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ABSTRACT 

Extant bivalve members from the family Lucinidae harbor chemosynthetic 

gammaproteobacterial gill endosymbionts capable of thioautotrophy. These 

endosymbionts are environmentally acquired and belong to a paraphyletic group distantly 

related to other marine chemosymbionts. In coastal habitats, lucinid chemosymbionts 

participate in facilitative interactions with their hosts and surrounding seagrass habitat that 

results in symbiotic sulfide detoxification, oxygen release from seagrass roots, carbon 

fixation, and/or symbiotic nitrogen fixation. Currently, the structural and functional 

complexity of whole lucinid gill microbiomes, as well as their interactions with lucinid 

bivalves and their surrounding environment, have not been comprehensively characterized. 

This dissertation focuses on the taxonomic, genetic, and functional diversity in the gill 

microbiomes of three Floridian coastal lucinid bivalve species, Phacoides pectinatus, 

Ctena orbiculata, and Stewartia floridana, in the context of environmental data where 

appropriate.   

Analyses of these lucinid gill microbiomes showed taxonomic diversity that was 

unaffected by spatial distribution patterns. Phacoides pectinatus gill microbiomes sampled 

from a coastal mangrove habitat contained, in order of relative abundances, a 

chemosynthetic symbiont species that was taxonomically and functionally distinct from 

seagrass-associated chemosynthetic lucinid symbionts, a heterotrophic Kistimonas-like 

species, and a heterotrophic Spirochaeta-like species. In comparison, gill microbiomes of 

a seagrass-dwelling C. orbiculata population comprised four strains of chemosymbionts 

that belonged to two separate species and low abundances of an uncharacterized 
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Endozoicomonas-like operational taxonomy unit (OTU). Gill microbiomes of a separate 

seagrass-dwelling S. floridana population consisted of another chemosynthetic symbiont 

species and low abundances of a heterotrophic Spirochaeta-like species that was distantly 

related to the Spirochaeta-like species in P. pectinatus.  

Functional characterization of host- and microbiome-related genes/transcripts in 

these bivalve species revealed previously unreported C1-compound oxidation functions in 

some chemosymbionts and other functions relevant to microbe-microbe competition, 

symbiont selection, metabolism support, and symbiont-to-host nutrient transfer. 

Preliminary differential expression analyses on host- and microbiome genes across micro-

habitats with different vegetation coverages showed potential upregulation of C. orbiculata 

functions involved in aerobic respiration, aerobic stress, electron transport, and 

mitochondrial sulfide detoxification, as well as downregulation of a sulfurtransferase gene 

encoded by its chemosynthetic symbionts, in a seagrass-covered quadrat compared to an 

algae-covered quadrat. In comparison, very few genes mappable to S. floridana and its 

chemosymbiont were differentially expressed between predominantly sand-covered and 

seagrass-covered quadrats, but the Spirochaeta-like species over-expressed carbon, 

nitrogen, phosphate, transport, synthesis, transcriptional regulation, and protein 

degradation functions in predominantly sand-covered quadrats. 

These findings reaffirm the overlooked notion of heterogeneous lucinid gill 

microbiomes that can vary within and between host species and populations. At the same 

time, this project advances understanding of the functional diversity across chemosynthetic 

lucinid symbionts and offers insights on lucinid-microbiome-environment interactions. 
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CHAPTER ONE 

INTRODUCTION 

Evolutionary history of the Lucinidae 

The Lucinidae family of clams (lucinids) belong to the kingdom Animalia, phylum 

Mollusca and class Bivalvia. They represent an archaic bivalve clade with a long fossil 

record. Arguably the oldest lucinid fossil, Ilionia prisca, dates back to the Silurian period 

within the Paleozoic era (Liljedahl, 1992). Ilionia prisca possessed morphological traits 

similar to modern lucinids, such as anterior shell extension, gut reduction, the separation 

of the elongated anterior adductor muscle from the pallial line, a diagonal sulci suggestive 

of the existence of a posterior exhalant siphon, and the absence of an inhalant siphon 

(Liljedahl, 1992). The life position, and consequently, life habits, of I. prisca were deduced 

to be similar to modern lucinids, because fossils of the former were discovered in deep 

sediments with their anterior sides oriented at an angle against the direction of the waves 

(Liljedahl, 1992). Morphological evidence, as well as the presence of pyrite hinting at low 

oxygen concentrations and high sulfur concentrations in its habitat, suggests that 

chemosymbiosis in I. prisca was possible (Liljedahl, 1992). After the Silurian period, 

coastal lucinids existed at a low diversity before undergoing a diversification burst during 

the late Cretaceous period (Stanley, 2014). This evolutionary radiation was attributed to 

the emergence of seagrasses and mangroves, whose sulfide-rich sediments sustain the 
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growth of free-living thioautotrophic bacteria and thus provide lucinids with a supply of 

potential symbionts (Stanley, 2014).  

To accommodate their gill endosymbionts, lucinid bivalves have undergone a series 

of morphological adaptations through evolutionary time. Because of increasingly intimate 

associations and possible co-evolution with free-living chemosynthetic bacteria, lucinid 

bivalves developed specialized epithelial symbiont-containing cells, known as 

bacteriocytes, that allowed bacteria to move from an extracellular location to an 

intracellular position in the gills (Taylor, 2000). As the gills simplified and enlarged to 

house more bacteriocytes, the outer demibranch was lost (Taylor, 2000). The gills possibly 

displaced the main respiratory channel, which is now an inner mantle around the anterior 

adductor muscle thickened by blood space or transformed into mantle gills (Taylor, 2000; 

Taylor and Glover, 2009; Figure 1.1). In addition, the anterior adductor muscle in many 

lucinid species is elongated and detached from the pallial line, which separates the anterior 

and posterior cavities and prevents sulfide oxidation as oxygenated water flows through 

these cavities (Taylor, 2000; Taylor and Glover, 2009; Figure 1.1). With growing 

dependence on chemosymbiosis, the anterior inhalant tube became the main water 

conducting channel as the posterior inhalant opening lost its function (Reid, 1986; Figure 

1.1). Consequently, lucinids reorganized their life position, where the anterior, instead of 

the posterior side, became angled upward towards the water column for efficient water and 

nutrient uptake (Taylor, 2000; Roeselers and Newton, 2012; Anderson 2014). Unlike other 

bivalves, lucinids lack an inhalant siphon, possibly because it interfered with sulfide uptake 

(Reid, 1986; Liljedahl, 1992). Instead, their vermiform, extensible foot excavates ventral 
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tunnels for porewater sulfide acquisition (Liljedahl, 1992; Taylor, 2000; Taylor, 2010; 

Figure 1.1). The foot also constructs an anterior inhalant tube for the transport of water 

containing food particles and oxygen to the mouth and gill, respectively (Liljedahl, 1992; 

Taylor, 2000; Taylor, 2010; Figure 1.1). The posterior part of the foot facilitates movement 

and burrowing (Liljedahl, 1992; Taylor, 2000; Figure 1.1). Digestive system adaptations, 

including the reduction of the labial palps, stomach, and gut, are also observed in some 

lucinid species, such as Loripes orbiculatus, but not in other species, such as Lucinella 

divaricata (Le Pennec et al., 1995; Taylor, 2000; see also “Particulate feeding in lucinid 

clams” subsection below). 

Today, more than 100 living lucinid species from approximately 69 genera are 

recognized (NCBI Resource Coordinators, 2016; Taylor et al., 2016). Based on their 18S 

rRNA gene, 28S rRNA gene, and cytochrome b gene phylogenies, lucinids are classified 

into five major subfamilies (Codakiinae, Leucosphaerinae, Lucininae, Myrteinae, and 

Pegophyseminae) and two minor subfamilies (Fimbriinae and Monitilorinae; Taylor et al., 

2016). Among these, the Lucininae subfamily consists of >43 extant genera and the highest 

number of species, whereas the Fimbriinae and Monitilorinae subfamilies each consist of 

a single living species, Fimbria fimbriata and Monitilora ramsayi, respectively (Taylor et 

al., 2016).
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Figure 1.1. The general morphology, life position, and water flow of a lucinid bivalve 

based on Phacoides pectinatus and Codakia spp., modified from Taylor and Glover, 2000. 
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Particulate feeding in lucinid clams 
 

In type 3 reducing-system chemosymbiotic bivalves that include lucinid clams, 

digestive system phenotypes are not commonly shared and, instead, correspond to levels 

of sulfide in their habitats and pallial cavities (Le Pennec et al., 1995; Le Pennec and 

Beninger, 2000). Increasing sulfide concentrations were thought to lead to progressive 

digestive system adaptations ranging from labial palp reduction (in conjunction with 

symbiotic association), intestinal reduction (in conjunction with gill hypertrophy), stomach 

reduction, loss of crystalline style and style sac, digestive tubule reduction, loss of digestive 

glands to the complete loss of the digestive system (Le Pennec et al., 1995).  

Despite inter-species differences in digestive system morphology and physiology, 

many extant lucinid species including Codakia orbicularis, Divaricella quadrisulcata, 

Linga pensylvanica, Loripes orbiculatus, Lucinella divaricata, Lucinoma aequizonata, 

Lucinoma borealis, Parvilucina tenuisculpta, Phacoides pectinatus, and Stewartia 

floridana are capable of particulate feeding (Le Pennec et al., 1995; Le Pennec and 

Beninger, 2000; Duplessis et al., 2004a; van der Geest et al., 2014). Heterotrophy in these 

species were inferred from the presence of particulate organic matter and/or digestive 

enzymes in their digestive systems, gill morphology, radiolabel ingestion experiments, and 

slightly enriched δ13C ratios in non-gill tissues compared to gill tissues or thioautotrophic 

symbiont bacterial pellets free from host contamination (Le Pennec et al., 1995; Duplessis 

et al., 2004a; Rossi et al., 2013; van der Geest et al., 2014; see also “The lucinid-bacteria 

chemosymbiosis” subsection below). Besides particulate matter, dissolved free amino 

acids have also been postulated to serve as a carbon source in a Lucinoma aequizonata 
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population at the Santa Barbara Basin, USA (Cary et al., 1989). Lucinid bivalves feed 

themselves by filtering seawater containing particulate matter or dissolved substrates 

through anterior mucus-lined inhalant tubes excavated by their feet at the sediment-water 

interface (Taylor, 2000). Filtered water is propelled by the beating of cilia on the gills, 

where particulate matter is trapped in gill mucociliary epithelium and transported to the 

mouth next to the foot (Taylor, 2000; Duplessis et al., 2004a).  

 

The lucinid-bacteria chemosymbiosis 
 

To supplement particulate feeding (see also “Particulate feeding in lucinid clams” 

subsection above), obligate intracellular chemosymbionts fulfill some or most of a host’s 

nutritional needs (Spiro et al., 1986; van der Geest et al., 2014). Chemosymbiosis was first 

described in Riftia pachyptila, a hydrothermal vent tube worm (Cavanaugh et al., 1981; 

Felbeck, 1981). In the trophosome tissue of R. pachyptila, high activities of rhodanese, 

adenosine 5′-phosphosulfate-reductase (Apr), and adenosine triphosphate (ATP)-

sulfurylase (Sat) involved in sulfur oxidation, as well as ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RuBisCO) and ribulose 5-phosphate kinase (Ru5P kinase) 

involved in carbon fixation, were detected by enzymatic assays (Felbeck, 1981). 

Visualization of the trophosome tissue of using electron and epifluorescence microscopy 

revealed the presence of sulfur granules and the presence of the bacterial outer cell wall 

component lipopolysaccharide (LPS) (Cavanaugh et al., 1981). Since then, similar 

discoveries of thioautotrophic symbionts were reported in bivalve species inhabiting 

sulfide-rich habitats, including Solemya velum (Cavanaugh, 1983), Calyptogena 
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magnifica, Calyptogena pacifica from deep-sea vent sites, as well as Solemya panamensis, 

and the lucinid bivalves Parvilucina tenuisculpta and Lucinoma annulata from coastal 

environments (Felbeck et al., 1981).  

In lucinids, endosymbionts occur in bacteriocyte vacuoles, where one to two 

individuals occupy most of the vacuole volume based on electron microscopy, (Fisher and 

Hand, 1984; Reid and Brand, 1986; Johnson and Fernandez, 2001; Ball et al., 2009). 

Symbiont thioautotrophic functions have been verified through histological methods (e.g., 

light microscopy, transmission electron microscopy and epifluorescent microscopy, X-

ray), LPS detection assays, and enzymatic assays (Felbeck et al., 1981; Fisher and Hand, 

1984; Dando et al., 1985; Schweimanns and Felbeck, 1985; Spiro et al., 1986), and δ13C 

analyses confirm that lucinids are nutritionally dependent on symbiotic carbon fixation 

(Spiro et al., 1986; van der Geest et al., 2014). Lucinid and other chemosymbiotic bivalves 

have δ13C values that range from -23 per mil ‰ (Lucinisca nassula, formerly Lucina 

nassula) to -31 ‰ (Thyasira sarsi; Spiro et al., 1986; Duperron et al., 2007; Rodrigues et 

al., 2010; Duperron et al., 2012; van der Geest et al., 2014) because the enzyme RuBisCO 

prefers 12C over 13C when fixing CO2 from porewater bicarbonate or respiration waste 

products (Spiro et al., 1986). In contrast, tissues of heterotrophic marine invertebrates 

exhibit slight enrichment in δ13C values compared to their food sources, possibly because 

12C is preferentially lost during respiration, 13C is preferred during carbon assimilation, or 

enzymatic biochemical reactions possess intrinsic 13C-enrichment properties (Spiro et al., 

1986). One histoautoradiographic study of Loripes orbiculatus shows that some fixed CO2 

can also be translocated to other symbiont-free tissues (Herry et al., 1989). 
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Besides thioautotrophy, other metabolic functions have also been described in 

chemosynthetic lucinid endosymbionts. Results from incubation experiments, oxygen, 

nitrate and nitrite measurements, nitrate reductase assays, and/or 5-cyano-2,3-ditolyl 

tetrazolium chloride assays, determined the endosymbiont from Codakia orbicularis can 

respire solely on oxygen (Duplessis et al., 2004a), but Lucinoma aequizonata can respire 

solely on nitrate (Hentschel et al., 1993; Hentschel and Felbeck, 1995; Hentschel et al., 

1996); Ctena orbiculata can co-respire or respire alternately on both oxygen or nitrate 

(Barnes, 1993). Activity of a symbiont-related ferredoxin-dependent nitrite reductase, 

which converts nitrite to ammonia, was first recorded in the gills of the lucinid Stewartia 

floridana (formerly Lucina floridana) (Fisher and Hand, 1984). Consistent with previous 

observations, recent genomic analyses on the chemosynthetic symbionts in C. orbicularis 

and L. orbiculatus have identified symbiotic genes associated with aerobic respiration and 

assimilatory and/or dissimilatory denitrification (König et al., 2016; Petersen et al., 2016). 

These -omics-centered studies have also revealed mixotrophy and hydrogen oxidation 

symbiotic functions previously characterized in related chemosymbiotic marine organisms 

(Woyke et al., 2006; Petersen et al., 2011; Dmytrenko et al., 2014; Nakagawa et al., 2014; 

Kleiner et al., 2015; see also “Phylogeny of chemosynthetic lucinid symbionts” subsection 

below), but not yet reported in lucinid bivalves, as well as novel functions previously 

undiscovered for chemosymbiotic marine organisms, including urea decomposition and/or 

nitrogen fixation (König et al., 2016; Petersen et al., 2016). 

To sustain the lucinid-bacteria chemosymbiosis, some form of host-to-symbiont 

transport and metabolic transfer is necessary, including involvement of hemoglobins, 
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respiratory pigments, peroxisomes, lysosomes, and other features. Specifically, similar to 

the hydrothermal vent tube worms Ridgeia piscesa and R. pachyptila (Arp and Childress, 

1981; Arp and Childress, 1983; Carney et al., 2007), the lucinid bivalve Phacoides 

pectinatus produces high levels of hemoglobins 1, 2, and 3 that can transport sulfide and 

oxygen to their gill symbionts (Kraus and Wittenberg, 1990; Frenkiel et al., 1996; Rizzi et 

al., 1996). In contrast, hemoglobins binding oxygen, but not sulfide, were identified in 

Myrtea spinifera (Dando et al., 1985). The presence of uncharacterized hemoglobin was 

also reported in Myrtea flabelliformis (Brissac et al., 2011), while hemoglobin-like cells 

were visualized in Anodontia ovum (Ball et al., 2009). Iron was also detected in the gill 

pigment granules of S. floridana, hinting at the possible presence of respiratory pigments, 

such as hemoglobin and myoglobin and/or Fe-containing cytochromes (Fisher and Hand, 

1984). Nevertheless, besides P. pectinatus, hemoglobin types and functions in other lucinid 

species have not been studied in detail. Peroxisomes, visualized in gill bacteriocytes of 

Linga pensylvanica, have been hypothesized to prevent spontaneous sulfide oxidation in 

the gill or perform oxidation reactions related to symbiotic thiotrophy (Gros et al., 1996a). 

Sulfide-oxidizing bodies presumably involved in host-mediated sulfide detoxification have 

also been visualized in gill bacteriocytes of P. pectinatus (Liberge et al., 2001). 

Additionally, the foot of L. aequizonata, which has higher sulfide oxidase activity than the 

mantle, has been postulated to partially oxidize sulfide to thiosulfate that can be used by 

chemosynthetic gill symbionts as a possible means of reducing sulfide toxicity in the blood 

(Cary et al., 1989). Albeit producing less energy than sulfide, thiosulfate is non-toxic and 

less-diffusible, allowing it to be concentrated in the blood and transported to the 
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chemosynthetic gill symbionts together with low amounts of sulfide (Cary et al., 1989). 

Lastly, lucinid hosts may acquire nutrition from their chemosynthetic symbionts through 

enzymatic lysis because lysosomes and/or associated hydrolases, such as acid phosphatase 

and/or arylsulfatase, have been detected within gill bacteriocytes of Anodontia ovum, C. 

orbicularis, Lucina (formerly Linga) pensylvanica, Loripes orbiculatus, and P. pectinatus 

(Frenkiel et al., 1996; Oliver et. al., 1996; Johnson and Fernandez, 2001; Liberge et al., 

2001; Ball et al., 2009). Glycogen particles abundant within symbiont cells of L. 

orbiculatus could potentially serve as a carbon source for the host (Johnson and Fernandez, 

2001).  

 

Lucinid growth and reproduction 
 
 

In general, bivalves grow with accretionary increments in their shell sizes, as 

CaCO3 is deposited at the mantle edge and the shell within the pallial line thickens 

simultaneously (Jones and Quitmyer, 1996). This growth process is observable through 

annual growth bands external and internal to the shell and is affected by environmental 

variations, such as rhythmic diurnal, tidal and seasonal cycles (Jones and Quitmyer, 1996). 

Based on shell growth patterns, a lifespan of two to three years was estimated for some 

type 3 reducing-system chemosymbiotic bivalves. In S. floridana, a maximum lifespan of 

six years was deduced (Long, 2016).  

Reproduction in lucinid bivalves generally occurs in summer months as water 

temperature rises. Lucinid species including C. orbicularis, L. orbiculatus and P. 

pectinatus, are mostly dioecious, though small numbers of hermaphrodite C. orbicularis 
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clams and sequential hermaphroditism in P. pectinatus have been reported (Alatalo et al., 

1984; Berg and Alatalo, 1984; Le Pennec and Beninger, 2000; Christo et al., 2016). 

Histological observations of gamete presence and maturity suggested discontinuous 

gametogenesis in C. orbicularis and L. orbiculatus, (Le Pennec and Beninger, 2000). 

Codakia orbicularis observed between 1981-1982 from Gold Rock Creek, Bahamas 

developed their gonads in spring as water temperature increased and did not undergo 

gametogenesis between August to March (Alatalo et al., 1984). In comparison, L. 

orbiculatus reproduces semi-annually. In an intertidal L. orbiculatus population off the 

coast of Mauritiania, increased gametogenesis occurred in March-July and September-

February, and major spawns occurred in January-February and July-August between 2009-

2011 (van der Geest et al., 2014). In another L. orbiculatus population at Brittany, France, 

major and minor spawns took place in May and November-December 1991, respectively 

(Johnson and Fernandez, 2001). Growth and gametogenesis in both L. orbiculatus 

populations appeared to require increased levels of nutrition derived from particulate 

feeding (Mauritiania population) or symbiont lysis (French population; Chapter I “The 

lucinid-bacteria chemosymbiosis” subsection; Johnson and Fernandez, 2001; van der Geest 

et al., 2014). On the other hand, although discontinuous gametogenesis was similarly 

inferred in P. pectinatus based on variability in the thickness of the species’ oocyte-

adhering acinal wall, the low numbers and consistent maturity of their oocytes, together 

with the high numbers of (≥40%) of sampled individuals from the Paranaguá Estuarine 

Complex, Brazil with partially filled gonads between January-March (summer/autumn) 

and June-August (winter) 2009, suggested a continuous reproductive cycle (Le Pennec and 
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Beninger, 2000; Christo et al., 2016). Major spawning of the Paranaguá P. pectinatus 

population occurred in the summer, where increased gonad repletion was observed with 

rising water temperatures (Christo et al., 2016). 

Embryonic development events after spawning have been well-characterized in C. 

orbicularis (Gros et al., 1997). In this species, fertilized eggs undergo cell division and 

develop into swimming ciliated trochophores within 24 hours (Gros et al., 1997). 39 hours 

after fertilization, trochophores develop into ciliated veligers with symmetrically 

differentiated organs along both sides of the mouth-anus axis and enlarged calcified shells 

that mark the final larval stage (Gros et al., 1997). Straight-hinged (D-shaped), ciliated 

swimming veligers hatch from egg capsules 48 hours post-fertilization and continue to feed 

on egg-derived vitelline until after the first week (Gros et al., 1997). 15 days post-

fertilization, veligers develop functional foot and become pediveligers capable of 

swimming and crawling (Gros et al., 1997). One day later, pediveligers lose their 

swimming functions and develop into crawling benthic plantigrades as the ciliary velum 

regresses rapidly (Gros et al., 1997). Metamorphosis occurs five weeks post-fertilization 

and involves differentiation of the gill filaments, byssal gland (clear cells within and along 

the heel to the tip of the foot), exhalant siphon, and secretion of a fast-growing modified 

shell (dissoconch; Gros et al., 1997).  
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Lucinid habitats 
 
 

The lucinid-bacteria chemosymbiotic association allows lucinids to colonize 

habitats scarce in food and low in oxygen and high in sulfide, such as oxic-anoxic interfaces 

in sediments of diverse marine environments (Liljedahl, 1992; Durand and Gros, 1996; 

Taylor and Glover, 2000; Taylor and Glover, 2010). These habitats are otherwise 

uninhabitable by other bivalves, and often have low bivalve-species diversity (Liljedahl, 

1992). Consequently, compared to other bivalves, lucinids occupy the widest range of 

habitats and geographical locations (Roeselers and Newton, 2012). Lucinids have been 

documented in oxygen minimum zones (Lucinoma spp.; Cary et al., 1989; Oliver and 

Holmes, 2006), deep sea sediments (Gonimyrtea ferruginea and Myrtina reflexa; Taylor 

and Glover, 2013), cold seeps (Lucinoma aff. kazani; Duperron et al., 2007), mud 

volcanoes (Lucinoma spp.; Rodrigues et al., 2010), and in hydrothermal vents 

(Bathyaustriella thionipta; Glover et al., 2004).  In shallow marine environments, lucinids 

have been recorded in organic-rich, reducing sediments around mangroves swamps 

(Anodontia spp., Austriella corrugata, Indoaustriella spp., Pillucina vietnamica, 

Phacoides pectinatus; Frenkiel et al., 1996; Primavera et al., 2002; Glover et al., 2008; 

Meyer et al., 2008;), a sewage outfall (Loripes orbiculatus; Herry et al., 1989), an intertidal 

mud flat (Lucinoma borealis; Dando et al., 1994), and most frequently in tropical and 

temperate seagrass beds (e.g., Fisher and Hand, 1984; Barnes, 1993; Johnson et al., 2002; 

Green-García and Engel, 2012; Rossi et al., 2013; Taylor and Glover, 2013; Reynolds et 

al., 2014; Sanmartí et. al., 2017). Predators of bivalves in shallow marine environments 

include fishes such as the big-scaled sand smelt Atherina boyeri, the common goby 
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Pomastochistus microps, the gilthead seabream Sparus aurata (Rossi et al., 2013), as well 

as the spiny Caribbean lobster Panulirus argus (Higgs et al., 2016). 

Lucinid bivalves inhabit sediments with varying nutrient concentrations. They have 

been discovered in sub-oxic sediment cores with <20 µM dissolved oxygen concentrations 

and possibly oxic sediments with porewater oxygen concentrations in the millimolar range 

(Table 1.1). Recorded porewater nitrate and nitrite concentrations of lucinid habitats range 

from <32 µM to 0.1 mM and ≤1 µM, respectively, whereas ammonium concentrations 

have increasing (Cary et al., 1989) or decreasing trends (Barnes, 1993) with sediment depth 

(Table 1.1). Sediments harboring lucinid species range from organic-poor (0.5% organic 

carbon content) to organic-rich (>3% organic carbon content; Table 1.1). Thiosulfate 

concentrations in interstitial waters have been reported to decrease in sediment depth 

(Barnes, 1993) or are detectable only in some sections of ≤ 11 cm depth sediment cores 

(Cary et al., 1989; Table 1.1). Porewater sulfate concentrations at lucinid sampling sites 

are between 30 mM to 38 mM, which reflect the marine habitat conditions, and porewater 

sulfide concentrations range from nanomolar to millimolar concentrations (Table 1.1). 

Other environmental variables, such as air temperature, water temperature, water pH, 

oxidation-reduction potential, sediment type, grain size, seagrass species, acid-volatile 

sulfide concentrations, metal concentrations, carbon dioxide/monoxide concentrations, 

hydrogen concentrations, and methane concentrations have been described but are not as 

comprehensively reviewed to understand how these parameters influence lucinid diversity 

and growth (Dando et al., 1986; Cary et al., 1989; Barnes, 1993; Hentschel et al., 1993; 

Reynolds et al., 2007; Meyer et al., 2008; Green-García and Engel, 2012). 
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Table 1.1. Lucinid species and a subset of nutrient concentrations measured in their 

sampling sites. Data values are obtained from literature. “ND” indicates no data. 

Lucinid 
species 

Lucinoma 
borealis Lucinoma aequizonata Ctena 

orbiculata 

C. 
orbiculata 

& Lucinisca 
nassula 

Pillucina 
vietnamica & 
Indoaustriella 

dalli 

Lucinisca 
nassula 

Study site Mill Bay, 
England 

Santa Barbara Basin, 
California, USA 

Bailey’s 
Bay, 

Bermuda 

Florida Bay, 
Florida, 

USA 

Kungkrabaen 
Bay, Thailand 

Cedar Key, 
Florida, 

USA 
Oxygen ND 18-20 µM 4-7 µM 101-119 % ND ND 0.06 mM 
Dissolved 
organic 
carbon 

ND 3-5 % ND 5-11% ND 0.5-3% 2.5-1.4% 

Nitrate ND <25 µM 29-32 µM  0.4-6 µM ND ND 0.1 mM 
Nitrite ND ND 0.01-1 µM <1 µM ND ND ND 
Ammonium ND <10-<250 µM ND 5-31 µM >5-<25 µM ND ND 

Thiosulfate ≤300 nM <2->6 µM         
(if detectable) ND 0.06-32

µM ND ND ND 

Sulfate ND ~30 mM ND ND ND ND 38 mM 

Sulfide ≤200 nM >3->8 µM
(if detectable) ND 11-394 µM >60-<80

µM ND 0.05 mM 

Reference Dando et 
al., 1986 

Cary et al., 
1989 

Hentschel 
et al., 
1993 

Barnes,
1993 

Reynolds et 
al., 2007 

Meyer et al., 
2008 

Green-
García and 
Engel, 2012 
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Lucinid-bacteria-environment interactions 

The frequent associations of lucinid clams with seagrass habitats have led to the 

development of a three-partner symbiosis model that involves facilitative interactions 

between lucinids, their chemosynthetic symbionts, and their surrounding seagrass beds 

(van der Heide et al., 2012). In seagrass sediments, sulfate-reducing microorganisms 

decompose dead organic matter and release potententially phytotoxic levels of hydrogen 

sulfide gas (Reynolds et al., 2014; van der Geest et al., 2014). Chemosynthetic lucinid 

symbionts oxidize reduced sulfur compounds and fix carbon, as well as potentially 

nitrogen, within the sediments, which removes sulfide and generates organic nitrogen that 

can promote seagrass growth (Johnson et al., 2002; van der Heide et al., 2012; Reynolds 

et al., 2014; Petersen et al., 2016). In return, seagrass roots supply oxygen to support the 

respiratory needs of the lucinid bivalve hosts and their symbionts (Fisher and Hand, 1984; 

van der Heide et al., 2012; Sanmartí et. al., 2017).   

In loose agreement with the tripartite symbiosis model, abundances of lucinid 

bivalves have been positively associated with the presence and/or root complexity of 

seagrass beds (Fisher and Hand, 1984; Sanmartí et. al., 2017; also see “Lucinid habitats” 

subsection, above). Based on measured RuBisCO activities, net production of lucinid 

bivalves in seagrass beds was estimated to be 0.003 (for Myrtea spinifera) to 2 (for 

Stewartia floridana) grams of carbon per m2 per year (Fisher and Hand, 1984; Dando et 

al., 1985; Johnson et al., 2002). Reynolds et al. (2014) also provide mechanistic evidence 

for the tripartite symbiosis model by demonstrating that, compared to sampling sites 

without lucinid species, significantly lower sulfide and higher ammonium porewater 
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concentrations were measured at Florida Bay in sampling sites containing C. orbiculata 

and Lucinisca nassula (Reynolds et al., 2014). The authors of the same study estimated 

lucinid-mediated sulfide removal to be 2-16% of the total sulfide produced in seagrass 

sediments and additionally demonstrated that C. orbiculata and L. nassula significantly 

reduced porewater sulfide concentrations in a microcosm experiment (Reynolds et al., 

2014). However, beyond these studies, investigations of the tripartite symbiosis model are 

scarce. 

An overview of symbiont transmission modes 

Symbiont transmission plays a crucial role in the establishment, maintenance, and 

evolution of symbiosis (Bright and Bulgheresi, 2010).  Essentially, there are two symbiont 

transmission modes. Horizontal transmission entails symbiont acquisition from an 

environmental, free-living stock, and vertical transmission involves the transmission of 

symbionts through host (usually female) gametes (Bright and Bulgheresi, 2010). A mixed 

transmission mode also exists, where either environmental transfer or intra-species and 

inter-species symbiont transfer occur in hosts with vertically transmitted symbionts (Bright 

and Bulgheresi, 2010). 

Vertical transmission is generally believed to drive the evolution of symbiosis 

(Genkai-Kato and Yamamura, 1999; Bright and Bulgheresi, 2010). Vertically transmitted 

symbionts undergo population bottlenecks during initial colonization and subsequent 

transmissions, which leads to increased genetic drift (Dubilier et al., 2008). Under the 

prediction of the nearly neutral theory of molecular evolution, increased genetic drift, 
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coupled with weak selection pressure, leads to accelerated mutation and fixation rates of 

near-neutral and deleterious alleles (Peek et al., 1998; Stewart and Cavanaugh, 2006; 

Dubilier et al., 2008).  This eventually results in gene loss and reduction in genome sizes 

of vertically transmitted symbionts (Stewart and Cavanaugh, 2006; Dubilier et al., 2008). 

In contrast, strong selection pressure would have removed highly deleterious mutations 

from the population and thus is not included in the nearly neutral theory of molecular 

evolution (Peek et al., 1998). Furthermore, recombination between vertically transmitted 

symbionts is limited to within the homogenous endosymbiont population (Stewart and 

Cavanaugh, 2006). Indeed, thioautotrophic symbionts vertically transmitted in bivalves 

have been observed to have higher 16S rDNA gene substitution rates compared to free-

living Gammaproteobacteria, Betaproteobacteria, and other environmentally transmitted 

thioautotrophic marine symbionts, including those associated with lucinid clams (Peek et 

al., 1998). The low evolution rate of horizontally transmitted symbionts can be attributed 

to purifying selection in larger free-living populations, in relation to intracellular host-

associated populations (Peek et al., 1998). Compared to vertical transmission, horizontal 

transmission could theoretically evolve based on other scenarios (Genkai-Kato and 

Yamamura, 1999). For instance, the cost of vertical transmission could be high, or 

symbionts could probably harm immature juveniles, as some studies with mycorrhiza fungi 

have suggested (Genkai-Kato and Yamamura, 1999). Horizontal transmission could also 

evolve under fluctuating environmental conditions where the host copes by sampling and 

domesticating bacteria best adapted to their current ecological niche (Won et al., 2003; 

Ferdy and Godelle, 2005; Roeselers and Newton, 2012). Ecological specialization in 
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bacteria is, in turn, facilitated by horizontal gene transfer events (Papke and Gogarten, 

2012).  

Symbiont acquisition in lucinid clams 

Unlike chemosymbiotic Solemyidae and Vesciomyidae clam families, where 

vertical or possibly mixed symbiont transmission have been observed (Stewart et al., 2008; 

Roeselers and Newton, 2012), lucinid bivalves studied to date appear to capture their 

chemosynthetic symbionts from the environment. Chemosymbiont-specific primers tested 

on Codakia orbicularis, Ctena orbiculata, Lucina pensylvanica, Lucinoma aequizonata, 

Parvilucina pectinella, and Phacoides pectinatus amplified DNA targets from gill tissues 

but failed to amplify targets from reproductive tissues (Gros et al., 1996b; Gros et al., 1998; 

Gros et al., 1999). Experiments on C. orbicularis juveniles reared in sterilized and 

unsterilized seagrass beds demonstrate that only those hosts grown in unsterilized seagrass 

beds were able to acquire chemosynthetic endosymbionts after larval metamorphosis (Gros 

et al., 1996b; see also “Lucinid growth and reproduction” subsection above). Free-living 

forms of the C. orbicularis chemosymbionts, detected via fluorescence in situ hybridization 

(FISH), can infect juvenile clams (Gros et al., 2003a). Juveniles of C. orbicularis can also 

acquire chemosymbionts from purified gill-symbiont sections of their own species, as well 

as other lucinid species hosting chemosymbionts with identical 16S rRNA gene sequences, 

including Anodontia alba, Ctena orbiculata, Divaricella quadrisulcata, Linga 

pensylvanica, and Parvilucina pectinella (Gros et al., 2003b). This is probably because 
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undifferentiated naïve bacteriocytes precursors in juvenile clams do not discriminate 

against chemosymbiont strains (Gros et al., 2003a; Brissac et al., 2016). 

On the other hand, experiments on another lucinid species, Ctena orbiculata, 

demonstrate that adult clams lose their chemosynthetic symbionts when starved for sulfide 

and could re-acquire endosymbionts from their natural habitat, but not in symbiont-free 

seawater with sulfide (Gros et al., 2012). These findings suggest that horizontal symbiont 

acquisition happens throughout the lifespan of C. orbiculata (Gros et al., 2012).  A recent 

cross-infection experiment further shows that starved C. orbiculata adults could only re-

acquire symbiont strains that they initially hosted (Brissac et al., 2016). This observation 

led the authors to postulate that lucinid-symbiont evolutionary processes are antagonistic, 

as symbionts evolve to avoid being trapped and exploited within the clam gills, but that 

lucinids evolve to capture and farm their symbionts (Caro et al., 2007; Brissac et al., 2009; 

Brissac et al., 2016). Despite the host’s capability to reacquire chemosymbionts, 

experiments show that C. orbiculata and Codakia orbicularis adults do not release their 

chemosymbionts into the environment, which rules out the possibility of transgenerational 

symbiont inheritance via host-to-host symbiont transmission (Gros et al., 2003b; Brissac 

et al., 2009). Another histological study on C. orbicularis gill tissues reveals a 

heterogeneous endosymbiont population with predominantly large cell sizes and multiple 

copies of symbiont genomes, accompanied with rare occurrences of symbiont cell division 

observable under the electron microscope (Caro et al., 2007). Based on the results, the 

authors speculate that C. orbicularis may inhibit endosymbiont multiplication in the gills 

(Caro et al., 2007), akin to the lichen-algae (Ahmadjian, 1993), coral-Symbiodinium 
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(Woolridge, 2010), weevil-gammaproteobacterium (Login and Heddi, 2013), and legume-

rhizobia (Udvardi and Poole, 2013) symbiotic systems. 

Taken together, studies of symbiont transmission modes in lucinid bivalves have 

led to the hypothesis that the lucinid-bacteria chemosymbiosis may not be strictly 

mutualistic (Brissac et al., 2009). Chemosynthetic endosymbionts in C. orbicularis and 

Codakia orbiculata are predicted to be trapped and exploited by their hosts, possibly in a 

form of “controlled parasitism,” which would move towards an evolutionary dead end 

(Ahmadjian, 1993; Caro et al., 2007; Brissac et al., 2009; Woolridge, 2010; Brissac et al., 

2016). This agrees with the perspective that symbiont fitness may not always be increased 

in hosts (Garcia and Gerardo, 2014). 

Phylogeny of chemosynthetic lucinid symbionts 

All chemosynthetic lucinid endosymbionts described so far are thioautotrophic 

chemolithoautotrophs from a single bacterial class, Gammaproteobacteria (Distel et al., 

1988; Cavanaugh et al., 2006). But, 16S rRNA phylogenies of chemosynthetic marine 

symbionts show at least nine separate lineages, which implies that the symbionts might 

have evolved independently multiple times from different free-living ancestors (Kleiner et 

al., 2012; Dubilier et al., 2008). To date, symbionts in this group are not yet cultured 

(Cavanaugh et al., 2006; Dubilier et al., 2008). Gammaproteobacterial lucinid symbionts, 

as well as other marine symbionts, have a vast array of metabolic capabilities, including 

thioautotrophy, mixotrophy, methanotrophy, carboxydotrophy, and hydrogenotrophy 

(Cavanaugh et al., 2006; Woyke et al., 2006; Petersen et al., 2011; Kleiner et al., 2012; 
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Dmytrenko et al., 2014; Nakagawa et al., 2014; Kleiner et al., 2015). The 16S rRNA gene 

phylogenies of thioautotrophic marine symbionts are incongruent with phylogenies of their 

key metabolic genes, suggesting that horizontal gene transfer may have driven the 

convergence and divergence of their metabolic functions (Kleiner et al., 2012). For 

instance, symbionts can utilize the Sox enzyme complex (lacking SoxCD), reverse 

dissimilatory sulfite reductase (Dsr) proteins, adenylylsulfate reductase (Apr), and sulfate 

adenylyltransferase (Sat) for the oxidation of sulfur, thiosulfate, sulfide, and sulfite (Ghosh 

and Dam, 2009; Kleiner et al., 2012). Some symbionts, including lucinid symbionts, are 

also capable of using sulfide:quinone oxidoreductase (Sqr) for sulfide oxidation (Kleiner 

et al., 2012; Petersen et al., 2016). This stands in contrast to their free-living counterparts 

that have variable sulfur oxidation pathways, such as those involving SoxCD, which 

implies that convergent evolution of the sulfur oxidation pathways may have taken place 

in the marine thioautotrophic symbionts (Kleiner et al., 2012). Most chemosynthetic 

marine symbionts perform carbon fixation with the Calvin-Benson-Bassham cycle, with 

variations in the form of RuBisCO enzyme and other CBB cycle enzymes, including 

sedoheptulose-1-7-bisphosphatase and fructose-1,6-bisphosphatase or pyrophosphate-

dependent 6-phosphofructokinase (Robinson et al., 1998; Kleiner et al., 2012). Besides the 

Calvin-Benson-Bassham cycle, symbionts from the tubeworm Riftia pachyptila are also 

capable of carbon fixation via the reductive tricarboxylic acid cycle (Markert et al., 2007; 

Markert et al., 2011; Gardebrecht et al., 2012). Although some thioautotrophic symbionts 

are obligate autotrophs, others exhibit potential heterotrophy or mixotrophy (Woyke et al., 

2006; Kleiner et al., 2012; Dmytrenko et al., 2014; Petersen et al., 2016).  
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At the 16S rRNA gene sequence level, chemosynthetic lucinid endosymbionts form 

a paraphyletic group, where some are most closely related to sulfur-oxidizing 

endosymbionts in Solemya and Thyasira clams, while others are closer to the siboglinid 

tube worms such as Ridgeia piscesae and R. pachyptila (Cavanaugh et al., 2006). Based 

on their 16S rRNA gene sequences, chemosynthetic lucinid endosymbionts have been 

previously classified into three clades, with each clade corresponding to a single species 

(Brissac et al., 2011). The largest clade, clade A, consists of chemosynthetic symbionts 

from predominantly seagrass-dwelling lucinid bivalves, and is further subdivided into two 

subgroups (Brissac et al., 2011). Clade A symbionts share >97% to 100% 16S rRNA 

sequence identity with each other (Durand and Gros, 1996; Durand et al., 1996; Gros et 

al., 2003; Brissac et al., 2011; Brissac et al., 2016). On the other hand, chemosynthetic 

symbionts from clades B and C are from the mangrove-dwelling lucinid species Anodontia 

spp. and Phacoides pectinatus, respectively (Brissac et al., 2011). The low to zero 

variability in 16S rRNA gene sequences, especially among clade A symbionts, is surprising 

because lucinid bivalves are geographically diverse and acquire their chemosynthetic 

symbionts horizontally (see also “Habitats of lucinid clams” and “Symbiont acquisition in 

lucinid clams” subsections, above). Therefore, chemosynthetic lucinid symbionts should 

presumably possess higher heterogeneity than vertically transmitted symbionts (see also 

“An overview of symbiont transmission modes” subsection, above; Brissac et al., 2011). 

To explain this phenomenon, Brissac et al. (2011) suggest that, rather than co-evolution, 

the association between lucinid clams and their symbionts is opportunistic and dictated by 

the type of bacterial species in the environment. Analogously, low endosymbiont genetic 
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variability has also been observed between Crysomallon squamiferum snail individuals, 

which is attributed to strict symbiont selection by the host to overcome genetic drift in the 

intracellular, horizontally-acquired endosymbiont population that has a smaller genome 

size than that of the free-living populations (Nakagawa et al., 2014). 

Nevertheless, molecular symbiont phylogeny based on the slow-evolving 16S 

rRNA gene does not provide sufficient strain-level resolution of chemosynthetic lucinid 

symbionts (Brissac et al., 2016). Recent comparative analysis of six lucinid species in the 

Caribbean harboring clade A symbionts, using the 16S-23S rRNA gene internal transcribed 

spacer region, adenylylsulfate reductase alpha subunit (aprA), type I RuBisCO large chain 

(cbbL), DNA polymerase III subunit alpha (dnaE), and DNA gyrase subunit B (gyrB) 

marker genes, reveals unprecedented strain-level diversity that is non-randomly distributed 

to a certain extent by host geographic location (Brissac et al., 2016). Because there is great 

diversity in lucinid morphologies and habitats, it is conceivable that different symbiotic 

strains and species exist, and that they can utilize different metabolic pathways (Taylor and 

Glover, 2000).  

