species spawn in nests constructed by a host. In the eastern 

United States, the most prolific and widespread hosts are chubs of the genus Nocomis; 

their nests are used by more than associate species throughout their range (Johnston and 

Page 1992). Chubs provide associates with suitable substrate for reproduction and an 

element of parental care (Vives, 1990; Maurakis et al., 1992; Wallin, 1992). In exchange, 

associates provide a dilution effect (sensu McKaye and McKaye, 1977) to the host when 

predators are present; a decreased proportion of chub eggs on nests reduces their 

likelihood of predation (Johnston, 1994b). While large chub nests may attract hundreds of 

associates (McAuliffe and Bennett 1981, Meffe et al. 1988), others may attract few or 

none. Natural variability in associate density is high, especially across ecological 

gradients such as stream size and land use (Peoples et al., 2015). As the benefits of brood 

dilution are correlated with associate density, differences in partner abundance provide a 

form of biotic context that may determine interaction outcomes.   
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CHAPTER ONE 

POSITIVE BIOTIC INTERACTIONS IN FRESHWATERS: 
A RESEARCH DIRECTIVE 

Samuel Silknetter, Bryan Brown, Robert Creed, Emmanuel Frimpong, 
James Skelton, and Brandon Peoples. 

Abstract  

Positive interspecific interactions (mutualism, commensalism, and facilitation) are 

ubiquitous in nature, but understudied in freshwater ecosystems. This review assesses the 

state-of-the-knowledge of positive interactions in freshwaters, and provides direction for 

future research. A few mutualistic relationships have received some research attention, 

namely seed-dispersing fishes, crayfishes and their branchiobdellidan symbionts, and 

communal-spawning stream fishes. Facilitative effects of a few habitat-modifying species 

have also been identified, as well as positive indirect trophic interactions. However, less 

is known about interactions in which participants directly exchange nutrients or 

protection. Most studies in freshwaters have been conducted using observations or 

experiments at small spatial scales. However, a cross-scale approach is necessary for a 

full understanding of how positive interactions operate. Likewise, research must seek to 

understand context dependency in positive interactions—how biotic (e.g. species or 

traits) and abiotic factors determine outcomes of positive interactions. Lastly, research on 

positive interactions must progress from a perspective of pairwise interactions, to a 

broader community context. A firm understanding of positive interactions will yield 

better predictions for managing freshwater ecosystems.  
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Introduction 

Positive interspecific interactions (mutualism, commensalism, and facilitation) are 

ubiquitous in nature, and are important drivers of population abundance and community 

structure (Boucher et al. 1982, Bronstein 1994a, 1994b). Yet despite their ubiquity and 

importance, positive interactions remain understudied relative to negative interactions 

(competition, predation, and parasitism). Mutualisms have been observed and written 

about since the times of ancient Greece, but were not examined in an empirical scientific 

framework until the mid-1900s (Boucher et al. 1982). Because early experimental work 

was conducted mostly on pollination, seed dispersal, and protection mutualisms in plants, 

our current understanding of positive interactions is based largely on studies of plants in 

terrestrial ecosystems. 

Research on positive interactions in freshwater ecosystems lags behind terrestrial systems 

(Figure 1). In fact, a review of biotic interactions in freshwater systems (Holomuzki et al. 

2010) acknowledged that positive interactions are by far the least studied interaction type 

in this field. However, a few key interactions and taxa have been studied to allow for 

syntheses. For example, positive effects of a few habitat-modifying species were 

reviewed by Moore (2006), and seed-dispersal mutualisms between fishes and plants 

(ichthyochory) have has several reviews (Pollux 2011, Horn et al. 2011, Parolin et al. 

2013). Although there remains a great deal that remains unstudied about positive 

interactions in freshwater systems, emerging insight from other systems is reaching a 

point to provide opportunity for a synthesis and identify key knowledge gaps and 

opportunities for new research.  
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Figure 1.1: Web of Science core collection publications related to species interactions in freshwaters from 
1994 - 2017. Freshwaters include wetlands, streams, rivers, lakes and their synonyms. Negative interactions 
include predation, parasitism, and herbivory; positive interactions include mutualism, commensalism, and 
facilitation.  

In this review, we assess the state-of-the-knowledge of positive interactions in 

freshwaters, and provide direction for future research objectives. The scope of this review 

comprises direct, macro-organismal positive interactions in all global freshwaters 

(streams, rivers, lakes, wetlands). We include interactions ranging from obligate, 

endosymbiotic relationships to facultative and highly context-dependent benefits from 

organismal habitat modification. Interactions that occur in, but are not unique in form or 

function to freshwaters (such as gut microbe mutualisms or nitrogen-fixing bacteria), are 

excluded, except where differences can be drawn between freshwaters and other systems. 

Our goals were to synthesize current knowledge of positive interactions and how they 

relate to general ecological models, establish a directive to guide and streamline future 
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research, and illustrate the importance of understanding positive interactions for 

conservation and management of freshwater systems and biota. Accordingly, we present 

this review in five sections: i) collating and examining existing case studies and causal 

mechanisms, ii) addressing the stability of mutualisms and role of context-dependency in 

shaping interaction outcomes, iii) evaluating the implications of positive interactions at 

the community-level and how this can inform general ecological models, iv) proposing a 

research directive for advancing our understanding of positive biotic interactions in 

freshwater systems, and v) demonstrating the importance of positive interactions for 

conservation and management of freshwaters.  

Definitions and methods 

For clarity, we first define all relevant terms and interaction types (Table 1). The 

scope of this paper is positive interactions, defined as direct relationships between two or 

more resource-exchanging species that benefit at least one partner while doing harm to 

neither (Stachowicz 2001). Using this broader approach expands the scope of positive 

interactions to include not only mutually beneficial pairwise symbioses, but also direct 

commensalism (one species benefits while the other receives no net cost or benefit), and 

facilitation (the presence of one species alters the environment in a way that directly 

enhances fitness of a second, neighboring species; Bronstein 2009). Positive interactions 

range from symbioses to facultative or incidental partnerships, and therefore require 

specific terminology. Here, we define symbiosis as an intimate interaction between 

different organisms, where at least one of the parties is obligatorily dependent on the 

association as a part of its life history (Leung and Poulin 2008). Using this definition, we 

discuss interactions herein as either symbiotic (between host and ‘symbionts’), or more 
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loosely as partnerships (between host and ‘partners’). Some system-specific terminology 

is used in the literature (i.e. cleaners and clients in cleaning interactions), but in all cases 

we will indicate or comment on whether the interaction is considered symbiotic. We 

follow Ferriere et al. (2002) and distinguish the host as the interacting species that 

provides commodities, and the symbiont or partner as the species that provide goods 

and/or services in return.  

Table 1.1: Definitions of significant terms. 

Mutualism Interaction in which both species involved receive a measurable benefit 

Commensalism Interaction in which one species benefits while the other has no net cost or benefit 

Facilitation 
Interaction where presence of one species alters the environment (i.e. ecosystem 
engineering or habitat amelioration) in a way that directly enhances fitness of a 

neighboring species 

Symbiosis Intimate relationship between different organisms, where at least one organism is 
obligatorily dependent on the association for part of its life history 

Partnership Interspecific association with meaningful fitness consequences for at least one 
organism, but which is not biologically obligatory or lacks prolonged physical contact 

Host Interacting species that provides commodities 

Symbiont/Partner Interacting species that provides goods or services in exchange for commodity 

To address the five sections outlined above and present the state-of-the-knowledge of 

positive interactions in freshwaters, a thorough review of existing literature was 

necessary. We conducted Web of Science core collection searches (Clarivate Analytics 

2018) for interactions (mutualism, commensalism, facilitation and synonyms) and 

freshwater habitats (wetlands, streams, rivers, lakes and synonyms) covered by this 

review. Our search for analogous interactions in other ecosystem types (i.e. marine, 

terrestrial), conceptual models, general ecological principles etcetera were not exhaustive, 
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but come primarily from primary sources included in this review and the combined 

expertise of the authors.  

Case studies and causal mechanisms 

Positive interactions can be grouped in many different ways, reflecting their ubiquity and 

diversity. Boucher et al. (1982) were the first to group types of mutualisms, and 

successive studies have re-evaluated those groupings. We follow the schema of Bronstein 

(2009), which uses the concept of the ‘biological marketplace’ (Bull and Rice 1991, Noë 

and Hammerstein 1994) in which organisms trade easily produced resources/commodities 

in return for those they could not readily produce for themselves. Bronstein (2009) 

identified nutrition, transportation, and protection as the three resource or commodity 

types traded in mutualisms, but provided no freshwater examples to support these 

groupings. However, they can be used and expanded upon to address non-mutualistic 

positive interactions such as facilitation in freshwaters; for example, commodities 

provided by hosts may include habitat amelioration, predation release, or other valuable 

benefits. In the case studies discussed below, interaction types are grouped according to 

the resource type above which is provided to the host. We also discuss facilitation by 

habitat modifying species, which is somewhat analogous to hosts in that they provide a 

service for other species. This group includes ecosystem engineers (i.e. Moore 2006), but 

also species which make smaller, yet still biologically significant modifications. Still 

more examples of positive interactions exist, though they do not necessarily fit into the 

types mentioned above. These ‘other’ interactions nevertheless influence ecological 

structure, often through poorly understood mechanisms.  

Nutrition 
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Nutritional interactions are those in which a host provides nutritional benefits to a 

symbiont in exchange for resources. While nutritional interactions are well-represented in 

ecological literature, most examples come from microbes (in animal guts, on plant roots, 

etc.). In freshwaters, nutritional symbioses appear to occur infrequently, at least from the 

perspective of interactions in which a singular host receives a nutritional benefit. One 

example of a nutrition-driven interaction is the complex association between algae, 

diatoms, cyanobacteria, heterotrophic microbes, and detritus that make up periphyton 

(Larned 2010). This matrix of organisms includes taxa supporting one another through 

resource exchanges and structural support, though parsing out costs and benefits to 

interacting species is difficult (Biggs et al. 1998). A pairwise nutritional example is the 

interaction between freshwater sponges (Spongillidae: Spongilla and Ephydatia spp.) and 

their endosymbiotic green algae (Chlorellaceae: Zoochlorella sp; Wilkinson 1980, Frost 

and Williamson 1980). Sponges do not require the algae to survive, but may benefit from 

algae-acquired glucose in exchange for providing a suitable, illuminated habitat for their 

symbiont. The algae undergo photosynthesis when the sponge is in a well-lit location, 

and provide extra nutrients to the host as a result. When in low-light conditions, algae 

cannot undergo photosynthesis and nutrient subsidies to the host cease. In this case, the 

host sponge will most often digest the algae, thus ending the interaction (Wilkinson 

1980). More recent work has used stable isotope analyses to examine the trophic 

dynamics of S. lacustris, with results indicating that ‘green sponges’ (i.e. those inhabited 

by green algae) are exclusively selected by spongillafly predators (Skelton and Strand 

2013).   

