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ABSTRACT 

Osteoarthritis (OA) is a leading cause of disability and pain to patients worldwide, and is 

characterized by abnormal subchondral bone remodeling, such as sclerosis and 

osteophyte formation, synovial tissue inflammation, and the destruction of articular 

cartilage, with limited capability for intrinsic repair. Currently, only palliative options are 

available to help treat the debilitating effects of the disease as there are no therapies 

authorized to halt or prevent the progression of OA. Due to the destructive nature of OA 

and a lack of current treatment options, there is an urgent need to develop novel therapies 

to mitigate the progression of OA.  

 

Stem cell-based regenerative strategies hold promising opportunities to provide enhanced 

therapeutic efficacy due to their increasingly investigated and reported ability to regulate 

inflammation in vitro. Our lab has previously shown, in an in-vitro explant co-culture 

study, that human perinatal amniotic membrane-derived stem cells (hAMSCs) 

demonstrated an enhanced chondro-protective effect compared human adipose-derived 

stem cells (hADSCs), which are commonly utilized in regenerative applications. To 

further our previous findings, the overall purpose of this research was to investigate and 

compare the therapeutic efficacy of these two stem cell sources in mitigation of OA in 

vivo. This was achieved by directly comparing hAMSCs to hADSCs via various 

histological and biochemical outcome measures as well as longitudinal fluorescent cell 

tracking ensuing direct intra-articular injection into a spontaneous OA model; the Dunkin 

Hartley Guinea Pig (DHGP).  
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Results indicate that the DHGP serves as a validated spontaneous OA model while 

histological trends demonstrated that use of stem cell treatments mitigated cartilage 

degradation in comparison to non-stem cell treated groups. However, it was observed that 

both stem cell sources did not provide a significant therapeutic effect in vivo as results 

revealed a limited residence time and lack of tissue engraftment of hAMSCs and 

hADSCs following injection. Altogether, these findings highlight the current limitations 

of stem cell-based therapy once indicated in a complex, pathological environment. 

Therefore, further investigations are warranted to evaluate the therapeutic capabilities of 

stem cells following transplantation in in vivo models of OA. 
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CHAPTER ONE: 

LITERATURE REVIEW 

1.1 Introduction to Osteoarthritis 

Osteoarthritis (OA) is a prominent arthritic joint disease that is both debilitating and 

progressive, leading to severe pain for patients. In comparison with other bone and 

arthritic pathologies, OA represents the primary condition, leading Rheumatoid Arthritis 

and Osteoporosis.1 It is also estimated that more than 27 million Americans suffer from 

OA and has resulted in a total estimated cost of $128 billion dollars.2,3 Long term studies 

have shown that knee OA, specifically, accounts for more than 80% of the disease’s total 

affliction and has doubled in prevalence since the mid-20th century.4 With an 

increasingly aged population and rising body mass index (BMI), this prevalence is 

expected to increase dramatically and rapidly over the next 20 years.4 

 
Figure 1: Graphical depiction of the increasing knee OA prevalence since the mid-20th century.4 

 

OA is a multi-faceted disease characterized principally by cartilage degeneration, 

alterations in the subchondral bone, and inflammation of the synovium.5 Additionally, 
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deterioration of surrounding menisci and ligaments, enlargement of the joint capsule, and 

changes in fat pads and muscles, influence the symptoms of OA.6  The pathogenesis of 

OA can arise due to various causes including age. It is estimated that 34%-40% of the 

United States population over the age of 65 is affected.7,8 Other risk factors include: 

obesity, prior joint trauma, genetic predisposition, overuse, and irregular joint shape.6,9 

Furthermore, it has become more apparent that inflammatory mechanisms and 

biochemical mediators, such as cytokine production, plays a central role in the imbalance 

of joint tissue homeostasis, leading to further damage.10  

 

Currently, there is no cure for OA and patients afflicted by the disease are only offered 

palliative treatments options. Common treatments include self-care options such as 

exercise, diet, and physical therapy in prospect of lowering BMI and thus the mechanical 

load placed on the joint. Another primary non-invasive option employed is the use of oral 

medications, most commonly nonsteroidal anti-inflammatory drugs (NSAIDs) or 

acetaminophen.11 However, with the use of these medications, there are risks of harmful 

systemic effects such as gastrointestinal or cardiovascular irregularities.12 An additional 

non-surgical option includes viscosupplementation, in which intra-articular injection of 

hyaluronic acid (HA) is performed in order to assist in replacing loss of synovial fluid or 

to combat detrimental alterations in synovial fluid viscosity.13 Although HA injections 

have shown to enhance function and alleviate pain, effectiveness depends on the 

composition and residual time in the joint, therefore, optimization of the procedure to 

improve efficacy is under investigation.11,14,15,16  
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As OA progresses, the entire joint structure is affected, resulting in further loss of 

function, pain, and malformation.6 While managements that are more conservative may 

aid in relieving symptomatic pain, patients with increasing severity of OA may require 

further intervention. Surgical solutions includes the replacement of native tissue with 

either polymeric or metal implants via total joint replacement, overall helping to restore 

joint mobility to patients. However, there are many possible complications following 

arthroplasty, such as infection, inflammation, blood clot formation, implant loosening, 

and in some cases, continued pain.17 As these associated issues frequently occur ensuing 

total joint replacement, it is usually necessary to perform a secondary revision 

surgery.17,18  In 2003 alone, approximately 8% of the total knee replacements performed 

in the US needed a revision surgery.17 In light of the shortcomings comprising current 

treatment options, it is necessary to develop a novel approach to repair and regenerate 

joint tissues.  

 

Recent studies in the field of orthopaedic regenerative medicine have focused on the use 

of stem cell-based therapies to be used alone or in combination with either synthetic or 

natural scaffolds. Mesenchymal stem cells (MSCs), specifically, have gained attention as 

a therapeutic source as they possess the capacity to differentiate into numerous tissue cell 

types including chondrocytes, adipocytes, and osteocytes.19,20,21 Clinically, this strategy 

would work to mitigate progression of OA or promote the repair of damaged joint tissues. 
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Evaluation of MSCs and their potential as a clinical therapy for OA will be furthered 

detailed in a later section. 

 

In summary, OA is a debilitating disease that poses a large economic burden to patients. 

As treatment options only provide palliative care and with a growing demand for total 

joint replacements, there is a crucial need for further investigation into regenerative 

strategies to diminish the development of OA.  

 

1.2 Knee Joint Physiology  

1.2.1 Knee Joint Anatomy and Function 

The knee joint represents an essential synovial hinge joint that facilitates the movement 

of the lower leg in association with the upper leg, while also supporting body weight. The 

knee joint, which contains two articulations, patellofemoral and tibiofemoral, is vital to 

everyday activities to allow walking, running, sitting, and standing, as the joint formed 

between the tibia and femur allow extension and flexation.22  

 

Being the longest and strongest bone in the human body, the femur supports tremendous 

amounts of forces that act upon it. A smooth ball-and-socket joint forms at the proximal 

end of the femur with the hip to allow movement and rotation around its axis. Distally, 

the femur broadens above the knee to form curved and smooth medial and lateral 

condyles that convene with the medial and lateral plateaus of the tibia, ultimately forming 

the knee joint. The tibia is located medial to the fibula and endures most of the load 
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placed on the joint. On the upper extremity of the tibia, between the smooth, concave 

plateaus, forms the intercondylar region. This area offers points of attachments for the 

meniscus, anterior cruciate ligament (ACL), and posterior cruciate ligament (PCL). The 

ACL works to inhibit forward movement of the tibia and hyperextension of the knee, 

while the PCL, which lies behind the ACL, inhibits backward movement of the tibia, 

ultimately securing the knee along its anterior and posterior axis. Positioned amongst 

where the femur and tibia articulate is the meniscus. This thick portion of cartilage acts as 

a shock absorber to protect against the loads obtained from the knee, while also 

functioning to provide stabilization and lubrication. Connecting the lateral meniscus to 

the medial meniscus is the transverse ligament. The kneecap, or patella, represents the 

bone in front of the femur on the surface of the knee joint in order to provide protection. 

The patella is held in place by muscles and tendons such as the patellar ligament 

attaching to the tibia, and the quadriceps tendon attaching to the quadriceps muscle in 

front of the femur. Figure 2 below provides a visual representation of the total knee joint 

anatomy depicting corresponding components described. 

 

Encasing the bones of the knee is a fibrous, connective joint capsule that offers 

supplementary strength by containing other sturdy ligaments, such as the medial 

collateral ligament (MCL) and the lateral collateral ligament (LCL), which work to 

support knee structure and appropriate orientation by averting lateral dislocation. 

Supplementary to the joint capsule, ligaments, tendons, and muscles that work to 

reinforce the knee, there are also numerous and imperative structures that aid in 
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defending the joint from friction and external forces. Bursae are fluid-filled sacs that 

encase the knee to moderate friction between adjoining structures such as tendons that 

move across the exterior of the joint and between the patella and femur.23 Additionally, 

the infrapatellar fat pad which is located below the patella, is composed of adipose tissue 

to assist in suppressing forces encountered by the knee. Altogether, these structures help 

to reinforce the knee for optimal strength and stability for normal function.  

 
Figure 2: Image of total knee joint anatomy depicting corresponding components such as muscle, meniscus, 

synovial membrane, articular cartilage.24 
 

1.2.2 Synovium 

Lining the joint capsule is a thin synovial membrane (SM) that exudes synovial fluid 

(SF), providing lubrication to the knee in order to reduce friction and wear. Additionally, 

the SF participates in regulating the functional characteristics of the articular surface and 

chondrocyte activity, as the SM works as a semi-permeable membrane to allow 

component cross talk in and out of the joint space.7 This cellular communication is vital 
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for conserving the normal physiologic state of articular cartilage by providing regulation 

of SF composition and cartilage nutrient exchange.25,26 Furthermore, the surface layer of 

SF covering the articular surface creates a pressurized fluid film that tolerates significant 

load, ultimately providing protection for the opposing cartilage layers.27  

 

The microscopic and histologic composition of normal synovial tissue comprises of 

fibrous, areolar, and adipose tissue in which one to two continuous layers of cells can be 

visualized at the synovial lining.28 Additionally, capillaries and lymphatic vessels are 

present within the synovium.28 The cellular components of normal synovium include 

fibroblast-like synovioctyes and macrophages in which residing macrophages arrive to 

the synovium via the vascularized network of vessels as circulating monocytes.28 These 

macrophages are only minimally observed in normal synovial membrane, but 

significantly increase in cell number in osteoarthritic synovium. Similarly, synoviocytes 

are presented in one to two layers at the lining, however during OA pathogenesis, 

synovial membrane and villous hyperplasia is observed due to increase in cell layers. 

 

Highlighting the principle SF molecules produced in the synovium via synoviocytes, 

Lubricin, Hyaluronic Acid (HA), and Surface-Active Phospholipids (SAPL) act to lessen 

friction and wear by adsorbing to the articular surface and supplying a boundary 

lubrication.27-29 This extremely effective lubrication mode upholds exceptionally low 

friction coefficients (approximately μ = 0.0005–0.04) in order to protect the articular 

joints.30 The balance between the rate of loss, due to degradation and transport through 
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the semi-permeable membrane, and synthesis of SF molecules, dictates their 

concentration levels. It is therefore imperative to maintain the equilibrium of SF 

concentration as alterations will affect the boundary-lubricating ability, ultimately 

affecting articular cartilage integrity.31  Inflammation of the synovial membrane is a 

hallmark of OA, and this pathological state will be furthered detailed in a later section. 

 

1.2.3 Articular Cartilage  

The articular cartilage lining the exterior of joints represents a specialized connective 

tissue that functions to provide a smooth and lubricated surface for articulation, while 

also diffusing loads to the underlying subchondral bone. The distinct biological and 

mechanical properties of articular cartilage are contingent upon the interactions between 

the extracellular matrix (ECM) and chondrocytes.32 The compact ECM primarily 

comprises of water, collagen, and proteoglycans, along with other non-collagenous 

proteins and glycoproteins, while chondrocytes form the framework of the tissue matrix, 

ultimately forming distinct zones of non-calcified cartilage.26  

 

To highlight the specific components of articular cartilage ECM, water is the most 

abundant constituent, supplying 80% of the total wet weight.26,33 Across the articular 

surface, transport of water containing dissolved ions such as sodium, calcium, and 

potassium, help to distribute nutrients to the residing chondrocytes as well as supply 

another mode of lubrication.26 Total water concentration decreases to approximately 65% 

in the deep zone as frictional resistance against the flow through the ECM is high, 
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ultimately producing a pressurization of water within the matrix, allowing the capability 

to endure significant loads.26,34   

 

Comprising of approximately 60% of the cartilage dry weight, collagen fibrils form an 

extensive network to provide mechanical integrity.26,35 There are multiple types of 

collagen present in the matrix including Type I, IV, V, VI, IX, and XI; however, Type II 

collagen is the predominant type. Representing 90% to 95% of the total matrix, Type II 

collagen intertwines with proteoglycan composites to ultimately provide structural 

support to stabilize the matrix.26,36 

 

Accounting for 10% to 15% of the cartilage wet weight, proteoglycans are protein 

monomers in which negatively charged glycosaminoglycan (GAG) chains are covalently 

attached to the protein core.26,37,38 The negative nature of GAG chains also attracts many 

positive sodium ions, inducing a large amount of water to rush into the matrix and create 

a swelling pressure, ultimately functioning to help the cartilage withstand compressive 

forces.26,37,39 One well-characterized proteoglycan present in articular cartilage is 

aggrecan, being the largest in size and most abundant.26,40,41,42 This protein monomer is 

distinguished by its capability to self-assemble and interact with hyaluronic acid to 

develop large proteoglycan aggregates.42 This ultimately provides an imperative gel-like 

structure to provide resistance for load-bearing properties as well as chondrocyte-matrix 

interactions in the cartilage.40,41,43 Other smaller proteoglycans existing in the ECM 

include fibromodulin, decorin, and biglycan, that work to interact with collagen fibrils in 
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the matrix.26,40,42  The primary GAGs of the ECM include hyaluronic acid, chondroitin 

sulfate, heparin sulfate, and keratin sulfate, in which all contrast in molecular weight, 

configuration, and length.26,39 These differences allow for various interactions with 

adjacent chains and permits the formation of proteoglycans in the matrix. Additional 

ECM components found within articular cartilage include noncollagenous proteins and 

glycoproteins in which their specific function is not fully understood; however, have 

shown to play a role in the organization and maintenance in the structure of the matrix.26  

 

The resident cell type in articular cartilage is the chondrocyte, in which they play an 

exclusive role in the development, maintenance, and repair of the ECM.26,44 Originating 

from mesenchymal stem cells (MSCs), chondrocytes occupy roughly 1%-5% of the total 

cartilage tissue and vary in size, shape, and number, depending on their functional 

location the cartilage.44–46 In healthy tissue, chondrocytes are in a quiescent state; 

however, they have an intrinsic ability to respond to different stimuli, such as mechanical 

and biochemical stresses, as they contain receptors for components in the ECM.25,26,47 

Upon activation, the production of degradative enzymes, such as  matrix 

metalloproteinases, and inflammatory mediators are stimulated to provoke a cycle of 

cartilage destruction, which will be further explored in a later section.26,47,48 Furthermore, 

cartilage repair following damage is a prevalent issue, as articular cartilage does not 

contain the ability to self-heal.26,48 This is due to the fact that chondrocytes have a 

constrained ability for replication and the tissue itself is non-vascularized, lacking blood 

vessels and nerves.26,49,50 
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To further highlight the structure of articular cartilage, Figure 3 below depicts healthy 

cartilage zones with chondrocyte organization and collagen fiber orientation. It can be 

visualized that below the articular surface, the thin superficial zone comprises primarily 

of type II and IX collagen fibers compacted tightly and aligned parallel, to form 

approximately 10-20% of the cartilage volume and acts to defend deeper layers from 

shear stresses.26,44 Many chondrocytes occupy this layer and are flattened to help 

maintain the matrix and ultimately, this zone acts to oppose the compressive, shear, and 

tensile forces imposed by the joint.6,25,26 Beneath the superficial zone, lies the middle 

zone to provide even more resistance to compressive forces. Spherical chondrocytes, 

proteoglycans, and thicker collagen fibers aligned obliquely to the surface, comprise this 

zone to make up approximately 40-60% of the total cartilage volume.26 Under the middle 

zone and occupying approximately 30% of articular cartilage volume, the deep zone 

supplies the greatest resistance to compressive forces, containing the highest amount of 

proteoglycan content. Additionally, the collagen fibers are assembled perpendicular to the 

surface while the chondrocytes are arranged parallel to the collagen fibers in a column-

like fashion.26 Forming an interface at the deep zone, the tidemark separates the non-

calcified cartilage from the calcified cartilage, while the cement line forms an anatomic 

bridge in which the calcified layer of cartilage attaches to the subchondral bone.26,51  

 

Moreover, articular cartilage represents a unique and complex structure containing many 

ECM components necessary for tissue homeostasis. As observed in osteoarthritic 
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conditions, damage to the cartilage results in a destructive sequence of biochemical 

events in which there is no intrinsic ability to regenerate. It is therefore desirable to 

investigate strategies to restore damaged cartilage in order to restore its natural ability to 

withstand compressive loads. 

 
Figure 3: A cross-sectional image of healthy articular cartilage zones displaying chondrocyte organization and 

collagen fiber orientation.26 

 

1.2.4 Subchondral Bone  

Articular cartilage and subchondral bone are in close synthesis to form a functional unit 

called the osteochondral junction.52 This intricate junction comprises of a tidemark to 

separate the deep layer of non-calcified cartilage with the calcified cartilage, and the 

cement line to separate the subchondral bone.5,52 The subchondral bone is divided into 

two distinct compartments, the subchondral bone plate and subchondral trabecular bone.5 

The subchondral bone plate represents the cortical matrix lying directly below the 

calcified cartilage and serves to support the overlying articular cartilage by transmitting 

loads of the joint to the underlying trabecular bone.53–55 Transitioning into a system of 
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cancellous bone, the subchondral trabecular bone acts as a dynamic structure, adjusting 

trabecular orientation, in order to adapt to mechanical forces acquired from the joint.5,56 

This ultimately provides important shock-absorbing properties in order to protect the 

articular cartilage.5,56 Additionally, the subchondral trabecular bone is metabolically 

active as it is occupied with vascularized networks that provide a direct link between 

articular cartilage and subchondral bone in order to supply nutrients.5,53 Overall, the 

biomechanical and biochemical cross-talk amongst the osteochondral junction, may play 

a role in the maintenance and degeneration of the joint.52 Bone modifications associated 

with OA include sclerosis, development of osteophytes at the joint margin, formation of 

subchondral bone cysts, and due to abnormal bone remodeling, the subchondral bone is 

hypomineralized.56 These pathological changes will be further highlighted in a later 

section. 

 

1.3 Knee Joint Pathology 

Knee OA is characterized as a chronic and slowly progressive disease that is commonly 

classified as a degenerative wear and tear disorder of the joint.47,57 However, it is gaining 

acceptance that it is a condition that is also associated with biochemical and 

biomechanical alterations in the knee joint, eliciting pro-inflammatory mediators.58–61 

Pathologically, late-stage OA is distinguishable by inflammation of the synovium, 

destruction of articular cartilage, sclerosis of the subchondral bone, and osteophyte 

formation at the margins of the joint, overall affecting the entirety of the joint tissue.47 
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Moreover, OA can result in total joint failure and the components driving pathogenesis 

will be further outlined below. 