Lucinid gill microbiome diversity 

Beyond the chemosynthetic gill endosymbionts, bacterial taxonomic diversity in 

the gills of lucinid bivalves is understudied, although dual or multiple symbionts have been 

reported from other chemosynthetic marine organisms. For instance, dual symbiosis in 

Mytilidae hydrothermal vent and cold seep mussels with thioautotrophic and 

methanotrophic symbionts was determined through 16S rRNA gene sequence analysis, 
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FISH, and/or transmission electron microscopy (Distel et al., 1995; Duperron et al., 2005; 

Duperron et al., 2006). The dual symbiosis enables these mussels to occupy habitats that 

have high levels of sulfide and/or methane (Duperron et al., 2006). Besides the 

thioautotrophic and methanotrophic symbionts, intracellular Oceanospirillales, Rickettsia- 

and Chlamydia-like parasitic bacteria have also been described from deep-sea 

bathymodiolin mussels (Zielinski et al., 2009). Particularly, microscopy analyses of the 

Oceanospirillales species reveals the bacterium is a parasite that multiplies in nuclei of 

non-bacteriocytes, which causes nuclear lysis and bacteria release (Zielinski et al., 2009). 

Using similar approaches, endosymbiotic communities in the gutless marine worms 

Olavius spp. consist of sulfide-oxidizers, sulfate-reducers, and spirochetes (Dubilier et al., 

2001; Blazejak et al., 2005; Woyke et al., 2006; Ruehland et al., 2008). In these worms, 

the sulfate-reducers and sulfide-oxidizers engage in a mutualistic relationship through the 

recycling of sulfur compounds (Dubilier et al., 2001). 

Similar 16S rRNA gene analyses and/or microscopy studies on lucinid clams show 

that the gill microbiomes consist of other species in addition to the chemosynthetic 

symbionts. In the gills of Lucinoma aff. kazani, 16S rRNA gene phylotypes of the 

thioautotrophic symbiont and another Spirochaeta-like species related to free-living 

Spirochaeta coccoides have been documented (Duperron et al., 2007). Extracellular 

spirochete-like bacteria (8–10 µm length and 0.2–0.3 µm width), intracellular 

chemosynthetic symbionts (3–5 µm length and 0.5–1.0 µm width), and another 

intracellular rod-shaped bacterium (1 µm length and 0.4–0.5 µm width) have also been 

visualized in the gills of Anodontia ovum (Ball et al., 2009). In the gills of Loripes 
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orbiculatus, two 16S rRNA gene phylotypes classifiable to the chemosynthetic symbiont 

and another gammaproteobacterial species grouped with non-symbiotic species like those 

in marine sediments have also been identified (Espinosa et al., 2013). Notwithstanding 

marker gene sequence and microscopy evidence, the prevalence, functions, and details 

about the symbiont and/or host association of these non-chemosynthetic bacteria remain 

unknown.  

Dissertation objectives 

Research efforts on the lucinid-bacteria chemosymbiosis reviewed so far have 

centered mainly on paleontology, host habitat, host reproduction, host nutrition, gill 

morphology, chemosymbiont functions, chemosymbiont transmission, and 

chemosymbiont diversity. Despite extensive studies on this symbiotic system, several gaps 

remain in the literature. First, although sequencing studies of the chemosynthetic symbionts 

have focused on the 16S rRNA gene (see “Lucinid gill microbiome diversity” subsection, 

above), recent investigations are just beginning to use additional marker genes to resolve 

symbiont strain diversity (Brissac et al., 2016), as well as -omics approaches to identify 

the range of functions possible in lucinid chemosymbionts (König et al., 2016; Petersen et 

al., 2016). To date, the genomes of only two clade A chemosynthetic lucinid symbiont 

species in Codakia orbicularis (König et al., 2016) and Loripes orbiculatus (referred to as 

Loripes lucinalis in Petersen et al., 2016) have been sequenced (Petersen et al., 2016), and 

only the transcriptome of the L. orbiculatus chemosymbiont has been sequenced (Petersen 

et al., 2016). This results in an insufficient understanding of the genetic and metabolic 
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repertoire of chemosynthetic symbionts, especially those belonging to clades B and C, as 

well as how the symbionts vary within and between species, among the host species, and 

within host populations. Second, although studies on host nutrition combined with 

geochemistry, gill morphology, and symbiont acquisition provide useful insights into host 

behavior (Rossi et al., 2013; see also “Lucinid growth and reproduction” subsection 

above), lucinid bivalve genomes are not yet available, which is hampering efforts to 

examine host functions at the genetic level. Third, in spite of previous findings that suggest 

taxa-diverse species may coexist with the chemosynthetic symbionts in lucinid clam gills, 

similar to other chemosymbiotic marine organisms (see also “Lucinid gill microbiome 

diversity” subsection, above), high-resolution -omics approaches have not been used to 

comprehensively re-examine gill microbiome diversity in lucinid bivalves. Lastly, 

although previous studies also highlight important roles of lucinid habitats in facilitating 

symbiotic functions and structuring symbiotic diversity (see “Lucinid Habitats” and 

“Lucinid-bacteria-environment interactions” subsections, above; Brissac et al., 2016), 

there is a dearth of integrative studies that investigate the influences of environmental 

parameters on microbiome diversity, microbial functional potential, and host-microbiome 

gene expression. Overall, these literature gaps lead to a poor understanding of the 

taxonomic, genetic, and functional complexity of lucinid gill microbiomes, the range of 

microbiome (including the chemosynthetic symbiont) and host functions in lucinid gills, 

as well as potential environmental drivers shaping microbiome diversity and host-

microbiome gene expression. 
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This dissertation aims to fill in some of these knowledge gaps by comprehensively 

examining the taxonomic, genetic, and functional diversity in the gill microbiomes of a 

mangrove-dwelling lucinid species, Phacoides pectinatus, and two tropical seagrass 

lucinid species, Ctena orbiculata and Stewartia floridana, using 16S rRNA gene 

sequencing, qPCR, metagenomic sequencing, and metatranscriptomic sequencing. Besides 

microbiome characterization, this dissertation also aims to identify and quantify host-

related transcripts in the gills of lucinid bivalves. Finally, this dissertation seeks to explore 

the effects of environmental drivers, such as seagrass coverage, sulfide concentrations, and 

oxygen concentrations, on lucinid host and symbiont gene expression in seagrass-

associated C. orbiculata and S. floridana.  

Hypotheses 

Hypothesis 1a – Gill microbiomes of P. pectinatus, C. orbiculata, and S. floridana are 

taxonomically diverse. 

Previous Sanger and 454 pyrosequencing of 16S rRNA gene sequences in the gills 

of P. pectinatus by our collaborators reveal unprecedented symbiont taxonomic diversity 

within the lucinid species (Green- García, 2008; Doty, 2015). Nearly full-length 16S rRNA 

gene sequence analysis of P. pectinatus collected from shallow sea grass (Thalassia 

testudinum) beds in the Mouth of Pigeon Creek at the Bahamas has identified a species 

most closely related to a methane-utilizing alphaproteobacterial Methylobacterium spp. 

clone (Green-García, 2008). In the gills and feet of P. pectinatus collected in 2014 at 
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Wildcat Cove, Florida, analysis of the V1-V3 region of the 16S rRNA gene reveals the 

presence of bacteria belonging to the genera Sedimenticola, Kistimonas, Methylomarinum, 

Spirochaeta spp., as well as unclassified Rickettsiales and Lentisphaerae (Doty, 2015). 

Phacoides pectinatus gills with higher abundances of Rickettsiales were isolated from 

areas with the lowest clam density, whereas gills with higher Methylomarinum abundances 

were collected from deeper sediments (Doty, 2015). Using 454 pyrosequencing, our 

collaborators also analyzed the V1-V3 region of the 16S rRNA gene in gills of S. floridana 

collected at Bokeelia Pier, Florida, in 2014 (Goemann, 2015). Sequence analysis indicates 

the presence of other taxa, besides the dominant thioautotrophic symbiont, in S. floridana 

gills (Goemann, 2015). These preliminary results from P. pectinatus and S. floridana led 

to the hypothesis that gill microbiomes in these species are more taxonomically and 

functionally diverse than previously thought. This hypothesis is also extended to C. 

orbiculata collected from Sugarloaf Key, Florida, collected in 2016. A combination of 

qPCR, 16S rRNA gene, metagenomic, and metatranscriptomic analyses will be used to test 

the hypotheses. This is an important area of study because high-throughput 16S rRNA gene 

sequencing has not been used to investigate gill microbiome diversity in lucinid clams 

systematically.  

Hypothesis 1b – Taxonomically diverse gill microbes in P. pectinatus, C. orbiculata, and 

S. floridana confer novel metabolic capabilities to the gill microbiomes.
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This hypothesis predicts that lucinid gill microbiome members, if taxonomically 

diverse, are metabolically distinct from each other. For instance, the identification of 

Methylobacterium-like and Methylomarinum-like OTUs in P. pectinatus, if supported, 

would confer novel methylotrophic functions to the gill microbiomes (Green-García, 2008; 

Doty, 2015). Metagenomic and metatranscriptomic approaches will be used to survey the 

metabolic profiles of lucinid gill microbiome species. PCR and/or qPCR will be performed, 

if necessary, to validate, the presence and activity of metabolic genes of interest in the 

lucinid gill microbiomes. 

Hypothesis 2 – Chemosynthetic symbionts in P. pectinatus, C. orbiculata, and S. 

floridana encode and express novel metabolic genes not yet discovered in 

chemosynthetic lucinid symbionts. 

Because genomic data of chemosynthetic lucinid symbionts is currently limited to 

clade A symbionts from Codakia orbicularis and Loripes orbiculatus (König et al., 2016; 

Petersen et al., 2016), this hypothesis predicts that metabolic functions in chemosynthetic 

lucinid symbionts are under-sampled and that metagenomic and metatranscriptomic 

analyses would uncover previously undescribed genes and pathways corresponding to host 

and/or habitat differences in the clade C symbiont of mangrove-dwelling P. pectinatus, as 

well as clade A symbionts of seagrass-dwelling Ctena orbiculata and S. floridana. As with 

hypothesis 1b, a combination of metagenomic, metatranscriptomic, and PCR/qPCR 

approaches will be used to test the hypothesis. 
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Hypothesis 3 – Environmental factors affect gene expression of lucinid clams and their 

thioautotrophic symbionts. 

To date, environmental effects on symbiont and host gene expression in lucinid 

species have not been studied, although they have been demonstrated to influence host and 

gene expression in other marine symbiotic systems (Scott et al., 2004; Girguis and 

Childress, 2006; Carney et al., 2007; Boutet et al., 2011; Duperron et al., 2011; Robidart 

et al., 2011; Beinart et al., 2012; Gardebrecht et al., 2012; Kleiner et al., 2015). Preliminary 

analyses performed by our collaborators on S. floridana specimens collected at Bokeelia 

Pier, Florida, in 2014, and their seagrass habitat reveal large areas of stable habitat over the 

past seven years (Long, 2016). Considering that the maximum age of the live specimens 

collected were around six years old, the results of geospatial analysis suggest that S. 

floridana clams at Bokeelia Pier experience a consistent habitat throughout their life span 

(Long, 2016). The population densities of S. floridana are also higher in areas with high 

seagrass coverage than in bare sand patches (Long, 2016). Furthermore, S. floridana 

collected from seagrass areas and sand patches exhibit significant differences in terms of 

shell morphology, which suggests that there may be potential effects of seagrass coverage 

on the clam and chemosynthetic symbiont functions (Long, 2016). Based on research on 

other marine symbiosis systems and our collaborators’ preliminary analyses, I hypothesize 

that functional differences between symbionts from the same taxonomic group (e.g., 

gammaproteobacterial thioautotrophic symbionts) across lucinid species can also be 

influenced by host mechanisms, as well as environmental factors, such as vegetation cover 
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and substrate (e.g., oxygen and sulfide) availability. This hypothesis will only be tested on 

the lucinids C. orbiculata and S. floridana, in relation to potential lucinid-bacteria-seagrass 

interactions (see also “Lucinid-bacteria-environment interactions” subsection, above). 

Because the lucinid samples were collected from the field where environmental conditions 

are dynamic and cannot be controlled, for each collection site, I will analyze gill 

metatranscriptomes of samples collected from at least two quadrats that contrast in at least 

one environmental parameter. The null hypothesis is that environmental differences will 

not affect symbiont and host gene expression. If the null hypothesis is supported, then I 

will not observe any significant differences in symbiont and host gene expression in 

samples collected from the contrasting quadrats. If the null hypothesis is rejected, then I 

will detect significant differences in the expression levels of at least one gene belonging to 

the symbionts and/or their hosts. 
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Introduction 

Chemosymbiosis is widespread in marine habitats, where endo- or epi-symbiotic 

chemolithoautotrophs use inorganic chemical energy for the synthesis of organic 

compounds that benefit their hosts (Dubilier et al., 2008; Taylor and Glover, 2010). One 

of the most ancient examples of marine chemosymbiosis is found  in the bivalve family 

Lucinidae (Taylor and Glover, 2000), which has a fossil record arguably dating back to the 

Silurian period (Liljedahl, 1992). Despite being capable of suspension feeding, all living 

lucinids studied to date fulfill a considerable proportion of their nutritional needs through 

obligate chemosymbiotic associations with gammaproteobacterial endosymbionts 

occupying bacteriocytes in their gills (Taylor and Glover, 2000). Lucinid species examined 
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so far acquire their thioautotrophic endosymbionts from free-living environmental 

bacterial populations (Gros et al., 1996b; Gros et al., 1998; Gros et al., 1999; Gros et al., 

2003; Brissac et al., 2009). Enzymatic assays, stable isotope analyses, and clone-based 

amplicon sequencing methods demonstrate that lucinid endosymbionts mainly use energy 

derived from the oxidation of reduced sulfur compounds to fix inorganic carbon for their 

hosts (Cavanaugh et al., 2006). Other reported functions of lucinid endosymbionts included 

mixotrophy, denitrification, assimilation of nitrogenous compounds, and diazotrophy 

(Fisher and Hand, 1984; Hentschel and Felbeck, 1995; Petersen et al., 2016; König et al., 

2016).  

Because of the widespread distribution of lucinids in marine habitats, ranges in host 

and endosymbiont phylogenetic diversity, as well as the possibility that lucinids may 

harbor non-thioautotrophic symbionts (Ball et al., 2009; Duperron et al., 2012; Pales 

Espinosa et al., 2013), the lucinid-bacteria chemosymbiotic system has the potential to 

address fundamental cellular to ecological questions about host-symbiont interactions, 

cues, and communication across individual hosts, among species, and within populations. 

However, there is still relatively poor understanding of lucinid and gill microbiome 

diversity and metabolic functions. For instance, although 16S rRNA gene sequences of 

thioautotrophic lucinid endosymbionts form a paraphyletic group consisting of three 

distinct clades (Brissac et al., 2011; Cavanaugh et al., 2006), only the genomes, 

transcriptomes, and proteomes of two lucinid endosymbiont species from clade A have 

been sequenced (Petersen et al., 2016; König et al., 2016). Clade A symbionts are 

associated predominantly with diverse seagrass-dwelling lucinids, but symbiont clades B 
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and C are from predominately mangrove-dwelling Anodontia spp. and Phacoides 

pectinatus, respectively (Brissac et al., 2011). Almost no diversity or functional diversity 

study has centered on either of these bacterial clades.    

To begin to fill these gaps, our study characterizes the metabolic repertoire of the 

host and gill-associated thioautotrophic bacterial endosymbiont from Phacoides pectinatus 

Gmelin 1791 (syn = Tellina pectinata Gmelin 1791, Lucina pectinata (Gmelin 1791), 

Anodontia pectinatus (Gmelin 1791), Lucina jamaicensis Lamarck 1801, Lucina 

funiculata Reeve 1850). Possibly the only extant species of its genus, P. pectinatus 

possesses morphological features distinct from other lucinid bivalves, such as high levels 

of three types of hemoglobin in gill pigment granules, sulfur bodies, and large lysosomes 

(Read, 1965; Liberge et al., 2001). Molecular phylogeny studies place P. pectinatus as a 

deeply-branching genus within the Lucinidae (Williams et al., 2004) and the 

thioautotrophic endosymbiont distant from seagrass- or other mangrove-associated lucinid 

endosymbionts (Brissac et al., 2011; Durand et al., 1996; Green-García, 2008). This lucinid 

inhabits organic-rich seagrass and mangrove sediments (Frenkiel et al., 1997), and has a 

widespread tropical geographic distribution that ranges from the Caribbean Sea and Gulf 

of Mexico, to the Atlantic Ocean seaboard of South America to Brazil (Christo et al., 2016). 

The unusual morphological features, phylogeny, and habitat distribution of P. pectinatus 

and its distinct thioautotrophic endosymbiont belonging to clade C have led to the 

hypothesis that symbiont metabolic pathways in this species are different than in other 

lucinid endosymbionts (Gros et al., 1998). To test this hypothesis, we assessed gill 

microbiome diversity within P. pectinatus using 16S rRNA gene sequencing, quantitative 
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PCR (qPCR), metagenomic sequencing, and metatranscriptomic sequencing, and 

compared the expression profiles from P. pectinatus and its gill microbiome species to 

previously sequenced seagrass-associated lucinid endosymbiont species from clade A, 

including Ca. Thiodiazotropha endoloripes within Loripes orbiculatus (Petersen et al., 

2016) and Ca. Thiodiazotropha endolucinida within Codakia orbicularis (König et al., 

2016).  

Materials and methods 

Sample collection 

Figure 2.1. Map showing location of the sampling site, with a close-up view of Wildcat 

Cove, Florida, USA (Insert A). 
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Phacoides pectinatus populations at Wildcat Cove, St. Lucie County, Florida, USA 

(Figure 2.1), as well as their ecology, sediment geochemistry, and microbiology have 

previously been investigated (Green-García, 2008; Doty, 2015). After lucinid density at 

Wildcat Cove was established to be more than one Phacoides pectinatus specimen per 

shovel-full of sediment, which was within 3 m of the mangrove-lined shoreline, a sampling 

area was sectioned off into quadrats, ranging from 0.5 m2 to 1 m2 over, in general, a 100 

m2 area. During the 2014 sampling, sediment porewater was obtained from six quadrats 

(Doty, 2015) by low-flow fluid sampling using stainless steel piezometers installed near to 

where specimens were recovered, based on previously descried methods (Green-García 

and Engel, 2012). Standard electrode methods were used to measure dissolved oxygen 

content from the porewater, as well as pH, temperature, conductivity, and to collect water 

samples for dissolved ion and total organic carbon concentrations (Doty, 2015). Dissolved 

sulfide concentrations were obtained colorimetrically using CHEMetrics (Calverton, VA, 

USA) chemistry and a field spectrophotometer (Green-García and Engel, 2012; Doty, 

2015).  

For this study, research excursions were completed in February 2011, June 2013, 

July 2014, and November 2017, and live specimens were sieved from sediments hand-dug 

to 30 cm depth, approximately 3 m from the shoreline of Rhizophora mangle (red 

mangrove). Specimens were temporarily stored in Whirl-Pak® Bags (Nasco, Fort Atkinson, 

WI, USA) filled with surface water from the habitat and maintained at ambient temperature 

before dissection. During dissection, gill and foot tissues were separated from other body 

tissues. Tissues used for 16S rRNA gene sequencing and metagenomics were dissected 
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within the same day of collection and fixed in 100% molecular grade ethanol. Tissues used 

for metatranscriptomics were dissected within 30 minutes of collection and fixed in 

RNAlater. Tissues used for microscopy were fixed in 2% paraformaldehyde (pH 7) made 

with artificial sea water prepared using Difco™ Marine Broth 2216 formula (Becton 

Dickinson and Company, Franklin Lakes, NJ, USA) for 3 hours at 4°C prior to washing, 

sucrose infiltration, storage, hematoxylin-eosin (H&E) staining, and fluorescence in situ 

hybridization (FISH) procedures. H&E stained sections were visualized using Leica’s 

DM750 microscope attached to a Leica ICC50HD camera and the LAS EZ V2.1.0 software 

(Buffalo Grove, IL, USA). 

Fluorescence in situ hybridization (FISH) 

Following paraformaldehyde fixation, gill tissues were washed 3x for five minutes 

each in artificial sea water (ASW) and stored in the same medium overnight before 

infiltration with 10% and 25% sucrose in ASW. Tissues were stored at 4°C prior to 

cryosectioning. Hematoxylin-eosin (H&E) staining and FISH were performed on 5 μm 

cryosections from tissues cut with Thermo Fisher Scientific’s (Pittsburgh, PA, USA) 

Microm™ HM550 Cryostat on VistaVision™ HistoBond® Adhesive Slides (VWR, 

Radnor, PA, USA).   Prior to FISH, cryosections were soaked in diethyl pyrocarbonate 

(DEPC)-treated phosphate-buffered saline (PBS) solution for five minutes and air dried for 

an hour. Hybridization, washing, counter-staining, and mounting steps were performed in 

accordance to the Standard FISH protocol (https://www.arb-silva.de/fish-probes/fish-

protocols/) available on Silva’s web server (Quast et al., 2013), except that 4',6-diamidino-
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2-phenylindole (DAPI) counter-staining was extended to 12 minutes, followed by three

washes at five minutes each with DEPC-treated PBS solution.  

A probe named SED642 (5’-ACCATACTCTAGCCTGCCAG-3’) was designed to 

hybridize to the P. pectinatus endosymbiont, Ca. Sedimenticola endophacoides, based on 

the alignment of full-length 16S rRNA gene sequences extracted from the species’ MAGs 

with the BangT-642 probe used for the Bathymodiolus sp. mussel symbiont (5′-

CCTATACTCTAGCTTGCCAG-3′; Duperron et al., 2005) in ClustalW (Thompson et al., 

1994) implemented in BioEdit 7.2.5 (Hall, 1999). The specificity of probe SED642 was 

evaluated using the NCBI’s Basic Local Alignment Search Tool (BLAST) web tool 

(Altschul et al., 1990) against the 16S ribosomal RNA sequence database (NCBI Resource 

Coordinators, 2016). Probe SED642 shared 100% sequence identity with 16S rRNA gene 

sequences of strains from the genera Salinispirillum, Methylophaga, Marinomonas, 

Methylosphaera, and Pseudomonas, and one or more mismatches to a range of other strains 

predominately within the class Gammaproteobacteria, but also to strains from the 

Actinobacteria and Firmicutes (Table 2.1). As genera matching probe SED642 have not 

been previously associated with symbiotic associations in bivalves, the likelihood of false 

positive signals from these organisms on the P. pectinatus gill samples was considered low. 

Probe SED642 was labelled with Cy5 (Integrated DNA Technologies, Skokie, IL, USA) 

at the 5’ end. Probes EUB338 (5’-GCTGCCTCCCGTAGGAGT-3’; Amann et al., 1990) 

for the general detection of bacteria and its reverse complement NON338 (5’-

ACTCCTACGGGAGGCAGC-3’; Wallner et al., 1993) were both labelled with Cy3 

(Integrated DNA Technologies, Skokie, IL, USA) at the 5’ end and used as positive and 
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negative controls, respectively.  A range of formamide concentrations between 10% to 35% 

were tested and signals for all probes were found to be optimal at 30% formamide 

concentration. Hybridized sections were imaged with Leica’s SPE confocal microscope at 

the Clemson Light Imaging Facility (Clemson, SC, USA) and the Leica Application Suite 

(LAS) X software (Buffalo Grove, IL, USA).  

16S rRNA gene, metagenomic, and metatranscriptomic sequencing 

Total nucleic acids were extracted from partial gill and foot tissues using Qiagen’s 

(Valencia, CA, USA) DNeasy Blood and Tissue kit (2011 and 2013 sample collection) or 

Allprep DNA/RNA Mini Kit (2014 samples) after mechanical homogenization of the 

tissues with a motorized pestle and mortar (Argos Technologies, Elgin, IL, USA) or tissue 

grinder (Wheaton, Millville, NJ, USA). For further lysis, the sample was passed through a 

21-gauge (0.8mm) needle attached to a 3 mL syringe (Becton, Dickinson and Company,

Franklin Lakes, NJ, USA) at least ten times and incubated at 60°C for at least ten minutes. 

Extracted nucleic acid concentrations were quantified fluorometrically with Qubit™ 

dsDNA HS and RNA assays (Life Technologies, Austin, TX, USA).  From the 2014 

collection, 16S rRNA gene libraries of DNA extracted from 25 P. pectinatus gills, cDNA 

from the gills of four of these individuals, and DNA from the feet of three individuals were 

sequenced by the Duke Center for Genomic and Computational Biology (Durham, NC, 

USA). From the 2017 collection, libraries of DNA and cDNA extracted from three gill 

samples were sequenced at Clemson University, SC, USA. All libraries were sequenced 

on Illumina Inc’s (San Diego, CA, USA) MiSeq 2x250bp platform.  
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cDNA was synthesized from DNase-treated (Ambion® Turbo DNA-free™ DNase 

kit, Life Technologies) RNA with the High-Capacity cDNA Reverse Transcription Kit 

(Applied iosystems, Foster City, CA, USA). Successful DNase treatment and cDNA 

synthesis was confirmed with PCR amplification of the V9 region of bacterial 16S rRNA 

genes (see next section). DNA and cDNA from each sample was diluted to 1 ng/µL with 

nuclease-free water and amplified with previously developed dual indexes (Kozich et al., 

2013). Amplicons were normalized with the SequalPrep™ Normalization Plate Kit, 96-

well (Invitrogen, Carlsbad, CA, USA), quantitated with the Qubit™ dsDNA HS assay (Life 

Technologies, Austin, TX, USA) and pooled for sequencing. 
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Table 2.1. Sequence comparisons of the Ca. Sedimenticola endophacoides SED642 

fluorescence in situ hybridization (FISH) probe designed in this study with 16S rRNA gene 

sequences of other related bacterial species obtained from NCBI's 16S ribosomal RNA 

sequence database (NCBI Resource Coordinators, 2016). 

Probe and 16S rRNA gene target Sequence (5’  3’) 
SED642 probe for Ca. Sedimenticola endophacoides (this 
study) 

ACCATACTCTAGCCTGCCAG 

BangT-642 probe for thiotrophic symbiont of Bathymodiolus 
sp. (Duperron et al., 2005) 

CCT----------T------ 

Salinispirillum marinum GCWy1 (NR_134169)a --------------------
Methylophaga nitratireducenticrescens JAM1 (NR_074321) --------------------
Marinomonas arenicola KMM 3893 (NR_112826) --------------------
Marinomonas rhizomae IVIA-Po-145 (NR_116233) --------------------
Marinomonas arctica 328 (NR_043882) --------------------
Methylophaga alcalica M39 (NR_028824) --------------------
Pseudomonas amygdali AL1 (NR_036999) --------------------
Methylosphaera hansonii AM6 (NR_026033) --------------------
Burkholderia singularis LMG 28154 (NR_152632), other 
Burkolderia strainsb 

X------------------- 

Paraburkholderia caffeinilytica strain CF1 (NR_152088) and 
other Paraburkholderia strains 

X-------------C----- 

Colwellia meonggei MA1-3 16S (NR_133732), and other 
Umboniibacter and Solobacterium strains 

XXX----------------- 

Oceanospirillum beijerinckii subsp. pelagicum IFO 13612 
(NR_112017), and other Oceanospirillum, Oceanobacter, and 
Vibrio strains 

XXXX---------------- 

Yimella radicis py1292 (NR_152030), and other Yimella, 
Calidifontibacter, and Neisseria strains 

------------------XX 

Pseudomonas cerasi 58 (NR_146827) and other 
Pseudomonas, Methyloparacoccus strains 

-------------U------ 

Methylocaldum marinum S8 (NR_126189) and other 
Methylocaldum, Marinobacter, and Endothiovibrio strains 

----C--------------- 

Thiohalomonas denitrificans HLD 2 (NR_044097) ----A---------------
Methylohalobius crimeensis 10Ki (NR_042198) ----G---------------
Thioalkalispira microaerophila ALEN 1 (NR_025239), misc. 
Pseudomonas strains 

------------U------- 

a -, identical to probe sequence 
bX, no base pair reported 
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Twelve Illumina-compatible gill metagenomic libraries and one foot metagenomic 

library were prepared using the Nextera DNA Sample Preparation Kit (Illumina Inc., San 

Diego, CA, USA) on 50 ng of DNA per sample (2011 and 2013 collection) by Molecular 

Research LP (Shallowater, TX, USA) and sequenced on Illumina’s MiSeq 2x150bp (2011 

collection), 2x250 bp platforms (2013 collection) and HiSeq 2500 2x100bp (2014 

specimen) platforms. For deep sequencing, one Illumina-compatible gill metagenomic 

library from the 2014 collection was prepared using NEBNext® Ultra™ II DNA Library 

Prep Kit for Illumina® on DNA fragmented with NEBNext® dsDNA Fragmentase (New 

England Biolabs, Ipswich, MA, USA; 2014 collection). For this library, insert size 

determination with the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, 

USA) and outsourcing of Illumina HiSeq 2500 sequencing were performed by Clemson 

University Genomics Institute (CUGI; Clemson, SC, USA). To generate long reads, 

metagenomic libraries were prepared from another 2014 gill specimen and two 2017 gill 

specimens using Nanopore’s Rapid Sequencing Kit (Oxford Nanopore Technologies, 

Kidlington, Oxfordshire, UK) and sequenced on a MinIon flowcell (R9.4 nanopores) with 

a MinIon Mk1B sequencer.  

Three gill samples collected in 2014 within a 1m2 quadrat were used for 

metatranscriptomic sequencing on Illumina’s HiSeq 4000 2x150bp platform. RNAs 

extracted from these samples were treated with the Ambion® Turbo DNA-free™ DNase 

kit (Life Technologies). To check for successful DNase treatment, the V9 region of the 16S 

rRNA gene in DNAse-treated (Ambion® Turbo DNA-free™ DNase kit, Life 

Technologies). RNA samples were amplified with previously described universal bacterial 



45 

primers, 1369F and 1492R (Suzuki et al., 2000; Table 2.2). PCR reactions were performed 

in a 10 μl volume consisting of 0.25 µM of each primer and 1x BIO-X-ACT™ Short Mix 

(Bioline, Taunton, MA, USA). PCR amplification was carried out in the C1000 Touch™ 

Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA) under the following 

conditions: Initial denaturation at 95°C for 3 minutes, 29 cycles of denaturation at 95°C for 

15 seconds, annealing at 53°C for 30 seconds, extension at 72°C for 30 seconds, followed 

by elongation at 72°C for 5 minutes and cooling at 12°C. Amplicons were run on a 1% 

(wt/vol) agarose gel, which was stained with ethidium bromide, de-stained with deionized 

water and visualized under UV with a FOTO/Analyst® FX System (Fotodyne Inc., 

Hartland, WI, USA).   

DNA-free RNAs were purified with the RNeasy MinElute Cleanup Kit (Qiagen). 

Illumina-compatible cDNA libraries were made from purified RNAs using Epicentre’s 

(Madison, WI, USA) Ribo-Zero rRNA removal kit (bacteria) and ScriptSeq™ v2 RNA-

Seq Library Preparation Kit, following the manufacturer’s low input protocol. The final 

concentration of each library was quantified with the Qubit® dsDNA HS assay (Life 

Technologies) and the average library insert size was determined with the Experion 

Automated Electrophoresis Station (Bio-Rad Laboratories, Hercules, CA, USA; 2011 and 

2013 collections) and the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, 

CA, USA; 2014 and 2017 collections). Metatranscriptomic libraries were pooled and 

sequenced by the Duke Center for Genomic and Computational Biology. 

To check for DNA contamination in sequenced metatranscriptomic libraries, 

trimmed reads were mapped to a representative, high-quality Ca. Sedimenticola 
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endophacoides MAG (N3+P5) with high completeness value and low contamination and 

strain heterogeneity values (Table 2.3) using Bowtie2 v2.2.7’s (Langmead and Salzberg, 

2012) no-mixed, no-discordant, end-to-end, -k 200 and -gbar 1000 options. The read-to-

MAG mapping was inspected in SeqMonk v1.42.0 (Babraham Bioinformatics, 2007) for 

consistent alignments across gene boundaries and directionality bias indicative of DNA 

contamination.  No DNA contamination was observed in the metatranscriptomic libraries. 

Table 2.2. List of PCR and qPCR primers used in this chapter. 

Primer Sequence (5’->3’) Annealing 
temperature 

Reference 

Universal 16S rRNA gene 
primer 1369F 

CGGTGAATACGTTCYCGG 53°C Suzuki et al., 2000 

Universal 16S rRNA gene 
primer 1492R 

GGWTACCTTGTTACGACTT     53°C Suzuki et al., 2000 

Universal M13 forward (-21) 
primer 

GTAAAACGACGGCCAG 55°C NA 

Universal M13 reverse primer CAGGAAACAGCTATGAC 55°C NA 

Universal 16S rRNA gene 
primer 27F 

AGAGTTTGATCMTGGCTCAG 55.8°C Lane, 1991 

Universal 16S rRNA gene 
primer 1391R 

GACGGGCGGTGTGTRCA 55.8°C Turner et al., 1999 

Sedimenticola-like OTU1 1417F AGCTAATACCGCATACGCCC 56.3°C This chapter 

Sedimenticola-like OTU1 1580R GTGTCTCAGTCCCAGTGTGG 56.3°C This chapter 

Kistimonas-like OTU2 90F CCTGGGAACTGCATCCCAAA 57°C This chapter 

Kistimonas-like OTU2 231R GCACCTCAGCGTCAGTGTTA 57°C This chapter 

Spirochaeta-like OTU5 15F GCGTTGTTCGGAATTATTGGGC 56°C This chapter 

Spirochaeta-like OTU5 226R TCAGCGTCAATCTTTGGCCA 56°C This chapter 
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16S rRNA gene sequence analyses 

Mothur v1.39.5 (Schloss et al., 2009) was used for data processing for the 16S 

rRNA gene dataset. Operational Taxonomic Unit (OTU) clustering was performed at 99% 

sequence identity for higher species resolution (Nguyen et al., 2016) and taxonomic 

classification was performed against the Silva v132 database (Quast et al., 2013). The final 

dataset was subsampled to the library with the smallest four-digit number size (n=1,269). 

All reads were quality trimmed at Q=25 with Mothur v1.39.5 (Schloss et al., 2009) using 

the trim_seq and remove_seq commands. Reads sequenced at Duke University were 

additionally matched to the read 1 (GCCGCGGTAA) and read 2 (GGGTNTCTAAT) 

primers for the V4 region of the 16S rRNA gene to exclude non-target reads and to trim 

off primer sequences with Mothur’s pcr.seqs command. Surviving reads were processed in 

Mothur per the software’s MiSeq SOP (Schloss et al., 2009). The alignment step was 

modified to include the reverse complement of each sequence and report the better 

alignment (flip=T). Processed sequences were clustered into Operational Taxonomic Units 

(OTUs) and these were classified taxonomically against Silva v132 (Quast et al., 2013) at 

80% and 0% bootstrap confidence.  Because the sequencing depths per sample were 

uneven, and ranged from 926 sequences to 27,323 sequences, the data was normalized by 

sub-sampling to 1,269 sequences (the smallest four-digit number in the dataset, eliminating 

two DNA samples from the 2014 collection. Using Mothur (Schloss et al., 2009), the 

relative abundance of each OTU in each sample was computed by scaling its total 

abundance with the total number of sequences in the sample, and the Good’s coverage 

estimator (Good, 1953) for each sample was calculated using the formula: C = 1 – (number 
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of OTUs sampled once / total number of individuals). 16S rRNA gene sequences used for 

phylogenetic analysis were retrieved from literature (Durand and Gros, 1996; Duperron et 

al., 2007; Green-García, 2008; Brissac et al., 2011) and from the GenBank database 

(Benson et al., 2014) via keyword searches. All sequences were aligned with ClustalW 

(Thompson et al., 1994) implemented in BioEdit 7.2.5 (Hall, 1999), and positions with 

gaps were manually trimmed off. MEGA6 (Tamura et al., 2013) was used to predict the 

best nucleotide substitution model. The Kimura 2-parameter model (Kimura, 1980) with 

discrete Gamma distribution modeling of the evolutionary rate differences among sites (5 

categories, with +G, parameter = 0.3382) was used to generate a maximum likelihood tree 

with 1,000 bootstrap replicates. 

Metagenomic data analyses 

Adapter removal and quality trimming (Q=30) of all Illumina-sequenced reads 

were performed using Cutadapt v1.11 (Martin, 2011), followed by Sickle v1.33 (Joshie 

and Fass, 2011). Read qualities pre- and post-trimming were assessed with FastQC v0.11.5 

(Babraham Bioinformatics, 2010). Trimmed Illumina-sequenced metagenomic reads from 

each sequenced sample were individually assembled using IDBA-UD v1.0.9 (Peng et al., 

2012). Additionally, reads from the most complete gammaproteobacterial assembly were 

co-assembled with unprocessed Nanopore reads using the hybridSPAdes algorithm 

(Antipov et al., 2016) of the SPAdes genome assembler (v3.11.1).  For each assembly, 

contigs >1,500 bp long were binned with MetaBat v0.32.4 using the ensemble binning 

approach (Kang et al., 2015), after read mapping with Bowtie2 v2.2.7 (Langmead and 
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Salzberg, 2012; very sensitive local and dovetail mode) and SAMtools v0.1.19 (Li et al., 

2009). All metagenome-assembled genomes (MAGs) were annotated with NCBI’s 

Prokaryotic Genome Annotation Pipeline (NCBI Resource Coordinators, 2016). MAGs 

with >90% completeness were also annotated with Rapid Annotation using Subsystem 

Technology (RAST) FIGfam release 70 (Aziz et al., 2008).  

The quality of each metagenome-assembled genome (MAG; size, number of 

contigs, GC content, and Nx values) was evaluated with the Quality Assessment Tool for 

Genome Assemblies (QUAST, v4.5; Gurevich et al., 2013). Genome lineage, 

completeness, contamination, and strain heterogeneity statistics were estimated by 

CheckM v1.0.9 (Parks et al., 2015), based on a set of lineage-specific single-copy marker 

genes. Using reference datasets specific to each lineage identified by CheckM (Parks et al., 

2015), the completeness of each MAG was further evaluated with Benchmarking Universal 

Single-Copy Orthologs (BUSCO) v3.0.1 (Simao et al., 2015). Based on the completeness, 

contamination, presence of the 23S, 16S, and 5S rRNA genes and the number of tRNAs in 

each MAG, a quality measure was assigned according to the Minimum Information about 

a Metagenome-Assembled Genome (MIMAG) standard (Bowers et al., 2017).  Host 

(eukaryotic) genomic contamination was further assessed with MEtaGenome ANalyzer 

(MEGAN) community edition v6.6.4 (Huson et al., 2007), which performs taxonomic 

assignment from web blastn (Altschul et al., 1990) search results of contig sequences in 

each draft assembly. Ensemble binning by MetaBat (Kang et al., 2015) largely removed 

contaminating reads from the host genome, except for the spirochete MAG where eight 

eukaryotic contigs were detected out of 185 contig sequences. These contigs were removed 
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manually from the spirochete MAG with no impact on the genome quality. Ensemble 

binning also failed to bin the gammaproteobacterial 16S rRNA gene sequences from the 

Illumina assemblies. These sequences were recovered from initial, unbinned assemblies by 

local blastn (Altschul et al., 1990) searches with the NCBI BLAST 2.2.30+ package (NCBI 

Resource Coordinators, 2016) using 16S rRNA gene sequences extracted from the 

Nanopore co-assemblies as query. Matched contigs containing the 16S rRNA sequences 

were evaluated with web blastn (Altschul et al., 1990) searches and added to their 

corresponding MAGs with no impact on the quality of these MAGs. MAG depth profiles 

were generated by mapping trimmed reads from each sample back to the representative, 

most complete Ca. Sedimenticola endophacoides (N1 + N3 + P5), Kistimonas-like sp. (P2) 

and Spirochaeta-like sp. (P3) MAGs using Bowtie2 v2.2.7 (very sensitive local and 

dovetail mode; Langmead and Salzberg, 2012) and SAMtools v0.1.19 (Li et al., 2009). The 

depth of coverage of each contig in a MAG was summarized with MetaBat’s v0.32.4 (Kang 

et al., 2015) jgi_summarize_bam_contig_depths script, normalized by dividing each value 

the expected genome size extrapolated from CheckM (Parks et al., 2015) and BUSCO 

(Simao et al., 2015) predictions and averaged for the entire MAG.  

Reciprocal average nucleotide identity (ANI) and average amino acid identity 

(AAI) values estimating genetic relatedness between strains and species (Konstantinidis 

and Tiedje, 2005) were calculated using DOE Joint Genome Institute’s whole-genome 

based average nucleotide identity (gANI) tool (Varghese et al., 2015) and CompareM 

v0.0.23 (Roux et al., 2015), respectively. Calculated ANI and AAI values were averaged 

and visualized with the heatmaply package in R (https://cran.r-
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project.org/web/packages/heatmaply/index.html; R Core Team, 2016). Reference 

genomic/MAG sequences used for phylogenomic analysis were retrieved from NCBI’s 

GenBank (Benson et al., 2014) and Genome databases (NCBI Resource Coordinators, 

2016) via keyword searches. Phylogenomic analysis was performed with scripts within 

phylogenomics-tools (Seah, 2014), which uses AMPHORA2 (Wu and Eisen, 2008) to 

extract marker genes conserved in bacteria. Ten single-copy genes (dnaG, frr, nusA, pgk, 

pyrG, rplM, rplS, rpmA, rpsB, rpsI) present in all compared genomes/MAGs were aligned 

with Muscle v3.8.31 (Edgar, 2004). No marker gene was detected in the foot assembly. 

Each gene alignment was visually inspected to remove poorly aligned regions. The 

concat_align.pl script then concatenates all alignments into a partitioned alignment and 

predicts the best protein substitution model for each marker gene (LGF for dnaG, nusA, 

pgk; LG for frr, pyrG, rplM, rplS, rpsB, and rpsI; WAG for rpmA). Maximum likelihood 

trees with aLRT (approximate likelihood-ratio test) SH-like support values (Anisimova and 

Gascuel, 2006) were inferred for each partition and the combined partitions with RAxML 

v7.7.2 (Stamatakis, 2014).  Reference protein sequences for phylogenetic classification of 

sulfide:quinone oxidoreductase (Sqr) and related flavocytochrome sulfide dehydrogenase 

(FCC) proteins were obtained from (Marcia et al., 2010) and NCBI’s nr (non-redundant) 

database (NCBI Resource Coordinators, 2016), then aligned using ClustalW (Thompson 

et al., 1994) implemented in BioEdit 7.2.5 (Hall, 1999). MEGA v6.06 (Tamura et al., 2013) 

was used to predict the best protein substitution model for the alignment, the LG model 

(Le and Gascuel, 2008), with discrete Gamma distribution modeling of the evolutionary 

rate differences among sites (5 categories, with +G, parameter = 5.43). Based on the model, 
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an unrooted maximum likelihood tree with 100 bootstrap replicates was generated. 

Positions with less than 95% site coverage were deleted. Classification of ribulose-1,5-

bisphosphate carboxylase/oxygenase (RuBisCO) protein and hydrogenase sequences were 

performed via the NCBI’s Basic Local Alignment Search Tool (BLAST) web tool 

(Altschul et al., 1990) against annotated RuBisCO sequences in the nr database (NCBI 

Resource Coordinators, 2016) and hydrogenase sequences in the deep-sea scaly-foot snail 

esophageal gland symbiont (Nakagawa et al., 2014). Hydrogenase class definitions in 

Peters et al. (2015) were used for classification. 