14



Another nutritional interaction comes from a mutual facilitation between two species of 

oligochaete worms in European mesotrophic lakes (Milbrink 1993). In this case, 

laboratory and observational studies have shown that both Potamothrix moldaviensis and 

Tubifex tubifex achieve increased growth when they co-occur, compared to when they are 

isolated from one another. The apparent mechanism is that feeding on the fecal pellets of 

the opposite species provides a concentrated source of desirable bacteria colonies. While 

both species have highly similar diets, they only digest some of the bacteria taxa from 

their shared food sources, while other bacteria pass through the gut unmolested. Thus, 

bacteria are partitioned between these worms, and fecal pellets of the opposite species 

provide a readily accessible source of the desirable prey. Though facultative, this 

nutritional interaction is credited with the expansion of the Potamothrix genus throughout 

much of Europe like its already cosmopolitan cousin, T. tubifex (Milbrink 1993). This 

interaction provides an example in which there is no true host, only mutual ‘facilitator 

species’, illustrating both the complexity of interaction types and the difficulty in 

classifying them.  

Transport 

Transport interactions are those in which species, whether from symbioses or brief-

exchange partnerships (sensu Leigh 2010), provide a means of dispersal for the host or 

host progeny. Transport interactions are best represented in freshwater systems by fish-

borne seed dispersal, or ichthyochory, in which plants make their seeds accessible to 

fishes, by either dropping ripe fruits, or relying on flooding to inundate their low-hanging 

fruits (Horn et al. 2011). Pollux (2011) classifies the process into six stages: seed uptake, 

ingestion, retention, survival (intact passage as excreta), germination probability, and 
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germination rate after gut passage. Most ichthyochorous fish have evolved to be 

proficient herbivores (Drewe et al. 2004, Correa et al. 2007), and always benefit from 

their consumption of fruits and other plant materials. Plants benefit when seeds are 

successfully dispersed and germinate, and in general, fish are largely successful at doing 

so (Horn et al. 2011, Correa et al. 2015b).  

Ichthyochory has been well documented in tropical South America, with key early 

studies focused on the Amazon River basin (Gottsberger 1978). Upland rivers in the 

Amazon basin are often characterized by poor instream productivity, but riparian zones 

provide pulses of allochthonous inputs during seasonal floods (Gottsberger 1978, Parolin 

et al. 2013, Correa et al. 2015a) which help to maintain high fish diversity and abundance 

(Horn et al. 2011, Correa and Winemiller 2014). Generally, plant diversity in the 

submerged riparian zones of Amazon basin is low (Gottsberger 1978), potentially the 

result of ichthyochory which broadly disperses seeds from a few highly dominant plant 

species. Pollux (2011) conducted a review of ichthyochory experiments; while it provides 

future directions for research in this field, it focuses mainly on the design and potential 

pitfalls of ichthyochory experiments. Major goals of ichthyochory studies have been to 

determine which fish are best at dispersing seeds and how best to conserve important 

mutualists, yet findings remain largely specific to commercially valuable fish species. 

In addition to the diverse examples of ichthyochory in South and Central America, 

several studies have examined this interaction in Holarctic regions. Channel Catfish 

(Ictaluridae: Ictalurus punctatus) is a common ichthyochorous fish in temperate rivers of 

the United States. Channel Catfish have been shown to consume and successfully 

germinate seeds of the red mulberry (Moraceae: Morus rubra) and swamp privet 
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(Oleaceae: Forestiera acuminata) in the upper Mississippi River (Chick et al. 2003), and 

another case has documented ichthyochory by this species in the southeastern United 

States (Adams et al. 2007). Findings mirrored many of the studies from the Amazon, but 

with the notable differences that 1) flood pulses are irregular and anthropogenically 

altered in the study areas, and 2) that the temperate portions of the Mississippi River 

system examined are not considered nutrient-limited. Another recent study (VonBank et 

al. 2018) has illustrated the potential for an invasive species (Common Carp, Cyprinidae: 

Cyprinus carpio) to engage in ichthyochory, with implications for the disruption of native 

fish and hydrophyte populations.  

Protection 

Protection interactions occur when symbionts or partners protect their hosts from natural 

enemies or parasites (Hopkins et al. 2017). These interactions are perhaps best typified by 

ant-plant symbioses in which a defenseless host gains the protection of a symbiont in 

exchange for nutrition, shelter, or some other commodity. One freshwater example 

analogous to the ant-plant symbiosis is the partnership between the water strider 

(Gerridae: Gerris nepalensis) and its host, the water caltrop (Lythraceae: Trapa natans). 

An aquatic leaf beetle (Chrysomelidae: Galerucella nipponensis) consumes caltrop 

leaves and although the exact mechanisms remain unidentified, these injured caltrop 

leaves have been shown to increase the abundance of the predatory water striders (Harada 

et al. 2008, 2011). Striders release the caltrop from herbivory by feeding on the leaf 

beetles, thus benefitting from this food source but also by the provision of a suitable 

substrate (leaf surface) for laying their eggs. This interaction, though facultative, has 

significant impacts on the trophic dynamics of the systems where it occurs. Further 
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experimentation will seek to identify the attractant (chemical or other pathway) which 

draws water striders to depredated water caltrop, and potential costs to the host associated 

with high densities of water striders (Harada et al. 2011).  

In addition to the characteristic protection interactions involving defenseless hosts are 

cleaning interactions in which hosts or ‘clients’ are groomed by ‘cleaners’ to remove 

parasitic or otherwise unwanted epibionts. Cleaning interactions among marine fishes are 

very well studied, but this behavior has evolved in freshwater fishes as well. In marine 

systems, reef fish often have ‘cleaning stations’, areas in which client fish solicit cleaners 

by displaying specific behaviors to make their desire to be cleaned known (Côté et al. 

1998). Freshwater cleaner fishes have recently been found to exhibit the same cleaning 

behavior, in what some authors consider a temporary, protocooperative behavior (Severo-

Neto and Froehlich 2016). Unlike other cleaning behaviors discussed below, this 

partnership is likely very brief and no physical attachment exists between cleaners and 

clients.  

Another cleaning mutualism involves Chaetogaster limnaei limnaei (Naididae), a 

cosmopolitan symbiotic oligochaete that attaches to the body surface of its host. The 

aquatic pulmonate snail (Physidae: Physa acuta) is a primary host, where the oligochaete 

attaches to its mantle or pulmonary cavity and searches the passing water for 

microorganisms, such as protozoa, rotifers, diatoms, or other algae (Stoll et al. 2013). The 

oligochaete is often considered a commensal, as it benefits from the interaction without 

directly feeding on the snail or limiting its food sources (e.g. Zimmermann et al. 2011), 

but has also been shown to protect its host from trematode infections, suggesting the 

potential for mutualism (Ibrahim 2007). The interaction can be quite complex, with 
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serious direct and indirect effects for the oligochaete and host, but also for trematode 

populations and their predators (Zimmermann et al. 2011, Stoll et al. 2017). Protection 

from trematodes provided by oligochaetes may save the life of the host, but is also likely 

to reduce host fitness and reproductive success at high symbiont density (Stoll et al. 

2017). Infection has even shown to shift the reproductive strategy of infested hosts (Stoll 

et al. 2013), and the snail lacks defensive adaptations to mitigate or minimize these costs. 

Another cleaning symbiosis common in freshwaters is the interaction between crayfish 

and annelid worms of the order Branchiodbellida (hereafter, ‘worms’). The worms, which 

were previously thought to be commensals, attach to the exterior of the host and feed on 

epibiotic parasites, primarily in the gills of the host (Brown et al. 2002). This increases 

respiration efficiency, and worm symbionts have been shown to significantly increase 

host growth while simultaneously reducing mortality (Brown et al. 2012). The worms 

benefit from a generally stable food source, and are only known to reproduce on the 

exterior of the crayfish; thus they appear to be obligate symbionts (Creed et al. 2015). 

This is a common interaction in global freshwaters, and the system can be readily 

manipulated in laboratory experiments.  

Another protection interaction is nest association, which occurs most commonly among 

North American minnows (Leuciscidae; Tan and Armbruster 2018). In this interaction, 

‘associate’ species spawn in nests constructed by a host. There are more than 35 known 

associate species (Johnston and Page 1992), which use nests constructed by at least three 

genera of hosts (Campostoma, Nocomis, Semotilus). Interactions range from obligatory 

associates who spawn nowhere but in hosts nests to opportunistic spawners that may use 

the nest for reproduction while simultaneously parasitizing its eggs (Pendleton et al. 
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2012). In nests of Nocomis spp., associates benefit as a result of suitable spawning 

substrate provided by the nest (Vives 1990, Maurakis et al. 1992, Peoples and Frimpong 

2013) and an element of parental care (Wallin 1992, Johnston 1994a). Hosts benefit from 

a dilution effect (McKaye and McKaye 1977) in which high proportions of associate eggs 

on nests decrease the likelihood of predation on host eggs (Johnston 1994b, Silknetter et 

al. 2018). While direct effects are generally limited to the pairwise interaction between 

host and associate, the habitat amelioration provided has clear benefits for other members 

of these stream communities.  

Habitat Modification 

Habitat modification, also termed as ecosystem engineering (Jones et al. 1994), is a 

common behavior throughout many freshwater organisms. Previous work has examined 

habitat modification in streams, and has provided useful examples and case studies that 

have informed this review (Moore 2006). When species modify their habitats, they often 

ameliorate unsuitable conditions for themselves and other taxa. When interactions occur, 

they are often facilitative or incidentally beneficial in nature, as benefits to other species 

are generally not the ‘intent’ of the habitat modifier. Positive effects of habitat modifying 

species do not necessarily require reciprocal benefits from beneficiary species, although 

positive feedback loops sometimes occur. Whether a commensal interaction or a 

mutualism as a result of reciprocal benefits, understanding the nature of facilitation and 

identifying potential positive feedback loops should be a priority of freshwater ecologists.  

Beavers (Castor sp.) are a prime example of a habitat modifier and exemplifies 

ecosystem engineering with the massive dam complexes that they construct (Naiman et 

al. 1988). For beavers, damming is a behavior that is carried out for its own benefit; while 
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numerous other species benefit from it, this behavior does not represent a direct 

interaction between species. The beaver is also an example that illustrates the context 

component of facilitative interactions. While some species benefit from the habitat 

complexity of beaver dams, the thermal stress associated with dams is detrimental to 

cold-water taxa and can cause shifts in assemblage structure (Wright et al. 2004, Wright 

and Jones 2006). This facilitation nevertheless has direct benefits for a variety of taxa, 

and the scale of beaver impacts likely represent the greatest contribution of all habitat 

modifiers.  

Though perhaps less obvious, there are numerous other cases of habitat modification in 

freshwaters which have been shown to structure ecological communities. For example, 

net-spinning caddisfly (Hydropsychidae) larvae construct retreats in high-flow stream 

systems to filter food from the water column. These retreats significantly reduce flows in 

the areas immediately downstream, creating low-flow microhabitats that facilitate other 

benthic invertebrates (Nakano et al. 2005) and increase sediment stability (Albertson et 

al. 2014). Removal of habitat modifying species like case-building caddisflies can also 

result in shifts in community composition (Nakano et al. 2007).  

In addition to the protection mutualism described above, nest association in the leuscicid 

fishes provides an example of habitat modification in streams. Adult males of the nest-

building genera, especially Nocomis, alter available substrate in streams as part of their 

spawning behavior. For example, adult male Nocomis may move thousands of pebbles 

(Reighard 1943, Lachner 1952), equating to a total pebble-carrying distance greater than 

25 km to complete a single large nest (Wisenden et al. 2009). Nocomis nests are distinct 

features on the benthoscape that differ starkly from the surrounding substrate (Maurakis 
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et al. 1992, Bolton et al. 2015), and are often the only sources of concentrated, un-silted 

gravel in heavily embedded or sediment-starved reaches (McManamay et al. 2010, 

Peoples et al. 2014). Nest building by Nocomis thus provides critical microhabitat for 

lithophilic-spawning fishes, providing a mechanism for Nocomis and associates to 

reproduce and persist in reaches of poor substrate quality (Hitt and Roberts 2012, Peoples 

et al. 2015). Nocomis nests also facilitate a diversity of benthic macroinvertebrates that 

begin colonizing upon nest construction (Swartwout et al. 2016). 