 
Figure 4: Image comparing a healthy knee joint versus an osteoarthritic knee joint, in which common 

pathological features such as cartilage loss, joint space narrowing, and osteophyte formation are depicted.62 

 

1.3.1 Articular Cartilage Degradation and Synovitis 

It is established that knee OA is a degenerative disease that results in damage to the joint 

tissues; however, ongoing investigations are examining the biochemical and molecular 

mechanisms that drive pathogenesis. It has been found that various associated pathways 

direct the irregular modifications of the joint tissues, in which a cycle of pro-

inflammatory mediators elicit responses in the articular cartilage, subchondral bone, and 

synovium.47,61  

 

Responsible for the smooth articulation of the joint and mechanical distribution of loads 

to the underlying subchondral bone, the articular cartilage structure and function is 

regulated by chondrocytes that maintain the extracellular matrix (ECM) and tissue 

homeostasis. In a healthy and normal physiologic condition, chondrocytes are in a resting 
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and quiescent state; however, due to their receptors for ECM components, they undergo 

phenotypic alterations and become activated in response to external stimuli and tissue 

damage.6,44,63 It should be noted that the exact activation mechanism is not fully 

understood, although hypotheses indicate that age-related changes in ECM molecules and 

inflammatory stimulations may directly activate chondrocytes.63,64 Activation of 

chondrocytes by mechanical and inflammatory stimuli occurs mainly through the NF-κB 

and MAPK pathways, which results in a loss of ECM homeostasis and is distinguished 

by cell proliferation, cluster formation, increased propagation of matrix-degrading 

enzymes, and upregulation of pro-inflammatory mediators.6,63,65 The principle matrix-

degrading components established in OA are aggrecanases and collagenases, comprising 

the matrix metalloproteinase (MMP) family, which are enzymes that cooperatively 

function to degrade components of the ECM.6,64,66,67 It has been determined that matrix 

degradation in early OA stages may be due to MMP-3 and ADAMTS-5, which function 

to degrade aggrecan, the major proteoglycan of articular carrilage.6 As OA progresses, it 

has been established that increased activity of MMP-1 and MPP-13 is provoked, in which 

these components are extremely proficient in degrading collagen, the essential and major 

ECM constituent, by cleaving the fibril structure.6,66,68 More specifically, MMP-1 is 

implicated in the degradation of collagen types I, II, and III while MMP-3 is capable of 

damaging several extracellular molecules, comprising of collagen types II, III, IV, IX, 

and X, fibronectin, and various proteoglycans.67 In addition, it has been shown that 

MMP-3 has the ability to upregulate the expression of other MMPs.67 MMP-13 has a 

foremost ability to cleave collagen type II and therefore is commonly utilized as a 
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biomarker for the detection and study of osteoarthritis.67 Due to the matrix-degrading 

components that are stimulated from activated chondrocytes, OA results in progressive 

cartilage degradation. This is characterized by fibrillation and destruction of the articular 

surface and loss of proteoglycan content, overall reducing the compressive stiffness and 

the lubricating nature of the tissue.44 Furthermore, the joint space narrows and the 

articulating surface is no longer smooth which ultimately leads to additional pain to the 

patient as the bones begin to rub together. 

 

While OA traditionally has been viewed as a disease of the articular cartilage with 

accompanying subchondral bone involvement, it  is now recognized to be more complex 

as modern imaging modalities and increasing evidence suggests that synovitis and 

resulting pro-inflammatory mediators play a crucial role in the pathogenesis of OA.61 In 

addition to activated chondrocytes, it has been established that resident synoviocytes 

from the synovium illicit pro-inflammatory mediators that progress the pathogenesis of 

OA. Inflammation of the synovium involves the infiltration of mononuclear cells, such as 

macrophages and lymphocytes, into the synovial membrane and production of various 

pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin 

1β (IL-1β), chemokines, toll-like receptors (TLRs), and MMPs.47,65 Osteoarthritic 

changes that are observed histologically in the synovial membrane contain characteristics 

indicative of an inflammatory response, such as synovial lining hyperplasia, villous 

hyperplasia, fibrosis, and infiltration of macrophages which can form clusters of 

multinucleated giant cells (MGCs) for enhanced phagocytosis.7,61,69 Under normal 
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conditions, synovial fluid components such as lubricin and HA are not permeable through 

the synovial membrane due to their high molecular weight, while smaller molecules, such 

as growth factors, readily diffuse.7 This permits the preservation of lubricating molecules 

within the joint, while blocking plasma proteins from entering and accumulating on the 

articular surface; however, when synovial inflammation and hyperplasia occur, the 

membrane permeability is changed. This alteration leads to decreased concentrations of 

lubricin and HA observed in synovial fluid.7 Additionally, it has been observed that the 

presentation of synovitis varies with disease extent and associated structural changes in 

other joint tissues; however, it is established that the existence of synovitis in OA is 

coupled with increasing pain and joint dysfunction.7,59 Recent investigations have offered 

insight into the various pathways and mechanisms motivating the progression of 

synovitis in OA and will be furthered detailed below. 

 

In response to cellular stress and ECM damage that occurs in an osteoarthritic joint, 

immune system activation ensues via damage-associated molecular patterns (DAMPs).7 

This activation stimulates pattern recognition receptors known as toll-like receptors 

(TLRs) in  response to tissue damage, and is a crucial impetus for NF-κB initiation and 

successive production of various pro-inflammatory mediators such as cytokines and 

chemokines.6,7,10 This can be further visualized from the schematic depicted in Figure 5 

below. It should be noted that the governing mechanisms implicated in TLR activation is 

not fully understood and their function in stimulating synovitis in OA is under 

investigation. The processes driving inflammation in OA are complex and there are 



 18 

numerous pro-inflammatory cytokines that are measurable in the synovial fluid and joint 

tissues, therefore, the foremost mediators, IL-1β and TNF-α, will be discussed.  

 

The cytokine IL-Iβ results in suppression of collagen and aggrecan synthesis, while 

promoting upregulating matrix-degrading components, ADAMST and MMPs.7,9,44,65 

Additionally, it has been found that chondrocytes exposed to IL-1β undergo apoptosis 

more readily and IL-1β initiates the production of reactive oxygen species (ROS) that 

causes destruction of the articular cartilage.9,65 Along with synoviocytes, IL-1β may be 

synthesized by chondrocytes and macrophages, in which its activation causes a cyclic 

expression of other inflammatory mediators, causing a cascade of inflammation, and 

ultimately damages the joint tissues further.6,9,44  

 

In addition to IL-1β, the cytokine TNF-α is evident in the synovial membrane of OA 

patients, and is a predominant mediator of inflammation.7,9,60 TNF-α has the unique 

capability to bind to two membrane receptor superfamily isotypes, TNF-R1 and TNF-R2, 

both of which participate in signal transduction to activate various pathways, such as NF-

κB, that stimulate an inflammatory response observed in the synovium.9 Furthermore, 

TNF-α is associated with downstream cellular targets such as TNF receptor associated 

death domain protein (TRADD) and fas-associated protein with death domain (FADD), 

that further initiates cellular death.9 In addition to synovial inflammatory effects, TNF-α 

inhibits chondrocyte synthesis of proteoglycan components and type II collagen, while 

also inducing chondrocyte apoptosis, affecting articular cartilage integrity.9,70 Overall, the 
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effect of TNF-α concurs with the influences of IL-1β as both result in the initiation of 

similar components of signaling pathways to activate inflammatory responses, ultimately 

driving the pathogenesis of OA.7  

 

In addition to the main cytokines that illicit inflammation in the joint, chemokines are 

small molecules that play a vital function in mediating recruitment of inflammatory cells. 

Chemokines mainly function by binding to G-protein coupled cell-surface receptors that 

activate signal transduction pathways.10 Highlighting key chemokines observed in the 

mediation of OA pathogenesis, chemokine ligands 2, 5, 7, and 19 (CCL-2, -5, -7, -19) are 

associated with recruitment of inflammatory infiltrates, such as macrophages.7,10 

Additionally, synoviocytes express chemokine receptor 7 (CCR-7) which mediates the 

upregulation of vascular endothelial growth factor (VEGF) in response to CCL19, 

indicating angiogenesis.7 It has also been found that CCL2 involvement with its receptor 

CCR2, increases MMP expression, inducing cartilage ECM loss.10,71 In addition to 

synovial cell expression, evidence has shown that chondrocytes express CXC chemokine 

ligand 12 (CXCL-12) that also stimulates MMPs and other catabolic mediators, 

ultimately affecting tissue integrity.10 Overall, the various chemokine families involved in 

the inflammatory response illustrates the complicated mechanisms that play a role in OA 

pathogenesis. 

 

In conclusion, synovial lining hyperplasia, fibrosis, and infiltration of mononuclear cells 

are hallmarks of synovial inflammation in OA, which ultimately contributes to the 
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progression of cartilage loss as well as symptoms of the disease, including joint pain, 

swelling, and stiffness.61 Moreover, the molecular cross-talk of pro-inflammatory 

mediators between cartilage and synovium could influence the impact of underlying OA 

development and pathogenesis in which cartilage damage in turn intensifies synovial 

inflammation and vice versa, creating a destructive cycle.72 

 
Figure 5: Schematic of the NF-κB signaling pathway initiated from mechanical stimuli and cytokines TNF-α and 

IL-1β, which further induces an up-regulation of pro-inflammatory mediators and degradation components.73 
 

1.3.2 Subchondral Bone Sclerosis and Osteophyte Formation 

The subchondral bone is a vascularized tissue that has vital shock-absorbing properties 

and is in close association with the articular cartilage via the osteochondral junction, in 

which a cross-talk between the two tissues plays a role in the maintenance of the joint.5 

As articular cartilage degradation occurs due to progressive OA pathogenesis, loads 
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experienced by the joint are changed and are transferred more readily to the subchondral 

bone. The repetitive and increased load placed on the subchondral bone results in 

abnormal remodeling and high bone turnover, which is initiated at sites of local bone 

damage.5,47 This irregular bone remodeling results in thickening, which along with 

damage to the bone, leads to pain for patients and is a key hallmark of OA. Furthermore, 

as the subchondral bone is a dynamic stress-bearing structure that functions to distribute 

mechanical loads across the joint surface, hardened subchondral bone may result in 

increased loads being experienced by the remaining overlying cartilage, leading to 

additional cartilage damage.5  

 

Although the biomechanical relationship between subchondral bone and articular 

cartilage is well established, the direct molecular interaction between the two tissues are 

still under investigation.74 However, recent studies are establishing that as tissue 

homeostasis is disrupted due to effectors of OA, the metabolically active subchondral 

bone plays a role in the progression of the disease as channels via the tidemark are 

permitting the release and transport of pro-inflammatory cytokines to the cartilage.74,75 

This exchange of mediators is permitted due to the alteration of the calcified cartilage and 

subchondral bone plate permeability, ultimately allowing communication between 

subchondral bone and cartilage.5  

 

It has been determined that increased remodeling and thickening of the subchondral bone 

is a determining factor of OA propagation in humans; however, various animal models 
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show varying results in subchondral bone and plate changes. In one specific study 

performed on canines, increased porosity and thinning of the subchondral cortical bone 

plate was observed along with increased bone volume fraction and trabecular thickness of 

the subchondral trabecular bone.5,76 Contrastingly, other animals, such as rabbits, 

displayed a thickening of the plate with OA progression, as well as decreased bone 

volume fraction of the subchondral bone.5,77 A recent study utilizing Micro-Computed 

Tomography on Dunkin Hartley Guinea Pigs observed decreased bone volume fraction 

and increased trabecular thickness of the subchondral bone along with an increase of 

cortical thickness with progressive OA.78 The varying outcomes of subchondral bone and 

plate alterations in different animal models have resulted in convoluted inferences on its 

effect on progression of OA. Therefore, further investigations on the underlying 

mechanisms of subchondral bone remodeling is necessary in vivo. Moreover, it has been 

determined in humans that the subchondral bone plays a role in the pathogenesis of OA 

with convincing evidence that alteration of the bone results in further cartilage 

destruction. However, despite the changes observed in subchondral bone in association 

with OA, there is a deficiency in the clear understanding of the underlying biochemical 

and biomechanical mechanisms driving pathogenesis.  

 

In addition to sclerosis, the abnormal remodeling of the subchondral bone results in 

osteophyte formation at the margins of the joint. Development of osteophytes are 

initiated as a repair mechanism by the joint in order to aid in stabilization.44 The 

mechanism regulating osteophyte formation is currently unknown, but is hypothesized to 
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be due to irregular production of growth factors, such as bone morphogenetic protein two 

(BMP-2).44 It has also been observed that osteophytes are the result of chondrogenic 

differentiation and subsequent endochondral ossification of recruited mesenchymal stem 

cells in the periosteum.44,64 Overall, osteophyte formation leads to pain and decreased 

joint motility to patients. 

 

1.3.3 Implications of OA Pathogenesis  

It has been established that the inflammation of the synovium and alterations of the 

subchondral bone plays a role in the degradation of the articular cartilage. However, due 

to the lack of intrinsic repair of the articular cartilage, once the collagen and proteoglycan 

ECM is damaged, it cannot be naturally reversed. The pro-inflammatory interactions 

between tissues of the joint result in a vicious cycle of destruction and it is therefore it is 

crucial to investigate therapeutic interventions that can both reduce symptoms of OA and 

aid in mitigation of further damage to the joint.  

 

1.4 Animal Models of Osteoarthritis 

1.4.1 Introduction and Purpose for Utilization of Animal Models 

In order to replicate the progression of degenerative damage, as observed in OA 

pathology, animal models aid in exhibiting symptoms of disease development in order to 

identify outcomes of novel treatment options.79,80 Animal models of OA are regularly 

utilized in investigating the common alterations of the joint, such as cartilage 
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degeneration, in a controlled manner, in which the models are allocated as induced or 

spontaneous.80,81,82  

 

Surgically induced models are commonly used in which alterations of the joint, including 

meniscal tears, ligament transections, and osteotomy, work to destabilize the joint and 

induce and replicate the onset of post-traumatic OA.79,80 Biochemical alterations, such as 

intra-articular injection of noxious agents, such as iodoacetic acid which functions to kill 

chondrocytes, are useful for studying matrix degeneration; however, is limited as a model 

as it is not fully representative of either spontaneous or post-traumatic OA progression.79–

81 Spontaneous or naturally occurring OA models are observed in particular species, in 

which the occurrence of slowly progressing OA simulates the natural progression of 

human OA.82 Transgenic models have also been developed via gene manipulation, 

especially in mice, to also mimic a slowly progressive model to more properly represent 

the human OA condition.80,81,82  

 

Moreover, animal models deliver clinically significant methods of studying the pathology 

as well as the response of treatment options for OA. The specific types of methods and 

the considerations in selecting the appropriate animal model will be furthered detailed in 

the sections below.  

 

1.4.2 Common OA Animal Models  
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OA models have been developed with utilization of both small and large animals.  

Smaller animals include rats, mice, rabbits, and guinea pigs, while larger animals 

comprise of horses, dogs, and goats, in which the choice of animal model depends on a 

variety of considerations. The common classes of in vivo OA models include naturally 

occurring or spontaneous models, comprising of genetically modified animals as well, 

and surgical and biochemical induction to provoke trauma to the joint.79 Animals are 

chosen to correspond with the specific OA model selected depending on the 

investigation; however, the “best” animal model for the study of OA has not been 

determined, and each contains its own advantages and disadvantages. 

 

Rabbits, sheep, dogs, mice, horses, and guinea pigs display naturally occurring OA, and 

give an optimal representation of progressive OA observed in humans. Additionally, the 

smaller animals of spontaneous OA become skeletally mature more rapidly compared to 

larger animals and display pathogenesis comparable to humans, ultimately promoting 

their use for investigating therapeutic strategies.80–82 Mouse models employed have the 

particular advantage of having the ability to be genetically modified to have susceptibility 

for OA. Transgenic mice have been used extensively to study the molecular foundation of 

OA, as knockout mice lacking a specific pro-inflammatory marker could lead to 

understanding the development of OA from a biochemical perspective.82  

 

Animal models used with surgical intervention are commonly used, as they ensure a more 

rapid study period while also providing highly reproducible results. However, this 
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invasive provocation may be too rapid to investigate early onset OA development and has 

shown to have no correlation to natural degenerative changes instigated by OA.81,82 

Therefore, utilization of this model is best suited for the study of post-traumatic OA 

alterations. The sheep or goat has been shown to be the ideal animal models for ACL 

transection, while the dog is most commonly used for a meniscectomies, due to their 

anatomical and mechanical similarities to humans.82 Additionally, mice are frequently 

used as biochemical induced animal models. This method involves the injection of 

inflammatory or toxic composites, such as collagenase, directly into the knee joint and is 

commonly used to examine the efficacy of drug therapies due to these constituents.79,82  

 

Overall, there are a variety of animal models that can be employed for the study of OA; 

however, there are important factors that must be taken into consideration when choosing 

the appropriate animal model, such as size, cost, and OA induction method, which will be 

furthered detailed below. 

 

1.4.3 Considerations in Determining Applicable Animal Models for OA 

Currently, each animal utilized for the study of knee OA has its own distinctive 

advantages and disadvantages, depending on the type of study and outcome 

measurements. It is therefore critical to identify the question under experimentation, in 

order to select a suitable animal model for investigation. Several key experimental 

elements to consider when selecting the appropriate animal includes: study length, ease 

of handling, cost, gender, induction method, anatomy, and biomechanics of the 
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animal.79,80,82,83,84 Each consideration contains its own stipulations, for example, the 

length of time needed to fulfill the study depends on the skeletal maturation of each 

animal, in which smaller animals may be more desirable as well as their low cost; 

however, large animals are most advantageous in terms of biomechanical loading 

similarities to humans.83 Table 1 indicates a general summary of the common small and 

large animals corresponding to their advantages and disadvantages as a model for OA 

experimentation.  

 

Table 1: Common animal models for investigation of OA. 

Animal  Advantages Disadvantages OA Model Type 

Mouse 

Low Cost  
Ease of 
handling/housing due 
to small size 
Early skeletal 
maturity (~10 weeks) 
[55] 

Thin cartilage with 
non-distinctive zones 
of cartilage 
Joint load-bearing 
biomechanics 
dissimilar to human  
 

Genetic 
manipulations  
Meniscal 
destabilization 
ACL transection 
Biochemical 
induction 
(Collagenase) [55] 
Spontaneous OA 

Rat 

Low Cost 
Ease of handling 
Early skeletal 
maturity (~3 months) 
[55] 

Small knee joint 
Post-operative control 
challenging [59] 

Meniscal 
destabilization 
ACL transection 
Spontaneous OA 
Biochemical 
induction (Iodoacetic 
Acid, Papain, 
Collagenase) [55] 
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Guinea Pig 

Low Cost 
Ease of handling  
Early development of 
spontaneous OA (~3 
months) 
Early skeletal 
maturity (~6 months) 
[55] 
Similar joint loading, 
anatomy, and 
histopathology to 
humans [59]  

Inactive lifestyle [59] 

Menisectomy 
ACL transection 
Osteotomy 
Patellectomy 
Spontaneous OA 
Biochemical 
induction (Iodoacetic 
Acid, Papain, 
Collagenase) [55] 

Rabbit Ease of handling 
 

Does not develop 
spontaneous OA 
Lateral compartment 
of knee is loaded, 
unlike human knee 
Histological 
dissimilar to human 

ACL transection 
Menisectomy 
Biochemical 
induction (Iodoacetic 
acid, Papain, 
Collagenase) 

Dog 

Feasible for 
arthroscopy and MRI 
Validated outcome 
measurements [59] 
Similar to human 
knee joint 

Late development of 
skeletal maturity (~18 
months) [55] 
Certain breeds are 
chondrodystrophic 
High cost 
Public inquiry  

Groove model [60] 
ACL transection 
Menisectomy 
Biochemical 
induction (Iodoacetic 
acid, Papain, 
Quinolones) 
Spontaneous OA 

Sheep 

Large knee joint 
Feasible for 
arthroscopy and MRI 
 
 

High cost 
Does not develop 
spontaneous OA 
Late skeletal maturity 
(~2 years) [55] 

Partial and total 
menisectomy 
ACL transection 

Horse 
Large knee joint 
Feasible for 
arthroscopy and MRI 

High cost 
Late skeletal maturity 
(~2 years) [55] 

Carpal fracture 
Osteochondral 
fragment exercise 
Spontaneous OA 

 

 

1.4.4 Dunkin Hartley Guinea Pig 
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Upon review of common animal models for OA investigation, the guinea pig presents an 

ideal model to evaluate spontaneous OA due to its unique set of advantages. The specific 

strain of guinea pig, the Dunkin Hartley Guinea Pig (DHGP), has been most commonly 

utilized and has shown to develop OA as early as three months of age, and therefore 

provides a feasible model for longitudinal studies.57,85,86 The DHGP has similar anatomy 

to humans, in which the diarthrodial joint comprises the same physiological structures, 

such as the meniscus, ligaments, synovium, cartilage, and bones.69 Additionally, DHGPs 

primarily load the medial compartment of the knee joint, while increased body weight 

and mechanical load increases the occurrence of the disease, similar to humans.57,69,80,85,87 

The biochemical and histological changes in DHGPs are similar to human OA as well, in 

which an established scoring system has been employed by the Osteoarthritis Research 

Society (OARSI).69,88 Furthermore, DHGPs are subject to a variety of well-recognized 

OA risk factors that are shared with humans such as cartilage degeneration, changes in 

subchondral bone. Moreover, their low cost, ease of handling, development of 

spontaneous OA at an early age, while also providing various biomechanical similarities 

to humans, yields the DHGP an ideal animal model to evaluate treatment efficacy for 

mitigation of OA. 