Metatranscriptomic data analyses 

Metatranscriptomic assembly and downstream analyses were performed with 

Trinity v2.5.1 (Haas et al., 2013). Trimmed reads from all three metatranscriptomic 

libraries were co-assembled into one metatransciptome de novo with Trinity’s default 

parameters (k=20). The co-assembly standardizes transcript IDs, lengths and clusters 

across libraries for efficient downstream quantification and cross-sample comparisons 

(Haas et al., 2013). Trinity’s Chrysalis module clusters transcripts with at least k-1 bases 

overlap and with sufficient reads spanning the join across both transcripts, and the Butterfly 

module refines the clustering and uses these transcript clusters as proxy for genes (Grabherr 

et al., 2011; Haas et al., 2013). Reads were mapped to the co-assembly using Bowtie2 

v2.2.7’s (Langmead and Salzberg, 2012) no-mixed, no-discordant, end-to-end options 

reporting up to 200 alignments per read (-k 200) and disallowing gaps within 1000 

nucleotides of read extremes (-gbar 1000). Isoform and gene-level abundances were 
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estimated by RNA-Seq Expectation-Maximization (RSEM) that maximizes the probability 

of observed variables including read lengths, quality scores and sequences based on 

RSEM’s directed graph statistical model (Li et al., 2010). The probability value for each 

isoform/gene was divided by the effective transcript/gene length, which is the average 

number of possible start positions of a transcript of a given length or the abundance-

weighted average effective transcript lengths of a gene’s isoforms (Li et al., 2010). The 

resulting length-normalized value for each transcript/gene was divided by the sum of 

length-normalized values for all transcripts/genes in each sample to calculate the transcript 

fraction value, which was then multiplied by 106 to derive the transcript per million (TPM) 

measure (Li et al., 2010). For cross-sample comparisons, TPM values were further 

normalized with the trimmed means of M-values (TMM) factor that minimizes log-fold 

changes across samples (Robinson and Oshlack, 2010) using the edgeR Bioconductor 

package (Robinson et al., 2010).  

All assembled host and bacterial transcripts, as well as unbinned contigs from 

metagenomic assemblies, were annotated with Trinotate v3.1.1 

(https://trinotate.github.io/), which uses the manually curated but less representative 

Swissprot (The UniProt Consortium, 2015) database as reference. rRNA transcripts were 

predicted with SortMeRNA v2 (Kopylova et al., 2012) using SILVA’s v119 (Quast et al., 

2013) collection of archaeal, bacterial, and eukaryotic 16S rRNA, 23S rRNA, 18S rRNA, 

and 28S rRNA gene sequences as references. Host and bacterial genes of interest were 

analyzed at the level of transcript clusters loosely equivalent to genes. To map transcript 

clusters to symbiont genes, a pan-genome for the thioautotrophic endosymbiont from P. 
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pectinatus, named Candidatus Sedimenticola endophacoides (explained in the Results 

section), was created by extracting and concatenating nucleotide sequences of RAST-

annotated PEGs and RNAs from six >90% complete MAGs, followed by de-duplication 

with CD-HIT v4.6 (Fu et al., 2012) at a global sequence identity threshold of 100%. The 

de-duplicated dataset was searched against the Trinity assembly using NCBI’s Basic Local 

Alignment Search Tool (BLAST) v2.6.0+ local blastn package (Altschul et al., 1990; 

NCBI Resource Coordinators, 2016) and only the top hit was reported (-max_target_seqs 

1).  Similar local blastn searches were performed on other MAGs of interest for transcript 

cluster to gene mapping. Functions of transcript clusters of interest were inferred by 

comparing Trinotate’s transcript annotations with web blastp, blastn, or blastx search 

results (Altschul et al., 1990) against the more representative NCBI’s non-redundant (nr) 

protein sequence or nucleotide (nt) databases (NCBI Resource Coordinators, 2016) using 

the same 10-3 e-value threshold as Trinotate. For each transcript within a transcript cluster, 

a blastp search was performed if a likely peptide sequence was predicted by Transdecoder 

v5.1.0 (http://transdecoder.github.io/) based on a minimum open reading frame (ORF) 

length and a log-likelihood score related to the reading frame where the ORF was located. 

If the blastp search returned negative results or if no likely peptide sequence was predicted 

for a transcript, then blastn and blastx searches were performed instead. Functions of 

transcript clusters mapping to more than one gene were assigned based on annotations of 

transcript(s) within the cluster with the highest TMM-normalized TPM value(s). A 

transcript cluster was considered multi-mapping if more than one transcript within the 
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cluster shared high TMM-normalized TPM values but different predicted functions, and 

their corresponding genes were not adjacent to each other in the reference MAG. 

qPCR and PCR 

Universal primers 27F (Lane, 1991) and 1391R (Turner et al., 1999) targeting the 

16S rRNA gene were used to amplify total DNA extracted from one P. pectinatus gill 

sample. The amplified gene fragment was ligated into the pGEM®-T Vector System 

(Promega, Madison, WI, USA), followed by transformation by JM109 High-Efficiency 

Competent Cells (Promega) on lysogeny broth (LB)/ampicillin plates incubated at 37°C 

for 24 hours. White colonies were amplified with universal M13 forward and reverse 

primers targeting binding sites within the vector. PCR reactions were performed as 

previously described in this document under the following conditions: Initial denaturation 

at 95°C for 5 minutes, 29 cycles of denaturation at 95°C for 30 seconds, annealing at 55°C 

for 30 seconds, extension at 72°C for 30 seconds, followed by elongation at 72°C for 5 

minutes and cooling at 12°C. Amplicons were run and imaged on a 1% (wt/vol) agarose 

gel as previously described in this document. Three transformed colonies were re-grown 

on another LB/ampicillin plate, re-tested with PCR and grown on liquid LB/ampicillin 

broth for 24 hours at 37°C. Plasmids were extracted from liquid broth using the QIAprep 

Spin Miniprep Kit (Qiagen, Valencia, CA, USA), linearized with FastDigest® NcoI or NdeI 

(Thermo Fisher Scientific, Waltham, MA, USA) and quantified with Qubit™ dsDNA 

assays (Life Technologies, Austin, TX, USA). PCR-amplified gene fragments of the 

linearized plasmids were sequenced using the Sanger method by CUGI (Clemson, SC, 
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USA). Sequenced inserts compared against OTU sequences identified by 16S rRNA gene 

sequencing showed perfect match to the Sedimenticola-like OTU 1 sequence.  Linearized 

plasmids were serially diluted and used to generate standard curves for absolute qPCR. 

qPCR primers for the 16S rRNA gene targeting the Sedimenticola-like OTU 1 (1417F and 

1580R; Table 2.2) were designed using the Primer3 software (Untergasser et al., 2012) 

integrated in Geneious v8.0 (Kearse et al., 2012) based on the Sanger-sequenced insert 

sequences. Cloning and qPCR primers for 16S rRNA genes targeting the Kistimonas-like 

OTU2 (90F and 231R; positions based on V4 region) and Spirochaeta-like OTU5 (15F and 

226R; positions based on V4 region; Table 2.2) were designed based on their OTU 

sequences using the same software. For each qPCR reaction, all samples and standards 

were amplified in triplicate with a 10 μl volume consisting of 0.25 µM of each primer and 

1x SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad Laboratories). All qPCR 

amplifications were carried out in the C1000 Touch™ Thermal Cycler (Bio-Rad 

Laboratories) under the following conditions: Initial denaturation at 95°C for 3 minutes, 

29 cycles of denaturation (33 cycles for Spirochaeta-like OTU5 amplification) at 95°C for 

15 seconds, annealing (Table 2.2) for 30 seconds, extension at 72°C for 30 seconds, 

followed by elongation at 72°C for 5 minutes. Data analysis was performed with the CFX 

Manager software (Bio-Rad Laboratories) and all copy numbers were normalized to the 

amount (ng) of input DNA. 

To validate nitrogen assimilation functions in the Kistimonas-like species, PCR 

primers targeting the assimilatory nitrate reductase (nas; 229F and 364R) and assimilatory 

nitrite reductase (nit; 454F and 580R) genes were designed (Table 2.2).  To validate 



58 

vitamin B12 synthesis functions in the Spirochaeta-like species, PCR primers targeting the 

cobyrinate a,c-diamide synthase (cbiA; 298F and 394R) gene previously used to detect 

potential vitamin B12 biosynthesizers in the Ross Sea (Bertrand et al., 2011) and the 

cobalt-precorrin-5A hydrolase (cbiG; 272F and 410R) genes were designed (Table 2.2). 

PCR primers for the btuF gene (692F and 794R) encoding vitamin B12-binding protein 

involved in transport in the Spirochaeta-like species were also designed (Table 2.2). PCR 

reactions were performed as previously described in this document under the following 

conditions: Initial denaturation at 95°C for 2 minutes, 33 cycles of denaturation at 95°C for 

15 seconds, annealing (Table 2.2) for 30 seconds, extension at 72°C for 30 seconds, 

followed by elongation at 72°C for 5 minutes and cooling at 12°C. Amplicons were run 

and imaged on a 1% (wt/vol) agarose gel as previously described in this chapter.  

Data and specimen availability 

Sequence data were deposited in the National Center for Biotechnology 

Information (NCBI Resource Coordinators, 2016) under the BioProject ID PRJNA368737. 

Accession numbers are listed in Table 2.4. Dissected specimen tissues and valves are 

cataloged at the South Dakota School of Mines and Technology, Museum of Geology, with 

details provided through the iDigBio portal (https://www.idigbio.org/portal/recordsets/

db3181c9-48dd-489f-96ab-a5888f5a938c).   



59 

Table 2.4. NCBI accession numbers of raw read and sequence data generated in this 

chapter. All data are linked to NCBI’s BioProject ID PRJNA368737 (NCBI Resource 

Coordinators, 2016). 

Database Accession numbers Dataset description 
Sequence Read 
Archive (SRA) 

SRR5381359-SRR5381390 16S rRNA gene sequence reads (V4 region) 
from the 2014 collection 

SRR6473966-SRR6473965 16S rRNA gene sequence reads (V4 region) 
from the 2017 collection 

SRR5381472-SRR5381483 Paired-end metagenomic reads sequenced 
using various Illumina platforms 

SRR6472705-SRR6472704 Metagenomic reads sequenced using the 
Oxford Nanopore MinION sequencing 
platform 

SRR6473829-SRR6473827 Metatranscriptomic reads sequenced using 
the Illumina HiSeq 4000 platform 

GenBank KY509297-KY509306 Nucleotide sequences of OTU1 to OTU10 
MUHZ00000000-
MUIM00000000 

Draft genomic assemblies from Illumina-
sequenced reads 

PQCO00000000-
PQCQ00000000 

Draft hybrid genomic assemblies from 
Illumina and Oxford Nanopore reads  
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Results 

Site characterization 

Live P. pectinatus had clumped distributions at Wildcat Cove (Figure 2.1) in all 

sample years, with the highest concentrations being near the mangrove-lined coast where 

total organic carbon content in the sediment was highest (Doty, 2015). Overall, live 

abundances averaged over 40 individuals per square meter (Doty, 2015). Porewater 

dissolved sulfide and oxygen concentrations were measured and reported by Doty (2015) 

from low-flow fluid sampling of piezometers installed near to where specimens were 

recovered, according to previously described methods (Green-García and Engel, 2012). 

Dissolved sulfide concentrations at Wildcat Cove (18 – 56 μmol/L) were an order of 

magnitude higher than concentrations measured from intertidal zone porewater occupied 

by the lucinid Lucinoma borealis (Dando et al., 1986). Dissolved oxygen concentrations 

ranged from 78 – 125 μmol/L at quadrats adjacent to where P. pectinatus were collected 

(Doty, 2015). 
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Gill microbiome diversity 

To examine P. pectinatus microbiome diversity, we sequenced 16S rRNA genes, 

and used metagenomic and metatranscriptomic content from gill and foot samples collected 

in 2011, 2014, and 2017. All amplicon-sequenced DNA and cDNA samples were 

dominated by one gammaproteobacterial Sedimenticola-like species (OTU1), occurring at 

average 84 ± 11% relative abundance (Figure 2.2a). Metagenome-assembled genomes 

(MAGs) of this species were binned from fourteen separate assemblies and three co-

assemblies (Table 2.3) and shared 100% sequence identity in the 16S rRNA gene V4 region 

with OTU1, as well as 99.8 ± 0.4% average nucleotide identity (ANI) and 99 ± 1% average 

amino acid identity (AAI; Figure 2.3a) with each other. These gammaproteobacterial 

MAGs were at least 20% smaller, and with at least 11% higher G+C content, than 

previously sequenced clade A thioautotrophic lucinid endosymbiont species Ca. 

Thiodiazotropha endoloripes (Petersen et al., 2016) and Ca. Thiodiazotropha endolucinida 

(König et al., 2016) and Sedimenticola spp. (Narasingarao and Haggblom, 2006; Flood et 

al., 2015; Table 2.3). FISH using a newly designed SED642 probe targeting the 16S rRNA 

gene of this Sedimenticola-like species confirmed that the P. pectinatus gill bacteriocytes 

contained cells that matched the gammaproteobacterial MAGs (Figure 2.4). Results of 

phylogenetic analyses using 16S rRNA gene sequences (Figure 2.5) and ten single-copy 

marker genes (Figure 2.3b) corroborated previous reports on the distinct phylogenetic 

position of the thioautotrophic P. pectinatus endosymbiont in relation to other lucinid 

symbiont species (Durand et al., 1996; Green-García, 2008; Brissac et al., 2011). The 

Sedimenticola-like MAGs shared 71 ± 4% ANI and 64 ± 1% AAI with sequenced clade A 
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lucinid symbiont species, 76 ± 7% ANI and 59 ± 5% AAI with other marine thioautotrophic 

symbionts, and 76 ± 2% ANI and 69 ± 1% AAI to free-living Sedimenticola spp. 

(Narasingarao and Haggblom, 2006; Flood et al., 2015; Figure 2.3a). Based on the 93-95% 

ANI and 85-90% AAI boundaries proposed in Rodriguez-R and Konstantinidis (2014), the 

Sedimenticola-like MAGs were likely a species separate from sequenced clade A lucinid 

symbionts, marine thioautotrophic symbionts and Sedimenticola spp. Because the 

Sedimenticola-like MAGs shared the highest AAI with Sedimenticola spp. and the 

observed AAI values fall within the proposed genus boundary (55-60%; Rodriguez-R and 

Konstantinidis, 2014), we propose the name Candidatus Sedimenticola endophacoides for 

the P. pectinatus endosymbiont, where ‘endophacoides’ refers the host association (‘endo-

’ meaning ‘within’). 

Besides the thioautotrophic symbiont species, we also observed lower relative 

abundances of a gammaproteobacterial Kistimonas-like OTU (average 13 ± 12%; OTU2) 

belonging to the order Oceanospirillales in all amplicon-sequenced DNA and cDNA 

samples and a Spirochaeta-like OTU (average 0.2 ± 0.2%; OTU5) in 25 out of 33 gill DNA 

and cDNA samples (Figure 2.2a).  The transcriptional activity of the Sedimenticola-like, 

Kistimonas-like, and Spirochaeta-like species was confirmed by absolute qPCR 

quantification, where copy numbers of the OTUs in matched DNA and cDNA samples 

were consistent with their OTU relative abundances (Figure 2.2b). 
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Figure 2.2 Relative abundances of (A) bacterial 16S rRNA gene OTUs and Good’s 

estimator of coverage (Good, 1953), (B) copy numbers per ng of DNA or cDNA (%) of 

Sedimenticola-like OTU1, Kistimonas-like OTU2 and Spirochaeta-like OTU5 determined 

by qPCR and (C) normalized average coverage depths with standard error bars mapped to 

Ca. Sedimenticola endophacoides, Kistimonas-like and Spirochaeta-like MAG in P. 

pectinatus foot and gill specimens/libraries. “R” denotes RNA-derived cDNA specimens 

in (A) and (B) and metatranscriptomic libraries in (C). Foot-associated Christensenella-

like OTU 3 indicated with “#” in (A) was classified using 0% bootstrap confidence. 

Deep metagenomic sequencing of one 2014 P. pectinatus gill sample also binned a 

Kistimonas-like MAG (3% of reads), a Spirochaeta-like MAG (0.4% of reads), a Ca. 

Sedimenticola endophacoides MAG (58% of reads; Table 2.3), and twelve other bins with 

0% completeness and no taxonomic classification. These three MAGs contained 16S rRNA 

gene sequences with perfect matches to their corresponding OTU sequences. Unbinned 

contigs comprised 89% (527,385/591,741) of all assembled contigs from this sample, out 

of which only 11% (59,232/527,385), had predicted protein-coding regions.  



65 



66 

Figure 2.3 (A) Heatmap of two-way, pairwise average amino acid identities (AAI) 

comparisons and (B) phylogenomic tree of MAGs sequenced in this study (red) in relation 

to published thioautotrophic symbionts of lucinid clams (blue) and other symbiotic and 

free-living bacteria. The outgroup used in (B) was Desulfurobacterium 

thermolithotrophum from phylum Aquificae and the scale bar indicates 0.2 substitution per 

site. 

Figure 2.4. Fluorescence in situ hybridization (FISH) images of a P. pectinatus gill 

transverse section showing (A) bacteriocytes hybridized with probe SED642 specific for 

Ca. Sedimenticola endophacoides (red), (B) bacteriocytes hybridized with universal probe 

EUB338 (Amann et al., 1990) for bacterial species (green), (C) bacteriocytes stained with 

DAPI (blue), (D) differential interference contrast view, (E) overlay view, (F) a light 

micrograph of another gill section stained with hematoxylin and eosin as a reference for 

tissue structural integrity and morphology. 
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Out of 527,385 total unbinned contigs from the deeply sequenced gill metagenome, 

gene/protein homologs were only predicted in 25,670 contigs (5%). ~94% of the homologs 

were eukaryotic, ~4% were bacterial, ~1% were viral and~ 0.2% were archaeal.  ~75% of 

the bacterial homologs belonged to the phylum Proteobacteria, while only ~2% classified 

to the phylum Spirochaetes. Of all proteobacterial homologs, ~70% belonged to the class 

Gammaproteobacteria. 

Reads from all sequenced metagenomic and metatranscriptomic libraries could be 

mapped to MAGs of the Kistimonas-like (0.4 ± 0.4% of MiSeq metagenomic reads and 0.1 

± 0.04% of metatranscriptomic reads) and Spirochaeta-like species (1 ± 0.3% of MiSeq 

metagenomic reads and 0.008 ± 0.003% of metatranscriptomic reads) at lower sequencing 

depths compared to the Ca. Sedimenticola endophacoides MAG (8 ±4% of MiSeq 

metagenomic reads and 1 ± 0.6% of metatranscriptomic reads; Figure 2.2c). MAGs of Ca. 

Sedimenticola endophacoides, the Kistimonas-like species, and the Spirochaeta-like 

species shared <70% ANI and <56% AAI with each other (Figure 2.3a). Phylogenetic 

analyses using 16S rRNA gene sequences clustered the Kistimonas-like OTU sequences 

with potentially pathogenic K. scapharcae from a dead ark clam Anadara broughtonii (Lee 

et al., 2012), skin-associated K. asteriae from the starfish Asterias amurensis (Choi et al., 

2010), and gill-associated Oceanospirillales from the limid bivalve Acesta excavata 

(Jensen et al., 2010; Figure 2.5). The Spirochaeta-like OTU sequence was most closely 

related to spirochete endosymbionts in the gutless marine worm Olavius (Dubilier et al., 

1999; Blazejak et al., 2005), and loosely associated with spirochete sequences retrieved 



68 

from a L. kazani-like lucinid (Duperron et al., 2007; Figure 2.5). Genomic sequences of 

these closest relatives of both species are not yet available in public databases.  



69 

Figure 2.5. Bootstrap consensus tree of the ten most abundant 16S rRNA gene OTUs 

identified in this study (red text), in relation to lucinid (blue text), bivalve, tubeworm, and 

termite symbionts and free-living bacteria. GenBank (Benson et al., 2014) accession 

numbers are indicated in square brackets and bootstrap values >70% are shown. The 

outgroup used was Desulfurobacterium thermolithotrophum from phylum Aquificae.  

Foot microbiome diversity  

Phacoides pectinatus foot DNA samples were dominated by one Christensenella-

like OTU (OTU3) belonging to the class Clostridia at average 51 ± 21% relative abundance 

(Figure 2.2a). Low occurrences of the Sedimenticola-like OTU1 (average 25 ± 9% relative 

abundance), the Kistimonas-like OTU2 (average 8 ± 6% relative abundance) and the 

Spirochaeta-like OTU5 (average 0.5±0.3% relative abundance) were also detected in all 

foot specimens (Figure 2.2a). No bacterial phylogenetic marker gene or 16S rRNA gene 

sequence was detected in the foot metagenome. 0.02% of foot metagenomic reads mapped 

to the Ca. Sedimenticola endophacoides MAG, 0.001% mapped to the Kistimonas-like 

MAG and 2% mapped to the Spirochaeta-like MAG. 
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Figure 2.6. Plots showing the sum of fragments mapped to the (A) metatranscriptome 

assembled de novo by Trinity (Haas et al., 2013) for each sequenced sample (R1, R2 and 

R3) and (B) pairwise Pearson correlations between each sequenced sample. For both plots, 

the count matrix was transformed to counts per million, followed by a log2 transformation. 
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Metagenomic and metatranscriptomic analyses 

Sequenced gill cDNA libraries showed consistent read coverages of the co-

assembled metatranscriptome and pairwise Pearson correlations of >0.8 across replicates 

(Figure 2.6). A total of 1,563,787 transcripts were assembled, out of which 85% (average 

length 364 ± 262 bp) were without protein-coding region and functional annotation. 57% 

of the 1,329,218 unclassifiable transcripts mapped to the unbinned contigs in the deeply 

sequenced metagenomic sample and only <0.1% of these mapped to the MAGs generated 

in this study. Among the 91,465 transcript clusters (loosely equivalent to genes), ~51% 

were eukaryote-related, ~45% were bacteria-related, ~2% were archaea-related, and ~2% 

were virus-related. About 2.87% of all assembled transcripts were predicted to be rRNA. 

11% of the total transcripts (average length 989 ± 1,181 bp) could be mapped to 

gene/protein homologs. These were grouped into 91,465 transcript clusters (loosely 

equivalent to genes), from which a subset (3%) mapped to the bacterial MAGs of interest. 

 As such, it should be noted that the quality of gene/transcript annotations is heavily 

dependent on the completeness of the MAGs and the reference databases used. Although 

we made every effort to search for absent genes and pathways in the unbinned gill 

metagenomes, incompletely binned MAGs used to make inferences may still contain 

missing genes and functions. The lack of host genomic data and the high abundances of 

unclassifiable sequences in the gill metagenomes and metatranscriptomes imply that 

functional analyses can be skewed towards annotated genes/transcripts that would overlook 

novel genes (Raina et al., 2018). Also, gene/transcript annotations based on homology may 

not be accurate predictors of reaction mechanisms (Raina et al., 2018) and even function 
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(in the case of novel paralogs). Transcript quantification can also be influenced by swift 

changes in mRNA expression occurring between sample collection and fixation, as well as 

mRNA turnover that causes rapidly degrading mRNAs to exhibit inaccurately low 

transcripts per million (TPM) values.  

Host-related functions 

Host-related rRNA gene transcript clusters made up two-thirds of the thirty most 

abundantly expressed transcripts in the gill metatranscriptomes (Figure 2.7). Highly 

expressed eukaryotic and/or molluscan protein-coding genes included those encoding the 

respiratory cytochrome c oxidase subunits, hemoglobins 1 and 2, and actin (Figure 2.8). A 

carbonic anhydrase transcript cluster related to the mangrove killifish (Kryptolebias 

marmoratus) was the eleventh most abundantly expressed in the gill metatranscriptome 

(average 696 ± 260 TPM; Figure 2.8a), while another molluscan transcript cluster encoding 

for a nacrein-like protein with putative carbonic anhydrase function (Marie et al., 2011) 

was expressed in only one out of three specimens at 0.1 TPM. The top 30 most abundant 

molluscan transcript clusters also included transcripts encoding hemoglobin 3 (average 104 

± 25 TPM), ribosomal proteins (average 32 ± 18 TPM), other cytoskeletal proteins (tubulin 

and tropomyosin; average 33 ± 19 TPM), and lysozyme 3 (average 19 ± 20 TPM; Figure 

2.8b). Similarly, transcript clusters matching gene ontology (Harris et al., 2004) terms 

relevant to hemoglobin, cytoskeletal, and ribosomal functions were among the most 

abundant in the phylum Mollusca (Figure 2.9). Transcript clusters involved in the defense 

response to bacteria (GO:0042742; Figure 2.9) were potentially relevant to symbiosis. 
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These included molluscan transcript clusters encoding lysozyme 1 (average 6 ± 4 TPM), 

lysozyme 3, an antibacterial glycoprotein aplysianin-A (Takamatsu et al., 1995)/muscosal 

glycoprotein achacin (Ehara et al., 2002; average 7 ± 2 TPM), the H2O2-generating 

flavoenzyme L-amino oxidase (Guo et al., 2012; average 7 ± 1 TPM), and nitric oxide 

synthase (average 0.6 ± 1 TPM). 

Figure 2.7. Log2-transformed TMM-normalized TPM of gene products of the 30 most 

abundantly expressed transcript clusters for each sequenced metatranscriptomic sample 

(R1, R2 and R3) in whole P. pectinatus gill metatranscriptomes. Abbreviations: UDP, 

uridine diphosphate. 
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Figure 2.8 Log2-transformed TMM-normalized TPM of gene products of the 30 most 

abundantly expressed protein-coding transcript clusters (A) mapped to any species and 

(B) mapped to the phylum Mollusca in sequenced P. pectinatus gill metatranscriptomes

(specimens R1, R2 and R3). Abbreviations: UDP, uridine diphosphate; ORF, open 

reading frame.
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Figure 2.9.  Top 30 most represented gene ontology (GO) terms (Harris et al., 2004) in the 

(A) cellular component, (B) biological processes and (C) molecular functions categories

among P. pectinatus transcript clusters. 
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Endosymbiont functions 

Sixteen of the thirty most abundant bacteria-related transcript clusters could be 

mapped to Ca. Sedimenticola endophacoides, while eight mapped to the species’ relatives 

(Figure 2.10a). Based on Uniprot’s annotations (The UniProt Consortium, 2015), many of 

the top 30 most abundant bacteria-related transcript clusters were involved in housekeeping 

functions, including DNA repair (exodeoxyribonuclease V subunit gamma RecC), 

transcriptional regulation (sigma-54-dependent Fis family transcriptional regulator), 

protein folding (filamentous temperature-sensitive ATP-dependent zinc metalloprotease 

FtsH and its modulator HflK), signaling (diguanylate cyclase response regulator and two-

component response regulator; diguanylate cyclase), folate-dependent one-carbon 

metabolism or biosynthesis (5-formyltetrahydrofolate cyclo-ligase), cofactor synthesis 

(ubiquinone/menaquinone biosynthesis C-methyltransferase UbiE), and stress response 

(heat shock proteins, extracytoplasmic function RNA polymerase sigma-E factor RpoE, 

molecular chaperones ClpB and DnaK; Figure 2.10a).  

Candidatus Sedimenticola endophacoides expressed lithoautotrophic genes 

involved in sulfur oxidation, hydrogen oxidation, and carbon fixation (Figures 2.10-2.12). 

Transcript clusters involved in thiotrophic sulfur oxidation (sox) and reverse dissimilatory 

sulfite reductase enzyme system-adenylylsulfate reductase-sulfate adenylyltransferase 

(dsr-apr-sat) pathways (Ghosh and Dam, 2009; Friedrich et al., 2001) were detected in the 

transcriptome at TPM values between 0.07 (DsrK) to 55 (SoxZ; Figures 2.11-2.12). 

Variants of sulfide:quinone oxidoreductase (Sqr), hydrogenases, and ribulose-1,5-

bisphosphate carboxylase/oxygenase (RuBisCO) genes utilized by chemosynthetic marine 
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symbionts differed across lineages (Table 2.5), and Ca. Sedimenticola endophacoides 

expressed a unique combination of type VI Sqr (average 0.09 ± 0.1 TPM), group 1 

membrane-bound (average 0.2 ± 0.2 TPM) and group 2b soluble NAD-dependent (average 

2 ± 2 TPM) Ni-Fe hydrogenases, and type II RuBisCO (average 0.08 ± 0.06 TPM) genes 

(Figures 2.11-2.12). Expressed heterotrophy-related genes included those involved in 

dicarboxylate transport (average 0.2 ± 0.3 TPM) and a complete TCA cycle (average 0.4 ± 

0.8 TPM; Figure 2.12a). Candidatus Sedimenticola endophacoides is capable of respiration 

on oxygen and nitrogenous compounds (average 0.2 ± 0.4 TPM; Figure 2.10b). However, 

compared to other chemosynthetic marine symbionts that utilize a variety of terminal 

oxidases for aerobic respiration, we only detected genes and transcript clusters encoding 

subunits for the cbb3 type terminal oxidase (average 0.4 ± 0.5 TPM) in Ca. Sedimenticola 

endophacoides (Table 2.5).  
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Figure 2.10. Log2-transformed TMM-normalized TPM of gene products of (A) the 30 

most abundantly expressed protein-coding transcript clusters mapped to species (square 

brackets) from the domain Bacteria and (B) morphological features and major metabolic 

pathways predicted in Ca. Sedimenticola endophacoides. In (B), the transcript cluster 

mapped to a non-thioautotrophic gammaproteobacterial species (Endozoicomonas 

numazuensis) is highlighted in green while transcript clusters mapped to non-

gammaproteobacterial taxa are highlighted in pink. Abbreviations: UbiE, 

ubiquinone/menaquinone biosynthesis C-methyltransferase; FtsH, ATP-dependent zinc 

metalloprotease; Hyb, membrane bound [Ni-Fe] hydrogenase 2; Hup, uptake hydrogenase; 

Hox, soluble NAD-dependent hydrogenase; S0, elemental sulfur; Fcc, Flavocytochrome c-

sulfide dehydrogenase; Sqr, sulfide:quinone oxidoreductase; Sox, sulfur oxidation enzyme 

complex; Dsr, reverse dissimilatory sulfite reductase enzyme system; Apr, adenylylsulfate 

reductase; APS, adenosine-5’-phosphosulfate, Sat, sulfate adenylyltransferase; ABC, 

ATP-binding cassette transporters; GS, glutamine synthetase; GOGAT, glutamine 

oxoglutarate aminotransferase (glutamate synthase); Nap, periplasmic dissimilatory nitrate 

reductase; Nir, cytochrome nitrite reductase cd1; Nor, nitric oxide reductase; Nos, nitrous 

oxide reductase; TBDT, TonB-dependent transporter; TonB, TonB-ExbB-ExbD complex; 

FeoB, ferrous iron transport protein; Pst, phosphate specific transport; Pho, phosphate 

regulon; PolyP, polyphosphate granule; ActP, acetate permease; TRAP, tripartite ATP-

independent periplasmic transport; RuBisCO, ribulose-1,5-bisphosphate 

carboxylase/oxygenase; TCA cycle, tricarboxylic acid cycle; IM, inner membrane; OM, 

outer membrane. 
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Figure 2.11. Log2-transformed TMM-normalized TPM of gene products of lithotrophy-

related transcript clusters mapped to Ca. Sedimenticola endophacoides. Transcript clusters 

with zero TPM values are represented as white cells. Abbreviations: Sqr, sulfide:quinone 

oxidoreductase; Fcc, flavocytochrome c – sulfide, Sat, sulfate adenylyltransferase; Apr, 

adenylylsulfate reductase; Tus, sulfur carrier proteins homologous to some Dsr proteins; 

Hyp, hydrogenase pleiotropy operon involved in the biosynthesis and maturation of [Ni-

Fe] hydrogenases; Hup, regulatory uptake hydrogenase; Hox, soluble NAD-dependent 

hydrogenase; Hyd, periplasmic Ni-Fe hydrogenase; HdrA/MVH, heterodisulfide 

reductase/methylviologen reducing hydrogenase; Hyb membrane-bound Ni-Fe 

hydrogenase 2; HyaC, membrane-bound Ni-Fe-hydrogenase I cytochrome b subunit. 
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Figure 2.12. Log2-transformed TMM-normalized TPM of transcript clusters encoding 

gene products involved in carbon metabolism mapped to (A) Ca. Sedimenticola 

endophacoides, (B) the Kistimonas-like species and (C) the Spirochaeta-like species. 

Transcript clusters with zero TPM values are represented as white cells. Abbreviations: 

TRAP, tripartite ATP-independent periplasmic transport; TCA cycle, tricarboxylic acid 

cycle; HMP, hexose monophosphate shunt; Dct, dicarboxylate transport proteins; Cbb, 

proteins encoded by the Calvin-Bassham-Benson cycle operon; BCKDH complex, 

branched-chain alpha-keto acid dehydrogenase complex; LacI, lactose operon repressor. 
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Candidatus Thiodiazotropha spp. are capable of nitrogen fixation and assimilatory 

nitrate and nitrite reduction (Petersen et al., 2016; König et al., 2016), and relevant 

transcripts mapped to Ca. Thiodiazotropha endoloripes, but not Ca. Sedimenticola 

endophacoides, were identified in the gill metatranscriptomes at average 0.3 ± 0.3 TPM 

(Table 2.6). Though transcripts homologous to most nitrogen fixation proteins and 

assimilatory nitrate and nitrite reductases in Ca. Thiodiazotropha spp. were identified in 

the gill metatranscriptomes, normalized metagenomic read coverages of these transcripts 

were low, averaging 0 ± 0 for MiSeq sequenced reads, 0.02 ± 0.01 for Nanopore sequenced 

reads and 0.02 ± 0.04 for HiSeq sequenced reads (Table 2.6). In comparison, metagenomic 

read depths of other nitrogen metabolism transcripts averaged at 80 ± 381 for MiSeq 

sequenced reads, 0.009 ± 0.01 for Nanopore sequenced reads and 25,659 ± 143,903 for 

HiSeq sequenced reads. Key genes in these pathways were, however, not detected in the 

sequenced P. pectinatus gill metagenomes (Tables 2.6-2.7), suggesting that the transcripts 

were rare. MAGs of Ca. Sedimenticola endophacides also encoded and expressed genes 

for urease and the urease accessory protein UreE (0.09 ± 0.1 TPM), urea ABC transporter 

(0.2 ± 0.2 TPM), and ammonium transporter (average 0.06 ± 0.1 TPM; Figure 2.13).   
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Table 2.6. Summary of nitrogen fixation (nif) transcripts identified in the gill 

metatranscriptomes of P. pectinatus. The closest protein homolog and organism of each 

transcript were determined via bidirectional local tblastn and web tblastx searches 

(Altschul et al., 1990) against NCBI’s non-redundant protein sequences and nucleotide 

databases (NCBI Resource Coordinators, 2016). Trimmed means of M-values (TMM)-

normalized transcripts per million (TPM) values of each sequenced metatranscriptomic 

sample (R1, R2 and R3) are presented with the averages and standard deviations (SD) 

across samples. The total average depths of coverage of each transcript for each group of 

metagenomic samples sequenced on MiSeq, HiSeq, and Nanopore platforms are also 

presented. 

Transcript 
length 

Closest protein 
homolog 

Closest related 
organism 

TMM-Normalized TPM Depth 

R1 R2 R3 Average SD MiSeq HiSeq Nanopore 

751 Assimilatory 
nitrate reductase 

Ca. T. endoloripes 0.3 0.1 0.1 0.2 0.1 0 0 0 

2484 NAD(P)H-
dependent 
assimilatory 
nitrite reductase  

Ca. T. endoloripes 0.4 0.1 0.1 0.2 0.2 0 0.1 0.3 

753 FMN-binding 
glutamate 
synthase family 
protein 

Ca. T. endoloripes 0.4 0.1 0.2 0.2 0.1 0 0 0.03 

4390 Homocitrate 
synthase, serine-
O-
acetyltransferase, 
NifWZM 

Ca. T. endoloripes 1.1 0.2 0.9 0.7 0.4 0 0 0.02 

2146 NifUS Ca. T. endoloripes 0.5 0.2 0.3 0.3 0.2 0 0 0.04 

4373 NifE Ca. T. endoloripes 0.3 0.1 0.3 0.2 0.1 0 0.06 0.02 

1125 NifNX Ca. T. endoloripes 0.4 0.1 0.2 0.2 0.1 0 0 0.03 

5028 NifDKT Ca. T. endoloripes 0.5 0.1 0.3 0.3 0.2 0 0 0.01 

1169 NifH Ca. T. endoloripes 0.7 0.2 0.6 0.5 0.3 0 0 0.03 
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Table 2.7. Summary of local tblastn (Altschul et al., 1990) search results querying 

translated nitrogen fixation genes in sequenced lucinid endosymbionts Ca. 

Thiodiazotropha endoloripes (Petersen et al., 2016) and Ca. Thiodiazotropha endolucinida 

(König et al., 2016) against unbinned P. pectinatus assemblies. Query sequences were 

obtained from NCBI’s GenPept sequence database (NCBI Resource Coordinators, 2016). 

The % identity and expect value (e-value) of the best hit from each query is presented in 

this table.  

Query Accession Number Organism # Hits % Identity E-value Alignment 
Length 

Nitrogenase cofactor biosynthesis protein NifB  WP_069124667 Ca.  T. endolucinida 1 22.69 8 x 10-5 216 
Nitrogenase iron protein  WP_069124654 Ca.  T. endolucinida 12 22.81 7 x 10-7 263 
Nitrogen fixation negative regulator NifL  ODB98656 Ca.  T. endoloripes 221 40.52 1 x 10-20 116 
Nitrogen fixation negative regulator NifL  ODB99078 Ca.  T. endoloripes 211 40.52 3 x 10-20 116 
Nitrogen fixation negative regulator NifL  ODJ87650 Ca.  T. endolucinida 208 38.98 5 x 10-19 118 
Nitrogen fixation protein VnfA  ODJ89372 Ca.  T. endolucinida 176 42.11 1 x 10-68 342 
Nitrogen fixation protein NifM  ODJ87604 Ca.  T. endolucinida 24 25.77 1 x 10-8 194 
Nitrogen fixation protein NifM  ODB97808 Ca.  T. endoloripes 18 24.74 1 x 10-7 194 
Nitrogenase iron protein  WP_069005827 Ca.  T. endoloripes 12 22.81 5 x 10-7 263 
Nitrogenase iron protein NifH  ODJ87633 Ca.  T. endolucinida 12 22.81 7 x 10-7 263 
Nitrogen fixation protein  ODC01960 Ca.  T. endoloripes 11 54.63 4 x 10-30 108 
Nitrogen fixation protein  ODB98544 Ca.  T. endoloripes 11 52.78 1 x 10-28 108 
Nitrogen fixation protein FixH  ODC01716 Ca.  T. endoloripes 11 53.99 4 x 10-61 163 
Nitrogenase cofactor biosynthesis protein NifB  WP_069014752 Ca.  T. endoloripes 1 24.54 2 x 10-5 216 
Nitrogenase cofactor biosynthesis protein NifB  WP_069006074 Ca.  T. endoloripes 1 24.54 2 x 10-5 216 
Nitrogenase FeMo cofactor synthesis FeS core scaffold and 
assembly protein NifB  ODJ87648 Ca.  T. endolucinida 1 22.69 9 x 10-5 216 
Nitrogen fixation protein NifT  ODJ87630 Ca.  T. endolucinida 0 NA NA NA 
Nitrogen fixation protein NifW  ODB97810 Ca.  T. endoloripes 0 NA NA NA 
Nitrogen fixation protein NifX  ODB97826 Ca.  T. endoloripes 0 NA NA NA 
Nitrogen fixation protein NifZ  ODJ87605 Ca.  T. endolucinida 0 NA NA NA 
Nitrogen fixation protein NifZ  ODB98653 Ca.  T. endoloripes 0 NA NA NA 
Nitrogen fixation protein NifZ  ODB97809 Ca.  T. endoloripes 0 NA NA NA 
Nitrogenase FeMo cofactor synthesis molybdenum delivery 
protein NifQ  ODJ87641 Ca.  T. endolucinida 0 NA NA NA 
Nitrogenase iron-molybdenum cofactor biosynthesis protein NifE  WP_069124645 Ca.  T. endolucinida 0 NA NA NA 
Nitrogenase iron-molybdenum cofactor biosynthesis protein NifE  ODJ87623 Ca.  T. endolucinida 0 NA NA NA 
Nitrogenase iron-molybdenum cofactor biosynthesis protein NifE  WP_069024648 Ca.  T. endoloripes 0 NA NA NA 
Nitrogenaseiron-molybdenum cofactor biosynthesis protein NifN  WP_069124644 Ca.  T. endolucinida 0 NA NA NA 
Nitrogenase iron-molybdenum cofactor biosynthesis protein NifN  ODJ87622 Ca.  T. endolucinida 0 NA NA NA 
Nitrogenase iron-molybdenum cofactor biosynthesis protein NifN  WP_069014456 Ca.  T. endoloripes 0 NA NA NA 
Nitrogenase iron-molybdenum cofactor biosynthesis protein NifX  ODJ87621 Ca.  T. endolucinida 0 NA NA NA 
Nitrogenase iron-molybdenum cofactor biosynthesis protein NifY  ODJ87628 Ca.  T. endolucinida 0 NA NA NA 
Nitrogenase molybdenum-iron protein alpha chain  WP_069124653 Ca.  T. endolucinida 0 NA NA NA 
Nitrogenase molybdenum-iron protein subunit alpha NifD  ODJ87632 Ca.  T. endolucinida 0 NA NA NA 
Nitrogenase molybdenum-iron protein subunit beta  WP_069124652 Ca.  T. endolucinida 0 NA NA NA 
Nitrogenase molybdenum-iron protein subunit beta  WP_069005826 Ca.  T. endoloripes 0 NA NA NA 
Nitrogenase molybdenum-iron protein subunit beta NifK  ODJ87631 Ca.  T. endolucinida 0 NA NA NA 
Putative nitrogen fixation protein  ODJ87619 Ca.  T. endolucinida 0 NA NA NA 
Putative nitrogen fixation protein  ODJ87618 Ca.  T. endolucinida 0 NA NA NA 
Putative nitrogen fixation protein FixT  ODB97838 Ca.  T. endoloripes 0 NA NA NA 
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Figure 2.13. Log2-transformed TMM-normalized TPM of transcript clusters encoding 

gene products involved in nitrogen metabolism mapped to Ca. Sedimenticola 

endophacoides. Transcript clusters with zero TPM values are represented as white cells. 

Abbreviations: Nnr, nitrite and nitric oxide reductase; Nos, nitrous oxide reductase; Nor, 

nitric oxide reductase; Nap, periplasmic dissimilatory nitrate reductase. 
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Transcripts involved in type I, II, and possibly type III and VI, secretion systems 

were also observed in this species (Figure 2.14). A transcript cluster encoding a 

hypothetical filamentous hemagglutinin N-terminal domain-containing iron-responsive 

protein (average 104 ± 80 TPM) secreted by the two-partner secretion system (Sun et al., 

2016) was also the fifth most abundant in the bacterial metatranscriptomes (Figure 2.10). 