Context dependency in positive interactions 

An important feature of positive interactions is that their outcomes are rarely static: they 

can switch from being positive to negative with changing context (Bronstein 1994b, Noë 

and Hammerstein 1995). Context dependency may arise from changing abiotic (i.e. the 

environment in which the interaction occurs, spatiotemporal factors) or biotic (i.e. 

identity, traits, or abundance of participants) factors. All direct antagonisms, though often 

discussed as distinct types of interactions, are characterized by unidirectional flows of 

energy. Positive interactions, however, involve more complex energy transfers and thus 

more frequently display context dependent outcomes (Chamberlain et al. 2014). 

Mutualism and facilitation may also have reduced interaction strength relative to 

antagonism (Sachs and Simms 2006, Moore et al. 2017), though Frederickson (2017) 

provides excellent counterpoints to the notion of mutualism breakdown. Despite the 

balance of resource exchange necessary to maintain mutually beneficial interactions, 

there is scant evidence of positive interactions consistently changing to parasitism in 

either ecological or evolutionary time (Frederickson 2017). In a meta-analysis of plant 

and mycorrhizal fungi interaction studies, for example, mean outcomes were 
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overwhelmingly positive (Hoeksema et al. 2010). Negative interaction outcomes are 

likely to have been observed under extreme cases of environmental context, supporting 

the notion of stable positive interactions in natural settings (Frederickson 2017). 

Understanding how context dependency in freshwaters may alter the costs and benefits of 

biotic interactions will improve general ecological models and provide better tools for 

predicting biological responses to environmental change.  

Abiotic variables affect stream organisms through dynamic processes that operate across 

spatial scales and establish context for biotic interactions (Jackson et al. 2001, Heino 

2013). Peoples and Frimpong (2016a) examined, in part, the role of riparian land cover 

(as a proxy of instream habitat quality) on nest associative behavior. Results indicated 

that associates provide a benefit to hosts only in forested stream reaches. In degraded 

reaches, the benefits of the interactions were not able to outweigh the costs of the poor 

abiotic conditions. Another experiment examined the role of environmental fouling on 

the interaction outcomes of the crayfish-worm symbiosis. Two levels of fouling 

conditions (low: stream water and sterilized cobbles, high: stream water, sand, silt, 

unscrubbed cobbles) and two levels of symbiont density (high and low density worms per 

crayfish) were established in a lab setting (Thomas et al. 2013). Results indicated that the 

level of environmental fouling affected the relative benefits provided by the worms, as 

well as the reproductive success of juvenile worms.  

Biotic factors can also shift the outcomes of positive interactions. In pairwise or multi-

species interactions, the condition, abundance, ontogeny, and other biotic factors related 

to participants drive the outcomes of interactions in which they take part. For example, in 

ichthyochorous Pacu spp. (Serrasalmidae), increased body size significantly increases the 

23



benefit to the host plant: large Pacu pass seeds through their digestive tract intact, 

whereas smaller fish damage the seeds and significantly decrease germination rates 

(Galetti et al. 2008).  

In the Branchiobdellidan worm – crayfish symbiosis, the worms may feed on crayfish 

tissue when epibiotic parasite loads are low, significantly impairing the host’s ability to 

respire (Brown et al. 2012). However, crayfish colonized by worms have the ability to 

alter densities of their symbiont. Both Cambarus chasmodactylus and Orconectes 

cristavarius of the crayfish family Cambaridae can actively groom themselves, removing 

high densities of worms to prevent a mutualistic cleaning symbiosis from switching to 

parasitism (Farrell et al. 2014). Effects of ontogeny have also been examined in the 

crayfish-worm symbiosis, and host age (and therefore size) has been shown to have 

important ramifications for the outcomes of the interaction (Skelton et al. 2014, Thomas 

et al. 2016). Smaller crayfish are more efficient groomers than adults, and can remove 

large worms from their exoskeleton. The result is that these young crayfish are colonized 

primarily by smaller worm species. As crayfish become adults, however, they lose the 

ability to remove large worms, and these superior predators prey on the smaller worm 

taxa (Thomas et al. 2016). As crayfish age, their dominant symbionts shift; this brings up 

questions of symbiont transmission (i.e. Fisher et al. 2017), life-history tradeoffs by 

worms, and regional and temporal shifts in symbiont diversity. These examples illustrate 

both biotic context dependency and the interactive effects that ontogeny can have on 

interaction outcomes.   

A major finding in many positive interactions, including terrestrial and marine systems, is 

that symbiont or partner abundance maximizes benefits to the host at intermediate 
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abundance (Morales 2000, Izzo and Vasconcelos 2002, Brown et al. 2012, Palmer and 

Brody 2013, Skelton et al. 2016). In these instances, the maximum benefit for at least one 

interacting species cannot be achieved without a fitness cost to the other; there exists a 

conflict of interest in terms of resource exchange. To manage these conflicting interests, 

some hosts have the ability to punish exploitation by partners (i.e. Frost and Elias 1985, 

Izzo and Vasconcelos 2002, Farrell et al. 2014, Creed and Brown 2018), whereas others 

appear to have no defenses for exploitation (Stoll et al. 2017) or exploitation is not 

predicted to occur (Peoples and Frimpong 2016b). A recent study examining context 

dependent outcomes in nest associative leuciscids found that parasitic outcomes only 

occurred at low partner abundance (Silknetter et al. 2018). Hosts benefited from a 

dilution effect (sensu McKaye and McKaye 1977) of reduced brood predation, but only if 

associate abundances were sufficiently high. In this case, both host and partner maximize 

reproductive success by spawning in high abundances, and therefore no conflict of 

interest exists. Better understanding the role of partner/symbiont density on interaction 

outcomes will likely provide further insight into the evolution and significance of 

conflicting interests as well as the mechanisms that may mitigate them.  

A research directive for studying positive interactions in freshwater systems 

We propose a four-step approach for advancing the study of positive 

interactions in freshwater ecosystems: i. examining life history to identify previously 

unknown positive interactions and their causal mechanisms, ii. evaluating the role of 

context dependency in interactions, iii. quantifying implications of interactions at 

population and community levels, and iv. examining interactions across spatial scales. As 

it is a prerequisite to each one of these four pathways, our first and foremost 
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responsibility should be to gain a mechanistic understanding of the factors driving these 

interactions. We have given examples of several study systems in which a foundational 

understanding of these mechanisms exist, and for that reason, those findings are 

beginning to be incorporated into broader ecological theory.  

Identifying new positive interactions and causal mechanisms 

Many ecologists contend that the study of basic species life history has gone 

by the wayside in favor macroecological studies, and seek to bring life history studies 

back in vogue (Frimpong 2018). The call for the ‘resurrection’ of these concepts (Able 

2016) coincides with a realization that modeling, species inference, and big data are only 

as good as the foundational ecology behind them. It is incumbent upon researchers to 

synthesize their findings and to incorporate personal notes and observations into the 

conclusions of their work, especially as their career comes to a close (Matthews 2015). 

Many of the examples of positive interactions discussed here have stemmed from the 

observations of earlier naturalists seeking to simply describe and understand the 

phenomena they witnessed. There is no substitute for curious, thoughtful exploration of 

the natural world, and there must certainly be meaningful, yet currently unknown positive 

interactions yet to be described. As ecologists, we must also seek to take what we know 

from one location, taxon, or discipline, and apply it somewhere else.  

We can use existing knowledge of positive interactions in other systems to 

predict where and when others may occur in freshwater ecosystems. Convergent 

evolution has resulted in similar interactions between highly diverse taxonomic groups. 

Cleaning symbioses, for example, have been known to occur in marine crustaceans and 
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fishes for decades (Trivers 1971), yet only relatively recently have cleaning behaviors 

been identified in comparable freshwater taxa (crayfish: Brown et al. 2002; fishes: 

Severo-Neto and Froehlich 2016). It is also unsurprising that freshwater corals, which 

diverged from a common marine ancestor, rely on mutualist zooxanthellae for nutrition 

(Frost and Williamson 1980), similarly to their marine cousins. Aside from future studies 

of life history, following clues from evolutionary biology may be the most obvious way 

to find new examples of positive interactions.   

We can also use general ecological theories, often developed in other 

ecosystems and/or taxa, to guide predictions of where we expect to encounter positive 

interactions. One useful framework for understanding and predicting positive interactions 

is market theory. Ecological market theory predicts positive interactions will occur 

between species with differential surplus and deficit production of key fitness resources 

(i.e. nutrition, transportation, protection, etc.), therefore encouraging resource trade (Noë 

and Hammerstein 1994, 1995, Hammerstein and Noë 2016). Additionally, the inefficient 

use of resources may lead to ‘trade deficits’, which would provide an evolutionary benefit 

to positive interactions (Palmer et al. 2010). For example, when two species have a 

competitive advantage in the production of different resources, exchange of resources 

would confer a greater benefit to both species than competition. Excess production of a 

given resource also reduces or removes the cost of losing that resource to interacting 

species, thus, positive interactions may be predicted. If the interacting species exchange 

the excess resource for some good or service, the result is mutualism; if they exchange 

nothing, it is commensalism. If we assume that this excess of resource production is what 
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drives interactions, then market theory lets us hypothesize both when we will have 

positive interactions and when they will be replaced by antagonistic interactions.  

Another model we may ‘parasitize’ from another discipline is the stress-gradient 

hypothesis (SGH), which was developed to understand plant community dynamics 

(Bertness and Callaway 1994). The SGH predicts that species in more stressful 

environments are more likely to switch from competitive to mutually beneficial 

interactions (Callaway 2007, Brooker et al. 2008, He et al. 2013). Community benefits 

may be provided by facilitating species through habitat amelioration at high levels of 

physical stress, and benefits resulting from ‘neighborhood effects’ at high consumer 

pressure (Maestre et al. 2009, Malanson and Resler 2015). In freshwaters, this may 

include naturally stressful habitats like headwater streams, vernal pools and temporary 

wetlands, streambanks and shorelines, but also anthropogenically stressed habitats related 

to dams, reservoirs, or sites with impaired water quality. In disturbance ecology, the SGH 

provides a framework for research in which the inclusion of positive interactions studied 

at the local scale may inform broader spatiotemporal patterns and vice-versa (Nash et al. 

2014).  

While formulated for understanding plant community dynamics, the SGH has been 

applied to several stream-dwelling taxa as well. Fugère et al. (2012) found that in an 

assemblage of headwater stream detrivores, a decrease in resource quality (thus increased 

abiotic stress) shifted interactions from competitive to more neutral outcomes. Another 

study found that abiotic conditions influenced the factors structuring stream fish 

communities (Peoples et al. 2015). Specifically, sites with increased physical stress (i.e. 

land use impairments) were structured more by positive interactions than comparable 
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sites under more benign conditions (Peoples et al. 2015). While shoaling behavior and 

mixed-species aggregations have been shown to mitigate high levels of stress in marine 

fishes (Hoare et al. 2004), there is of yet no evidence of analogous interactions in 

freshwaters. This exemplifies how predictions in freshwaters can be informed by and 

extended from similar concepts in other systems. In environments which are highly 

stressful, facilitation may provide otherwise inaccessible niche space, and may increase 

biodiversity (McIntire and Fajardo 2014) or expand the ranges of participating species 

(He and Bertness 2014).  