 

1.5 Use of Stem Cells for Therapeutic Treatment 

1.5.1 Introduction to Stem Cell-Based Therapy 

Although OA is considered a prevalent degenerative joint disease and a major cause of 

disability to patients globally, treatment options only work to alleviate the disorder. 
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Current medications do not restore the native structure or function of the joint tissues, 

such as damaged articular cartilage, and as a result, cell-based regenerative strategies 

have been developed as novel treatment options for OA. As a whole, cell-based treatment 

includes the method of introducing cells into tissues with the prospect to treat and 

mitigate degenerative disease.58 This innovative therapeutic approach has the potential to 

alter treatments from conservative management options to establishing a cure. Ongoing 

investigation utilizing regenerative cell-based therapy includes the involvement of tissue 

engineering and biomaterials, in which this conjunction has gained attention in modern 

healthcare and is projected to grow exponentially as an established treatment 

constituent.58 Overall, research in the field of stem cell-based therapy has been 

increasingly studied and has gained further attention due to promising results in various 

disorders such as neurodegenerative disease, osteoarthritis, retinal degenerative disease, 

and intervertebral disk disease, to highlight a few.89–92 Ultimately, the goal for stem cell-

based therapy is to utilize autologous or allogenic cells in order to replace diseased or 

absent cells and support regeneration of damaged tissue. Mesenchymal stem cells 

(MSCs) have shown to be an ideal source for cell-based therapy in various degenerative 

and inflammatory diseases due to their immunosuppressive and tissue repair 

capabilities.92,93 MSCs and their accompanying properties will be further highlighted 

below. 

 

1.5.2 Introduction to Mesenchymal Stem Cells 
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Mesenchymal stem cells (MSCs) are known as adult stem cells with the ability to self-

renew and differentiate into a variety of specialized cell types in appropriate culture 

conditions. Mesodermal lineage-specific differentiation of MSCs can lead to the 

production of osteocytes, adipocytes, and chondrocytes, in which their potential to 

produce bone, adipose tissue, and cartilage, makes them an ideal candidate for 

regenerative stem cell-based therapy.59,92,94  

 

Several investigations have concentrated on isolating MSCs from a variety of origins, in 

which the bone marrow is considered a primary source of adult stem cells, containing 

both hematopoietic stem cells (HSCs) and MSCs.58 However, the existence of MSCs in 

other tissues and organs have been identified, such as skeletal muscle, adipose tissue, 

liver, lung, and other connective tissues.58,95 Along with their ease of isolation and 

abundance, MSCs help to repair tissue via the secretion of growth and paracrine factors 

and immunomodulatory components such as cytokines.58,92,96 It has been shown that after 

in vivo administration, MSCs have the ability to inhibit the release of pro-inflammatory 

cytokines and promote the repair of damaged tissue.58 Furthermore, MSCs do not express 

major histocompatibility complex (MHC) class II on their cell surface, in which this 

absence allows allogenic transplantation of MSCs directly or via a tissue-specific scaffold 

to regenerate damaged tissues.92,93  

Although the distinctive qualities of MSCs may be promising as an ideal source 

for stem cell-based therapy, such as their immunomodulatory properties and potential for 

multiple lineages, there are associated challenges with their use. Poor delivery of MSCs 
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to target tissues, migration of MSCs systemically, and spontaneous differentiation of 

transplanted MSCs, have given varied results in stem cell-based therapy investigations 

and it is therefore crucial to continue studying the utilization of MSCs as a regenerative 

source.92,93 

 

1.5.3 Human Adipose Derived Stem Cells 

To highlight a MSC utilized in stem cell-based investigations, human adipose-derived 

stem cells (hADSCs) have gained heightened attention due to many of their unique 

properties. Along with the capacity to differentiate into multiple lineages, they are easily 

expandable and highly available without ethical concerns, overall making them a 

compelling stem cell source for regenerative opportunities.95,97  

 

Originating from human fat deposits, hADSCs can be isolated from adipose tissue 

obtained from minimally invasive techniques such as liposuction, capable of generating 

large amounts of aspirates.97,98 Although the MSCs that are derived from adipose tissue 

are more heterogeneous, containing endothelial, fibroblast, and immune cell populations, 

adipose tissue comprises greater densities of MSCs than bone marrow, while also 

showing enhanced proliferation.95,97–100 Along with their high yield, numerous studies 

have shown that hADSCs have the potential to differentiate into multiple cell types of 

mesodermal origin, such as adipocytes, osteoblasts, and chondrocytes, in which their 

transcriptional activation into these precise lineages are well known.98,101,102 Additionally, 

hADSCs can be cultured and expanded without losing their multipotent characteristics 
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with long-term stability.98 Although their potential has been shown in vitro, it is crucial to 

examine their properties in vivo in order to determine their efficacy for therapeutic 

applications to repair or regenerate tissues. In recent studies, hADSC injections in vivo 

have shown to have promising therapeutic effects for osteoarthritis by improving pain, 

function, and cartilage volume, however further investigation is necessary in order to 

obtain consistent results across ideal animal models, as well as to evaluate the therapeutic 

efficacy in the mitigation of osteoarthritis.103,104 

 

1.5.4 Human Amniotic Derived Stem Cells 

Deviating from adult mesenchymal stem cells, an alternative stem cell source that has 

been studied for regenerative applications are perinatal stem cells, which can be isolated 

from amnion and amniotic fluid, umbilical cord fluid, and placental tissue.105 Notably, 

these cells are harvested from tissues that are normally considered medical waste and are 

discarded after child birth, ultimately providing no risk to the mother or the newborn and 

avoiding ethical concerns.106 It is hypothesized that placental tissues contain cells that 

have preserved plasticity of early pre-gastrulation embryonic cells as they are derived 

from the initial phases of embryonic development, therefore, perinatal stem cells 

represent an intermediate cell type between pluripotent embryonic stem cells and 

multipotent adult mesenchymal stem cells, with the ability to differentiate into 

mesodermal lineages.106,107 Additionally, it is suggested that perinatal stem cells may 

have immunomodulatory features, as the placenta is essential for supporting the 

biological communication between mother and fetus.107 Recent in vitro studies targeted 



 34 

the underlying immunomodulatory effects of human amniotic stem cells (hAMSCs) after 

allogenic and xenogenic transplantation, and found no provoked immune response.100,108–

110 Ultimately, immune-privileged properties would support the potential for allogenic 

transplantation in clinical applications. Additionally, in evaluation against hADSCs, 

hAMSCs demonstrated a higher differentiation ability toward cartilage and bone in vitro, 

while also containing more chondro-protective effects in an OA co-culture model, in 

order to mitigate cartilage damage.111,112 Further evaluation of hAMSCs in an in vivo 

model is essential in order to determine the therapeutic efficacy towards the mitigation of 

osteoarthritis. 

 

1.6 General Overview of Performed Studies 

Overall, tissue engineering and regenerative medicine strategies integrate a combination 

of approaches that include either the isolated use of cells at the damaged tissue site or 

incorporation of a three-dimensional cell-seeded scaffold in order to provide functional 

and mechanical features of the native tissue. The studies performed herein involved direct 

injection of adult human adipose-derived stem cells (hADSCs) and perinatal human 

amniotic-derived stem cells (hAMSCs) into the knees of an ideal in vivo model. Various 

outcome measures were performed and analyzed in order to evaluate the effects of both 

stem cell treatments and compare the therapeutic efficacy to mitigate osteoarthritis. 

1. White  
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CHAPTER TWO: 

AIM 1 

2.1 Introduction and Purpose 

Osteoarthritis (OA) is the most common arthritic joint disease in the United States, in 

which 34%-40% of the United States population over the age of 65 is affected.6,8 Knee 

OA, specifically, is characterized as a multifaceted disease in which the foremost 

pathologic changes include degeneration of the articular cartilage, subchondral bone 

remodeling, formation of osteophytes, and inflammation of the synovium.6,8,63,113 The 

increased biomechanical stresses imposed on the joints as well as an upregulation and 

molecular cross-talk of pro-inflammatory mediators, such as TNF-α and IL-1β, causes a 

vicious cycle of destruction to the entire joint, ultimately leading to pain for the 

patient.6,63,72 Despite the debilitating symptoms of the disease, there is currently no cure 

for OA, and patients are only offered palliative treatment options, such as medication, 

and in more severe cases, surgical alternatives such as total joint replacement. 

Additionally, the articular cartilage lining the bones of the joints, have limited intrinsic 

repair and self-healing capabilities due to its hypoxic nature.26,50 Therefore, there is a 

crucial need to develop novel stem cell-based regenerative strategies to treat OA and 

assist in mitigation of disease pathogenesis. Various stem cell therapies have been 

utilized in different animal models of OA, and are usually intra-articularly injected into 

the knee joint. Investigations have found that stem cell therapies yielded superior 

outcomes in comparison to autologous transplantation of chondrocytes; however, to date, 

amniotic stem cells have yet to be tested in vivo as an OA therapeutic source.114,115 
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Previous in vitro explant co-culture studies have shown that human amniotic stem cells 

(hAMSCs) demonstrated a superior ability to effectively inhibit OA progression by 

demonstrating more chondro-protective characteristics compared to human adipose-

derived mesenchymal stem cells (hADSCs).111 To further these previous findings, the 

objective of this aim was to evaluate and compare the use of hAMSCs and hADSCs in 

vivo, in order to evaluate their efficacy in alleviation of OA progression. The studies 

performed herein include intra-articular injection of hADSCs and hAMSCs into the rear 

knee stifles of Dunkin Hartley Guinea Pigs (DHGPs), an animal model that develops 

spontaneous knee OA. Subsequent outcome measurements included the use of imaging 

modalities and biochemical, molecular, and histological assessments, in order to evaluate 

the effects of hADSCs and hAMSCs on the osteoarthritic joint.  

 

The specific outcome measurements included the use of Micro-Computed Tomography 

(Micro-CT) to non-destructively obtain high resolution 3-dimensional (3-D) 

reconstructed images of the DHGP knees to assess morphologic changes of the 

subchondral bone. Biochemical analysis included Dimethymethylene Blue Assay 

(DMMB) in order to rapidly detect and evaluate glycosaminoglycan (GAG) 

concentration from the articular cartilage of the DHGP knees. Immunohistochemistry 

was utilized to detect macrophages in the synovium in order to evaluate the degree of 

synovial inflammation, as macrophages are the foremost components in the initiation and 

maintenance of the inflammatory process.116 Histological assessment of the DHGP knee 
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included the use of Hematoxylin and Eosin, Toluidine Blue, and Safranin-O stains in 

order to semi-quantitatively grade the degree of alterations in the synovium and articular 

cartilage. Grading was accomplished via 2 blinded observers and guidance from the 

Osteoarthritis Research Society International (OARSI) scoring recommendations.69 

Additionally, a competitive Enzyme-Linked Immunosorbent Assay (ELISA), targeting 

Guinea Pig Immunoglobulin G (IgG), was performed on the DHGP blood in order to 

evaluate for potential immunogenic reaction from the injected human stem cells.  

 

Evaluating the outcome measurements performed herein allows for a greater 

understanding and insight into the therapeutic mechanisms and potential clinical efficacy 

of these stem cells as a novel stem cell-based regenerative treatment for OA.  

 

2.2 Materials and Methods 

Human adipose-derived stem cells (hADSCs) were obtained from Invitrogen (R778810). 

Human amniotic-derived stem cells (hAMSCs) were harvested and isolated from human 

placentas following child birth from consenting patients (IRB Protocol: PRO31185—

Greenville Heath System). All cell counts were performed with the TC20 Bio-Rad 

Automated Cell Counter with use of Trypan Blue purchased from Lonza (17-92E). Cell 

culture media for hAMSCs included Dulbecco’s Modified Eagle’s Medium (DMEM) 

purchased from Corning (10-D14-CM) with Fetal Bovine Serum (S1150H) purchased 

from Atlanta Biologicals and Antibiotic Antimycotic (300040CI) purchased from 

Corning. Cell culture media for hADSCs included MesenPro Basal Medium with growth 
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supplement (12747-010) purchased from Gibco. Trypsin was purchased from Corning 

(25053CI). Three month old Dunkin Hartley Guinea Pig (n=24) cohorts were obtained 

from Charles River Laboratories conferring to Clemson University’s Institutional Animal 

Care and Use Committee (IACUC) approval (protocol number 2016-040). Sodium 

Hyaluronate was purchased from LifeCore Biomedical (HA700K-1) and sterile filtered 

with an Acrodisc 25mm Syringe Filter (4612) containing a 0.2µm filter membrane 

purchased from Pacc. Dimethyl-Methylene Blue (DMMB) Zinc powder (3410881), 

Chondroitin Sulfate (C4384), and Papain (P4762) was purchased from Sigma-Aldrich. 

Substances for DMMB Assay reagents included Dibasic Sodium Phosphate purchased 

from RMO Chemicals (SXO7201), L-Cysteine purchased from AMRESCO (J994), 

Ethylenediaminetetra Acetic Acid (EDTA) purchased from Fisher Scientific (BP118), 

Glycine purchased from Alfa Aesar (A13816), and Sodium Chloride purchased from 

VWR (7647-14-5). Formalin fixation of tissues was performed with 10% Phosphate 

Buffered Formalin purchased from Newcomer Supply (1090N). Bone decalcification was 

performed with Formic Acid purchased from Stat Lab (1414-1), in which Ammonium 

Hydroxide purchased from VWR (1336-21-6) and Ammonium Oxalate purchased from 

Poly Scientific (S2337-160Z) was used for confirmation of decalcification. Tissue Trek 

Automated Tissue Processor was used for all tissue processing. Leica RM 2155 

Microtome was used for all tissue sectioning. Histological stains included Safranin-O 

(S8884) and Fast Green (F7258), both purchased from Sigma-Aldrich, Weigert’s 

Hematoxylin Solution A and B (S216BA; S216BB) purchased from Poly Scientific, 

Glacial Acetic Acid (BP1185) purchased from Fisher Scientific, Toluidine Blue (E847) 
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purchased from VWR, and both Hematoxylin (7211) and Eosin-Y (71311) purchased 

from Thermo Fisher Scientific. All histological and cytological images were captured on 

a Zeiss Axiovert.A1 microscope in conjunction with Axiovision Software. Bruker 1176 

Micro-Computed Tomography (Micro-CT) x-ray imaging system was used for all Micro-

CT scans and image reconstructions. Enzyme-Linked Immunosorbent Assay (ELISA) 

was performed with the use of Guinea Pig IgG ELISA Kit purchased from LifeSpan Bio 

(LS-4435) according to the manufacturer’s instructions. Immunohistochemistry (IHC) 

evaluation utilized a monoclonal Mouse Anti-Guinea Pig Macrophage primary antibody 

purchased from Bio-Rad (MCA518S). Secondary Anti-Mouse IgG antibody was 

purchased with Vecastain Elite ABC Kit from Vector Laboratories (PK-6100). 

Diaminobenzidine (DAB) Peroxidase Substrate Kit (SK-4100) and Avidin Biotin 

Blocking Kit (SP-2001) was also purchased from Vector Laboratories. Background 

Buster Blocking Agent was purchased from Innovex Biosciences (NB306). Citric Acid 

Monohydrate (A104-500), Sodium Azide (S2271-25), and Bovine Serum Albumin 

(BP9703-100) were purchased from Fisher Scientific. TritonX-100 was purchased form 

Alfa Aesar (A16046). 3% Hydrogen Peroxide was purchased from Publix. Dulbecco’s 

Phosphate Buffered Saline (PBS) was purchased form Corning (55-031-PC).  

 

2.2.1 Stem Cell Preparation and Injection 

Twenty-four Dunkin Hartley Guinea Pigs (DHGPs) were allowed 14 days upon arrival to 

acclimatize to the Godley Snell Research Facility at Clemson University. Approximately 

5x105 hAMSCs or hADSCs (Passage 2) were re-suspended in 100µl of sterile medical 
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grade 0.5% sodium hyaluronic acid (HA). Direct intra-articular injection of 

hAMSCs+HA (n=8) and hADSCs+HA (n=8) treatments, as well as an HA-only vehicle 

control (n=8), were performed on the rear knee stifles of the DGHPs via a 28-gauge 

syringe needle and under ultrasound guidance. The needle was inserted posterior to the 

medial compartment of the patellar ligament, through the junction formed by the 

epicondyle of the femur and the tibial plateau. Additionally, all treatments were paired 

with a bilateral 100µL phosphate buffered saline (PBS) injection as a 

negative/degenerative control. Figure 6 below displays a schematic of the injection 

procedures and the corresponding groups. All DHGPs remained under anesthesia via 

isoflurane during all injections. Injections began at three months of age and were 

performed every two months until euthanasia was performed at nine months of age. All 

injection methods were approved via the Animal Care and Use Protocol and the 

Institutional Animal Care and Use Committee (IACUC) at Clemson University.  

 
Figure 6: Injection method of saline and treatments in the DHGP. 

 

2.2.2 Dunkin Hartley Guinea Pig Harvest 
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Ensuing euthanasia, knee joints were exposed and dissected as shown in Figure 7. Half of 

the paired knee joints (n=24) were immediately snap frozen in liquid nitrogen and stored 

at -80°C until ready for biochemical analysis, while the other half (n=24) were placed in 

10% formalin for sample fixation. Figure 8 displays the experimental design schematic 

for the subsequent outcome measures performed. 

 
Figure 7: Harvest of DHGP knee. 

 

 
Figure 8: Experimental design schematic of outcome measures performed. 
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2.2.3 Dimethyl-Methylene Blue (DMMB) Assay 

All snap-frozen knee samples (n=24) were taken out of -80°C and thawed at room 

temperature. Exposure of the cartilage surfaces of the femoral condyles and tibia plateaus 

was accomplished via dissection of the tissue and can be visualized in Figure 9 below. 

Once this was accomplished, the surfaces of the medial and lateral compartments of the 

femur and tibia were scrapped with a Meyer-Hoffer 1.5mm curette to obtain flakes of 

cartilage. Five to seven scrapes were performed in order to maintain consistent sample 

amount. Cartilage samples were placed in pre-weighed 1.5mL micro centrifuge tubes 

containing perforated caps and were then placed in -80°C for 24 hours. After freezing, 

samples were dehydrated immediately via lyophilization for 48 hours. Following, 

perforated tops of the tubes were substituted with original caps and were weighed in 

order to obtain dry weights of the cartilage samples. The samples were then placed in 

250µL of papain (pH 6.5) at 65°C for 24 hours to allow for tissue digestion in which the 

samples were periodically vortexed to accelerate this process. Once the samples were 

completed digested they were diluted (50x) in PBE buffer in preparation for the DMMB 

Assay. Specified volumes of Chondrotin-6-Sulfate (CS) with PBE buffer was transferred 

to the wells of a 96-well plate in triplicate to generate a standard curve of known 

concentrations of glycosaminoglycan. Additionally, 50µL of diluted samples were 

pipetted into separate wells in triplicate. Once all wells were prepared with samples, 

200µL of DMMB Reagent (pH 3.0) was transferred to each well. The plate was 

immediately read via a plate reader at an absorbance of 525nm. The linear standard curve 

(R2 value>0.98) was generated by plotting the mean absorbance for each standard versus 



 43 

corresponding CS concentrations. Triplicate readings of samples were then averaged, 

multiplied by the dilution factor, and were normalized to their respective sample dry 

weight in order to obtain GAG concentrations. 

 
Figure 9: Dissected and exposed femoral condyle (A) and tibial plateau (B) surfaces of DHGP knee in 

preparation for cartilage scrapping for DMMB Assay. 