Like Ca. Thiodiazotropha spp., Ca. Sedimenticola endophacoides may utilize the type I 

secretion system (Delepelaire, 2004) potentially for the secretion of hemolysin A (average 1 

± 1 TPM), colicin V (average 0.4 ± 0.4 TPM), and repeats in toxin (average 0.2 ± 0.03 

TPM; Figure 2.14).  

Although lapBCE genes involved in the type I secretion of the adhesin LapA were 

identified in MAGs, only the lapC transcript cluster was detected at a low average TPM of 

0.2 ± 0.3 TPM. Transcript clusters encoding the general secretory pathway protein A 

(GspA; average 12 ± 15 TPM) and the pullulanase secretion protein E (average 0.1 ± 0.2 

TPM), both of which are part of the type II secretion system, were identified. Gene 

homologs of type II secretion GspABCDFGHIJKLMN proteins in Ca. Thiodiazotropha 

endoloripes could only be mapped to the P. pectinatus gill metatranscriptomes, but not the 

metagenomes. These transcripts had very low metagenomic read depths, averaging 0.0004 

± 0.001 for MiSeq sequenced reads, 0.03 ± 0.01 for Nanopore sequenced reads, and 0.05 

± 0.08 for HiSeq sequenced reads. The tadAB and tadD genes, which could be part of the 

type IV pilus and the type II secretion system (Tomich et al., 2007), were expressed in Ca. 

Sedimenticola endophacoides at average TPM of 0.3 ± 0.1, 0.06 ± 0.06, and 0.2 ± 0.2, 

respectively. Transcript clusters for TatABC (average 0.4 ± 0.6 TPM) and SecYEG 
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(average 0.2 ± 0.2 TPM) proteins within the twin-arginine translocation, and secretory 

protein export systems that may be linked to the type II secretion system (Nivaskumar and 

Francetic, 2014), were also observed in Ca. Sedimenticola endophacoides. Genes encoding 

the export apparatus protein and inner and outer membrane proteins of the type III secretion 

system were detected in Ca. Thiodiazotropha endoloripes. Protein homologs of these genes 

were mapped to a single 23,025 bp transcript within the P. pectinatus metatranscriptomes 

with only 0, 0.03 and 0.03 and MiSeq, Nanopore, and HiSeq metagenomic read depths. 

Nevertheless, transcripts encoding flagellar export proteins homologous to components of 

the type III secretions system (Diepold and Armitage, 2015) were identified in Ca. 

Sedimenticola endophacoides. Type VI secretion proteins annotated in Ca. 

Thiodiazotropha spp. MAGs, but not in MAGs of Ca. Sedimenticola endophacoides, were 

mapped to P. pectinatus metatranscriptomes with higher metagenomic read depths of 0.8 

± 3 for MiSeq sequenced reads, 0.03 ± 0.01 for Nanopore sequenced reads, and 296 ± 1,006 

for HiSeq sequenced reads. 
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Figure 2.14. Log2-transformed TMM-normalized TPM of transcript clusters encoding 

gene products involved in bacterial secretion systems mapped to Ca. Sedimenticola 

endophacoides. Transcript clusters with zero TPM values are represented as white cells. 

‘*” indicates genes not binned in the species’ MAG. Abbreviations: Imp; inner membrane 

protein; VgrG, valine-glycine repeat protein G; Tag, type VI secretion-associated proteins; 

Tss, type VI secretion system proteins; Gsp, general secretory pathway protein; FtsY, 

signal recognition particle receptor; Ffh/SRP 54, subunit of the signal recognition particle; 

Sec, secretory export proteins; Tat, twin-arginine translocation proteins; PulE, pullulanase 

secretion protein E; ABC, ATP-binding cassette transporters; Tol, outer membrane 

proteins; DedD, cell division protein; DedA; conserved ancient membrane protein; HlyB, 

alpha-203 hemolysin translocation ATP-binding protein; HlyA, alpha-hemolysin; T1SS, 

type I secretion system; RTX, repeats in toxin; LapC, large adhesion protein (membrane 

fusion component). 
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Genes to combat H2O2 stress, including those encoding the hydrogen peroxide-

inducible genes activator (average 0.3 ± 0.3 TPM), superoxide dismutase (average 0.05 ± 

0.06 TPM), and an alkyl hydroperoxide reductase subunit C-like protein (average 0.7 ± 0.8 

TPM) were also expressed in Ca. Sedimenticola endophacoides. Motility-related genes 

involving the type VI pilus (average 10 ± 37 TPM), flagella (average 2 ± 4 TPM), and 

chemotaxis proteins (average 2 ± 2 TPM) were observed in transcriptomes of Ca. 

Sedimenticola endophacoides. Phosphate uptake was regulated via proteins encoded by the 

phosphate regulon (pho; average 0.8 ± 1 TPM) and phosphate transporter operon (pst; 

average 0.6 ± 0.9 TPM). The species could also potentially synthesize and hydrolyze 

inorganic polyphosphate through the activity of polyphosphate kinase and 

exopolyphosphatase (average 0.9 ± 1 TPM) and/or other phosphatases (average 2 ± 3 

TPM). For iron scavenging, Ca. Sedimenticola endophacoides, like Ca. Thiodiazotropha 

spp., encoded and expressed the ferrous iron transport protein B (FeoB; average 1 ± 1 

TPM), the TonB-ExbB-ExbD ferric siderophore transport system (average 0.06 ± 0.09 

TPM), and the ferric uptake regulation protein FUR (average 0.2 ± 0.3 TPM). Transcript 

clusters for the biosynthesis of all 20 essential amino acids (Table 2.8), most B vitamins 

(except vitamins B3, B5 and B12; Table 2.8), coenzyme A (average 0.4 ± 0.7 TPM), 

tetrapyrroles (heme and siroheme; average 0.9 ± 4 TPM) and NAD and NADP cofactors 

(average 4 ± 9 TPM) were also identified in the species’ transcriptomes. 
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Table 2.8. Summary of transcripts involved in amino acid and B vitamin biosynthesis in 

Ca. Sedimenticola endophacoides, the Kistimonas-like species and the Spirochaeta-like 

species. Amino acid names are indicated with three-letter codes. Average and standard 

deviation values of TMM-normalized TPM across metatranscriptomic samples are 

presented. “No transcript” indicates pathways present in the MAGs but not transcriptomes, 

while “no gene” indicates pathways not identified in the MAGs. 

Category Compound 

TMM-Normalized TPM 
Ca. 

Sedimenticola 
endophacoides 

Kistimonas-like 
species 

Spirochaeta-like 
species 

Branched chain amino acids Ile, Val, Leu 0.3 ± 0.7 No gene/transcript No transcript 
Other hydrophobic amino 
acids Gly 0.3 ± 0.3 No transcript No transcript 

Ala 0.6 ± 0.9 0.06 ± 0.08 No transcript 
Pro 0.09 ± 0.1 0.2 ± 0.3 0.07 ± 0.1 
Met 0.2 ± 0.3 0.1 ± 0.2 No gene 
Trp 0.6 ± 1 0.07 ± 0.07 0.05 ± 0.08 

Basic amino acids Arg 0.2 ± 0.2 0.08 ± 0.09 No transcript 
Lys 0.2 ± 0.5 No transcript No transcript 
His 0.3 ± 0.6 0.09 ± 2 No transcript 

Acidic/polar amino acids Glu, Glt, Asp, Asn 0.4 ± 0.8 No transcript No transcript 
Ser 0.1 ± 0.2 0.1 ± 0.2 No transcript 
Thr 0.3 ± 0.5 0.09 ± 0.2 No transcript 
Cys 0.2 ± 0.3 0.2 ± 0.3 No transcript 

Other amino acids Phe, Tyr 0.09 ± 0.1 0.07 ± 0.01 No transcript 
B vitamins Vitamin B1 0.2 ± 0.3 No transcript No transcript 

Vitamin B2 0.2 ± 0.3 0.07 ± 0.1 No transcript 
Vitamin B3 No gene No gene No gene 
Vitamin B5 No gene No gene No gene 
Vitamin B6 0.2 ± 0.3 0.1 ± 0.2 No transcript 
Vitamin B7 0.1 ± 0.2 0.08 ± 0.09 No transcript 
Vitamin B9 8 ± 25 0.09 ± 0.1 0.08 ± 0.1 
Vitamin B12 No gene No gene No transcript 
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Other gill microbiome functions 

Highly expressed protein-coding transcript clusters homologous to protein 

sequences from other non-thioautotrophic bacterial taxa, including Tepidimonas spp., 

Persicobacter sp., and Bacillus ginsengihumi, were also observed in the gill 

metatranscriptomes (Figure 2.7a). A transcript cluster encoding a hypothetical DNA 

starvation/stationary phase protection protein from Endozoicomonas numazuensis, a 

relative of the Kistimonas-like species, was also identified (Figure 2.7a). Seven of the thirty 

most abundant transcript clusters mapped to the Kistimonas-like species encoded 

transposases (average 3 ± 4 TPM; Figure 2.15a). Two transcript clusters encoding 

poly(hydroxyalcanoate) granule associated protein (phasin) involved in the fermentative 

synthesis of polyhydroxyalkanoate storage granules (de Almeida et al., 2007) were also 

highly expressed in the species (average 1 ± 1 TPM; Figure 2.15a). Heterotrophy-related 

genes associated with other fermentation processes were expressed by the species at lower 

average TPM values of 0.09 ± 0.08, along with tricarboxylic acid (TCA) cycle genes 

(average 0.2 ± 0.3 TPM; Figure 2.12b and Figure 2.15a). Transcript clusters linked to fatty 

acid catabolism and synthesis, including those involved in the glyoxylate cycle (average 

0.4 ± 0.5 TPM; Munoz-Elias and McKinney, 2005), methylcitrate cycle (average 0.08 ± 

0.2 TPM; Munoz-Elias et al., 2006; Dolan et al., 2018), and the branched-chain alpha-keto 

acid dehydrogenase complex (BCKDH complex; average 0.1 ± 0.1 TPM; Sun and 

O'Riordan, 2010; Surger et al., 2018) were also observed (Figure 2.12b). A transcript 

cluster encoding a type VI secretion system-associated protein (average 0.5 ± 0.5 TPM) 

was among the most abundant in the species’ transcriptomes (Figure 2.15a). The 
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Kistimonas-like species likely respires aerobically with both cbb3 type cytochrome c 

oxidase (average 0.07 ± 0.07 TPM) and cytochrome bd ubiquinol oxidase (average 0.2 ± 

0.3 TPM). For nitrogen assimilation (Figure 2.15c), only two genes encoding NAD(P)H-

dependent assimilatory nitrite reductase (nit; average 0.02 ± 0.03 TPM) and type I 

glutamine synthetase (average 0.06 ± 0.1 TPM) were expressed in the species. Eight gill 

cDNA samples were amplified for the presence of assimilatory nitrate reductase (nas) and 

nit genes. Consistent with transcriptomic results, nit showed amplification in all samples 

tested but no amplification was detected in nas. 

Transcriptomes of the Kistimonas-like species included transcript clusters involved 

in the transport of metal ions (sodium, potassium and cadmium; average 0.2 ± 0.3 TPM), 

long-chain fatty acid (average 0.2 ± 0.3 TPM), drugs (average 0.08 ± 0.1 TPM), serine 

(average 0.08 ± 0.1 TPM), leucine (average 0.07 ± 0.2 TPM), and other substrates (average 

0.1 ± 0.1 TPM). Transcript clusters encoding the outer membrane protein OmpW (average 

0.5 ± 0.4 TPM), TolC (average 0.3 ± 0.08 TPM), a type I secretion outer membrane protein 

(average 0.02 ± 0.04 TPM), and Omp assembly factors (average 0.1 ± 0.1 TPM) were also 

expressed in this species. Other transport-related functions identified in the species’ MAG, 

but not transcriptomes, included substrates such as urea cycle products spermidine and 

putrescine and hemin. Bacteriocin processing genes were also detected in the species’ 

MAG, but not transcriptomes. Like Ca. Sedimenticola endophacoides, the Kistimonas-like 

species expressed genes for the biosynthesis of vitamin B2, B6, B7 and B9 (Table 2.8). 

Vitamin B1 synthesis genes were identified in the species’ MAGs, but not transcriptomes, 

while genes for the biosynthesis of vitamins B3, B5, and B12 were not sequenced in the 
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MAGs. Transcript clusters for the biosynthesis of proline (gamma-glutamyl phosphate 

reductase), cysteine, methionine, threonine and homoserine (homoserine dehydrogenase), 

serine (phosphoserine aminotransferase), histidine (phosphoribosyl-AMP cyclohydrolase), 

arginine, tryptophan, and alanine were detected in the bacterial species’ transcriptomes 

(Table 2.8). On the other hand, biosynthetic genes for glycine, glutamine, glutamate, 

asparagine, aspartate, lysine, and leucine were identified in the MAGs, but not in the 

transcriptomes (Table 2.8). In the Kistimonas-like MAG, genes for de novo biosynthesis 

of the branched chain amino acids isoleucine and valine were not sequenced.  

The most abundant transcript clusters mapped to the ~78% complete MAG of the 

lower abundance Spirochaeta-like species encoded transporters for ribose (average 0.2 ± 

0.2 TPM) and oligopeptide (average 0.1 ± 0.2 TPM; Figure 2.15b). Besides ribose, the 

species could potentially utilize other carbon sources through transcripts encoding sugar 

ABC transporter substrate-binding protein (average 0.09 ± 0.02 TPM), chitinase (average 

0.06 ± 0.1 TPM), glycoside hydrolase (average 0.05 ± 0.08 TPM) and C4-dicarboxylate 

ABC transporter substrate-binding protein (average 0.05 ± 0.08 TPM; Figure 2.12c). 
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Figure 2.15. Log2-transformed TMM-normalized TPM of gene products of the 30 most 

abundantly expressed protein-coding transcript clusters mapped to (A) the Kistimonas-like 

species and (B) the Spirochaeta-like species and major metabolic pathways predicted in 

(C) the Kistimonas-like species and (D) the Spirochaeta-like species. Transcript clusters

with zero TPM values in (A) and (B) are represented as white cells. Abbreviations: MFS, 

major facilitator superfamily transporter; Nas, assimilatory nitrate reductase; Nit, 

assimilatory nitrite reductase; GS, glutamine synthetase; GOGAT, glutamine oxoglutarate 

aminotransferase (glutamate synthase); Fd-GOGAT,  ferrodoxin-dependent glutamate 

synthase; Pst, phosphate specific transport; Pho, phosphate regulon; PolyP, polyphosphate 

granule; TBDT, TonB-dependent transporter; ABC, ATP-binding cassette transporters; 

DcuB, C4-dicarboxylate uptake family transporter; SDH, succinate dehydrogenase; FRD, 

fumarate reductase; TCA cycle, tricarboxylic acid cycle; TRAP, Tripartite ATP-

independent periplasmic transport; ECF, energy-coupling factor transporter. 
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Transcript clusters for many amino acid biosynthetic pathways in the Spirochaeta-

like species were not detected in its transcriptomes (Table 2.8), although these were 

predicted in its MAG. The methionine biosynthesis pathway was not sequenced in the 

Spirochaeta-like species MAG, but methionine degradation genes were expressed in its 

transcriptome (average 0.2 ± 0.2 TPM; Table 2.8). Genes for vitamins B1, B2, B6, B7, B9, 

and B12 biosynthesis were annotated in the species MAG, but only transcript clusters for 

vitamin B9 synthesis were observed (average 0.08 ± 0.1; Table 2.8). Genes for the 

transmembrane and substrate-binding component of a vitamin B1 ABC transporter, and 

vitamin B7 uptake proteins BioM and BioY were detected in the Spirochaeta-like species 

MAG, but not transcriptomes. The Spirochaeta-like MAG encoded for a nearly complete 

pathway (missing cbiJ and cbiET) for anaerobic vitamin B12 biosynthesis (Moore and 

Warren, 2012) not annotated in Ca. Sedimenticola endophacoides and the Kistimonas-like 

species. Although their corresponding transcripts were not detected in the species’ 

transcriptomes, PCR targeting the cobyrinate a,c-diamide synthase (cbiA) and cobalt-

precorrin-5A hydrolase (cbiG) transcripts showed amplification in 18 out of 19 gill cDNA 

samples and 7 out of 8 gill cDNA samples tested, respectively.  We also observed PCR 

amplification of the btuF gene encoding a vitamin B12-binding protein involved in 

transport in eight gill cDNA samples tested. Genes for a possible nitrogen assimilation 

pathway with NADH-dependent glutamate synthase and purine salvage (incomplete 

pathway) through xanthine uptake and metabolism (Xi et al., 2000) were also identified in 

the species’ MAGs, but not transcriptomes. Respiration-related genes were not identified 

in both the species’ MAG and transcriptomes.  
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Discussion 

Systems-level approaches utilizing next-generation sequencing technologies 

successfully reveal host-microbe and microbe-microbe interactions in different 

invertebrate symbioses (Hansen and Moran, 2011; Rader and Nyholm, 2012; Ankrah et 

al., 2017; Ponnudurai et al., 2017), but have not been widely applied to lucinid-bacteria 

chemosymbioses. Currently, the lack of genomic, transcriptomic, and proteomic data for 

lucinids hosting gammaproteobacterial clades B and C thioautotrophic endosymbionts 

results in a poor understanding of the metabolism, inter- and intra- species diversity, and 

molecular interactions between these partners that may impact their surrounding coastal 

habitat and other organisms in the environment. In this study, we focused on describing the 

gill microbiomes of the mangrove-dwelling P. pectinatus that hosts the poorly 

characterized clade C lucinid endosymbiont species. This is the first investigation to 

describe the functional repertoire of 1) a lucinid symbiont species belonging to clade C, 2) 

a lucinid clam, and 3) other bacterial species in a lucinid gill microbiome.  Our comparative 

genomics analyses showed thioautotrophy, respiration, and nitrogen assimilation metabolic 

differences among the clade C P. pectinatus endosymbionts, clade A lucinid symbionts, 

and other thioautotrophic marine symbionts, while host transcriptomes revealed candidate 

genes putatively involved in symbiont/microbiome selection, regulation, and nutrient 

transfer. Metagenomic and metatranscriptomic analyses also uncovered consistency 

among members of the gill microbiome, including a Kistimonas-like species and a 

Spirochaeta-like species that have previously been associated with a variety of marine 

invertebrates but not yet been comprehensively studied in lucinid clams. Additional 
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insights into the lucinid-bacteria chemosymbiosis is now possible, and these findings may 

help in species conservation, habitat management (Johnson et al., 2002; Meyer et al., 2008; 

Reynolds et al., 2014), and even in fisheries productivity (Higgs et al., 2016), which are 

areas of ongoing research.  

Compared to previously sequenced lucinid clade A endosymbiont species and other 

thioautotrophic symbionts, Ca. Sedimenticola endophacoides encoded a unique 

combination of low affinity type VI Sqr that functions best at high sulfide concentrations 

(Eddie and Hanson, 2013; Shuman and Hanson, 2016), form II RuBisCO that is less 

efficient at discriminating between oxygen and CO2 (Tabita et al., 2008), and the high- 

affinity cbb3 type terminal oxidase that performs best at low oxygen concentrations 

(Pitcher and Watmough, 2004). These genomic differences suggest that Ca. Sedimenticola 

endophacoides experiences a more oxygen-poor extracellular and/or intracellular 

environment compared to Ca. Thiodiazotropha spp. Although pore water sulfide 

concentrations at Wildcat Cove were higher than previous studies (Dando et al., 1986), 

pore water dissolved oxygen concentrations were similar to those from sub-tropical coastal 

mangroves (Knight et al., 2013) and seagrass rhizomes (Jensen et al., 2005) that have the 

potential to harbor lucinids. Sulfide and oxygen levels in the clam gills are likely regulated 

through hemoglobins, which can be partially saturated with oxygen (Wittenberg and 

Wittenberg, 1990). As such, sulfide-reactive hemoglobin 1, which has a higher oxygen 

dissociation rate than oxygen-reactive hemoglobins 2 and 3, may be confined to the 

symbiotic mollusc gills (Kraus and Wittenberg, 1990). In support of previous literature, we 

observed high expression levels of host-related hemoglobin 1, 2, and 3 genes responsible 
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for sulfide and oxygen transport (Kraus and Wittenberg, 1990; Frenkiel et al., 1996; Rizzi 

et al., 1996). Despite genomic evidence for the maintenance of low intracellular oxygen 

that would be conducive for nitrogen fixation, which can contribute to the lucinid’s diet 

and seagrass health (van der Heide et al., 2012; König et al., 2016; Petersen et al., 2016), 

Ca. Sedimenticola endophacoides, unlike Ca. Thiodiazotropha spp., is likely incapable of 

diazotrophy. In lieu of nitrogen fixation, we speculate that Ca. Sedimenticola 

endophacoides may utilize urea and ammonium as its nitrogen source because these 

transcripts were detected.  

Expression levels of autotrophy-related transcripts encoding RuBisCO and Calvin 

cycle enzymes in relation to other transcripts were much lower for Ca. Sedimenticola 

endophacoides than previously reported in Ca. Thiodiazotropha endoloripes (Petersen et 

al., 2016) and other symbiotic bivalve species that expressed RuBisCO form Iaq (Stewart 

et al., 2011; Ponnudurai et al., 2017), where these transcripts were among the most 

abundant in the transcriptomes. Low RuBisCO protein levels (~1%) were similarly 

observed in the tubeworm Riftia pachyptila thioautotrophic symbiont, which was 

discovered to produce proteins involved in an additional oxygen-sensitive reductive 

tricarboxylic acid cycle (Markert et al., 2007; Markert et al., 2011; Gardebrecht et al., 

2012). Although Ca. Sedimenticola endophacoides expressed genes encoding 2-

oxoglutarate oxidoreductase that may reverse the 2-oxoglutarate to succinyl-CoA step in 

the TCA cycle, we did not identify any gene for citrate lyase or citryl–coenzyme A 

synthetase subunit that potentially converts citrate to oxaloacetate or acetate (Markert et 

al., 2007; Gardebrecht et al., 2012). Mixotrophy has previously been inferred in Ca. 
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Thiodiazotropha endoloripes (Petersen et al., 2016), as well as thioautotrophic symbionts 

in a variety of other marine organisms (Woyke et al., 2006; Dmytrenko et al., 2014; 

Nakagawa et al., 2014), and is a likely possibility for Ca. Sedimenticola endophacoides 

because of encoded and expressed genes associated with the dicarboxylate transport and 

TCA cycle, as well as the correlation of P. pectinatus live abundances to sediment organic 

carbon content (Doty, 2015). However, gene expression and geochemical data are 

insufficient support for proven mixotrophy, and more carbon assimilation experiments will 

be needed to determine such mechanisms in Ca. Sedimenticola endophacoides. 

Besides Ca. Sedimenticola endophacoides, we also identified genes and transcripts 

belonging to other bacterial taxa in the P. pectinatus gill metagenomes and 

metatranscriptomes. Transcripts mapped to Ca. Thiodiazotropha endoloripes were noted 

in the gill metatransciptomes and could originate from unbinned contigs in the gill 

metagenomes or closely related species co-occurring in the gill microbial population. In all 

sequenced gill samples, we observed the consistent presence of a Kistimonas-like species 

related to the metabolically versatile Oceanospirillales species that can be symbiotic (Ding 

et al., 2016; Neave et al., 2016b; Neave et al., 2016a; Schreiber et al., 2016), parasitic 

(Zielinski et al., 2009), or pathogenic (Lee et al., 2012; Mendoza et al., 2013). In bivalves, 

parasitic Oceanospirillales have been identified from nuclei in the vent mussel 

Bathymodiolus spp. (Zielinski et al., 2009). Another Oceanospirillales species with 

unknown functions was also reported in gills from A. excavata (Jensen et al., 2010). 

Consistent with previous genomic reports on Oceanospirillales species, we observed high 

expression of various families of transposases in the Kistimonas-like species, which may 
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facilitate rapid adaption to new hosts or environments (Katharios et al., 2015; Neave et al., 

2017; Toshchakov et al., 2017). We also identified lower relative abundances of a 

Spirochaeta-like species in most gill samples, as well as transcriptional evidence of their 

activity. Spirochete species have been associated with a L. kazani-like lucinid (Duperron 

et al., 2007), the symbiotic gutless oligochete worm Olavius (Blazejak et al., 2005; 

Ruehland et al., 2008), and episymbionts of the hydrothermal vent worm Alvinella 

pompejana (Campbell and Cary, 2001).  

Metatranscriptomic analyses showed that these three bacterial species may utilize 

distinct carbon sources. Specifically, Ca. Sedimenticola endophacoides may participate in 

mixotrophy in addition to thioautotrophy, whereas the Kistimonas-like species performs 

fermentation and fatty acid catabolism, and the Spirochaeta-like species breaks down 

chitin, sugars, and dicarboxylate compounds. To identify cellular locations of the 

Kistimonas-like and the Spirochaeta-like species within the host gill tissue, we designed 

multiple FISH probes targeting various 16S rRNA gene regions of the Kistimonas-like and 

Spirochaeta-like species, as these species showed positive DNA and cDNA amplification 

from gill specimens. However, in contrast to positive FISH signals for Ca. Sedimenticola 

endophacoides, we repeatedly failed to get unambiguous true positive signals for the 

Kistimonas-like and Spirochaeta-like species. This could be because of the low abundances 

of these species within the tissue samples, the hybridization efficiency of the designed 

probes, the resolution of the confocal microscopy, and/or other technical issues. Without 

microscopy data, we are unable to determine the location of these species and entirely rule 

out that they could be environmental contaminants, transient gill-filtered bacteria, 
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pathogens, or parasites. More sensitive techniques, such as catalyzed reporter deposition 

(CARD)-FISH (DeLong et al., 1989) and hybridization chain reaction (HCR; Dirks and 

Pierce, 2004), should be performed to validate the presence of these bacteria species in the 

gills of P. pectinatus. 

Our gill metatranscriptomic analyses also revealed potential host-microbiota 

interactions involved in the establishment and maintenance of the lucinid-bacteria 

relationships. In P. pectinatus, transfer of nutrients, including carbon and possibly B 

vitamins and cofactors, from symbiont to host may occur via host lysosomal digestion. The 

high abundances of host-associated lysozyme-encoding transcripts observed in this study 

may indicate the presence of active lysosomes, supporting previous reports of lysosomes 

in the host gills (Liberge et al., 2001) and in the vent mussel Bathymodiolus azoricus 

(Ponnudurai et al., 2017).  We speculate that host selection may include the secretion of 

bactericidal lysozymes and other compounds, which can be countered by gill microbiome 

species. Host-related transcript clusters for the synthesis of bactericidal compounds 

encoding H2O2-generating flavoenzymes (Ehara et al., 2002; Guo et al., 2012), aplysianin-

A (Takamatsu et al., 1995), and nitric oxide (Davidson et al., 2004) were weakly to 

moderately expressed in P. pectinatus. Oxidative stress-mediated symbiont selection 

involving nitric oxide (Davidson et al., 2004) and antibacterial hypohalous acid generated 

from H2O2 and halide ions have been reported in the Eupyrmna-Vibrio symbiosis (Weis et 

al., 1996; Small and McFall-Ngai, 1999; Schleicher and Nyholm, 2011). Gill microbiome 

defense to oxidative stressors likely involves weakly-expressed transcripts that detoxify 

hydrogen peroxide, free radicals, and nitric oxide in Ca. Sedimenticola endophacoides and 
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strongly-expressed transcripts encoding heat shock proteins in Ca. Sedimenticola 

endophacoides, and the Kistimonas-like and Spirochaeta-like species. High abundances of 

heat shock proteins and chaperones were also observed in the B. azoricus symbionts and 

hypothesized to be an indication of the thioautotrophic symbiont’s transition into an 

obligate symbiont (Ponnudurai et al., 2017), although other studies have described the 

protective functions of heat shock proteins against oxidative stress (Kalmar and 

Greensmith, 2009). 

 Presumably to decrease competition from closely-related species/strains, as 

speculated in the Eupyrmna-Vibrio symbiosis (Soto and Nishiguchi, 2014), Ca. 

Sedimenticola endophacoides encoded and expressed genes for the production and 

secretion of bactericidal colicin (Cascales et al., 2007), which were also annotated in the 

Kistimonas-like species MAG. A strongly expressed transcript cluster encoding a 

hypothetical filamentous hemagglutinin N-terminal domain-containing iron-responsive 

protein responsible for adhesion to host tissues (Sun et al., 2016) was also observed in Ca. 

Sedimenticola endophacoides, while fatty acid synthesis and catabolism-related genes 

encoding isocitrate lyase, BCKDH and proteins within the methylcitrate cycle in 

Kistimonas-like species have been attributed to growth and virulence in other bacterial taxa 

(Munoz-Elias and McKinney, 2005; Munoz-Elias et al., 2006; Sun and O'Riordan, 2010; 

Dolan et al., 2018; Surger et al., 2018). Other genes associated with virulence and bacterial 

secretion systems were also detected in the genomes and transcriptomes of Ca. 

Sedimenticola endophacoides. However, their significance in the lucinid-bacteria 

chemosymbiosis is unclear. Nevertheless, the speculated roles of bactericidal, adhesion, 
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and virulence compounds would have to be tested using experimental approaches to better 

understand host selection and microbiome persistence.  

Overall, this study provides insight into the metabolic functions and interactions of 

P. pectinatus, its thioautotrophic symbiont, and other gill microbiome species. Our

discovery of distinct metabolic differences between the clade C endosymbiont, clade A 

lucinid symbionts, and other marine thioautotrophic symbionts, as well as the consistent 

presence and activity of other bacterial taxa in the gills, suggests that lucinid gill 

microbiome diversity is currently underrepresented in the literature and should warrant 

more investigative efforts, including additional host-microbiome meta-omics, imaging, 

and experimental studies. It is well established that the lucinid gill microbiome and their 

interactions with the host and/or the environment contribute to nutrient cycles in coastal 

marine sediments, however many details have been lacking. Our metagenomic and 

metatranscriptomic analyses of mangrove-associated lucinid host and gill microbiome 

functions provide a systems biology perspective of host and microbiome physiology that 

is relevant to host-microbe and microbe-microbe interactions. 
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Introduction 

Chemosymbiosis, where chemotrophs utilize inorganic chemical energy for the 

synthesis of organic compounds that benefit their hosts, is prevalent in marine bivalves, 

including Lucinidae clams (Dubilier et al., 2008). To date, all extant lucinid bivalve species 

examined host chemosynthetic bacterial endosymbionts belonging to the class 

Gammaproteobacteria in specialized epithelial gill cells known as bacteriocytes (Taylor 

and Glover, 2000). Lucinid gill endosymbionts possess a diverse and varied suite of 

functions, including thioautotrophy (Cavanaugh et al., 2006), aerobic respiration 

(Duplessis et al., 2004b), assimilatory and dissimilatory nitrate reduction (Hentschel et al., 

1993; Hentschel and Felbeck, 1995; Hentschel et al., 1996; König et al., 2016; Petersen et 

al., 2016), mixotrophy (Petersen et al., 2016; Chapter II), hydrogenotrophy (Petersen et 

al., 2016; Chapter II) and diazotrophy (König et al., 2016; Petersen et al., 2016). 

Consequently, the lucinid-bacteria chemosymbiosis enables lucinids to colonize habitats 

scarce in food, low in oxygen and high in sulfide, which are otherwise uninhabitable by 

other bivalves (Liljedahl, 1992).  The emergence of seagrasses and mangroves during the 

late Cretaceous period have been associated with species radiation of shallow-marine 

lucinids (Stanley, 2014). Today, lucinids are commonly located near oxic-anoxic interfaces 

of shallow marine environments, where they burrow into anoxic sediments to obtain 

hydrogen sulfide and acquire oxygen from the oxic water column (Taylor and Glover, 

2000; Taylor and Glover, 2010).  Lucinids are frequently found in tropical and temperate 

seagrass beds, where free-living sulfate-reducing bacteria release hydrogen sulfide through 

the decomposition of dead organic matter in the sediments (Taylor and Glover, 2000; 
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Reynolds et al., 2014). In seagrass habitats, lucinid species are thought to participate in a 

three-way symbiosis with their thioautotrophic gill endosymbionts and their environment 

(van der Heide et al., 2012). Under this model, thioautotrophic lucinid endosymbionts 

acquire sulfide from high sulfate reduction activity in seagrass sediments to fix carbon for 

their host (van der Heide et al., 2012). This removes toxic sulfide and possibly fixes 

nitrogen (Petersen et al., 2016) for the seagrass beds, promoting the growth of seagrasses 

(van der Heide et al., 2012; Reynolds et al., 2014). The lucinid host, in turn, acquires 

oxygen for respiration from seagrass roots (van der Heide et al., 2012).  

Lucinid gill endosymbionts are related to a larger group of diverse marine 

thioautotrophic symbionts (Dubilier et al., 2008). However, unlike chemosymbiotic 

Solemyidae and Vesicomyidae bivalves, where vertical or mixed symbiont transmission 

has been observed (Won et al., 2003; Stewart et al., 2008; Decker et al., 2013), lucinid 

bivalves studied to date acquire their endosymbionts environmentally (Gros et al., 1996; 

Gros et al., 1998; Gros et al., 1999).  Based on their 16S rRNA gene sequences, lucinid 

endosymbionts are placed in three distinct clades, two (clades B and C) of which inhabit 

mangrove-dwelling lucinids and the largest (clade A) inhabit diverse seagrass-dwelling 

lucinids (Brissac et al., 2011). While members from each clade are possibly separate 

species (Chapter II), clade A lucinid endosymbionts are thought to cluster as a single 

species with low to no variability in their 16S rRNA gene sequences (Durand and Gros, 

1996; Durand et al., 1996; Brissac et al., 2011; Brissac et al., 2016). Previously studied gill 

thioautotrophic endosymbionts of Ctena orbiculata, Codakia orbicularis, Parvilucina 

pectinella, Anodontia alba, Divalinga quadrisulcata and Lucina pensylvanica in the 
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Caribbean possess identical 16S rRNA gene sequences (Durand and Gros, 1996; Durand 

et al., 1996), and their gill-symbiont fractions were capable of colonizing aposymbiotic 

Codakia orbicularis juveniles (Gros et al., 2003). More recent re-analysis of these 

thioautotrophic symbionts using five other marker genes instead of the slow-evolving 16S 

rRNA gene revealed intra-specific symbiont strain diversity shaped by host geographic 

location (Brissac et al., 2016). Strain-specific symbiont acquisition, where starved Ctena 

orbiculata individuals could only re-acquire the exact symbiont strain which they initially 

hosted before starvation, was also observed in the same study (Brissac et al., 2016).  

Besides marker-gene based diversity studies (Brissac et al., 2016), -omics 

approaches have been used to characterize functions of clade A lucinid endosymbionts, 

including the Codakia orbicularis symbiont Ca. Thiodiazotropha endolucinida (König et 

al., 2016) and the Loripes orbiculata symbiont Ca. Thiodiazotropha endoloripes (Petersen 

et al., 2016).  However, -omics data generated from these studies were not applied to 

investigate symbiont taxonomic, genetic and functional diversity within their study 

populations. Similar -omics approaches were also used to study gill microbiome diversity 

in a mangrove-dwelling Phacoides pectinatus population hosting a clade C endosymbiont 

(Chapter II). Approaches like the latter could potentially reveal gill microbiome and 

symbiont diversity in clade A symbionts at a finer resolution, which would allow useful 

inter-host and inter-population comparisons and provide new insights on host-symbiont 

specificity and possibly spatial or environmental drivers of symbiont diversity.  

In this study, we focused on characterizing the taxonomic, genetic and functional 

composition of symbiont communities within Ctena orbiculata (Montagu, 1808) 
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individuals dominating a mixed lucinid population at Sammy Creek Landing, Sugarloaf 

Key, USA. Besides strain-level symbiont diversity, we also sought to investigate possible 

influences of spatial and environmental factors on symbiont diversity and host-symbiont 

functions by comparing gill samples from seagrass-covered quadrats and algae-covered 

quadrats. To this end, we sequenced the gill microbiomes and metagenomes of C. 

orbiculata to generate bacterial taxonomic profiles and metagenome-assembled genomes 

(MAGs). We then performed metatranscriptomic analyses to infer host-symbiont gene 

expression and to identify differentially expressed genes across taxa and quadrats. 

Materials and methods 

Sample collection 

Ctena orbiculata clams were collected from Sammy Creek Landing, Sugarloaf 

Key, Florida in June 2016, within quadrats set up along two 50 m transects (T20 and T21) 

at 5 m intervals perpendicular to the shoreline (Figure 3.1). A third transect (T22) parallel 

to the first two transects was also set up to sample C. orbiculata bivalves in a quadrat 3.5 

m away from shore containing 100% vegetation coverage of algae. 1 m2 quadrats were 

used for the transect T20 while 0.25 m2 quadrats were used for transects T21 and T22. 

Specimens were sieved from sediments excavated to a layer rich in microfloral debris that 

demarked base of active bioturbation. Collected specimens were preserved in RNAlater 

within 30 minutes of collection. Tissue dissection, nucleic acids extraction, cDNA 

synthesis, and fluorometric quantification steps were performed as described in Chapter II. 



113 

Figure 3.1.  Map showing location of the sampling site (Sammy Creek Landing) in Florida, 

USA. Ctena orbiculata specimens were collected from four quadrats (white cells) with 

varying distances to the shoreline within three transects (T20, T21 and T22; Insert A). 

Insert B shows specimen and vegetation coverage information of each quadrat within the 

collection site. 
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16S rRNA gene, metagenomic and metatranscriptomic sequencing 

16S rRNA gene libraries containing the V4 region were prepared from DNA 

extracted from 24 C. orbiculata gill tissues and one C. orbiculata foot tissue using 

protocols described in Chapter II.   Metagenomic libraries were prepared from DNA 

extracted from eight C. orbiculata gill samples using NEBNext® dsDNA 

Fragmentase+NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® or NEBNext® 

Ultra™ II FS DNA Library Prep Kit for Illumina® (New England Biolabs, Ipswich, MA, 

USA).  RNA extracted from eleven C. orbiculata gill samples was prepared for 

metatranscriptomic sequencing using procedures in Chapter II. All library concentrations 

were quantified with the Qubit® dsDNA HS assay (Life Technologies, Austin, TX, USA) 

and their insert sizes determined with the Agilent 2100 Bioanalyzer (Agilent Technologies, 

Santa Clara, CA, USA). 16S rRNA gene libraries and metagenomic libraries were 

sequenced on Illumina’s MiSeq V2 2x250 bp platform (San Diego, CA, USA) at Clemson 

University (Clemson, SC, USA), while metatranscriptomic libraries were sequenced on 

Illumina’s HiSeq 4000 2x150bp platform at Duke Center for Genomic and Computational 

Biology (Durham, NC, USA). 

16S rRNA gene sequence analyses 

16S rRNA gene reads were processed with Mothur v1.40.5 (Schloss et al., 2009) 

using methods in Chapter II. 16S rRNA gene OTUs were classified using taxonomy 

references from SILVA v132 (Quast et al., 2013) and the OTU table was subsampled to 
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6,599 sequences per sample.  Diversity analyses were conducted on subsampled Biological 

Observation Matrix (BIOM) data exported from by Mothur (Schloss et al., 2009) using the 

phyloseq v1.16.2 (McMurdie and Holmes, 2013) package in R (R Core Team, 2016). For 

each calculated alpha diversity measure, R was used to perform the Shapiro-Wilk test 

(Shapiro and Wilk, 1965) to determine data normality; Levene’s test (non-normally 

distributed data), Bartlett test (Bartlett, 1937; normally distributed data) and Fligner-

Killeen test (Fligner and Killeen, 1976; normally distributed data) to determine the 

homogeneity of variances; Wilcoxon-Mann-Whitney test (Wilcoxon, 1945) with 

Bonferroni correction for multiple-testing of non-normally distributed, homoscedastic 

data; Kruskal-Wallis test (Kruskal and Wallis, 1952) for comparing population 

distributions of non-normally distributed, heteroscedastic data; and analysis of variance 

(ANOVA) test to compare means across categories for normally distributed, 

homoscedastic data. Microbiome structure across specimens was compared in phyloseq 

using the Bray-Curtis dissimilarity index (Bray and Curtis, 1957) and visualized with a 

PCoA plot. The distance matrix was tested for normality using the Shapiro-Wilk test 

(Shapiro and Wilk, 1965) and the statistical significance of its categorical partitioning was 

evaluated with the non-parametric adonis test (Anderson, 2001) implemented in R’s vegan 

v2.4.0 package (Oksanen et al., 2016).  

Metagenomic data analyses 

Reads from all eight metagenomic libraries were trimmed and assembled 

individually using procedures in Chapter II. Additionally, two metagenomic libraries of 
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gill specimens dominated by OTU1 and two libraries of gill specimens dominated by 

OTU2 were co-assembled separately using the same method to obtain better quality MAGs. 

Read mapping, binning, MAG quality assessment, MAG annotation, and ANI and AAI 

calculations were performed as detailed in Chapter II. Bacterial replication rates were 

estimated using the iRep software (Brown et al., 2016) by mapping metagenomic reads to 

representative MAGs with ≥75% completeness and ≤2% contamination, Bowtie2’s 

(Langmead and Salzberg, 2012) --no-unal --no-mixed --no-discordant --gbar 1000 --end-

to-end -k 200 options. Non-chimeric fragments mapped to protein-coding genes were 

calculated with featureCounts v1.5.2 (Liao et al., 2014) using the -c and -p options.  

Metatranscriptomic data analyses 

De novo metatranscriptomic assembly, transcript cluster (gene) abundance 

estimation, count normalization, transcript-to-gene mapping and transcript annotation were 

performed using Trinity v2.6.6 (Haas et al., 2013), Trinotate v3.1.1 

(https://trinotate.github.io/) and web and local blast searches (NCBI Resource 

Coordinators, 2016), as documented in Chapter II. Differential expression (DE) and 

functional gene ontology (GO) enrichment analyses were including 22G (OTU1), 22B+4D 

(OTU2), 21D (OTU3), and 4F (OTU4), using Bowtie2 v2.3.4.1’s very sensitive local and 

dovetail mode and SAMtools v1.7 (Li et al., 2009). Pan-genomes for each 

gammaproteobacterial strain and species were created using the method in Chapter II. For 

symbiont abundance estimation, trimmed reads were mapped to pan-genomes of each 

symbiont strain and species using performed on raw read counts processed with Trinity’s 
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remove_batch_effects_from_count_matrix.pl script. Batch-removed read counts of 

transcript clusters (genes) mapped to the thioautotrophic symbiont MAGs and those with 

homologs in the superkingdom Eukaryota were analyzed separately using DESeq2 (Love 

et al., 2014), edgeR (Robinson et al., 2010), Reproducibility-Optimized Test Statistic 

(ROTS; Suomi et al., 2017), voom (Law et al., 2014) and GOSeq (Young et al., 2010) 

software incorporated within Trinity using a threshold of >2 fold-change and <0.05 false 

discovery rate (FDR)-adjusted p-value. Predictions made by DE software were compared 

using Venny (Oliveros, 2007).   

Phylogenetic analyses 

Phylogenetic analyses of 16S rRNA gene sequences (K2+G model), methanol 

dehydrogenase (Mdh; LG+G+I+F model) and formate dehydrogenase alpha subunit 

(FdhA; LG+G+I model) protein sequences were performed using procedures in Chapter II. 