Lastly, known interactions should be evaluated to determine if outcomes might shift from 

negative or commensal to positive under some context. This may relate to cases of 

extreme environmental stressors, but may also reflect natural variation in outcomes. It is 

common for observational studies or experiments conducted in situ to exhibit different 

interaction outcomes. The meta-analysis by Hoeksema et al. (2010), for example, 

revealed that the mean interaction outcome of the plant-mycorrhizal fungi symbiosis was 

positive, but that negative interactions were also quite common. While meta-analysis is 

certainly not always possible, this finding illustrates why it is necessary for researchers to 

investigate interactions under a range of environmental and biotic conditions. A negative 

mean outcome does not discount the potential significance of positive interactions in 

shaping a given community and vice versa. Considering that mutualism is in fact 

reciprocal parasitism that results in net benefits to both individuals, a reexamination of 

presumably negative interactions (and especially parasitism) may reveal a range of 

conditions which includes positive outcomes.  

Predicting context dependency in positive interactions 
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One way to understand context dependency in species interactions is through the use of 

modeling and game theory (Trivers 1971, Axelrod and Hamilton 1981, Bull and Rice 

1991), which have given rise to the concept of the biological market (Noë and 

Hammerstein 1994). The biological markets model (BMM) seeks to explain exchange 

rates of resources using both raw supply and demand ratios, as well as opportunities for 

partner choice (Bshary and Bronstein 2004). Economic concepts are applied to ecology, 

and are used to evaluate when and why partners choose to cooperate (i.e. a mutually 

beneficial interaction). Using these ideas at ecological (as opposed to evolutionary) 

timescales, the BMM can incorporate context dependency to determine under what 

conditions a facultative symbiont will engage in an interaction. Most interspecific 

interactions in freshwater systems involve highly mobile organisms, and partner choice 

adds a great deal of complexity to this system when compared to terrestrial systems often 

dominated by sessile plants.  

Nest association provides an illustrative example of how novel freshwater interactions 

challenge the predictions of the BMM. The traditional BMM framework predicts that for 

hosts to maximize their returns, they should i) have high initial investments to gain entry 

into the marketplace, and ii) that hosts should be selective when choosing trading 

partners. In nest association, the host has a high initial investment (loss of body 

condition) by building the nest, but hosts are not selective with associates, and associates 

are most beneficial to hosts at high abundances. The apparent lack of partner control 

allows for ‘freeloading’ by associates, challenging a classic assumptions of market 

economics and illustrating how BMM predictions may depends on the context of the 

system’s specific biology. Including the unique features of some interactions in 
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freshwater systems may force a reevaluation of game-theoretic models, but should 

ultimately increase their applicability. The ability to make predictions at different spatial 

and temporal scales, from the individual to population level, make modelling approaches 

an invaluable asset for expanding our knowledge of positive interactions.  

Positive interactions can be observed and tested at the individual level, but understanding 

the collective importance of positive interactions within a population or a community can 

be difficult. One way to address this difficulty is to propose multi-factor experiments to 

compare with and among experiments to address some biotic or abiotic gradients. The 

provision of a ‘common currency’ by using effect sizes (Agrawal et al. 2007) allows 

researchers to determine how sign and strength of interactions are context dependent 

along those gradients, and which are consistent across broad spatial or temporal ranges. 

Another consideration is how interaction outcomes are measured. While determining net 

outcomes are acceptable for most studies, these are often the product of bi-directional 

energy transfers, and positive or negative components of the interaction may be context 

dependent (Holzapfel and Mahall 1999). Thoughtful experimentation, combined with a 

strong understanding of related disciplines, will go a long way to further advise our 

predictions. Perhaps one benefit of lagging behind in respect to positive interactions in 

freshwaters is that we do not need to make the same mistakes or rehash arguments which 

have been resolved in other disciplines.  

Recognizing implications of interactions at population and community levels 

Theories seeking to explain the nature of populations and communities have historically 

lacked thoughtful considerations of positive interactions (Bronstein 1994a, Stachowicz 

2001; but see Jones et al. 1994 for a classic example), and thus their inclusion may alter 
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many of those theories’ predictions (Bruno et al. 2003, Agrawal et al. 2007). 

Foundational concepts in ecology which may benefit from the inclusion of positive 

interactions are niche theory and species distributions, density dependence, and 

biodiversity – ecosystem functioning relationships. Because positive interactions in 

freshwaters have played such a small role in their revision, we expect that further 

exploration will yield insights into the peculiarities of freshwaters and help to better 

inform these concepts.  

Population dynamics are largely the result of biotic context in the form density 

dependence, and it is well understood that increased density is a limiting factor to 

population growth. Increased population sizes in a fixed space results in increased 

competition and predation between and among species, and diseases and parasites often 

become more effective at infecting hosts. Negative density dependence causes 

populations to stabilize over time near their carrying capacity. One well-understood 

caveat to this relationship is the Allee effect, which describes positive density 

dependence resulting from intraspecific cooperation at low densities (i.e. well under 

carrying capacity). However, some work has shown that interspecific mutualism and 

facilitation, analogous to intraspecific cooperation, can result in positive dependence even 

at high density (Bertness et al. 1999). In freshwater systems where ontogenetic shifts 

(Skelton et al. 2014) or seasonal symbioses (Gottsberger 1978) occur, we may expect to 

find temporally discrete instances of positive density-dependence. Symbiont abundance is 

often directly proportional to community abundance and has been documented as a 

significant contributor to determining interaction outcomes (Johnston 1994b, Brown et al. 

2012), thus illustrating the essential role of density dependence in positive interactions.   
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The Hutchinsonian niche concept is comprised of a ‘fundamental’ whole including all 

biotic and abiotic factors that the species may utilize, but also of a ‘realized’ reduced 

niche because of competitive interactions (Hutchinson 1957). However, positive 

interactions can counter some of these costs and thus significantly expand the realized 

niche; this has had major implications for breadth (Batstone et al. 2018), overlap (Bruno 

et al. 2003, Afkhami et al. 2014, Bulleri et al. 2016), and partitioning (Lee and Inouye 

2010) of the niche. Freshwater communities subjected to habitat loss and other 

environmental change may contain species experiencing shrinking fundamental niches, 

resulting in lost connectivity, isolation, and potentially extirpation. However, if the 

community contains facilitator species that can ameliorate those stressful habitats, 

beneficiary species in the community may maintain niche breadth, experience greater 

niche overlap, or better to partition resources. The presence of facilitators and positive 

interactions may thus increase the resiliency of the community by mitigating losses to 

individual species fundamental niche. Though exhaustive work has documented the role 

of the niche in shaping freshwater communities (Jackson et al. 2001, Poff et al. 2006), 

positive interactions have been largely neglected. One notable exception includes the 

ability of mutualistic nest association between Bluehead Chub (Nocomis leptocephalus) 

and strong associate species to expand their ranges in the New River in North Carolina 

(Buckwalter et al. 2018). Future studies examining positive interactions in niche 

dynamics should seek to incorporate the distinctiveness of freshwaters in their 

predictions, particularly streams that are characterized by a continuum of dendritic and 

hierarchical networks.   
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We must seek to understand positive interactions in a community context. We have 

shown numerous examples of how positive interactions involve numerous taxa and can 

affect community structure. However, the majority of models and empirical studies 

reduce complex systems down to simpler pairwise interactions that are rarely 

ecologically realistic (Thrall et al. 2007, Palmer et al. 2015). This is understandable, as 

ecological systems are difficult to manipulate; conducting even simple pairwise 

experiments can often become a feat in and of themselves. However, many positive 

interactions occur in a community context, with different species’ contributions resulting 

from specific traits (i.e. habitat modification) or interactive effects (i.e., third-party 

interactors) that result in variable interaction strengths and outcomes. Moving from a 

pairwise to a community-based framework of understanding positive interactions in 

freshwater systems will enable us to provide more realistic predictions of whole 

community response to environmental change in the context of positive interactions.    

Lastly, there is a need to incorporate positive interactions into our understanding of 

ecosystem function. A major finding in several recent reviews is that biodiversity plays a 

significant role in shaping a suite of ecosystem services (marine systems: Stachowicz et 

al. 2007; terrestrial plants: Hooper et al. 2012). Positive interactions can affect 

biodiversity in variable, but meaningful ways, exemplified by Engelhardt and Ritchie 

(2001), who looked at the benefits of diverse macrophyte assemblages on wetland 

ecosystem functioning. Greater richness of submerged wetland plants decreased 

competition due to a sampling effect, resulting in increased algal and total plant biomass 

(Engelhardt and Ritchie 2001). Positive interactions may have strong indirect benefits on 

diversity because of the sampling effect or complementarity (Cardinale et al. 2002, 2007, 
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Batstone et al. 2018). Furthermore, foundational species or habitat modifiers may have 

direct effects; symbiont or indirect benefactor diversity may increase, while non-

associative species or weak, facultative symbionts may exhibit diversity declines (Hacker 

and Gaines 1997, Bulleri et al. 2016). Though freshwater lakes, reservoirs, and rivers 

make up less than 1% of all available waters globally (Carpenter et al. 2011), the 

biodiversity and ecosystem services they provide are vastly disproportionate to their 

volume. Quantifying the benefit of positive interactions to ecosystem function will better 

guide future predictions and allow for more effective management and conservation of 

biodiversity (Halpern et al. 2007).  

Investigating positive interactions at multiple scales 

Understanding the mechanisms that contribute to species coexistence is a 

fundamental goal of ecology. However, testing hypotheses about species interactions can 

be greatly affected by the spatial scale at which they are examined (Levin 1992, Fausch et 

al. 2002). At small (i.e. local, microhabitat) scales, predation studies often find patterns of 

avoidance, as prey species distributions are shaped largely by predator avoidance 

(Vuorinen et al. 1983, Power 1984). At the same scale, competition studies exhibit 

‘checkerboard’ distributions as species confine themselves to optimal habitats devoid of 

their competitor (Pearson and Dawson 2003). At larger scales in the river network (reach, 

stream, watershed; Frissell et al. 1986) however, predation studies often find positive or 

null patterns as a result of similar habitat requirements, and because predator distributions 

are in part determined by the presence of suitable prey resources. Antagonistic 

interactions typically take a back seat to environmental conditions in shaping freshwater 

communities at large scales (Peres-Neto 2004), but there have been few examinations of 

35



positive interaction patterns at different scales (but see Hopkins et al. 2017 for an 

investigation of defensive symbiont’s role at multiple scales).  

Freshwaters, excluding isolated lakes, are hierarchical in nature (e.g., Poff 1997); 

scales range from hyper-local microhabitat to entire watersheds, and interaction types 

may scale even globally (Frissell et al. 1986, Domisch et al. 2015). Biotic interactions 

affect spatial patterns at local scales (including mutualism: Bascompte 2009), but beyond 

this fine-grained approach they have typically been dismissed as unimportant (Pearson 

and Dawson 2003). Species distribution modelling (SDM) is a suite of methods for 

predicting how species occur across landscapes (Guisan and Zimmermann 2000, Elith 

and Leathwick 2009), and has seen rapid growth as computational power has improved. 

