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ABSTRACT 
 
 
 425 million people have diabetes worldwide, and by 2045 this number is 

estimated to increase to 629 million. The risk for cardiovascular diseases such as 

cardiomyopathy, hypertension, and atherosclerosis increase 5 and 2-fold for diabetic 

women and men respectively. Diabetic cardiomyopathy (DCMP) is a ventricular 

dysfunction that occurs in patients with diabetes independent of coronary artery disease, 

hypertension or valvular abnormalities. Hyperglycemia and dyslipidemia cause metabolic 

disturbances that adversely affect myocardial cells and extracellular matrix. These 

modifications alter overall myocardial structure and cardiac function, which can lead to 

heart failure.  

 As of now there is no specific marker for this disease and diagnosis is the same as 

other cardiomyopathies. Elucidating early stages of this disease is vital for early 

diagnosis, treatment, and possible therapy targets. Currently, rodent models and 2D cell 

cultures have been employed to analyze DCMP, however there are notable differences 

between rodents and humans that provide challenges when studying DCMP and cell 

cultures lack an extracellular matrix and dynamic environment crucial to the progression 

of this disease. 

Our overall goal was to use tissue engineering to bridge this gap by developing 

platforms to study pathological mechanisms at the cellular and extracellular level. We 

examined cardiac tissue engineered constructs in: (1) a perfusion 3D Kube 

minibioreactor and (2) an electromechanical bioreactor customized in our lab. Each 

platform contained decellularized myocardium seeded with human cardiomyocytes for 
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two weeks; “diabetic” conditions were simulated by increased glucose concentration. We 

were able to better mimic physiological conditions with our electromechanical 

bioreactor, compared to static and non-diabetic conditions, as well as to 2D cell culture. 

Methods for detecting cellular and matrix changes associated with DCMP were validated 

in a type 1 diabetic rodent model. Our tissue engineering platform shows promise for 

unveiling early cellular and matrix modifications in DCMP. This system could also be 

useful for studying human cells in other cardiac diseases, test treatments, and 

precondition myocardial-like tissue prior to implantation. 
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CHAPTER 1: REVIEW OF LITERATURE 

1.1 Introduction  

 The total global economic burden of diabetes mellitus in 2017 was estimated at 

$850 billion.1 425 million people have diabetes worldwide, and by 2045 this number is 

estimated to increase to 629 million.1 The risk for cardiovascular disease increases 5 and 

2 fold for diabetic women and men respectively.2 Diabetics have higher instances of 

cardiovascular disease such as diabetic cardiomyopathy, hypertension, and 

atherosclerosis, with elevated occurrences of myocardial infarctions and strokes within 

these patients due to atherosclerotic plaque ruptures.3 Diabetic cardiomyopathy (DCMP) 

can manifest in diabetic patients and it is estimated 19-26% of diabetic patients 

experience heart failure.4 DCMP is a ventricular dysfunction that occurs in patients with 

diabetes independent of coronary artery disease, hypertension or valvular abnormalities. 

Excessive utilization of circulating free fatty acids (FFA) creates a highly oxidative 

environment that supersedes the endogenous antioxidant defense mechanism of cells, 

leading to oxidative stress, lipotoxicity, autophagy, and apoptosis of cardiomyocytes. The 

hyperglycemic environment causes the formation and accumulation of advanced 

glycation endproducts (AGEs) in the extracellular matrix, fibrosis, and, lastly, heart 

failure.5 As of now, mainly rodent models and two dimensional (2D) cell cultures have 

been employed to analyze DCMP. However, there are notable differences between 

rodents and humans that provide challenges when studying DCMP and 2D cultures lack a 

dynamic, three dimensional (3D) environment crucial to the progression of this disease.6 

There is a need for a more accurate model to investigate DCMP for early diagnosis and 
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test potential therapies. This gap can be bridged with the development of a reproducible, 

native-like tissue engineered model of the myocardium utilizing the tissue engineering 

paradigm of combining a scaffold, cells, and biochemical and physical stimuli.  

1.2 The Heart and Myocardium 

The heart is responsible for pumping blood throughout the body to supply 

oxygen, nutrient, and waste exchange. It is a highly stressed organ as it beats between 60 

and 100 beats per minute. It is comprised of four chambers, four heart valves, and utilizes 

a network of blood vessels in the circulatory system for transportation.7 Within the body, 

the heart is located left to the midline posterior to the sternum and rotated slightly so that 

its right border is located more anteriorly, and the left border is located more posteriorly. 

A fibrous sac and serous lining called the pericardium, surrounds the heart to provide an 

almost frictionless environment for the continuous movement of this organ. The normal 

adult human heart is typically 12cm in length, 8cm wide, 6cm thick, and weighs between 

250 and 350 grams.8 

 

Figure 1.1: The layers of the heart wall.7 
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The heart wall consists of three layers; the epicardium, myocardium, and 

endocardium with blood vessels and capillaries incorporated (Figure 1.1). The outer 

epicardium is comprised of epithelium and connective tissue and fat; the middle 

myocardium is made of mainly cardiomyocytes (CMs) and fibroblasts (FBs); and the 

inner endocardium contains endothelium and areolar connective tissue.7 

1.2.1 The Extracellular Matrix of the Myocardium 

The extracellular matrix (ECM) of healthy myocardium is a dynamic 

environment, undergoing constant, balanced turnover in its normal state. It is made of 

collagens (type I, III, IV, V, and VI), elastin, glycoproteins (laminins, fibronectin, 

periostin, fibromodulin, and vitronecin), proteoglycans (versican, lumican, and biglycan), 

glycosaminoglycans (hyaluronic acid and dermatan sulfate), and matricellular proteins.9  

 

Figure 1.2: Scanning electron microscopy (SEM) image of acellular myocardium, illustrating the 

collagenous network of the ECM that supports native cells.10 Arrows=cell voids. 
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These extracellular molecules are secreted by cells in the heart, mainly the FBs, 

and provide mechanical and biochemical support of the cells (Figure 1.2) by facilitating 

cell adhesion and differentiation. Collagens provide strength and resilience for the highly 

stressed environment and proteoglycans are receptors on cell surfaces. Proteoglycans 

provide cushioning for the cells and glycosaminoglycans are responsible for storage of 

growth factors and cell hydration.11 

 

 

Figure 1.3: Roles of MMPs in physiological processes.12 
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Matrix metalloproteinases (MMPs) are a family of zinc-dependent endoproteases 

produced by cells. MMPs play an important role in ECM turnover by breaking down 

various ECM proteins, such as collagens and elastin.9 They are also vital for tissue 

invasion, immune responses, vascularization, and cell proliferation, migration, and 

differentiation (Figure 1.3). Resident growth factors in the ECM are proteolytically 

cleaved and released by MMPs for cellular uptake.12 Besides degradation of ECM, 

MMPs can degrade cell receptors to terminate migratory signaling and cell migration. 

Within the human body, 23 types of MMPs are known to exist, along with 4 endogenous, 

homologous tissue inhibitors of MMPs (TIMPs). TIMPs are endogenous and bind to 

MMPs at a 1:1 ratio. MMPs are controlled at multiple levels including messenger 

ribonucleic acid (RNA) expression, activation of proenzyme to the active form, and 

binding of TIMPs.12 

1.2.2 The Cells of the Myocardium 

 The myocardium is composed of two main cell types, the cardiomyocytes (CMs) 

and fibroblasts (FBs) (Figure 1.4). Even though CMs occupy the largest volume in the 

heart, around 75%, their populations are only around 30-40%. FBs make up the majority 

of the heart’s population. Smaller populations of vascular smooth muscle cells (SMCs) 

and endothelial cells (ECs) are also found, as they comprise the vascular network in the 

myocardium.13  
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Figure 1.4: Hematoxylin and eosin staining of human myocardium.14 40x; purple=nuclei; 

pink=cytoplasm, tissue.  

 

Figure 1.5:  Cardiomyocyte cross section.7    



 7 

 CMs allow for contraction of the ventricles and atria. Myocytes in the ventricle 

are long and narrow, and can be 10 to 25 um in diameter and 50 to 100 um in length, 

while myocytes in the atrium are oval and are less than 10 um in diameter and around 20 

um in length.15 CMs have one or two nuclei and form Y-shaped branches that join to 

adjacent CMs via intercalated discs (Figure 1.5).7 Intercalated discs allow for force to be 

transmitted from one CM to another, while gap junctions allow for electrical transmission 

between cells.8 Mitochondria account for 60% of the cell volume, providing cellular 

energy through the production of adenosine 5’-triphosphate (ATP) and can also prevent 

intercellular calcium overload through calcium uptake.15  

 

Figure 1.6: Excitation-contraction of a cardiomyocyte.14 
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Contraction of CMs is possible through an intricate network of proteins organized 

in sarcomeres, which are composed of thick and thin filaments (Figure 1.6). Myosin and 

actin comprise thick and thin filaments, respectively. CM contraction is set in motion by 

an action potential that travels along the sarcolemma into the transverse tubule (T-tubule) 

and depolarizes the cell membrane. This in turn opens calcium channels to allow calcium 

in the cell. Intracellular calcium rapidly increases as the sarcoplasmic reticulum releases 

even more calcium in response. Calcium binds to troponin-C on the thin filaments, 

inducing a conformational change and exposing myosin binding sites on the actin 

filament. This binding leads to ATP hydrolysis, which results in a conformational change 

of the actin-myosin complex and a sliding of the filaments, causing the sarcomere to 

shorten. Shortening in this unit is responsible for the overall contraction of the cell. The 

sarcomere length is restored with lowered cytosolic calcium concentration and a ATP 

binding to the myosin head at the end of this cycle.8 

 The structural integrity of the heart relies mainly on FBs, as they are very 

proliferative and produce interstitial collagen for the maintenance of the ECM. They also 

contribute to cardiac development, cell-signaling, and electro-mechanical function. FBs 

are interspersed throughout the myocardium.13 Cardiac FBs are elongated, contain one 

nucleus, and have high cellular activity as they have an intricate endoplasmic reticulum 

and a large Golgi apparatus. FBs are very dynamic in nature and can change phenotypes 

during injury states to become myofibroblasts. Myofibroblasts enhance the inflammatory 

response by secreting cytokines during injury. Cardiac injuries such as ischemia can 

initiate FB phenotypic changes and recruitment to the site of injury, leading to fibrosis16 
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 Blood vessels within the heart supply the myocardium and resident cells with 

oxygen and nutrients. Due to its great energy demands, the myocardium is highly 

vascularized, with an average distance of 12um between capillaries.17 They are 

comprised of FBs, SMCs, and ECs. ECs line the lumen or tunica intima of the vessel, 

forming a non-thrombogenic surface (Figure 1.7) SMCs form the tunica media, the layer 

surrounding the tunica intima, and FBs sheath the outermost layer of the vessel, the 

adventitia or tunica externa. These cells communicate with each other via physical 

contact and soluble or secreted molecules to regulate vessel maintenance, as well as tone 

and blood pressure.18 

 

Figure 1.7: Structure of a blood vessel wall. 
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1.3 Cardiac Disease of the Myocardium 

1.3.1 Coronary Artery Disease and Myocardial Infarction  

 Coronary artery disease is characterized by atherosclerosis in one or both 

coronary arteries, which are the main vessels that supply the myocardium with oxygen 

and nutrients. This can lead to ischemia of the myocardium, myocardial infarction, and 

even sudden death.3 As atherosclerotic plaque ruptures within the artery due to 

inflammatory mechanisms; a thrombus forms and occludes the vessel. Necrosis of the 

tissue supplied by this vessel quickly occurs, followed by inflammation. As mentioned 

before, FBs are very dynamic and during an injury state become myofibroblasts. After a 

MI, macrophages in the infarcted region secrete transforming growth factor-beta (TGF-

β), which guides FBs to myofibroblasts. Myofibroblasts remodel the infarcted tissue by 

secreting collagen I and III, creating a fibrous patch.19  

 

FIGURE 1.8: Illustration of ventricular CM hypertrophy compensation after MI and ischemia of 

the myocardium, leading to irreversible dilation followed by heart failure.20 
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After myofibroblasts remodel the infarct area, the overall mechanics of the heart 

are altered. CMs become hypertrophied to compensate for the lost CMs and maintain 

original cardiac output (FIGURE 1.8).20 This compensation works short term, however 

over time CM hypertrophy and fibrosis of the ECM, lead to enlargement of the heart or 

dilation, and may end in heart failure.21 

1.3.2 Cardiomyopathies 

 Cardiomyopathy is defined as a disease of the heart muscle, mainly of the left 

ventricle. It is marked by decreased systolic and/or diastolic function of the heart, which 

leads to heart failure. Main classifications of cardiomyopathy include; dilated, 

hypertrophic, and restrictive (Figure 1.9), and arrhythmogenic, without noticeable heart 

size or shape change.22  

 

Figure 1.9: Gross morphological changes associated with dilated, hypertrophic, and restrictive 

cardiomyopathies. Dilated cardiomyopathy is marked by ballooning; hypertrophic by noticeably 

thickened walls; and restrictive by stiffened walls.23  
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Dilated cardiomyopathy is defined as ventricular chamber dilation and systolic 

dysfunction with normal ventricular thickness in the absence of abnormal loading 

conditions, such as hypertension.24 It has an estimated prevalence of up to 1:250 and 30-

50% of cases are genetic in nature.25–28 Some cases are idiopathic and other causes 

include myocardial infections, systemic disorders, drugs and toxins, and endocrine and 

metabolic disorders.29–31 Clinical presentations include cardiac arrhythmias, heart failure, 

and in some cases sudden death.32 Hallmarks of this cardiomyopathy include an increase 

in ventricular mass, affecting mainly the left ventricle, a ballooning of the heart into a 

spherical shape, and floppy myocardium.  There is loss of a proper apex leading to 

altered blood flow mechanics and a reduced ejection fraction, which can lead to mural 

thrombi.30,33 At the microscopic level, interstitial and perivascular fibrosis is present in 

the myocardium and the endocardium.32 CMs are the most affected, with myofibril loss 

and varying morphological changes. Many CMs undergo apoptosis which results in a 

mixture of hypertrophic CMs with enlarged nuclei and thin, lengthened CMs in the 

myocardium.34 

Hypertrophic cardiomyopathy is defined as the presence of increased 

ventricular wall thickness or mass in the absence of any loading conditions sufficient to 

cause observed abnormality.33 It has a prevalence of 1:500 worldwide.35 The etiology is 

genetic, with sarcomeric hypertrophic cardiomyopathy being the most common, followed 

by mitochondrial disorders and metabolic or storage disease.36,37 Genetic screening is 

important for diagnosis, as myocardial hypertrophy precedes symptoms and the disease 

can remain stable and under the radar.38 Clinical presentations include left ventricular 
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dysfunction, heart failure, and sudden death.39,40 In this form of cardiomyopathy, the 

myocardium is thick, ranging from mild, 13-15mm, to massive, 30mm.33 Focal 

hypertrophy is found throughout the myocardium, mainly focused on the basal anterior 

septum and anterolateral free wall, which can lead in extreme cases to myocardial 

bridging. The mitral valve is often affected with enlarged leaflets, hypertrophied and 

abnormally positioned papillary muscles, and short chordae, which can lead to subaortic 

obstruction.40 Microscopically in the myocardium there is an overall spatial 

disorganization of myofibers and single CMs, with replacement and interstitial 

fibrosis.35,37 Morphologically, CMs have increased y-branching and side-to-side 

junctions, a whorled appearance, and herringbone pattern. CMs also have decreased 

distribution of desmin, intercalated disks, and z-bands.33 Vascular cells are also affected, 

smooth muscle cells become hypertrophied and intimal thickening and perivascular 

fibrosis are present.35  

 Restrictive cardiomyopathy is defined as reduced diastolic relaxation of the left 

or both ventricles that can occur from many different pathologies. Diastolic filling is 

inhibited with an increase in ventricular filling pressure, while systolic function remains 

unchanged.41,42 Causes are wide ranging and can be isolated or systemic in nature, as well 

as idiopathic. Amyloidosis, sarcoidosis, scleroderma, storage disease, toxicity, 

postirradiation therapy, and genetic mutations are some known causes.42,43 Clinical 

presentations include diastolic dysfunction and heart failure. Biatrial enlargement occurs 

with unchanged atrial-ventricular valves and left ventricular wall thickness. Volume of 

the ventricles can remain unchanged or be decreased. Due to the ranging pathologies 
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leading to restrictive cardiomyopathy, macro and micro changes can vary, depending on 

the cause. For example, in sarcomeric restrictive cardiomyopathy, the atria are 

disproportionately dilated compared to normal ventricular size, while in amyloidosis, the 

atria are only mildly enlarged and the left ventricular wall can be affected in some 

cases.41 Microscopically, interstitial fibrosis of myofibers and CMs are found in 

sarcomeric restrictive cardiomyopathy, while CMs in amyloidosis are atrophic. Amyloid 

deposits are the hallmark of amyloidosis and can be found histologically in the 

myocardium, endocardium, valves, arteries and veins.33 

Arrhythmogenic cardiomyopathy is rare and defined as a genetic heart disease 

mainly affecting the right ventricle. It is a progressive myocardial injury where CMs are 

replaced by fibroadipose tissue.44,45 Worldwide it is estimated to have prevalence up to 