Phylogenomic analysis (Seah, 2014) was also conducted using methods in Chapter II, and 

a concatenated alignment of eight single-copy genes (dnaG, nusA, pgk, rplS, rpsE, rpsK, 

rpsM, smpB) were used to generate a final maximum likelihood tree with aLRT 

(approximate likelihood-ratio test) SH-like support values (Anisimova and Gascuel, 2006) 

using the protein substitution model LGF for dnaG, nusA, pgk, rplS, rpsM, RTREVF for 

rpsE and rpsK, and Dayhoff for rpsM and LG for smpB.  

Host phylogeny was inferred from lucinid marker gene sequences identified in 

unbinned C. orbiculata gill metagenomes using BLAST v2.6.0+’s (NCBI Resource 

Coordinators, 2016) blastn (Altschul et al., 1990) function and reference sequences 
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retrieved from GenBank (Benson et al., 2014) via keyword searches. Each identified 

marker gene set was aligned with BioEdit v7.25’s (Hall, 1999) ClustalW (Thompson et al., 

1994) package. The cytochrome b gene alignment was analyzed with MEGA7 (Kumar et 

al., 2016) using the invertebrate mitochondrial genetic code table and the highest scoring 

Hasegawa-Kishino-Yano model (Hasegawa et al., 1985) with discrete Gamma distribution 

modeling of the evolutionary rate differences among sites (5 categories (+G, parameter = 

0.8357)). All positions of the gap-free alignment were used for phylogenetic analysis and 

a maximum likelihood (ML) tree with 1,000 bootstrap replicates was generated. 18S rRNA 

gene and 28S rRNA gene alignments were concatenated and analyzed with RAxML v7.7.2 

(Stamatakis, 2006). Twenty runs of initial tree finding were performed with the 

GTRGAMMA algorithm and the resulting tree was used for the optimization of each 

nucleotide model and branch lengths. The GTRCATI model yielded a tree with the highest 

gamma-based likelihood and was used in the final search for the highest-scoring ML tree 

from 1,000 bootstrap replicates.  

qPCR 

Primers targeting the mdh genes annotated in OTU1-related MAGs (18F and 694R 

for cloning; 599F and 694R for qPCR) and OTU2-related MAGs (699F and 1159R for 

cloning; 699F and 804R for qPCR) were designed using Primer3 (Untergasser et al., 2012) 

in Geneious v8.0 (Kearse et al., 2012; Table 3.1).  qPCR standards were prepared from 

PCR-cloned mdh genes as detailed in Chapter II. cDNA concentrations for qPCR were 

quantified fluorometrically with the Qubit® ssDNA assay (Life Technologies, Austin, TX, 
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USA). All PCR and qPCR reactions were run on Bio-Rad’s C1000 Touch™ Thermal 

Cycler (Hercules, CA, USA) under the following conditions: Initial denaturation at 95°C 

for 3 minutes, 29 (cloning)/34 (qPCR) cycles of denaturation at 95°C for 15 seconds, 

annealing (Table 3.1) for 30 seconds, extension at 72°C for 30 seconds, followed by 

elongation at 72°C for 5 minutes. qPCR data was analyzed with the CFX Manager software 

(Bio-Rad Laboratories) and all copy numbers were normalized to the amount (ng) of input 

DNA/cDNA. 

Table 3.1. List of PCR and qPCR primers used in this chapter. 

Primer Annealing temperature Sequence (5’->3’) 
mdh OTU1 18F 57.8°C TACCCTGCTCGATCCCAAGA 
mdh OTU1 599F 59.5°C CATCCTACTCGCCACGTACC 
mdh OTU1 694R 59.5°C (PCR for cloning)/57.8°C 

(qPCR) 
GTTGACCCGCGGTATAGGAG 

mdh OTU2 699F 59.5°C (PCR for cloning)/55.2°C 
(qPCR) 

GAAGACCACCCATCTTGGCA 

mdh OTU2 804R 59.5°C GGAGTACCAACCCCAAGTGG 
mdh OTU2 1159R 55.2°C GGCCTGTCTTCATGTCCACA 

Availability of data and materials 

All specimens are cataloged at the South Dakota School of Mines and Technology, 

Museum of Geology, with details provided through the iDigBio portal 

(https://www.idigbio.org/portal/recordsets/db3181c9-48dd-489f-96ab-a5888f5a938c). 

Sequence data are uploaded to NCBI (NCBI Resource Coordinators, 2016) under the 

BioProject ID PRJNA377790. Accession numbers are listed in Table 3.2.   
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Table 3.2. NCBI accession numbers of raw read and sequence data generated in this 

chapter. All data are linked to NCBI’s BioProject ID PRJNA377790 (NCBI Resource 

Coordinators, 2016). 

Database Accession numbers Dataset description 
Sequence Read 
Archive (SRA) 

SRR5873713-SRR5873738; 
SRR7235714; SRR7235722- 
SRR7235725; SRR7235728- 
SRR7235730 

Amplicon-sequenced read data (V4 
region of 16S rRNA gene) 

SRR5872870-SRR5872873; 
SRS3349532-SRS3349535 

Metagenomic read data 

SRR7235715-SRR7235721; 
SRR7235726-SRR7235727; 
SRR7235731 

Metatranscriptomic read data 

GenBank KY687497-KY687506 Sequences of top ten most abundant 
OTUs  

NATR00000000-NATW00000000; 
QBVC00000000-QBVG00000000  

Metagenome-assembled genomes 
(MAGs)  
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Results 

Site characterization 

Ctena orbiculata specimens were collected from Sammy Creek Landing, Sugarloaf 

Key, Florida in June 2016 within quadrats predominantly covered with either seagrass 

(Halodule sp. and Thalassia sp.) or algae (Halimeda sp. and Penicillus sp.; Figure 3.1). 

Sampled quadrats comprised of 84% live C. orbiculata specimens, 9% live Lucinisca 

nassula specimens, 5% live Anodontia alba specimens, and 2% live Codakia orbicularis 

specimens (Table 3.3). Small numbers (<5) of live Parvilucina pectinella and Radiolucina 

amianta were also collected at the site, but outside the quadrats used in this study. 

Estimated densities of live C. orbiculata clams per m3 were higher in the sampled algae-

covered quadrats (117±33) than seagrass-covered quadrats (23±3; Table 3.3). No clear 

geochemical differences were observed between sampled seagrass-covered and algae-

covered quadrats. In these quadrats, porewater and ocean water temperatures (30-31°C) 

and pH (7-8) were stable (Table 3.3). Porewater dissolved oxygen concentrations in these 

quadrats ranged from 0.2 to 0.8 mg/L and were lower than corresponding oxygen levels in 

the ocean water (3 to 6 mg/L); Table 3.3). Porewater sulfide and methane concentrations 

in these quadrats varied between 2 to 20 mg/L and 0.3 to 22 μg/L, respectively (Table 3.3). 
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Gill microbiome diversity 

Sequenced 16S rRNA genes (V4 region) from 24 C. orbiculata gill tissues and one 

C. orbiculata foot tissue were clustered into Operational Taxonomic Units (OTUs) at 99%

identity for higher species resolution (Edgar, 2018) and showed 99±0.02% average Good’s 

sequencing coverage (Good, 1953; Figure 3.2a). Five co-existing Ca. Thiodiazotropha-like 

OTUs (OTUs 1-5) were present at >60% relative abundances in at least one gill specimen 

of the sampled host population (Figure 3.2a). OTU1 dominated 17 of 24 of gill specimens 

with average 94±5% relative abundance, while OTU2 dominated three specimens (82±5% 

average relative abundance) and OTU3 dominated two specimens (97±1% average relative 

abundance; Figure 3.2a). OTUs 4 and 5 dominated one specimen each at 96% and 69% 

relative abundances, respectively (Figure 3.2a). OTU4 was also identified in the OTU1-

dominated gill specimen 4E at 0.2% relative abundance (Figure 3.2a).  The OTU5-

dominated gill specimen 2B had the lowest Good’s coverage (Good, 1953) of 88% and 

highest alpha diversity values compared to other specimens, while OTU2-dominated gill 

specimens were predicted to have significantly higher Shannon (Shannon, 1948; 

Wilcoxon-Mann-Whitney p=0.0053) and Simpson indices (Simpson, 1949; Wilcoxon-

Mann-Whitney p=0.021) than OTU1-dominated gill specimens (Figures 3.2-3.3). Gill 

microbiome structures dominated by different OTUs were statistically different from one 

another (adonis R=0.98, p=0.001; Figure 3.2c). The OTU distribution did not follow any 

clear spatial trend; high abundances of OTUs 1-3 were identified in gill specimens in both 

seagrass- and algae-covered quadrats (Figures 3.2a).  Two OTU4-dominated gill 

specimens, however, occurred in the same seagrass-covered quadrat (Figure 3.2a).  
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In 69% of the sampled gill microbiomes, we also identified 2±3% relative 

abundances of a gammaproteobacterial Endozoicomonas-like OTU (OTU9; order 

Oceanospirillales) most closely related to E. elysicola from the gastrointestinal tract of the 

sea slug Elysia ornata (Kurahashi and Yokota, 2007; Figure 3.2a and Figure 3.4).  We 

could not assemble the genome of the Endocoizomonas-like (OTU9; order 

Oceanospirillales) species from the gill metagenomes, possibly because of the lack of 

sequencing coverage on the MiSeq platform. The presence of Endocoizomonas-like OTU9 

in the gill microbiomes corroborates previous reports of potentially taxonomically and/or 

functionally-related bacterial members enriched in lucinid gill microbiomes, including 

other gammaproteobacterial taxa in Loripes orbiculatus (Mausz et al., 2010 unpublished -  

NCBI accession numbers GQ853555- GQ853555 and Espinosa et al., 2013), Kistimonas-

like species (order Oceanospirillales) in Phacoides pectinatus (Chapter II), and an 

unclassified rod-shaped taxon in Euanodontia ovum (Ball et al., 2009). Endozoicomonas 

species have also been identified as coral symbionts (Neave et al., 2014; Neave et al., 2017; 

Neave et al., 2016; Ding et al., 2016), sea squirt commensals (Schreiber et al., 2016) and 

a cobia fish pathogen (Mendoza et al., 2013). The single sequenced foot specimen was 

dominated by a Spirochaeta-like OTU (OTU6; 90% relative abundance) related to the 

spirochete symbiont in Lucinoma aff. kazani (Duperron et al., 2012; Figure 3.2a and Figure 

3.4).  The foot is crucial to porewater sulfide uptake (Taylor and Glover, 2000; Taylor and 

Glover, 2010), oxygenated water and nutrient transport (Taylor and Glover, 2000; Taylor 

and Glover, 2010) and perhaps symbiont acquisition in lucinid clams, but its microbiome 

has not been comprehensively investigated. Spirochetes have been reported in the gills of 
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P. pectinatus (Chapter II), in gutless oligochete worms as symbionts (Blazejak et al., 2005;

Ruehland et al., 2008), and in the epibiont of a hydrothermal vent worm epibiont (Campbell 

and Cary, 2001). Currently, the roles of Oceanospirillales and spirochete species in the 

lucinid gill and foot microbiomes remain unknown. 
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Figure 3.2. (A) Relative abundances of subsampled bacterial OTUs identified in C. 

orbiculata gill and foot (specimen 2AF) specimens. ‘*’ and ‘#’ denote specimens also used 

for metagenomic and metatranscriptomic sequencing, respectively. (B) PCoA plot showing 

differences in microbiome community structure (Bray-Curtis index) among gill specimens 

dominated by different OTUs. (C) blastn (Altschul et al., 1990) bit scores of pairwise 

sequence comparisons between published marker gene haplotype sequences from the 

Antillean C. orbiculata symbiont (Brissac et al., 2016) and corresponding sequences of 

gammaproteobacterial MAGs identified in this study. Abbreviations: ITS1, 16S-23S rRNA 

intergenic spacer region; dnaE, DNA polymerase III alpha subunit; gyrB, DNA gyrase B 

subunit; aprA, adenylylsulfate reductase alpha subunit; cbbL, ribulose-1,5-bisphosphate 

carboxylase/oxygenase large subunit. 

Figure 3.3. Alpha diversity measures calculated for each amplicon-sequenced gill 

specimen. 
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Figure 3.4. Maximum likelihood tree of the ten most abundant 16S rRNA gene OTUs and 

16S rRNA gene sequences recovered from metagenome-assembled genomes (MAGs) 

discovered in this study (red text), in relation to symbionts of other lucinid species (blue 

text), marine species, insect species and free-living bacterial species. GenBank (Benson et 

al., 2014) accession numbers are indicated in square brackets and bootstrap values of >70% 

are displayed. The outgroup used was Desulfurobacterium thermolithotrophum from 

phylum Aquificae.  

Metagenomic sequencing of a subset of eight gill specimens dominated by Ca. 

Thiodiazotropha-like OTUs 1-4 yielded four OTU-specific clusters of 

gammaproteobacterial metagenome-assembled genomes (MAGs; Figure 3.5 and Table 

3.4). 16S rRNA gene sequences annotated in OTUs 1-4-related MAGs shared 99-100% 

identity in their V4 regions with their corresponding OTU sequences from the same gill 

specimens. Phylogenetic analyses using the 16S rRNA gene and eight marker genes 

grouped these MAGs with other clade A thioautotrophic lucinid endosymbionts and OTU-

specific clustering was observed on both trees (Figure 3.4-3.5). 16S rRNA gene and five 

other marker gene sequences of the OTU4-related MAG were most similar to haplotype 

sequences identified from the thioautotrophic C. orbiculata symbiont at Lesser Antilles, 

French West Indies (Brissac et al., 2016; Figure 3.2d).  
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Figure 3.5. (A) Phylogenomic tree of gammaproteobacterial MAGs identified in this study 

in relation to lucinid (blue), bivalve, tubeworm symbionts and free-living bacteria, based 

on eight single-copy marker genes (dnaG, nusA, pgk, rplS, rpsE, rpsK, rpsM, smpB). 

GenBank (Benson et al., 2014) accession numbers of other sequences are indicated in 

square brackets. The outgroup used was Desulfurobacterium thermolithotrophum from 

phylum Aquificae.  Tree nodes show approximate likelihood-ratio test (aLRT) SH-like 

support values (Anisimova and Gascuel, 2006). The scale bar indicates 0.5 substitution per 

site. (B) Heatmap of pairwise AAI comparisons across gammaproteobacterial symbiont 

MAGs identified in this study and other lucinid species. 

MAGs within each of the four OTU-specific clusters shared >99% pairwise average 

nucleotide identity (pANI) and average amino identity (pAAI) and were most closely 

related to the representative MAG of Ca. Thiodiazotropha endolucinida (König et al., 

2016; Figure 3.5b). OTU2-related MAGs shared 75±1% pANI and 85±0.2% pAAI with 

the Ca. Thiodiazotropha endolucinida MAG, and 81±1% pANI and 85±0.4% pAAI with 

OTU4-related MAGs (Figure 3.5b). Similarly, OTU4-related MAGs shared 73±1% pANI 

and 95±0.08% pAAI with the Ca. Thiodiazotropha endolucinida MAG (Figure 3.5b). 

Species classification of the MAGs, based on the 93-95% pANI and 85-90% pAAI species 

delineation proposed in Rodriguez-R and Konstantinidis (2014), suggested OTU2, OTU4 

and Ca. Thiodiazotropha endolucinida to be the same species and we propose the use of 

the same species name, Ca. Thiodiazotropha endolucinida, for OTU2 and OTU4. Because 

OTU2, OTU4 and Ca. Thiodiazotropha endolucinida shared <90% pANI and pAAI with 
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each other, we posit that they represent different strains of the same species. Based on 

observed pANI and pAAI comparisons, OTU1 and OTU3 likely represent a species 

separate from Ca. Thiodiazotropha endolucinida (71±5% pANI; 83±0.1% pAAI), OTU2 

(80±0.7% pANI; 83±0.2% pAAI) and OTU4 (79±0.8% pANI; 83±0.2% pAAI; Figure 

3.5b). Based on the 55-60% pAAI genus boundary proposed in Rodriguez-R and 

Konstantinidis (2014) and their thiodiazotrophic functional potential (discussed below), 

OTUs 1-4 and Ca. Thiodiazotropha endolucinida can be plausibly classified under the same 

genus. As such, we propose a new species name within the same genus, Ca. 

Thiodiazotropha endolucinidaduo, for OTU1 and OTU3, where suffix “duo” means “two” 

in Latin. OTU1-related MAGs and OTU3-related MAGs, which shared 91±0.2% pANI 

and 93±0.06% pAAI to each other, were likely different strains of the same species (Figure 

3.5b).  

Metagenomic read coverage profiles of each representative OTU-specific MAG, 

bacterial replication rates estimated by iRep (Brown et al., 2016) from MAG data, and 

percentages of metatranscriptomic reads mapped to protein-coding genes of each 

representative OTU-specific MAG were generally consistent with relative abundance 

patterns of their corresponding 16S rRNA gene OTUS (Figure 3.6). The only exception, 

OTU2-dominated gill metatranscriptome 22B, showed higher percentages of reads mapped 

to OTU1 compared to OTU2 (Figure 3.6c). Symbiont-specific gill transcriptomes of 

OTU1/OTU3-dominated specimens clustered together with 0.9±0.07 average pairwise 

Pearson correlation coefficient (PCC), while the OTU2-dominated symbiont transcriptome 

4D and OTU4-dominated symbiont transcriptome 4F appeared to be outliers sharing <0.4 
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PCC with the other specimens (Figure 3.7). Symbiont OTU-specific patterns were not 

observed across the entire gill metatranscriptomes (average 0.7±0.4 PCC between samples) 

or another subset of Mollusca-related transcriptomes (average 0.8±0.06 between samples; 

Figures 3.8-3.9). Host 18S rRNA gene, 28S rRNA gene and mitochondrial cytochrome b 

(cytob) gene sequences extracted from unbinned C. orbiculata gill metagenomes clustered 

unambiguously with reference sequences from C. orbiculata (Figure 3.10), confirming the 

host taxonomy of these specimens.  
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Figure 3.6.  (A) Percentage average coverage depths normalized by MAG size (B) iRep 

(Brown et al., 2016) estimation of replicate rates, and (C) percentage metatranscriptomic 

reads of each sequenced gill specimen mapped to each representative taxon-specific MAG. 

Only bars with ≥0 estimated replication rate were shown in (B).  Metatranscriptomic reads 

in (C) were mapped to protein-coding genes of each representative MAG. 
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Figure 3.7. Heatmap of pairwise Pearson correlations across gill specimens based on the 

number of assembled transcripts mapped to genes in symbiont transcriptomes extracted 

from the metatranscriptomic assembly. The count matrix was processed to filter out genes 

with <10 mapped fragments, eliminate batch effects, and normalized to log2 counts per 

million (CPM). 
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Figure 3.8. Heatmap of pairwise Pearson correlations across gill specimens based on the 

number of assembled transcripts mapped to genes in the gill metatranscriptomic assembly. 

The count matrix was processed to filter out genes with <10 mapped fragments, eliminate 

batch effects and normalized to log2 counts per million (CPM). 
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Figure 3.9. Heatmap of pairwise Pearson correlations across gill specimens based on the 

number of assembled transcripts mapped to Swissprot-annotated (The UniProt 

Consortium, 2015). Mollusca-related genes in the metatranscriptomic assembly. The count 

matrix was processed to filter out genes with <10 mapped fragments, eliminate batch 

effects and normalized to log2 counts per million (CPM).  



138 

Figure 3.10. Maximum likelihood tree of (A) 18S rRNA gene and 28S rRNA gene 

sequences and (B) cytochrome b gene sequences from C. orbiculata in relation to reference 

lucinid species. Tree nodes show bootstrap values and square brackets contain GenBank 

accession numbers for reference sequences. Thyasira polygona (order: Lucinida, family: 

Thyasiridae) was used as the outgroup in both trees. Scale bars indicate the number of 

substitutions per site. 
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Core symbiont functions 

Pan-genomes of Ca. Thiodiazotropha-like MAGs were predicted by Rapid 

Annotation using Subsystem Technology (RAST; Aziz et al., 2008) to share ~62% gene 

and ~83% subsystem content (Figure 3.11). It should be noted, as discussed in Chapter II, 

that gene and subsystem annotations were based on incompletely sequenced and annotated 

MAGs. As such, the numbers of shared genes and subsystems were imprecise estimates 

not accounting for missing, unbinned or unclassifiable genes, incomplete pathways and 

strain/cross-species contamination of the MAGs. Limitations of host-symbiont 

metatranscriptomic analyses, detailed in Chapter II, also apply to this study. 
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Figure 3.11. Overview of (A-B) RAST-annotated genes and (C) key hydrogen (purple), 

sulfur (red), nitrogen (green) and carbon (orange) pathways shared among pan-genomes of 

C. orbiculata symbionts. Abbreviations: S0, elemental sulfur; Fcc, Flavocytochrome c -

sulfide dehydrogenase; Sox, sulfur oxidation gene cluster; Sqr, sulfide:quinone 

oxidoreductases; Dsr, reverse dissimilatory sulfite reductase; Apr, adenylylsulfate 

reductase; APS, adenosine-5’-phosphosulfate; Sat, sulfate adenylyltransferase; ABC, 

ATP-binding cassette transporters; GS, glutamine synthetase; Fd-GOGAT,  ferrodoxin-

dependent glutamate synthase; GOGAT, glutamine oxoglutarate aminotransferase 

(glutamate synthase); Nas, assimilatory nitrate reductase; Nit, assimilatory nitrite 

reductase; Nif, nitrogen fixation gene cluster; Nap, periplasmic dissimilatory nitrate 

reductase; Nir, cytochrome nitrite reductase cd1; Nor, nitric oxide reductase; Nos, nitrous 

oxide reductase; ActP, acetate permease; TRAP, Tripartite ATP-independent periplasmic 

transport; RuBisCO, ribulose-1,5-bisphosphate carboxylase/oxygenase; IM, inner 

membrane; OM, outer membrane.  

Ctena orbiculata symbionts showed high expression of a carbon storage regulator 

(103±97 average trimmed mean of M-values normalized transcripts per million; TPM) and 

thioautotrophy-related form IAq ribulose-1,5 bisphosphate carboxylase/oxygenase 

(RuBisCO; average 18±19 TPM) and adenylsulfate reductase subunit A (average 15±12 

TPM), which were among the 35 most abundant transcript clusters (loosely equivalent to 

genes) in the symbiont transcriptomes (Figure 3.12). Many stress-related symbiont 

transcript clusters encoding multiple heat shock proteins (average 164±220 TPM), the 
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antioxidant glutathione peroxidase (average 66±93 TPM), envelope stress-associated RNA 

polymerase sigma factor RpoE (average 37±67 TPM; Ades, 2004), a cold shock domain-

containing protein (average 34±TPM), heat stress-associated RpoH (Nonaka et al., 2006), 

and the stringent response-associated RNA polymerase binding protein DksA (Lemke et 

al., 2011) were among the thirty five most abundant in symbiont-related transcriptomes 

(Figure 3.12).  

Besides thioautotrophy and mixotrophy, other functions common to C. orbiculata 

symbiont species and other previously characterized thioautotrophic lucinid symbiont 

species (König et al., 2016; Petersen et al., 2016; Chapter II) included hydrogenotrophy 

(average 1±2 TPM), ammonia uptake (average 0.4±0.7 PM), denitrification (average 0.5±1 

TPM), assimilatory nitrate reduction (average 0.03±0.04 TPM) and diazotrophy (average 

0.08±0.1 TPM; Figure 3.13-3.15). Candidatus Thiodiazotropha endoloripes (Petersen et 

al., 2016) and Ca. Sedimenticola endophacoides (Chapter II) could potentially hydrolyze 

urea, but only two of eight unbinned C. orbiculata gill metagenomes contained two genes 

homologous to urease subunit gamma related to that from Firmicutes species and urea ABC 

transporter substrate-binding protein related to that from Methylomonas species. Ten 

transcript clusters encoding allophanate hydrolase, urea carboxylase, urease accessory 

proteins and subunits of the urea ABC transporter were detected in two gill 

metatranscriptomes of OTU1-dominated specimens at average 0.02±0.03 TPM and two 

metatranscriptomes of OTU2-dominated specimens at average 0.1±0.1 TPM.  
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Figure 3.12. Log2-transformed TMM-normalized TPM of gene products of the 35 most 

abundantly expressed (A) transcript clusters mapped to C. orbiculata symbionts and (B) 

protein-coding transcript clusters in sequenced gill metatranscriptomes. Bacteria-related 

transcripts in (B) are highlighted in pink.  



143 



144 

Figure 3.13. (A) Log2-transformed TMM-normalized TPM of gene products of autotrophy 

and heterotrophy-related transcript clusters mapped to C. orbiculata symbionts. (B) 

Comparison of the Calvin-Benson-Bassham (cbb) operon structures in C. orbiculata and 

other thioautotrophic lucinid symbionts (König et al., 2016; Petersen et al., 2016). White 

cells in (A) represent transcript clusters with zero TPM values. Black arrows in (B) depict 

genes encoding hypothetical proteins, colored arrows depict genes conserved in at least 

two species, and white arrows depict non-conserved genes. Abbreviations: PEP, 

phosphoenolpyruvate; NADP, nicotinamide adenine dinucleotide phosphate; NAD, 

nicotinamide adenine dinucleotide; AcuC, acetoin utilization protein; GTP, guanosine 

triphosphate; ATP, adenosine triphosphate; ADP, adenosine diphosphate; Dct, 

dicarboxylate transport proteins; TRAP, tripartite ATP-independent periplasmic transport; 

Hpr, histidine-containing phosphocarrier protein; PTS, phosphotransferase system. 
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Figure 3.14. Log2-transformed TMM-normalized TPM of gene products of lithotrophy-

related transcript clusters mapped to C. orbiculata symbionts. White cells represent 

transcript clusters with zero TPM values. Abbreviations: FccB, sulfide dehydrogenase 

[flavocytochrome c] flavoprotein chain; CbiA, cobyrinate a,c-diamide synthase; AprA, 

adenylylsulfate reductase subunit alpha; Tus, tRNA 2-thiouridine synthesizing protein; Sat, 

sulfate adenylyltransferase; Tus, sulfur carrier proteins homologous to some Dsr proteins; 

HdrA/MVH, heterodisulfide reductase/methylviologen reducing hydrogenase; HoxJ, 

hydrogen uptake histidine-kinase; Hup, regulatory uptake hydrogenase; HyaC, membrane-

bound Ni-Fe-hydrogenase I cytochrome b subunit; Hyb membrane-bound Ni-Fe 

hydrogenase 2; Hyd, periplasmic Ni-Fe hydrogenase. 
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Figure 3.15. Log2-transformed TMM-normalized TPM of gene products of nitrogen 

metabolism-related transcript clusters mapped to C. orbiculata symbionts. White cells 

represent transcript clusters with zero TPM values.  Abbreviations: Nif, nitrogen fixation 

proteins; LRV, leucine-repeat variant; NADPH, nicotinamide adenine dinucleotide 

phosphate; ABC, ATP-binding cassette; Cbb, proteins encoded by the Calvin-Bassham-

Benson cycle operon; GpvN; gas vesicle protein; Nor, nitric oxide reductase; Nos, nitrous 

oxide reductase; Nnr, nitrite and nitric oxide reductase; Crp, cyclic adenosine 

monophosphate receptor protein; Fnr, fumarate nitrate reductase regulator. 
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Ctena orbiculata symbionts expressed flagella-related genes (average 0.9±5 TPM), 

pilus-related genes (average 1±7 TPM), as well as genes associated with phosphate uptake 

(average 0.3±0.8 TPM), polyphosphate utilization (average 0.2±0.6 TPM) and iron uptake 

(average 0.2±0.4 TPM).  Biosynthetic genes for all twenty essential amino acids and 

vitamins B1, B2, B6, B7 and B9 (Figure 3.16a) and type I, II and VI secretion system genes 

(Figure 3.16b) were also identified in the symbionts’ MAGs and transcriptomes. Ctena 

orbiculata symbionts encoded and expressed genes for VgrG, but not Hcp and VasL, 

exclusive to the type VI secretion system 2 gene cluster (Speare et al., 2018). 

In addition to thiotrophy and hydrogenotrophy-related genes, a C1 oxidation gene 

cluster encoding proteins involved in pyrroloquinoline quinone (PQQ) synthesis (average 

0.2±0.6 TPM), PQQ-dependent methanol oxidation (Mdh; average 3±3 TPM), 

tetrahydromethanopterin (H4MPT)-dependent formaldehyde oxidation (average 0.2±0.6 

TPM) were conserved in all sequenced C. orbiculata symbionts and Ca. Thiodiazotropha 

endolucinida (König et al., 2016; Figure 3.17a-c). Downstream of this gene cluster, another 

formate oxidation gene cluster encoding NADH-quinone oxidoreductase subunit F and 

formate dehydrogenase alpha subunit (FdhA) were predicted in all C. orbiculata 

symbionts, Ca. Thiodiazotropha endolucinida (König et al., 2016), and Ca. 

Thiodiazotropha endoloripes (Petersen et al., 2016).  
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Figure 3.16. Log2-transformed TMM-normalized TPM of gene products of (A) amino 

acids (three-letter codes) and B vitamins biosynthesis and (B) secretion system transcript 

clusters mapped to C. orbiculata symbionts. White cells represent transcript clusters with 

zero TPM values.  ‘*’ indicates a multi-mapping transcript cluster. Abbreviations: RTX, 

repeats in toxin; DedD, cell division protein; FolC, dihydrofolate 

synthase/folylpolyglutamate synthase; Gsp, general secretory pathway protein; Tat, twin-

arginine translocation proteins; Sec, secretory export proteins; Tss, type VI secretion 

system proteins; Tag, type VI secretion-associated protein; ClpB, caseinolytic peptidase B 

protein homolog; Imp; inner membrane protein. 

Phylogenetic analyses of Mdh and FdhA protein sequences showed OTU- and 

species-specific clustering patterns across C. orbiculata symbionts (Figures 3.18-3.19) 

consistent with the phylogenomic tree (Figure 3.5). OTU4-related Mdh and FdhA 

sequences were the most closely related to those from Ca. Thiodiazotropha endolucinida 

(König et al., 2016; Figures 3.18-3.19). Mdh sequences from lucinid symbionts clustered 

with sequences from the thioautotrophic gill symbiont of the giant Teredinidae bivalve 

Kuphus polythalamia (Distel et al., 2017) and a marine purple sulfur bacterium 

Thiorhodococcus drewsii (Zaar et al., 2003). These sequences formed a sister group with 

sequences from alphaproteobacterial species from the family Rhodospirillaceae, most of 

which were nitrogen-fixing (Figure 3.18). FdhA sequences from lucinid symbionts were 

most closely related to the free-living chemolithoautotrophic marine gammaproteobacterial 

species Thioalbus denitrificans (Park et al., 2011), the Kuphus polythalamia symbiont 



150 

(Distel et al., 2017), Sedimenticola spp. (Carlstrom et al., 2015; Flood et al., 2015) and 

methanotrophic gammaproteobacterial species (Figure 3.19). These sequences were in turn 

related to other nitrogen-fixing betaproteobacterial species (Figure 3.19). Mdh and FdhA 

protein sequences involved in methanol and formate oxidation showed distinct phylogeny. 

This suggests that the genes have a common origin in marine habitats and were acquired 

separately, possibly from diazotrophic alphaproteobacterial (Mdh) and betaproteobacterial 

species (FdhA). Two sets of qPCR primers targeting Mdh from OTU1 and OTU2 amplified 

matched DNA and cDNA from gill specimens dominated by these species. qPCR cDNA 

copy numbers of Mdh were consistent with TPM values observed in five out of seven 

amplified gill specimens (Figure 3.17).  

Besides this gene cluster, other potentially C1 oxidation-related genes were also 

annotated in MAGs and/or transcriptomes of C. orbiculata symbionts. Genes homologous 

to deltaproteobacterial methanol:corrinoid methyltransferase, methanol methyltransferase 

corrinoid activation protein and methyltransferase corrinoid protein were identified in 

OTU2-related MAGs and transcriptomes (average 1±0.7 TPM), one OTU3-related the 

metatranscriptome (21D; 0.008 TPM; Figure 3.17c), and one OTU4-related unbinned 

assembly from specimen 4F. These genes potentially convert methanol to a corrinoid 

protein, which can be subsequently reduced to methane or oxidized to carbon dioxide 

(Abaibou et al., 1995).  OTU3-related MAGs and unbinned assemblies of all other C. 

orbiculata symbionts included the S-formylglutathione hydrolase (estD) gene homologous 

to free-living Sedimenticola species that converts S-formylglutathione to glutathione and 

formate in the glutathione-dependent pathway of formaldehyde detoxification (Chen et al., 
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2016). estD was not expressed in the symbiont transcriptomes, but Mollusca-related estD 

was expressed in all gill metatranscriptomes at average 0.9±0.6 TPM. Additionally, OTU3-

related MAGs contained oxalyl-CoA decarboxylase (oxc) and formyl-CoA transferase 

(frc) genes homologous to protein sequences in Betaproteobacteria and 

Alphaproteobacteria species. oxc converts oxalyl-CoA to formyl-CoA and CO2, and frc 

converts formyl-CoA to formate and oxalyl-CoA (Azcarate-Peril et al., 2006). oxc was not 

expressed in the metatranscriptomes, while a frc transcript cluster related to Escherichia 

coli was expressed in the OTU1-dominated gill specimen 22A (0.08 TPM) and the OTU2-

dominated gill specimen 4D (0.3 TPM). Common C1-related genes identified in C. 

orbiculata and other lucinid symbionts encoded the bifunctional methylene-H4F 

dehydrogenase/methenyltetrahydrofolate cyclohydrolase (FolD; average 0.2±0.2 TPM in 

C. orbiculata symbionts; not sequenced in P. pectinatus gill symbiont) and the respiratory

formate dehydrogenase-O (average 1±2 TPM; Figure 3.17c; Abaibou et al., 1995). folD 

likely participates in biosynthesis in these species because the tetrahydrofolate (H4F)-

dependent formaldehyde oxidation pathway was not completely sequenced in these 

symbionts (missing formyl-H4F synthetase; Figure 3.17b; Vorholt, 2002). 

C1 assimilation genes in the ribulose monophosphate (RuMP) pathway and many 

key genes in the serine-glyoxylate cycle (Smejkalova et al., 2010) were not identified in 

the symbiont MAGs. Most of the fifteen accessory genes assigned by RAST (Aziz et al., 

2008) to the serine-glyoxylate cycle subsystem were also predicted in other carbon-related 

pathways (Table 3.5). 
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Figure 3.17. (A) Conserved gene clusters, (B) proposed pathways modified from (Vorholt, 

2002; Pomper et al., 2002), (C) TMM-normalized log2TPM, and (D) qPCR copy numbers 
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and TMM-normalized TPM values of methanol dehydrogenase and/or other C1-oxidation 

genes in C. orbiculata symbionts. Colored arrows in (A) depict genes conserved in at least 

two species, and the black and white arrows represent genes encoding hypothetical and 

non-conserved proteins, respectively. Abbreviations: Mch, methenyl-

tetrahydromethanopterin cyclohydrase; MtdB, NAD(P)-dependent methylene-

tetrahydromethanopterin dehydrogenase; Mdh, pyrroloquinoline-quinone (PQQ)-

dependent methanol dehydrogenase; NuoF, NADH-quinone oxidoreductase subunit F; 

Fdh, NAD-dependent tungsten-containing formate dehydrogenase; RimK, ribosomal 

protein S6 modification enzyme; GHMP, galacto-, homoserine, mevalonate and 

phosphomevalonate; H4F, tetrahydrofolate; FolD, bifunctional methylene-H4F 

dehydrogenase/methenyltetrahydrofolate cyclohydrolase; H4MPT, 

tetrahydromethanopterin; Fhc, formyltransferase/hydrolase complex; Fdo, formate 

dehydrogenase O; Fae, formaldehyde activating enzyme; “MFR”, postulated methanofuran 

analogue; Fhs, formyl-H4F synthetase; ABC, ATP-binding cassette; MoxX, methanol 

utilization control regulatory protein. 
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Figure 3.18. Unrooted bootstrap consensus maximum likelihood tree of methanol 

dehydrogenase protein sequences from C. orbiculata (red) in relation to other lucinid 

symbionts (blue) and other bacterial species. Tree nodes show bootstrap values and square 

brackets contain GenBank (Benson et al., 2014) accession numbers. 
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Figure 3.19. Unrooted bootstrap consensus maximum likelihood tree of formate 

dehydrogenase alpha protein sequences from C. orbiculata (red) in relation to other lucinid 

symbionts (blue) and other bacterial species. Tree nodes show bootstrap values and square 

brackets contain GenBank (Benson et al., 2014) accession numbers. 
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Table 3.5. Serine-glyoxylate cycle-related gene products annotated in Ctena orbiculata 

symbionts and Ca. Thiodiazotropha endolucinida (Konig et al., 2016; left) and other 

metabolic pathways associated with these gene products (right). 

Pathway/gene product Overlapping pathway(s) 
Serine-glyoxylate cycle 
Serine hydroxymethyltransferase Biosynthesis 
Enolase Glycolysis 
Malyl-CoA lyase Photorespiration 
Malate dehydrogenase  TCA cycle; glyoxylate cycle 
Citrate (si)-synthase  TCA cycle; glyoxylate cycle 
Aconitate hydratase A TCA cycle; glyoxylate cycle 
Isocitrate lyase (glyoxylate cycle) Glyoxylate Cycle 
Succinate dehydrogenase flavoprotein subunit TCA cycle 
Succinate dehydrogenase iron-sulfur protein TCA cycle 
Succinyl-CoA ligase alpha chain TCA cycle 
Succinyl-CoA ligase beta chain TCA cycle 
Fumarate hydratase TCA cycle 

Pyruvate-alanine-serine interconversions 
Serine-pyruvate aminotransferase/L-
alanine:glyoxylate aminotransferase  Photorespiration 

Ethylmalonyl-CoA pathway 

Acetoacetyl-CoA reductase  Polyhydroxybutyrate metabolism; acetyl-
CoA fermentation to butyrate 

3-ketoacyl-CoA thiolase/acetyl-CoA
acetyltransferase

Phenylalkanoic acid degradation; archaeal 
lipids 



157 

Core host functions 

Carbonic anhydrase transcript clusters mapped to molluscan species (average 

231±149 TPM) and the sea lamprey Petromyzon marinus (average 140±86 TPM), together 

with a lucinid-related hemoglobin 1 transcript cluster (average 124±60 TPM), were the 

sixth, fifteenth and seventeenth most abundant protein-coding transcripts in the gill 

metatranscriptomes respectively (Figure 3.12b). In contrast, lucinid-related hemoglobins 2 

(average 0.2±0.7 TPM) and 3 (average 0.8±2 TPM) were expressed at lower levels. Two 

Mollusca-related transcript clusters encoding IgGFc-binding proteins (average 117±144 

TPM) were the nineteenth and twenty-first most abundantly expressed in the gills (Figure 

3.12b). Among lysozyme-associated transcripts in C. orbiculata (average 0.9±2 TPM), one 

molluscan-related transcript cluster encoding lysozyme 3 was the most highly expressed 

(average 4±2 TPM). Bivalve-related transcript clusters homologous to urease (average 1±3 

TPM), urease accessory proteins (average 0.2±0.2 TPM) and urease transporters (average 

0.2±0.5 TPM) were also identified in all gill metatranscriptomes. 

Symbiont strain/species differences 

Ctena orbiculata symbiont MAGs and transcriptomes showed very little inter-

strain and inter-species variation of complete or near-complete metabolic pathways. MAGs 

of OTU2, OTU4 and Ca. Thiodiazotropha endolucinida (Konig et al., 2016), which likely 

belong to the same species, encoded an additional form II RuBisCO (besides form Iaq) 

expressed only in the OTU2-dominated gill specimen 4D (0.205 TPM; Figure 3.13). Form 
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II RuBisCO genes were not identified in the unbinned metagenomes of OTU1- and OTU3-

dominated gill specimens. For aerobic respiration, C. orbiculata symbionts and other clade 

A lucinid symbionts (Konig et al., 2016; Petersen et al., 2016) potentially utilize cbb3 

(average 4±5 TPM in the former) and aa3 terminal oxidases (average 5±9 TPM). 

Additionally, OTU2-related MAGs and transcriptomes contained genes for cytochrome bd 

ubiquinol oxidase (average 0.5±0.4 TPM) also detected in the unbinned assembly and 

metatranscriptome of OTU4-dominated gill specimen 4F (0.02 TPM) and the 

metatranscriptome of OTU3-dominated gill specimen 4C (0.3 TPM).  

Ctena orbiculata symbionts likely utilize distinct types of clustered regularly-

interspaced short palindromic repeats (CRISPR)-associated genes. OTU1-related MAGs 

encoded type I-MYXAN (Myxococcus xanthus) CRISPR-associated protein Cas6/Cmx6 

expressed in two of four OTU1-dominated transcriptomes (average 0.02±0.001TPM) and 

one OTU2-dominated gill specimen (4D; 0.03 TPM). Genes encoding type II CRISPR-

associated endonucleases Cas2, Cas6, Cas9 were predicted only in OTU4-related MAGs 

(not expressed), while one OTU3-related MAG (21D) encoded type III-B CRISPR 

module-associated proteins Cmr1 (0.5 TPM) and Cmr2-6 (not expressed). Inter-taxa 

genetic differences in CRISPR-Cas system types among C. orbiculata symbionts suggest 

variations in mechanisms of prokaryotic defense against foreign DNA (Makarova et al., 

2011). The CRISPR-Cas system is involved in host colonization (Veesenmeyer et al., 

2014), innate immune avoidance (Sampson et al., 2013), intracellular growth (Gunderson 

and Cianciotto, 2013), and virulence (Louwen et al., 2014) in other host-microbe 

interactions, but its role in marine symbiosis has not been investigated. 
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Differential expression (DE) analyses across C. orbiculata symbiont communities 

Differential expression (DE) analyses on symbiont-related genes using four DE 

algorithms showed <20 total DE transcript clusters (p<0.05, ≥2 fold-change) for OTU2-

OTU3, OTU2-OTU4 and OTU3-OTU4 community comparisons (Figure 3.20). OTU1-

OTU3 comparisons showed four total upregulated and 88 downregulated genes in OTU1-

dominated communities, OTU1-OTU2 comparisons showed 751 total upregulated and 403 

downregulated genes in OTU1-dominated communities, and OTU1-OTU4 comparisons 

showed ten upregulated and 72 downregulated genes in OTU1-dominated communities 

(Figure 3.20). 

 Transcript clusters upregulated in OTU1-dominated symbiont communities 

compared to communities containing significant abundances of other symbiont taxa were 

involved in bacterial secretion (type VI secretion protein Rhs/TssL/TssA and protein 

translocase subunit SecD), the transport of sugar, molybdate and an unknown substrate, 

and other functions (Figure 3.21). In relation to other taxa, OTU2-related communities 

preferentially expressed transcript clusters encoding an efflux transporter of toxic 

substances (Anes et al., 2015), a ribosomal small subunit maturation protein GTPase A 

(Goto et al., 2011), the signaling molecule diguanylate cyclase facilitating biofilm 

formation and pathogenesis (Schirmer, 2016), 5-formyltetrahydrofolate cyclo-ligase 

regulating purines, thymidylate and methionine biosynthesis and one-carbon metabolism 

(Meier et al., 2007), heat shock protein, RpoH, and DksA (Figure 3.21). Commonly 

predicted Gene Ontology (GO; p<0.05) terms commonly enriched in OTU2-related 

communities compared to OTU1-dominated communities were associated with 
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nucleotide/nucleoside binding, proteolysis, calcium-transporting ATPase activity, aerobic 

respiration and drug response (Table 3.6).  
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Figure 3.20. Venn diagrams of the numbers of differentially expressed (DE) genes 

(p<0.05, fold change≥2) predicted by four different algorithms across C. orbiculata 

symbiont taxa. Blue boxes show enriched gene ontology (GO) terms (p<0.05) within 

categories containing >20 total DE genes. Bold numerical text in Venn diagrams indicate 

the number of DE genes used to plot heatmaps in Figures 3.22-3.25. 