With appropriate survey data and meaningful independent variables, range predictions 

can be highly accurate and are largely uninhibited by availability of appropriate models 

(Elith and Leathwick 2009). However, modelling for species with dynamic ranges 

(highly mobile) or using data that is limited in time or space can be more challenging and 

result in reduced predictive power. Biotic interactions are beginning increasingly 

incorporated into SDMs (Guisan and Thuiller 2005, Wisz et al. 2013, Godsoe et al. 2015, 

Joseph et al. 2016), but only recently have positive interactions been considered 

(Afkhami et al. 2014, Filazzola et al. 2017, Duffy and Johnson 2017). These models 

provide a framework to directly test for positive spatial correlations between species, 

even when those associations and their outcomes are context dependent (Tikhonov et al. 

2017). (Peoples and Frimpong 2016a) examined species co-occurrence resulting from 

positive interactions, but there have been virtually no similar studies examining large 

scale patterns of positive co-occurrence in freshwaters. Referring back to the goal of 
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identifying new positive interactions, there are now models that infer species associations 

from large datasets (Morueta-Holme et al. 2016). This exemplifies the feedback between 

local observations and large-scale patterns, and perhaps a means for identifying 

previously unseen positive interactions. It is well known that species involved in positive 

interactions co-occur at small spatial scales, and many mutually beneficial symbioses are 

obligatory for one or both species. Understanding how positive interactions change across 

spatial scales, while accounting for catchment structure, continuous water quality 

conditions, and imperfect detections associated with freshwaters, should be a top priority.  

Applying positive interactions into management  

Understanding positive biotic interactions in freshwater systems is more than a pure 

ecological pursuit; it can have serious implications for conservation and management. 

One emerging concept involves conservation of positive interactions. One of the greatest 

problems with species conservation is the limited resources available to managers; 

getting the biggest ‘bang for the buck’ often results in funding for charismatic species or 

those with commercial value. As such, non-game species remain disproportionately 

imperiled, and freshwater biodiversity is and will likely remain under assault as the 

human population continues to climb (Jelks et al. 2008). Ichthyochory interactions, which 

are common throughout much of the Amazon basin, are exposed to increased human 

pressures including overexploitation of fisheries and the damming of large river sections 

(Correa et al. 2015a). If fish are harvested before they can reach maturity, or if natural 

flood pulses are removed, fish will either lose access to the fruits or prevent them from 

germinating. Examples like this show how the conservation of a few taxa may provide a 

means of benefitting multiple species, while only focusing efforts on one. Efforts focused 
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on host taxa which ameliorate habitats (dam, nest building), for instance, provide 

quantifiable benefits to multiple partners (Byers et al. 2006). The hosts are often 

generalists or locally abundant (beavers, minnows), yet support diverse taxa which may 

be particularly threatened by anthropogenic impacts. If necessity were truly the mother of 

invention, then as ecologists, we would do well to think creatively about how we can use 

positive interactions to conserve freshwater species.  

One extension of conservation, and another potential avenue for the application of 

positive interactions, is in the restoration of freshwater systems (Byers et al. 2006, 

Halpern et al. 2007). Facilitative species are often necessary for colonization and 

succession to occur (Diamond 1986, Cardinale et al. 2001, Nakano et al. 2005), which is 

particularly important for high-gradient streams which are characterized by dynamic 

flows. In addition to successional species, it is often necessary to introduce foundational 

species in areas which are regularly exposed to stressful conditions. As shown in an arid 

terrestrial system by Filazzola et al. (2017), the management of dominant foundational 

species can have multiple community benefits through interaction networks. Managing 

foundational taxa in addition to making habitat improvements typical of restoration plans 

represents a novel way to leverage positive interactions for ecological benefit. Recent 

work has also examined the ability of positive interactions to cause alternative stable-

states within certain ecosystems (Kéfi et al. 2016). Positive feedback loops are a 

necessary condition for alternative states to occur, and facilitation or other positive 

interactions appear to play an integral role. For example, environmental degradation 

(decreased resource availability, increased abiotic stress, etc.) may result in a shift from a 

highly productive stable state to one with decreased productivity. In this case, it may take 
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the restoration of facilitator or other positive-interacting species to restore the site to its 

previous state (Kéfi et al. 2016).  

Positive interactions, by definition, must result in benefits to one or more of the species 

involved; however, this does not necessarily equate to what ecologists or society writ 

large may consider a ‘benefit’. For example, (Simberloff and Holle 1999) explained how 

positive interactions may result ‘invasion meltdowns’, in which non-native species may 

rapidly proliferate and cause changes to native community composition. Such 

proliferation may be the result of facilitation or mutualism between non-native or 

introduced species; chiefly through pollination, seed dispersal, and habitat modification 

(Simberloff and Holle 1999). Ichthyochory in the Illinois River Waterway (Mississippi 

River) provides at least one example of this phenomena, though the negative effects are 

difficult to quantify (VonBank et al. 2018). Here, the invasive Common Carp 

(Cyprinidae: Cyprinus carpio) feeds on and disperses seeds of both native and non-native 

vegetation. Though carp are already widely distributed thoughout the Mississippi River, 

this vector may expand the dispersal of range-limited invasive plants; thus invasive 

species may facilitate the expansion of one another (VonBank et al. 2018). Though some 

evidence for such catastrophic ‘invasion meltdown’ does exist, such fears have been 

largely tempered after Simberloff's (2006) follow-up examination of this phenomena. 

Another potentially negative outcome resulting from positive interactions is that non-

native species may take advantage of or ‘hijack’ hosts. In the Chattahoochee River, the 

Rough Shiner (Leuciscidae: Notropis baileyi) has been introduced and appears to 

outcompete a native nest associate, resulting in altered community composition and 

reduced species evenness (Walser et al. 2000, Herrington and Popp 2004). While 
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disturbance often allows for the successful invasion of non-natives, many of the same 

traits that allow this colonization (early colonizers, habitat generalists) are shared by 

facilitative, foundational species. An interesting, though largely untested hypothesis, is 

that positive interactions may buffer those communities from disturbance. Clearly, 

context will be important in determining how positive interactions will affect the 

proliferation of invasive species and the structure of native communities (Bronstein 

2009). 

A final application of positive interactions in freshwater systems is in the service of 

aquaculture. A major challenge in aquaculture is to increase production while reducing 

environmental impacts (Whitmarsh et al. 2006). Raising positively interacting species in 

polyculture may provide a way to achieve these goals. In coastal marine systems where 

commercial aquaculture dominates, there is a growing body of work suggesting the 

benefits of polyculture and specifically, ‘integrated multi-trophic aquaculture’ (Nobre et 

al. 2010). Freshwater aquaculture is important and will continue to grow as an industry in 

the face of environmental change (Ficke et al. 2007), yet research into sustainable 

management practices lags far behind those in marine systems. Despite this fact, positive 

interactions can be applied to freshwater aquaculture even if they were developed for 

marine production. One example is the work by (Natrah et al. 2014), who have 

documented the significance of a mutualism between microalgae and bacteria in 

aquaculture. When used in flow-through systems and in feeding applications, 

polycultures of microalgae and bacteria can enhance the productivity and efficiency of 

aquaculture relative to monocultures of either. Another example of positive interactions 

in the service of aquaculture is the mutualism between euryhaline Tilapia sp. (Cichlidae) 
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and Chlorella sp. (Chlorellaceae). Tilapia provide carbon dioxide which would otherwise 

limit algae growth, and in exchange, Chlorella oxygenates and detoxifies water to 

increase growth of the fish (Gilles et al. 2008).  

Conclusions 

As illustrated by the extent of future directions discussed in this review, we as 

freshwater ecologists have a long way to go before we can fully appreciate and 

understand positive interactions. Though the unknown may seem to dwarf that which we 

do know, the studies discussed have shed light on a diverse array of systems and 

mechanisms that now form the foundation of our understanding. The interaction between 

freshwater cleaners fishes and their clients, for example, illustrates two important 

concepts which were evident throughout much of this review: i) freshwater interactions, 

even when analogous or sharing an evolutionary origin with interactions in other systems, 

are generally less studied, and ii) positive interactions need not be symbiotic, pairwise, 

long-term, or require significant investment to play a meaningful role in the shape of 

ecological communities.  That freshwater cleaning stations have only been identified 

within the last several years emphasizes the point that the study of positive interactions is 

in an exploratory stage (Severo-Neto and Froehlich 2016). Examinations of basic life 

history will be necessary to identify examples and causal mechanisms driving positive 

interactions. Modern ecology has a strong focus on predicative ability and taxonomic 

inference, but there can be no substitute for direct observations of the phenomena 

themselves. Positive interactions may be evolutionarily stable (Frederickson 2017) but 

changing context in the span of ecological time has been demonstrated to affect 

interaction outcomes. Moreover, context and interactive effects at the community level or 
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higher may result in asymmetric outcomes or competition between partner species. The 

notion that fitness benefits are maximized at intermediate symbiont density may be a rule 

for species interactions, for example, but we have documented at least one exception. 

Identifying novel mechanisms and processes in freshwaters can help to inform general 

ecological principles, and in turn, we can use the predictions and theory from broader 

ecology to understand the interactions we seen in our streams, rivers, lakes, and wetlands. 

This give-and-take is the mark of a healthy research focus, and we are on our way to 

achieving such a balance. 
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CHAPTER TWO 

MUTUALISM OR PARASITISM: PARTNER ABUNDANCE AFFECTS HOST 
FITNESS IN A FISH REPRODUCTIVE INTERACTION* 

Samuel Silknetter, Yoichiro Kanno, Kimberly Kanapeckas Métris, Elizabeth Cushman, 
Tanya Darden, and Brandon K. Peoples 

*As of thesis submittal, this chapter is in press with the journal Freshwater Biology
and is reflected by the manuscript’s in-text citations and formatting 

Abstract 

1. Mutualisms are ubiquitous in nature but are understudied in freshwater

ecosystems. Mutualisms can be unstable, shifting to commensal or even negative 

outcomes with context. Quantifying context dependency in mutualisms is critical for 

understanding how biotic interactions will shift along disturbance gradients in freshwater 

systems. 

2. A common reproductive interaction among stream fishes, nest association occurs

when individuals of one species spawn in nests constructed by a host fish. Hosts benefit 

from a dilution effect: high proportions of associate eggs decrease the odds of host brood 

predation. Thus, partner abundance can be an important source of biotic context 

influencing the outcome of an association. 

3. We conducted a large in situ experiment manipulating abundance of partner

yellowfin shiner (Leuciscidae: Notropis lutipinnis) (absent, low, high) at constant 

abundance of host bluehead chub (Leuciscidae: Nocomis leptocephalus), and quantified 

chub reproductive success using genetic tools. 

4. Evidence suggests that the nest association switched from mutualistic to parasitic

outcomes as shiner abundance decreased. Chub reproductive success was highest at high 
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shiner abundances. However, chub reproductive success was actually higher in the 

complete absence of shiners than at low shiner densities. 

5. This study shows that outcomes of biotic interactions in freshwater systems are

context‐dependent, and that partner abundance can be a key source of 

context‐dependency in nest associations. We encourage future studies on freshwater 

mutualisms, which are thus far largely overlooked, relative to competition and predation. 