 

2.2.4 Micro-Computed Tomography (Micro-CT) 

All formalin fixed knee samples (n=24) were scanned via the Bruker 1176 Micro-CT 

imaging system using SkyScan Software. Once the x-ray was turned on and initialized, 

preliminary scout scans were performed in order to determine optimal filter and 

acquisition settings for the knee samples. Final filter settings included aluminum and 

copper with an x-ray setting of 80kV and 309μA. Final scan settings included: pixel size 

of 18µm, rotation step of 0.5, and frame average of 3. Once all scans were completed, 

NRecon Software was used in order to reconstruct the images in batch mode. Again, 

settings and parameters were optimized for the knee samples, in which post alignment 

was set at -1.5, beam hardening correction at 30%, smoothing level of 2, and ring artifact 

correction at 10. CS rotation was used in order to ensure proper alignment of the scanned 
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image. Once all samples were reconstructed, CTan Software was used to obtain 3D 

morphometric parameters from selected regions of interest (ROI). A 2.0 x 2.0 x 1.0mm 

rectangular box in the center of the plateaus was selected as the ROI for the subchondral 

trabecular bone of the tibia medial and lateral compartments.  

 
Figure 10: Dissected DHGP knee joint placement in Micro-CT bedding in preparation for imaging. 

 

2.2.5 Histology  

Upon sample fixation, total decalcification of knee joints (n=24) was performed for 2 

weeks in formic acid, with solution changes occurring every 3 days. Following complete 

decalcification, knee joints were processed for 36 hours and immediately embedded in 

paraffin. All knee samples were sectioned at 8µm and subsequently baked overnight in an 

oven at 55°C to ensure adherence to the histology slide. Following, all slides were 

deparaffinized and hydrated through a series of xylene, ethanol, and distilled water 

washes. 
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2.2.5.1 Safranin-O Staining 

Once deparaffinized, slides underwent a 10-minute incubation in Weigert’s 

Hematoxylin solution followed by a 10 minute wash step in tap water. Slides were 

then incubated in Fast Green solution for 5 minutes followed by an acetic acid 

rinse for 15 seconds. After, slides were placed in Safranin-O solution for 5 

minutes and subsequently dehydrated and cleared in a series of ethanol and xylene 

rinses. Slides were cover slipped with mounting media and left to dry for 2 hours 

before microscopic imaging.   

 

2.2.5.2 Toluidine Blue Staining 

Once deparaffinized, slides underwent a 3-minute incubation in Toluidine Blue 

solution containing sodium chloride followed by a distilled water rinse. After, the 

slides were dehydrated and cleared in a series of ethanol and xylene rinses. Slides 

were cover slipped with mounting media and left to dry for 2 hours before 

microscopic imaging. 

 

2.2.5.3 Hematoxylin and Eosin Staining 

Once deparaffinized, slides underwent an 8-minute incubation in Hematoxylin 

solution followed by a tap water rinse. Slides were then dipped in Clarifier 

solution 5 times and was rinsed with tap water after. The slides were then placed 

in Bluing Reagent for 1 minute, again followed by a tap water rinse. Following, 

slides were placed in Eosin solution for 45 seconds and were then dehydrated and 
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cleared in a series of ethanol and xylene rinses. Slides were cover slipped with 

mounting media and left to dry for 2 hours before microscopic imaging.  

 

2.2.5.4 Histological Grading 

 Semi-quantitative histological assessment of OA in DHGP knee joints 

stained with Toluidine Blue and Safranin-O was performed from a system 

recommended by the Osteoarthritis Research Society International (OARSI).69 

Images were assessed via a modified Mankin Grading Scale provided by OARSI 

shown in Tables 2-4. Two blinded observers scored the images and evaluations 

were then averaged to obtain final grading in which higher scores indicate 

increasing severity of OA. Hematoxylin and Eosin stained knee joints were 

evaluated for synovial hyperplasia via semi-quantitative cellularity analysis, in 

which representative synovium sections were counted for cell infiltration. 

 

Table 2: Recommended semi-quantitative histologic DHGP knee joint scoring system for articular cartilage 
structure.69 

Parameter 
 

Grade Description 

Articular Cartilage Structure 0 Normal, smooth, 
uninterrupted surface 

1 Mild surface irregularities 
(undulations) 

2 Irregular surface, 1-3 
superficial clefts 
(fissures) 

3 >3 fissures and/or loss of 
cartilage in the superficial 
zone 

4 1-3 fissures extending 
into the middle zone  
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5 >3 fissures and/or loss of 
cartilage extending into 
the middle zone 

6 1-3 fissures extending 
into the deep zone 

7 >3 fissures extending into 
the deep zone and/or loss 
of cartilage to deep zone 

8 Fissures or loss of 
cartilage extending to the 
zone of calcified cartilage 

 

Table 3: Recommended semi-quantitative histologic DHGP knee joint scoring system for proteoglycan content.69 

Parameter Grade Description 
Proteoglycan Content  0 Uniform throughout 

articular cartilage 
1 Decreased in superficial 

zone only and for <half 
the length of the condyle 
or plateau 

2 Decreased in superficial  
zone for half the length or 
greater of the condyle or 
plateau 

3 Decreased in superficial  
and middle zones <half 
the length of the condyle 
or plateau 

4 Decreased in superficial  
and middle zones half the 
length of the condyle or 
plateau 

5 Decreased in all 3 zones 
for <half the length of the 
condyle or plateau 

 6 Decreased in all 3 zones 
for half the length of the 
condyle or plateau 
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Table 4: Semi-quantitative histologic DHGP knee joint scoring system for synovial membrane hyperplasia.69 

Parameter Grade Description 
Synovial Membrane 
Hyperplasia  

0 Decrease in the number 
of lining cells 

1 Normal (1-2 layers of 
cells) 

2 Slight increase in number 
of layers (4-6) 

3 >6 layers of lining cells 
4 Increase in lining cells 

with inflammatory cells 
present 

 

 

2.2.6 Enzyme-Linked Immunosorbent Assay (ELISA) 

Cardiac puncture on 12 DHGPs was performed to obtain blood from the heart 

(approximately 8mL of blood obtained). Blood samples were placed in a serum separator 

tube that was immediately centrifuged at 3500rpm for 10 minutes to acquire serum. 

ELISA on serum samples was performed with a competitive Guinea Pig IgG ELISA kit 

and per manufacturer’s instructions. A competitive ELISA indicates that the greater 

amount of antigen in the sample will produce a lower color development and Optical 

Density (OD) reading. Each well of the supplied microtiter plate was pre-coated with a 

target specific capture antibody and all reagents utilized (Wash Buffer, Horseradish 

Peroxidase (HRP)-conjugate, TMB substrate, and Stop Solution) were provided by the 

kit. Once all reagents were prepared, a standard curve was generated with stock solutions 

and sample diluents provided by the kit with known concentrations of target antigen. The 

standard curve dilution series was transferred to the wells of the microtiter plate in 

duplicate. Serum samples were then prepared and diluted (1:2,500), as per manufacturer’s 
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recommendation for serum samples, in order to fall within the standard curve and 

transferred to the microtiter plate in duplicate. Once the standard curve and samples were 

plated, 50µL of HRP-conjugate was added to each well and the plate was incubated for 

60 minutes at 37°C. The liquid was then removed and washed with 350µL of Wash 

Buffer 5 times with a multi-channel pipette. Following, 90µL of TMB Substrate was 

added to each well and the plate was incubated in the dark for 20 minutes at 37°C. After, 

50µL of Stop Solution was added to each well in the same order and timing as the TMB 

Substrate solution. The OD of each well was determined via immediate use of a 

microplate reader at an absorbance of 450nm. The standard curve was generated by 

plotting the mean absorbance for each standard versus the corresponding antigen 

concentrations in which the data was linearized (R2 value>0.98) by plotting the log of the 

standards and concentrations. Duplicate readings of samples were averaged and were 

multiplied by the dilution factor in order to obtain IgG concentrations.  

 

2.2.7 Immunohistochemistry  

Immunohistochemistry (IHC) on paraffin embedded Dunkin Hartley Guinea Pig (DHGP) 

spleen and knee sections was performed for detection of DHGP macrophages. Spleen 

samples (n=4) were processed for eight hours before embedment and were sectioned at 

5µm, while knee samples (n=12) were processed for thirty-six hours before embedment 

and sectioned at 8µm. Upon sectioning, all samples were baked overnight in an oven at 

55°C to ensure adherence to the histology slide. Both tissue types underwent the same 

IHC procedure in which upon deparaffinization and rehydration of slides, antigen 
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retrieval was performed via incubation of 10mM Citrate Buffer (Citric Acid 

Monohydrate) for 3 minutes in a pressure cooker. Permeabilization of samples was 

performed with a ten minute incubation in 0.1% TritonX-100 followed by subsequent 

non-specific, specific, and endogenous peroxidase blocking performed via incubation 

with Background Buster for thirty minutes, 0.3% Hydrogen Peroxide for five minutes, 

and Avidin-Biotin for fifteen minutes. Upon completion of blocking steps, incubation of 

a mouse monoclonal primary antibody towards Guinea Pig Macrophage, diluted 1:10 in 

1% BSA and 0.01% Azide in PBS, was performed at room temperature for one hour. 

Subsequently, a thirty-minute incubation of a biotinylated secondary antibody and ABC 

complex, formulated according to manufacturer’s instructions, was performed. Negative 

samples did not receive a primary antibody. Visualization of positive staining was 

performed via DAB Peroxidase Substrate incubation for two and a half minutes. After, 

nuclear counterstaining of samples was performed with diluted Hematoxylin in distilled 

water, followed by dehydration through ethanol dilutions. Permanent mounting medium 

was used to place cover slips over the slides. Additionally, it should be noted that 

thorough rinses and washes in PBS was performed between each step. Figure 11 below 

depicts a schematic of IHC steps performed. 



 51 

 
Figure 11: Schematic of IHC steps depicting antigen retrieval, permeabilization, blocking, primary and 

secondary antibody incubation, amplification, and detection. 

 

2.2.8 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism7 software. Results are 

represented as mean ± standard error of the mean (SEM) and were statistically compared 

via paired t-test between treatments or analysis of variance (ANOVA) with a Tukey’s 

post-hoc analysis. Significance was denoted as p<0.05 for all results. 

 

2.3 Results 

2.3.1 Glycosaminoglycan (GAG) Content Evaluation 

Articular cartilage of 9-month old DHGP knee tibia plateaus and femoral condyles was 

evaluated for GAG content in order to assess for cartilage integrity. As seen in Figure 12, 

GAG content evaluated in the medial compartment of the femur revealed higher GAG 

concentration for hAMSC treatment compared to its respective saline control (35.8µg/mg 

versus 32.3µg/mg). Additionally, hADSC treatment demonstrated higher GAG 

concentration compared to its corresponding saline control (51.9µg/mg versus 



 52 

34.7µg/mg). HA also revealed to have higher GAG concentration compared to its 

respective saline control (45.3µg/mg versus 33.5µg/mg). Comparing GAG concentration 

directly between hADSC and hAMSC treatments, hADSC results demonstrated higher 

GAG content (51.9µg/mg versus 35.8µg/mg), although results demonstrated no 

significant differences between all 9 month-old treatment groups. However, healthy 2 

month-old DHGP knees assessed for GAG content displayed a statistically higher 

average GAG concentration (125.1µg/mg) compared to all 9 month-old groups, except 

for hADSC treatment. 

 
Figure 12: Average GAG content in the medial femoral compartment of the DHGP knee demonstrating higher 

concentrations of GAG for hADSC treatment compared to its corresponding saline control and hAMSC 
treatment, with overall statistically higher GAG content in the healthy 2 month-old knee compared to all 9 

month-old groups. 
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Additionally, articular cartilage of the tibia in the medial compartment was assessed for 

GAG content. As seen in Figure 13, hAMSC treatment demonstrated less GAG 

concentration compared to its corresponding saline control (45.1µg/mg versus 

58.8µg/mg). Conversely, hADSC treatment demonstrated higher overall GAG 

concentration compared to its respective saline control (73.3µg/mg versus 63.7µg/mg). 

Additionally, HA also revealed to have higher GAG concentration compared to its 

respective saline control (52.9µg/mg versus 37.5µg/mg). Comparing GAG concentration 

directly between hADSC and hAMSC treatments, hADSC results demonstrated higher 

GAG content (73.3µg/mg versus 45.1µg/mg); although results demonstrated no 

significant differences between all 9 month-old treatment groups. However, healthy 2 

month-old DHGP knees assessed for GAG content displayed a statistically higher 

average GAG concentration (184.3µg/mg) compared to all 9 month-old groups as seen in 

Figure 13. Evaluation of GAG content of the lateral compartment of the knee can be 

found in Appendix Figures A.1-A.2.  



 54 

 
Figure 13: Average GAG content in the medial tibia compartment of the DHGP knee demonstrating higher 

concentrations of GAG for hADSC treatment compared to its corresponding saline control and hAMSC 
treatment, with overall statistically higher GAG content in the healthy 2 month-old knee compared to all 9 

month-old groups. 

 
 
2.3.2 Micro-Computed Tomography 

2.3.2.1. Scanning and Reconstruction 

Upon scanning of the knee joints via the Micro-CT, a 2-dimensional (2D) image 

was obtained as depicted in Figure 14.  
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Figure 14: 2D scanned representative Micro-CT image of a DHGP knee using SkyScan Software. 

 

Subsequently, transverse and coronal 3-dimensional (3D) images containing 

morphometric data was obtained via reconstruction of scanned images, as seen in 

Figure 15 and Figure 16. 
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Figure 15: Representative reconstructed DGHP knee depicted in the transverse plane via NRecon Software. 

 

 
Figure 16: Representative reconstructed DHGP knee in the coronal plane containing 3D morphometric data. 
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Figure 17: Progression of representative DGHP scanned knee to full reconstructed 3D image containing 

morphometric data. 

 

The coronal 3D reconstructed images clearly depict the medial and lateral 

compartments of the tibia plateaus in which anatomical features of the knee, such 

as the subchondral trabecular bone and subchondral bone plate can be visualized. 

Figure 18 depicts a representative image displaying the region of interest (ROI) 

chosen for the subchondral trabecular bone in the medial compartment of the 

tibia, in which the same ROI was chosen for the lateral compartment. 

Additionally, Figure 19 depicts a representative image showing the ROI chosen 

for the subchondral bone plate in the medial compartment of the tibia.  
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Figure 18: ROI of subchondral trabecular bone in the medial compartment of the tibia. 

 

 
Figure 19: ROI of subchondral bone plate in the medial compartment of the tibia. 
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2.3.2.2 Subchondral Trabecular Bone Morphometric Parameters 

Upon ROI selection, 3D morphometric parameters including subchondral 

trabecular bone volume density (BV/TV) and thickness (Tb.Th) were obtained for 

9 month-old DHGP knees. Bone volume density measurements are displayed in 

Figure 20 in which hAMSC treatment exhibited slightly higher average BV/TV 

compared to its respective saline control (56.6% versus 52.9%). Additionally, it is 

observed that hADSC treatment also displayed slightly higher average BV/TV 

compared to its corresponding saline control (56.1% versus 47.3%). HA groups 

revealed to have a similar BV/TV value to its respective saline control (64.8% 

versus 65.1%). All paired groups displayed no statistical differences. Comparing 

BV/TV directly between hAMSC and hADSC treatment, both display similar 

measurements (56.6% versus 56.1%), overall indicating no statistical difference. 

Bone volume fraction for healthy 2 month-old DHGP knees were also obtained in 

which the measurements displayed lower average BV/TV (37.2%) compared to 

all 9 month-old groups. 
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Figure 20: Average subchondral trabecular bone volume density (BV/TV) in the medial compartment of the 

tibia. 

  

Subchondral trabecular bone thickness measurements are displayed in Figure 21 

in which HA treatment shows similar average thickness values with its 

corresponding saline control (0.576mm versus 0.567mm). Similarly, hADSC 

treatment shows comparable average thickness values (0.528mm versus 

0.530mm) with its paired saline control. The hAMSC treatment exhibited slightly 

lower average thickness compared to its respective saline control (0.533mm 

versus 0.574mm); however, all paired groups displayed no statistical differences. 

Comparing trabecular thickness directly between hAMSC and hADSC treatments, 

both display similar measurements (0.533mm versus 0.528mm), overall 



 61 

indicating no statistical difference. Trabecular thickness for healthy 2 month-old 

DHGP knees were also obtained in which the measurements displayed lower 

average thickness (0.333mm) compared to all 9 month-old groups. Evaluation of 

subchondral trabecular bone morphometric parameters of the lateral compartment 

of the knee can be found in Appendix Figures A.3-A.4. 

 
Figure 21: Average trabecular thickness in the medial compartment of the tibia. 

 

2.3.2.3 Subchondral Bone Plate Morphometric Parameters 

Ensuing ROI selection, subchondral bone plate thickness was measured for 9 

month-old DHGP knees. Figure 22 displays subchondral bone plate thickness 

measurements in which all treatment groups exhibited higher average thickness 
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compared to their paired saline controls; however with no statistical difference. 

Comparing plate thickness directly between hAMSC and hADSC treatments, 

hADSCs exhibit a slightly higher average thickness measurement (0.395mm 

versus 0.384mm), although indicating no statistical difference. Additionally, 

thickness values for healthy 2 month-old DHGP knees were obtained in which the 

measurements displayed statistically lower average thickness compared to all 9 

month-old treatment and control groups (0.308mm). Evaluation of subchondral 

trabecular bone plate morphometric parameters of the lateral compartment of the 

knee can be found in Appendix Figures A.5-A.7. 

 
Figure 22: Average subchondral bone plate thickness in the medial compartment of the tibia. 
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2.3.2.5 Osteophyte Observations  

Upon reconstruction of 9 month-old DHGP knees, osteophyte formation at the 

margins of the joint were observed as represented in Figure 23 and Figure 24. 

 
Figure 23: Representative DHGP knee Micro-CT reconstructions in which the red arrows indicate osteophyte 

formation. Panel A represents a saline control knee while panel B represents an hAMSC treated knee. 
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Figure 24: Representative DHGP knee Micro-CT reconstructions in which the red arrows indicate osteophyte 

formation. Panel C represents a hADSC treated knee while panel D represents a HA treated knee. 

 

Upon semi-quantitative blind evaluation of the DHGP knees in the medial 

compartment of the femur, the saline control contained the overall highest 

percentage of osteophytes (75%) compared to all treatment groups as seen in 

Figure 25. HA and hADSC treatments both displayed 37.5% osteophytes 

observed, while hAMSC treatment contained the lowest amount of osteophytes 

observed (25%); however, average values were not statistically different.   
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Figure 25: Percent of osteophytes observed in the medial compartment of the femur. 

 

Additionally, semi-quantitative blind evaluation of the DHGP knees in the medial 

compartment of the tibia displayed that 87.5% of osteophytes were observed in 

the saline control, hAMSC treatment, and hADSC treatment, as seen in Figure 26. 

HA treatment contained the lowest amount of osteophytes observed (62.5%); 

however, average values were not statistically different.   

 



 66 

 
Figure 26: Percent of osteophytes observed in the medial compartment of the tibia. 

 

2.3.3 Histological Evaluation 

2.3.3.1 Articular Cartilage Surface Integrity 

DHGP knee joints stained with Safranin-O was performed in order to semi-

quantitatively evaluate articular cartilage surface integrity. Figure 27 displays a 

representative stained knee in which articular cartilage of the femoral condyles 

and tibia plateaus can be visualized as chondrocyte nuclei are stained red. 
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Figure 27: Representative DHGP knee stained with Safranin-O for articular cartilage evaluation. 
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Figure 28: Representative Safranin-O stained DHGP knee joints (aged 9 months) depicting the articular 

cartilage of the femur and tibia to demonstrate varying severities of histological lesions scored by the 
recommended histological scoring as shown in Table 2. Panel A depicts a saline control knee, panel B is a HA 
treatment knee, panel C is a hADSC treatment knee, and panel D is a hAMSC treatment knee. All scale bars 

represent 500µm. 
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Representative Safranin-O stained knee joints semi-quantitatively evaluated and 

scored, via two blind observers, are displayed in Figure 28.  The tibia plateau 

observed in panel A displays fibrillation and clefts that extend into the deep zone 

of the articular cartilage. Panel B and D display mild surface irregularities with 

superficial fissures, while panel C represents normal, smooth and uninterrupted 

articular surface. Semi-quantitative scoring of the articular cartilage surface of the 

tibia, illustrated in Figure 29, indicates that HA treatment revealed a higher 

average score compared to its paired saline control (4.71 versus 2.75). 