1:2000.46 Mainly desmosomal proteins of intercalated disks are mutated, such as 

armadillo proteins plakiglobin (JUP) and desmocollin-2 (DSC2), however other proteins, 

such as TGF-β3 and desmin can be affected.46,47 Clinical manifestations include 

ventricular arrhythmias, heart failure and an increase in sudden death, especially in 

juveniles and athletes.44,48 With this cardiomyopathy there is no noticeable heart size or 

shape change. The external two-thirds of the right ventricle is normally effaced, and in 

some cases the left ventricle can be as well. The pulmonary infundibulum and outer right 

ventricle wall are the areas most affected.33 In this disease, a mixture of atrophic and 

hypertrophic CMs with vacuolar degeneration are found in the myocardium, separated by 

interstitial fibrosis. CMs are lost and replaced by fibrous or fibroadipose tissue.47 

Lymphocytes and macrophages can also be found in the diseased myocardium.33  



 15 

1.3.3 Diagnosis and Treatments  

 Coronary artery disease and cardiomyopathy are often diagnosed via symptoms or 

physical examination. They are verified through echocardiograms, electrocardiograms, 

cardiac angiograms, cardiac magnetic resonance imaging (MRI), cardiac positron 

emission tomography (PET), and occasionally an endomyocardial biopsy.22 Symptoms 

include fatigue, weakness, shortness of breath, palpitations, light headedness, fainting, 

and chest pain. Treatments can include lifestyle changes such as diet and exercise and 

drugs, including but not limited to, blood thinners, angiotensin converting enzyme (ACE) 

inhibitors, diuretics, corticosteroids, aldosterone, angiotensin II, beta, or calcium channel 

blockers.3 When a myocardial infarction occurs, speedy reperfusion is critical in limiting 

infarct size and percutaneous coronary intervention with balloon angioplasty with or 

without a stent is often utilized to reopen the occluded vessel. Coronary artery bypass is 

another treatment method to supply blood to the ischemic tissue.21 Pacemakers, 

implanted cardioverter defibrillators, and left ventricular assist devices may be utilized 

depending on the severity.3 Unfortunately, these treatments will only slow the 

progression of these diseases and they will ultimately lead to heart failure where the only 

treatment is whole heat transplantation. 
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Figure 1.10: Diagram highlighting alterations in the myocardium caused by a diabetic 

environment that lead to DCMP. 
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1.4 Diabetic Cardiomyopathy 

Diabetic cardiomyopathy (DCMP) is defined as a ventricular dysfunction that 

occurs in diabetic patients independent of coronary artery disease, hypertension, or 

valvular abnormalities.49,50 Metabolic alterations caused by high glucose and 

dyslipidemia contribute to the onset and progression of DCMP (Figure 1.10). Within the 

ventricle, especially the left, fibrosis and microvascular disease changes the normal 

structure and function of myocardium. Normal cellular function is changed by a 

metabolism shift, leading to lipid peroxidation and the buildup of reactive oxygen species 

(ROS), which cause apoptosis and autophagy.50 Diabetic patients have higher instances 

of coronary artery disease, as well as hypertension and atherosclerosis, due to this 

hyperglycemic and hyperlipidemic milieu.3 

1.4.1 Diabetes Mellitus 

 Normally, the body regulates blood glucose levels via a feedback loop to either 

release insulin or glucagon, to maintain homeostasis. During high glucose levels, islet of 

Langerhans beta cells in the pancreas (Figure 1.11) release insulin (Figure 1.12). Insulin 

binds to tyrosine kinase insulin receptors on target cells, inserting glucose transporters 

(GLUT4) on the cell surface for glucose transport (Figure 1.13). The liver then converts 

excess glucose to glycogen for storage and other cells begin to take up glucose via 

GLUT4. During low glucose levels, islet alpha cells release glucagon, which signals the 

liver to convert glycogen to glucose and release it into the blood (Figure 1.14). However, 

this homeostasis is disrupted with the metabolic disease diabetes, leading to not only 

prolonged hyperglycemia, but also a plethora of health issues.51  
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Figure 1.11: Anatomy of the pancreas and islet cells.7 

There are two main types of diabetes. Type 1 diabetes is known as insulin 

dependent diabetes or juvenile onset diabetes. It is characterized by destruction of beta 

cells in the pancreas. This can occur due to an autoimmune disorder triggered by genetic 

or environmental factors. Some cases of type 1 diabetes are idiopathic. Type 2 diabetes is 

known as insulin resistant diabetes and is characterized by a decrease insulin secretion 

and synthesis. Type 2 diabetes is the most prevalent, accounting for 90% of diabetes. 
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This is due to the rise in the epidemic of obesity, especially in developing countries. 

Distribution of abdominal fat in obese type 2 diabetic patients, leads to alterations in cell 

receptors accompanied by resistance to endogenous insulin.51,52  

Treatment of both types focus on control of blood glucose, as mismanagement of 

blood glucose levels by the patient lead to health problems, such as cardiovascular 

disease, and in extreme mismanagement cases, death.3 Type 1 diabetes is treated with 

insulin therapy, accompanied by close monitoring of blood glucose levels with 

glucometers to determine insulin dosage, either through a pump or syringe. Blood 

glucose is also monitored in type 2 diabetes, however due to the nature of this type, 

lifestyle changes, such as healthy eating habits and exercise can be used to treat and even 

reverse this type.53 Unlike type 1 diabetes, there is a wide spectrum associated with this 

type. When lifestyle changes are not enough, oral drugs such as metformin, 

sulfonylureas, thiazolindinediones (TZD), glucagon-like peptide 1 (GLP-1), and 

dipeptidyl peptidase inhibitors (DPP-4) may be used, and in extreme cases, insulin. 

Metformin increases insulin sensitivity and glucose uptake, while decreasing glucose gut 

absorption and hepatic gluconeogenesis. Sulfonylureas raise insulin release in beta cells. 

TZDs are peroxisome proliferator-activated receptor gamma agonists that improve 

insulin sensitivity, lipid profile, and blood glucose control. GLP-1 activates GLP-1 

receptors, which boosts glucose-dependent insulin secretion and decreases glucagon 

secretion. DPP-4 or gliptins raise incretin levels (GLP-1), which has the same outcome as 

GLP-1 treatments.54 
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Figure 1.12: Glucose regulation of insulin secretion in pancreatic beta cells.55 

 

Figure 1.13: Translocation of GLUT4 to the target cell’s membrane via tyrosine kinase insulin 

receptor binding to insulin for cellular glucose uptake.55 



 21 

 

Figure 1.14: Blood glucose homeostasis.56 

1.4.2 Clinical Diagnosis and Treatment of Diabetic Cardiomyopathy 

 Diagnosis of DCMP is the same as any cardiomyopathy described earlier, and as 

of now is unable to be diagnosed in asymptomatic patients.57 Currently the only 

serological biomarker that can be used is brain natriuretic peptide, however it is a marker 

associated with several cardiac diseases.58 Studies are ongoing to determine biomarkers, 

specifically microRNAs, that could be useful for DCMP diagnosis.59,60 

 Once patients are diagnosed with DCMP, emphasis is placed on glucose control 

and cardiomyopathy treatments are prescribed based on the individual.61 For glucose 

control, type 1 diabetic patients continue with insulin therapy, while extra precautions are 

taken with management prescriptions for type 2 diabetics.62 Sulfonylureas are often not 

prescribed as they may not function, due to heart failure being an insulin resistant state.3 
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TZDs increase fluid retention, so they are cautioned for use with class I and II heart 

failure and not recommended for use with class III and IV heart failure by the New York 

Heart Association (Table 1.1).58 DCMP can be treated with, but not limited to, lifestyle 

changes, ACE inhibitors, angiotensin receptor blockers, direct renin inhibitors, beta 

blockers, calcium channel blockers and diuretics.63,64 Depending on the severity and the 

symptoms, combinations of these can be used.65 Calcium channel blockers are not 

recommended for heart failure patients with type 1 diabetes.3 As the DCMP worsens, 

depending on the progression and individual, devices such as implantable cardioverter 

defibrillators, cardiac resynchronization devices, left ventricular assist devices, and even 

whole heart transplants may be employed. However, surgeries are risky, and one of the 

many criteria is that the patient have established glycemic control.3 Unfortunately, there 

is no cure for DCMP, like other cardiomyopathies.  

Class I Cardiac disease, but no symptoms and no limitations in normal physical activity
Class II Mild symptoms and slight limitation during ordinary activity
Class III Significant limitation in activity due to symptoms- comfortable only at rest
Class IV Severe limitations- symptoms even while at rest

New York Heart Association Classifications of Heart Failure

 

Table 1.1: Classifications of heart failure from the New York Heart Association.66 

 Understanding of the progression of DCMP can be broken down into three stages. 

Molecular and cellular events from hyperglycemia and dyslipidemia cause structural 

alterations that lead to myocardial dysfunction and heart failure (Table 1.2).3,65 However, 

this is a general understanding of the occurrence of this disease and as new knowledge of 

DCMP is brought to light, the progression and alterations may not be this rigid. Clinical 

findings hint at the possibility of two phenotypes associated with either type 1 diabetes or 
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type 2 diabetes, which are dilated cardiomyopathy with reduced left ventricular ejection 

fraction and restrictive cardiomyopathy with preserved left ventricular ejection fraction, 

respectively.67 

 

Table 1.2: General progression of DCMP highlighted by three stages.3 

1.4.3 Metabolic Shift in Diabetes  

As mentioned before, left ventricular CMs have very high-energy demands. 

Within the human body, the heart utilizes the largest amount of energy per gram of tissue, 

roughly 20 times its own weight per day.68 Approximately 70 percent ATP produced in 

the resting heart is due to FFA oxidation.68 Uptake of FFAs into the CM is mediated via 

three transporters; cluster of differentiation 36 (CD36), fatty acid transport protein 1, and 

plasma membrane form of fatty acid binding protein. CD36 is stored in intracellular 

vacuoles (~50%) where it can be recruited to the sarcolemma membrane for the uptake of 

FFA under conditions such as muscle contraction, and stimulation by insulin and 

caffeine.68 Physiologically, there is flexibility in the heart, allowing for shifts in the 

utilization of glucose and free fatty acids (FFA). Nutrients increase myocardial insulin 
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signaling and plasma insulin levels within the body. This leads to translocation of 

GLUT4 and CD36 to the CM sarcolemma, for glucose and FFA uptake, respectively, in 

order to supply myocardial energy substrates.57   

 

Figure 1.15: Pathophysiology of diabetes mellitus on energy metabolism in the heart.68 

In the diabetic heart, this plasticity is lost, due to increased FFA in the circulation 

and depletion of GLUT4 (Figure 1.15).69 High FFA levels activate transcription factor 

peroxisome proliferator-activated receptor alpha (PPARα) in the CM nucleus, leading to 

increased myocardial FFA oxidation and utilization via upregulation of CD36 expression, 

thus upregulating mitochondrial fatty acid beta-oxidation.70 Insulin signaling is 

suppressed as insulin receptor substrate 1 (IRS1) is inhibited from accumulation of FFA 

and their derivatives.68 CD36 is highly expressed on the sarcolemma, while GLUT4 

returns to its intracellular location.71 In this unbalanced environment, mitochondrial 
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oxidation capacity is exceeded and mitochondrial fission is increased, resulting in 

mitochondrial fragmentation with an accumulation of ROS, which can lead to 

apoptosis.72,73 Increased circulating FFA also lead to inhibition of pyruvate 

dehydrogenase through pyruvate dehydrogenase kinase 4 (PDK4), impairing glycolysis 

and causing the buildup of glycolytic intermediates and intracellular lipids, such as 

ceramides.74 This lipid accumulation decreases contractile function, hinders physiological 

autophagy, and impairs insulin signaling, leading to increased apoptosis within the 

myocardium.58 These metabolic alterations ultimately lead to ROS production, 

lipotoxicity, CM death and hypertrophy, altered calcium handling and myocardial 

fibrosis.57 

1.4.4 Oxidative Stress 

Within the healthy cardiovascular system, a balance exists between ROS 

production and their removal by antioxidants.75 Production of ROS is a naturally 

occurring process within the body and sources of ROS arise from non-enzymatic, 

enzymatic, and mitochondrial reactions.76 Non-enzymatic formation of ROS occurs via 

autoxidation of glucose as well as a reaction between protein and glucose (Figure 

1.19).64,77 Sources of enzymatic formation of ROS are nitric oxide synthase (NOS), 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and xanthine oxidase.64 

The mitochondrial respiratory chain also provides a source of ROS, during oxidation 

phosphorylation.78 In the physiological state, ROS play an important role in cell 

signaling, biosynthesis, and is an anti-infectious defense and a balance exists between 

ROS formation and antioxidant defense mechanisms.79 Enzymatic and non-enzymatic 
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defense mechanisms in the body eliminate ROS. Enzymatic mechanisms such as 

superoxide dismutase (SOD) and glutathione reductase are important in removal of 

ROS.80 Non-enzymatic antioxidants include glutathione, coenzyme Q10, and vitamins A, 

E, and C.76 This balance is important, as elevated ROS leads to oxidative stress, a 

harmful state which can alter cellular function and lead to cell death.49  

As mentioned before, the loss of metabolic plasticity in the diabetic heart leads to 

increased FFA oxidation in CM mitochondria followed by ROS accumulation. Due to 

high energy demands of CM, it is theorized that the mitochondria are responsible for the 

majority of ROS production in this diseased state.81 This influx of ROS supersedes 

endogenous antioxidant defense mechanisms, leading to oxidative stress.82 Constant 

oxidative stress degenerates proteins, deoxyribonucleic acid (DNA), and lipids within the 

cells (Figure 1.16) causing cellular dysfunction that leads to apoptosis and autophagy.83 

 

Figure 1.16: Schematic of pathologic outcomes of mitochondrial ROS production and prolonged 

oxidative stress due to hyperglycemia and hyperlipidemia.84  
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1.4.5 Impaired Cardiomyocyte Contraction 

Intracellular calcium in the CM is responsible for excitation-contraction coupling 

during cellular contraction at the micro-scale and myocardial compression at the macro-

level.85 Calcium enters the cell through L-type calcium ion channels (ICa-L), which 

activates calcium release from endoplasmic reticulum and sarcoplasmic reticulum via 

ryanodine receptors (RyRs), leading to increases of calcium that binds to troponin C, 

activating contraction. Relaxation of CMs occurs through the release of calcium from 

troponin C, followed by calcium uptake via sarcoplasmic/endoplasmic reticulum Ca+2-

ATPase (SERCA), Na+2/Ca+2 exchanger (NCX), sarcolemmal Ca+2-ATPase, and 

mitochondrial Ca+2 ATP uniport.86 

In the diabetic environment, dysfunctional intracellular calcium signaling and 

lower expressions of ion channels, SERCA, NCX, RyRs, and decreased myofilament 

calcium sensitivity in CMs lead to an imbalance in calcium homeostasis (Figure 1.17).87 

Hyperglycemia upregulates protein kinase C (PKC) and downregulates protein kinase A 

(PKA), which causes depression of outward potassium currents (Ito) and ICa-L and L-type 

calcium channel expression.88 High glucose also increases phosphorylated 

phospholamban (PLB) which reduces activity of SERCA and decreases overall SERCA 

and NCX expression.89 Calcium homeostasis is furthermore upset with the dysfunction of 

RyR due to hyperphosphorylation, causing leakage of calcium during diastole and 

depletion of sarcoplasmic reticulum calcium stores.74 Sensitivity of myofibrils to calcium 

are compromised with phosphorylation of troponin I and T from increased PKC 

activation, which leads to slower cross-bridge cycling.90 AGEs produced in high glucose 
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conditions irreversibly bind between calcium handling proteins, such as SERCA and 

RyR, leading to their inactivation.91 Myosin switches from the alpha to beta isoform in 

diabetes slows actin-myosin kinetics and depresses myosin and myofibrillar ATPase 

activity.92 N2B to N2BA titin ratios shift towards N2BA, a more elastic isoform, and titin 

becomes hyperphosphorylated, causing contraction dysfunction.92 Overall, these 

alterations in calcium handling are detrimental to cardiac efficiency and are obvious in 

slowed CM contraction and relaxation, prolonged action potential duration, and reduced 

shuttling of intracellular calcium.87  

 

FIGURE 1.17: Alterations within the cardiomyocyte in diabetic cardiomyopathy that cause 

contraction dysfunction and reduced cardiac efficiency.92  

1.4.6 Endoplasmic Reticulum Stress 

 The endoplasmic reticulum (ER), comprised of rough and smooth regions, is the 

main site for synthesis and processing of proteins and lipids in the secretory pathway. 