Introduction 

Positive biotic interactions such as mutualism and commensalism are important 

drivers of population abundance and community structure (Boucher, James, & 

Keeler, 1982; Bruno, Stachowicz, & Bertness, 2003), but are understudied relative to 

negative interactions (competition, predation, and parasitism; 

Bronstein, 1994a, 1994b, 2009). An important feature of positive interactions is that their 

outcomes are rarely static: they can switch from being positive to negative with changing 

context (Bronstein, 1994b; Noë & Hammerstein, 1995). Context‐dependency may arise 

from reduced interaction strength, relative to antagonism (Moore, 2006; Sachs & 

Simms, 2006; but see Frederickson, 2017 for an alternative perspective), or complexity of 

resource transfers among participants (Chamberlain, Bronstein, & Rudgers, 2014). 

Context dependency may also arise from changing abiotic (i.e., the environment in which 

the interaction occurs; Lee, Kim, & Choe, 2009; Thomas, Creed, & Brown, 2013) or 

biotic (i.e., identity, traits or abundance of participants; Brown, Creed, Skelton, Rollins, 

& Farrell, 2012) factors. Understanding how context dependency alters the costs and 
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benefits of biotic interactions will improve general ecological models and provide better 

tools for predicting biological responses to environmental change. 

Mutualisms and context dependency are understudied in freshwater systems; most 

of our knowledge on the subject comes from studies of terrestrial plants (He & 

Bertness, 2014). In fact, a review of biotic interactions in freshwater systems 

(Holomuzki, Feminella, & Power, 2010) included little information on mutualisms—not 

because of oversight by the authors, but because so few case studies exist outside of 

interactions with habitat modifying species (see Moore, 2006). Moreover, the review 

made no mention of the effect of context dependency on mutualisms. More mechanistic 

studies are required to quantify the roles of context‐dependent mutualisms in shaping 

population‐ (Horn et al., 2011; Johnston, 1994a), community‐ (Brown, Creed, & 

Dobson, 2002; Johnston, 1994b; Nakano, Yamamoto, & Okino, 2005; Peoples, Blanc, & 

Frimpong, 2015; Skelton, Doak, Leonard, Creed, & Brown, 2016) and ecosystem‐level 

(Moore, 2006; Skelton et al., 2016) processes in freshwater systems. 

One common positive interaction among North American freshwater fishes is nest 

association, in which “associate” species (partners) spawn in nests constructed by a host. 

Nest association can be considered a disjunctive symbiosis, as the species have an 

intimate short‐term relationship, but lack the physical attachment or longevity typically 

associated with the more emblematic conjunctive symbioses. In North America, chubs 

(Leuciscidae: Nocomis spp.; Tan and Armbruster 2018) are widespread hosts; their nests 

are used by at least 35 associate species throughout their range (Johnston & Page, 1992). 

Adult male chubs build spawning nests in the spring and early summer by collecting 

gravel in their mouths and depositing the individual stones into a mound. Associates 
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benefit from nest association with chubs via two mechanisms. First, the concentrated 

gravel of the nest provides suitable spawning substrate and keeps eggs from smothering 

in silt (Maurakis, Woolcott, & Sabaj, 1992; Peoples & Frimpong, 2013; Vives, 1990). 

Second, male chubs provide an element of parental care by moving and adding stones 

even after their own spawning has ceased (Wallin, 1992), further protecting eggs from 

most predators (Johnston, 1994a). In return, hosts benefit from a dilution effect 

(sensu McKaye & McKaye, 1977) when predators are present; high proportions of 

associate eggs on nests decrease the likelihood of predation on chub eggs 

(Johnston, 1994b; Wallin, 1992). It is common for large chub nests to attract hundreds of 

individual associates, even when only one associate species is present (McAuliffe & 

Bennett, 1981; Meffe, Certain, & Sheldon, 1988). Brood dilution rates of up to 97% have 

been documented as a result of high adult associate abundance (Cashner & Bart, 2010; 

Wallin, 1992). However, associate abundance is naturally variable across ecological 

gradients such as stream size and land use (Peoples et al., 2015), resulting in some nests 

attracting low abundances of associates or even none (Y. Kanno, unpublished data). 

Because brood dilution is a key mechanism making the relationship beneficial for hosts, 

heterogeneity in associate abundance is a form of biotic context that may determine 

interaction outcomes. 

In this study, we conducted an in situ experiment to examine associate abundance 

as biotic context in determining outcomes of a reproductive interaction between host 

bluehead chub Nocomis leptocephalus (hereafter, chub) and partner yellowfin 

shiner Notropis lutipinnis(hereafter, shiner), a common nest associate in the southeastern 

USA. In this system, shiners always benefit from the interaction (versus spawning in the 
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absence of chubs); thus, context dependency would be evident in differences in host 

reproductive success. Under a uniform treatment of predation, we hypothesised a 

commensalistic interaction at low associate abundances because the dilution effect on 

chub reproductive success should be negligible. We hypothesised the interaction would 

shift to being mutualistic at higher associate abundances due to the positive effects of 

brood dilution on chub reproductive success. 

Methods 

We conducted an in situ experiment with a randomised complete block design to 

test for effects of shiner abundance on the reproductive success of host chubs. We 

constructed 12 instream enclosures, removed non‐focal species, and manipulated shiner 

abundance to three levels (absent, low and high) while holding constant abundance of 

chubs and piscine egg predators, which are necessary to provide a mechanism for brood 

dilution (i.e., brood dilution is not meaningful in the absence of predation). Three days 

after spawning, eggs were removed from nests and later identified to species using 

microsatellite genetic markers. Once all spawning had ceased, we re‐ran the experiment 

with a new batch of individuals, resulting in four replicates of three treatment levels in 

each of two temporal blocks (n = 24). Using chub egg count as a proxy for host fitness, 

we compared treatment means to quantify effects of partner abundance on host 

reproductive success. 

Study site and experimental methods 

This study was conducted from April to June of 2017 in Six Mile Creek, a 

second‐order tributary to the Savannah River of northwestern South Carolina, USA 

(34.822, −82.828). This stream is typical of the Piedmont ecoregion (Omernik, 1987), 
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with moderate gradient, regular pool/riffle sequences, and a narrow but intact buffer of 

riparian vegetation. The watershed is a mix of low‐intensity agriculture (mainly livestock 

grazing) and deciduous forest, resulting in substrate dominated by sand in pools, and 

gravel and cobbles in riffles. Site selection was based on experimental feasibility—

perennial flow, stream size, contiguous access from landowners (c. 500 m), and 

abundance of focal species. 

We constructed 12 experimental units (EUs), consisting of instream enclosures 

constructed of 4.75 mm fabric block nets, supported by a frame of steel posts and backed 

by two‐panel strips of 5 × 10 cm welded fencing (sensu Peoples & Frimpong, 2016; 

Wallin, 1992). Block net height was 122 cm, with >30 cm above the ordinary high‐water 

mark (OHWM). Net width extended laterally beyond the OHWM as well, ranging from 

20 to 50 cm per side. To prevent fish movement between EUs, a block net apron of 

≥30 cm was anchored to levelled substrate using 23 kg form‐fitting sandbags. Enclosures 

were constructed to provide each EU with the necessary spawning (Bolton et al. 2015; 

Wisenden et al. 2009) and feeding (Rohde et al. 2009) microhabitats for each species 

(typically one riffle‐pool sequence). 

We removed all fishes from EUs using double‐backpack electrofishing. We 

electrofished until no fishes >40 mm were captured, then followed with a final pass using 

increased voltage; a minimum of seven electrofishing passes were conducted in each EU. 

Adult individuals of all focal species were retained in flow‐through holding tanks and 

monitored for signs of handling stress; all non‐focal species and focal species exhibiting 

stress (e.g., lethargy, laboured breathing, erratic swimming) were released outside of the 

experimental area. Focal species were then restocked at predetermined abundances 
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(Table 1). Each EU received two mature male chubs (with total length ≥115 mm total 

length and prominent nuptial tubercles; sensu Jenkins & Burkhead, 1994) and 15 female 

chubs (≥70 mm total length with visibly engorged abdomens; Jenkins & Burkhead, 1994) 

of approximately equal total length. Potential females not exhibiting obviously engorged 

abdomens were excluded to reduce the potential for mistakenly stocking immature males. 

Adult shiners (≥60 mm) were stocked at either high (80), low (15), or control (0) 

abundances, with each treatment randomly assigned to four EUs. Ambiguous secondary 

sexual characteristics prevented us from knowing exact sex ratios of shiners. However, 

we are confident that shiner stockings represented natural sex ratios because (a) all 

individuals came from within a close proximity of the experiment, and (b) individuals 

were randomly stocked. The control treatment lacking associates was necessary to 

determine a baseline level of reproductive success for chubs in the absence of a dilution 

effect. Shiner abundances in EUs were chosen to reflect abundances observed in nearby 

streams of similar characteristics, based on ongoing community sampling (Y. Kanno and 

B. Peoples, unpublished data), and are consistent with previous experimental studies of

nest association (Peoples & Frimpong, 2016; Wallin, 1992). While as many as 500 

shiners can be located on a nest at a given time in some streams (Meffe et al., 1988), 

our high treatment (80 individuals) is more realistic when considering the small stream 

size and limited number of host individuals per EU. 

Table 2.2: Stocking abundances for each of the three experimental treatments. All fish were removed from 
each experimental unit via backpack electrofishing prior to stocking. Species codes are as follows: BHC 
(bluehead chub Nocomis leptocephalus), YFS (yellowfin shiner Notropis lutipinnis), NHS (northern 
hogsucker Hypentelium nigricans), STJ (striped jumprock Moxostoma rupiscartes). 

Treatment BHC ♂ BHC ♀ YFS NHS STJ 
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Control 2 15 0 1 1 

Low 2 15 15 1 1 

High 2 15 80 1 1 

To standardize egg predation among EUs, we included one individual of each 

species of the egg predators striped jumprock (Catostomidae: Moxostoma rupiscartes) 

and northern hogsucker (Catostomidae: Hypentelium nigricans). These are large‐bodied 

fishes that have been documented to prey on fish eggs (Frimpong & Angermeier, 2009), 

and this density reflects abundances observed in nearby streams of similar characteristics 

(Y. Kanno and B. Peoples, unpublished). Because a previous study of similar design 

(Peoples, Floyd, & Frimpong, 2016) found no effect of predator density (low versus high) 

on chub reproductive success, we did not vary predator density and instead focused only 

on the effects of partner density. Other co‐occurring cyprinids may function as egg 

predators on chub nests, but also as nest associates, and were accordingly not used as egg 

predators in this experiment. Other potential egg predators include crayfishes 

(Cambaridae: Cambarus and Procambarusspp.; Dorn & Wojdak, 2004; Eversole, 2014), 

juvenile salamanders (Plethodontidae: Desmognathus and Eurycea spp.; Blaustein, 

Sadeh, & Blaustein, 2014; Parker, 1994), and various other predacious invertebrates that 

have been observed burrowing in chub nests in previous studies (Light, Fiumera, & 

Porter, 2005; Swartwout, Keating, & Frimpong, 2016) as well as the present one. 

Manipulating abundance of these egg predators was not feasible, and we assumed equal 

effects of these taxa across EUs. 

Beginning the day after stocking, spawning observations were recorded at least 

twice daily using methods modified from Peoples et al. (2015) for the duration of the 
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experiment. Initial stocking of block 1 occurred on 07 May and observations continued 

until 20 May; block 2 was stocked on 27 May with observations continuing until 8 June. 