Conversely, hAMSC treatment displayed overall lower average histologic scores 

compared to its respective saline control (3.25 versus 5.25). Additionally, hADSC 

treatment displayed lower average histologic scores compared to its paired saline 

control (4.0 versus 5.5). Directly comparing hADSC treatment to hAMSC 

treatment, hAMSCs displayed an overall slightly lower score compared to 

hADSCs (3.25 versus 4.0). No statistical difference was observed between all 

groups. 
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Figure 29: Average semi-quantitative articular surface scores of the DHGP tibia. 

  

Semi-quantitative scoring of femoral articular cartilage illustrated in Figure 30, 

reveals that HA treatments exhibit a slightly lower average score compared to its 

respective saline control (1.0 versus 1.125). Similarly, hAMSC treatment displays 

a lower average score compared to its corresponding saline control (0.375 versus 

0.875). Conversely, hADSC treatment displays a slightly higher average score 

compared to its paired saline control (1.0 versus 0.5) as well as the hAMSC 

treatment (1.0 versus 0.375); however, no statistical difference is observed 

between all groups. Additionally, it can be observed that the overall average 

scores for groups evaluated in the femur was lower than that observed in the tibia. 
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Qualitatively this can be observed in the representative images seen in Figure 28, 

where the femoral condyles display smooth and uninterrupted surfaces. All 

Safranin-O stained DHGP knees can be viewed in Appendix Figure A.8. 

 
Figure 30: Average semi-quantitative articular surface scores of the DHGP femur. 

 

2.3.3.2 Proteoglycan Content  

DHGP knee joints stained with Toluidine Blue was performed in order to semi-

quantitatively evaluate proteoglycan content of the articular cartilage. Figure 31 

displays a representative stained knee in which articular cartilage matrix of the 

femoral condyles and tibia plateaus can be visualized as the cartilage is stained 

blue. 
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Figure 31: Representative DHGP knee stained with Toluidine Blue for proteoglycan content evaluation. 
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Figure 32: Representative Toluidine Blue stained DHGP knee joints (aged 9 months) depicting the proteoglycan 

of the articular cartilage to demonstrate varying severities of histological lesions scored by the recommended 
histological scoring scheme as shown in Table 3. Panel A depicts a saline control knee, panel B is a HA treatment 

knee, panel C is a hADSC treatment knee, and panel D is a hAMSC treatment knee. All scale bars represent 
500µm. 

 
 



 74 

Representative Toluidine Blue stained knee joints semi-quantitatively evaluated 

and scored, via two blind observers, are displayed in Figure 32.  The tibia plateau 

observed in panel A displays decreased proteoglycan content in all 3 zones 

(superficial, middle, and deep) for greater than half the length of the plateau. 

Panels B and C display uniform proteoglycan staining throughout the articular 

surface with slight decrease in the superficial zone, while panel D displays 

decreased proteoglycan content in superficial and middle zones for half the length 

of the plateau. Figure 33 depicts the semi-quantitative scoring of proteoglycan 

content of the tibia in which HA treatment exhibits a lower average score 

compared to its respective saline control (2.75 versus 4.125). Additionally, 

hAMSC treatment displays a lower average score compared to its corresponding 

saline control (3.75 versus 4.75). Furthermore, hADSC treatment displays 

significantly lower average scores (p=0.0173) compared to its paired saline 

control (2.66 versus 5.0), while also illustrating lower average score in 

comparison to the hAMSC treatment (2.66 versus 3.75). Moreover, all treatment 

groups demonstrated lower scores compared to their paired saline control groups.  
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Figure 33: Average semi-quantitative proteoglycan content scores of the DHGP tibia. One star represents 

statistical significance (p<0.05). 

  

Semi-quantitative scoring of proteoglycan content in the femur reveals that the 

HA treatment exhibits a lower average score compared to its respective saline 

control (1.75 versus 3.0), as depicted in Figure 34. Additionally, hAMSC 

treatment displays a lower average score compared to its respective saline 

controls (2.625 versus 3.75). Furthermore, hADSC treatment displays a slightly 

lower average score compared to its paired saline control (2.33 versus 2.5) as well 

as the hAMSC treatment (2.33 versus 2.625); however, no statistical difference 

was observed between all groups. All Toluidine Blue stained DHGP knees can be 

viewed in Appendix Figure A.9. 
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Figure 34: Average semi-quantitative proteoglycan content scores of the DHGP femur. 

 

2.3.3.3 Synovial Hyperplasia  

DHGP knee joints stained with Hematoxylin and Eosin (H&E) was performed in 

order to evaluate synovial membrane hyperplasia via semi-quantitative grading of 

membrane cellularity. Figure 35 displays a representative stained knee in which 

the synovium, characterized by the adipose, areolar, and fibrous soft tissue 

surrounding the knee joint, can be visualized. 
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Figure 35: Representative DHGP knee stained with H&E for synovial membrane hyperplasia evaluation. The 

location of the synovial membrane is indicated by the red boxes. 

 



 78 

 
Figure 36: Representative H&E stained DHGP knee joints (aged 9 months) depicting the synovium to 

demonstrate varying severities of synovitis scored according to a histological scoring scheme as shown in Table 
4. Panels A1 and A2 depict saline control knees while panels B1 and B2 represent HA treatment knees. All scale 

bars represent 200 µm. 
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Figure 37: Representative H&E stained DHGP knee joints (aged 9 months) depicting the synovium to 

demonstrate varying severities of synovitis scored according to a histological scoring scheme as shown in Table 
4. Panels C1 and C2 represent hADSC treatment knees while panels D1 and D2 display hAMSC treatment 

knees. All scale bars represent 200 µm. 
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Representative H&E stained knee joints semi-quantitatively evaluated and scored 

for cellularity, via two blind observers, are displayed in Figure 36Figure 37.  

Panels A1, A2, and C2 illustrate an increase in the number of cellular layers (4-6 

layers) with marked villous hyperplasia at the membrane lining.  Panels B1, B2, 

and C1 exhibit normal cellularity (1-2 layers) at the membrane lining, while 

Panels D1 and D2 display slight increase in cellularity as well as villous 

hyperplasia in some areas of the membrane lining.  These observations can be 

further visualized from Figure 38 through Figure 45 which depict the same 

representative H&E stained knee joints seen in Figure 36 and Figure 37 but have 

been magnified (400x total magnification) in order to more accurately semi-

quantitatively score synovium cellularity at the membrane lining.  
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Figure 38: Representative H&E stained saline control DHGP synovium. Panel A1 represents a 100x total 
magnification image with scale bar depicting 200 µm, while panels A11, A12, and A13 represent 400x total 

magnification images with scale bar depicting 20 µm. 
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Figure 39: Representative H&E stained saline control DHGP synovium. Panel A1 represents a 100x total 
magnification image with scale bar depicting 200 µm, while panels A11, A12, and A13 represent 400x total 

magnification images with scale bar depicting 20 µm. 
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Figure 40: Representative H&E stained HA treatment DHGP synovium. Panel A1 represents a 100x total 
magnification image with scale bar depicting 200 µm, while panels A11, A12, and A13 represent 400x total 

magnification images with scale bar depicting 20 µm. 
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Figure 41: Representative H&E stained HA treatment DHGP synovium. Panel A1 represents a 100x total 
magnification image with scale bar depicting 200 µm, while panels A11, A12, and A13 represent 400x total 

magnification images with scale bar depicting 20 µm. 
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Figure 42: Representative H&E stained hADSC treatment DHGP synovium. Panel A1 represents a 100x total 

magnification image with scale bar depicting 200 µm, while panels A11, A12, and A13 represent 400x total 
magnification images with scale bar depicting 20 µm. 
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Figure 43: Representative H&E stained hADSC treatment DHGP synovium. Panel A1 represents a 100x total 

magnification image with scale bar depicting 200 µm, while panels A11, A12, and A13 represent 400x total 
magnification images with scale bar depicting 20 µm. 
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Figure 44: Representative H&E stained hAMSC treatment DHGP synovium. Panel A1 represents a 100x total 

magnification image with scale bar depicting 200 µm, while panels A11, A12, and A13 represent 400x total 
magnification images with scale bar depicting 20 µm. 
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Figure 45: Representative H&E stained hAMSC treatment DHGP synovium. Panel A1 represents a 100x total 

magnification image with scale bar depicting 200 µm, while panels A11, A12, and A13 represent 400x total 
magnification images with scale bar depicting 20 µm. 
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Additionally, representative healthy 2-month old H&E stained knee joints semi-

quantitatively evaluated and scored for cellularity are displayed in Figure 46.  All 

panels illustrate a decreased and normal cellularity at membrane lining in 

comparison to the 9-month old knees. These observations can be further 

visualized from Figure 47 through Figure 49, which depict the same 

representative H&E stained knee joints seen in Figure 46 but have been magnified 

(400x total magnification) in order to more accurately semi-quantitatively score 

synovium cellularity at the membrane lining.  

 
Figure 46: Representative healthy H&E stained DHGP knee joints (aged 2 months) depicting the synovium. 

Decreased and normal cellularity (1-2 layers) are observed. All scale bars represent 200 µm. 
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Figure 47: Representative healthy 2-month old H&E stained DHGP synovium. Panel A represents a 100x total 

magnification image with scale bar depicting 200 µm, while panels A1, A2, and A3 represent 400x total 
magnification images with scale bar depicting 20 µm. 
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Figure 48: Representative healthy 2-month old H&E stained DHGP synovium. Panel B represents a 100x total 

magnification image with scale bar depicting 200 µm, while panels B1, B2, and B3 represent 400x total 
magnification images with scale bar depicting 20 µm. 
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Figure 49: Representative healthy 2-month old H&E stained DHGP synovium. Panel C represents a 100x total 

magnification image with scale bar depicting 200 µm, while panels C1, C2, and C3 represent 400x total 
magnification images with scale bar depicting 20 µm. 
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Semi-quantitative scores of the magnified images were averaged to obtain a total 

synovial hyperplasia grade for each 9-month old treatment and saline control, as 

well as the healthy 2-month old groups. It is observed from Figure 50 that the 

saline control contains the highest average histologic score (2.16) compared to all 

groups, while also exhibiting statistically higher average score than the healthy 2-

month old group (p=0.0004). Comparing the hAMSC and hADSC treatments 

directly, hADSCs display a slightly higher average cellularity score compared to 

hAMSCs (1.91 versus 1.45), however with no statistical difference. Additionally, 

it is observed that hADSC treatments display a statistically higher average score 

compared to the healthy 2-month old group (p=0.0068). Furthermore, the healthy 

2-month old synovium contained the lowest average score (0.888) compared to all 

knees, indicating normal cellularity layers at the membrane.  



 94 

 
Figure 50: Average semi-quantitative cellularity scores of the DHGP synovium. Two stars represents statistical 

significance in which (p<0.01) and three stars represents (p<0.001). 

 

2.3.4 Immunogenic Reaction Evaluation 

In order to determine if the DHGPs had an adverse immune reaction to the 

transplantation of human cells, an ELISA was performed on DHGP serum to determine 

IgG concentration. As observed in Figure 51, DGHPs injected with the HA treatment 

contained the lowest levels of antigen concentration (4.85mg/mL), in which the hADSC 

treatment had slightly higher levels (6.14mg/mL) in comparison. The hAMSC treatment 
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demonstrated statistically higher (p=0.0244) concentrations compared to HA, ultimately 

displaying the highest level of antigen concentration (6.93mg/mL) across all groups.  

 
Figure 51: IgG antigen concentration analyzed from DHGP serum via ELISA. The star represents statistical 

significance (p<0.05). 

 

2.4 Discussion  

2.41. Glycosaminoglycan (GAG) Content Evaluation 

In order to assess for articular cartilage matrix integrity, DMMB assay was performed in 

order to quantify GAG concentration from DHGP knee tibia plateaus and femoral 

condyles in the medial load-bearing region. Higher GAG concentration would 

demonstrate a more intact articular cartilage matrix as GAGs are covalently attached to 
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the protein core of proteoglycans, a major component of articular cartilage matrix. 

Evaluations were conducted on healthy 2-month old DHGP knees as well as 9-month old 

DHGP knees that were injected with hAMSCs, hADSCs, or HA-only treatments 

including the bilaterally injected saline control knees.  

 

Results from the evaluation of the femoral condyles in the medial compartment 

demonstrated (Figure 12) that all treatment groups exhibited slightly higher GAG content 

in comparison to their paired saline controls, in which hADSC treatment exhibited the 

highest GAG concentration compared to all groups; however, no statistical differences 

were observed. This reveals that although the knees that were injected with treatment 

contained a less damaged articular cartilage matrix compared to knees that were not 

treated, it cannot be concluded that injected treatments provided a pro-regenerative effect 

on the articular cartilage matrix. Additionally, it cannot be concluded whether hAMSCs 

or hADSCs provide a more enhanced OA mitigation effect in comparison to one another. 

Therefore, a higher sample size is warranted for further investigations in which these 

trends may be further improved statistically. Alternatively, the healthy 2-month old knees 

demonstrated a statistically and almost four times higher GAG concentration in 

comparison to all 9-month old knees (except for the hADSC treated knee). This 

observation validates the DHGP as an appropriate spontaneous osteoarthritic model as 

the articular cartilage matrix severely loses GAG content with increasing age and thus 

increasing OA progression.  
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Similarly, results from the evaluation of the tibia plateaus in the medial compartment 

demonstrated (Figure 13) that all treatment groups, except for the hAMSC treatment, 

exhibited slightly higher GAG concentration in comparison to their corresponding saline 

controls in which hADSC treatment again exhibited the highest GAG concentration 

compared to all groups; however, no statistical differences were observed. This reveals 

that although the knees that were injected with HA and hADSC treatment contained a 

more intact articular cartilage matrix compared to knees that were not treated, it cannot 

be concluded that injected treatments provided a pro-regenerative influence on the 

articular cartilage matrix. Additionally, it cannot be concluded whether hAMSCs or 

hADSCs provide a more enhanced OA mitigation effect in comparison to one another. 

Again, a higher sample size is warranted for further investigations in which these trends 

may be further improved statistically. Alternatively, the healthy 2-month old knees 

demonstrated a statistically and over three times higher GAG concentration in 

comparison to all 9-month old knees. Again, this observation validates the DHGP as an 

appropriate spontaneous osteoarthritic model. Ultimately, the healthy 2-month old GAG 

content from both the femoral condyles and tibia plateaus serve as a baseline for further 

investigations into the incorporation of stem cell treatments for the regenerative potential 

of the articular cartilage. 

 

2.4.2 Micro-CT 3D Morphometric Measurements and Osteophyte Formation 

After all DHGP knees were successfully scanned and reconstructed, 3D morphometric 

measurements were obtained in the load-bearing region of the subchondral trabecular 
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bone for evaluation of bone volume density (BV/TV, %) and thickness (Tb.Th, mm), as 

well as the subchondral bone plate for evaluation of plate thickness (Th., mm) and 

porosity (%).  Evaluations were conducted on healthy 2-month old DHGP knees as well 

as 9-month old DHGP knees that were injected with hAMSCs, hADSCs, or HA-only 

treatments including the bilaterally injected saline control knees. These measurements 

were chosen for analysis as they are the most commonly evaluated Micro-CT parameters 

for characterizing 3D bone structures, as well as they give the greatest insight into the 

morphologic changes occurring during OA pathogenesis, such as sclerosis. As described 

in section 1.2.4, the subchondral bone plate represents the cortical matrix lying directly 

below the calcified cartilage to support and protect it by transmitting loads of the joint to 

the underlying trabecular bone. The subchondral trabecular bone represents a cancellous 

and dynamic bone structure to adapt to mechanical forces acquired from the joint. 

Ultimately, the subchondral bone plate and trabecular bone work in conjunction as a 

shock-absorber to protect the overlying articular cartilage. With increasing OA 

pathogenesis, the articular cartilage matrix is damaged in which mechanical loads are 

then directly applied to the subchondral bone, ultimately leading to abnormal bone 

remodeling and subsequent thickening. This is also believed to be due to biomechanical 

adaptation to micro-damage as well as possible cyst formation in the subchondral bone.5 

 

BV/TV represents the ratio of a given region of interest (ROI) total volume (TV) that is 

occupied by bone volume (BV), ultimately, indicating a bone volume to total bone 

volume ratio reported as a percentage value. Although there are varying results and 
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inferences on the subchondral bone morphologic changes, depending on the animal 

model utilized, as highlighted in section 1.3.2, it is intuitive to consider that with 

increasing OA severity, BV/TV values would increase, as more space is occupied by 

bone due to the ensuing thickening of the subchondral bone. This is further supported by 

Wang et al.’s investigation into subchondral bone changes in the DHGP via Micro-CT 

evaluation, in which it was found that as DHGPs aged, there was an increase in 

BV/TV.117 In evaluating the subchondral trabecular bone volume density in the load-

bearing medial compartment of the tibia (Figure 20), it is observed that hAMSC and 

hADSC treatments exhibit slightly higher values compared to their corresponding saline 

controls, however with no statistical difference. Additionally, HA treatment exhibits 

almost equal values to its paired saline control, again with no statistical difference. These 

results demonstrate that it cannot be concluded that injected treatments provided a pro-

regenerative effect in the joint in order for the underlying subchondral bone to undergo 

less bone remodeling and subsequent sclerosis, in comparison to controls. Additionally, it 

cannot be concluded whether hAMSCs or hADSCs provide a more enhanced OA 

mitigation effect in comparison to one another. Therefore, a higher sample size is 

warranted for further investigations.  Although not statistically significant, the healthy 2-

month old knees demonstrated a 1.5 times lower average BV/TV in comparison to all 9-

month old DHGP control knees. Again, this validates the hypothesis that a progressive 

osteoarthritic condition would result in a higher BV/TV. 
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Trabecular thickness (Tb.Th) represents the average thickness (mm) of the trabeculae 

from a selected ROI. A key hallmark of OA is the thickening of the subchondral bone 

due to irregular bone remodeling, as described in section 1.3.2, in which a thicker 

subchondral trabecular thickness measurement would indicate a more osteoarthritic 

condition. In evaluating the subchondral trabecular bone thickness in the medial 

compartment of the tibia (Figure 21), it is observed that all treatment groups display a 

similar Tb.Th value in comparison to their paired saline controls, in which no statistical 

difference is present. Additionally, it is observed that hAMSC and hADSC treatment also 

contain almost equal Tb.Th values, indicating no statistical difference between them. 

These results demonstrate that it cannot be concluded that injected treatments provided a 

pro-regenerative effect in the joint in order for the underlying subchondral bone to 

undergo less bone remodeling and subsequent sclerosis, in comparison to controls. 

Additionally, it cannot be concluded whether hAMSCs or hADSCs provide a more 

enhanced OA mitigation effect in comparison to one another. Therefore, a higher sample 

size is warranted for further investigations.  The healthy 2-month old DGHP knees 

evaluated for Tb.Th displayed a 1.6 times lower average trabecular thickness in 

comparison to 9-month old knees. Again, this validates the hypothesis that a progressive 

osteoarthritic condition would result in a higher Tb.Th. 

 

Plate thickness (Th.) represents the average thickness of cortical bone from a selected 

ROI. It has been established that subchondral bone plate thickness increases in late-stage 

OA along with gradual non-calcified cartilage damage.5 In evaluating the thickness of the 
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subchondral bone plate in the medial compartment of the tibia (Figure 22), it is observed 

that all treatment groups display a similar thickness value in comparison to their paired 

saline controls, in which no statistical difference is present. Additionally, it is observed 

that hAMSC and hADSC treatments also contain almost equal thickness values, 

indicating no statistical difference between them. Similar to previous analyzed 3D 

morphometric parameters, these results indicate that it cannot be concluded that injected 

treatments provided mitigation of subchondral bone sclerosis. Alternatively, the healthy 

2-month old DGHP knees evaluated for subchondral bone plate thickness displayed an 

overall lower average cortical thickness in comparison to 9-month old control knees. 

Again, this validates the hypothesis that a progressive osteoarthritic condition would 

result in increasing subchondral bone plate thickness.  