Within the closed ER lumen, newly polypeptide chains synthesize, fold and mature.7 
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These posttranslational modifications and folding interactions optimize protein function 

before correctly folded proteins are exported to the Golgi apparatus and transported to 

intracellular organelles or extracellular membrane. The ER also is a storage site for 

calcium.93 Accumulation of unfolded or misfolded protein within the lumen of the ER 

induces ER stress. This mechanism of action is triggered to restore homeostasis and can 

lead to the unfolded protein response (UPR).94 Conditions such as radiation, hypoxia, 

ischemia, oxidation, dysregulation of calcium, altered metabolism, or DNA mutations 

lead to ER stress.95  

 Increased circulated FFAs and hyperglycemia cause a metabolic shift, 

accumulation of ROS, and issues of calcium handling within the CM.96 These in turn lead 

to ER stress and the UPR to control protein quality. There are three main pathways that 

are utilized during the UPR; inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like 

ER kinsase (PERK), and activating transcription factor 6 (ATF6) pathways (Figure 

1.18).97 In the unstressed state, these sensors are bound to binding protein (BiP) and 

remain inactive.98 When misfolded proteins are present in the ER lumen, BiP unbinds 

from IRE1, PERK, and ATF6, allowing it to attach to misfolded proteins to serve as a 

chaperone.99 Misfolded proteins have exposed hydrophobic regions, which BiP readily 

binds to.97 Once IRE1 is activated, it becomes phosphorylated by PKA and splices X-box 

binding protein 1 (XPB1) messenger RNA, yielding transcription factor XBP1s for 

expression of UPR target genes, upregulation of ER chaperones, and exportation and 

degradation of misfolded proteins.100  IRE1 also activates Jun N terminal kinase (JNK) 

which can lead to apoptosis and autophagy.101 After unbinding of BiP, PERK 
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phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) reduces protein 

translation, while increasing activating transcription factor 4 (ATF4), which induces 

transcription of CCAAT/-enhancer-binding protein homologous protein (CHOP). ATF4 

and CHOP upregulate genes involved in protein synthesis and ER associated degradation 

(ERAD).93 PERK also phosphorylates nuclear factor (erythroid-derived 2)-related factor2 

(Nrf2), which turns on genes that combat oxidative stress.102 In the ATF6 signaling 

pathway, unbinding of BiP frees ATF6 from the ER and is translocated to the Golgi 

apparatus, where it is cleaved by resident proteases.97 This cleaved cytoplasmic domain 

activates genes involved in lipid biosynthesis, protein folding, ER expansion, and 

ERAD.103 Under prolonged ER stress, these pathways lead to autophagy and apoptosis.96  

 

Figure 1.18:  Illustration of ER stress and the UPR, leading to the activation of the ATF6, 

IRE1, and PERK pathways in response.101,104  
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1.4.7 Extracellular Matrix Changes  

 During hyperglycemia, an influx of glucose leads to the formation of advanced 

glycation end-products (AGEs), form irreversible cross-links within lipids and proteins, 

such as collagen, laminin, and elastin, and cause fibrosis.105 This cross-link is formed by 

the Maillard reaction via a Schiff base and Amadori product (Figure 1.19). Matrix 

metalloproteinases are unable to degrade these irreversible ECM modifications, causing 

an imbalance in physiological ECM turnover.106 AGE formation can induce cardiac FB 

proliferation and elevated collagen production.107 Accumulation of AGEs lead to vascular 

disease, as when it binds to a receptor for AGEs (RAGE), it increases endothelial 

permeability to macromolecules.108 Oxidative stress upregulates RAGE expression, 

which in turn causes increased NADPH oxidase expression, mitochondrial oxidase 

activation, and suppresses endogenous antioxidant activity.109 This establishes a positive 

feedback loop between ROS formation and RAGE expresssion.106  

Inhibition of matrix metalloproteinase (MMP) activity, macro and microvascular 

disease, and altered AGE and RAGE expression lead to myocardial thickening and 

fibrosis (Figure 1.20).111,112 Fibrosis causes the myocardium to stiffen and vascular 

disease decreases nutrient transport within the myocardium, inducing cell death in this 

vicious cycle.50 As CMs undergo apoptosis and autophagy, the ventricle must continue to 

pump at the same rate, so the surviving CMs must compensate for ones that have died 

off. To do so CMs enlarge and become hypertrophied.113 As they are continually 

overstressed mechanically and as more CMs continue to die in the toxic diabetic 

environment, the myocardium function gradually declines, ending in heart failure. 
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Figure 1.19: Mechanism for AGE formation via glycoxidation.110 

 

 

Figure 1.20: Autopsy of a heart with DCMP. (A) Gross anatomy showing hypertrophy of the left 

ventricle. (B) Hematoxylin and eosin staining showing fibrosis and cardiomyocyte hypertrophy 

within the left ventricle.113   
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1.4.8 Potential Antioxidant Therapies 

Researchers have started focusing on antioxidant therapies to combat elevated 

ROS in within the diabetic environment.114,115 One method of interest is increasing 

intracellular SOD content. This is a favorable countermeasure; however, SOD isoforms 

are very large, making them difficult to permeate the cells, and they have a very short 

half-life. Mito-TEMPO ((2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) 

triphenylphosphonium chloride) is a mimetic form of SOD, that is more stable and 

smaller, allowing it to overcome these barriers (Figure 1.21).116 Ni et al. tested mito-

TEMPO in type 1 diabetes streptozotocin (STZ) and type 2 diabetes db/db mouse models. 

They found in both animal models that daily injections of mito-TEMPO for 30 days 

inhibited mitochondrial ROS generation, prevented intracellular oxidative stress levels, 

decreased apoptosis, and reduced myocardial hypertrophy in diabetic hearts.78  

 

Figure 1.21: Structure of mito-TEMPO.117 
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Rutin is another appealing antioxidant. It is a citrus flavonoid found in a variety 

of plants (Figure 1.22).118 Bhandary et al. investigated a series of flavonoids in a study to 

determine if all or any would have a protective effect on ischemic/reperfused rat hearts. 

To test different concentrations of flavonoids, harvested rat hearts, subjected them to 

ischemia, reperfused them, and then perfused treatments through them. They found that 

rutin enhanced SOD activity and had consistent protective effects in ischemic/reperfusion 

injury.80 In other studies performed by Saklani et al. and Wang et al. on STZ  induced 

type 1 diabetic rats, rutin treatments significantly protected hearts against diabetic 

oxidative stress, improved electrocardiography parameters, apoptosis, and inflammation 

in the diabetic hearts.118,119 

 

Figure 1.22: Structure of Rutin.120 
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Coenzyme-Q10 is an antioxidant that is endogenously synthesized and is a 

lipophilic cofactor of the mitochondrial electron transport chain (Figure 1.23). It is 

available as a non-prescription oral dietary supplement and has been shown to be 

beneficial when used with other therapies for chronic heart failure.121 Blasio et al. studied 

the effect of coenzyme-Q10 on an exacerbated diabetic cardiomyopathy mouse model 

with reduced phosphoinositide 3-kinase (PI3K) signaling, which upregulates NADPH 

oxidase.  6-week-old dominant negative PI3K p110α mice were treated with STZ and 

after 4 weeks were treated with coenzyme-Q10. Within this aggravated model, coenzyme 

Q10 reduced left ventricular diastolic dysfunction, CM fibrosis and hypertrophy, 

expression of atrial natriuretic peptide, connective tissue growth factor, and β-myosin 

heavy chain.77 

 

Figure 1.23: Reduction of ubiquinone (coenzyme-Q10) to ubiquinol through semiquinone 

intermediate.122 
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There has also been a shift towards naturally occurring plant-based antioxidants, 

such as curcumin, garlic, and broccoli.123 Turmeric powder, with the active polyphenol 

curcumin (Figure 1.24), has been used as a spice for cooking and medicinal purposes in 

Asia for thousands of years.124 Yu et al. treated type 1 diabetic induced STZ rats with oral 

administrations of curcumin and found that it attenuated myocardial dysfunction, cardiac 

fibrosis, AGE accumulation, oxidative stress, apoptosis, and inflammation in the diabetic 

rat hearts.125 Sahebkar et al. performed a meta-analysis of eight randomized controlled 

clinical trials and found curcumin treatments significantly reduced pro-inflammatory 

cytokine tumor necrosis factor alpha (TNFα).126  

 

Figure 1.24: Structure of curcumin.127 

There are many ongoing investigations of other potential antioxidants not only for 

treatment of cardiac disease in diabetes, but also cardiovascular diseases in general, 

cancer, arthritis, autoimmune disorders, phycological diseases, neurological issues, etc.114 

Many of these antioxidants are on the market in non-prescription supplemental forms, 

however additional research into dosage and effect, as well as monitoring of production 

need to be performed. Antioxidants target sources of many diseases, making it a 

promising therapeutic avenue.        
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1.5 Cardiac Tissue Engineering  

 Tissue-engineered models have been used to address discrepancies between 

animals and humans to investigate diseased states. These organotypic models aim to 

replicate specific architecture and relevant physiological function of the tissue for 

analysis.128 This is useful for studying disease progression, as well as drug screening and 

treatment testing. Myocardial tissue engineering combines cells, scaffolds, and cues to 

create a structure and network similar to the native tissue. Many groups are looking to the 

promise of tissue-engineered myocardium, not only for the study of normal and diseased 

myocardium, but also for the hope of creating functional myocardium as a treatment for 

heart disease.129 This overlap has led to the rise of different approaches to develop tissue-

engineered myocardium that have the crossover potential to be used for modeling and 

diseased tissue replacement.  

1.5.1 Cardiac Scaffolds   

 Scaffolds for cardiac tissue engineering are utilized to provide an environment 

comparable to native myocardial ECM for cells to attach and align, interact with each 

other, transmit load, and conduct electric signals. The scaffold must also be able to be 

remodeled by the cells (i.e.- biodegradable) and have similar mechanical properties to 

withstand physiological cyclic strains and stresses.130 It should be biocompatible and 

have porosity that promotes vascularization and diffusion of oxygen and nutrients to 

support the seeded cells.131 

 Biomaterials utilized for cardiac scaffolds include, synthetic, natural, and 

combination. Several natural materials employed include collagen, fibrin, hyaluronic 
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acid, Matrigel, and preparations of native heart matrix. Some synthetic materials applied 

include polyesters such as poly(lactic acid) and poly(glycolic acid), poly(lactones), 

polyurethanes, and polysebasic acid.130 Combinations of synthetic and natural materials 

such as poly(e-caprolactone) and gelatin or collagen have also been used.132 Scaffolds 

can further be categorized by method of fabrication such as hydrogel, prefabricated 

matrices, decellularized tissue, and cell sheets. Advantages and disadvantages that should 

be taken into consideration when deciding on a method to use (Table 1.3).131  

Scaffold Source Advantages Disadvantages
Natural, Synthetic and Mixed In-situ injection of cells Fragile, prone to breakage

Lessened immune response
Natural, Synthetic and Mixed Easy to engineer and manipulate 3D forms Optimal porosity needs to be maintained 

Exact ECM structure difficult to create
Natural Vascularization Difficulties reseeding

Immune response eliminated
Native ECM protiens retained

Natural Easy to scale up in 3D form Fragile and difficult to handle
Easy to manipulate Limited thickness

Decellularized

Cell Sheets

Hydrogels

Prefabricated

 

Table 1.3: Types of scaffold fabrication methods with materials that can be used and some 

advantages and disadvantages of each.131  

 Hydrogels are produced by crosslinking water-soluble polymers. They can be 

made from natural or synthetic materials or combinations. Cells can integrate and grow in 

the scaffold.131 To increase cell anchoring and integration, growth factors and peptides, 

such as arginylglycylaspartic acid (RGD) for cell adhesion. Hydrogels are favorable 

vehicles for cardiac cell and/or growth factor in-situ injection, as it can increase delivery 

efficiency via protective encapsulation and catheters can be used for transport, 

eliminating the need for invasive surgery and use of drugs or anesthesia.131 Encapsulation 

by hydrogels can also alleviate immunogenic responses post implantation. For cardiac 

applications, this scaffold type is limited by its ability to withstand physiological forces 
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seen in the heart.133 Wang et al. injected crosslinker tetraaniline-polyethylene glycol 

diacrylate and thiolated hyaluronic acid, along with adipose derived stem cells and 

plasmid DNA encoding endothelial nitric oxide synthases (eNOs) nanocomplexes into 

the myocardium of rat infarct models. In rats there was an increase in ejection fraction, 

shortened QRS interval, smaller infarction size, less fibrosis, and higher vessel density 

within the hearts.134 Tang et al. injected human cardiac stem cells in thermosensitive 

poly(N-isopropylacrylamineco-acrylic acid) nanogel into mouse and pig myocardial 

infarction models. In mice and pigs treated with cells and hydrogels, cardiac function was 

preserved and scar size was decreased.135  

Prefabricated matrices are useful for cardiac tissue engineering, as mechanical 

properties, behavior, porosity, size, and degradability are tailorable.131 These scaffolds 

can be made from natural, synthetic, or combination materials. Pores of these scaffolds 

can be tailored by methods such as, porogen leaching, freeze drying, phase separation, 

and electro-spinning. Difficulties can arise in using preformed matrices, as it is difficult 

to exactly recapitulate ECM and overall organ structure with this method.131 Gu et al. 

fabricated cardiac patches with electro spun elastomeric polyester urethane urea and 

polyester ether urethane urea with incorporated recombinant adeno-associated virus- 

green fluorescent protein (GFP) labelled- to test addition and release of viral vectors in 

infarcted rat models. GFP was expressed even after 12 weeks and mechanical support 

provided by the scaffold improved remodeling and provided support to the compromised 

infarct tissue.136 Tsui et al. constructed cardiac scaffolds from electroconductive-acid 

modified silk fibroin-poly(pyrrole) substrates patterned with nanoscale ridges and 
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topography similar to native ECM. Human induced pluripotent stem cell (iPSC) 

cardiomyocytes were cultured on this material for 21 days and showed increased cellular 

organization and sarcomere development, with increased connexin-43 expression.137 

Tissue decellularization (decell) is a method that uses the organ itself to provide 

the 3D structure of interest through detergent washes to remove cells and cellular 

material, leaving the ECM and vasculature intact. Decelling is a favorable method, as 

immunogenic material is removed and native ECM, such as collagen, elastin, and 

laminin, is retained, allowing for patient specific cells to be integrated into the native 

scaffold to create an individually tailored tissue.138 One obstacle to overcome with this 

scaffold is homogenous cell seeding. Perea-Gil et al. tested decellularized porcine 

myocardium and human pericardium that were reseeded with or without porcine adipose 

mesenchymal stem cells in porcine myocardial infarct models. Both scaffolds with or 

without cells restored function of myocardium post infarction and integrated with the 

underlying tissue via neovascularization.139 Decell is based on the idea that nature is the 

best engineer. Recently, other vascularized things in nature, such as plants, have been 

researched. Gershlak et al. decellularized spinach and parsley leaves and roots were 

performed and seeded with human cells. Human iPSC cardiomyocytes seeded showed 

contractile function and calcium handling capabilities over the course of 21 days.140  

Cell sheets are considered a scaffold free approach and are employed to 

overcome the obstacle of low cell concentrations and inflammatory reactions of scaffolds. 

They are fabricated by culturing cells on poly-N-isopropylacrylamide, a temperature 

sensitive polymer, until they are confluent.141 At 37 degrees Celsius, the cell culture 
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dishes are hydrophobic and cell adhesive. The monolayer of cells can be detached from 

the polymer at 32 degrees Celsius, leaving the ECM and proteins intact. These fragile 

sheets can then be layered to a maximum thickness of 80um to form tissue.131 Shudo et 

al. implanted a bilayered cell sheet of rat endothelial progenitor cells (EPCs) and rat 

mesenchymal stem cells differentiated into smooth muscle cells (SMCs) into a rat model 

of ischemic cardiomyopathy. Rats treated with the EPC-SMC cell sheet had increased 

mature vessel density, decreased cardiac fibrosis, increased left ventricular ejection 

fraction, and decreased left ventricular dimensions.142 Sakaguchi et al. fabricated 10um 

thick cell sheets with neonatal rat CMs at 30 degrees Celsius in order to slow metabolism 

and allow for myocardial tissue formation and prevascularization. Lower temperature 

cultured cell sheets were implanted under the skin of nude rats and developed denser 

prevascular networks compared to cell sheets cultured in normal conditions, showing 

promise for cardiac applications.143 

1.5.2 Cardiac Cell Sources 

 To develop functional myocardium for cardiac tissue engineering applications, 

there are several cell sources for consideration. Some sources are acceptable for 

implantation, while others are only suitable for disease modeling and screening for 

individual patient therapies. Allogenic sources include CMs, embryonic stem cells 

(ESCs), cardiac progenitor cells (CPCs), and cardiac stem cells (CSCs). Autologous 

sources include adipose derived stem cells (ADSCs), skeletal myoblasts, bone marrow 

derived stem cells (BMDSCs), and iPSCs (FIGURE 1.25).131 Allogenic sources have 

been investigated, however complications arise with activation of the immune response. 
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CPCs and CSCs are difficult to source, as they are estimated to make up 1% of total cells 

in the heart. It is also problematic acquiring CMs from healthy hearts, as they will be 

used for whole organ transplantation.132 There are ethical concerns with ESCs and when 

transplanted in vivo, tumors can form and they may induce arrhythmias.144 

 

FIGURE 1.25: Diagram of potential allogenic and autologous cell sources for cardiac tissue 

engineering.131 

 Autologous skeletal myoblasts have been investigated for transplantation 

treatments of diseased myocardium, as they are easy to isolate, resistant to ischemia and 

fatigue. However, with skeletal myoblast transplantation there is an increased risk of 

arrhythmias as they fail to structurally integrate into the myocardium and beat 

independently of neighboring CMs.144 BMDSCs are another potential source from which 

mesenchymal stem cells (MSCs) and EPCs can be isolated from. MSCs are easy to 

isolate, can differentiate into CM-like cells in vivo and in vitro, however they have a low 
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differentiation efficiency.145 They have been shown to improve left ventricular ejection 

fractions in animal myocardial infarction models when directly injected into infarct or 

when administered intravenously.146 EPCs have been shown to increase 

neovascularization and cardiac function in infarct models, though low numbers limit their 

use.147 iPSCs can be derived from adult cells, however this is a long, costly process, with 

low efficiency of 0.01-0.1 percent.132 Problems arise with the use of iPSCs in vivo, as 

there are concerns with tumor formation and iPSCs differentiated into CMs from patients 

with cardiomyopathy have been shown to retain diseased phenotypes.148  ADSCs are easy 

to isolate and are widely available within the body. In preclinical studies, they have been 

shown to decrease infarct size and survival. In the PRECISE trial in Europe ADSC 

treated patients with ischemic cardiomyopathy had a reduction in inducible ischemia and 

improvement in peak oxygen consumption at 18 months.149  

1.5.3 Cardiac Bioreactors  

 Merging scaffolds and cells with a bioreactor, certain conditions can be met to 

produce a more physiologically relevant environment to precondition myocardial-like 

tissue prior to implantation or create models for the study of disease states. 