Wearing polarised sunglasses, one worker walked the length of the experimental area and 

located fish and nests to record whether they were spawning. All nests were measured 

daily for size (i.e., length, width and height) to indicate whether unobserved activity had 

occurred. Chub spawning was evidenced by the presence of a conspicuous gravel mound 

in the experimental unit. Several EUs had deep undercuts and/or pools, and in these areas 

underwater video observations were made periodically to ensure no nests went 

undetected. Due to the conspicuous spawning of both target species which can last for 

several days, and since the study stream was small (no more than 4 m wide and 1 m 

deep), we are confident that no nest construction went undetected. Spawning began in the 

EUs on 08 May 2017, and nest‐building and spawning activity continued within the EUs 

until 26 June. Video and/or binocular observations were made when active spawning was 

identified. We harvested eggs from nests 3 days after initial nest observation to maximise 

the time available for spawning to occur without the risk of eggs hatching into larvae; in 

warm months, mobile larvae have been observed in as few as 3 days after initial 

spawning (Peoples & Frimpong, 2016). Consistent with Maurakis and Woolcott (1996), 

all nests were initiated at night, and thus all new nest observations were made in the early 

morning hours. To harvest eggs, we placed a 1 m2, 500‐μm drift net immediately 

downstream of the nest and anchored it to the substrate to prevent sample loss. Stones 

were removed from the nest by hand and agitated in the water column, allowing eggs, 

invertebrates and detritus to drift into the net. Once the nest had been completely 
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deconstructed, the contents of the drift net were transferred into 100% non‐denatured 

ethanol. 

Egg identification and statistical analysis 

Eggs of confamilial species are very difficult to distinguish based on external 

characteristics. However, molecular tools are becoming increasingly useful for 

identifying eggs and larvae of lotic leuciscids (Cashner & Bart, 2010, 2018; Peoples, 

Cooper, Frimpong, & Hallerman, 2017). Eggs were identified to species using 

microsatellite genetic markers developed at the South Carolina Department of Natural 

Resources Populations Genetics Lab housed within the Hollings Marine Laboratory in 

Charleston, SC (details provided in Supplemental Materials). In brief, genomic DNA was 

isolated from eggs using a modified spin‐column procedure. Isolated DNA was then 

amplified via polymerase chain reaction using a multiplexed group of three primer pairs, 

each with a unique allelic size range and dye colour, corresponding to one of three 

microsatellite loci (Ca5, Nme25C8.208 and RSD53) diagnostic for the two focal species. 

Fragment analysis was then conducted on the amplified DNA using capillary gel 

electrophoresis on a CEQ™ 8000 (Beckman Coulter, Inc; Fullerton, CA) automated 

sequencer. Finally, each chromatogram was scored for species identification using 

Beckman Coulter CEQ™ 8000 Fragment Analysis Software. Detailed methodology for 

selection of microsatellite loci and genetic analyses can be found in Supporting 

Information Appendix S1. 

Due to variable egg abundances and the costs and logistics of genetic analysis, 

some EUs necessitated subsampling, while egg samples from other EUs could be 

analysed in total. When 35 or fewer eggs were collected from an EU, all eggs were 
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identified using molecular markers and direct abundance of chub eggs was determined. 

For EUs with >35 intact eggs, two separate subsamples were analysed, and the 

percentages of chub eggs were compared to ensure subsampling was representative of 

true proportions. In all cases, the proportion of chub eggs in the two subsamples were 

within 5% of one another, so the weighted average was calculated and that value was 

used for extrapolation. All activities were ethically reviewed and improved, and were 

conducted under the Clemson University Institutional Animal Care and Use Committee 

protocol number 2017‐015. 

We used a generalised linear model of a Poisson distribution (appropriate for 

count data), with trial number as a block, to quantify the effect of shiner abundance on 

chub egg abundance as a proxy for host fitness. The data were analysed with a blocked 

analysis of variance (ANOVA) fit to a Poisson distribution through the log‐link function, 

to account for the count data of chub egg abundance. We then used a conservative post 

hoc Tukey's test to compare treatment means. All analyses were conducted in R version 

3.4.3 (R Core Team, 2017). 

Results 

Chubs constructed nests in 20 of the 24 EUs, and chubs spawned in several EUs 

of each treatment. A total of 8,692 eggs were collected between the two blocks; genetic 

analysis identified 3,974 chub eggs and 4,718 shiner eggs. Although we never observed 

piscine egg predators disrupting nests, most nests we sampled contained high densities of 

juvenile salamanders and a diversity of predacious invertebrates. 
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Chub egg abundance differed among the three treatments 

(F2,23 = 30.1, p < 0.0001), indicating that associate abundance affected host reproductive 

success (Figure 1). Nest association was mutualistic at high shiner abundance; in this 

treatment, chub egg abundance (x̄ = 400.0, standard error [SE] = 297.7) was significantly 

greater than control (Z1,24 = 32.0, p < 0.0001) and low abundance treatments 

(Z1,24 = −10.5, p < 0.0001). The Tukey's test also revealed that host egg abundance was 

significantly reduced at low associate abundance (x̄ = 0.6, SE = 0.5) when compared with 

the control (x̄ = 146.4, SE = 81.4), suggesting a parasitic interaction 

(Z1,24 = −8.5, p < 0.0001). Of more than 7,000 eggs deposited in high abundance 

treatments, more than 60% were identified as shiner (x̄ = 671.9, SE = 400.5). In contrast, 

only a total of 15 shiner eggs were identified in all low abundance treatments  

(x̄ = 3.0, SE = 2.3). See Figure S1 in Appendix S2 for a plot of all chub egg abundance 

data for each nest per treatment. 
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Figure 2.1: Bluehead chub (host) egg abundance for each treatment of yellowfin shiner (associate) 
abundance. The solid black midline represents the treatment mean, and the surrounding box depicts 
standard error. Significant differences among treatment means were determined using a post hoc Tukey's 
test and are signified by unique letter labels. Our results indicate significant differences between each of 
our three treatments. Number of nests sampled for each treatment was: absent = 8, low = 5, high = 7 

Discussion 

This work represents one of the first studies to document interaction outcome 

shifts from mutualism to parasitism that result solely from changes in partner abundance. 

Shiners should always benefit from spawning with a host (Johnston, 1994a) based on the 

simple fact that they must have a host to spawn (Wallin, 1992); they will not spawn in the 

absence of a nest‐building host. Even though the outcome remained positive, the 

per‐capita benefit for shiner varied drastically; we observed a 200‐fold increase in 

per‐capita egg abundance from low to high density experimental units. Reproductive 
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success of host chub, however, varied with shiner abundance and caused a shift in the 

interaction outcome from mutualism at high partner abundance to parasitism at low 

partner abundance. These findings support our hypothesis of mutualism at high shiner 

abundance, but do not support our hypothesis of commensalism at low shiner abundance. 

Thus, our results provide several key insights into context dependency in our study 

system. First, the outcomes of nest association depend on biotic context. Second, nest 

association appears to be mutualistic only when associate abundance is high enough for 

the benefits of brood dilution to outweigh the costs of egg predation. Finally, our results 

suggest chubs will benefit from higher reproductive success when disengaging entirely 

from associative spawning than spawning together with a low number of shiners. 

In this system, brood dilution is the most likely mechanism that makes partner 

abundance function as a source of biotic context. Mutualisms incur both costs and 

benefits, and an interaction is only mutualistic if all participants receive a net benefit. As 

large piles of concentrated gravel, chub nests are conspicuous features on the streambed, 

advertising food availability for egg predators and representing a baseline cost for chub 

reproduction. However, chub spawning bouts are generally brief and inconspicuous 

(Sabaj, Maurakis, & Woolcott, 2000), drawing little attention to the nest. Conversely, 

spawning groups of shiners are highly conspicuous and can last for days on a nest. 

Congregated shiners on chub nests represent an additional fitness cost to host chubs 

because they make the nest even more conspicuous to egg predators. With high associate 

abundances typical of productive streams, associate eggs comprise the majority of eggs 

on an active nest (Cashner & Bart, 2010; Wallin, 1992). While predation was not directly 

observed in the experiment, the presence of predatory invertebrate taxa in the nests 
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suggests that egg predation did occur. Alternatively, the presence of egg predators may 

have altered the behaviour of chubs through perceived rather than actual predation. Thus, 

it is possible that female chubs did not reciprocate the male's invitation to spawn. 

Regardless, brood dilution by associates still affords a mechanism for host benefits. As 

the strength and mode of predatory behaviour may provide additional sources of biotic 

context, examining these conditions represents a logical next step. Future work should 

include control treatments without piscine or other egg predators to untangle host 

responses to perceived versus realised egg predation. 

Because it is so important to host fitness, many hosts have evolved unique 

strategies to manipulate symbiont or partner abundance to their own advantage (Cunning 

et al., 2015; Parkinson, Gobin, & Hughes, 2016; Parkinson et al., 2017). For example, 

crayfish hosts (Cambaridae: Cambarus chasmodactylus and Orconectes cristavarius) 

actively reduce density of branchiobdellidan worms to prevent a mutualistic cleaning 

symbiosis from switching to parasitism (Farrell, Creed, & Brown, 2014). Host chubs may 

also engage in a form of partner control by withholding spawning activity until associate 

abundance is high enough to benefit the host. Indeed, results of daily surveys 

concomitant with our experiment (Y. Kanno, unpublished data) in nearby streams suggest 

that nearly a third of chub nests are immediately abandoned upon being constructed. 

While not all nests constructed are utilised for spawning by associates, no abandoned 

nests were observed to attract any associates. Further research on the factors determining 

nest abandonment will yield important insight into the role of partner control in nest 

associative interactions. 
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Like many other studies, we simplified our system to quantify pairwise interaction 

outcomes between two participants. However, it is widely recognised that mutualism 

must be understood in a whole‐community context (Palmer, Pringle, Stier, & Holt, 2015; 

Thrall, Hochberg, Burdon, & Bever, 2007). To the best of our 

knowledge, Nocomis occurs nowhere without at least one associate species (Pendleton, 

Pritt, Peoples, & Frimpong, 2012), and spawns with up to six associates simultaneously 

in parts of its range (Peoples et al., 2015). Moreover, associates usually have the 

opportunity to spawn among several nest‐building host species, each with slightly 

different nesting habits (Peoples et al., 2016). Quantifying interactions between partner 

diversity and abundance is necessary for understanding context dependency in this 

system. 

Partner abundance is a key source of context dependency in symbioses (Chomicki 

& Renner, 2017; Cunning & Baker, 2014; Kiers, Palmer, Ives, Bruno, & 

Bronstein, 2010). Maximum host fitness occurs at intermediate partner density in many 

symbioses (Brown et al., 2012; Izzo & Vasconcelos, 2002; Morales, 2000; Palmer & 

Brody, 2013). For example, a common finding is that interaction outcomes switch from 

commensalistic or mutualistic at lower to intermediate partner abundances, to parasitic at 

high abundances (e.g., Brown et al., 2012; Thomas et al., 2013). However, the fitness 

outcomes we observed along our continuum of partner abundance differed from these 

other studies. We found the opposite pattern, with parasitism at low partner abundances 

and mutualism at high abundances; this is probably due to the novelty of the resources 

being traded, spawning substrate/parental care and brood dilution, between hosts and 

associates. Unlike cleaning symbioses where high symbiont densities can be detrimental 
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to hosts (i.e., switching from mutualism to parasitism with increasing symbiont density), 

we can think of no mechanism that would cause increased brood dilution by associates to 

decrease host fitness. Our findings illustrate that, although partner abundance is a key 

source of biotic context, predictions on abundance‐related fitness outcomes will require 

detailed system‐specific information. 