Figure 3.21. Upregulated genes (p<0.05, fold change≥2) predicted in OTU1 (above dashed 

line) and OTU2 (below dashed line) in relation to other C. orbiculata symbiont taxa (black 

boxes with asterisks). The number of asterisks indicate the number of DE software (four 

total) with positive predictions.  
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Table 3.6. List of deduplicated enriched Gene Ontology (Gene Ontology Consortium, 

2015) terms (p<0.05) in transcriptomes of OTU2 compared to OTU1.  

# software with 
positive 
predictions 

Gene Ontology (GO) term 
Mean over 
represented p-
value 

Mean under 
represented 
p-value

**** Guanyl ribonucleotide binding 0.01 ± 0.01 1 ± 0.001 
**** Purine nucleoside/GTP binding 0.02 ± 0.01 1 ± 0.007 
*** Endopeptidase activity 0.001 ± 0.0001 1 ± 0.004 
** Proteolysis 0.001 ± 0.02 1 ± 0.009 
** Peptidase activity 0.003 1 ± 0.0002 
*** Calcium-transporting ATPase activity 0.004 ± 0.002 1 ± 0.001 
*** Cyclic-di-GMP binding 0.005 ± 0.003 1 ± 0.004 
*** Metalloendopeptidase activity 0.01 ± 0.002 1 ± 0.002 
*** Calcium ion transmembrane transporter activity 0.01 ± 0.004 1 ± 0.003 

*** ATPase activity, coupled to transmembrane 
movement of ions, phosphorylative mechanism 0.01 ± 0.004 1 ± 0.003 

*** Regulation of protein metabolic process 0.01 ± 0.002 1 ± 0.008 
** Peptidase activity, acting on L-amino acid peptides 0.01 1 ± 0.0001 
** Protein metabolic process 0.01 1 ± 0.001 
** Oxidative phosphorylation 0.01 1 ± 0.004 
*** Protein tyrosine kinase activity 0.02 ± 0.01 1 ± 0.001 
*** Aerobic electron transport chain 0.02 ± 0.01 1 ± 0.001 
*** Ribonucleoside binding 0.02 ± 0.02 1 ± 0.007 

** Divalent inorganic cation transmembrane transporter 
activity 0.02 1 ± 0.001 

** Isoquinoline 1-oxidoreductase activity 0.02 1 ± 0.0004 
** Hydrogen:quinone oxidoreductase activity 0.02 1 ± 0 

*** Single-stranded DNA 5'-3' exodeoxyribonuclease 
activity 0.03 ± 0.03 1 ± 0 

** Phenol-containing compound metabolic process 0.03 1 ± 0.001 
** Response to drug 0.03 1 ± 0.001 
** Peptide binding 0.03 1 ± 0.002 
** Metallopeptidase activity 0.03 1 ± 0.001 
** Cyclic nucleotide binding 0.04 1 ± 0.003 
** Purine ribonucleoside triphosphate metabolic process 0.04 1 ± 0.0003 
** Cellular respiration 0.04 1 ± 0.002 
** Protein catabolic process 0.05 1 ± 0.005 
** Aerobic respiration 0.05 1 ± 0.003 
** Intracellular membrane-bounded organelle 0.05 1 ± 0.005 
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Transcript clusters upregulated in OTU3-related communities compared to 

communities containing significant abundances of other taxa encoded a hypothetical 

conserved exported protein, flagella-related proteins, acetolactate synthase for branched 

chain amino acid synthesis (Chipman et al., 1998), calmodulin, cytochrome c, a prevent-

host-death protein promoting bacteriophage resistance and biofilm formation in 

Pseudomonas species (Petrova et al., 2011), a nitrate ABC transporter and sulfide 

dehydrogenase (flavocytochrome c) flavoprotein subunit, among other proteins (Figure 

3.22). GO terms commonly enriched in OTU3-related communities compared to OTU1-

dominated communities were related to lysine biosynthesis, flagellar assembly, 

phosphatase activity, nucleotide binding, membrane components, protein/peptide secretion 

and nitrogen compound transport (Table 3.7).  While flagellar genes have been implicated 

in symbiotic host attachment (Millikan and Ruby, 2004) and symbiont-to-host protein 

export (Maezawa et al., 2006; Toft and Fares, 2008), their significance in the lucinid-

bacteria symbiosis remains unknown. Similarly, the relevance of differentially expressed 

amino acid biosynthesis genes and their roles in shaping host-symbiont interdependencies 

on amino acids in this system remain to be elucidated. 
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Figure 3.22. Upregulated genes (p<0.05, fold change≥2) predicted in OTU3 in relation to 

other C. orbiculata symbiont taxa (black boxes with asterisks). The number of asterisks 

indicate the number of DE software (four total) with positive predictions.  
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Table 3.7. List of deduplicated enriched Gene Ontology (Gene Ontology Consortium, 

2015) terms (p<0.05) in transcriptomes of OTU3 compared to OTU1.  

# software with 
positive 
predictions 

Gene Ontology (GO) term 
Mean over 
represented p-
value 

Mean under 
represented 
p-value

*** Transaminase activity 0.02 ± 0.009 1 ± 0.002 
*** L,L-diaminopimelate aminotransferase activity 0.02 ± 0.02 1 ± 0 
** Bacterial-type flagellum organization 0.0005 ± 0.001 1 ± 0.00003 
** Cell projection organization 0.001 ± 0.002 1 ± 0.0001 
** Single-organism organelle organization 0.0007 ± 0.001 1 ± 0.00005 
** Organelle organization 0.005 ± 0.007 1 ± 0.001 
** Nucleoside-triphosphatase activity 0.02 ± 0.02 1 ± 0.006 
** Guanyl ribonucleotide binding 0.0005 ± 0 1 ± 0 
** Integral component of membrane 0.02 ± 0.03 1 ± 0.009 
** Intrinsic component of membrane 0.02 ± 0.03 1 ± 0.01 
** Pyrophosphatase activity 0.02 ± 0.03 1 ± 0.008 

** Hyrolase activity, acting on acid anhydrides, in 
phosphorus-containing anhydrides 0.02 ± 0.03 1 ± 0.008 

** Protein/macromolecule localization 0.01 ± 0.01 1 ± 0.002 
** Secretion 0.02 ± 0.02 1 ± 0.002 
** Plasma membrane 0.01 ± 0.006 1 ± 0.002 
** Nitrogen compound transport 0.01 ± 0.02 1 ± 0.003 
** Membrane 0.02 ± 0.02 1 ± 0.008 
** Bacterial-type flagellum basal body, MS ring 0.01 ± 0.01 1 ± 0.00008 
** Protein/peptide/amide transport 0.01 ± 0.01 1 ± 0.001 
** Dicarboxylic acid metabolic process 0.004 ± 0.001 1 ± 0.0001 
** Establishment of protein localization 0.01 ± 0.01 1 ± 0.001 
** Peptide/protein secretion 0.02 ± 0.02 1 ± 0.001 
** Dicarboxylic acid biosynthetic process 0.02 ± 0.004 1 ± 0.001 
** Carboxy-lyase activity 0.03 ± 0.01 1 ± 0.002 

** Ornithine decarboxylase regulator/inhibitor 
activity 0.04 ± 0.02 1 ± 0.00004 

** Diaminopimelate decarboxylase activity 0.02 ± 0.01 1 ± 0.0001 

** Butanediol metabolic process; acetoin/secondary 
alcohol biosynthetic process 0.02 ± 0.009 1 ± 0 

** Molybdate ion transport/binding 0.02 ± 0.02 1 ± 0 

** Lysine metabolic/biosynthetic process via 
diaminopimelate 0.03 ± 0.03 1 ± 0.001 
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OTU4-related communities showed upregulation of transcript clusters encoding 

ribosomal proteins, RNA chaperone Hfq, BAX inhibitor of host apoptosis (Hemrajani et 

al., 2010), cytochrome c oxidases involved in aerobic respiration, secretion (type VI 

secretion, twin-arginine translocation subunit TatA) and stress response (heat shock protein 

and DnaK; Figure 3.23).  Accordingly, GO terms associated with these functions were 

enriched in OTU4-related communities compared to OTU1-dominated communities 

(Table 3.8). Upregulated host apoptosis-related symbiotic genes in OTU3-related 

communities and OTU4-related communities may be involved in the lucinid-bacteria 

symbiosis. For instance, Wolbachia-mediated inhibition of host apoptosis was proposed to 

effect host wasp transition from facultative parasitism to mutualism (Pannebakker et al., 

2007), but it is unclear whether similar mechanisms exist in the lucinid-bacteria symbiosis. 
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Figure 3.23. Upregulated genes (p<0.05, fold change≥2) predicted in OTU4 in relation to 

other C. orbiculata symbiont taxa (black boxes with asterisks). The number of asterisks 

indicate the number of DE software (four total) with positive predictions.  
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Table 3.8. List of deduplicated enriched Gene Ontology (Gene Ontology Consortium, 

2015) terms (p<0.05) in transcriptomes of OTU4 compared to OTU1. 

# software 
with 
positive 
predictions 

Gene Ontology (GO) term 
Mean over 
represented 
p-value

Mean 
under 
represented 
p-value

** Aerobic electron transport chain 0.01 ± 0.007 1 ± 0.00001 

** 
Oxidoreductase activity, acting on a heme 
group of donors, oxygen as acceptor 0.01 ± 0.009 1 ± 0.00002 

** 
Oxidoreductase activity, acting on a heme 
group of donors 0.01 ± 0.01 1 ± 0.0006 

** Adenyl-nucleotide exchange factor activity 0.01 ± 0.009 1 ± 0 

** 
Nucleoside-triphosphatase/ATPase regulator 
activity 0.01 ± 0.009 1 ± 0 

** Ribosome 0.01 ± 0 1 ± 0.0006 
** Metalloendopeptidase activity 0.02 ± 0.02 1 ± 0.0015 
** Aerobic respiration 0.02 ± 0.02 1 ± 0.002 
** Chaperone binding 0.02 ± 0.01 1 ± 0.0002 
** Membrane insertase activity 0.02 ± 0.01 1 ± 0.0002 
** Structural constituent of ribosome 0.02 ± 0.003 1 ± 0.002 

** 
Aerobic respiration, using ferrous ions as 
electron donor 0.03 ± 0.02 1 ± 0.0002 

** 
Electron transporter, transferring electrons 
within cytochrome c oxidase complex activity 0.03 ± 0.02 1 ± 0.0002 

** 
Plasma membrane respiratory chain complex 
IV 0.03 ± 0.02 1 ± 0.0002 

** Serine-tRNA ligase activity 0.03 ± 0.02 1 ± 0.0002 
** Negative regulation of apoptotic process 0.03 ± 0.02 1 ± 0.0002 

** 
Selenocysteinyl-tRNA(Sec) biosynthetic 
process 0.03 ± 0.02 1 ± 0.0002 

** Phosphoribosyl-ATP diphosphatase activity 0.03 ± 0.02 1 ± 0.0003 
** Intracellular ribonucleoprotein complex 0.03 ± 0.005 1 ± 0.002 
** Protein transport by the Tat complex 0.03 ± 0.02 1 ± 0.0004 
** Respiratory electron transport chain 0.03 ± 0.006 1 ± 0.003 
** Translation 0.03 ± 0.006 1 ± 0.003 
** Cellular respiration 0.04 ± 0.008 1 ± 0.003 
** Endopeptidase activity 0.04 ± 0.01 1 ± 0.004 
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DE analyses of host-symbiont gene expression across quadrats 

Besides taxon-specific clustering patterns, OTU1-dominated symbiont-specific 

transcriptomes collected from algae-covered and seagrass-covered quadrats (Figure 3.1) 

appeared to form two separate sub-clusters (Figure 3.7), although these transcriptomes 

shared 0.9±0.01 average pairwise PCC with each other. Exploratory DE analyses on these 

transcriptomes showed only five symbiont-related DE genes predicted by one (DESeq2; 

Love et al., 2014) of four DE analysis algorithms used (Figure 3.24). Of these, the 

dissimilatory sulfite reductase transferase protein DsrC was upregulated in the algae-

covered quadrat, while three transcript clusters encoding hypothetical proteins and one 

transcript cluster homologous to a cell wall-associated hydrolase from Alphaproteobacteria 

sp. were upregulated in the seagrass-covered quadrat (Figure 3.24). Host-related transcripts 

did not exhibit the same clustering patterns between algae-covered and seagrass-covered 

quadrats (Figure 3.9) but showed 73 putative DE genes predicted by both DESeq2 (Love 

et al., 2014) and edgeR (Robinson et al., 2010) across OTU-dominated metatranscriptomes 

in these quadrats (Figure 3.25). According to UniProt (The UniProt Consortium, 2015) 

annotations, these host-related DE genes were involved in a variety of muscle-related, 

cytoskeletal, co-chaperone, transcriptional, translational and other functions (Figure 3.25). 

Notably, host-related transcripts encoding cytochrome b-c1 complex, mitochondrial 

succinate dehydrogenase and mitochondrial sulfide:quinone oxidoreductase (Sqr) were 

predicted to be upregulated in the seagrass-covered quadrat (Figure S3.25). 
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Figure 3.24. Differentially expressed (p<0.05, fold change≥2) genes mapped to OTU1-

related MAGs between gill specimens collected from an algae-covered quadrat and those 

collected from a seagrass-covered quadrat (black boxes). All DE genes were predicted by 

the DESeq2 software package.  
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Figure 3.25. Differentially expressed (DE; p<0.05, fold change≥2) genes mapped to host-

related genes between OTU1-dominated gill specimens (black boxes) collected from an 

algae-covered quadrat and those collected from a seagrass-covered quadrat (black boxes). 

(A) Upregulated host-related genes in algae-covered quadrat, (B) Venn diagram of the

numbers of host-related DE genes upregulated in algae-covered quadrat predicted by four 

different algorithms, (C) correlation of log2 fold change values of host-related DE genes 

upregulated in algae-covered quadrat commonly predicted by DESeq2 (Love et al., 2014) 

and edgeR (Robinson et al., 2010), (D) Upregulated host-related genes in seagrass-covered 

quadrat, (E) Venn diagram of the numbers of host-related DE genes upregulated in 

seagrass-covered quadrat predicted by four different algorithms, (F) correlation of log2 fold 

change values of host-related DE genes upregulated in seagrass-covered quadrat 

commonly predicted by DESeq2 (Love et al., 2014) and edgeR (Robinson et al., 2010). 

Bold numerical text in Venn diagrams indicate the number of DE genes used to plot 

heatmaps in (A) and (D) and scatterplots in (C) and (F).  
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Discussion 

To date, lucinid symbiont species and their associated functional variations remain 

largely unexplored because, out of >100 identified lucinid species listed on NCBI (NCBI 

Resource Coordinators, 2016), only three gill symbiont species from three host species 

have been comprehensively sequenced (Konig et al., 2016; Petersen et al., 2016; Chapter 

II). Despite previous marker-gene based diversity studies (Durand and Gros, 1996; Durand 

et al., 1996; Brissac et al., 2011; Brissac et al., 2016) and a recent gill microbiome, 

metagenome and metatranscriptome characterization study on P. pectinatus (Chapter II), 

in-depth investigations into taxonomic, genetic and functional symbiont variations within 

a single lucinid host population are currently lacking in the literature. Within our study site 

(Sugarloaf Key, Florida, USA), we hypothesized that strain-level symbiont diversity might 

be present within a single host (C. orbiculata) population, which can be detected using 

high-resolution -omics methods. We discovered the co-existence of multiple 

thioautotrophic gill endosymbiont species and/or strains (OTUs 1-4) with marked genetic 

differences. These symbionts shared a large number of core genes and functions, which 

included a well-conserved, previously undiscovered C1 oxidation pathway. On the other 

hand, gill metatranscriptomic analyses revealed host-related functions that may contribute 

to symbiont metabolic support and symbiont aggregation, as well as host and/or symbiont 

genes differentially expressed across symbiont taxa and quadrats with different vegetation 

coverages.  
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Thioautotrophic symbiont taxonomic diversity observed in our studied C. 

orbiculata population contrast and parallel Brissac et al.’s findings of strain-level symbiont 

diversity, defined by haplotypes, within C. orbiculata and five other lucinid species in the 

Caribbean (Brissac et al., 2016). While Brissac et al.’s lucinid samples showed a high 

degree of host-symbiont specificity and all their C. orbiculata samples were colonized by 

only a single symbiotic haplotype (Brissac et al., 2016), we discovered much greater 

symbiont taxonomic diversity within the same host species at our collection site. Our 

results point to a lower degree of host-symbiont specificity than reported in Brissac et al., 

likely because of either higher taxonomic symbiont diversity encountered by the host in 

the environment (Brissac et al., 2011) or less stringent host regulation on symbiont 

acquisition in this studied C. orbiculata population (Brissac et al., 2016).  The observed 

symbiont diversity in C. orbiculata also supports the notion of a symbiont community (50), 

rather than a homogenous symbiont strain, associated with this C. orbiculata population. 

Similar marine symbiont communities have been reported, for example, in the light organs 

of the squids Sepiola affinis and Sepiola robusta, where closely related Vibrio fischeri and 

V. logei were detected at different abundances (Mushegian and Ebert, 2015). Species-level

symbiont heterogeneity was also reported in Osedax gutless marine worms, which hosted 

two closely related Oceanospirillales heterotrophic symbiont species (Goffredi et al., 

2014). It is unlikely that the identified symbiont taxa are exclusive to C. orbiculata, because 

our preliminary analyses showed the C. orbiculata symbionts to share identical 16S rRNA 

gene sequences with symbionts in Codakia orbicularis from the same sampling site 

(unpublished data). Previous studies have also shown the lesser Antillean C. orbiculata to 
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share the same symbiont species with five other Caribbean lucinid species (Durand and 

Gros, 1996; Durand et al., 1996; Gros et al., 2003).  

Few inter-taxa differences were observed across Ctena orbiculata symbiont taxa. 

Candidatus Thiodiazotropha endolucinidaduo (OTU1 and OTU3) and Ca. 

Thiodiazotropha endoloripes MAGs (Petersen et al., 2016) encoded and expressed form 

Iaq RuBisCO, while Ca. Thiodiazotropha endolucinida spp. (OTU2, OTU5, and Konig et 

al.’s Codakia orbicularis symbionts; 2016) encoded and expressed form Iaq and form II 

RuBisCO. In contrast, only form II RuBisCO was predicted in MAG of the mangrove-

associated Phacoides pectinatus symbiont, Ca. Sedimenticola endophacoides (Chapter II). 

Compared to form II RuBisCO, form Iaq RuBisCO is more efficient at distinguishing 

between the competing substrates oxygen and CO2 (Tabita et al., 2008). Inter-clade 

variations in the RuBisCO variants used by lucinid symbionts suggest the possibility of 

symbiont clade-specific divergent evolution and/or gene duplication, which may be due to 

varying intracellular and/or extracellular oxygen levels experienced by the common 

ancestor of each symbiont clade either during their host-associated or free-living stage. For 

aerobic respiration, seagrass-associated lucinid symbionts (Konig et al., 2016; Petersen et 

al., 2016), including C. orbiculata symbionts, can potentially use the high-affinity cbb3 

type and low-affinity aa3 type terminal oxidases under low and high oxygen concentrations 

(García-Horsman et al., 1994; Pitcher and Watmough, 2004), respectively. Additional, a 

cytochrome bd ubiquinol oxidase adapted to microaerobic environments (Borisov et al., 

2011) was also encoded and expressed mainly by Ca. Thiodiazotropha-like OTU2. This 

enzyme may allow for adaptive responses to variable oxygen intracellular and/or 
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extracellular environments or facilitate symbiotic nitrogen fixation via oxygen scavenging 

and respiratory protection, as demonstrated in other free-living and plant-associated 

nitrogen-fixing bacteria (Kaminski et al., 1996; Poole and Hill, 1997; Dincturk et al., 

2011). Glutathione peroxidase-related transcripts highly expressed in C. orbiculata 

symbionts may also confer similar protective functions by scavenging H2O2, as shown in 

the legume-Rhizobia symbiosis (Bianucci et al., 2017). Differentially expressed genes 

across C. orbiculata symbiont taxa encoded secretion, stress-response, transport, and 

biosynthesis proteins possibly relevant to the lucinid-bacteria symbiosis. However, the 

statistical significance of DE analysis in this study is limited because of the lack of robust 

replicates consisting of pure symbiotic monocultures. 

Despite their taxonomic diversity, thioautotrophic C. orbiculata symbionts shared 

a high number of common genes and functions. These included previously characterized 

lithoautotrophy, diazotrophy and potential heterotrophy functions (Konig et al., 2016; 

Petersen et al., 2016; Chapter II). Additionally, many transcripts involved in temperature, 

oxidative, envelope and nutrition stress responses were highly expressed in C. orbiculata 

symbionts and likely reflect stresses from intracellular host selection mechanisms (Chapter 

II) parallel to the Eupyrmna-Vibrio symbiosis (Weis et al., 1996; Small and McFall-Ngai,

1999; Davidson et al., 2004) or stresses caused by the external environment. Defense-

related transcripts involved in type I, II and VI secretion systems, such as colicin-related 

transcripts, general secretion (Sec)-related transcripts twin-arginine translocation (Tat)-

related transcripts may reduce symbiont-symbiont competition by killing closely related 

strains (Cascales et al., 2007; Chapter II) and contribute to host infection (Green and 
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Mecsas, 2016; Nivaskumar and Francetic, 2014).  Besides known lithotrophic pathways, 

genes for the oxidation of C1 compounds including methanol, formaldehyde and formate 

were conserved in MAGs of C. orbiculata symbionts and discovered in this study in Ca. 

Thiodiazotropha endolucinida. Ctena orbiculata symbionts may use C1 compounds as an 

energy source, because they encoded and expressed formate dehydrogenase O enabling the 

use of formate as an electron donor during respiration (Abaibou et al., 1995). In the 

quadrats sampled in this study, dissolved methane was detected at low concentrations 

between 0.3 to 22 μg/L in the sampled quadrats. Concentrations of methanol, formaldehyde 

and formate were not measured. Methane and methanol could be present in the study site 

at low levels as by-products released by plants from unknown pathways (methane) or cell 

pectin demethylation in plant cell walls (methanol; Nemecek-Marshall et al., 1995; 

Keppler et al., 2006). While free-living methanotrophs demonstrated high methane 

consumption activity in aquatic plants, including algae and seagrasses (Yoshida et al., 

2014), methanol was observed to be phytotoxic and mutualistic interactions between 

methylotrophic bacteria and strawberry plants and seagrasses have been proposed 

(Abanda-Nkpwatt et al., 2006; Crump et al., 2018). Based on previous reports, we 

hypothesize that C1 oxidation in C. orbiculata symbionts potentially benefit their 

surrounding algae and seagrasses through methanol detoxification. Because there is no 

substantial genetic evidence for RuMP and serine-glyoxylate C1 assimilation pathways in 

these symbiont species, we speculate that the CO2 end-product of C1 oxidation could either 

be fixed via the autotrophic Calvin-Benson-Bassham cycle, as demonstrated in the 
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diazotrophic alphaproteobacterial Xanthobacter strain 25a (Croes et al., 1991), or used to 

conserve energy.   

Analyses of host-related transcripts have also revealed both similarities and 

differences in the host metabolism of C. orbiculata compared to previously described P. 

pectinatus (Chapter II). While P. pectinatus harboring non-diazotrophic symbionts showed 

consistently high expression levels of hemoglobins 1, 2 and 3, C. orbiculata only showed 

high expression of the sulfide-reactive hemoglobin 1 (Kraus and Wittenberg, 1990). In 

contrast, expression levels of oxygen-reactive (Kraus and Wittenberg, 1990) hemoglobins 

2 and 3 were at least 100x lower than that of hemoglobin 1 in C. orbiculata. Parallel to the 

host, we also observed high expression of antioxidant glutathione peroxidase in the C. 

obiculata symbionts. In contrast, porewater dissolved oxygen concentrations in the 

sampled quadrats were within the range of oxygen concentrations previously measured in 

a sub-oxic Lucinoma aequizonata habitat (Cary et al., 1989; Hentschel et al., 1993). These 

suggest that, in comparison to P. pectinatus, C. orbiculata and its symbionts experience 

higher levels of oxygen in their intracellular, but not extracellular, environments and/or 

require tighter host-symbiont co-operative regulation on intracellular oxygen 

concentrations to facilitate nitrogen fixation.  Phacoides pectinatus and C. orbiculata both 

expressed lysozyme transcripts, presumably for bactericidal activity (Chapter II), although 

expression levels of lysozyme transcripts in the latter were lower in relation to other host-

related transcripts. Strong expression of molluscan-related IgGFc-binding protein-coding 

transcripts was also observed in C. orbiculata, but not yet observed in other lucinid species. 

These transcripts are potentially involved in mucosal defense (Kobayashi et al., 2002) and 
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may facilitate initial symbiont selection of tightly aggregated symbionts like in the 

Eupyrmna-Vibrio symbiosis (Nyholm and McFall-Ngai, 2003). 

Unlike previous studies on symbionts of Caribbean lucinid species and the Sepiola 

squids, where host geographic location (Brissac et al., 2016) and temperature (Nishiguchi, 

2000) influenced the observed species distribution, respectively, we did not recognize any 

apparent spatial trend explaining the taxonomic distribution of C. orbiculata symbionts in 

the four sampled quadrats. We did, however, note that two gill specimens containing OTU4 

most closely related to Brissac et al.’s C. orbiculata symbiont haplotype (Brissac et al., 

2016) occurred only in one single seagrass-dominated quadrat. Based on the observed 

symbiont taxonomic distribution, we speculate that symbiont acquisition by clams in this 

population could be based on random encounters, as suggested by previous research on 

lucinid species in the Phillippines (Brissac et al., 2011) and on bacterial communities 

associated with the green macroalga Ulva australis (Burke et al., 2011).  

Our metatranscriptomic analyses also revealed potential clustering patterns of 

OTU1-related transcripts collected from algae-covered and seagrass-covered quadrats, 

although very few symbiotic genes, including thiotrophy-related DsrC (Cort et al., 2008), 

were predicted to be preferentially expressed in the algae-covered quadrat. Host-related 

transcripts did not follow the same quadrat-specific clustering pattern, but showed 

candidate up-regulated genes encoding cytochrome b-c1 complex involved in aerobic 

respiration and oxidative stress-triggered apoptosis (Dibrova et al., 2013), mitochondrial 

succinate dehydrogenase that connects the tricarboxylic cycle to the electron transport 

chain (Van Vranken et al., 2015), and mitochondrial Sqr that oxidizes sulfide to thiosulfate 
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(Marcia et al., 2010) in seagrass-covered compared to algae-dominated quadrats. These 

transcripts are of particular relevance to the tripartite symbiosis model between seagrass, 

lucinid clams and their symbionts, which is based on symbiotic sulfide detoxification, host-

symbiont aerobic respiration (Reynolds et al., 2014; van der Heide et al., 2012), and 

possibly nitrogen fixation (Petersen et al., 2016). Nevertheless, our differential expression 

analyses were hindered by limitations on sample sizes and the number of replicates.  

Overall, this study uncovered taxonomic, genetic and functional thioautotrophic 

gill endosymbiont diversity in C. orbiculata and furthers our current understanding of host-

symbiont specificity, physiology and interactions. Our findings highlight the intriguing, 

poorly understood complexity of lucinid-bacteria symbioses and generate a range of new 

testable hypotheses encompassing the establishment, persistence, stability, and distribution 

of symbiont communities; the significance of one-carbon metabolism in thioautotrophic 

lucinid symbionts; the roles of other bacterial taxa in lucinid symbioses; and three-way 

interactions between the environment, lucinid hosts and their symbionts.  Future studies, 

such as cross-infection experiments, imaging experiments, controlled aquarium 

experiments, and large-scale field studies coupled with -omics analyses would continue to 

elucidate the range of host-symbiont functions across species, environmental gradients, and 

habitats possible in this remarkably diverse symbiotic system.  
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Introduction 

All extant bivalve species from the family Lucinidae host thioautotrophic 

gammaproteobacterial endosymbionts in specialized gill bacteriocytes (Taylor and Glover, 

2000). These symbionts are related to a large clade of diverse chemosynthetic marine 

symbionts that mainly produce organic matter for lucinid hosts using energy derived from 

the oxidation of sulfur, hydrogen, and possibly C1 compounds (Dubilier et al., 2008; 

Petersen et al., 2016; König et al., 2016; Chapters II and III). Among lucinid species, 

thioautotrophic gammaproteobacterial symbionts are clustered into three distinct clades 

within a paraphyletic group. Clade A is associated with bivalves in seagrass or sulfide-poor 

environments, whereas clade B is associated with mangrove-dwelling Anodontia spp., and 

clade C are found in mangrove-dwelling Phacoides pectinatus (Cavanaugh et al., 2006; 

Brissac et al., 2011; Chapter II). The lucinid-bacteria chemosymbiosis has an ancient 

history, likely originating from the Silurian period (Liljedahl, 1992), with diversification 

of coastal lucinid clams being attributed to the emergence of mangroves and seagrasses in 

the late Cretaceous period (Stanley, 2014). Today, besides a variety of shallow marine 

habitats, lucinids are also found in deep sea hydrothermal vents (Glover et al., 2004), cold 
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seeps (Brissac et al., 2011), and mud volcanos (Rodrigues et al., 2010). Lucinids colonize 

oxic-anoxic interfaces of their habitats, where they acquire oxygen from oxic waters, as 

well as CO2, H2, reduced sulfur compounds, nitrogenous compounds, and, in some cases, 

C1 compounds, from anoxic sediment pore waters to support their physiology (Dando et 

al., 1994; Taylor and Glover, 2000) and respiratory, lithotrophic, and/or diazotrophic 

functions of their gill symbionts (Dando et al., 1994; Hentschel et al., 1996; Taylor and 

Glover, 2000; Duplessis et al., 2004; Stewart et al., 2005; Kleiner et al., 2015; König et 

al., 2016; Petersen et al., 2016; Chapters II and III). Lucinid symbionts in seagrass-

dwelling hosts also improve seagrass health in an interdependent, tripartite symbiosis by 

detoxifying sulfide, fixing carbon, and, in some cases, fixing nitrogen and detoxifying 

methanol levels (Petersen et al., 2016; Chapter III), in return for host and symbiont access 

to oxygen from seagrass roots (Fisher and Hand, 1984; Johnson et al., 2002; van der Heide 

et al., 2012; Reynolds et al., 2014; Stanley, 2014).  

To date, studies on lucinid bivalves have focused on their paleontology (Liljedahl, 

1992; Taylor and Glover, 2009; Anderson, 2014; Taylor and Glover, 2018), ecology and 

taxonomy (Williams et al., 2004; Glover et al., 2004; Oliver and Holmes, 2006; Taylor et 

al., 2011), physiology (Frenkiel et al., 1997; Duplessis, Dufour et al., 2004; van der Geest 

et al., 2014; Christo et al., 2016), gill and bacteriocyte morphology (Distel and Felbeck, 

1987; Liberge et al., 2001; Ball et al., 2009), as well as mode of environmental symbiont 

acquisition (Gros et al., 1996; Gros et al., 1999; Gros et al., 2003; Brissac et al., 2009; 

Gros et al., 2012; Espinosa et al., 2013). Studies focused on lucinid symbionts describe 

their range of metabolic functions (Felbeck et al., 1981; Hentschel et al., 1996; König et 
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al., 2016; Petersen et al., 2016; Chapters II and III), as well as phylogeny and diversity 

(Durand and Gros, 1996; Durand et al., 1996; Duperron et al., 2007; Brissac et al., 2016; 

Chapter III). However, the complexity of the lucinid gill microbiomes is only beginning to 

be comprehensively examined (Chapters II and III), although the possible presence of other 

non-thioautotrophic gill-associated bacterial taxa in lucinid gills has been noted for over 

ten years (Ball et al., 2009; Duperron et al., 2012; Espinosa et al., 2013). The first of these 

studies describe 16S rRNA gene phylotypes belonging to the thioautotrophic symbiont and 

another Spirochaeta-like species in the gills of Lucinoma aff. kazani (Duperron et al., 

2007). A subsequent imaging study on the gills of Euanodontia ovum show the presence 

of extracellular spirochete-like bacteria (8–10 µm length and 0.2–0.3 µm width), 

intracellular clade B thioautotrophic symbionts (3–5 µm length and 0.5–1.0 µm width), 

and another intracellular rod-shaped bacterium (1 µm length and 0.4–0.5 µm width; Ball 

et al., 2009). Two 16S rRNA gene phylotypes related to the thioautotrophic symbiont and 

another gammaproteobacterial species outside of the chemosynthetic marine symbiont 

clade have also been identified in the gills of Loripes orbiculatus (Espinosa et al., 2013). 

More recently, in-depth metagenomic and metatranscriptomic profiling of the Phacoides 

pectinatus gill microbiome reveals the presence and functions of three bacterial species, 

including the thioautotrophic symbiont species, a heterotrophic gammaproteobacterial 

Kistimonas-like species, and a heterotrophic Spirochaeta-like species (Chapter II). Similar 

-omics characterization of the gill microbiome in Ctena orbiculata also detect

thioautotrophic symbiont species and strain-level heterogeneity, as well as non-

thioautotrophic Endozoicomonas-like species (Chapter III).  
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Despite previous research efforts, hypotheses and conclusions on lucinid gill 

microbiome diversity and functions center on a small number of mostly seagrass-associated 

taxa. Furthermore, ecosystem-based studies integrating habitat geochemistry, host 

functions, lucinid gill microbiome composition, and gill microbiome functions are lacking. 

Similar approaches have been applied to study symbiosis in other marine organisms 

(Carney et al., 2007; Boutet et al., 2011; Sanders et al., 2013; Roder et al., 2015) and have 

the potential to advance our current understanding of lucinid-symbiont-environment 

interactions. Currently, ecosystem components and functions linking lucinid bivalves, their 

gill microbiomes, and their habitats remain under-sampled. As such, intra-population, 

inter-population, and inter-host species variations of host functions and lucinid gill 

microbiomes remain poorly understood. Additionally, contextual analyses of spatial and 

geochemical influences on gill microbiome diversity and/or host-symbiont gene expression 

have only been performed on a limited number of lucinid species (Chapter III). 

In this study, we focused on characterizing the gill microbiome composition, host-

microbiome functions, and possible lucinid-symbiont-environment connections within a 

Stewartia floridana (Conrad, 1833) population inhabiting seagrass beds at Bokeelia 

Fishing Pier, Pine Island, Florida, USA. Stewartia floridana has been associated with the 

oxygen-releasing roots of the seagrass species, Thalassia testudinum and Ruppia maritima, 

in sulfide-rich sediments (Fisher and Hand, 1984) along St. Joseph Bay, Florida, north of 

our sampling site. For this investigation, we first sought to determine the consistency of 

the S. floridana gill microbiomes across specimens and investigate whether the gill 

microbiomes consist of different strains and species of thioautotrophic symbionts and/or 
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other bacterial taxa, as previously reported in C. orbiculata (Chapter III) and P. pectinatus 

(Chapter II). Next, we compared gill microbiome functions in S. floridana with clade A 

thioautotrophic lucinid symbiont functions in seagrass-dwelling lucinid species Codakia 

orbicularis (König et al., 2016), Ctena orbiculata (Chapter III) and Loripes orbiculatus 

(Petersen et al., 2016), as well as gill microbiome functions of the clade C thioautotrophic 

symbiont, Kistimonas-like species, and/or Spirochaeta-like species in the mangrove-

dwelling lucinid species Phacoides pectinatus (Chapter II). Finally, to explore the 

potentially positive effects of seagrass coverage on host and microbiome gene expression, 

we compared metatranscriptomic profiles of S. floridana specimens in three separate 

quadrats covered with 100% Halodule wrightii (seagrass), 100% Syringodium filiforme 

(seagrass), and 80%-20% mix of sand and Halodule wrightii. 

Materials and methods 

Sample collection  

Sampling was conducted in 2014, pursuant to the Florida Fish and Wildlife 

Conservation Commission Special Activity License (SAL-14-1599SR). Stewartia 

floridana samples were collected from 30 cm diameter quadrats along three 50 m transects 

at Bokeelia Fishing Pier, Pine Island, Florida, beginning on 31 July 2014 (Goemann, 2015; 

Long, 2016). Geochemistry measurement methods are described in Goemann (2015) and 

Long (2016). Foot and gill dissection and fixation were performed within 30 minutes of 

collection in absolute ethanol (specimens labelled alphabetically DDG through NNG were 
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used for amplicon sequencing and specimens S26, S27, S28, S29, and S44 were used for 

metagenomic sequencing) or RNAlater (the remaining specimens) (Chapter II). Procedures 

in Chapter II were used for nucleic acids extraction and quantification and cDNA synthesis.  

 

Sequencing 
 

DNA and cDNA extracted from four S. floridana gill specimens and DNA from 

one S. floridana foot specimen was submitted to Duke Center for Genomic and 

Computational Biology (Durham, NC, USA) for Illumina MiSeq 2x250 bp sequencing 

using V2 chemistry (San Diego, CA, USA). 16S rRNA gene libraries from 21 other S. 

floridana gill tissues were prepared and sequenced at Clemson University (SC, USA) using 

methods in Chapter II. DNA extracted from one S. floridana gill sample was fragmented 

with NEBNext® dsDNA Fragmentase (New England Biolabs, Ipswich, MA, USA) and 

used for library preparation with NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® 

(New England Biolabs). This library was outsourced for Illumina HiSeq 2500 2x125 bp 

sequencing by Clemson University Genomics Institute (CUGI; Clemson, SC, USA). 

Molecular Research LP (Shallowater, TX, USA) prepared libraries for five other S. 

floridana gill samples using 20 uL of DNA (≤ 2.5 ng/µL total concentration) with the 

Nextera DNA Sample Preparation Kit (Illumina) and sequenced the libraries with the 

Illumina HiSeq 2500 2x100 bp paired-end platform. RNA extracted from eight S. floridana 

gill specimens was prepared for metatranscriptomic sequencing on Duke Center for 

Genomic and Computational Biology’s HiSeq 4000 2x150bp platform, as detailed in 
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Chapter II. Concentration and insert size determination for all sequenced libraries were 

performed using methods described in Chapter III. 

Data analysis 

Procedures described in Chapter II were used for processing 16S rRNA gene reads 

in Mothur v1.40.5 (Schloss et al., 2009). The OTU table was sub-sampled to 2,280 (the 

smallest four-digit number) sequences, which eliminated one cDNA sample. Phylogenetic 

analysis of 16S rRNA gene sequences (K2+G model) was performed as described in 

Chapter II. Metagenomic and metagenomic reads were trimmed using methods in Chapter 

II. Each sequenced metagenomic library was assembled and binned individually and reads

combined from all six libraries were also co-assembled and binned based on procedures in 

Chapter II. MAG read mapping, quality assessment, annotation, AAI and ANI calculation 

methods were as described in Chapter II. Phylogenomic analyses was performed using 23 

single-copy genes present in all gammaproteobacterial genomes and four genes present in 

all Spirochaetia genomes (Table 4.1), according to methods in Chapter II.  De novo 

metatranscriptomic read assembly, transcript-to-MAG mapping, transcript cluster (gene) 

quantification, cross-sample count normalization, and transcript annotation were 

performed using procedures in Chapter II. Differential gene analyses (p<0.05, >2 fold-

change) were performed separately on three batch-removed gene expression matrices of 

transcript clusters individually mapped to nucleotide sequences from the thioautotrophic 

symbiont MAGs, Spirochaeta-like MAG, and phylum Mollusca, using methods described 

in Chapter III. 



189 

qPCR 

16S rRNA gene fragments cloned from two S. floridana gill specimens showed 

100% identity in the V4 region to Ca. Thiodiazotropha-like OTU 1 and to qPCR primers 

1417F and 1580R that target the autotrophic symbiont in P. pectinatus (Chapter II).  The 

V4 sequence of Spirochaeta-like OTU2 were also identical to qPCR primers 15F and 226R 

that target the Spirochaeta-like species in P. pectinatus (Chapter II). As such, both sets of 

primers were used to amplify OTU1 and OTU2, according to the protocol detailed in 

Chapter II. Cloning, Sanger sequencing of cloned inserts, preparation of absolute 

quantification standards, qPCR, and data analyses steps were performed as described in 

Chapter II.  

Availability of data and materials 

All specimens are cataloged at the South Dakota School of Mines and Technology, 

Museum of Geology, with details provided through the iDigBio portal 

(https://www.idigbio.org/portal/recordsets/db3181c9-48dd-489f-96ab-a5888f5a938c). 

Sequence data are deposited at the National Center for Biotechnology Information 

(NCBI; NCBI Resource Coordinators, 2016) under the BioProject ID PRJNA451498. 

Accession numbers are listed in Table 4.2.   
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Table 4.1. Single-copy genes and their protein substitution models used in phylogenomic 

analyses. 

Reference genomes Gene Protein substitution model 
Gammaproteobacteria  dnaG LGF 

 frr LGF 
 infC LGF 
 nusA LGF 
 pgk LGF 
 rplC LG 
 rplD LGF 
 rplE LGF 
 rplF LG 
 rplM LG 
 rplN LGF 
 rplP LG 
 rpmA RTREVF 
 rpsB LGF 
 rpsC LGF 
 rpsE RTREVF 
 rpsI DAYHOFFF 
 rpsJ LGF 
 rpsK RTREVF 
 rpsM DAYHOFFF 
 rpsS RTREVF 
 smpB LG 
 tsf LGF 

Spirochaetia  pgk LGF 
 rplA LGF 
 rplK LGF 
 rpmA WAGF 
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Table 4.2. NCBI accession numbers of raw read and sequence data generated in this 

chapter. All data are linked to NCBI’s BioProject ID PRJNA451498. 

Database Accession numbers Dataset description 
Sequence Read 
Archive (SRA) 

SRX3040972-SRX3040986; 
SRX3040997-SRX3041004; 
SRX3041010- SRX3041014 

Amplicon-sequenced read data (V4 
region of 16S rRNA gene) 

SRX3040871-SRX3040876 
SRX3040972-SRX3040974 

Metagenomic read data 

SRR7949662-SRR7949669 Metatranscriptomic read data 

GenBank MH999890- MH999899 Sequences of top ten most abundant 
OTUs  

MF974564 Sequence of Spirochaeta-like OTU 281 

MF973039 Full-length 16S rRNA gene sequence 
from MAG of Spirochaetia sp. 