Preconditioning increases cell functionality, as well as guides cells towards myocardial 

cell lineages such as CMs.150 Physiological myocardial environment recapitulation in a 

bioreactor requires addition of elements such as, perfusion, electrical stimuli, and 

mechanical loading, which can be added to necessary controlled conditions such as pH, 

temperature, and nutrients.129,151 If the thickness of the myocardial-like tissue is greater 

than ~150um, perfusion is necessary for oxygen diffusion.17 
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 It has been established that electrical stimulation affects cell alignment, 

differentiation, metabolic activity, protein synthesis, connexin 43 expression, conduction 

velocity, calcium handling, and force generation.150 Physiological electrical properties 

such as rectangular shape and 2ms duration at 5V/cm and 1Hz are successful in inducing 

these changes.152  Radisic et al. cultured neonatal rat CMs on collagen sponges and 

subjected them to an electrical stimulus (2 ms, 5 V/cm, 1 Hz), comparable to native 

myocardium for 5 days utilizing carbon rods. Cells were aligned and coupled; 

intercalated discs, gap junctions, myofibrils, and T-tubules formed; and important 

proteins such as troponin I, α-actinin, connexin 43, α- and β-myosin heavy chain 

increased.153 

 Mechanical strain is also important for CM alignment and maturation. 

Zimmerman et al. mechanically loaded (cyclic stretch at 10%, 2 Hz) neonatal rat CMs 

seeded on collagen I scaffolds for 7 days and found that CMs more closely resembled 

adult myocardial tissue when compared to 6-day old native neonatal rat myocardium. 

They observed morphological changes such as a basement membrane, well developed T-

tubules, cell alignment along the construct and increases in myofilaments, sarcomeric 

organization, gap junctions, desmosomes, adherens junctions.154 

 Electrical and mechanical stimuli combined improve CM functional properties 

over electrical or mechanical stimulation alone. Morgan and Black subjected neonatal rat 

CMs in fibrin gel on latex tubing to electrical (rectangular pulse, 1ms, 3V/cm, 1Hz) and 

mechanical (5% stretch, 50% duty cycle, 1Hz) stimulation in an electromechanical 

bioreactor they constructed (Figure 1.26) for 14 days. They found that combined 
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electromechanical stimuli enhanced myocardial-like tissue function by increasing 

expression of SERCA2a, troponin T, protein kinase B (Akt), proteins responsible for cell-

cell communication and contractility.155 

 

Figure 1.26: Electromechanical bioreactor produced in the Black Laboratory.155  

1.5.4 Current Diabetic In Vivo and In Vitro Cardiac Models 

Animal models are currently used to understand early cardiac alterations in 

diabetes and heart failure, while cadaveric hearts have been used to study end stages heart 

failure in diabetic patients. Animal models are useful, however there are many 
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physiological discrepancies between humans and animal models.156 Rodent models, 

particularly rat and mouse, are the typical choice for diabetic cardiac research, as they are 

relatively inexpensive, easy to house and care for.156 Mouse models are employed as they 

are easy to manipulate genetically.74 Type 1 diabetic rodent models such as the 

streptozotocin (STZ) induced diabetes in rat or mouse model, OVE26 mouse, and Akita 

diabetic mouse are common for cardiac diabetes studies.156 Standard type 2 diabetes 

models include the Zucker diabetic fatty rat (ZDF), db/db mouse, and ob/ob mouse.6 

While these models have been helpful in determining alterations that could be occurring 

in diabetic myocardium, and have been widely accepted, there are major discrepancies 

between humans and the rodent models. Rodents have a higher heart rate, differing 

electrophysiological properties of CMs, and varying circulating lipid concentrations when 

compared to humans.6 One of the major discrepancies often overlooked for rodent 

models are differences in the immune response when compared to humans. Diabetes is a 

prolonged inflammatory disease.65 Taking into consideration marked differences seen 

among host immune responses in human patients and rodent subcutaneous implants, there 

most assuredly are differences between rodent models and patients in this extended 

inflammatory disease.157 Inconsistencies also exist in the progression of cardiac 

alterations in these diabetic rodent models and within the models themselves. Depending 

on the lineage of the rodent, genetic manipulation, and severity of obesity and diabetes, 

some models are more susceptible to changes and show a rapid progression of diabetes 

and heart failure.6 For example, when comparing type 2 diabetic models, cardiac 

efficiency is markedly lower for db/db and ob/ob mice, but does not change for ZDF 
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rats.158–160 In the Akita type 1 diabetic model it has been shown depending on the study 

that cardiac size can remain the same or increase.161,162 Disparities may arise depending 

on the sex of the animal. Akita male mice are usually more favorable for diabetes 

research as female Akita mice have less pronounced hyperglycemia when compared to 

their male counterparts.163 

 In vitro models have been employed to study cardiac alterations in diabetes and 

changes that occur in specific cell types, however their models have either lacked a 

dynamic 3D environment with an ECM or utilized animal cells instead of human 

cells.148,164 Song et al. statically cultured rat neonatal cardiomyocytes on collagen 

scaffolds in either low (1g/L) or high (4.5g/L) glucose with or without insulin (20µM) for 

8 days. They saw poor electric properties and an increased ratio of myosin heavy chain 

isoform β to α in high glucose cultures.164 Drawnel et al. cultured human iPSC derived 

cardiomyocytes, from two type 2 diabetic patients and a non-diabetic patient and 

subjected them for two days to either a manufacturer’s maintenance medium without 

glucose or a “diabetic” medium with glucose (10mM), as well as endothelin-1 (10nM) 

and cortisol (1µM) to dull insulin sensitivity. iPSC-CMs from type 2 diabetic patients 

showed baseline cardiomyopathy (CM hypertrophy, loss of sarcomeric integrity) without 

being cultured in “diabetic” medium and normal iPSC-CMs cultured in “diabetic” 

medium showed baseline cardiomyopathy as well.148 

1.6 Conclusions 

 The risk for cardiac disease is dramatically increased in diabetic patients. This is 

due to the diabetic environment, as hyperglycemia and dyslipidemia cause metabolic 
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disturbances that adversely affect myocardial cells and ECM. These modifications 

aggregate to alter overall myocardial structure and cardiac function, leading to DCMP. 

As of now there is no specific marker for this disease and diagnosis is the same as other 

cardiomyopathies. Elucidating early stages of this disease is vital for determining markers 

for early diagnosis, treatment, and possible therapy targets. As of now, animal models 

and 2D studies have been utilized to understand early changes associated with DCMP, 

however there are discrepancies with animal models and 2D studies fail to recapitulate 

the ECM and dynamic environment. Tissue engineering is vital in bridging this gap. By 

combining scaffolds, cells, and biochemical and physical stimuli, we can elucidate early 

alterations in DCMP, as well as test potential therapies for treatment. 
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CHAPTER 2: RESEARCH MOTIVATION, SPECIFIC AIMS AND PROJECT 
SIGNIFICANCE 

 
2.1 Introduction 

As diabetes mellitus rises to epidemic proportions across the world, so follows 

an upsurge in the number of patients who have heightened risk of cardiovascular disease. 

The risk of cardiovascular disease, such as hypertension, diabetic cardiomyopathy, and 

atherosclerosis are increased in diabetic patients.1,2 Diabetic cardiomyopathy (DCMP) 

is a ventricular dysfunction that specifically occurs in diabetic patients independent of 

coronary artery disease, hypertension or valvular abnormalities.3  

Heart transplantation is the only cure for DCMP, which has a very long wait list.4 

Treatment is lumped in with other cardiomyopathies and heart failure, however these 

therapies only treat the symptoms and downstream complications that accompany heart 

failure without addressing the roots of the problem.5 Understanding the fundamental 

mechanisms in the early stages of DCMP are vital for early diagnosis and targeted 

therapies. As of now, comprehension of this disease has depended on rodent models, cell 

culture models, and cadaveric human patient hearts.6,7  Human DCMP cadaveric hearts 

have been useful for elucidating end stage cellular and extracellular changes and rodent 

and cell culture models have been utilized to fill in the gaps. However there are many 

discrepancies that exist between humans and rodents.8–10 Human cells have been 

employed to examine specific cell type alterations associated with the diabetic 

environment, but this is in an oversimplified 2D static environment, lacking an 

extracellular matrix (ECM).11 
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Our long-term goal is to develop a tissue engineering platform to investigate 

mechanisms of early cellular and extracellular alterations of DCMP. To achieve this goal, 

we will examine known hallmarks of DCMP in two tissue-engineered models developed 

in our lab. This will be accomplished by containing tissue-engineered myocardium made 

by combining human cardiomyocytes and decellularized porcine myocardium in (1) a 3D 

Kube minibioreactor or (2) an in-house electromechanical bioreactor cultured in a high 

glucose environment.  

Preliminary studies in our lab have shown cellular and extracellular alterations 

associated with DCMP in rat cardiomyocytes cultured in 3D Kube minibioreactors for 14 

days in high glucose. Within our lab we have also developed a physiologically relevant 

myocardial electromechanical bioreactor. With these encouraging results we chose to 

move forward and examine early human cardiomyocytes (hCM) modifications in the 3D 

Kube minibioreactor, as well as our electromechanical bioreactor in a simulated 

“diabetic” environment with additional glucose. We hypothesize that by creating and 

utilizing tissue engineering platforms for modelling DCMP we can elucidate early 

alterations in hCM and the ECM to determine points for diagnosis and treatment.   
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2.2 Specific Aims 

Aim 1: Ascertain if tools and methods we employ are suitable for analysis and 

highlight DCMP alterations (Presented in Chapter 3) 

Hypothesis: Methods utilized will detect alterations in the ECM and cells of the heart 

caused by hyperglycemia and dyslipidemia in the diabetic environment 

Approach: Hearts from normal and diabetic (streptozotocin type I induced) rats will be 

harvested and analyzed for this study 8 weeks after induction. Diabetic and DCMP 

cellular and ECM changes will be assessed via histological staining, western blotting, and 

specific assays. Alterations such as lipid accumulation, endogenous antioxidant 

mechanisms, advanced glycation endproduct (AGE) buildup, matrix metalloproteinase 

(MMP) activity, apoptosis, autophagy, endoplasmic reticulum (ER) stress, and 

perivascular and interstitial fibrosis. 

 

Aim 2: Assess suitability of human cardiomyocytes for the creation of a three-

dimensional (3D), dynamic in vitro model of DCMP (Presented in Chapter 4) 

Hypothesis: hCMs will be modified and respond in a hyperglycemic milieu  

Approach: Progenitor hCM will be cultured for two weeks in a high glucose 

environment (4.5g/L glucose) and compared to hCM cultured in normal glucose (1g/L 

glucose).  Immunofluorescence, western blotting, and specialized kits and assays will be 

used to analyze the two groups. Cells will be analyzed for alterations such as lipid 

accumulation, lipid peroxidation, reactive oxygen species (ROS) generation, endogenous 
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antioxidant mechanisms, AGE buildup, receptor for AGE (RAGE) expression, MMP 

activity, apoptosis, autophagy, and ER stress. 

 

Aim 3: Develop a myocardial-like tissue platform using proper biochemical, 

mechanical, and electrical cues (Presented in Chapter 5) 

Hypothesis: Applying specific mechanical, electrical, and biochemical stimuli, 

cardiomyocytes seeded on scaffolds will mimic the organization and function of 

myocardial tissues  

Approach: hCM from Aim 2 will be seeded into decellularized porcine myocardium and 

exposed to mechanical and electrical stimuli for 14 days via a modified Flexcell 

bioreactor to induce cell organization. Static controls will be cultured in tandem. Cell 

viability, as well as the presence of specific cardiac cell markers, such as connexin 43, 

sarcomeric α-actinin, desmin, and GATA-4 will be assessed. The extracellular matrix 

will also be analyzed for changes in collagen IV and laminin expression.    

 

Aim 4: Investigate cardiac cell and matrix modifications induced by oxidative stress 

in diabetic environment (Presented in Chapter 6) 

Hypothesis: High glucoxidative environments induce pathological modifications in cells 

and extracellular matrix 

Approach: Lipid accumulation, endogenous antioxidant mechanisms, AGE accrual, 

MMP activity, apoptosis, autophagy, and ER stress will be assessed after the myocardial-

like tissue is exposed to physiological-like conditions in vitro in either normal (1 g/L) or 
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high (4.5 g/L) glucose. Two bioreactor platforms will be tested for 14 days: (1) a 3D 

Kube perfusion minibioreactor and (2) an electromechanical bioreactor developed in our 

lab (from Aim 3).  

 

2.3 Significance of Proposed Project  

 This project is expected to have a significant impact by bridging an existing gap 

in the understanding of early alterations of human cardiac cells and the extracellular 

matrix in DCMP and the diabetic environment with tissue engineering. Development of 

an organotypic, highly reproducible, systematic model will allow for strides to be made 

not only in the clarification of DCMP, diagnosis, and patient-tailored options for 

treatment and prevention, but in validating therapies and understanding the progression of 

DCMP. 
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CHAPTER 3: CHARACTERIZATION OF AN IN VIVO DIABETIC CARDIAC 
DISEASE MODEL 

 
3.1 Introduction 

 The only cure for DCMP is a whole heart transplant.4 There is no specific marker 

for this cardiomyopathy and it is diagnosed after symptom manifestation, including but 

not limited to, shortness of breath, fatigue, chest pain, and fluid retention.5 As of now, 

treatment of DCMP is the same as other cardiomyopathies, with a focus on blood glucose 

control.2  DCMP is a complex disease and understanding its progression is the key to 

determining distinct markers for early diagnosis, as well as targeted treatments.  

Animal models have been widely utilized to understand the underlying 

mechanisms of DCMP and cardiac alterations associated with diabetes.6 One of these 

popular models is the streptozotocin (STZ) type I diabetic rat model. This type I diabetic 

rat model is produced through tail vein injection of STZ, a glucosamine-nitrosourea 

antibiotic that causes beta cell necrosis, leading to insulin deficiency.7 STZ is favorably 

up taken by beta cell GLUT2 glucose transporters in the pancreas as it has a similar 

structure to glucose.7 This diabetic rat model has been shown to exhibit decreased 

glucose utilization, increased FFA oxidation, decreased mitochondrial function, impaired 

calcium handling, and increased oxidative stress.6 

 We hypothesized that by utilizing this diabetic STZ rat model, we could detect 

alterations in the ECM and cells of the heart caused by hyperglycemia and dyslipidemia 

in the diabetic environment.  
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3.2 Materials and Methods  

3.2.1 Materials  

Streptozotocin was obtained from Sigma (S0130). Insulin used was Humulin N 

U-100 NPH from Lilly (Indianapolis, IN). AlphaTRAK® (GenII) test strip and the 

AlphaTRAK® Blood Glucose Monitoring System were from Abbot Laboratories, 

Animal Health (Abbott Park, IL). Bicinchoninic acid protein assay was from Pierce 

Biotech (Rockford, IL). Electrophoresis apparatus, gel imager and imaging software, 

chemicals, and molecular weight standards were from Bio-rad (Hercules, CA). BM 

Chemiluminescence Western Blotting kit (Mouse/ Rabbit) was obtained from Roche 

(Indianapolis, IN). The Vectastain Elite kit, ABC diaminobenzidine tetrahydrochlorine 

peroxidase substrate kit, and Vectashield mounting medium were from Vector 

Laboratories (Burlingame, CA). The following antibodies were used: rabbit anti-

superoxide dismutase-2 (Abcam, ab13534), rabbit anti-advanced glycation endproducts 

(Abcam, ab23722), rabbit anti-protein kinase RNA-like endoplasmic reticulum kinase 

(Abcam, ab192591), rabbit anti-alpha-smooth muscle actin (Abcam, ab5694), rabbit anti-

caspase-3 (Millipore, 06-735). Biotinylated anti-rabbit IgG was purchased from Vector 

Laboratories (Burlingame, CA). Movat’s Pentachrome Kit was from Poly Scientific (Bay 

Shore, NY). All other chemicals were of the highest purity and purchased from Sigma-

Aldrich Corporation (Lakewood, NJ). 
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3.2.2 Rat Streptozotocin-Induced Diabetes Model  

Diabetic rat models were produced utilizing adult male Sprague-Dawley rats 

(n=20, weight 300-350g) after tail vein injection of a single dose of sterile filtered 

55mg/kg streptozotocin (STZ) solution in 0.1M citrate buffer (pH 5). Control rats were 

given an equal volume of sterile citrate buffer (n=20). 3 days after diabetic induction, 

AlphaTRAK® (GenII) strips with the AlphaTRAK® Blood Glucose Monitoring System 

were used to measure levels of blood glucose 3-4 times a day. Diabetic rats were given 

subcutaneous injections of long-lasting insulin (2-4U Isophane) every other day after the 

establishment of diabetes (>400mg glucose/dL blood). This ensured blood glucose levels 

were maintained at reasonable ranges (400-600mg glucose/dL blood) and would prevent 

weight loss and ketonuria development. Adequate health parameters were maintained by 

closely monitoring glucose levels, individual weights, hydration status, and food and 

water consumption. Godley-Snell Research Center Animal Facility associated staff and 

attending university veterinarian provided food and water for the animals ad libitum, as 

well as animal care. 8 weeks after STZ or control injection, rats were humanely 

euthanized by carbon dioxide and hearts were harvested. Hearts for protein extraction 

were flash frozen in liquid nitrogen, transported on dry ice for storage at -20°C. For 

histological analysis, hearts were either fixed in 10% formalin before processing or 

embedded and frozen in optimal cutting temperature (OCT) compound. National Institute 

of Health (NIH) guidelines for the care and use of laboratory animals (NIH publication 

#86-23 Rev. 1996) were observed. The Animal Research Committee at Clemson 

University approved the animal protocol for this experiment. 
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3.2.3 Histological Analysis 

Rat hearts were dissected into 4 coronal sections before paraffin processing and 

embedding, for more in-depth histological analysis. Movat’s pentachrome staining was 

utilized to compare morphology between the normal and diabetic hearts (n=3 for each 

group). Rehydrated paraffin sections (5um) were stained using a Movat’s pentachrome 

kit. Manufacturer’s guidelines were followed.  