Although ecologists broadly recognise that mutualism is ubiquitous in nature 

(Bronstein, 1994a; Herre, Knowlton, Mueller, & Rehner, 1999; Sachs, Mueller, Wilcox, 

& Bull, 2004; Sachs & Simms, 2006; Stachowicz, 2001), it has until recently been largely 

overlooked in freshwater systems (Holomuzki et al., 2010). In addition to a few other 

interaction types (worm/crayfish cleaning symbiosis; Brown et al., 2002, 2012; Lee 

et al., 2009; Skelton et al., 2013; Thomas, Creed, Skelton, & Brown, 2016; frugivorous 

fish seed dispersal—Correa et al., 2015; Horn et al., 2011), nest associative spawning 

fishes provide an excellent model system for understanding mutualisms and context 

dependency in freshwater ecosystems. Mutually beneficial nest associations have been 

documented previously in systems of other nest building taxa (Goff, 1984; 

Johnston, 1994b; Wisenden & Keenleyside, 1992), and more recently with Nocomis hosts 

(Peoples & Frimpong, 2013). Moreover, studies have found variable outcomes of nest 

association with varying biotic context; for example body size of host sunfishes 

(Shao, 1997a, 1997b), or host brood parasitism by spawning partners (Baba, Nagata, & 

Yamagishi, 1990; Fletcher, 1993; Yamane, Watanabe, & Nagata, 2013). Continued 

research into nest associative spawning will help shed light on the role of mutualisms in 

freshwater ecosystems. 
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Mutualisms form the foundation for many fundamental ecological processes 

(Bronstein, 2009) and conserving mutualism will be a key component of conserving 

biodiversity under global change (Bronstein, Dieckmann, & Ferrière, 2004; Correa 

et al., 2015). Understanding context dependency is critical to predicting how interaction 

outcomes, and their consequent effects on population and community processes, will shift 

under changing scenarios. In freshwater systems, which are home to some of the richest, 

and yet most imperilled faunas on earth (Jelks et al., 2008), this is particularly evident. 

Identifying mutualisms and their context dependency will be important for understanding 

dynamics of freshwater ecosystems. 
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CHAPTER 2 SUPPLEMENTAL INFORMATION 
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S1: Microsatellite genetic marker analyses 

DNA Isolation 

DNA was isolated from egg samples preserved in 100 percent non-denatured ethanol 

(EtOH) using a spin column isolation protocol. The egg sample was transferred to a clean 

microfuge tube and dried to evaporate all remaining EtOH. DNA was isolated from egg 

samples according to a modified Wizard SV Genomic DNA Purification System protocol 

(Promega Corporation, Fitchburg, Wisconsin). Each egg was placed in 200 μL of 

digestion solution comprised of nuclei lysis solution (72.8%), 0.5 M EDTA (18.2%), 20 

mg/mL proteinase K (7.2%), and RNase (1.8%). After incubation for 3 hours at 55 °C, 

180 μL of lysis buffer were pipetted into the sample and vortexed, allowing the lysis 

buffer to mix with the digestion solution. The entire sample lysate was then transferred to 

a spin column assembly, where a vacuum manifold pulled non-DNA components of the 

sample through the column while retaining DNA on the filter. Eight hundred microliters 

of Wizard SV Wash Solution, containing EtOH, were added to each spin column and 

allowed to pass through four separate times. Spin columns and their collection tubes were 

then spun at 13,000 rpm for 3 minutes to dry the columns; columns were transferred to 

clean, labeled 1.5 mL microcentrifuge tubes. Genomic DNA was then eluted into 30 μL 

of 55 °C nuclease-free water and incubated at room temperature for 2 minutes. Tubes 

were spun at 13,000 rpm for 1 minute, followed by a final elution with 50 μL of 55 °C 

nuclease-free water.  Samples were transferred to a -20 °C freezer for long-term storage. 
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Table S1.1: Multiplexed microsatellite markers used for identification of Bluehead Chub and 
Yellowfin Shiner. The allelic size range for Bluehead Chub (BHC) and Yellowfin Shiner (YFS) 
are based solely on samples used in the experiment, collected from watersheds in or adjacent to 

the Six Mile Creek drainage. Forward primers in each primer pair were labeled with a fluorescent 
WellRED dye (D2 = black, D3 = green, D4 = blue). 

Locus BHC Size 
Range (bp) 

YFS Size 
Range (bp) 

CEQ 
Dye 

Primer 
Concentration (µM) 

Repeat 
Motif Reference 

Ca5 235-347 No Amp. D3 0.29 (TAGA)15 (Dimsoski et al. 2000) 
Nme25C8.208 210-236 210-224 D4 0.03 (TG)9 (Burridge and Gold 

2003) 
RSD53 156-178 No Amp. D2 0.09 (AC)13(AT)4 (Pitcher et al. 2009) 

Microsatellite Genotyping 

For all samples, a multiplexed group of three microsatellite loci was amplified 

using polymerase chain reaction (PCR). No microsatellite primers have been developed 

specifically for Bluehead Chub and Yellowfin Shiner, so 40 microsatellite primers from 

closely related cyprinids were tested on 15 samples from each species. Three 

microsatellite primers (Table S1), originally developed for Central Stoneroller 

(Leuciscidae: Campostoma anomalum) (Ca5), Redside Dace (Leuciscidae: Clinostomus 

elongates) (RSD53), and Cape Fear Shiner (Leuciscidae: Notropis mekistocholas) 

(Nme25C8.208), were chosen based on amplification success and diagnostic capability. 

All three primers amplify in Bluehead Chub, but only Nme25C8.208 amplifies in 

Yellowfin Shiner. Nme25C8.208 thus acts as a positive control, confirming the identity 

of the Yellowfin Shiner egg and simultaneously distinguishing it from Bluehead Chub 

eggs. The forward primers in each pair were labeled with a WellRED fluorescent dye 

(Table S1). All amplifications occurred in 11-μL reaction volumes containing 1× 

HotMaster Buffer, 0.2 mM dNTPs, 1.5 mM MgCl2, 0.45 μM forward and reverse 

primers, 0.03 U HotMaster Taq DNA polymerase, and ~5 ng genomic DNA. All samples 
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were amplified with two negative controls to detect any contamination. PCR was 

performed using I-Cycler thermocyclers (Bio-Rad Laboratories, Hercules, California) 

with the following reaction profile: initial denaturation at 94 °C for 3 min; 20 cycles of 

denaturation at 94 °C for 30 sec, primer annealing at 65 °C (decreased by 1°C every 2 

cycles) for 30 sec, and extension at 72 °C for 40 sec; 20 cycles of denaturation at 94 °C 

for 30 sec, annealing at 55 °C for 30 sec, and extension at 72 °C for 40 sec; and a final 

extension at 72 °C for 1 hour. 

Following DNA amplification, PCR products were separated via capillary gel 

electrophoresis on a Beckman CEQ™ 8000 (Beckman Coulter, Inc., Fullerton, 

California). The DNA was denatured with formamide and supplemented with a size 

standard (400 bp; Beckman Coulter) for accurate fragment length analysis. 

Chromatograms were analyzed using the frag3/PA version 1 analysis algorithm to 

determine the size of the alleles at each locus. Two readers independently scored the 

chromatograms using CEQ™ 8000 Fragment Analysis Software (Beckman Coulter); their 

scores were compared using Compare Spreadsheets software (Office Assistance LLC) 

and differences were resolved by conference or repeating amplification and analysis.  
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S2: Supplemental abundance plot 

Figure S2.1: Bluehead Chub (host) egg abundance for each nest per treatment of 
Yellowfin Shiner (associate) abundance. Each point represents a single nest. Points in 
each treatment bin were plotted using a jitter function to display all points without 
overlap; horizontal placement within each bin is random and inconsequential. Number of 
nests sampled for each treatment was: Absent = 8, Low = 5, High = 7. 
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GENERAL CONCLUSIONS 

The study of positive interactions in freshwaters has benefitted from concepts 

forged in other disciplines, but those concepts will need modified to suit the needs of 

freshwaters. The basic patterns of the stress-gradient hypothesis do not necessarily hold 

up for freshwater invertebrates (Fugère et al. 2012), but using that framework leads to 

biologically meaningful results and interpretation. Positive interactions in terrestrial 

animal-plant systems are often shown to display high rates asymmetry and nestedness (P. 

Vázquez et al. 2007, Bascompte 2009), a tendency which is expected to hold true for 

other mutualisms. In a coral reef cleaning symbiosis, nestedness was found to be even 

greater than in the terrestrial systems (Guimaraes et al. 2007). Cleaning interactions in 

crayfish-worm symbiosis will differ from these terrestrial and marine interactions, but 

along with research into asymmetric competition (i.e. Hudina et al. 2011), these studies 

provide evidence that allows for new, testable hypotheses in freshwaters. A common 

theme that holds true for many freshwater interactions, even when analogous or sharing 

an evolutionary origin with interactions in marine systems is that they are generally less 

studied. Furthermore, positive interactions like cleaning stations in freshwaters (Severo-

Neto and Froehlich 2016) need not be symbiotic, long-term, or require significant 

investment to play a meaningful role in the shape of ecological communities. Streams, 

rivers, lakes and wetlands provide an abundance of novel species and interactions, and by 

borrowing from other fields and disciplines, we can better understand freshwaters without 

having to reinvent the wheel.  

A major directive of our review was that future research must include both 

explicit tests and general life history studies. To that end, an experiment was conducted 
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which blends these two themes to further our knowledge of positive interactions in 

freshwaters. Much of the recent literature on Nocomis nest association originates in the 

New River and surrounding drainages in the mid-Atlantic region of the eastern United 

States (Peoples et al. 2011), a region with a diverse assemblage of associate species. 

However, the experiment conducted as part of this thesis was conducted in the upper 

Savannah River basin in upstate South Carolina, in a watershed with only two nest 

associates. Previous fieldwork and ongoing observational studies at Clemson University 

have led to a comprehensive understanding of the life histories of the species involved in 

the interaction (Y Kanno and B. Peoples, personal communication). This knowledge 

allowed us to test for the most meaningful form of biotic context observed in the system. 

Partner density is highly variable even within the same stream system, whereas the 

identity of potential partners and predators would have provided a much narrower range 

of realistic biotic context. The findings of this study provide new knowledge in our 

understanding of nest association, and it does so by merging life history and explicit 

experimentation to ask and answer the driving questions.  

Global climate change predicts increases in water temperatures, anthropogenic 

impacts have resulted in increased pollution, and habitat alteration and deforestation have 

left many of our global freshwaters sedimented and in a general state of disrepair. Under 

increased temperature regimes, for example, crayfish will burrow to reduce thermal 

stress. When this occurs, the majority of symbiotic branchiobdellidan worms leave their 

host and crayfish growth ceases (Ames et al. 2015). Similarly, light conditions in 

freshwater sponges affect their symbiosis with green algae. In high light conditions, 

sponges turn green as the result of dense aggregations of the algae within them – if 
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conditions change and the sponges are left in the dark, photosynthesis ceases and the 

sponge will ingest their symbiont and the interaction ceases (Frost and Williamson 1980). 

Though extreme cases, these examples show how plausible changes in conditions can 

cause interactions to cease, not just change in strength or outcome. In the face of 

anthropogenic impacts, it is vital to recognize how positive biotic interactions may be 

negatively affected, or how they might help to maintain ecosystem function. Positive 

interaction research in freshwaters has been fruitful thus far, and this thesis should 

provide motivation for that trend to continue.  
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