Genome NATX00000000- 
NAUC00000000  

MAGs of thioautotrophic symbionts 

NAUD00000000 MAG of Spirochaetia sp. 
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Results 

Site characterization 

Stewartia floridana abundances, vegetation cover, and geochemistry of the study 

site at Bokeelia Pier, Pine Island (Figure 4.1) were already assessed and described in detail 

(Goemann, 2015; Long, 2016). Briefly, live S. floridana specimens were observed in 

quadrats with 0%-100% coverage of Halodule wrightii, Syringodium filiforme, and/or 

Thalassia testudinum (Figure 4.1), and their abundances correlated positively with ranked 

percentages of seagrass coverage (Goemann, 2015). Previous analysis revealed no 

statistically significant differences in measured porewater geochemistry parameters across 

quadrats with 100% sand coverage, 100% seagrass coverage and mixed sand-seagrass 

coverage (Long, 2016).  
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Figure 4.1. Map showing location of the sampling site at Bokeelia Pier, Florida, USA and 

sampling scheme (insert; satellite data: © Esri).  Quadrats in insert were identified by 

transect IDs (x-axis) and distance to shore (y-axis). Quadrats (circles) labelled with “G” 

were characterized with geochemical methods, while quadrats where gill specimens were 

collected sequencing were labelled with “16S” (amplicon sequencing), “MG” 

(metagenomic sequencing) and/or “MG” (metatranscriptomic sequencing). The size of 

each circle is proportionate to the percentage of sand or vegetation coverage of the quadrat. 

Gill microbiome diversity 

The 16S rRNA gene V4 region in 25 S. floridana gill DNA samples, three gill 

cDNA samples, and one foot specimen (DNA) were sequenced and resulted in 87-100% 

Good’s coverage values (Good, 1953) (Figure 4.2). All but two gill DNA and cDNA 

samples consisted of >50% relative abundances of a Ca. Thiodiazotropha-like operational 

taxonomic unit (OTU) affiliated with clade A thioautotrophic lucinid symbionts (Figures 

4.2 and 4.3). Metagenomic sequencing of six S. floridana gill specimens generated 

gammaproteobacterial MAGs with 16S rRNA gene V4 sequences identical to the 

predominant Ca. Thiodiazotropha-like OTU1 (Table 4.3). These MAGs shared ≥97% 

pairwise average nucleotide identity (pANI), ≥98 pairwise average amino acid identity 

(pAAI), and 74±13% orthologous fraction (OF) with each other. The MAGs were most 

closely related and shared 88±1% pANI, 93±0.3% pAAI, and 77±10% OF to the Loripes 

orbiculatus symbiont, Ca. Thiodiazotropha endoloripes (Petersen et al., 2016), also 

belonging to clade A (Figure 4.3b). Based on the 85-90% pAAI species boundaries defined 



194 

in Rodriguez-R and Konstantinidis (2014), the thioautotrophic S. floridana symbiont likely 

belongs to the same species as Ca. Thiodiazotropha endoloripes. The <90% ANI and <95% 

AAI values shared between the S. floridana symbiont and Ca. Thiodiazotropha endoloripes 

suggest that both could be different strains of the same species. Because the existing name 

of this symbiont species, Ca. Thiodiazotropha endoloripes, does not accurately reflect the 

range of lucinid host species this symbiont can inhabit, we propose an amendment of the 

species name from Ca. Thiodiazotropha endoloripes to Ca. Thiodiazotropha 

endolucininae, where “endo” (“within”) refers to the intracellular location of the gill 

symbiont and “Lucininae” refers to members of the Lucininae clam subfamily, including 

Loripes orbiculatus and Stewartia floridana, which, to date, are exclusively associated with 

this symbiont species. Candidatus Thiodiazotropha endolucininae spp. shared 70±2% 

pANI, 90±0% pAAI, and 33±0% OF with the free-living gammaproteobacterial species 

Sedimenticola selenatireducens DSM 17993 that inhabits estuarine sediments (Benson et 

al., 2014; unpublished GenBank accession ATZE01000000). Members of Ca. 

Thiodiazotropha endolucininae formed a sister group to another clade comprising other 

clade A symbionts, including Ca. Thiodiazotropha endolucinida and Ca. Thiodiazotropha 

endolucinidaduo associated with Codakia orbicularis (Ca. Thiodiazotropha endolucinida; 

König et al., 2016) and Ctena orbiculata symbionts (both species; Chapter III; Figure 

4.3b). Average pANI, pAAI, and OF values shared between MAGs of Ca. Thiodiazotropha 

endolucininae and the clade comprising Ca. Thiodiazotropha endolucinida and Ca. 

Thiodiazotropha endolucinidaduo were 73±4%, 74±0.2%, and 63±7%, respectively.  
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Figure 4.2. (A) Relative abundances and Good’s coverages of subsampled bacterial OTUs 

in S. floridana gill DNA, gill cDNA and foot DNA (VF) samples. (B) qPCR copy numbers 

and standard error bars of Ca. Thiodiazotropha-like OTU1 and Spirochaeta-like OTU2 in 

S. floridana gill DNA and cDNA samples. (C) Percentages of metagenomic and

metatranscriptomic reads mapped to the representative Ca. Thiodiazotropha lucininae 

MAG (S27) and the Spirochaeta-like MAG. 

Besides the thioautotrophic symbiont, 332 Spirochaeta-like OTUs were also 

predicted in S. floridana gill specimens. The most abundant of these, OTU2, occurred in 

18 of 25 amplicon sequenced gill specimens at average 0.7±1% relative abundance and in 

all three cDNA samples at average 0.3±0.2% relative abundance (Figure 4.2a). From the 

S. floridana gill co-assembly, we binned a low-quality ~22% complete Spirochaeta-like

MAG without a 16S rRNA gene sequence and recovered a separate 7,016 bp unbinned 

contig 91% identical to OTU2 and 100% identical to another Spirochaeta-like OTU 281 

occurring at 0.0004 relative abundance in gill specimen CCG in the V4 region. From the 

gill metatranscriptomes, we also identified a transcript 99% identical to OTU2 within a 

transcript cluster expressed at average 0.8±0.7 trimmed mean of M-values normalized 

transcripts per million (TPM). 
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Figure 4.3. (A) Bootstrap consensus maximum likelihood tree based on the 16S rRNA 

gene sequence and (B) phylogenomic tree based on 23 marker genes sequenced from Ca. 

Thiodiazotropha endolucininae in S. floridana (red text), in relation to thioautotrophic 

lucinid symbionts (blue text), marine symbionts and gammaproteobacterial free-living 

species. GenBank (Benson et al., 2014) accession numbers are indicated in square brackets. 

The outgroup used in both trees was Desulfurobacterium thermolithotrophum from phylum 

Aquificae.  Tree nodes show bootstrap values of >70% (A) and approximate likelihood-

ratio test (aLRT) SH-like support values (B; Anisimova and Gascuel, 2006). The scale bar 

in B indicates 0.2 substitution per site. 
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On the 16S rRNA gene tree, sequences of Spirochaeta-like OTU2, OTU281, and 

related sequences in the gill metatranscriptomes and metagenomes were placed in a distinct 

monophyletic clade together with the Spirochaeta-like species in the P. pectinatus gill 

microbiome (Chapter II) at 91-95% identity in the V4 region, 69% pANI, 67% pAAI, and 

58% OF, as well as with proposed spirochete endosymbionts in Olavius gutless marine 

worms (Blazejak et al., 2005; Dubilier et al., 1999) at 90-94% identity in the V4 region 

(Figure 4.4a). Their common closest free-living 16S rRNA gene relatives include 

Spirochaeta aurantia from an Austrian freshwater lake at 81-89% identity in the V4 region 

(Hahn et al., 2004) and S. halophila from the black mud of an Egyptian saline solar lake at 

83% identity in the V4 region (ATCC® 29478™; Figure 4.4a). The closest free-living 

genomic relative to the Spirochaeta-like MAG was likely Spirochaeta thermophila (no 

assignable pANI value, 50% pAAI, and 69% OF) (Figure 4.4b). qPCR assays successfully 

amplified sequences of Ca. Thiodiazotropha-like OTU1 and Spirochaeta-like OTU2 in a 

subset of matched cDNA and DNA samples from amplicon-sequenced gill specimens 

(Figure 4.2b). There were 13±25 million (38±16%) paired-end metagenomic reads and 2±2 

million (5±2%) paired-end metatranscriptomic reads mapped to the representative Ca. 

Thiodiazotropha-like MAG S27, whereas 0.2±0.4 million (0.3±0.4%) metagenomic reads 

and 1,434±959 (0.004±0.002%) transcriptomic reads mapped to the Spirochaeta-like 

MAG (Figure 4.2c).  
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Figure 4.4. Unrooted (A) bootstrap consensus maximum likelihood tree based on 16S 

rRNA gene sequences and (B) phylogenomic tree based on four marker genes from 

Spirochaeta-like species sequenced in S. floridana (red text), in relation to spirochete 

species associated with lucinid clams (blue text), spirochete symbionts in marine species 

and free-living species. GenBank (Benson et al., 2014) accession numbers are indicated in 

square brackets. Tree nodes show bootstrap values of >70% (A) and approximate 

likelihood-ratio test (aLRT) SH-like support values (B; Anisimova and Gascuel, 2006). 

The scale bar in B indicates 0.5 substitution per site. 
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Thioautotrophic symbiont functions 

The 35 most abundantly expressed protein-coding transcript clusters mapped to 

MAGs of Ca. Thiodiazotropha endolucininae associated with S. floridana included heat 

shock (average 499±513 TPM), transport (average 151±233 TPM), transferase (average 

69±80 TPM), transcriptional regulation (average 57±99 TPM), and protein degradation 

(average 18±9 TPM) functions, among others (Figure 4.5a). Growth-related genes, such as 

those encoding DNA-directed RNA polymerase subunit alpha/50S ribosomal protein L4 

(average 7±9 TPM) and RNA polymerase factor sigma-54 (average 6±4 TPM), were also 

expressed by the symbiont. Thioautotrophy-related genes encoding the dissimilatory sulfite 

reductase alpha subunit (DsrA; average 57±49 TPM), sulfurtransferases (average 15±10 

TPM), nickel-dependent hydrogenase large subunit (average 14±13 TPM), large chain 

form IAq ribulose bisphosphate carboxylase (RuBisCO; average 34±40 TPM), and 

fructose-bisphosphate aldolase (average 27±25 TPM) were also among the most 

abundantly expressed in the bacterial transcriptomes (Figure 4.5a). Candidatus 

Thiodiazotropha endolucininae can potentially derive energy through sulfur oxidation 

(average 14±25 TPM), hydrogen oxidation (average 3±7 TPM), and C1-compound 

oxidation (average 1±1 TPM) in S. floridana (Figure 4.6a). Energy obtained is likely used 

for carbon (average 21±31 TPM) and nitrogen fixation (average 1±2 TPM; Figures 4.7-

4.8). Besides autotrophy, mixotrophy-related genes participating in the pentose phosphate 

pathway (average 5±5TPM), glycolysis (average 16±19 TPM), TCA cycle (average 3±3 

TPM), and organic compound transport (average 7±6 TPM) were also identified in the 

bacterial MAGs and transcriptomes (Figure 4.7a). In S. floridana, Ca. Thiodiazotropha 
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endolucininae could potentially assimilate nitrate and nitrite (average 2±2 TPM), as well 

as urea (average 2±4 TPM) for nitrogen (Figure 4.8). The species is genetically capable of 

aerobic respiration with cbb3 and aa3 type terminal oxidases (average 5±8 TPM) and 

denitrification (average 3±4TPM) (Figure 4.8). Candidatus Thiodiazotropha endolucininae 

encoded and expressed genes related to type I (average 1±2 TPM), type II (average 

4±5TPM), and type VI (average 4±5 TPM) secretion systems in S. floridana (Figure 4.6a). 

Biosynthesis genes for all twenty essential amino acids (average 5±8TPM), as well as 

vitamins B1 (average 3±2 TPM), B2 (average 2±2 TPM), B6 (average 3±2 TPM), B7 

(average 3±2TPM), and B9 (average 3±2 TPM) were detected in the bacterial MAGs and 

transcriptomes (Figure 4.6b). The species also encoded and expressed genes involved in 

flagellar (average 3±4 TPM), chemotaxis (average 1±1 TPM), iron uptake (average 2±3 

TPM), and phosphate uptake (average 2±3 TPM). Candidatus Thiodiazotropha 

endolucininae transcriptomes sequenced from S. floridana specimens collected from 

quadrats with different vegetation coverages did not show clear quadrat-specific clustering 

patterns on their gene expression count matrix based on principal component analysis 

(PCA; Figure 4.9a). Only four differentially expressed (DE; p<0.05, ≥2 fold-change) genes 

were predicted across these quadrats by voom (Law et al., 2014). These included two 

proteins with domains of unknown functions, a chemotaxis protein (CheR)-encoding 

transcript (upregulated in quadrat with 100% H. wrightiii coverage compared to quadrat 

with 100% Syringodium filiforme coverage), and a glycine cleavage system 

aminomethyltransferase (GcvT)-encoding transcript (upregulated in quadrat with 100% S. 

filiforme compared to quadrat with 100% H. wrightiii) (Figure 4.10). 
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Figure 4.5. Log2-transformed TMM-normalized TPM of gene products of the 35 most 

abundantly expressed protein-coding transcript clusters mapped to MAGs of the (A) 

thioautotrophic S. floridana symbiont (Ca. Thiodiazotropha endolucininae) and (B) 

Spirochaeta-like species.  Transcript clusters with zero TPM values are represented as 

white cells. ‘*’ in (A) denotes a multi-mapping transcript cluster. Abbreviations: DUF, 

domain of unknown function; PLP, pyridoxal-5'-phosphate; SDR, short-chain 

dehydrogenases/reductases; Tus, sulfur carrier proteins homologous to some Dsr proteins; 

SAM, S-adenosyl-L-methionine; ABC, ATP-binding cassette; ATP; adenosine 

triphosphate; IS, insertion sequence; TRAP, tripartite ATP-independent periplasmic 

transporter; Dct, dicarboxylate transport proteins; Hsp, heat shock protein; FtsH, ATP-

dependent zinc metalloprotease; NADH, reduced nicotinamide adenine dinucleotide; 

CRISPR, clustered regularly-interspaced short palindromic repeats; UDP, uridine 

diphosphate.  
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Figure 4.6. Log2-transformed TMM-normalized TPM of gene products of (A) lithotrophy 

and secretion system-related and (B) amino acids and B vitamins-related transcript clusters 

mapped to the thioautotrophic S. floridana symbiont (Ca. Thiodiazotropha endolucininae). 

Transcript clusters with zero TPM values are represented as white cells. Abbreviations: 

Sox, sulfur oxidation enzyme; NADPH, reduced nicotinamide adenine dinucleotide 

phosphate; ATP, adenosine triphosphate; Gsp, general secretory pathway protein; Sec, 

secretory export protein; Tss, type VI secretion system proteins; VgrG, valine-glycine 

repeat protein G; ClpB, caseinolytic peptidase B protein homolog. 
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Figure 4.7. Log2-transformed TMM-normalized TPM of gene products of carbon 

metabolism-related transcript clusters mapped to the (A) thioautotrophic S. floridana 

symbiont (Ca. Thiodiazotropha endolucininae) and (B) Spirochaeta-like species. 

Transcript clusters with zero TPM values are represented as white cells.Abbreviations: 

PQQ, pyrroloquinoline-quinone; NADP, nicotinamide adenine dinucleotide phosphate; 

FolD, bifunctional methylene-H4F dehydrogenase/methenyltetrahydrofolate 

cyclohydrolase; PEP, phosphoenolpyruvate; GTP, guanosine triphosphate; DUF, domain 

of unknown function; GNAT, GCN5-related N-acetyltransferase; TRAP, tripartite ATP-

independent periplasmic transporter; ABC, ATP-binding cassette; Dct, dicarboxylate 

transport proteins; ATP; adenosine triphosphate; UDP, uridine diphosphate.   
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Figure 4.8. Log2-transformed TMM-normalized TPM of gene products of nitrogen 

metabolism-related transcript clusters mapped to the thioautotrophic S. floridana symbiont 

(Ca. Thiodiazotropha endolucininae) and Spirochaeta-like species. Transcript clusters with 

zero TPM values are represented as white cells. Abbreviations: nif, nitrogen fixation gene 

cluster; NADH, reduced nicotinamide adenine dinucleotide; FMN; flavin mononucleotide; 

Sec, secretory export protein; NADP, nicotinamide adenine dinucleotide phosphate; SMR, 

small multidrug resistance; ABC, ATP-binding cassette; ATP; adenosine triphosphate. 

Figure 4.9. Principal component analyses of count matrices of transcript clusters mapped 

to genes from (A) Ca. Thiodiazotropha-like species, (B) Spirochaeta-like species, and (C) 

Mollusca species. The count matrices were processed to filter out genes with <10 mapped 

fragments, eliminate batch effects and normalized to log2 counts per million (CPM). 
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Figure 4.10. Differentially expressed (p<0.05, fold change≥2) genes mapped to Ca. 

Thiodiazotropha endolucininae, Spirochaeta-like species, and Mollusca species between 

S. floridana gill specimens collected from quadrats covered with 80% bare sand and 20%

Halodule wrightii (T6/25m), 100% Halodule wrightii (T7/15m), and 100% Syringodium 

filiforme (T7/40m). Abbreviations: DUF, domain of unknown function; ABC, ATP-

binding cassette; ATP; adenosine triphosphate; UDP, uridine diphosphate. 
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Spirochaeta-like species functions 

Genes for the transport of sugar (average 1±1 TPM), dicarboxylate acids (average 

0.3±0.4 TPM), branched chain amino acids (average 0.2±0.6 TPM), phosphate (average 

0.3±0.8 TPM), sodium (average 0.2±0.2 TPM), and other unspecified substrates (average 

0.5±1 TPM) were among the 35 most highly expressed protein-coding transcript clusters 

mapped to the Spirochaeta-like species MAG (Figure 4.5b).  Among these, dicarboxylate 

acid- and phosphate transport (PhoU)-related transcripts and their corresponding sequences 

in the Spirochaeta-like species MAGs had homologs belonging to deltaproteobacterial 

species, which suggests that they were binned incorrectly or horizontally transferred 

(Figure 4.5b). The PhoU transcript cluster was also homologous to a similar protein in the 

P. pectinatus-associated spirochete (Chapter II). A growth-related transcript cluster

encoding large subunit ribosomal proteins and three other transcript clusters encoding 50S 

ribosomal proteins were also expressed in the species at average 0.06±0.06 TPM and 

0.03±0.06 TPM, respectively. Carbon metabolism-related genes expressed in this species 

were involved in the pentose phosphate pathway (average 0.1±0.3 TPM), glycolysis 

(average 0.03±0.04 TPM), pyruvate metabolism (average 0.2±0.9 TPM), citric acid cycle 

(average 0.09±0.2 TPM), organic acids transport (average 0.2±0.3 TPM), glycogen 

metabolism (average 0.6±0.2 TPM), ribose transport (average 0.2±0.03 TPM), xylose 

transport (average 0.2±0.2 TPM), and deoxyribose and deoxynucleoside catabolism 

(average 0.09±0.2 TPM; Figure 4.7b). Besides branched chain amino acids, the 

Spirochaeta-species possibly imports peptides (average 0.06±0.1 TPM) for nitrogen and 

assimilates ammonium using glutamate synthase (average 0.1±0.2 TPM; Figure 4.8). The 
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Spirochaeta-like species MAG contained genes for aerobic respiration with an unknown 

type cytochrome c oxidase and anaerobic respiration with an unknown electron acceptor, 

but these genes were not detected in the species’ transcriptomes. The species encoded 

and/or expressed genes for the biosynthesis of proline (not in transcriptomes), alanine 

(average 0.09±0.2 TPM), leucine (average 0.2±0.3 TPM), threonine and homoserine 

(average 0.03±0.09 TPM), and aromatic compounds (not in transcriptomes). B vitamin 

biosynthesis potential in the Spirochaeta-like species included vitamins B1 (average 

0.03±0.05 TPM), B6 (average 0.03±0.05 TPM), B7 (average 0.07±0.02 TPM), B9 (average 

0.03±0.5 TPM), and B12 (average 0.03±0.09 TPM).  The Spirochaeta-like species encoded 

components of the phosphate operon, among which the phosphate regulon sensor protein 

PhoR was expressed at average 0.02±0.07 TPM. Like transcriptomes of the Ca. 

Thiodiazotropha-like species, the Spirochaeta-like species transcriptomes’ gene count 

matrix did not show apparent quadrat and vegetation-specific clustering patterns on the 

PCA plot (Figure 4.9b). A total of 128 genes, including 103 predicted by voom (Law et al., 

2014) and 25 predicted by both voom and ROTS (Suomi et al., 2017), were differentially 

upregulated (p<0.05, ≥2 fold-change) in the 80% sand + 20% Halodule wrightii-covered 

quadrat compared to the 100% H. wrightiii-covered quadrat. The 25 commonly predicted 

DE genes were related to carbon, nitrogen, phosphate (two-component sensor histidine 

kinase mapped to phosphate regulon sensor protein PhoR), transport (sodium, glutamate 

and an unknown substrate), vitamin B12 (cobalamin) synthesis, histidine synthesis 

(histidinol dehydrogenase), transcriptional regulation, and protein degradation functions 

(Figure 4.10). Another incorrectly binned/horizontally-transferred transcript cluster 
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encoding a C4-dicarboxylate ABC transporter permease homologous to various 

Deltaproteobacteria species was differentially upregulated in the 100% H. wrightiii-

covered quadrat compared to the 100% S. filiforme-covered quadrat (Figure 4.10). 

Host functions 

The 35 most highly expressed protein-coding transcript clusters mapped to 

Swissprot (The UniProt Consortium, 2015)-annotated molluscan sequences were involved 

in aerobic respiration (cytochrome c oxidase; average 383±276 TPM), carbonic anhydrase 

(average 130±54 TPM), actin (average 98±97 TPM), tubulin (average 55±66 TPM), 

enolase (average 50±31 TPM), ribosomal protein (average 47±45 TPM), paramyosin 

(average 27±19 TPM), and  tropomyosin (average 18±13 TPM) functions (Figure 4.11a). 

Accordingly, cellular component gene ontology (GO; Harris et al., 2004) terms associated 

with actomyosin and myosin complexes, biological process GO terms associated with actin 

filament polymerization and movement, and molecular function GO terms related to 

microtubule motor activity and actin binding were among the 35 most frequently annotated 

from Mollusca-related transcript clusters (Figure 4.11b-d). A transcript cluster encoding 

hemoglobin 1 (average 32±15 TPM) and the cellular component GO term associated with 

the hemoglobin complex were the twelfth and 25th most abundant in the Mollusca-related 

transcriptomes, respectively (Figure 4.11a-b). In contrast, other transcript clusters 

encoding hemoglobin 3 (average 0.2±0.1 TPM) and globin (average 0.8±1 TPM) were 

expressed at >30x lower TPMs. The molecular function GO term for lysozyme activity 

was the 32nd most abundant in Mollusca-related transcript clusters (Figure 4.11d), and 
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genes encoding lysozymes 1 (average 0.8±0.5 TPM) and 3 (average 4±6 TPM) 

homologous to molluscan species were also identified in the gill metatranscriptomes. 

Other abundant Mollusca-related GO terms were associated with the nematocyst, spindle, 

cell junction and vesicular cellular compartments (Figure 4.11b), as well as sensory 

perception, regulation of cell proliferation, regulation of catabolic processes, and 

neurotransmitter biological processes (Figure 4.11c). The most frequently annotated 

Mollusca-related molecular function GO terms included binding functions for a variety of 

substrates such as phospholipids, neurotransmitters, retinoid, phosphatidylinositol-4,5-

bisphosphate, peptide, nucleotide/nucleoside, histone, 11-cis retinal, signaling receptor, 

and hormone, along with channel activity, amylase activity, antioxidant activity, and 

hydrolase activity functions (Figure 4.11d). Like gene expression matrices of the Ca. 

Thiodiazotropha-like and Spirochaeta-like species, the transcript cluster count matrix of 

Mollusca-related genes did not show quadrat- and vegetation-specific grouping through 

PCA analysis (Figure 4.9c). Only five Mollusca-related DE genes (p<0.05, ≥2 fold-change) 

were predicted across quadrats with different vegetation coverages (Figure 4.10). Of these, 

transcript clusters encoding a putative C1q domain containing protein MgC1q75 and 

asialoglycoprotein receptor 2-like were upregulated, while an amylase-encoding gene was 

predicted by two algorithms to be downregulated in the 100% H. wrightiii-covered quadrat 

compared to the 100% S. filiforme-covered quadrat (Figure 4.10). Genes encoding 

paramyosin and mitochondrial aldehyde dehydrogenase were differentially upregulated in 

the 80% sand and 20% H. wrightiii-covered quadrat compared to the 100% S. filiforme-

covered quadrat.  
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Figure 4.11. (A) Log2-transformed TMM-normalized TPM of gene products of the 35 

most abundantly expressed protein-coding transcript clusters mapped to species from the 

phylum Mollusca and top 35 most represented gene ontology terms (Harris et al., 2004) in 

the (B) cellular component, (C) biological processes and (D) molecular functions 

categories among mollusca-related transcript clusters. Transcript clusters with zero TPM 

values in (A) are represented as white cells.  

Discussion 

Despite experimental and sequencing-based studies on various aspects of the 

lucinid-bacteria symbiosis, little is known about the taxonomic and functional composition 

of lucinid gill microbiomes and their possible interactions with their hosts and their 

environments. In this study, we first compared similarities and differences of the Stewartia 

floridana gill microbiome with gill microbiomes of other lucinid species to evaluate 1) 

whether the thioautotrophic symbiont is homogenous in the gill community, and 2) whether 

other bacterial taxa are consistently present in the S. floridana gill microbiomes. We also 

assessed differences in host and symbiont gene expression across gill specimens sampled 

from three separate quadrats covered with 100% H. wrightii, 100% Syringodium filiforme 

and 80%-20% sand-H. wrightii mix. Like the Codakia orbicularis (genomes assembled  

from three individuals; n=3; Ca. Thiodiazotropha endolucinida; König et al., 2016), L. 

orbiculatus (n=5; Ca. Thiodiazotropha endolucininae; Petersen et al., 2016), and P. 

pectinatus (n=13; Ca. Sedimenticola endophacoides; Chapter II) gill microbiomes 

comprising monospecific clade A or clade C thioautotrophic symbionts, the S. floridana 
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gill microbiomes (n=6) harbored a homogenous thioautotrophic symbiont (Ca. 

Thiodiazotropha endolucininae) belonging to clade A, contrasting the higher level of 

thioautotrophic symbiont species and strain diversity observed in Ctena orbiculata (n=8; 

Ca. Thiodiazotropha endolucinida and Ca. Thiodiazotropha endolucinidaduo; Chapter III). 

Like gill microbiomes of Euanodontia ovum (Ball et al., 2009), Lucinoma aff. kazani 

(Duperron et al., 2007) and P. pectinatus (Chapter II), a Spirochaeta-like species that 

clustered with spirochetes in P. pectinatus and Olavius gutless marine worms (Blazejak et 

al., 2005; Dubilier et al., 1999) was identified in 72% of amplicon sequenced gill 

specimens (OTU2), all metagenomic gill libraries, and all metatranscriptomic gill libraries. 

Gene expression profiles of S. floridana and its Ca. Thiodiazotropha-like thioautotrophic 

symbiont were consistent across quadrats with different vegetation coverages, although a 

higher number of metabolic genes in the Spirochaeta-like species were differentially 

upregulated in the 80% sand + 20% Halodule wrightii-covered quadrat compared to 

quadrats entirely covered with Halodule wrightii. 

The presence of monospecific thioautotrophic symbiont communities in S. 

floridana, as well as other lucinid species, including Codakia orbicularis (König et al., 

2016), L. orbiculatus (Petersen et al., 2016), and P. pectinatus (Chapter II), suggests a 

strictly “one symbiont in one host” relationship in these species. This contrasts the “one 

host-multiple symbiont strains/species” interactions described in Ctena orbiculata, in 

which individuals can harbor more than one closely related thioautotrophic symbiont strain 

and/or species (Chapter III). Because lucinid bivalves acquire their symbionts 

environmentally, observed inter-host differences in thioautotrophic gill symbiont diversity 
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patterns may be related to symbiont recognition and acquisition mechanisms, lucinid 

species diversity in the habitat, or bacterial diversity of taxonomically and functionally 

similar gammaproteobacterial strains and species in lucinid habitats.  These possibilities 

can be further tested with cross-infection experiments (Gros et al., 2003b; Brissac et al., 

2009; Caro et al., 2009), diversity analyses of environmental samples at the study site, and 

with additional sampling and comparisons of previously studied lucinid species from 

different sites and habitats. 

With the increasing number of lucinid symbiont MAGs assembled to date, in this 

study, we were able to construct a robust phylogenomic tree based on 23 single-copy 

marker genes shared across these MAGs for higher species- and strain-level resolution. 

Our phylogenomic analysis of lucinid symbionts revealed four sequence-discrete 

phylogenomic clades, with each clade likely corresponding to a single species. The four 

proposed lucinid symbiont species, Sedimenticola endophacoides (Chapter II), Ca. 

Thiodiazotropha endolucinida (König et al., 2016; Chapter III), Ca. Thiodiazotropha 

endolucinidaduo (Chapter III), and Ca. Thiodiazotropha endolucininae (Petersen et al., 

2016; this study) belong to two genera. So far, the genus Ca. Thiodiazotropha comprised 

clade A lucinid symbionts (classification scheme in Brissac et al., 2011), while the genus 

Sedimenticola includes only the clade C P. pectinatus symbiont. Although clade A lucinid 

symbionts were previously thought to belong to a single species based on their 16S rRNA 

gene sequences (Brissac et al., 2011), our metagenomic studies on thioautotrophic 

symbionts in C. orbiculata (Chapter III) and S. floridana (this study) uncovered a higher 

level of species diversity within clade A that could not have been resolved by the slow-
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evolving 16S rRNA gene. Further, our phylogenomic analysis supports previous 16S 

rRNA gene-based findings that clade A lucinid symbiont species could be shared across 

different host taxa (Gros et al., 2003b; Brissac et al., 2011; Brissac et al., 2016). This raises 

interesting questions on lucinid-microbiome-environment co-evolution, specifically, on 

the drivers of currently observed host-symbiont association patterns and the variability of 

these patterns across habitats. These can be investigated in the future with more extensive 

sequencing of lucinid symbionts across diverse and shared host taxa in different 

environments. These results also suggest that species naming schemes for lucinid 

symbionts, especially for taxonomically diverse clade A lucinid symbionts, have to take 

“one symbiont:multiple hosts” relationships into account. As such, we propose to replace 

the existing name of the L. orbiculatus and S. floridana symbiont species, Ca. 

Thiodiazotropha endoloripes (Petersen et al., 2016), which inaccurately implies specific 

and exclusive association with Loripes spp., to the new name, Ca. Thiodiazotropha 

endolucininae, to reflect the general association of this symbiont species with lucinids from 

the Lucininae subfamily which includes but may or may not be limited to L. orbiculatus 

and S. floridana. 

Like L. orbiculatus, S. floridana is commonly associated with seagrass beds and 

their chemosynthetic symbionts likely engage in thioautotrophic and diazotrophic 

functions that can benefit their surrounding seagrass habitats (Fisher and Hand, 1984; 

Meyer et al., 2008; van der Heide et al., 2012; Petersen et al., 2016; Sanmartí et al., 2018). 

Closely related thioautotrophic symbiont strains from both bivalve species were also 

genetically capable of hydrogen oxidation, mixotrophy, assimilatory and dissimilatory 
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denitrification, urea decomposition, and aerobic respiration. Unlike the L. orbiculatus 

symbiont, Ca. Thiodiazotropha endoloripes (Petersen et al., 2016), however, the 

thioautotrophic S. floridana symbiont encoded and expressed genes from a conserved C1 

compound oxidation gene cluster previously described in thioautotrophic gill symbionts 

from Codakia orbicularis and Ctena orbiculata (Chapter III). This metabolic difference 

could reflect symbiont adaptation or host selection for C1 compound oxidation functions 

that could be related to C1 compound concentrations in certain habitats. However, the 

concentrations of C1 compounds including methanol, formaldehyde, and formate were not 

measured in our study site. Hence, we currently do not know how the availability of C1 

compounds in lucinid habitats affects the presence, absence and activity of C1 compound 

oxidation genes in lucinid symbionts. Low levels of methane were previously detected in 

porewaters from the Ctena orbiculata sampling site where C1-oxidizing thioautotrophic 

symbionts were sequenced and posited to be plant-derived (Chapter III). As with 

mutualisms of methylotrophic bacteria with strawberry plants and seagrasses (Abanda-

Nkpwatt et al., 2006; Crump et al., 2018), C1-oxidizing lucinid endosymbionts could 

remove phytotoxic methanol from their surrounding seagrasses as part of their multi-

faceted facilitative interactions with their hosts and their habitats (Chapter III). Controlled 

aquarium experiments will be useful in validating components of lucinid-microbiome-

habitat interactions and establishing causal connections between host-symbiont functions 

and habitat modifications. 

The low abundances of one or more closely-related Spirochaeta-like species 

consistently detected in the S. floridana gill microbiome corroborate previous reports of 
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spirochetes associated with marine organisms. In diverse marine ecosystems, spirochete 

species exist as free-living forms where they cycle sulfur and carbon compounds (Harwood 

and Canale-Parola, 1984; Breznak and Warnecke, 2008; Stephens et al., 2008; Dong et al., 

2018) and host-associated forms where they inhabit tissues of red corals (van de Water et 

al., 2016), the dorsal surface of the vent polychaete Alvinella pompejana (Campbell and 

Cary, 2001), the cuticle-epidermis space in Olavius gutless marine worms (Blazejak et al., 

2005; Dubilier et al., 1999), crystalline styles in the digestive tracts of marine bivalves 

(Husmann et al., 2010), and gills of lucinid bivalves (Duperron et al., 2007; Chapters II 

and Chapter III). Specifically, in lucinid bivalves, spirochetes have been reported in the 

gills of Lucinoma aff. kazani (Duperron et al., 2007), Euanodontia ovum (Espinosa et al., 

2013), P. pectinatus (Chapter II), as well as a foot specimen of Ctena orbiculata (Chapter 

III). Despite their widespread distribution, the roles of spirochete species in marine 

environments remain largely unknown. Spirochaeta-like OTU2 and OTU281-associated 

species in S. floridana were distantly related to the Spirochaeta-like species in the P. 

pectinatus gill microbiome and both formed sister groups to intracellular spirochete species 

in Olavius gutless marine worms (Blazejak et al., 2005; Dubilier et al., 1999).  In 

comparison, spirochetes identified in L. aff. kazani (Duperron et al., 2007) and the foot of 

C. orbiculata (Chapter III) did not belong to this clade and likely have different

evolutionary origins. Currently, the phylogenetic positions of the L. aff. kazani-associated 

(Duperron et al., 2007) and C. orbiculata-associated (Chapter III) spirochete species in 

relation to the S. floridana-associated Spirochaeta-like species could not be resolved using 

the V4 region of the 16S rRNA gene. Spirochaeta-like MAGs and transcriptomes in S. 
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floridana and P. pectinatus (Chapter II) contained genes that use sugars and other carbon 

sources not typically used by the thioautotrophic symbionts. The S. floridana-associated 

Spirochaeta-like MAG and transcriptomes also included genes for the transport of 

branched chain amino acids and peptides. The presence and expression of these genes 

suggest potential scavenging, nitrogen cycling, and carbon cycling roles of spirochete 

species in the gills of S. floridana. DE analyses of Spirochaeta-like transcript clusters 

revealed upregulation of carbon, nitrogen, phosphate, transport, and synthesis functions in 

the 80% sand + 20% Halodule wrightii-covered quadrat compared to the 100% Halodule 

wrightiii-covered quadrat, suggesting that these species could also be actively metabolizing 

substrates originating from the sediments. Because the prevalent Spirochaeta-like OTU 2 

were not detected in every sequenced S. floridana gill specimen, we speculate that these 

species are facultative members of the gill microbiome.  As with thioautotrophic lucinid 

symbionts, the spirochete species could be acquired by the clams from the environment. 

The latter could be sediment-dwelling bacteria trapped or enriched in the host gills that 

participate in commensal, amensal, parasitical or mutualistic relationships with the host, 

thioautotrophic symbionts and/or the surrounding habitat.  

Despite the presence of spirochete-related sequences in gill microbiomes of S. 

floridana, in-depth analyses of the spirochetes’ functions and differential gene expression 

were limited by the incompleteness of the Spirochaeta-like MAG, low numbers of 

metatranscriptomic reads mapping to the Spirochaeta-like MAG, and other general 

limitations pertaining to the rapid changes in gene expression before tissue fixation and 

quality of transcript annotations discussed at length in Chapter II. The same limitations 
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also apply to metagenomic and metatranscriptomic analyses of thioautotrophic symbiont 

functions in S. floridana. Additionally, as previously discussed in Chapter II, microscopic 

evidence is necessary to determine the location of these spirochete species in relation to 

the thioautotrophic symbionts in the gills for further inferences on species-species 

interactions.  Microbiome analyses of sediment samples from the sampling sites, which 

were not performed in this study, would also enable meaningful comparisons of the relative 

abundances and phylogenetic diversities of the horizontally acquired thioautotrophic 

symbiont and spirochete species within and outside the gill environment. Additional 

sequencing and experimental efforts focusing on free-living and host-associated spirochete 

species in marine ecosystems would also greatly contribute to our understanding of their 

phylogeny, functions and ecological roles in general.  

DE analyses of Ca. Thiodiazotropha-like and host-related genes from gill 

specimens collected from Halodule wrightii, Syringodium filiforme and sand-Halodule 

wrightii covered quadrats revealed low numbers of host and symbiont-related DE genes. 

This could be due to the lack of statistically significant differences in porewater 

geochemistry among quadrats within the sampling site and/or tight host regulation of the 

intracellular gill environment. Our results contrast previous findings where potential 

positive associations between lucinid abundances and seagrass were observed. At St Joseph 

Bay north of our sampling site, S. floridana population densities were not statistically 

different between T. testudinum and R. maritama seagrass beds; however, no live S. 

floridana specimens were found in entirely seagrass-free areas (Fisher and Hand, 1984).  

Another study on Loripes orbiculatus abundances in Cymodocea nodosa (seagrass) 
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meadows in the Mediterranean Alfacs bay reported statistically higher lucinid abundances 

in vegetated compared to bare sediments (Sanmartí et al., 2018). In vegetated sediments, a 

negative correlation between L. orbiculatus abundances with sediment organic matter 

content was found and may be related to seagrass phenotypic variations (Sanmartí et al., 

2018). Specifically, C. nodosa in organic-rich sediments have less complex root systems 

than organic-poor sediments (Sanmartí et al., 2018). On the other hand, DE analyses on C. 

orbiculata on a limited number of replicates showed upregulation of the thioautotrophic 

symbiont-related dsrC gene encoding a sulfurtransferase in an algae-covered quadrat 

compared to a seagrass-covered quadrat and upregulation of host-associated aerobic 

respiration, oxidative stress-stimulated apoptosis, tricarboxylic cycle/electron transport 

chain and mitochondrial sulfide oxidation functions in the seagrass-covered quadrat 

compared to the algae-covered quadrat possibly relevant to the three-way lucinid-

symbiont-seagrass symbiosis (van der Heide et al., 2012; Reynolds et al., 2014; Chapter 

III). Nevertheless, there is a dearth of quantitative evidence correlating vegetation 

coverage, habitat geochemistry, lucinid abundances and host-symbiont gene expression, 

necessitating further system-level investigations integrating field measurements, 

sequencing data and laboratory experiments to validate the lucinid-symbiont-seagrass 

symbiosis model. 

Besides DE host-related transcripts, commonly highly expressed host-related 

transcripts in S. floridana involved in aerobic respiration, cytoskeletal proteins, ribosomal 

proteins, lysozyme, carbonic anhydrase, and sulfide-reactive hemoglobin 1 functions 

(Kraus and Wittenberg, 1990) were in line with previous observations in C. orbiculata 
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(Chapter III) and P. pectinatus (Chapter II). Like C. orbiculata but unlike P. pectinatus, 

expression levels of oxygen-reactive hemoglobin 2 and 3 (Kraus and Wittenberg, 1990) 

were absent to low in S. floridana and may reflect high intracellular oxygen concentrations 

in the gills (Chapter III). Similarly, Mollusca-related GO terms associated with antioxidant 

activity were among the most abundantly annotated in the gills of S. floridana. GO terms 

associated with vesicular cellular compartments, as well as those associated with sensory 

perception and neurotransmitter functions, were among the most frequently annotated in S. 

floridana. Whether and how functions pertaining to endocytosis, vesicular transport 

(Cooper, 2000) and signaling are linked to symbiont acquisition, host-microbiome 

transport and host-microbiome communications at the molecular level remain to be 

elucidated with experimental approaches. 

In summary, consistent with previous analyses on lucinid gill microbiome diversity 

(Brissac et al., 2016; Chapters II and III), the observed taxonomic and functional diversity 

in the core S. floridana gill microbiome strengthen the concept of heterogeneous, rather 

than homogenous, lucinid gill microbiomes comprising communities of single or multiple 

thioautotrophic symbiont strains and species and/or non-thioautotrophic bacterial members 

(Chapters II and III). Through cross-microbiome comparisons, our results revealed strain- 

and species-level diversity in clade A lucinid symbionts, which expands current knowledge 

on intra-population, intra-host and inter-host variability of lucinid gill microbiome 

structures and functions. Although we did not identify high numbers of host- and 

thioautotrophic symbiont-related DE genes across quadrats with different vegetation 

coverages, we propose that the Spirochaeta-like species may participate in interactions (of 
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an unknown nature) with lucinid bivalves and surrounding bare sand sediments that 

probably involve transport, biosynthesis and cycling of a variety of nutrients including 

branched-chain amino acids and carbon, nitrogen, and phosphate compounds. Our study 

highlights the utility of ecosystem-based approaches in investigating the intricate interplay 

between lucinid bivalves, their symbionts and their surrounding habitats, while raising the 

need for further studies on lucinid gill microbiomes from diverse host species and habitats 

to better understand taxonomic and functional complexities in the lucinid-bacteria 

symbiosis.  
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CHAPTER FOUR 

CONCLUSION 
 

To summarize, this dissertation uses a combination of 16S rRNA, metagenomic, 

metatranscriptomic, PCR, and qPCR analyses to characterize the gill microbiomes of three 

coastal lucinid species, Phacoides pectinatus, Ctena orbiculata, and Stewartia floridana. 

To infer potential lucinid-microbiome interactions, gill microbiome gene expression was 

analyzed in relation to host gene expression. Additionally, to better understand spatial and 

micro-environment controls on host-microbiome gene expression, gill metatranscriptomic 

profiles of C. orbiculata and S. floridana were analyzed within the context of available 

environmental and/or geochemical data collected by our collaborators. 