 Immunohistochemistry (IHC) was performed for detection of superoxide 

dismutase-2 (SOD-2), advanced glycation endproducts (AGE), and alpha-smooth muscle 

actin (α-SMactin) to compare diabetic and normal rat hearts (n=3 for each group). 

Briefly, antigen retrieval was performed on rehydrated paraffin sections (5um) with 

heated (90-100 degrees C, 10 min) 10mM citric acid (pH=7.4). Slides were 

permeabilized with 0.025% Triton X-100 for 5 minutes and then incubated in normal 

blocking serum for 45 minutes. Primary antibodies (rabbit anti-SOD-2 10ug/mL dilution, 

rabbit anti-AGE 4ug/mL dilution, or rabbit anti-a-SMactin 1ug/mL dilution) were 

incubated overnight at 4 degrees Celsius. Negative controls were obtained by omitting 

the primary antibody. Endogenous peroxidases were blocked with 0.3% hydrogen 

peroxide in 0.3% normal horse serum for 30 minutes. The secondary biotinylated anti-

rabbit antibody was applied for 30 minutes. Antibody staining was visualized using the 

Vector ABC peroxidase substrate kit and then lightly counterstained with diluted 

hematoxylin, before mounting. A Zeiss Axiovert 40CFL microscope with AxioVision 

Release 4.6.3 digital imaging software (Carl Zeiss MicroImaging, Inc. Thornwood, NY) 

was utilized to obtain images. 



 68 

3.2.4 Lipid Staining  

Lipid accumulation was visualized via oil red O or sudan black staining on 

cryosectioned rat hearts (n=3 per group) and mounted with aqueous Vectashield 

mounting medium. Light images were taken on a Zeiss Axiovert 40CFL microscope, as 

described before. For oil red o, slides were fixed in 4% paraformaldehyde, rinsed in 

distilled, deionized water (ddH2O), rinsed in 60% isopropanol, and stained in 0.3% Oil 

Red O in isopropanol solution. Slides were then rinsed twice in 60% isopropanol, stained 

in a 1 to 1 hematoxylin in ddH2O solution, and rinsed in ddH2O.   

For sudan black staining, were fixed in 4% paraformaldehyde, rinsed in ddH2O, 

rinsed in 35% ethanol, followed by 70% ethanol, and stained in sudan black in 70% 

ethanol. Slides were rinsed twice in 70% ethanol, followed by a rinse in tap water, stained 

in a 1 to 1 hematoxylin in ddH2O, and rinsed in ddH2O. 

3.2.5 Detection of Caspase-3, SOD-2, AGE, and PERK 

Western blotting was employed to compare amounts of caspase-3, SOD-2, AGE, 

and protein kinase RNA-like endoplasmic reticulum kinase (PERK) between the diabetic 

(n=5) and normal (n=4) rat hearts. Proteins were extracted by pulverizing liquid nitrogen-

frozen tissue samples from the left ventricular wall and homogenizing them in 

radioimmunoprecipitation assay (RIPA) extraction buffer (50mM Tris-HCl pH 7.4, 

150mM sodium chloride (NaCl), 1mM ethylenediaminetetraacetic acid (EDTA), 1% 

Triton X-100, 1% Sodium Deoxycholate, 0.1% sodium dodecyl sulfate (SDS), with 

protease inhibitor cocktail). Protein concentrations in the samples were found using a 

bicinchoninic acid protein (BCA) assay. For each sample, 20ug of protein per lane was 
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loaded and a pre-stained molecular weight standard was loaded in one of the lanes. 

Protein from the gels were transferred to polyvinylidine fluoride membranes. Primary 

antibodies (rabbit anti-AGE 0.5ug/mL dilution, rabbit anti-SOD-2 1ug/mL dilution, 

rabbit anti-caspase-3 1ug/mL dilution, or rabbit anti-PERK 1ug/mL dilution) were 

applied overnight at 4 degrees C. The secondary antibody from the anti-mouse/rabbit kit 

was then applied for 45 minutes at room temperature. The polyvinylidine fluoride 

membranes were fluorescently tagged with detection solution from the anti-mouse/rabbit 

kit and then imaged using the Chemi-Doc™ XRS+ system from Bio-rad (Hercules, CA). 

Relative band intensities were determined using Bio-rad Image Lab Software Version 

5.1, beta build 1.  

 Relative amounts of caspase-3 within the rat hearts (n=3 per group) were 

determined with the Caspase-3 Fluorogenic Spectroscopic Assay from BD Pharmingen 

(San Jose, CA). Manufacturer’s protocol was followed. Intensities were measured using 

the Synergy H1 Hybrid Reader System from BioTek (Winooski, VT). 

3.2.6 Matrix Metalloproteinase Activity Analysis 

Protein extracts from hearts were extracted using the RIPA buffer method 

(above). Protein concentrations in the samples were found using a BCA assay. For each 

sample, 20ug of protein per lane were loaded into a gelatin zymography gel (n=2 per 

group), as was a pre-stained molecular weight standard into a separate lane. After 

electrophoresis separation, the zymography gel was washed in a triton-X solution and 

matrix metalloproteinases (MMPs) were activated with a brij-35 development buffer for 

24 hours at 37 degrees C. After staining with Coomassie, MMP clear bands were imaged 
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using the Chemi-Doc™ XRS+ system and evaluated by densitometry using the using 

Bio-rad Image Lab Software. 

3.2.7 Glutathione Detection 

Protein extracts were taken from rat hearts using the RIPA buffer extraction 

method (above). Protein concentrations in the samples were found using a BCA assay. 

Glutathione was detected in rat hearts (n=3 per group) using Cell Technology’s 

fluorescent thiol detection kit assay (Mountain View, CA). Manufacturer protocol was 

utilized. Intensities were measured the Synergy H1 Hybrid Reader System. 

3.2.8 Statistical Analysis 

 Results are expressed at mean ± standard deviation (SD). Statistical analysis was 

performed between groups utilizing Welch’s two-tailed t-test in excel. Significance was 

determined with an alpha (α) value of 0.05. 

3.3 Results 

3.3.1 Extracellular Matrix Analysis 

 Analysis of normal and diabetic rat hearts was performed to determine if ECM 

changes associated with DCMP were noticeable. On the macro scale, diabetic hearts 

markedly enlarged and dilated when compared to normal rat hearts (Figure 3.1). As seen 

in Figure 3.2, diabetic rat hearts had higher instances of fibrosis within the myocardium 

of the left ventricle and blood vessels, as revealed by Movat’s pentachrome staining and 

IHC staining of α-SMactin. Analysis of MMPs revealed reduced activity in diabetic rat 

hearts (Figure 3.3).  
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Figure 3.1: Harvested diabetic (bottom) and normal (top) rat hearts. 
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Figure 3.2: Extracellular matrix (ECM) analysis of normal and diabetic rat hearts. 

Movat’s pentachrome staining (top and middle) of the left ventricle and blood vessels 

(black=nuclei or elastic fibers, yellow=collagen or reticular fibers, blue=ground 

substance or mucin, bright red=fibrin, red=muscle) in hearts. Immunohistochemistry 

(IHC) staining (bottom) was used for α-smooth muscle actin (α-SMactin, 

brown=positive, dark purple=nuclei) visualization. Negative controls not shown for IHC. 
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Figure 3.3: Matrix metalloproteinase (MMP) activity assessment in rat hearts. Gelatin 

zymography was used to determine MMP activity in diabetic and normal rat hearts. 

RDU= relative densitometry units. 
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Figure 3.4: Advanced glycation endproducts (AGE) formation within normal and 

diabetic rat hearts. (A) Hearts were stained for AGEs via immunohistochemistry (IHC) 

(brown=positive, dark purple=nuclei). (B) AGEs in hearts were analyzed with western 

blotting. RDU= relative densitometry units. 
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Figure 3.5: Lipid accumulation staining in diabetic and normal rat hearts. Lipids in 

hearts were visualized with oil red O (red=lipids) and sudan black (black=lipids) staining.  

 

Figure 3.6: Investigation of apoptosis in rat hearts. Relative expression of caspase-3, an 

apoptosis marker, was measured with (A) a caspase-3 assay and (B) western blotting. * 

indicates statistical significance. RDU=relative densitometry units.  
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3.3.2 AGE Formation, Lipid Accumulation, and Apoptosis 

 As hyperglycemia and hyperlipidemia are hallmarks of DM and DCMP, we 

sought to compare diabetic rat hearts to normal rat hearts for glycoxidation and lipid 

accumulation. As shown in Figure 3.4, AGEs were present in both normal and diabetic 

rat heart tissue, as seen in IHC AGE staining. Western blot protein analysis of AGEs 

showed no significant difference between normal and diabetic rat hearts. AGE staining of 

blood vessels of the hearts demonstrated increased circulating AGEs in diabetic rat 

hearts. Staining of lipids via oil red O and sudan black, displayed higher lipid 

accumulation within the diabetic rat heart tissue (Figure 3.5). Hyperglycemia and 

hyperlipidemia can both lead to programmed cell death, known as apoptosis. Caspase-3, 

a marker of apoptosis, was used to investigate this. It was found via western blotting and 

a specific caspase-3 assay that caspase-3 expression was significantly increased, and 

therefore apoptosis, in diabetic rat hearts compared to normal rat hearts (Figure 3.6). 

3.3.3 Antioxidant Defense Mechanisms and Endoplasmic Reticulum Stress  

 One element of DCMP is oxidative stress caused by an imbalance between 

reactive oxygen species (ROS) and antioxidant defense mechanisms, such as SOD-2 and 

glutathione. As observed in Figure 3.7, there was a significant reduction in SOD-2 and 

glutathione expression in diabetic rat hearts. IHC revealed normal rat hearts to have 

SOD-2 expressed throughout the tissue, while SOD-2 expression in diabetic rat hearts 

were concentrated in the myocardium. Western blot protein detection showed SOD-2 was 

significantly decreased in diabetic rat hearts. Glutathione content in diabetic rat hearts 

was also significantly decreased as measured by a glutathione assay. 
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Figure 3.7: Antioxidant defense mechanisms utilized by normal and diabetic rat hearts. 

Superoxide dismutase-2 (SOD-2) was visualized with immunohistochemistry (IHC) (top) 

(brown=positive, dark purple=nuclei) and detected with western blotting (bottom left); 

results are in relative densitometry units (RDU). Glutathione was measured via an assay 

(bottom right). 
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Another trait of diabetes and DCMP is ER stress within cells due to buildup of 

misfolded proteins. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is 

upregulated in ER stress and its pathway triggers the unfolded protein response. Western 

blotting of this protein showed an upward trend in diabetic rat hearts.  

 

Figure 3.8: Endoplasmic reticulum (ER) stress in normal and diabetic rat hearts. Protein 

kinase RNA-like endoplasmic reticulum kinase (PERK), a marker for ER stress, was 

detected by western blotting. RDU= relative densitometry units. 
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3.4 Discussion 

 Experimental animal models have been employed for understanding 

cardiovascular alterations associated with diabetes, specifically DCMP. Known hallmarks 

of this disease at the cellular and extracellular levels, include fibrosis, buildup of AGEs, 

lipid accumulation, oxidative stress, ER stress, apoptosis, and autophagy.8 In this study 

we sought to use a diabetic rat model to see if there were noticeable ECM and cellular 

alterations in the hearts associated with DCMP. We also wanted to optimize the tools and 

methods we were using in investigating and perceiving these changes.  

The STZ diabetic type 1 model used for this study provided a baseline, as it has 

been thoroughly studied in literature and diabetic rat hearts from this experimental model 

have been shown to display alterations and characteristics of DCMP.6 STZ is a popular 

diabetic rodent model as it is easily administered to the animal and takes less time to 

produce than genetic diabetic rodent models.7 This model can also be combined with 

genetically altered rodents, making it favorable for specific research into genetic 

disorders combined with diabetes, exacerbated diabetic models, and knock out models.9,10 

While this is a popular experimental model, there are disadvantages that have been noted 

with intravenous STZ administration to create this diabetic state. One of the most 

significant is systemic genotoxic effects from the injected STZ.11 Kume et. al. reported 

that there are changes in hepatic gene expression, such as downregulation of genes 

associated with lipid metabolism and glucose as soon as 48 hours after STZ 

administration. These modifications occurred before a rise in blood glucose levels, 

implying that genes unrelated to hyperglycemia might be altered.12 It has also been 
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suggested that through a p38 mitogen-activated protein kinase-dependent oxidative stress 

mechanism STZ reduces cardiac function.13 Problems can also arise within this model, as 

the intensity of diabetes developed within STZ treated rats can differ, explicitly seen in 

lack of mitochondrial dysfunction in STZ diabetic rats without ketosis.14 

Within rat hearts that were treated with STZ and diabetic for 8 weeks, there were 

noticeable changes to the ECM as reported before, such as fibrosis.15,16 Upon 

observation, diabetic rat hearts were increased in size and dilated when compared to 

normal hearts. Interstitial fibrosis was noticeably spread through the endocardium and 

myocardium of left ventricle of diabetic rat hearts, whereas it was not in normal rat 

hearts. Perivascular fibrosis within the diabetic myocardium was also noticed with an 

increased amount of collagen and thickened walls. This could be due to an imbalance 

between collagen production and degradation, as MMP activity was also lowered in 

diabetic hearts. The diabetic condition is a prolonged, highly inflammatory state and 

inflammation activates increased collagen production through myofibroblast 

activation.17,18 

As the hyperglycemia and dyslipidemia are traits of a diabetic environment, we 

investigated glycoxidation, specifically the presence of AGEs, and lipid accumulation 

within the rat heart tissue.19,20 We found there was no significant difference in AGE 

expression within the tissue of normal and diabetic hearts, however AGEs circulating 

within diabetic blood vessels was visibly higher as seen in staining. AGEs are naturally 

occurring within tissue.19 8 weeks may have been too short of a time for AGEs to become 

overexpressed in the diabetic heart tissue and longer timepoints may be needed to see 
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over accumulation of AGEs in the tissue. Also, the AGE marker utilized for this study is 

a pan AGE marker. Other specific AGE markers, such as carboxymethyl lysine, could 

show significant differences between the hearts.21 Diabetic hearts had noticeably 

increased lipid accumulation when compared to normal hearts. This has also been noted 

in literature.22,23  

Programmed cellular death or apoptosis is another hallmark of DCMP. Metabolic 

changes, such as FFA usage and oxidative stress, lead to apoptosis. Caspase-3, an 

apoptosis marker, was significantly increased in diabetic rat hearts. Apoptosis has been 

shown to be increased in the STZ diabetic rat hearts.24,25  

As oxidative stress is increased in the diabetic environment, we examined 

antioxidant defense mechanisms to determine if there were differences between the 

hearts.26 SOD-2 and glutathione, endogenous cellular antioxidants, were investigated.27 

SOD-2 expression was sequestered in the myocardium of diabetic rat hearts, while SOD-

2 was homogenously throughout normal hearts. SOD-2 and glutathione were both 

significantly reduced in diabetic rat hearts, illustrating that antioxidant defense 

mechanisms within these hearts are either hindered within the diabetic environment or 

have been depleted through excessive utilization. 

ER stress has also been shown to be increased in the diabetic environment due to 

misfolded or unfolded proteins within the ER.28 In this state, PERK is activated and 

triggers the unfolded protein response (UPR) pathway to control protein quality.29 In 

diabetic rat hearts it was found that there was an upward trend of PERK, showing that ER 
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stress was slightly higher in diabetic rat hearts. This is however, one of three major 

pathways that can be activated and one facet of the story.  

3.5 Conclusions 

 STZ type 1 diabetic rat models are useful for investigating ECM and cellular 

changes associated with DCMP in vivo, however there are discrepancies within the 

severity of diabetes in this model and systemic STZ administration does not allow for a 

full recapitulation diabetes seen in human patients. The tools and methods we employed 

in this diabetic rat heart study are suitable for analysis and highlighted DCMP alterations. 