 

Another consequence of irregular bone remodeling of the subchondral bone is the 

formation of osteophytes at the margins of the joint, which is commonly observed with 

progressive OA. Blinded observations of osteophyte formation in the medial 

compartment of the femur (Figure 25) indicate that the majority of osteophytes were 

present in the saline control DHGP knees compared to all treatment groups. Furthermore, 

hAMSC treated knees display a lower average percent of osteophytes compared to 

hADSC and HA treated knees; however, no statistical difference was indicated between 

all groups. Additionally, blinded observations of osteophyte formation in the medial 

compartment of the tibia (Figure 26) indicate that osteophytes were observed equally 

across all groups, except for the HA treated knees, which displayed slightly lower 
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average percent of osteophytes. From both femur and tibia results, it can be concluded 

that progressive OA does result in abnormal subchondral bone remodeling and 

subsequent osteophyte formation. Additionally, these results indicate that it cannot be 

concluded that injected treatments provided mitigation of subchondral bone osteophyte 

formation.  

 

2.4.3 Histologically Evaluated Articular Cartilage Surface Integrity  

Nine-month old DHGP knee joints were histologically stained with Safranin-O in order 

to semi-quantitatively evaluate for articular cartilage surface integrity. Scoring was 

performed based on OARSI recommended guidelines as outlined in Table 2. Normal and 

healthy articular cartilage is characterized as smooth with no surface abnormalities. With 

progressive OA pathology, deterioration of the cartilage surface is observed in which 

surface irregularities and fibrillations are visually distinct. These undulations range from 

mild surface irregularities to extending into the superficial, middle, and deep zones. 

Overall a higher score represents a more pathological condition.  

 

Results from the evaluation of the articular cartilage of the tibia in the medial 

compartment demonstrated (Figure 29) that both hADSC and hAMSC treated knees 

contained an overall lower average score compared to their respective saline controls; 

however with no statistical difference. Additionally, on average, the saline un-treated 

knees depicted more than 3 fissures and loss of cartilage extending into the middle zone. 

This again validates that the DHGP spontaneously develops progressive OA with 
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increasing age and is an appropriate in vivo model. Furthermore, hADSCs and hAMSCs 

had comparable scores to each other, in which on average the treated knees displayed 

more than 3 fissures and loss of cartilage in the superficial and middle zones. This 

indicates that severe damage to the articular cartilage is present and therefore it cannot be 

concluded that injected treatments provided a pro-regenerative influence on the articular 

cartilage matrix. Although it cannot be concluded whether hAMSCs or hADSCs provide 

a more enhanced OA mitigation effect in comparison to one another, histological 

assessment is regarded as a “gold-standard” evaluation technique, and it is therefore 

promising to observe trends in which hADSC and hAMSC treatments are indicating 

overall lower histological scores in comparison to non-treated knees. Therefore, a higher 

sample size is warranted for further investigations in which these trends may be further 

improved statistically. 

 

Results from the evaluation of the articular cartilage of the femur in the medial 

compartment demonstrated (Figure 30) that all groups had comparable low histologic 

scores, in which no statistical differences were observed. Additionally, all scores on 

average displayed only mild surface irregularities which further confirms that progressive 

OA pathogenesis occurs in the load-bearing region of the tibia, in which the femur is only 

marginally affected in comparison.118 Furthermore, appropriate evaluation of treatments 

and their effects in mitigation of OA, should be conducted in the medial compartment of 

the tibia.  
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2.4.4 Histologically Evaluated Proteoglycan Content 

In order to semi-quantitatively evaluate for proteoglycan content, 9-month old DHGP 

knee joints were histologically stained with Toluidine Blue in which scoring was 

performed based on OARSI recommended guidelines as outlined in Table 3. In healthy 

cartilage, proteoglycan content is intensely stained blue and visualized uniformly 

throughout the cartilage matrix; however, with increasing OA pathology, decreased 

staining is visualized. This decreased staining can range from mild reduction in the 

superficial zone to extreme loss of staining into the middle and deep zones. Overall a 

higher score represents a more pathological condition.  

 

Results from the evaluation of proteoglycan content of the tibia in the medial 

compartment demonstrated (Figure 33) that all treatment groups displayed an average 

lower histologic score in comparison to their respective saline controls. Furthermore, 

hADSC treated knees, specifically, depicted an overall lower average score compared to 

all groups and a statistically lower score than its corresponding saline control. On 

average, the saline un-treated knees portrayed decreased proteoglycan content in all 3 

zones for at least half of the length of the plateau. This again validates that the DHGP is 

an appropriate spontaneous OA model with observable and progressive pathogenesis with 

increasing age. Contrastingly, on average all treatment groups displayed decreased 

proteoglycan content in only the superficial zone of the plateau and not the middle and 

deep zones, indicating a potential mitigation of deterioration of the cartilage matrix. In 

comparing hADSC and hAMSC treatments directly, hADSCs depicted a slightly lower 
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average score, however with no statistical difference. Overall, a higher sample size is 

warranted for further investigations in which these trends may be further improved 

statistically.  

 

Results from proteoglycan content assessment of the femur in the medial compartment 

demonstrated (Figure 34) that all treatment groups had lower histologic scores in 

comparison to respective saline controls; however, no statistical differences were 

observed. The hADSC and hAMSC treatment groups displayed comparable scores in 

which it cannot be concluded whether hAMSCs or hADSCs provide a more enhanced 

OA mitigation effect in comparison to one another. Overall, a higher sample size is 

warranted for further investigations in which these trends may be further improved 

statistically. 

 

2.4.5 Histologically Evaluated Synovial Hyperplasia  

Semi-quantitative evaluation of 9-month old and healthy 2-month old DHGP synovium 

was performed via Hematoxylin and Eosin staining to determine synovial inflammation. 

Normal synovium comprises of one to two layers of fibroblast-like synoviocytes and 

resident macrophages visualized at the synovial lining. With increasing OA pathogenesis, 

cell number significantly increases at the lining, depicting multiple layers, as well as 

increased macrophage and lymphocyte infiltration. Inflammation of the microvilli is also 

observed in which cell clusters form bud-like aggregates at the synovial lining.  Scoring 
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was performed based on OARSI recommended guidelines as outlined in Table 4, in 

which overall a higher score represents a more pathological condition.  

 

Results from the histological evaluation of synovial hyperplasia demonstrated (Figure 50) 

that the 9-month old saline control groups contained the overall highest average score in 

comparison to all 9-month old treatment groups. On average, saline groups displayed 

slight increase in number of cellular layers (4-6) and scores were statistically higher than 

average healthy 2-month old scores. Additionally, comparing the 9-month old hADSC 

and hAMSC treatment groups, hAMSCs displayed a slightly lower score, in which 

normal cell layers were observed on average; however, no statistical difference was 

assessed. Therefore, it cannot be concluded whether hAMSCs or hADSCs provide a more 

enhanced OA mitigation effect in comparison to one another. Ultimately, a higher sample 

size is warranted for further investigations in which these trends may be further improved 

statistically. Alternatively, the healthy 2-month old knees demonstrated a statistically and 

more than two times lower score in comparison to 9-month old knees saline control 

knees. This observation again validates the DHGP as an appropriate spontaneous 

osteoarthritic model as the healthy 2-month old DHGPs displayed normal cell layers at 

the synovial lining with no synovial hyperplasia observed compared to the 9-month old 

DHGPs. Further evaluations into potential macrophage infiltration is depicted in 

Appendix Figures A.10-A.12 in which IHC was performed on the synovium targeted for 

guinea pig macrophages. No macrophages were detected in the synovial membrane, 
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however samples were limited due to histological evaluation and further investigations 

are warranted with higher sample size. 

 

2.4.6 Immunogenic Evaluation  

As human stem cells were injected into the DHGPs, evaluation for a potential adverse 

immunogenic reaction was performed on the blood of the DHGPs via an ELISA targeted 

for IgG antigen concentration. IgG antibodies represent the most abundant type of 

antibody in circulating blood in humans, protecting against invading pathogens due to 

bacterial and viral infections.119 IgG protection involves a variety of mechanisms 

including complement system activation and direct binding to pathogens for 

immobilization and opsonization of phagocytic immune cells, such as macrophages. 

Elevated levels of IgG antigen concentrations observed via ELISA would indicate an 

increased immunogenic reaction as this signifies increased binding to IgG antibodies. IgG 

antigen concentration observed in DGHP serum (Figure 51) indicates that the HA-

injected DHGPs blood illustrated the lowest IgG concentration compared to injected 

human stem cells. This was expected as HA should not illicit an immune reaction, as it is 

already naturally present physiologically, as a synovial fluid and glycosaminoglycan 

constituent, and IgG levels detected would signify a normal circulating concentration. 

The hADSC-injected DGHPs revealed a slightly higher IgG antigen concentration in 

comparison to the HA-injected DHGPs, however with no statistical difference. This 

reveals that hADSCs did not impose an adverse immunogenic reaction to the DHGPs. 

The hAMSC-injected DHGPs revealed the highest IgG antigen concentration in 
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comparison to both HA and hADSC-injected DHGPs. This indicates that hAMSCs 

initiated a more immunogenic response compared to the hADSCs. This could potentially 

result in higher levels of circulating and migrating immune cells, such as macrophages. 

Lastly, it should be noted that qualitatively, all DHGPs did not display or indicate any 

form of infection or adverse reaction following injections. All DHGPs remained healthy 

throughout the six-month course of the study and injections. 

 

2.4.7 Summary  

In combination with biochemical, histological, and imaging modalities, it cannot be 

concluded that injected stem cell treatments provided either a pro-regenerative effect or 

mitigation of OA in vivo. Although histological evaluations of articular cartilage matrix 

indicated that injected hAMSC and hADSC treatments exhibited a more significant effect 

compared to other outcome measures, further investigations with higher sample size is 

warranted in order to more effectively observe statistical trends. The second objective of 

this study, as detailed below, aims to provide a deeper insight as to why the injected stem 

cell treatments were not as effective in vivo and how these injected treatments could 

potentially be improved for greater therapeutic efficacy. 
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CHAPTER THREE: 

AIM 2 

3.1 Introduction and Purpose 

Stem cell-based regenerative medicine aims to target the underlying causes of disease to 

replace damaged/diseased cells and promote regeneration of tissues in the body given 

their established effector functions. Developments in novel treatment options utilizing 

stem cell therapy can provide therapeutic solutions for patients with debilitating diseases, 

especially to those with conditions that are beyond repair with current treatment options. 

Although research in stem-cell regenerative strategies is rapidly growing, there are still 

multiple challenges that are presented, such as cell retention, viability, distribution, and 

functional integration within the local environment into which they are administered. 

Therefore, further investigations into these challenges are necessary to provide for a more 

comprehensive understanding to improve targeted delivery and therapeutic efficacy of 

stem cells. Moreover, the objective of this aim was to evaluate and compare the migration 

and retention of human amniotic stem cells (hAMSCs) and human adipose stem cells 

(hADSCs) within the knee joint of the Dunkin Hartley Guinea Pig upon intra-articular 

injection. Gaining a further understanding of potential differences in site-specific 

retention could help explain potential differences in MSC therapeutic efficacy. 

 

To longitudinally track injected stem cells in vivo, the IVIS Spectrum Imaging System 

was utilized in which epi-illumination, at specific excitation and emission wavelengths, 

allowed for visualization of fluorescently-labeled hAMSCs and hADSCs. Upon 
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completion of in vivo imaging, immunohistochemistry (IHC), targeting human 

mitochondria, was performed on the lungs and knees of the DHGPs to detect the potential 

presence of the stem cells. The lungs were chosen for evaluation as they are a primary 

targeted organ in which systemic migration of stem cells is commonly observed.120–122 

The knees were also assessed in order to observe if the stem cells were still residing in 

the joint.  

 

Evaluating the in vivo tracking and of stem cells and subsequent outcome measures 

performed herein will provide an enhanced understanding into the bio-distribution and 

retention of two stem cell sources. This will ultimately offer insight into novel strategies 

to improve and enrich cell retention in the desired area of the body. 

 

3.2 Methods and Materials 

Human adipose-derived stem cells (hADSCs) were obtained from Invitrogen (R778810). 

Human amniotic-derived stem cells (hAMSCs) were harvested and isolated from human 

placentas from consenting patients immediately following child birth (Greenville Heath 

System). All cell counts were performed with the TC20 Bio-Rad Automated Cell Counter 

with use of Trypan Blue purchased from Lonza (17-92E). Cell culture media for 

hAMSCs included Dulbecco’s Modified Eagle’s Medium (DMEM) purchased from 

Corning (10-D14-CM) with Fetal Bovine Serum (S1150H) purchased from Atlanta 

Biologicals and Antibiotic Antimycotic (300040CI) purchased from Corning. Cell culture 

media for hADSCs included MesenPro Basal Medium with growth supplement (12747-
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010) purchased from Gibco. Trypsin was purchased from Corning (25053CI). Two 

month old Dunkin Hartley Guinea Pig cohorts were obtained from Charles River 

Laboratories conferring to Clemson University’s Institutional Animal Care and Use 

Committee (IACUC) amendment approval (protocol number 2016-040). Sodium 

Hyaluronate was purchased from LifeCore Biomedical (HA700K-1) and Xenolight DiR 

Fluorescent Dye was purchased from Perkin Elmer (125964) in which both were sterile 

filtered with an Acrodisc 25mm Syringe Filter (4612) containing a 0.2µm filter 

membrane purchased from Pacc. Dulbecco’s Phosphate Buffered Saline (PBS) was 

purchased form Corning (55-031-PC). All fluorescent imaging was performed with 

Perkin Elmer’s IVIS Spectrum Imaging System. Formalin fixation of tissues was 

performed with 10% Phosphate Buffered Formalin purchased from Newcomer Supply 

(1090N). Bone decalcification was performed with Formic Acid purchased from Stat Lab 

(1414-1), in which Ammonium Hydroxide purchased from VWR (1336-21-6) and 

Ammonium Oxalate purchased from Poly Scientific (S2337-160Z) was used for 

confirmation of decalcification. Tissue Trek Automated Tissue Processor was used for all 

tissue processing. Leica RM 2155 Microtome was used for all tissue sectioning. 

Immunohistochemistry (IHC) evaluation utilized a Mouse Anti-Human Mitochondria 

primary antibody purchased from Abcam (ab79479). Secondary Anti-Mouse IgG 

antibody was purchased with Vecastain Elite ABC Kit from Vector Laboratories (PK-

6100). DAB Peroxidase Substrate Kit (SK-4100) and Avidin Biotin Blocking Kit (SP-

2001) was also purchased from Vector Laboratories. Background Buster Blocking Agent 

was purchased from Innovex Biosciences (NB306). Citric Acid Monohydrate (A104-
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500), Sodium Azide (S2271-25), Bovine Serum Albumin (BP9703-100), and 

Hematoxylin (7211) were purchased from Fisher Scientific. TritonX-100 was purchased 

form Alfa Aesar (A16046). 3% Hydrogen Peroxide was purchased from Publix. All 

histological images were captured on a Zeiss Axiovert.A1 microscope in conjunction 

with Axiovision Software. 

 

3.2.1 Stem Cell Fluorescent Tagging 

Three T-175 flasks containing hADSCs (Passage 2) were washed twice with 10mL sterile 

PBS. After, 4mL of Trypsin was then added and the flask was incubated for 3 minutes at 

37°C in order to detach cells from the flasks. Cells were viewed under the microscope to 

ensure rounded and floating cells. Following, 8mL of sterile cell culture media was added 

in order to inhibit the Trypsin, and the suspended cells were placed into a 15mL conical 

tube. The tubes were then centrifuged for 5 minutes at 1000xG, the supernatant was 

removed, and the cells were re-suspended in 2mL of fresh cell culture media. Cells were 

then counted with an automated cell counter to determine cell number (3.10x106 

cells/mL) and viability (97%). The conical tubes containing the cells were then 

centrifuged again for 5 minutes at 1000xG in which they were then re-suspended in 2mL 

of sterile 10µM XenoLight DiR fluorescent dye. The cells were incubated with the dye 

for 20 minutes in 37°C and were re-suspended every 5 minutes. After, the tagged cells 

were washed twice and re-suspended with 5mL of PBS. Tagged cells were counted via an 

automated cell counter in order to determine cell number (2.39x106 cells/mL) and 

viability (95%). This same procedure was repeated for hAMSCs (Passage 1) in which 
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before fluorescent tagging, cell number was at 3.12x106 cells/mL with viability of 97%. 

After tagging the cells with the XenoLight DiR fluorescent dye, cell number was at 

1.90x106 cells/mL with viability at 91%.  

 

XenoLight DiR is a lipophilic dye that works to tag to the cytoplasmic membrane of stem 

cells for non-invasive in vivo imaging, resulting in precise and stable cell staining with 

negligible dye transfer between cells. XenoLight DiR fluorescent dye was chosen for its 

compatible and recommended use with the IVIS Spectrum Imaging System by Perkin 

Elmer, as well as containing a near infrared (NIR) fluorescence which makes it ideal for 

in vivo imaging due to significantly reduced auto fluorescence from the animal. Upon 

fluorescent tagging of hADSCs and hAMSCs, it was observed that both cell lines 

retained high cell number and viability, indicating the dye was not damaging to the cells. 

 
Figure 52: XenoLight DiR fluorescently labeled hADSC pellet. 
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3.2.2 IVIS Spectrum Fluorescent Thresholding  

Once both hADSCs and hAMSCs were tagged with the XenoLight DiR 

Fluorescent dye, serial dilutions of the cells were made to determine optimal 

imaging settings and in vitro threshold for the IVIS Spectrum Imaging System. 

Dilutions of 106, 5x105, 105, 104, and 0 cells were suspended in a 100µL sterile 

0.5% hyaluronic acid (HA) and PBS solution in 1.5mL Eppendorf tubes. Once the 

IVIS was initialized, the tubes containing the tagged cells were immediately 

imaged via epi-fluorescence in which the ideal imaging settings included: an 

exposure time of 1.00 seconds, medium binning, an F/Stop of 1, an excitation 

filter of 710nm, and an emission filter at ICG. These settings were used for all in 

vivo imaging of the DHGPs.  

 

3.2.3 Tagged Stem Cell Injections 

Fluorescent tagging of hADSCs (Passage 2) and hAMSCs (Passage 2) with XenoLight 

DiR dye followed the same procedure described in 3.2.1. Cell number of hADSCs after 

fluorescent tagging was 1.86x106 cells/mL at 97% viability, while hAMSC cell number 

after tagging was 2.87x105 cells/mL at 96% viability.  

 

Approximately 480,000 tagged hADSCs and hAMSCs were suspended in separate tubes 

of 100µL sterile 0.5% hyaluronic acid (HA). Immediate intra-articular injection of tagged 

stem cells into the left knee stifles of two month old DHGPs was performed via an insulin 

syringe needle in which three DHGPs received hADSCs while three other DGHPs 
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received hAMSCs. Right knee stifles of all DHGPs received a 100µL injection of HA as 

a control. Figure 53 below displays a schematic of the injection methods performed. 

Before injections were performed, all knees were shaved in order to reduce 

autofluorescence. Additionally, all injection methods were approved from an Animal 

Care and Use Protocol (2016-040) by Clemson University in conjunction with an 

approved Amendment by IACUC. 

 

Figure 53: Experimental design schematic of tagged stem cell injections performed. 
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3.2.4 IVIS Spectrum Imaging 

Upon injection of tagged hADSCs and hAMSCs, all guinea pigs were immediately 

imaged (Day 0) with the IVIS Spectrum Imaging System, in which all remained under 

anesthesia via isoflurane during imaging. Optimal IVIS filter settings were adjusted as 

described in section 3.2.2. DHGPs were then imaged on Day 3, 6, 10, 13, 16, and 21. 

Radiant efficiency scales per image depicts the fractional ratio of emitted photons per 

incident excitation photon. A region of interest (ROI) was drawn around the fluorescent 

area via the IVIS Spectrum Software in order to obtain average radiant efficiency for 

each image.  

 

3.2.5 Dunkin Hartley Guinea Pig Harvest 

Following IVIS Spectrum imaging on Day 21, DHGPs were immediately euthanized.  

Knee joints were exposed and dissected in which all treatment knees (n=6) were placed in 

formalin for sample fixation in preparation for immunohistochemistry (IHC). Half of the 

control knees (n=3) were immediately snap frozen in liquid nitrogen and stored at -80°C 

until ready for biochemical analysis, while the other half (n=3) were placed in 10% 

formalin for Micro-CT evaluation. Additionally, the lungs (n=6) and spleen (n=6) were 

harvested and placed in formalin for sample fixation in preparation for IHC.  