Despite intensive research on lucinid bivalves and their symbionts, the structure, 

functions, and interactions of lucinid gill microbiomes, which may contain permanent 

and/or transient bacterial members, are currently under-studied. Analyses of P. pectinatus, 

C. orbiculata, and S. floridana in this dissertation reveal unprecedented taxonomic and 

functional heterogeneity in their gill microbiomes that contrasts conventional assumptions 

of homogenous lucinid gill microbiomes with only monospecific chemosynthetic symbiont 

cultures.  This dissertation also highlights inter-host species similarities and differences in 

gill microbiome structures and functions, which may reflect pathways essential for 

symbiosis, host-symbiont co-evolution processes, differences in symbiont acquisition and 

selection mechanisms, and/or variations in host intracellular/extracellular environments.  
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The gill microbiomes of all three lucinid species studied in this dissertation are 

dominated by high relative abundances of their chemosynthetic symbionts from symbiont 

gammaproteobacterial clades A and C. Thioautotrophic lucinid symbionts sequenced in 

this study belong to four sequence-discrete phylogenomic clades generally equivalent to 

species. These symbiont species were assigned the proposed names Sedimenticola 

endophacoides (P. pectinatus thioautotrophic symbiont; Chapter II), Ca. Thiodiazotropha 

endolucinida (Codakia orbicularis and Ctena orbiculata thioautotrophic symbionts; König 

et al., 2016; Chapter III), Ca. Thiodiazotropha endolucinidaduo (Ctena orbiculata 

thioautotrophic symbionts; Chapter III), and Ca. Thiodiazotropha endolucininae (to 

replace Ca. Thiodiazotropha endoloripes for L. orbiculatus and S. floridana 

thioautotrophic symbionts; Petersen et al., 2016; Chapter IV). Results from this dissertation 

show the clade C P. pectinatus symbiont to belong to a genus (Sedimenticola) separate 

from other clade A lucinid symbionts (Ca. Thiodiazotropha). Additionally, the results 

highlight that species diversity of clade A lucinid symbionts, which now consists of three 

species rather than a single species, is higher than previously concluded using 16S rRNA 

gene sequences (Brissac et al., 2011). 

Comparative analyses of the genetic repertoire of Ca. Sedimenticola 

endophacoides, Ca. Thiodiazotropha endolucinida, Ca. Thiodiazotropha endolucinidaduo, 

and Ca. Thiodiazotropha endolucininae revealed commonalities in their core metabolic 

pathways that are in line with those discovered in gammaproteobaterial chemosynthetic 

marine symbionts. As with all other chemosynthetic marine symbionts reviewed in Kleiner 

et al. (2012), these thioautotrophic lucinid symbiont species potentially use sox (lacking 
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soxCD genes) and dsr-apr-sat pathway (Ghosh and Dam, 2009; Friedrich et al., 2001) for 

the oxidation of sulfide and thiosulfate. Sulfide oxidation using Sqr enzymes (Marcia et 

al., 2010; Eddie and Hanson, 2013; Shuman and Hanson, 2016) is also a common feature 

of thioautotrophic lucinid symbionts and some chemosynthetic marine symbionts, such as 

those in vesicomyid and Bathymodiolus spp. bivalves and those in Riftia pachyptila and 

Tevnia jerichonana deep-sea tubeworms (Kleiner et al., 2012). Besides reduced sulfur 

compounds, hydrogen can also be used as a potential energy source in Ca. Sedimenticola 

endophacoides and Ca. Thiodiazotropha spp., along with some chemosynthetic marine 

symbionts in the bivalves Bathymodiolus spp. (Petersen et al., 2011) and Solemya velum 

(Dmytrenko et al., 2014), the gutless marine worm Olavius algarvensis (Woyke et al., 

2006; Kleiner et al., 2015), the scaly-foot snail Crysomallon squamiferum (Nakagawa et 

al., 2014), and the vent shrimp Rimicaris exoculata (Petersen et al., 2011; Kleiner et al., 

2012). All chemosynthetic marine symbionts, including those from lucinid clams, encode 

autotrophy-related genes involved in the Calvin-Benson-Bassham cycle (Kleiner et al., 

2012).  Unlike R. pachyptila symbionts that are also capable of autotrophy with the 

reductive tricarboxylic acid cycle (Markert et al., 2007; Markert et al., 2011; Gardebrecht 

et al., 2012), the Calvin-Benson-Bassham cycle appears to be the sole autotrophic 

mechanism in chemosynthetic lucinid symbionts. Besides autotrophy, mixotrophy-related 

genes were detected in Ca. Sedimenticola endophacoides and Ca. Thiodiazotropha spp. 

(Petersen et al., 2016), as well as chemosynthetic symbionts associated with marine 

organisms such as O. algarvensis (Woyke et al., 2006), R. pachyptila/T. jerichonana 

(Kleiner et al., 2012; Gardebrecht et al., 2012), and S. velum (Dmytrenko et al., 2014). 
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Candidatus Sedimenticola endophacoides and Ca. Thiodiazotropha spp. are potentially 

capable of co-respiring with oxygen and reduced nitrogeneous compounds, and nitrate 

respiration has similarly been documented in chemosynthetic marine symbionts associated 

with O. algarvensis and R. pachyptila/T. jerichonana (Kleiner et al., 2012). Nevertheless, 

experimental approaches like those described in (Hentschel et al., 1993; Hentschel and 

Felbeck, 1995; Hentschel et al., 1996; Duplessis et al., 2004a) are required to further 

ascertain the primary electron acceptor used by lucinid symbionts examined in this 

dissertation for respiration. Other common metabolic genes encoded and expressed by 

Candidatus Sedimenticola endophacoides and Ca. Thiodiazotropha spp. from this 

dissertation include those involved in phosphate and iron transport, biosynthesis of all 

twenty essential amino acids and vitamins B1, B2, B6, B7, B9, bacterial secretion systems, 

pilus and flagellar functions, and chemotaxis. Some of these functions may be relevant to 

host-microbiome-environment interactions and can be further investigated using protein-

based, metabolite-based and experimental studies. 

While the metabolic similarities of chemosynthetic lucinid symbionts provide 

useful insights on functions likely vital to their free-living and/or symbiotic lifestyle, inter-

species metabolic differences uncovered in this dissertation may reflect variations in host, 

microbiome and/or environmental components that make up lucinid-microbiome-

environment interactions. Candidatus Sedimenticola endophacoides belonging to clade C 

were taxonomically and functionally distinct from Ca. Thiodiazotropha spp. clade A 

lucinid symbionts. Members of the latter commonly encode and express at least the high-

affinity type I Sqr (Eddie and Hanson, 2013; Shuman and Hanson, 2016), form IAq 
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RuBisCO that is more efficient at differentiating between oxygen and CO2 (Tabita et al., 

2008), and the low-affinity aa3-type terminal oxidase (Pitcher and Watmough, 2004). In 

contrast, Ca. Sedimenticola enophacoides encoded and expressed the low affinity type VI 

Sqr (Eddie and Hanson, 2013; Shuman and Hanson, 2016), the less-discriminatory form II 

RuBisCO (Tabita et al., 2008), and the high-affinity cbb3 type terminal (Pitcher and 

Watmough, 2004). These genomic differences suggest that, compared to Ca. 

Thiodiazotropha spp., Ca. Sedimenticola endophacoides appeared to be functionally 

adapted to sulfide-rich and oxygen-poor intracellular and/or extracellular environments. 

On the other hand, inter-species and inter-strain differences in the number of RuBisCO 

variants (form IAq and/or II) and terminal oxidases (cbb3-, aa3- and/or cytochrome d 

ubiquinol oxidases) encoded and expressed by Ca. Thiodiazotropha spp. suggest varying 

degrees of symbiont metabolic plasticity in response to intracellular/extracellular oxygen 

and CO2 levels. C1-compound oxidation functions, detected in Ca. Thiodiazotropha 

endolucinida, Ca. Thiodiazotropha endolucinidaduo and Ca. Thiodiazotropha 

endolucininae in S. floridana, were not sequenced in Ca. Thiodiazotropha endolucininae 

in L. orbiculatus (Petersen et al., 2016) and Ca. Sedimenticola endophacoides.  

Despite common denitrification pathways in Ca. Thiodiazotropha spp. and Ca. 

Sedimenticola endophacoides, nitrogen assimilation mechanisms varied between symbiont 

genus, species and strains. The major difference between members of the Ca. 

Thiodiazotropha and Sedimenticola genera is the weak evidence supporting nitrogen 

fixation functions in the latter. Urea hydrolysis capability was predicted in Ca. 

Sedimenticola endophacoides and Ca. Thiodiazotropha endolucininae, but the 
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corresponding evidence is weak in Ca. Thiodiazotropha endolucinida and Ca. 

Thiodiazotropha endolucinidaduo. Also, assimilatory nitrate and nitrite reduction genes 

were annotated in Ca. Thiodiazotropha endolucininae, Ca. Thiodiazotropha 

endolucinidaduo and Ca. Thiodiazotropha endolucinida in Ctena orbiculata, but not Ca. 

Thiodiazotropha endolucinida in Codakia orbicularis (König et al., 2016).  

Inter-taxa metabolic differences among chemosynthetic symbionts observed in this 

dissertation may relate to lucinid-microbiome-environment co-evolution, which could be 

driven by geochemical conditions in lucinid habitats, lucinid-symbiont associations with 

their surrounding macro-vegetation, host metabolism (such as microbiome acquisition and 

selection mechanisms), and/or gill microbiome composition and functions. For example, 

the capability to fix nitrogen may be an evolutionary advantage for Ca. Thiodiazotropha 

spp. in seagrass habitats (König et al., 2016; Petersen et al., 2016), but not for 

Sedimenticola endophacoides in predominantly mangrove habitats. Similarly, C1 

oxidation functions discovered in most Ca. Thiodiazotropha spp. may be dictated by the 

concentrations of C1 compounds, the relative abundances of free-living methanotrophs and 

methylotrophs and/or the need for methanol detoxification in their habitats. Technical 

variability arising from differences in metagenomic library preparation, assembly, binning 

and annotation methodologies across studies, which affect MAG completeness and quality, 

can also contribute to perceived inter-taxa, especially inter-strain, metabolic differences.  

Chemosynthetic symbiont diversity within gill microbiomes of P. pectinatus, C. 

orbiculata and S. floridana also varied across host species. Unlike P. pectinatus, S. 

floridana, and other previously studied lucinid species with monospecific chemosynthetic 
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gill endosymbionts, the gills of C. orbiculata were colonized by at least two species, with 

two strains each, of chemosynthetic symbionts. These can possibly be explained by several 

hypotheses that can be tested in future, including 1) C. orbiculata acquires and selects for 

chemosynthetic symbionts with a lower stringency compared to other lucinid species, 2) 

turnover rate of C. orbiculata chemosymbionts is high because they are frequently replaced 

by closely related strains and species, and 3) the taxonomic diversity and relative 

abundances of free-living bacterial species closely related to lucinid chemosymbionts are 

higher in C. orbiculata habitats. 

Besides the chemosynthetic symbionts, other taxa were also detected in the gill 

microbiomes of P. pectinatus, Ctena orbiculata, and S. floridana. Oceanospirillales species 

from different genera were detected consistently in the gill microbiomes, metagenomes, 

and metatranscriptomes of P. pectinatus (Kistimonas-like species) and gill microbiomes of 

C. orbiculata (Endozoicomonas-like species) at lower relative abundances compared to

their chemosynthetic symbionts. Spirochaeta-like spp. also occurred in the gill 

microbiomes, metagenomes and metatranscriptomes of P. pectinatus and S. floridana at 

lower relative abundances compared to the Oceanospirillales species. The presence of these 

taxa supports previous reports of morphologically and/or taxonomically similar species in 

other lucinid gill microbiomes and suggests that lucinid gills may serve as permanent or 

temporary niches for Oceanospirillales and Spirochaeta species. 

Beyond the taxonomic and functional diversity of lucinid gill microbiomes, this 

dissertation also sought to examine possible facilitative interactions between lucinid 

bivalves, their diverse gill microbiome members, and their micro-habitats. Exploratory DE 
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analyses performed on C. orbiculata revealed few differentially regulated symbiotic genes. 

The only symbiont-related DE gene of potential interest was dsrC encoding a 

sulfurtransferase that was up-regulated in an algae-covered quadrat. Meanwhile, C. 

orbiculata-related aerobic respiration, aerobic stress, electron transport, and mitochondrial 

sulfide detoxification functions were up-regulated in the seagrass-covered quadrat. In S. 

floridana, very few host and symbiont genes were differentially expressed between 

predominantly sand and predominantly seagrass-covered quadrats, while the Spirochaeta-

like species showed upregulation of carbon, nitrogen, phosphate, transport, synthesis, 

transcriptional regulation, and protein degradation functions in predominantly sand-

covered quadrats. The consistently small numbers of symbiont-related DE genes suggest 

that gill intracellular environments may be tightly regulated by lucinid bivalves as part of 

their homeostatic mechanisms. In comparison, the higher numbers of genes upregulated in 

the Spirochaeta-like species in predominantly unvegetated quadrats reveal potential 

associations of this species with bare sediments. On the other hand, respiratory and sulfide 

detoxification genes upregulated in C. orbiculata in the seagrass-covered quadrat offer 

preliminary evidence that these host functions are facilitated by the presence of seagrasses. 

Although findings of this dissertation have provided useful insights on lucinid gill 

microbiome diversity and potential lucinid-microbiome-habitat interactions, various 

limitations challenge interpretation of the findings. First, functional inferences with 

metagenomic and metatranscriptomic data are heavily dependent on sequencing, assembly, 

binning, and annotation quality. Hence, incomplete MAGs and the low number of 

annotated transcripts assembled here may not present an accurate or complete picture of 
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the repertoire of genetic functions associated with the host and the microbiome species 

(discussed at length in Chapter II). In this dissertation, the presence and expression of few 

microbial genes of interest were further tested with PCR and qPCR. Even though it will be 

useful to perform PCR-based experiments on additional host and microbiome genes in the 

future to validate the results of metagenomic and metatranscriptomic analyses, not all 

mRNAs in a cell are necessarily being translated into proteins (Maquat et al., 2010). Thus, 

protein and metabolite detection methods including Western blot, metaproteomics and 

metabolomics will be instrumental in confirming the activity of lucinid and microbiome 

pathways of interest, such as C1 oxidation in some chemosynthetic symbionts. Currently, 

annotation of host-related genes is also hampered by the lack of lucinid bivalve genomes. 

Future sequencing efforts should focus not only on lucinid-associated microbial genomes, 

but also on lucinid bivalve genomes. The availability of lucinid genomes would greatly 

facilitate research on the genetic and functional diversity of lucinid bivalves, as well as 

their co-evolution and interactions with their gill microbiome species and their surrounding 

habitats. 

Second, the genetic and functional content of lucinid clam gills are heavily under-

sampled to date. Currently, MAGs of clade A and C chemosynthetic symbiont species from 

only five host species have been sequenced (including those sequenced for this 

dissertation). These five species belong to three lucinid subfamilies, out of seven lucinid 

subfamilies (Taylor et al., 2016) and >100 lucinid species (NCBI Resource Coordinators, 

2016) identified to date. Furthermore, prior to this dissertation, no study has focused on 

comprehensive sequencing and characterization of the lucinid gill microbiomes. As such, 



237 

inferences made from cross-genome and cross-microbiome comparisons in this 

dissertation were centered on a small number of lucinid and symbiont taxa and may not be 

generally applicable to the entire Lucinidae family. For robust inter-host and inter-

population comparisons of gill microbiome structures and functions, further sequencing of 

gill microbiomes of more lucinid species from various subfamilies and habitats is vital.  

Third, although other non-chemosynthetic taxa were detected in the gill 

microbiomes of P. pectinatus, Ctena orbiculata, and S. floridana, without microscopic 

evidence, it is not possible to determine the localization of these gill microbiome species 

and the nature of their associations with the lucinid gill microbiomes. In this dissertation, 

microscopy was not performed on C. orbiculata and S. floridana. In P. pectinatus, FISH 

probes were successful in the detection of the chemosynthetic symbiont, but not in the 

detection of Kistimonas-like species and Spirochaeta-like species. This could be due to a 

variety of reasons pertaining to technical issues and inherent limitations of FISH itself. 

Another area of future research would be the optimization of FISH or more sensitive 

techniques, such as CARD-FISH (DeLong et al., 1989), HCR (Dirks and Pierce, 2004) 

and/or electron microscopy for the visualization of other microbial taxa in lucinid gill 

microbiomes. Regardless of whether they are permanent or transient to the bivalves, results 

of this dissertation show that, as with microbiome species in various tissues of invertebrate 

and vertebrate hosts, lucinid gill microbiome species were transcriptionally active and may 

play nutrient cycling roles within the bivalves.  

One of the objectives of characterizing the functions of lucinid bivalves and their 

microbiome species is to enable integrative analysis, in the context of environmental and/or 
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geochemistry data, of how lucinid-microbiome gene expression is affected by spatial, 

environmental and/or geochemistry parameters. Such ecological analyses can potentially 

improve lucinid, fisheries, seagrass, and mangrove conservation efforts (Johnson et al., 

2002; Meyer et al., 2008; Reynolds et al., 2014; Higgs et al., 2016). In this dissertation, 

preliminary analyses of lucinid and microbiome gene expression in quadrats with varying 

vegetation coverages were conducted. However, statistical significance of the DE analyses 

was limited by the number of replicates in terms of the number of specimens collected and 

the environmental conditions tested. For field studies where environmental factors are 

unpredictable and uncontrollable, larger-scale sampling, preferably along an 

environmental gradient, in conjunction with -omics and microscopy studies, will be 

necessary to obtain sufficient replicates for robust statistical analysis and to better identify 

spatial/environmental/geochemical patterns that correlate with gene expression and other 

aspects of the lucinid-microbiome-environment relationships, such as host and microbiome 

associations, interactions, abundances, growth, fitness, morphology, and diversity. 

Alternatively, controlled aquarium experiments integrated with other -omics and 

microscopy approaches are useful in investigating not only environmental controls on host-

microbiome physiology and diversity, but also host and microbiome effects on their 

surrounding environment. Symbiont cross-infection experiments, which have been 

successfully performed in some lucinid species (Brissac et al., 2009; Caro et al., 2009; 

Brissac et al., 20160, can also help elucidate inter-host species differences in symbiont 

acquisition and selection mechanisms hypothesized in this dissertation.  
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Despite the limitations, this dissertation significantly advances existing knowledge 

on lucinid gill microbiome diversity, lucinid and microbiome functions and how these can 

potentially be influenced by their surrounding micro-environments. From a microbiology 

perspective, we now know that 1) lucinid gill microbiomes comprise of species- and 

function-diverse bacterial communities rather than a monospecific chemosymbiont culture, 

2) Oceanospirillales and Spirochaeta-like species are facultatively associated with gills of

multiple lucinid species, 3) clade A lucinid chemosymbionts belong to multiple species 

rather than a single species, 4) clade A and C lucinid chemosymbionts share common 

lithomixotrophic, biosynthesis, uptake and secretion systems functions, but differ in 

nitrogen assimilation, C1-compound oxidation, RuBisCO, sulfide oxidation, and aerobic 

respiration functions, 5) microbial genes differentially expressed in quadrats with varying 

vegetation coverages are related to sulfur oxidation (Ca. Thiodiazotropha endolucinidaduo 

OTU1) and nutrient cycling (Spirochaeta-like species in S. floridana). From a host 

perspective, this dissertation also uncovers a subset of the previously unsequenced lucinid 

transcriptome repertoire and how they can potentially be influenced by variability in 

vegetation coverages in their micro-environments.   

Nevertheless, many gaps in knowledge on lucinid-microbiome-environment 

associations remain. Mainly, the intricate interplay and relative contributions of host 

metabolism, microbial functions, and environmental factors to lucinid-chemosymbiont 

associations, lucinid gill microbiome diversity and lucinid gill microbiome functions 

observed to date are still poorly understood. This dissertation proposes a variety of 

hypotheses relevant to this that should be validated with more extensive comparisons of 
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host, gill microbiome and environmental genetic, protein, and metabolite content across 

host taxa and habitats, combined with controlled aquarium and cross-inoculation 

experiments. Additionally, the nature of associations of non-chemosynthetic gill 

microbiome species with lucinid bivalves remain unknown and should be determined in 

future with high-resolution microscopy.  

To conclude, findings of this dissertation revitalize the concept that lucinid gill 

microbiome communities are more functionally and taxonomically complex than 

previously thought and bring us a step closer towards understanding the many host-

microbe-environment interactions possible within this remarkably multi-faceted symbiotic 

system. 
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Appendix A: Computer commands and scripts used for data analysis 

A1. Read trimming and sequence processing  

1. Bash script to automate read trimming by cutadapt (removal of Illumina adaptors
and quality trimming) and sickle (second round of quality trimming), followed by
conversion of fastq files to fasta files for assembly (optional).

The script assumes all input files to be in the working directory, where forward
reads contain the label “R1” and ends with the extension.fastq.

for i in `ls *R1*fastq | awk -F "-" '{print $2}' | sed
"s/_.*$//g"`
do
cutadapt -a AGATCGGAAGAGCACACGTCTGAACTCCAGTC -A
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT -q 30 -o 30."$i".R1.fq -p
30."$i".R2.fq *"$i"*R1*.fastq *"$i"*R2*
.fastq
sickle pe -q 30 -f 30."$i".R1.fq -r 30."$i".R2.fq -t sanger
-o "$i".R1.fq -p "$i".R2.fq -s "$i".singles.fq
seqtk seq -A "$i"*L001_R1.fq  >"$i".R1.fa
seqtk seq -A "$i"*L001_R2.fq  >"$i".R2.fa
done

2. Bash one-liner to remove extra line breaks for sequences in fasta file. Output file
will have exactly one line of header and one line of sequence.

cat input.fasta | sed "s/>.*$/#&#/g" | tr -d "\n" | tr "#"
"\n" | grep -v "^$" >output.fasta
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A2. 16S rRNA gene analysis pipelines 

1. 16S rRNA gene analysis pipeline using Mothur. Comments are in bold.

# Combine forward and reverse reads into a single fasta file
> make.contigs(file=clam.file,processors=12)

# Trim off forward and reverse primers, if necessary 
> pcr.seqs(fasta=current,oligos=primer.oligos)

# Contents of “primer.oligos” file 
forward GCCGCGGTAA 
reverse GGGTNTCTAAT 

# Trim sequences at Q=25 threshold 
> trim.seqs(fasta=current,qfile=current,qaverage=25)
> remove.seqs(group=current,accnos=ctena.trim.accnos)
> screen.seqs(fasta=current,group=current,
summary=current,maxambig=0,maxlength=275)

> summary.seqs(fasta=current)
> unique.seqs(fasta=current)
> count.seqs(name=current,group=current)
> summary.seqs(count=current)

# Download Silva v132 reference files 
wget https://mothur.org/w/images/3/32/Silva.nr_v132.tgz 
tar -zxvf Silva.nr_v132.tgz 

# Extract V4 region from Silva v132 reference fasta file 
> pcr.seqs(fasta=silva.nr_v132.align,start=11894,end=25319)

# Align sequences with reference sequences from Silva v132 
> align.seqs(fasta=current,reference=../silva132/
silva.nr_v132.pcr.align,flip=T)

> summary.seqs(fasta=current,count=current)
> screen.seqs(fasta=current,count=current,summary=current,
start=13862,end=23444,maxhomop=8)

> summary.seqs(fasta=current,count=current)
> remove.seqs(accnos=current,count=current)
> summary.seqs(fasta=current,count=current)
> filter.seqs(fasta=current,vertical=T,trump=.)
> unique.seqs(fasta=current,count=current)
> pre.cluster(fasta=current,count=current,diffs=2)

https://mothur.org/w/images/3/32/Silva.nr_v132.tgz
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# Check for and remove chimeric sequences 
> chimera.vsearch(fasta=current,count=current,dereplicate=t)
> remove.seqs(fasta=current,accnos=current)
> summary.seqs(fasta=current,count=current)

# Assign taxonomy to each sequence using Silva v132 reference taxonomy 
> classify.seqs(fasta=current,count=current,reference=
../silva132/silva.nr_v132.pcr.align,taxonomy=
../silva132/silva.nr_v132.tax,cutoff=0)

# Remove non-bacterial and unknown sequences 
> remove.lineage(fasta=current,count=current,
taxonomy=current,taxon=Chloroplast-Mitochondria-unknown-
Archaea-Eukaryota)

> summary.tax(taxonomy=current,count=current)

# Compute distances between sequences 
> dist.seqs(fasta=current,cutoff=0.03)

# Cluster sequences de novo into OTUs 
> cluster(column=current,count=current)

# Make shared file using 0.01 (99% sequence identity) cutoff 
> make.shared(list=current,count=current,label=0.01)

# Count number of sequences in each sample (group) 
> count.groups(shared=current)

# Subsample each group to specific number of sequences 
> sub.sample(shared=current,size=<user-specified size)

# Compute alpha diversity measures for subsampled OTU table 
> summary.single(shared=current)

# Get OTU relative abundances in each subsampled group 
> get.relabund(shared=current)

# Export OTU table and taxonomy into BIOM format 
> make.biom(shared=current,constaxonomy=current)

# Get representative sequences from each OTU 
> get.oturep(column=current,count=current,fasta=current)



245 

2. R Alpha and beta diversity analysis pipeline using the PhyloSeq and other R
packages. Comments are in bold.

# Import phyloseq and related R libraries
library("phyloseq")
library ("ggplot2")

# Import biom file created by Mothur (previous section)
clam=import_biom("clam.0.01.subsample.0.01.biom")

# Import metadata
map <- import_qiime_sample_data("clam.design.txt")

# Sample contents of “clam.design.txt” metadata file
SampleID Type Quadrat
1 Gill 1-2
2 Gill 1-2
3 Gill 1-2
4 Gill 1-2

# Merge OTU tables, taxonomy and metadata 
ste <- merge_phyloseq(clam,map) 

# Sample commands to plot alpha diversity 
options(device=pdf) 
plot_richness(ste,x="Type",shape=”Type”,color=”Quadrat”,measures=c("Chao1",
"Shannon")) 
dev.off() 

# Sample commands to plot beta diversity 
options(device=pdf) 
ord <- ordinate (ste,"PCoA","bray") 
p = plot_ordination(ste,ord,type="samples",color="Tissue",shape="Type") 
p 
dev.off() 

# Change axis and plot titles 
p = p + geom_point(size=4) + xlab("PC 1 (51.1%)") + ylab("PC2 (19.8%)") + 
ggtitle ("adonis F=208.79 (p=0.001***)") 

# Import R libraries for statistical analyses 
library("vegan") 
library(“car”) 
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# Perform shapiro and adonis tests on a Bray-Curtis distance matrix using a 
specified metadata category (e.g. “Quadrat”) 
df=as(sample_data(clam),"data.frame") 
d=distance(clam,"bray") 
shapiro.test(d) 
adonis(d~Quadrat,df) 

# Example commands comparing statistical differences between alpha 
diversity measures (e.g. Shannon) – testing for normality 
alpha<-read.table("alpha.txt",header=T, sep="\t") 
shapiro.test(alpha$Shannon) 

# Example commands comparing statistical differences between alpha 
diversity measures (e.g. Shannon) for normally distributed data 
var.test(alpha$Shannon~alpha$Type) 
bartlett.test(alpha$Shannon~alpha$Type) 
t.test(alpha$Shannon~alpha$Type)
fit<-aov(alpha$Shannon~alpha$Type)
summary(fit)

# Example commands comparing statistical differences between alpha 
diversity measures (e.g. Chao1) for non-normally distributed data 
leveneTest(alpha$Chao1,alpha$Type) 
fligner.test(alpha$Chao1~alpha$Type) 
wilcox.test(alpha$Observed~alpha$OTU) 
pairwise.wilcox.test(alpha$Shannon,alpha$OTU,p.adjust.method="bonferroni",pa
ired=FALSE) 
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A3. Metagenomic binning 

1. Bash Portable Batch Scheduling system (PBS) script to automate read mapping to
assembled metagenome, conversion of sam output file to bam file, and binning with
MetaBAT1 and MetaBAT2 on Clemson University’s Palmetto cluster.

#!/bin/bash
#PBS -N metabat
#PBS -l
select=1:ncpus=16:mpiprocs=16:mem=120gb:interconnect=1g,wall
time=72:00:00
#PBS -j oe

module load samtools
module load boost
module load python/2.7.6

DIR="/scratch1/jslim"

/home/jslim/bowtie2-2.3.3.1/bowtie2-build
$DIR/LUC13015.AG.fasta $DIR/LUC13015AG
/home/jslim/bowtie2-2.3.3.1/bowtie2 -p 16 --very-sensitive-
local --dovetail -x $DIR/LUC13015AG -1 $DIR/LUC13015Y.R1.fq
-2 $DIR/LUC13015Y.R2.fq -S $DIR/LUC13015.sa
m -p 12

samtools view -bS $DIR/LUC13015.sam -o $DIR/LUC13015.bam -@ 
12 
samtools sort $DIR/LUC13015.bam -o $DIR/LUC13015.sorted.bam 
-@ 12 
samtools index $DIR/LUC13015.sorted.bam -@12 

/home/jslim/metabat1/jgi_summarize_bam_contig_depths --
outputDepth $DIR/LUC13015AG.depth.txt 
$DIR/LUC13015.sorted.bam  
/home/jslim/metabat2/metabat2 -i $DIR/LUC13015.AG.fasta -a 
$DIR/LUC13015AG.depth.txt -o $DIR/LUC13015AGmetabat2 -t 12 -
m 1500  
/home/jslim/metabat1/metabat -i $DIR/LUC13015.AG.fasta -a 
$DIR/LUC13015AG.depth.txt -o $DIR/LUC13015AGmetabat --
sensitive -v --saveTNF $DIR/LUC13015.tnf --saveDistance 
$DIR/LUC13015.dist -B 20 -t 12 -m 1500 
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A4. Pairwise average nucleotide identity (ANI) calculations 

1. Perl script to automate pairwise ANI calculations in a set of input files with “.fa”
extension in a folder (assigned to the variable $q and parsed into an array named
@query). Output files generated will consist of the file names being compared and
end with the extension .ani (e.g. file1.file2.ani).

#!/usr/bin/perl

$q=`ls *fa`;
@query=split(/\n/,$q);

$size=@query;

foreach my $n (@query) {
for ($index=0; $index<$size; $index++) {

system("/home/shared/ANIcalculator_v1/ANIcalculator -
genome1fna ".$n." -genome2fna ".$query[$index]." -outfile
".$n.$query[$index].".ani");

}
}

Example output file (e.g. file1.file2.ani) 
GENOME1 GENOME2 ANI(1->2)       ANI(2->1) AF(1->2)
AF(2->1) 
spiro.1.fa      Stebin4.fa      69.36   69.58   0.13    0.24 

2. Bash one-liner to concatenate .ani files generated by Perl script and calculate the
average ANIs for each pairwise comparison.

cat *.ani | grep -v "GENOME1" | awk -F "\t" '{a=($3+$4)/2; 
print $1,$2,a}' >ani.average 

Example output file (e.g. ani.average) 
19G.fa 22B.fa 74.705 
19G.fa 22G.fa 74.85 
19G.fa 4A.1.fa 75.24 
19G.fa 4D.fa 74.73 
19G.fa Codakia.symbiont.fasta 74.365 
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A5. Heatmap plotting in RStudio 

1. R script to automate heatmap plotting with the heatmaply package, given an input
matrix in tab-separated text file format within the specified working directory.

library('heatmaply') 

setwd("G:/My Drive/clams/ANI") 

ANI<-
read.table('ctena.AAI.txt',sep="\t",header=TRUE,row.names=1,
check.names=FALSE) 
matrix<-data.matrix(ANI) 
heatmaply(matrix, column_text_angle=90,key.title="Two-way 
AAI") %>% layout(margin = list(l = 220, b = 220)) 

# Example input file (e.g. ctena.AAI.txt) 

P4 P5 P2 P1 P3 
P4 100 99.99 67.87 99.99 0 
P5 99.99 100 67.79 99.99 0 
P2 67.87 67.79 100 67.84 0 
P1 99.99 99.99 67.84 100 65.61 
P3 0 0 0 65.61 100 
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A6. Metatranscriptomic analysis 

1. Metatranscriptomic analysis pipeline using Trinity. Comments are in bold.

# Transcript assembly: Run jellyfish, inchworm, and chrysalis steps
$TRINITY_HOME/Trinity --seqType fq --samples_file ctena.samples.txt --CPU
24 --max_memory 400G --output duo_trinity --no_run_inchworm

$TRINITY_HOME/Trinity --seqType fq --samples_file ctena.samples.txt --CPU
24 --max_memory 400G --output duo_trinity --no_run_chrysalis

$TRINITY_HOME/Trinity --seqType fq --samples_file ctena.samples.txt --CPU
24 --max_memory 400G --output duo_trinity --no_distributed_trinity_exec

$TRINITY_HOME/Trinity --seqType fq --samples_file ctena.samples.txt --CPU
24 --max_memory 400G --output duo_trinity

# Abundance estimation with RSEM and Bowtie2
$TRINITY_HOME/util/align_and_estimate_abundance.pl --transcripts
Trinity.fasta --est_method RSEM --aln_method bowtie2 --trinity_mode --
prep_reference

# Convert abundance estimates to TPM and TMM-normalized TPM distance
matrices
$TRINITY_HOME/util/abundance_estimates_to_matrix.pl --est_method RSEM -
-gene_trans_map Trinity.fasta.gene_trans_map --out_prefix <choose_a_prefix> --
name_sample_by_basedir <sample1_name>/RSEM.isoforms.results
<sample2_name>/RSEM.isoforms.results

# Bash one-liner to calculate average TPM across samples from the
isoform/gene count matrix and sort the resulting count matrix by the average
TPM values in descending order. In this case, the example input has 10
columns, where columns 2 ($2) to 11 ($11) contain the TPM values.
cat ctena.gene.TMM.EXPR.matrix | awk -F "\t"
'{a=($2+$3+$4+$5+$6+$7+$8+$9+$10+$11)/10; print $1,$2,$3,$
4,$5,$6,$7,$8,$9,$10,$11,a}' | sort -n -r -k 12,12 >ctena.sorted.gene.matrix

# Remove batch effects from user-specified count matrix
$TRINITY_HOME/Analysis/DifferentialExpression/remove_batch_effects_from
_count_matrix.pl --matrix ctena.gene.counts.matrix --batches_file batch.txt

# Example batch file (e.g. batch.txt) for batch effects removal command
cond_1  4A 
cond_1  4B 
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# Compare replicates across samples and generate a sample correlation 
heatmap. The command takes in any count matrix (unnormalized, 
normalized, batch removed etc). 
$TRINITY_HOME/Analysis/DifferentialExpression/PtR --matrix 
ctena.isoform.counts.matrix --min_rowSums 10 -s ctena.samples.txt --log2 --CPM 
--sample_cor_matrix 

# Compare replicates across samples and generate a 2-dimensional PCoA plot 
(--prin_comp 2): 
$TRINITY_HOME/Analysis/DifferentialExpression/PtR --matrix 
ctena.isoform.counts.matrix --min_rowSums 10 -s ctena.samples.txt --log2 --CPM 
--center_rows --prin_comp 2 

# Bash one-liner to extract sequence information from RAST-annotated 
MAGs and write out as FASTA file 
cat *.txt | awk -F “\t” ‘{print $2,$12}’ | sed “s/^/>/g” | tr “ ” “\n” 
>ctena.pangenome.fasta

# Deduplicate pangenome fasta file at 100% identity threshold with cd-hit 
cd-hit -i ctena.pangenome.fasta -c 1 -o ctena.pangenome.dedup.fasta -T 0 -M
100000

# Format Trinity-assembled transcripts into a blastn searchable database 
makeblastdb -in ctena_trinity_out/Trinity.fasta -dbtype nucl -out trinity 

# Perform blastn searches against Trinity-assembled transcripts using RAST-
annotated gene sequences as query and generate output in tabulated format. 
blastn -query ctena.pangenome.dedup.fasta -db trinity -max_target_seqs 1 -
num_threads 56 -outfmt 7 -out ctena.pangenome.blastn 

# Bash script to perform a basic keyword search in a user-provided genome 
annotation file, print out peg IDs containing the input keyword and their best-
matching Trinity transcripts and their TMM-normalized TPM values. 
Intermediate files with peg IDs (e.g. keyword.peg) and Trinity transcript IDs 
(e.g. keyword.trinity) will be generated and have to removed periodically. 

grep -i $1 pangenome.annotations | awk -F "\t" '{print $2}' | sed "s/$/[[:blank:]]/g" 
>$1.peg 
grep -f $1.peg pangenome.onehit | awk -F "\t" '{print $1,$2}' 
grep -f $1.peg pangenome.onehit | awk -F "\t" '{print $2}' | sed "s/_i.*$/[[:blank:]]/" 
>$1.trinity 
grep -f $1.trinity pha.gene.TMM.EXPR.matrix 
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# Output of bash script above 
The output of the script will be printed on the screen (stdout) and not written to any 
file. The output can be easily redirected to a file using the “>” option on the 
command line when the script is executed. 

First half of the output shows the peg ID and matching Trinity IDs, while second 
half of the output shows the Trinity IDs and the TPM values in each sample (in this 
case, there were 3 samples) 

fig|6666666.229992.peg.1643 TRINITY_DN372328_c3_g2_i1 
fig|6666666.270266.peg.151 TRINITY_DN84809_c0_g1_i1 
fig|6666666.270266.peg.159 TRINITY_DN736615_c0_g1_i1 
TRINITY_DN203370_c0_g1  0.000   0.000   0.201 
TRINITY_DN315550_c0_g2  0.010   0.020   0.131 
TRINITY_DN366491_c0_g2  0.472   0.101   1.096 

# Sample user-customizable GLOBALS section of configuration file for 
automating Trinotate’s transcript annotation process 
################################################################## 
# Globals. Specify resource locations and other templated parameter values 
# Use format {__token__} when using token values in command strings. 
# Other templated parameters are defined by the parent script. 
################################################################## 

[GLOBALS] 

#  ** edit the progs and dbs section to point to your local resources. 

# progs 
TRANSDECODER_DIR=$TRINOTATE_HOME/TransDecoder-TransDecoder-
v5.1.0 
BLASTX_PROG=blastx 
BLASTP_PROG=blastp 
SIGNALP_PROG=$TRINOTATE_HOME/signalp-4.1/signalp 
TMHMM_PROG=$TRINOTATE_HOME/tmhmm-2.0c/bin/tmhmm 
RNAMMER_TRANS_PROG=$TRINOTATE_HOME/util/rnammer_support/Rn
ammerTranscriptome.pl 
RNAMMER=$TRINOTATE_HOME/rnammer/rnammer 
HMMSCAN_PROG=hmmscan 

# dbs 
SWISSPROT_PEP=$TRINOTATE_HOME/admin/uniprot_sprot.pep 
PFAM_DB=$TRINOTATE_HOME/admin/Pfam-A.hmm 
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# Create a SQlite database named “Trinotate” to hold all Trinotate annotation 
data 
$TRINOTATE_HOME/admin/Build_Trinotate_Boilerplate_SQLite_db.pl 
Trinotate 

# Run Trinotate 
$TRINOTATE_HOME/auto/autoTrinotate.pl --Trinotate_sqlite Trinotate.sqlite --
transcripts Trinity.fasta --gene_to_trans_map Trinity.fasta.gene_trans_map --conf 
$TRINOTATE_HOME/auto/conf.txt --CPU 56 

# Run signalP for the prediction of signal peptides manually if Trinity 
assembly has >10,000 sequences. Split Trinity assembly into multiple files (e.g. 
20,000 lines per file). 
split -d -l 20000 Trinity.fasta.transdecoder.pep tsplit 
mkdir Trinity.split 
mv tsplit* Trinity.split 
cd Trinity.split 

# Bash script to run signalP on each split file 
for i in `ls tsplit*` 
do 
$TRINOTATE_HOME/signalp-4.1/signalp -f short -n $i.out $i 
sleep 5 
done 

# Merge all signalP output files into one file: 
cat tsplit*.out >signalp.out 
cd .. 

# Populate the “Trinotate” SQlite database with transcript sequences, protein 
sequences and gene/transcript relationships 
$TRINOTATE_HOME/Trinotate Trinotate.sqlite init --gene_trans_map 
Trinity.fasta.gene_trans_map --transcript_fasta Trinity.fasta --transdecoder_pep 
Trinity.fasta.transdecoder.pep 

# Store blastp results in “Trinotate” SQlite database 
$TRINOTATE_HOME/Trinotate Trinotate.sqlite LOAD_swissprot_blastp 
blastp.outfmt6 

# Store blastx results in “Trinotate” SQlite database 
$TRINOTATE_HOME/Trinotate Trinotate.sqlite LOAD_swissprot_blastx 
blastx.outfmt6 

# Store Pfam domain entries in “Trinotate” SQlite database 
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$TRINOTATE_HOME/Trinotate Trinotate.sqlite LOAD_pfam
TrinotatePFAM.out 

# Store transmembrane domain predictions in “Trinotate” SQlite database 
$TRINOTATE_HOME/Trinotate Trinotate.sqlite LOAD_tmhmm tmhmm.out 

# Store signal peptide predictions in “Trinotate” SQlite database 
$TRINOTATE_HOME/Trinotate Trinotate.sqlite LOAD_signalp 
Trinity.split/signalp.out 

# Output Trinotate annotation report. The –incl_pep and –incl_trans options 
add protein and transcript sequence data to the report. Output file will be an 
Excel sheet (e.g. trinotate_annotation_report.xls). 
$TRINOTATE_HOME/Trinotate Trinotate.sqlite report --incl_pep --incl_trans  
>trinotate_annotation_report.xls

# Format of Trinotate annotation report file. The filet has the following column 
headers: 
0       #gene_id 
1       transcript_id 
2       sprot_Top_BLASTX_hit 
3       RNAMMER 
4       prot_id 
5       prot_coords 
6       sprot_Top_BLASTP_hit 
7       custom_pombe_pep_BLASTX 
8       custom_pombe_pep_BLASTP 
9       Pfam 
10      SignalP 
11      TmHMM 
12      eggnog 
13      Kegg 
14      gene_ontology_blast 
15      gene_ontology_pfam 
16      transcript 
17      peptide 
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# Example command to run differential expression analysis (e.g. using edgeR) 
$TRINITY_HOME/Analysis/DifferentialExpression/run_DE_analysis.pl --matrix 
ctena.gene.counts.matrix.batch_eff_removal.matrix --method edgeR --
samples_file metadata.txt  --output output_dir 

# Run GO enrichment analysis – extract GO terms from Trinotate report 
$TRINOTATE_HOME/util/extract_GO_assignments_from_Trinotate_xls.pl --
Trinotate_xls ctena.trinotate.report.xls -G --include_ancestral_terms 
>GO_annotations.txt

# Run GO enrichment analysis – create a file containing transcript lengths 
$TRINITY_HOME/util/misc/fasta_seq_length.pl Trinity.fasta 
>Trinity.fasta.seq_lens

# Run GO enrichment analysis - Use transcript length file to create gene length 
file: 
$TRINITY_HOME/util/misc/TPM_weighted_gene_length.py --gene_trans_map 
Trinity.fasta.gene_trans_map --trans_length Trinity.fasta.seq_lens --TPM_matrix 
isoform.TMM.EXPR.matrix >Trinity.gene_lengths.txt 

# Example command to extract TMM-normalized TPM counts of 
differentially expressed transcripts at a specified p-value cutoff for FDR (-P 
option; default 0.001) and fold-change (-C option; default 2 = 22 = 4-fold) 
values, and extract depleted and enriched GO terms. Run this command in the 
differential analysis results folder. 

$TRINITY_HOME/Analysis/DifferentialExpression/analyze_diff_expr.pl –matrix 
ctena.gene.TMM.EXPR.matrix --samples metadata.txt --examine_GO_enrichment 
--GO_annots ../../ctena_trinity_out/GO_ann 
otations.txt --gene_lengths Trinity.gene_lengths.txt 
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