These techniques will be useful for future studies into this disease.  
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CHAPTER 4: ASSESMENT OF A 2D IN VITRO HUMAN CARDIOMYOCYTE 
DIABETIC CARDIAC MODEL  

 
4.1 Introduction  

Cardiomyocyte (CM) adaptations in response to the diabetic environment are of 

interest in the beginning stages of diabetic cardiomyopathy (DCMP). CMs are 

responsible for contraction of the myocardium and when they are compromised, so is 

overall functionality of the heart.1 Hyperglycemia and dyslipidemia in the diabetic 

milieu, lead to a loss of metabolic flexibility within the cell.2 Free fatty acids are 

preferentially used as an energy source, followed by lipid accumulation and peroxidation, 

with the over formation of reactive oxygen species (ROS).3 ROS is produced faster than 

the cell can eliminate it through endogenous antioxidant defenses, causing oxidative 

stress.4,5 Cellular autophagy and apoptosis follow prolonged oxidative stress.6,7 Within 

this diabetic climate, advanced glycation endproducts (AGEs) aggregate, forming 

irreversibe crosslinks, with a decrease in matrix metalloproteinase (MMP) activity.8 This 

imbalance gives rise to tissue fibrosis. CMs become hypertrophic as they must work that 

much harder to maintain efficiency to compensate for CM loss and tissue stiffening.9 

Overtime, this can lead to heart failure.  

 To understand CM modifications in the diabetic environment, two-dimensional 

(2D) cell culture of this cell type has been employed with the addition of glucose to the 

cell culture media. Cells such as neonatal rat CMs, induced pluripotent stem cells 

(iPSCs), progenitor CMs, immortalized CMs, and embryonic stem cells (ESCs) have 

been utilized for these studies and have shown to be altered under these conditions.10–15 

We chose to investigate human progenitor CMs (hCMs) as they are commercially 
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available, able to expand in culture, adult human cells, and there were no ethical concerns 

attached, as there are with ESCs.16 We hypothesized that we would see alterations and 

responses in these hCMs known in the diabetic state by culturing them with additional 

glucose. The goal of this initial study was to determine if these cells would be suitable for 

the creation of a three-dimensional (3D), dynamic in vitro model of DCMP. 

4.2 Materials and Methods  

4.2.1 Materials 

Progenitor human cardiac myocytes (hCM) were from Promocell GmbH 

(Heidelberg, Germany). Dulbecco’s Modified Eagle Medium (DMEM) and antibiotic / 

antimycotic were from Corning Incorporated (Oneonta, NY). Fetal Bovine Serum (FBS) 

was from Atlanta Biologicals (Atlanta, GA). Bicinchoninic acid protein assay was from 

Pierce Biotech (Rockford, IL). Electrophoresis apparatus, gel imager and imaging 

software, chemicals, and molecular weight standards were from Bio-rad (Hercules, CA). 

BM Chemiluminescence Western Blotting kit (Mouse/ Rabbit) was obtained from Roche 

(Indianapolis, IN). Paraformaldehyde was from Electron Microscopy Sciences (Hartfield, 

PA). Triton X-100 was from Alfa Aesar (Ward Hill, MA). Bovine Serum Albumin was 

from Rockland Immunochemicals Inc. (Limerick, PA). The following antibodies were 

used: rabbit anti-superoxide dismutase-2 (Abcam, ab13534), rabbit anti-caspase-3 

(Millipore, 06-735 or Abcam, ab32042), rabbit anti-receptor for advanced glycation 

endproducts (Abcam, ab37647), mouse anti-N-epsilon-(carboxylmethyl)lysine (R&D 

Systems, MAB3247), rabbit anti-light chain 3B (Abcam, ab48394), and rabbit anti-

protein kinase RNA-like endoplasmic reticulum kinase (Abcam, ab192591). Alexa 
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Fluor® fluorescent secondary antibodies (mouse and rabbit) were purchased from 

Molecular Probes (Eugene, OR). All other chemicals were of the highest purity and 

purchased from Sigma-Aldrich Corporation (Lakewood, NJ). 

4.2.2 Culture of Human Cardiomyocytes 

 Progenitor human cardiac myocytes (hCMs) were cultured for 14 days in normal 

glucose and high glucose media. Normal and diabetic media constituted of Dulbecco’s 

Modified Eagle Medium (DMEM), 10% Fetal Bovine Serum (FBS), and 1% 

antibiotic/antimycotic (penicillin-streptomycin), with 5mM (1g/L) and 25mM (4.5g/L) 

glucose, respectively.    

4.2.3 Immunofluorescence for Caspase-3, SOD-2 and CML/RAGE  

 Immunofluorescence was used for the visualization of caspase-3, superoxide 

dismutase 2 (SOD-2,) and carboxymethyl lysine/receptor for advanced glycation 

endproduct (CML/RAGE) in normal and high glucose conditioned hCMs. Cells were 

fixed with 4% warm paraformaldehyde for 20 minutes and then permeabilized with 0.2% 

Triton X-100 (10 minutes) at room temperature. A blocking solution of 5% bovine serum 

albumin and 0.05% Triton X-100 was then applied for 45 minutes. Cells were incubated 

in primary antibodies (rabbit anti-caspase-3 Abcam 1ug/mL, rabbit anti-SOD-2 at 

4ug/mL, or mouse anti-CML at 1ug/mL and rabbit anti-RAGE at 1ug/mL) in a 1 to 1 

mixture of blocking solution to phosphate buffered saline for 2 hours.  For negative 

controls, a 1 to 1 solution of blocking solution to phosphate buffered saline was used, 

without primary antibodies. Alexa Fluor® fluorescent secondary antibodies (anti-rabbit 

or anti-mouse) were applied for 1 hour at room temperature. Cell nuclei were stained 
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with 4’,6-diamidino-2-phenylindole (DAPI) and a Zeiss Axiovert 40CFL microscope 

with AxioVision Release 4.6.3 digital imaging software, UV light box, and filter from 

Carl Zeiss MicroImaging, Inc. (Thornwood, NY), was utilized to obtain 

immunofluorescence images. 

4.2.4 Detection of Caspase-3, SOD-2, CML, and LC3B 

  Western blotting was employed to compare amounts of caspase-3, SOD-2, CML, 

light chain 3B (LC3B), and protein kinase RNA-like endoplasmic reticulum kinase 

(PERK) between normal glucose (n=3,4,4,4,4 respectively) and high glucose (n=3,4,4,5,3 

respectively) conditions. Proteins were extracted by radioimmunoprecipitation assay 

(RIPA) extraction buffer (50mM Tris-HCl pH 7.4, 150mM sodium chloride (NaCl), 

1mM ethylenediaminetetraacetic acid (EDTA), 1% Triton X-100, 1% Sodium 

Deoxycholate, 0.1% sodium dodecyl sulfate (SDS), with protease inhibitor cocktail). 

Protein concentrations in the samples were found using a bicinchoninic acid protein 

(BCA) assay. For each sample, 20ug of protein per lane was loaded and a pre-stained 

molecular weight standard was loaded in one of the lanes. Protein from the gels were 

transferred to polyvinylidine fluoride membranes. Primary antibodies (rabbit anti-

caspase-3 Millipore 1ug/mL, rabbit anti-SOD-2 1ug/mL, mouse anti-CML 1ug/mL, 

rabbit anti-LC3B 1ug/mL, or rabbit anti-PERK 1ug/mL) were applied overnight at 4°C. 

The secondary antibody from the anti-mouse/rabbit kit was then applied for 45 minutes at 

room temperature. The polyvinylidine fluoride membranes were fluorescently tagged 

with detection solution from the anti-mouse/rabbit kit (1 minute) and then imaged using 
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the Chemi-Doc™ XRS+ system from Bio-rad (Hercules, CA). Relative band intensities 

were determined using Bio-rad Image Lab Software Version 5.1, beta build 1.  

Relative amounts of caspase-3 within cell cultures were examined with the 

ApoTarget Caspase-3 / CPP32 Colorimetric Protease Assay from Invitrogen (Carlsbad, 

CA). Manufacturer’s protocol was followed. Total protein was measured via a BCA 

assay and 100ug was used per sample (n=2 per group). Intensities were measured using 

the Synergy H1 Hybrid Reader System from BioTek (Winooski, VT). 

4.2.5 Matrix Metalloproteinase Activity Analysis 

 Protein extracts from hCMs were taken from normal (n=4) and high (n=4) 

glucose groups using the RIPA buffer extraction method (above). Protein concentrations 

in the samples were found using a BCA assay. For each sample, 20ug of protein per lane 

were loaded into a gelatin zymography gel, as was a pre-stained molecular weight 

standard into a separate lane. After electrophoresis separation, the zymography gel was 

washed in a triton-X solution and matrix metalloproteinases (MMPs) were activated with 

a brij-35 development buffer for 24 hours at 37 degrees C. After staining with 

Coomassie, MMP clear bands were imaged using the Chemi-Doc™ XRS+ system and 

evaluated by densitometry using the using Bio-rad Image Lab Software. 

4.2.6 Lipid Accumulation and Peroxidation Staining 

 Intracellular lipid accumulation was visualized via Oil Red O staining. Briefly, 

cells were fixed in 4% paraformaldehyde, rinsed in distilled deionized water (ddH2O), 

rinsed in 60% isopropanol, and stained in 0.3% Oil Red O in isopropanol solution. Cells 

were then rinsed twice in 60% isopropanol, stained in a 1 to 1 hematoxylin to ddH2O 
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solution, and rinsed in ddH2O.  Light images were taken on a Zeiss Axiovert 40CFL 

microscope with AxioVision Release 4.6.3 digital imaging software from Carl Zeiss 

MicroImaging, Inc. (Thornwood, NY). 

 Lipid peroxidation was investigated in normal and high glucose hCM cultures by 

employing the Click-iT® Lipid Peroxidation Detection with Linoleamide Alkyne Kit 

from Molecular Probes (Eugene, OR). Manufacturer protocol was utilized. Cells nuclei 

were stained with DAPI and imaged via the immunofluorescence protocol previously 

discussed (above). 

4.2.7 Reactive Oxygen Species Generation Analysis 

Reactive oxygen species (ROS) generation in normal and high glucose hCM 

cultures were determined by utilizing the CellROX® Oxidative Stress Reagents Kit from 

Molecular Probes (Eugene, OR). Manufacturer protocol was utilized. Cell nuclei were 

stained with DAPI and imaged using immunofluorescence protocol mentioned previously 

(above).  

4.2.8 Autophagy Inspection 

 Autophagy in normal and high glucose conditioned hCMs was studied by 

utilizing the LC3B Antibody Kit for Autophagy from Invitrogen (Carlsbad, CA). 

Manufacturer protocol was utilized. Cell nuclei were stained with DAPI and 

immunofluorescence images were captured as discussed before (above). 
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4.2.9 Statistical Inquiry 

Results are expressed at mean ± standard deviation (SD). Statistical analysis was 

performed between groups utilizing Welch’s two-tailed t-test in excel. Significance was 

determined with an alpha (α) value of 0.05. 

4.3 Results 

4.3.1 Advanced Glycation Endproducts and Matrix Metalloproteinase Activity 

 Analysis of in vitro 2D hCM cultures after two weeks in normal or high glucose 

was performed to determine if there were noticeable changes in expression of advanced 

glycation endproducts (AGEs) with their receptor (RAGE) and matrix metalloproteinase 

(MMP) activity. Immunofluorescence images of carboxymethyl lysine (CML), an AGE, 

and RAGE, showed greater expression of both in high glucose hCM cultures when 

compared to hCM cultured in normal glucose (Figure 4.2). Based on western blotting, 

CML illustrated an upward trend in high glucose hCM treated cells. There was a 

downward trend in MMP activity in high glucose cultured hCM as revealed by gelatin 

zymography of protein lysates (Figure 4.1).  

4.3.2 Lipotoxicity and Reactive Oxygen Species Formation 

 Determination of lipotoxicity and reactive oxygen species (ROS) in normal and 

high glucose hCM cultures was executed with oil red O lipid staining and specialized kits 

for lipid peroxidation and ROS detection. By using the Click-iT® Lipid Peroxidation 

Detection with Linoleamide Alkyne Kit, we were able to observe increased lipid 

peroxidation within hCM cultured in high glucose (Figure 4.3). hCM cultured in high 

glucose also showed higher lipid accumulation as visualized by oil red O lipid staining. 
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ROS aggregation was examined with the CellROX® Oxidative Stress Reagents Kit. It 

was noticed that high glucose hCM had more formation of ROS, than normal glucose 

hCM.  

 

Figure 4.1: Matrix metalloproteinase (MMP) activity analysis. Gelatin zymography was 

used to compare MMP activity in high and normal glucose hCM conditions. 

RDU=relative densitometry units. 
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Figure 4.2: Advanced glycation endproducts and their receptor in hCM high and normal 

glucose cell culture. (A) Immunofluorescence staining for an advanced glycation 

endproduct, carboxymethyl lysine (CML, green), receptor for advanced glycation 

endproducts (RAGE, red), and staining with 4’,6-diamidino-2-phenylindole (DAPI) for 

nuclei (blue) in hCM cell cultures. Negative controls not shown. (B) Western blotting for 

CML in hCM cultures. RDU=relative densitometry units.  
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Figure 4.3: Lipotoxicity and reactive oxygen species formation in hCM culture. Lipid 

peroxidation staining (green) of hCM in normal and high glucose conditions with Click-

iT® Lipid Peroxidation Detection with Linoleamide Alkyne Kit and nuclei staining 

(blue) with DAPI (top). Oil red O lipid staining (red) in hCM culture (middle) with cell 

hematoxylin staining (purple). Reactive oxygen species (ROS) visualization (green) in 

hCM culture with CellROX® Oxidative Stress Reagents Kit and DAPI nuclei staining 

(blue).  
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4.3.3 Endoplasmic Reticulum Stress and Superoxide Dismutase-2 Antioxidant Defense   

 Endoplasmic reticulum stress was analyzed with a marker, protein kinase RNA-

like endoplasmic reticulum kinase (PERK). Western blotting detection showed no 

statistical difference between groups (Figure 4.4). Endogenous antioxidant defenses 

against ROS were assessed in normal and high glucose conditioned hCM by investigating 

expression of superoxide dismutase-2 (SOD-2), a cellular mitochondrial scavenger. 

Immunofluorescence staining of SOD-2 in hCM showed that this protein was expressed 

in both normal and high glucose cultures (Figure 4.5). Western blotting protein analysis 

of SOD-2, also confirmed this, as there was no difference in expression between groups.  

4.3.4 Apoptosis and Autophagy 

 Programmed cellular apoptotic death and autophagic organelle recycling were 

assessed in hCM normal and high glucose cultures to see if high glucose conditions 

induced these outcomes, as seen in diabetic conditions. Immunofluorescence staining for 

caspase-3, an apoptosis marker, illustrated higher caspase-3 expression in high glucose 

hCM when compared to normal glucose hCM (Figure 4.6). Examination of caspase-3 in 

protein lysates by an assay revealed an upward trend of apoptosis in hCM in high 

glucose, however western blotting of caspase-3 western blotting showed no difference 

between the two groups. Visualization of light chain 3B (LC3B), an autophagy marker, 

was performed with the LC3B Antibody Kit for Autophagy and showed increased 

expression in high glucose hCM (Figure 4.7). Western blotting investigation of LC3B 

demonstrated an upward trend with high glucose conditioning of hCM compared to 

normal hCM.  
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Figure 4.4: Endoplasmic reticulum stress examination in normal and high glucose hCM 

culture. Western blotting of protein kinase RNA-like endoplasmic reticulum kinase 

(PERK), an ER stress marker. RDU= relative densitometry units. 
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Figure 4.5: Analysis of superoxide dismutase-2 (SOD-2) antioxidant defense in high and 

normal glucose hCM cultures. (A) Immunofluorescence staining of SOD-2 (green) with 

DAPI (blue) nuclei staining of hCM. Negative controls not shown. (B) Western blotting 

for SOD-2 expression in hCM culture. RDU=relative densitometry units. 
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Figure 4.6: Apoptosis in hCM normal and high glucose culture. (A) 

Immunofluorescence for caspase-3 (green), an apoptosis marker, with DAPI (blue) nuclei 

staining in hCM culture. Negative controls not shown. (B) Caspase-3 assay and (C) 

western blotting was used for caspase-3 for apoptosis detection in normal and high 

glucose conditioning of hCM. RDU=relative densitometry units.  
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Figure 4.7: Autophagy investigation in high and normal glucose environments for hCM. 

(A) Autophagy visualization in hCM employing light chain 3B (LC3B, green) Antibody 

Kit for Autophagy staining with nuclei staining via DAPI (blue). Negative controls not 

shown. (B) Western blotting of hCM protein lysates for LC3B, an autophagy marker. 

RDU=relative densitometry units. 
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4.4 Discussion 

 Cell culture has provided a simple and controllable in vitro model over the years 

to study normal cellular function and disease related alterations that occur within specific 

cardiac cell types, such as CMs, fibroblasts, endothelial, and smooth muscle cells.17–19 

These studies have provided starting points for research into regulatory pathways 

important for healthy cell function, as well as underlying mechanisms of pathological 

disease progression. Modifications at the micro cellular level ultimately lead to macro 

functional problems at the tissue, organ, and system levels. Understanding how 

specialized cells within a tissue operate and adapt within a disease are the keys to 

diagnosis of the patient and provide targets for treatment.  