 

Following fixation, treatment knee samples were decalcified for 2 weeks in formic acid, 

with solution changes occurring every 3 days. Following complete decalcification, knee 
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joints were processed for 36 hours and immediately embedded in paraffin. All knee 

samples were sectioned at 8µm and subsequently baked overnight in an oven at 55°C to 

ensure adherence to the histology slide.  Ensuing fixation of the lungs, they were 

processed for 8 hours prior to paraffin embedment, sectioned at 5µm, and subsequently 

baked overnight in an oven at 55°C. Additional processing of spleen samples in 

preparation for IHC was described in section 2.2.7. 

 

3.2.6 Immunohistochemistry (IHC) 

Immunohistochemistry (IHC) on paraffin embedded Dunkin Hartley Guinea Pig (DHGP) 

lungs (n=6) and knee sections (n=6), as well as human cartilage (n=4), was performed for 

detection of human mitochondria. Human cartilage (positive control) and DHGP lung 

samples were sectioned at 5µm, while knee samples were sectioned at 8µm, and baked 

overnight in an oven at 55°C. All tissue types underwent the same IHC procedure 

described in section 2.2.7; however, a Mouse Anti-Human Mitochondria primary 

antibody, diluted 1:100 in 1% BSA and 0.01% Azide in PBS, was utilized. Again, 

negative samples did not receive a primary antibody. 

 

3.2.7 Micro-Computed Tomography (Micro-CT) 

Micro-CT imaging of healthy two-month old DHGP knee samples (n=3) was performed 

according to the procedure described in section 2.2.4. 

 

3.2.8 Dimethyl-Methylene Blue (DMMB) Assay 
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DMMB assay on healthy two-month old DHGP knee samples (n=3) was performed 

according to the procedure described in section 2.2.3. 

 

3.3 Results 

3.3.1 Stem Cell Fluorescent Tagging and IVIS In Vitro Thresholding 

Cell viability was determined before and after tagging the hAMSCs and hADSCs with 

the XenoLight DiR fluorescent dye. As depicted in Figure 54, cell viability did not 

statistically decrease after tagging the cells with the dye. Before tagging, hAMSCs 

displayed a cell viability of 97% and after tagging displayed a 93.5% cell viability. 

Additionally, before tagging hADSCs, cell viability was 97.5%, while cell viability after 

tagging 96%. 
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Figure 54: Cell Viability of hAMSCs and hADSCs before and after XenoLight DiR fluorescent dye tagging. 

  

IVIS Spectrum filter thresholding was performed in vitro for both fluorescently tagged 

hAMSCs and hADSCs before injection and in vivo imaging of the DHGPs. Serial 

dilutions of the cells were made in order to obtain correct filter settings and gain a radiant 

efficiency threshold, in which it is observed in Figure 55 that at 104 cells, hAMSCs are no 

longer detected. This is consistent with the tagged hADSCs, in which Figure 56 depicts 

that at 104 cells, hADSCs are no longer detected. In both thresholds, it can be visualized 

that the PBS/HA suspension (containing no cells) does not display radiant efficiency 

detection, while the 106 cell suspension contains the highest level of radiant efficiency 

detection, qualitatively visualized via the radiant efficiency scale. 
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Figure 55: Representative IVIS Spectrum filter thresholding of hAMSC serial dilutions of 106, 5x105, 105, 104, 

and 0 cells. 
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Figure 56: Representative IVIS Spectrum filter thresholding of hADSC serial dilutions of 106, 105, 104, and 0 

cells. 

 

3.3.2 Longitudinal Imaging of Fluorescently Tagged Stem Cells  

Figure 57 and Figure 58 depict the longitudinal imaging of the DHGPs injected with 

tagged hAMSCs (~480,000 cells). Panel A represents Day 0, in which imaging was 

immediately performed following injection. Panel B represents Day 3, panel C represents 

Day 6, panel D represents Day 10, panel E represents Day 13, and panel F represents Day 

16. Qualitatively, a steady and consistent decrease in radiant efficiency over time can be 

visualized, in which by Day 16, there is no fluorescent detection. This trend is observed 

in both representative DHGPs injected with hAMSCs.  
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Figure 57: Longitudinal IVIS Spectrum imaging of a DHGP (animal 1) injected with tagged hAMSCs. 

 

 
Figure 58: Longitudinal IVIS Spectrum imaging of a DHGP (animal 5) injected with tagged hAMSCs. 

 



 123 

Figure 59 displays longitudinal imaging of the DHGPs tagged with hAMSCs in order to 

qualitatively visualize the decreased progression of fluorescence over time. Rows A and 

B differentiate between two different DHGP animals. 

 
Figure 59: Longitudinal IVIS Spectrum imaging of two DHGP (row A is animal 1 and row B is animal 5) 

injected with tagged hAMSCs. 
 

Figure 60 and Figure 61 depict the longitudinal imaging of the DHGPs upon injection of 

tagged hADSCs (~480,000 cells). Panel A represents Day 0, in which imaging was 

immediately performed following injection. Panel B represents Day 3, panel C represents 

Day 6, panel D represents Day 10, panel E represents Day 13, panel F represents Day 16, 

and panel G represents Day 21. Similar to the hAMSC injected DHGPs, a steady and 

consistent decrease in radiant efficiency over time can be visualized qualitatively. 

However, conversely to the hAMSC injected DHGPs, by Day 16 there is still fluorescent 

detection. This trend is observed in both representative DHGPs injected with hADSCs, in 

which by day 21 there is no fluorescent detection in the knee joint. It should be noted that 

the panels D, E, and G in Figure 60 and the panels D, F, and G in Figure 61, contain auto-

fluorescence present in the stomach of the DGHP and is not considered fluorescence 

from the cells.   
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Figure 60: Longitudinal IVIS Spectrum imaging of a DHGP (animal 2) injected with tagged hADSCs. 



 125 

 
Figure 61: Longitudinal IVIS Spectrum imaging of a DHGP (animal 6) injected with tagged hADSCs. 

 

Figure 62 displays longitudinal imaging of the DHGPs tagged with hADSCs in order to 

qualitatively visualize the decreased progression of fluorescence over time. Rows A and 

B differentiate between two different DHGP animals. 
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Figure 62: Longitudinal IVIS Spectrum imaging of two DHGP (row A is animal 2 and row B is animal 4) 

injected with tagged hADSCs. 
 

Following imaging, a region of interest (ROI) was automatically drawn around the 

detected fluorescence via the IVIS Imaging Spectrum Software in order to obtain average 

radiant efficiency values. Figure 63 depicts a representative image of a DHGP injected 

with hAMSCs on Day 0 with an ROI drawn around the area of fluorescence as indicated 

by the blue line. 
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Figure 63: Representative image of an ROI automatically drawn around the detected fluorescence via the IVIS 

Spectrum Imaging Software. 
 

After ROIs were drawn around all detected fluorescent areas for each imaging time point, 

average radiant efficiency values were obtained in order to assess resident time of 

hAMSCs and hADSCs quantitatively. Values were then normalized to Day 0 average 

radiant efficiency, in which average radiant efficiency ratios were obtained as depicted in 

Figure 64. It is observed that hAMSCs were no longer detected by Day 16, while 

hADSCs were still detected at this time point, indicating they resided at least three days 

longer in the knee joint. Additionally, following the trend of hADSCs fluorescence, it can 

be estimated that by Day 19, hADSCs would have a similar radiant efficiency to 

hAMSCs at Day 13, hypothetically indicating they could reside in the knee joint 
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approximately 6 days longer than hAMSCs. Ultimately, hADSCs were not detected by 

Day 21. 

 
Figure 64: Average radiant efficiency ratios for longitudinally imaged DHGPs injected with fluorescently tagged 

hAMSCs and hADSCs. 

 

3.3.3 Stem Cell Migration  

Following fluorescent imaging, DHGP lungs were harvested in order to detect for 

possible migration of hAMSCs and hADSCs to distant organs via IHC targeted to detect 

human mitochondria. Human native cartilage was used as a positive control for the 

Mouse Anti-Human Mitochondria primary antibody, as displayed in Figure 65. Panel A 

represents the negative control, in which no brown staining is detected in the 
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chondrocytes. Conversely, the positive control, depicted in panel B, has evident brown 

staining in the chondrocytes, indicating human mitochondria was detected.  

 
Figure 65: Human cartilage as a positive control for detection of human mitochondria via IHC. Panel A 

represents the negative control, while panel B represents the positive control containing Mouse Anti-Human 
Mitochondria primary antibody, in which positive staining is evident in the chondrocytes. 

 

Figure 66 displays IHC stained lung samples from the DHGPs injected with tagged 

hAMSCs. Panels A and C represent the negative control for each hAMSC-injected 

DHGP (animals 1 and 5), while panels B and D represent the positive control. For both 

animals, it is observed that the negative controls do not contain any brown staining 

therefore no detection of human mitochondria. Conversely, for both animals, the positive 

control lung samples do contain brown staining in the lungs, therefore signifying 

detection of human mitochondria in the lungs. 
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Figure 66: Representative lung samples of DHGPs injected with tagged hAMSCs that were targeted for 

detection of human mitochondria.  Panel A represents the negative control of one DHGP (animal 1), while panel 
B represents the positive control. Similarly, panel C represents the negative control of another DHGP (animal 

5), while panel D represents the positive control. Both DHGPs exhibit human mitochondria detection in the 
lungs. 

 

Figure 67 displays IHC stained lung samples from the DHGPs injected with tagged 

hADSCs. Panels A and C represent the negative control for each hADSC-injected DHGP 

(animals 2 and 6), while panels B and D represent the positive control. For both animals, 

it is observed that the negative controls do not contain any brown staining therefore no 

detection of human mitochondria. Similarly, for both animals, the positive control lung 

samples do not contain brown staining, therefore signifying no detection of human 

mitochondria in the lungs. 
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Figure 67: Representative lung samples of DHGPs injected with tagged hADSCs that were targeted for detection 

of human mitochondria.  Panel A represents the negative control of one DHGP (animal 2), while panel B 
represents the positive control. Similarly, panel C represents the negative control of another DHGP (animal 6), 
while panel D represents the positive control. Both DHGPs do not exhibit human mitochondria detection in the 

lungs. 

 

Knees of the DHGPs injected with tagged hAMSCs and hADSCs were harvested in order 

to detect for any remaining cells residing in the knee joint via detection of human 

mitochondria. Figure 68 through Figure 71 display representative areas of the IHC 

stained knee joint of the DHGPs injected with tagged hAMSCs, including the synovium, 

ACL, and articular cartilage of the tibia and femur. From Figure 68, panels A and B 

represent the negative and positive samples of the synovium, while panels C and D 

represent the negative and positive samples of the ACL. It is observed that the negative 
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controls for both sample types do not exhibit brown staining. Similarly, the positive 

controls for both sample types do not contain brown staining, therefore indicating no 

detection of human mitochondria in the synovium and ACL. From Figure 69, the 

negative and positive samples of the tibial articular cartilage are represented by panels E 

and F, while panels G and H represent the negative and positive femoral articular 

cartilage samples. It is observed that the negative controls for both sample types do not 

exhibit brown staining. Similarly, the positive controls for both sample types do not 

contain brown staining, therefore indicating no detection of human mitochondria in the 

articular cartilage of the tibia and femur. Figure 70 and Figure 71 represents the other 

DHGP injected with tagged hAMSCs, in which the panels denote the same sample type. 

Similar results are exhibited, in which human mitochondria is not detected in the 

synovium, ACL, or articular cartilage of the tibia and femur.  
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Figure 68: Representative images of IHC stained synovium and ACL from a DHGP (animal 1) injected with 

tagged hAMSCs for detection of human mitochondria. Panel A signifies the negative control of the synovium, 
while panel B represents the positive. Panel C represents the negative control for the ACL, while panel D 

denotes the positive. All scale bars represent 50 µm. 
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Figure 69: Representative images of IHC stained tibia and femur articular cartilage from a DHGP (animal 1) 

injected with tagged hAMSCs for detection of human mitochondria. Panel A signifies the negative control of the 
synovium, while panel B represents the positive. Panel C represents the negative control for the ACL, while 

panel D denotes the positive. All scale bars represent 20 µm. 
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Figure 70: Representative images of IHC stained synovium and ACL from a DHGP (animal 5) injected with 

tagged hAMSCs for detection of human mitochondria. Panel A signifies the negative control of the synovium, 
while panel B represents the positive. Panel C represents the negative control for the ACL, while panel D 

denotes the positive. All scale bars represent 50 µm. 
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Figure 71: Representative images of IHC stained tibia and femur articular cartilage from a DHGP (animal 5) 

injected with tagged hAMSCs for detection of human mitochondria. Panel A signifies the negative control of the 
synovium, while panel B represents the positive. Panel C represents the negative control for the ACL, while 

panel D denotes the positive. All scale bars represent 20 µm. 
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Figure 72 through Figure 75 display representative areas of the IHC stained knee joint of 

the DHGPs injected with tagged hADSCs, including the synovium, ACL, and articular 

cartilage of the tibia and femur. From Figure 72, panels A and B represent the negative 

and positive samples of the synovium, while panels C and D represent the negative and 

positive samples of the ACL. Similar results to the DHGPs injected with tagged hAMSCs 

are indicated, in which it is observed that the negative controls for both sample types do 

not exhibit brown staining. Similarly, the positive controls for both sample types do not 

contain brown staining, therefore indicating no detection of human mitochondria in the 

synovium and ACL. From Figure 73, the negative and positive samples of the tibial 

articular cartilage are represented by panels E and F, while panels G and H represent the 

negative and positive femoral articular cartilage samples. Again, similar results to the 

DHGPs injected with tagged hAMSCs are observed, in which the negative controls for 

both sample types do not exhibit brown staining. Similarly, the positive controls for both 

sample types do not contain brown staining, therefore indicating no detection of human 

mitochondria in the articular cartilage of the tibia and femur. Figure 74 and Figure 75 

represents the other DHGP injected with tagged hADSCs, in which the panels denote the 

same sample type. Similar results are exhibited, in which human mitochondria is not 

detected in the synovium, ACL, or articular cartilage of the tibia and femur. Ultimately, 

no human mitochondria were detected in the entire knee joint of the DHGPs injected with 

tagged hAMSCs as well as those injected with tagged hADSCs.  
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Figure 72: Representative images of IHC stained synovium and ACL from a DHGP (animal 2) injected with 
tagged hADSCs for detection of human mitochondria. Panel A signifies the negative control of the synovium, 

while panel B represents the positive. Panel C represents the negative control for the ACL, while panel D 
denotes the positive. All scale bars represent 50 µm. 
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Figure 73: Representative images of IHC stained tibia and femur articular cartilage from a DHGP (animal 2) 

injected with tagged hADSCs for detection of human mitochondria. Panel A signifies the negative control of the 
synovium, while panel B represents the positive. Panel C represents the negative control for the ACL, while 

panel D denotes the positive. All scale bars represent 20 µm. 
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Figure 74: Representative images of IHC stained synovium and ACL from a DHGP (animal 6) injected with 
tagged hADSCs for detection of human mitochondria. Panel A signifies the negative control of the synovium, 

while panel B represents the positive. Panel C represents the negative control for the ACL, while panel D 
denotes the positive. All scale bars represent 50 µm. 
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Figure 75: Representative images of IHC stained tibia and femur articular cartilage from a DHGP (animal 6) 

injected with tagged hADSCs for detection of human mitochondria. Panel A signifies the negative control of the 
synovium, while panel B represents the positive. Panel C represents the negative control for the ACL, while 

panel D denotes the positive. All scale bars represent 20 µm. 
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3.4 Discussion  

3.4.1. Stem Cell Fluorescent Tagging and IVIS In Vitro Thresholding 

As indicated in section 3.2.1, XenoLight DiR fluorescent dye (Perkin Elmer, USA) was 

chosen to tag the injected stem cells due to its compatible use with the IVIS Spectrum 

Imaging System (Perkin Elmer, USA). Its high wavelength property makes it an optimal 

fluorophore to limit autofluorescence, which was especially vital in imaging a white 

animal that produces naturally high wavelengths. It was not predicted that stem cell 

viability would be negatively affected upon fluorescent tagging of stem cells with 

XenoLight DiR. This was further validated (Figure 54) in which hAMSCs and hADSCs 

did not exhibit loss of cell viability after being fluorescently tagged with XenoLight DiR 

fluorescent dye, indicating this was still a suitable and appropriate dye for labeling the 

hAMSCs and hADSCs.  

 

Before in vivo imaging of DHGPs, in vitro thresholding of fluorescently tagged hAMSCs 

and hADSCs was performed in order to obtain the correct IVIS Spectrum Imaging filters 

as well as a fluorescent tolerance. Serial dilutions of both fluorescently tagged stem cells 

were made and imaged (Figure 55 and Figure 56), in which an optimal filter setting were 

enacted. Results indicate that for both hAMSCs and hADSCs, at 104 cells, fluorescence is 

no longer detected, indicating that cell number falling below this threshold will not be 

identified by the IVIS Spectrum Imaging system. Additionally, it can be visualized that 

the PBS/HA suspension that contains no cells, has no detectable fluorescence, which was 

predicted. This also indicates that no autofluorescence is impacting the fluorescent 
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detection of the other dilutions. Lastly, it is observed that for both hAMSCs and 

hADSCs, 106 cells depicts the highest level of detectable fluorescence, which was again 

predicted. Qualitatively, the fluorescently tagged cell dilutions can be viewed to 

progressively decrease in radiant efficiency as less cells are present. It should be noted 

that the cells are displayed in the middle of the Eppendorf tubes, as indicated by the 

maximum level of fluorescence observed, due to the fact that they are re-suspended in a 

solution containing 0.5% HA. The viscous nature of HA caused the cells to no longer 

descend to the bottom of the tube, and resulted in congregation in the middle of the tube 

upon re-suspension. Moreover, the serial dilutions were successful in obtaining 

appropriate IVIS Spectrum Imaging filters and fluorescent thresholds for both stem cell 

sources. 

 

3.4.2. Longitudinal Imaging of Fluorescently Tagged Stem Cells 

Upon injection of tagged hAMSCs and hADSCs into the knee joint, DHGPs were 

immediately imaged via the IVIS Spectrum Imaging system in order to evaluate and 

compare residence times of hAMSCs and hADSCs in vivo. Longitudinal imaging 

occurred on Days 3, 6, 10, 13, 16, and 21. It is qualitatively observed that with increasing 

time, fluorescence steadily decreases for both hAMSC and hADSC treated DHGPs, in 

which this was predicted. Additionally, it is observed that by Day 16, there is no radiant 

efficiency detected for the hAMSC injected DHGPs, while hADSCs are still exhibiting 

fluorescence (Figure 57 through Figure 62). The hADSCs are no longer detected in the 

DHGP by Day 21, in which this trend can be observed for both treatment groups (Figure 
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57 through Figure 62). Ultimately, hADSCs appear to reside longer in the knee joint, for 

at least 3 days, in comparison to hAMSCs. To quantitatively evaluate the residence time 

of hAMSCs and hADSCs within the knee joint, a region of interest was chosen around 

the detected fluorescence area via the IVIS Spectrum Imaging Software to obtain average 

radiant efficiency values for each imaging time point. It should be noted that radiant 

efficiency scales for hAMSCs and hADSCs are different from each other in order to 

account for difference in cell surface area and size. In order to account for this difference, 

average radiant efficiency values were normalized to Day 0 average radiant efficiency 

values. From the normalized radiant efficiency graph (Figure 64), it is observed that 

fluorescence steadily decreases over time and ultimately hADSCs have a longer 

residence time in the knee joint in comparison to hAMSCs. There is not an imaging time 

point in between Days 16 and 21, but if the average radiant efficiency trend line were to 

continue for the hADSCs, it can be observed that by Day 19 there would be a potentially 

similar average radiant efficiency observed as the hAMSCs on day 13. This indicates that 

hypothetically hADSCs could reside 6 days longer in the knee joint in comparison to 

hAMSCs.  