 While cell culture is great for initial studies, its simplistic and static nature does 

have some pitfalls. The human body is a highly complicated and dynamic machine with 

many mechanisms still to be understood. Cell culture models are reproducible and cell 

media is easily tailored with the addition of chemicals, however diseases exist on a 

spectrum and across multiple systems in the body.20 Media does not include important 

aspects, such as paracrine factors from other cells. Crosstalk via paracrine factors 

between cells and cell types within an altered state can influence how they themselves 

change in response, such as CM hypertrophy and fibroblast proliferation in cardiac 

disease.21 In standard culture, cells are grown on a 2D negatively charged polystyrene 

surface. Extracellular matrix components, such as collagen and fibronectin, can be used 

as surface coatings to better mimic the physiologic environment, however, this still does 

not capture the sophistication of the human body.22 
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 We sought to investigate and characterize cells in an in vitro 2D DCMP model 

before pursuing usage within a more complicated 3D in vitro disease model. Early 

alterations of CMs are still not understood within this disease, making it difficult to 

determine targeted therapies and diagnostic markers for DCMP.23 Throughout the years, 

CMs, such as neonatal rat CMs, iPSCs differentiated into CMs, progenitor CMs, 

immortalized CMs, and ESCs, have been utilized by many research groups for 

understanding cellular adaptations in myocardial diseases as well as diabetic studies.10,13–

15,24,25 For our study we decided to use human progenitor CMs (hCMs), as they were 

commercially available, able to expand in culture, adult human cells, and there were no 

ethical concerns attached, like ESCs.16 It is important to note that while these cells are 

isolated from adult hearts, they have characteristics unlike adult CMs, such as the ability 

to proliferate and potential to differentiate. These specific cells from the manufacturer 

have been used for many applications such as inflammatory, hypoxic, metabolic, toxicity, 

and pharmacological studies.13,26–31  

 For this preliminary study of a simple 2D DCMP model, the “diabetic” 

environment was produced by the addition of glucose to culture media. After two weeks, 

cells were analyzed for alterations known to exist within DCMP, such as lipid 

accumulation and peroxidation, ROS formation, increased cell death and autophagy, 

accumulation of AGEs with increased expression of their receptor, RAGE, endoplasmic 

reticulum (ER) stress, changes in endogenous antioxidant defense mechanisms, and 

lessened MMP activity.32,33 This was performed to determine if these cells would be 

suitable for future studies.  
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 Hallmarks of diabetes and DCMP include the accumulation of AGEs and 

increased expression of its receptor, RAGE.34,35 The hyperglycemic environment leads to 

the buildup of these irreversible crosslinks, which can detrimentally alter the extracellular 

matrix.36 As the diabetic state is highly inflammatory, RAGE becomes overexpressed via 

a positive feedback cycle.37 This was also shown to be the case within our in vitro model 

as CML, an AGE, and RAGE expression were increased when cultured in high glucose. 

We also investigated MMP activity, as in DCMP it is inhibited.38 Within our model, there 

was a downward trend in the high glucose groups.  

 Hyperglycemia and dyslipidemia in diabetes cause loss of metabolic plasticity, 

leading to a surge in usage of free fatty acids.32 From this imbalance oxidative stress, ER 

stress, lipid peroxidation, and lipid aggregation originate.5 There were noted increases of 

all these features, except for ER stress, in the high glucose cultures of hCM. Increases in 

all of these traits have been previously reported in high glucose studies involving 

neonatal and adult rat CMs, hiPSCs, and progenitor hCM sourced from the same 

company.10,12,13,39,40 ER stress was not shown to be increased in high glucose cell culture 

conditions, however this study was only for two weeks and only a marker for one of three 

pathways activated by ER stress was investigated. It may be worthwhile to look at other 

pathway markers, as they may activated at earlier timepoints.  

These metabolic disturbances and unbalanced state can lead to overwhelmed 

antioxidant defense mechanisms followed by enhanced cellular organelle recycling via 

autophagy and increased programmed cell death through apoptosis.6,41 There were no 

differences seen in the expression of SOD-2, an endogenous mitochondrial defense 
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mechanism, between the two groups within two weeks. Autophagy and apoptosis were 

increased in high glucose hCM. Escalation of apoptosis in inflated glucose conditions has 

been seen in hiPSCs differentiated into CMs and neonatal rat CMs.10,11 

4.5 Conclusions 

 Cell culture is a good stepping stone for initial investigations of homeostatic 

cellular functions and pathological alterations of specific cell types, however it is unable 

to recapitulate the complexity or diversity of the human body. Progenitor hCM utilized 

for this preliminary study responded to the “diabetic” environment induced with the 

addition of glucose for two weeks. They will be useful in building a tissue engineered 

DCMP model to study early cellular changes in a 3D and dynamic in vitro model. 
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CHAPTER 5: ELECTROMECHANICAL BIOREACTOR FOR CARDIAC 
TISSUE ENGINEERING  

 
5.1 Introduction 

 Tissue engineering holds a great promise to regenerate myocardial tissue in order 

to replace and restore function to the diseased tissue. To do this a robust system is needed 

to condition the construct (i.e. the scaffold and cells) prior to implantation for tissue 

maturation. Physiological electromechanical stimuli are crucial in this process as they 

improve maturation, structure, and function of cardiomyocytes (CMs) in vitro.1 Electrical 

stimulation of CMs has been shown to affect cell alignment, differentiation, metabolic 

activity, protein synthesis, connexin 43 expression, conduction velocity, calcium 

handling, and force generation.2 These changes have been induced with physiological 

electrical properties such as rectangular shape and 2ms duration at 5V/cm and 1Hz.3 

Mechanical strain is important for CM alignment and development and expression of t-

tubules, myofilaments, sarcomeric organization, gap junctions, desmosomes, adherens 

junctions.4 

As of now, combinational electromechanical bioreactors have only tested animal 

cells in gels at low cyclic stretch or decellularized myocardium for a short duration.5,6 

However, many discrepancies exist between animal and human CMs, gels may not 

withstand the highly dynamic environment seen in vivo, and scaffolds tested would be 

too small to be translatable for use in a human patient.7,8 To meet this need, we developed 

a physiologically relevant electromechanical bioreactor system. We hypothesized that by 

combining this with a methodology for reproducible myocardial-like tissues utilizing 

decellularized porcine myocardium, previously developed in our lab, seeded with human 
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CMs we would be able to create a robust platform for tissue engineered myocardium 

preconditioning. 

5.2 Materials and Methods 

5.2.1 Materials 

Primary human cardiac myocytes (hCM) were from Promocell GmbH 

(Heidelberg, Germany). Dulbecco’s Modified Eagle Medium (DMEM) and 

antibiotic/antimycotic were from Corning Incorporated (Oneonta, NY). Fetal Bovine 

Serum (FBS) was from Atlanta Biologicals (Atlanta, GA). A FX-5000™ Compression 

System and Bioflex® 6-well plates were from Flexcell International Corp. (Burlington, 

NC, USA). Bicinchoninic acid protein assay was from Pierce Biotech (Rockford, IL). 

Carbon electrodes were from Alfa Aesar (Haverhill, MA). Platinum wire was purchased 

from Ladd Research Industries (Williston, VT). The Vectastain Elite kit, ABC 

diaminobenzidine tetrahydrochlorine peroxidase substrate kit, and Vectashield mounting 

medium were from Vector Laboratories (Burlingame, CA). The following antibodies 

were used: rabbit anti-sarcomeric α-actinin (Abcam, ab90776), rabbit anti-connexin-43 

(Abcam, ab11370), rabbit anti-GATA-4 (Abcam, ab84593), rabbit anti-desmin (Abcam, 

ab15200), rabbit anti-laminin (Abcam, ab11575), and rabbit anti-collagen IV (Abcam, 

ab6586). Biotinylated anti-rabbit IgG was purchased from Vector Laboratories 

(Burlingame, CA). Movat’s Pentachrome Kit and Masson’s Trichrome Kit were from 

Poly Scientific (Bay Shore, NY). All other chemicals were of the highest purity and 

purchased from Sigma-Aldrich Corporation (Lakewood, NJ). 
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5.2.2 Decellularization of Porcine Myocardium Scaffold 

Whole, healthy, porcine hearts were obtained from a local abattoir and 

decellularized utilizing a previously published method.9 Briefly, after harvesting whole 

hearts were immediately injected with warm 50mM ethylenediamenetetraacetic acid 

(EDTA) in phosphate buffered saline (PBS) into the coronary arteries to prevent clotting. 

Hearts were transported on ice for processing. Pulmonary veins were cannulated with a 

threaded plug and zip-ties, to ensure proper circulation of solution and decellularization 

through the left side of the heart. Excess adipose and connective tissue were cleaned from 

the aorta, aortic leaflets were removed, and aorta was connected to a perfusion 

decellularization system. The hydrostatic driven perfusion decellularization system 

contained a multichannel peristaltic pump (Masterflex; Cole-Parmer) and a series of 

reservoirs that circulated 3.5L of solution through and around each heart (Figure 5.1). 

Decellularization was performed utilizing 1% sodium dodecyl sulfate (SDS) solution 

changes and a DNAse/RNase treatment. Distilled deionized water (ddH2O) and PBS were 

employed for washes. Scaffolds were stored in PBS with 0.02% sodium azide and 

0.001% protease inhibitor cocktail (Sigma) at 4 degrees C until tissue preparation. 
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Figure 5.1: Decellularized porcine myocardium scaffold preparation. (A) Whole heart 

perfusion decellularization setup utilizing hydrostatic pressure and peristaltic pump. (B) 

Container housing one heart. (C) System can decellularize three hearts simultaneously. 
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5.2.3 Tissue Preparation and Sterilization  

Decellularized porcine myocardium from the left ventricle was sliced to 2mm by 

4cm by 2 cm via a specialized tissue slicer. Briefly, the scaffold was cut into 4 cm by 2 

cm pieces using a 3D printed template. These constructs were placed flat on aluminum 

foil at -20 degrees Celsius until frozen, then cut into 2 mm slices utilizing microtome 

blades integrated into a custom tissue slicer designed in SolidWorks and 3D printed in 

digital acrylonitrile butadiene styrene (ABS). After sizing, the tissue was washed in three 

rinses of PBS (30 min, 2 hr, 30 min) and then sterilized in sterile 0.01% peracetic acid in 

PBS for 2 hours. Excess peracetic acid was removed through three washes of sterile PBS 

(30 min, 2hr, 30 min). Scaffolds were stored in sterile PBS at 4 degrees Celsius until cell 

seeding preparation. 

5.2.4 Adaptation of Flexcell Bioflex® 6-Well Plates for Tissue and Electrode Integration 

To accommodate cell-seeded scaffolds and an electrical stimulus similar to 

physiological conditions, Flexcell Bioflex® 6-well plates were modified. Digital ABS 

plastic inserts with lock-in-groove rings were designed using SolidWorks, 3D printed, to 

hold constructs in place via a clamping mechanism. The inserts were designed to hold 

two cylindrical (cut to 3 mm diameter) carbon electrodes parallel to each other to transfer 

an electrical stimulus across the cell-seeded scaffold in each well. Flexcell Bioflex® 6-

well plates were cut for addition of a positive/negative connector for connection of 

external wires for electrical stimuli. Carbon electrodes were internally connected to the 

connector by platinum wire secured around the center of the electrode and covered with 

shrink tube and tubing with the lead soldered to a positive or negative wire. The positive 
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and negative wires from the platinum wires were soldered to the connector. Before 

ethylene oxide sterilization of the modified Flexcell Bioflex® 6-well plate, continuity 

was tested with a voltmeter. 

5.2.5 Flexcell FX-5000™ Compression System Modifications 

A FX-5000™ Compression System sold by Flexcell International Corporation 

was modified to allow for mechanical and electrical stimulation of the hCM cell seeded 

decellularized porcine myocardium scaffolds. The system purchased included a baseplate 

allowing for four Flexcell Bioflex® 6-well plates with membranes to be sealed airtight 

against it. Compressed air travelling through the baseplate served to mechanically 

stimulate cells in the wells by pushing the membrane and integrated tissue upward. 

Pressure was regulated by the main controller containing pressure regulators, transducers, 

and valves.  

To more properly model diastole and systole of the left ventricular wall, the cyclic 

pressure waveform was modelled using provided Flexcell software, at 1.17 Hz (~70 beats 

per minute) with an amplitude of 0-120-0 mmHg (350 msec duration) with a static at 0 

mmHg (450 msec duration). A pressure transducer was added to monitor real-time 

pressure applied to the silicone membrane and was acquired by a data acquisition module 

in a custom-written LabView program. Another LabView program triggered a square-

wave electrical pulse of 5V (2.78V/cm2, 20 msec-width) at the rising edge of every 

pressure wave for a coordinated pulse.  
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5.2.6 Cell Culture, Seeding and Viability   

Progenitor human cardiac myocytes (hCMs) were expanded in Dulbecco’s 

Modified Eagle Medium (DMEM), 10% Fetal Bovine Serum (FBS), and 1% 

antibiotic/antimycotic (penicillin-streptomycin). Sized, sterile, decellularized porcine 

myocardium was incubated overnight at 37 degrees Celsius in cell culture medium 

comprised of Dulbecco’s Modified Eagle’s medium (DMEM), 10% fetal bovine serum 

(FBS), and 1% antibiotic/antimycotic (penicillin-streptomycin). Before seeding, scaffolds 

were incubated 2 hours at 37°C in 6 well plates to allow removal of excess medium. 

Scaffolds were secured into two modified Flexcell Bioflex® 6-well plates (Flexcell 

International Corp., Burlington, NC, USA) and progenitor human cardiomyocytes (hCM) 

at passage 6 were aseptically injected (2 million per scaffold) and dropwise seeded (1 

million per scaffold) with a sterile 26 ½ gauge needle. Control scaffolds were not seeded 

with hCM. Both plates were placed in an incubator for 1 hour to allow for hCM 

attachment and 4 mL of cell culture media (DMEM, 10% FBS, 1% Ab/Am) was placed 

in each well. Tissue was statically cultured for 3 days before exposure to dynamic 

stimuli. Before subjecting tissue (with cells or without cells) to the electrical stimulus and 

physiological cyclic pressures (0-120-0 mmHg), preconditioning was performed at two 

days with a cyclic waveform of 0-40-0 mmHg, followed by two days of a cyclic 

waveform of 0-80-0 mmHg. Media was changed every day and 7 mL was added to each 

well to cover the dynamic tissue and account for evaporation. Static scaffolds were 

controls and media was changed every day at 4 mL per well. Cell viability was confirmed 
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with a LIVE/DEAD® Viability/Cytotoxicity kit for Mammalian Cells from Molecular 

Probes (Eugene, OR). 

5.2.7 Histological and Immunohistochemical Analysis 

Samples were fixed in 10% formalin for 48 hours, processed, paraffin-embedded, 

and sectioned to 5um. Sections were rehydrated and examined via histological staining 

with hematoxylin and eosin (H&E), Masson’s trichrome and Movat’s pentachrome. 

Manufacturer’s protocol was utilized for each stain.   

Immunohistochemistry (IHC) was performed for detection of sarcomeric α-

actinin, connexin-43, GATA-4, desmin, laminin, and collagen IV. Briefly, antigen 

retrieval was performed on rehydrated paraffin sections (5um) with heated (90-100 

degrees Celsius, 10 min) 10mM citric acid (pH=7.4). Slides were permeabilized with 

0.025% Triton X-100 for 5 minutes and then incubated in normal blocking serum for 45 

minutes. Primary antibodies (rabbit anti-sarcomeric α-actinin 2ug/mL dilution, rabbit 

anti-connexin-43 2ug/mL dilution, rabbit anti-desmin 2ug/mL dilution, rabbit anti-

GATA-4 4ug/mL dilution, rabbit anti-collagen IV 2ug/mL dilution, or rabbit anti-laminin 

4ug/mL dilution) were incubated overnight at 4 degrees Celsius. Negative controls were 

obtained by omitting the primary antibody. Endogenous peroxidases were blocked with 

0.3% hydrogen peroxide in 0.3% normal horse serum for 30 minutes. The secondary 

biotinylated anti-rabbit or anti-mouse antibody was applied for 30 minutes. Antibody 

staining was visualized using the Vector ABC peroxidase substrate kit and then lightly 

counterstained with diluted hematoxylin, before mounting. A Zeiss Axiovert 40CFL 
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microscope with AxioVision Release 4.6.3 digital imaging software (Carl Zeiss 

MicroImaging, Inc. Thornwood, NY) was utilized to obtain images. 

5.3 Results 

5.3.1 Decellularization of Porcine Myocardium Efficacy  

 To decellularized whole porcine hearts for scaffolds, a perfusion system 

previously developed within our group was employed to use the vasculature of the hearts 

to perform cellular removal (Figure 5.1).9 With this technique, three whole porcine 

hearts can be decellularized simultaneously. This decellularization platform combined 

with solutions specific to our method were seen in appearance and histological analysis 

of hematoxylin and eosin (H&E), Masson’s trichrome, and Movat’s pentachrome 

staining, to eradicate cells and residual materials (Figure 5.2). Our methods were harsh 

enough to eliminate cells, while gentle enough to retain the collagenous extracellular 

matrix, as shown in Masson’s trichrome and Movat’s pentachrome staining of fresh and 

decellularized hearts. 

5.3.2 Efficiency of Scaffold Preparation 

 By utilizing a custom 3D printed tissue slicer with integrated microtome blades, 

we were able to separate reproducible 4cm by 2cm by 2mm pieces of decellularized left 

ventricular porcine myocardium from endocardium and epicardium (Figure 5.3). 