 

Moreover, it was observed that by Day 16 hAMSCs were no longer detected and by Day 

21, hADSCs were no longer detected. Overall, this short residence time of stem cells in 

the target tissue is consistent with current investigations and various applications, in 

which recent studies suggest that stem cells may not have a long lifespan after 

administration or have poor engraftment into the target site.120,123,124 
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It is currently unclear as to what mechanisms restrict stem cell survival and engraftment 

after transplantation in vivo; however, the rapid disappearance of the hAMSCs and 

hADSCs could explain the lack of therapeutic efficacy in mitigation of OA following 

intra-articular injection into the DHGP knee joint. The lower injected hAMSC and 

hADSC density (~500,000 cells) could also have an impact on their limited residence 

time within the joint. One study showed that a higher cell density (7x106 cells) of intra-

articularly injected MSCs in the DHGP knee joint resided up to 5 weeks post-

transplantation.125 Additionally, while mesenchymal stem cells (MSCs) have the unique 

ability to differentiate into various cell types and potentially secrete anti-inflammatory 

factors, as described in section 1.5.2, it is currently unknown whether these mechanisms 

are effective and if MSCs persist locally after administration.124 In order to increase the 

therapeutic effectiveness of stem cells in vivo following injection, potential suggestions 

are described in Chapter 4.  

 

3.4.3 Stem Cell Migration 

To determine whether the stem cells indeed died within the knee joint over time or if they 

systemically migrated to distant organs, stem cell migration was assessed via 

immunohistochemistry (IHC) targeted to detect human mitochondria. To determine if the 

Anti-Human Mitochondria primary antibody was effective, a native human cartilage 

sample was used as the positive control in which chondrocytes present within the 

cartilage would stain positively for human mitochondria. This was validated (Figure 65) 
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as positive brown staining occurred in the positive sample, while no staining was 

observed in the negative sample.  

 

The lungs of the DHGPs were harvested in order to detect for human mitochondria 

present. Identifying human mitochondria in the lungs would indicate that the stem cells 

did migrate to the organ. The lungs were chosen as the optimal organ to assess as it has 

been determined that this is the primary and initial migratory organ that stem cells travel 

to systemically. This is especially detected after intravenous administration, and although 

the hAMSCs and hADSCs were intra-articularly injected, this same migratory 

mechanism could be observed.124,126,127 Results showed no positive staining in the lungs 

of the DHGPs that were injected with hADSCs (Figure 67). From this, it can be 

concluded that hADSCs did not migrate to distant organs and therefore presumably died 

over time within the knee joint. Conversely, results of the hAMSC injected DHGPs 

indicated clear and intense positive staining in the lungs for both groups, indicating that 

hAMSCs did in fact migrate to the lungs. This is a very interesting result, as there are 

currently no investigations on the migration outcomes of hAMSCs upon intra-articular 

administration in vivo. Although direct injection benefits from precise and targeted 

delivery to a specific site, investigations show that regardless of the route of delivery, 

only 1-5% of cells engraft within the target site.120 The current mechanisms by which 

stem cells migrate to the lungs from distant areas of the body are unknown; however, a 

mechanical mechanism for cell trapping in the lung is postulated.120 Additionally it is 

unclear if capillaries need to employ certain characteristics to entice and retain MSCs. 
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Furthermore, future studies investigating the mechanisms regulating systemic migration 

are warranted.  

 

Ultimately, it is hypothesized that the hAMSCs injected into the knees migrated to the 

lungs via the capillary network present in the synovium surrounding the knee joint. As 

the synovium is a vascularized tissue, it is possible that hAMSCs were able to migrate 

through blood vessels and systemically travel to the lungs from the knee joint. The 

mechanisms by which the hAMSCs were able to systemically migrate to the lungs, and 

not the hADSCs, is currently unclear. It may potentially be due to their perinatal 

characteristics in which they have a broader range of differentiation potential compared 

to hADSCs, which may remain in the knee joint due to its restrained capability to 

differentiate into the mesoderm lineage and recognize a more natural environment in the 

knee joint. Additionally, it is uncertain if stem cells that are trapped in the lungs 

following migration are still viable and contain effector functions.120 Therefore, future 

investigations into the bio-distribution mechanisms of hAMSCs are warranted, as will be 

described more in Chapter 4.  

 

The knee joints of the DHGPs were also evaluated for potential detection of human 

mitochondria in order to determine if any remaining stem cells resided in the joint. The 

anterior cruciate ligament (ACL), synovium, and the articular cartilage of the tibia and 

femur were evaluated in order to account for any stem cell distribution in the joint itself. 

Both hAMSCs and hADSCs were not seen in the any of the knee joint tissues (Figure 68 
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through Figure 75), in which these results further validate that the hADSCs did indeed 

die in the knee joint. Additionally, it can be concluded that hAMSCs traveled 

systemically to the lungs or some may have died in the knee joint as well. Moreover, 

from IVIS longitudinal imaging and IHC evaluation, it can be validated that by Day 16, 

hAMSCs are no longer present in the knee joint, while by Day 21, hADSCs are no longer 

present in the knee joint. Although it was observed that hADSCs did reside longer in the 

knee joint and eventually died, hAMSCs were detected on Day 21 in the lungs. This 

shows that hAMSCs did not die quicker than hADSCs, but rather they migrated out of the 

knee joint earlier and therefore were no longer detected by the IVIS Imaging System. It is 

unclear when exactly and how quickly hAMSCs begin to migrate, and therefore future 

studies are warranted to investigate this.  

 

3.4.4 Summary 

In combination with IVIS longitudinal imaging and IHC evaluation, it was determined 

that hADSCs resided longer in the knee joint in comparison to hAMSCs and died in 

within the knee joint by day 21, showing no systemic migration to distant organs. 

Conversely, hAMSCs were no longer detected in the knee joint by Day 16 and were 

found to migrate to the lungs, in which they were detected at Day 21. Moreover, although 

hAMSC engraftment capabilities in the target tissue site are lacking in comparison to 

hADSCs, they are still detectable longer than hADSCs in the body. Therefore, it can 

hypothesized that if techniques to ensure the engraftment of the hAMSCs in the knee 

joint could be improved, they could potentially survive longer in the joint than the 
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hADSCs and provide a more therapeutic effect. Ultimately, the results from Aim 2 

helped to justify why the hADSCs and hAMSCs were not as therapeutically effective in 

mitigating OA, as seen in Aim 1, due to their short life-span within the knee joint and 

potential loss of effector functions. Future suggestions are warranted, as described below 

in Chapter 4, in order to increase the therapeutic efficacy of these stem cell sources and to 

improve their residence time and engraftment in the knee joint.  
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CHAPTER FOUR 

CONCLUSIONS AND FUTURE SUGGESTIONS 

In conclusion, it cannot be determined if hAMSCs had a superior pro-regenerative effect 

in comparison to hADSCs in vivo. As described in Aim 1, outcome measures exhibited 

very similar results and no statistical significance between the two stem cell sources in 

mitigation of osteoarthritis from articular cartilage, subchondral bone, and synovium 

analyses. Additionally, it cannot be concluded that either stem cell source had a pro-

regenerative effect in vivo as results also indicated similar results to the HA-only treated 

groups. Aim 2 aided in explaining potentially why these stem cells did not display an 

enhanced therapeutic effect, in which it was observed that both stem cell sources were no 

longer residing in the knee joint after 3 weeks, either due to cell death or migration. This 

deficiency in residence time substantiates the lack of therapeutic efficacy from hAMSCs 

and hADSCs, as they are no longer able to elicit their effector functions in the knee joint. 

Overall, further investigations with higher sample size is warranted in order to more 

effectively observe statistical trends, and suggestions for future studies will be described 

below.  Lastly, it can also be concluded that the DHGP served as an effective spontaneous 

OA model, which was validated from results described in Aim 1. 

 

Although a lack of regenerative effects were observed from stem cell injections in vivo, 

the studies performed herein provide great insight into future directions and studies to 

improve the therapeutic efficacy of injected hAMSCs and hADSCs in mitigation of OA. 
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Further investigations are warranted and suggestions for these studies are described 

below.  

 

5.1 Enhance Residence Time and Integration of Stem Cells at the Target Tissue Site 

There are various challenges presented in developing novel stem cell-based therapies, 

which commonly include cell retention or survival and functional integration of the cells 

at the target site. Further investigations into these components are necessary to provide 

for a more comprehensive understanding to improve targeted delivery and therapeutic 

efficacy of stem cells. In order to increase residence time and survival of stem cells upon 

transplantation, increasing the number of injections could be potentially beneficial in 

order to sustain a uniform number of cells within the joint over a prolonged period of 

time. It was observed that with ~500,000 cells injected, they were no longer residing in 

the joint by 3 weeks. Therefore, if the same number of cells are injected, then at a 3 week 

time point, another injection should be performed. Another suggested option would be to 

initially inject a higher cell density in order to increase residence time within the joint.  

 

In order to improve the engraftment and integration of stem cells at the tissue specific 

site, phenotypic modification of cells before injection could be performed in order to give 

the cells a “boost” into a specific and desired lineage. Being cultured and injected alone 

may prove challenging for the stem cells to differentiate into the desired lineage just by 

being present in the tissue environment itself. Therefore, current investigations are 

focusing on the direct control of stem cell differentiation in vitro for various 
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applications.128–130 Potential suggested strategies for this study would be to co-culture and 

inject stem cells in combination with chondrocytes. It has been found that maintaining 

stability of chondrocyte phenotype and regulating chondrogenic differentiation of stem 

cells over time ensuing transplantation is a large challenge to stem cell-based strategies 

for OA, in which cells tend to transition into a fibrocartilage phenotype.131,132 Having 

chondrocytes present in the milieu may allow the stem cells to undergo desired 

chondrocyte phenotypic alterations with an enhanced differentiation potential, therefore 

eliciting a better regenerative and anti-inflammatory effect. Another suggestion could be 

to culture the stem cells in differentiation media immediately prior to injection. Allowing 

the stem cells to be cultured in chondrogenic media could again give them a heightened 

ability to differentiate into desired chondrocytes and therefore engraft more efficiently 

into the knee joint to stimulate their anti-inflammatory effector functions. Moreover, 

these strategies may help to lessen the probability of spontaneous differentiation of stem 

cells into undesired lineages. Overall, increasing the functional integration and of the 

stem cells within the joint would allow for less systemic migration to distant organs, as 

observed with hAMSCs, and increased therapeutic efficacy for mitigation of OA. 

 

5.2 Improve Injection Method 

Cell therapy success profoundly relies on the effective delivery of viable and functional 

cells to a specific site, where cells can yield a desired therapeutic effect. Intra-articular 

injection is a desired method for transplantation of stem cells as it allows for targeted 

delivery of cells to the desired and targeted tissue. One of the disadvantages to this 
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method is the subsequent and damaging mechanical properties it provokes to the cells via 

shear forces.133,134 Investigations have found that direct injection of stem cells via 

syringe-based techniques increase the linear velocity of the cells as they pass through the 

needle and can negatively affect cell viability due to the disturbance of the cell 

membrane.133  It has been found that with current clinical injections that utilize saline as 

the cell carrier, up to 40% of cells did not survive the injection procedure.134 There are 

currently various strategies proposed to protect the cells from mechanical forces, such as 

cell encapsulation within micro-carrier hydrogels.134,135 An additional protective strategy 

suggested is to surround the cells in alginate beads, in which it is hypothesized that 

forming a protective covering around the cells would limit the mechanical forces and 

therefore increase cell viability upon direct injection.133,136 Moreover, investigations into 

the use of hydrogel-based carriers for the direct intra-articular injection of hAMSCs and 

hADSCs within the knee joint is suggested in order to improve cell viability upon 

transplantation.   

 

5.3 Cell Surface Engineering and Signaling Pathway Inhibition 

A novel approach to regenerative cell-based therapy includes the investigation into cell 

surface engineering in which the cell membrane is customized to moderate cellular 

interactions and functions. Research into this field holds great potential as adaptations to 

the cell surface can lead to control over stem cell fate as well as modulating specific 

ligand-receptor binding to ultimately affect downstream effector functions.137–139  The cell 

surface comprises of various proteins, glycans, and lipids that play critical roles in cell 
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adhesion, cell-cell communication and recognition, as well as signal transduction which 

ultimately governs the fate of the cell.140 Currently, there are several methods aimed to 

modify the cell surface, such as chemical, enzymatic, and physical approaches, in which 

these strategies have been employed for various transplantation and targeted cell delivery 

applications in order to manipulate intracellular signaling and cell fate.137 Herein, a 

suggested future investigation into modulating the cell surface for an enhanced affinity in 

the target tissue site and inhibition of the nuclear factor-kappa B (NF-κB) pathway will 

be described.  

 

One of the main challenges in advancing the therapeutic efficacy of stem cell-based 

therapy is how to not only guide the cells into the specific target tissue site but also to 

ensure they remain in the area.141 As cell retention is a major limitation, improving the 

preservation of cells at the target tissue is currently being investigated for OA 

applications. Lim et al. developed an approach to modifying the mesenchymal stem cell 

(MSCs) surface in conjunction with a homing peptide and recombinant protein to aid in 

migration of cells to the target site.142 The group’s results indicated that inclusion of the 

targeted ligand on the cell surfaces assisted the migration of the cells toward their 

molecular target. Future studies into enhancing the retention and affinity of stem cells in 

the knee joint is warranted.  
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In addition to cellular interactions, the cell surface plays a role in signal transduction in 

which the signal being transmitted intracellularly can elicit distinct biochemical 

responses. One of the driving pathways of OA is the initiation of the NF-κB pathway in 

which upon activation, expression of genes that stimulate mediators that contribute to the 

destruction of the joint occurs.73 Damage-associated molecular patterns (DAMPs) and 

fragments induced by mechanical stress serve as ligands that binds to toll-like receptors 

(TLRs) expressed on chondrocyte surfaces. This ultimately induces the activation NF-κB 

cascade of pro-inflammatory mediators such as cytokines, chemokines, and degradation 

components which serve to disrupt the matrix and induce a progressive cycle of 

destruction hallmarked in OA pathogenesis. Strategies directed to restrict NF-κB 

signaling and ultimately limit the activation of pro-inflammatory mechanisms may offer 

possible OA treatment options. The inhibition of the NF-κB pathway via the 

incorporation of pharmacologic agents, chemical components, and various receptor 

agonists have been explored in which glycosaine hydrochloride and thalidomide has been 

observed to block the IL-1β and TNF-α mediated activation of NF-κB.73,143,144 

Additionally IL-1 receptor antagonist (IL-1Ra) and TNF-R has been shown to down-

regulate NF-κB activity.145 Various methods and investigations to inhibit the signaling 

activation of NF-κB is warranted in order to inhibit the production of various degrading 

products of OA.  

 

Moreover, the cell surface is an essential characteristic of cell function in which 

modulating the cell membrane provides opportunities to regulate the biochemical and 
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cellular mechanisms in cell-based therapies including OA clinical applications. 

Therefore, future studies exploring cell surface engineering for improvement of cell 

retention and inhibition of NF-κB signaling pathway is suggested. 

 

5.4 Summary 

Moreover, the use of stem cells for regenerative therapy has shown promise as an optimal 

therapeutic source to mitigate OA progression in vitro; however, the findings herein 

highlight the current limitations of stem cell-based therapy once transplanted in vivo and 

introduced in to the complex physiologic environment. Therefore, further investigations 

are warranted improve the regenerative capabilities of stem cells in vivo in order to 

provide a clinically significant therapeutic effect. 
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APPENDIX 

ADDITIONAL DATA AND FIGURES 

 

 
Figure A.1: Average GAG content in the lateral femoral compartment of the DHGP knee demonstrating 

statistically higher average concentrations of GAG for healthy 2-month old DHGP knees compared to all 9 
month-old groups. 
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Figure A.2: Average GAG content in the lateral tibia compartment of the DHGP knee demonstrating 

statistically higher average concentrations of GAG for healthy 2-month old DHGP knees compared to all 9 
month-old groups. 

 

 
Figure A.3: Average subchondral trabecular bone volume density (BV/TV) in the lateral compartment of the 

tibia. 
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Figure A.4: Average trabecular thickness in the medial compartment of the tibia. 

 
Figure A.5: Average subchondral bone plate porosity in the medial compartment of the tibia. The star 

represents statistical significance in which (p<0.05). 
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Figure A.6: Average subchondral bone plate porosity in the lateral compartment of the tibia. The star 

represents statistical significance in which (p<0.05). 
 

 
Figure A.7: Average subchondral bone plate thickness in the lateral compartment of the tibia. Two star 

represents statistical significance in which (p<0.01). 
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Figure A.8: All Safranin-O stained 9-month old DHGP knees for semi-quantitative histological evaluation. 
Column A represents HA treatment, column B represents hADSC treatment, column C represents hAMSC 

treatment, and columns D1, D2, and D3 represent the paired and corresponding saline controls. 
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Figure A.9: All Toluidine Blue stained 9-month old DHGP knees for semi-quantitative histological evaluation. 

Column A represents HA treatment, column B represents hADSC treatment, column C represents hAMSC 
treatment, and columns D1, D2, and D3 represent the paired and corresponding saline controls. 
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Figure A.10: Harvested DHGP spleen as a positive control for detection of DHGP macrophages via IHC. Panels 
A and C represent the negative control, while panels B and D represent the positive control containing Mouse 

Anti-Guinea Macrophage primary antibody, in which positive staining is evident in both positive samples. 
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Figure A.11: Representative synovium samples of 9-month old DHGPs that were targeted for detection of 

DHGP macrophages.  Panel A represents the negative control of and HA treated DHGP, while panel B 
represents the positive control. Similarly, panel C represents the negative control of a saline injected DHGP 

knee, while panel D represents the positive control. No positive staining is observed in all images. 
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Figure A.12: Representative synovium samples of 9-month old DHGPs that were targeted for detection of 
DHGP macrophages.  Panel A represents the negative control of an hAMSC treated DHGP, while panel B 

represents the positive control. Similarly, panel C represents the negative control of an hADSC injected DHGP 
knee, while panel D represents the positive control. No positive staining is observed in all images. 
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Figure A.13: Longitudinal IVIS Spectrum imaging of a DHGP (animal 3) injected with tagged hAMSCs. Panel 
A represents Day 0, panel B represents Day 3, and Panel C represents Day 6 in which fluorescence immediately 

declines. 

 
Figure A.14: Longitudinal IVIS Spectrum imaging of a DHGP (animal 4) injected with tagged hAMDCs. Panel 
A represents Day 0, panel B represents Day 3, and Panel C represents Day 6 in which fluorescence immediately 

declines. 
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Figure A.15: Representative lung samples of DHGPs injected with tagged hAMSCs that were targeted for 

detection of human mitochondria.  Panel A represents the negative control of the DHGP lung (animal 3), while 
panel B represents the positive control. Both samples exhibit no human mitochondria detection in the lungs. 

 

 
Figure A.16: Representative lung samples of DHGPs injected with tagged hADSCs that were targeted for 

detection of human mitochondria.  Panel A represents the negative control of the DHGP lung (animal 4), while 
panel B represents the positive control. Both samples exhibit no human mitochondria detection in the lungs. 
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Figure A.17: Representative images of IHC stained synovium and ACL from a DHGP (animal 3) injected with 
tagged hAMSCs for detection of human mitochondria. Panel A signifies the negative control of the synovium, 

while panel B represents the positive. Panel C represents the negative control for the ACL, while panel D 
denotes the positive. All scale bars represent 50 µm. 
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Figure A.18: Representative images of IHC stained tibia and femur articular cartilage from a DHGP (animal 3) 
injected with tagged hAMSCs for detection of human mitochondria. Panel A signifies the negative control of the 

synovium, while panel B represents the positive. Panel C represents the negative control for the ACL, while 
panel D denotes the positive. All scale bars represent 20 µm. 



 170 

 
Figure A.19: Representative images of IHC stained synovium and ACL from a DHGP (animal 4) injected with 
tagged hADSCs for detection of human mitochondria. Panel A signifies the negative control of the synovium, 

while panel B represents the positive. Panel C represents the negative control for the ACL, while panel D 
denotes the positive. All scale bars represent 50 µm. 
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Figure A.20: Representative images of IHC stained tibia and femur articular cartilage from a DHGP (animal 4) 
injected with tagged hADSCs for detection of human mitochondria. Panel A signifies the negative control of the 

synovium, while panel B represents the positive. Panel C represents the negative control for the ACL, while 
panel D denotes the positive. All scale bars represent 20 µm.  
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