Through our scaffold methodology of decellularization and preparation, hCM seeded on 

these scaffolds were viable at 1 hour and 3 days after seeding (Figure 5.4). Cells cultured 

statically for 21 days on these scaffolds were alive (Figure 5.8). hCM cultured for 3 days 

static, followed by 4 days dynamic conditioning, and then subjected to physiological 
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electrical and mechanical conditions for 14 days were also viable on these scaffolds 

(Figure 5.8). Few dead cells were found (images not shown). 

 

Figure 5.2: Comparison of fresh and decellularized porcine hearts. Images of hearts 

(top). Histological staining of fresh and decellularized tissue (middle to bottom) via 

hematoxylin and eosin (H&E; purple=nuclei, pink=tissue), Masson’s trichrome 

(red=muscle fibers, blue=collagen, black=nuclei) and Movat’s pentachrome 

(black=nuclei or elastic fibers, yellow=collagen or reticular fibers, blue=ground 

substance or mucin, bright red=fibrin, red=muscle). 
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Figure 5.3: Custom 3D printed tissue slicer for extraction of left ventricular myocardium 

from decellularized porcine heart. Images show isolation of decellularized myocardium 

from a piece utilizing a template (A) and tissue slicer (B) after clamping frozen tissue in 

the system (C) and cutting via secured microtome blades (D, E). The tissue slicer 

separated the heart wall into endocardium (F), myocardium (G), and epicardium (H). 
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5.3.3 Investigation of Modified Flexcell FX-5000™ Compression System and Plates 

 By modifying a Flexcell FX-5000™ compression system and Flexcell Bioflex® 

6-well plates with membranes, we were able design a platform for electrical and 

mechanical stimulation of tissue seeded with hCM. 3D printed ABS well plate inserts 

were sturdy for the experimental duration under dynamic and static conditions. These 

inserts were able to securely hold the tissue in place for 18 days, as well as provide 

housing for carbon electrodes and wiring after cutting excess plastic from the plates 

(Figure 5.5). The baseplate of this system holding the altered well plates was able to be 

contained within a standard cell culture incubator with room to spare (Figure 5.6). 

Additional programs written in LabVIEW to provide electrical stimulus and examine 

pressure exerted on the tissue were able to be run on the computer purchased with the 

system. Modelling of the electrical pulse between electrodes in COMSOL confirmed 

current handling in this system (Figure 5.6). By utilizing a ramping up regimen for 

dynamic tissue before physiological conditions, as illustrated in Figure 5.7, this system 

supported hCM for 14 days in this state (Figure 5.8).  

5.3.4 Cellular Analysis 

There was high cell viability after the duration of the experiment in both the 

dynamic and static groups seeded with hCM (Figure 5.8). Cells were aligned and found 

throughout the tissue in the dynamic group, while cells in the static group were spherical 

and not aligned. Few dead cells were found (images not shown). Hematoxylin and eosin 

(H&E) staining of both groups showed hCM on the surface and within the scaffold. As 
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seen in Figure 5.9, cells in dynamic and static scaffolds stained positive for 

cardiomyocyte markers such as connexin-43, sarcomeric α-actinin, desmin, and GATA-4. 

5.3.5 Extracellular Matrix Investigation 

When investigating scaffolds that were dynamically and statically conditioned, 

with or without cells, it was found that samples from all groups all had collagen IV 

present, with muscle fibers and elastin fibers missing (Figure 5.10, Figure 5.11). 

Scaffolds seeded with hCM stained for nuclei. As visualized by immunohistochemistry 

(IHC) staining in Figure 5.10, laminin presence was more noticeable in scaffolds seeded 

with cells, when compared to those without cells. 

 

 

Figure 5.4: Viability of human cardiomyocytes (hCM) after seeding. Live images show 

viable (green) hCM after 1 hour (left) and 3 days (right) of static seeding. 
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Figure 5.5: Modifications of Flexcell plates and mounting prepared tissue. Uncoated 

Flexcell plates cut for insertion of connector (A) for positive and negative wires (C) to 

deliver stimulus to electrodes (D). 3D printed tissue holding inserts (F) hold tissue via a 

clamping ring (E). All components (B) assembled with tissue (G) and cells are ready for 

the modified Flexcell system. 
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Figure 5.6: Flexcell setup and monitor. A diagram illustrating the modified Flexcell 

setup (A) shows addition of data acquisition (DAQ) devices for monitoring pressure and 

delivering electrical stimulus included with the Flexcell controller, monitor, and baseplate 

holding modified well plates. An incubator (B) houses the modified well plates clamped 
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to the baseplate (C). The system is controlled via a computer and monitor (D) utilizing 

Flexcell software to deliver air to the baseplate and an original LabVIEW program to 

deliver an electrical stimulus to the tissue. The baseplate can hold up to four well plates 

(E). 5 volts travel between the electrodes as shown by COMSOL modelling (F). 

 

Figure 5.7: Workflow of experimental set-up for dynamic and static tissues. Tissue was 

preconditioned in the dynamic system for 4 days before electrical stimulus and exposure 

to normal native cyclic pressure of a 120mmHg. 
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Figure 5.8: Cellular viability and presence in dynamic and static conditions. Live assay 

of decellularized porcine myocardium cultured with hCM after 18 days static culture (A) 

and 18 days of dynamic culture on side (B), inside (C), and other side (D) of the tissue. 

Green= live cells. Hematoxylin and eosin staining of cells (purple) show presence in 

tissue (pink) after 18 days of static (E) or dynamic (F) culture. 
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Figure 5.9: Cellular analysis of human cardiomyocytes (hCM) in static and dynamic 

conditions. Immunohistochemical (IHC) staining of cardiomyocyte markers after 18 days 

of static and dynamic culture highlight connexin-43 (CX-43), sarcomeric alpha-actinin 

(Sarc. α-actinin), desmin, and GATA-4. (brown=positive; purple=tissue; inserts=negative 

controls) 
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Figure 5.10: Collagen IV and laminin extracellular matrix analysis on scaffolds 

subjected to static and dynamic conditions with and without human cardiomyocytes 

(hCM). Immunohistochemical (IHC) staining of collagen IV and laminin in groups. 

(brown=positive; purple=tissue; inserts= negative controls) 
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Figure 5.11: Extracellular matrix investigation of static and dynamic scaffolds with and 

without human cardiomyocytes (hCM). Masson’s trichrome (red=muscle fibers, 

blue=collagen, black=nuclei) and Movat’s pentachrome (black=nuclei or elastic fibers, 

yellow=collagen or reticular fibers, blue=ground substance or mucin, bright red=fibrin, 

red=muscle) staining. 
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5.4 Discussion 

 Cardiac tissue engineering has emerged as a promising solution for a functional 

tissue replacement for patients who have experienced a myocardial infarction, which 

causes myocardial ischemia. Preconditioning is important in developing an engineered 

tissue that is mature and behaves properly when implanted.10 Electrical and mechanical 

stimuli have been proven to be pivotal in this. Currently, combinational 

electromechanical bioreactors have only tested animal cells encapsulated in gels at low 

cyclic stretch or seeded in decellularized tissue for a short amount of time.56 Though, 

many discrepancies exist between animal and human CMs, physiological conditions 

could destroy weak gels, and these platforms support small tissues, limiting their 

translation to human patients.7,8  

 To fill this disparity, we developed a physiologically relevant bioreactor that was 

able to subject larger (4cm by 2cm by 2mm) and mechanically sound scaffolds with 

human cells. Within our lab we have produced a complex 3D acellular scaffold from 

decellularized porcine myocardium, which has been proven to retain mechanical and 

vascular integrity, and important ECM basal lamina components crucial to recapitulating 

native myocardium, such as fibronectin, laminin, and collagen IV.9 Myocardial ECM is 

very diverse and this specific environment is essential for inherent cellular interactions 

and tethering.11,12 By designing a tissue slicer we were able to simply and reproducibly 

extract myocardium from our scaffold at around a 2mm thickness.   

For our cells we decided to employ primary hCM progenitor cells. They have 

recently been used for research in areas such as cardiotoxicity, therapeutic testing, 
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scaffold biocompatibility, and the study of pathways involved in oxidative stress.13–16 

These cells are more cost effective than induced pluripotent stem cells (iPSCs), can 

proliferate, and express cardiac markers, such as sarcomeric α-actin, making them ideal 

for our research.17  

 We were able to create tissue engineered myocardium my combining hCM and 

our scaffold. This myocardium was supported in our electromechanical bioreactor for 14 

days at physiologically relevant conditions with mechanical and electrical stimuli after an 

initial ramping up period in order to acclimate the hCM to this highly dynamic 

environment. Not only was this system able to maintain viable cells for 14 days, but 

dynamic scaffolds had live hCM throughout the tissue and on both surfaces that were 

aligned, while statically cultured tissue engineered myocardium had spherical cells 

localized to one surface. Morphologically, our dynamic myocardium is more similar to 

cellular alignment of native myocardium and with this system we can support these cells 

within our 2mm thick tissues. 

 CM markers were evaluated as a checkpoint to determine if our electromechanical 

bioreactor allowed for the preservation of the CM phenotype in our scaffolds. To do so 

we investigated connexin 43, sarcomeric α-actinin, desmin, and GATA-4 in dynamic and 

static conditions. Connexin 43 or gap junction protein, plays a key role in synchronous 

cellular contraction and the exchange of molecules, such as calcium, between cells.18,19 

Sarcomeric α-actinin and desmin are integral parts of the sarcomere in CMs and 

contribute to its contraction and overall functionality.19–21 GATA-4 is crucial for CM 

development, differentiation, as it is only expressed by CMs and is a transcriptional 
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regulator for cardiac genes.16,19 These proteins were all found to be expressed by hCM in 

scaffolds cultured in dynamic or static conditions. 

 Our scaffold was also inspected with and without cells to determine if our 

dynamic conditioning would adversely alter the ECM, as it could compromise overall 

function of our tissue engineered myocardium. Scaffolds were not adversely altered in 

the course of 14 days within the electromechanical bioreactor. All scaffolds dynamically 

and statically conditioned, with and without cells, were shown to retain collagen IV and 

laminin, important ECM proteins. Collagen IV provides the supportive framework for the 

ECM and cells to interact.22 Laminins are glycoproteins located mainly in the basal 

lamina and are vital for cell-ECM attachment, cell differentiation, survival, and 

migration.23 Dynamic and static scaffolds with cells had increased expression of laminin 

compared to scaffolds without cells, which is promising. This shows the hCM are 

integrating and interacting with the ECM, by connecting to and secreting their own 

matrix proteins.  

5.5 Conclusions 

 Tremendous strides have been made in cardiac tissue engineering, with even more 

to come. We are the first to our knowledge to subject acellular porcine scaffolds seeded 

with hCM to physiological electromechanical conditions for 14 days. We found that 

dynamic tissues had cellular alignment and cells throughout the tissue, while static tissue 

did not. This bioreactor system for myocardium was able to support human cells 

expressing cardiomyocyte markers for 14 days at physiological conditions, without 



 130 

altering the ECM. This platform has great potential for myocardial tissue preconditioning 

and could be useful for disease modeling.  
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CHAPTER 6: TISSUE ENGINEERING MODELS OF DIABETIC CARDIAC 
PATHOLOGY 

 

6.1 Introduction  

There is no cure for DCMP, except for heart transplantation which has a very long wait 

list.1 Treatment for this disease is lumped in with other cardiomyopathies and heart 

failure, however these therapies only treat the symptoms and downstream complications 

that accompany heart failure without addressing origins of the problem.2 As DCMP 

progresses, significant changes are seen in heart mass, size and wall thickness, in 

conjunction with abnormal diastolic and/or systolic function.3 Patients at the end stage of 

DCMP experience symptoms associated with heart failure, such as shortness of breath, 

fluid retention, dizziness, and coughing.4 Patients with heart failure have a 5-year 

mortality of approximately 50%.1 

Understanding the underlying mechanisms in the early stages of DCMP are crucial for 

diagnosis and targeted therapies early on. As of now, knowledge of this disease has relied 

on rodent models, cell culture models, and cadaveric human patient hearts.5,6  Human 

cadaveric hearts with DCMP have been excellent for elucidating end stage cellular and 

extracellular changes and rodent and cell culture models have been utilized to fill in the 

gaps. Problems arise within rodent models as they have varying progressions of diabetes, 

circulating lipid concentrations, cardiomyocyte electrophysiological properties, higher 

beats per minute, and inflammatory responses when compared to human diabetic 

patients.7–9 Human cells have been studied to investigate specific cell type alterations 
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associated with the diabetic environment, however this is an oversimplified 2D static 

environment, lacking an extracellular matrix (ECM).10  

Tissue engineering holds much promise in bridging this gap. 3D organotypic tissue 

engineered models allow for studies of individual cell types in a dynamic, controllable 

and repetitive environment.11 Other research groups have tried to fill this need but have 

failed to either produce a complex and dynamic 3D ECM environment or have examined 

animal cells, instead of human cells.12,13 We hypothesized that if we combined human 

cardiomyocytes (hCMs) and an acellular porcine myocardium scaffold within (1) a 

perfusion 3D Kube minibioreactor or (2) an electromechanical bioreactor supplemented 

with high glucose, that we would be able to detect early alterations associated with 

DCMP. These platforms could be useful for determining and testing targeted 

therapeutics, as well as markers for prompt diagnosis of DCMP in diabetic patients. 

6.2 Materials and Methods 

6.2.1 Materials 

Primary human cardiac myocytes (hCM) were from Promocell GmbH (Heidelberg, 

Germany). Dulbecco’s Modified Eagle Medium (DMEM) and antibiotic/antimycotic 

were from Corning Incorporated (Oneonta, NY). Fetal Bovine Serum (FBS) was from 

Atlanta Biologicals (Atlanta, GA). 3D Kubes were purchased from Kiyatec (Greenville, 

SC). A multichannel peristaltic pump was from Cole-Parmer (Vernon Hills, IL). A FX-

5000™ Compression System and Bioflex® 6-well plates were from Flexcell 

International Corp. (Burlington, NC, USA). Carbon electrodes were from Alfa Aesar 
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(Haverhill, MA). Platinum wire was purchased from Ladd Research Industries (Williston, 

VT). Bicinchoninic acid protein assay was from Pierce Biotech (Rockford, IL). 

Electrophoresis apparatus, gel imager and imaging software, chemicals, and molecular 

weight standards were from Bio-rad (Hercules, CA). Clean-BlotTM IP Western Blot 

Detection kit was obtained from Thermo Fisher Scientific Inc. (Waltham, MA). The 

Vectastain Elite kit, ABC diaminobenzidine tetrahydrochlorine peroxidase substrate kit, 

and Vectashield mounting medium were from Vector Laboratories (Burlingame, CA). 

The following antibodies were used: rabbit anti-superoxide dismutase-2 (Abcam, 

ab13534), rabbit anti-advanced glycation endproducts (Abcam, ab23722), rabbit anti-

light chain 3B (Abcam, ab48394), rabbit anti-caspase-3 (Millipore, 06-735 and Thermo 

Fisher, MA1-16843), mouse anti-N-epsilon-(carboxylmethyl)lysine (R&D Systems, 

MAB3247), rabbit anti-inositol-requiring enzyme 1 (Abcam, ab48187), and rabbit anti-

protein kinase RNA-like endoplasmic reticulum kinase (Abcam, ab192591). Biotinylated 

anti-rabbit IgG and anti-mouse IgG were purchased from Vector Laboratories 

(Burlingame, CA). Movat’s Pentachrome Kit and Masson’s Trichrome Kit were from 

Poly Scientific (Bay Shore, NY). All other chemicals were of the highest purity and 

purchased from Sigma-Aldrich Corporation (Lakewood, NJ). 

6.2.2 Decellularization of Porcine Myocardium Scaffold 

Whole, healthy, porcine hearts were obtained from a local slaughterhouse and 

decellularized utilizing a previously published method (see Chapter 5).14 Briefly, 

pulmonary veins were cannulated, excess adipose and connective tissue were cleaned 

from the aorta, aortic leaflets were removed, and aorta was connected to a perfusion 
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decellularization system. Decellularization was performed with 1% sodium dodecyl 

sulfate (SDS) solution changes and a DNAse/RNase treatment. Washes of distilled 

deionized water (ddH2O) and PBS were used for cleaning. Scaffolds were stored in PBS 

with 0.02% sodium azide and 0.001% protease inhibitor cocktail (Sigma) at 4 degrees 

Celsius until tissue bioreactor use in either the 3D Kube minibioreactor or modified 

electromechanical Flexcell bioreactor. 

6.2.3 Tissue Preparation and Sterilization  

For the 3D Kube minibioreactor, decellularized porcine myocardium scaffolds were 

removed using a 5mm round biopsy punch. For the electromechanical bioreactor, 

decellularized porcine myocardium was extracted from the left ventricle was sliced to 

2mm by 4cm by 2 cm via a specialized tissue slicer (see Chapter 5). Briefly, the scaffold 

was cut into 4 cm by 2 cm pieces using a 3D printed template, frozen at 20 degrees 

Celsius, then cut into 2 mm slices with a custom designed 3D printed tissue slicer.  

After isolation, the scaffolds were washed in three rinses of PBS (30 min, 2 hr, 30 min) 

and then sterilized in sterile 0.01% peracetic acid in PBS for 2 hours. Excess peracetic 

acid was removed through three washes of sterile PBS (30 min, 2hr, 30 min). Scaffolds 

were stored in sterile PBS at 4 degrees Celsius until cell seeding preparation. 

6.2.4 Adaptation of Well Plates and FX-5000™ Compression System Modifications 

To accommodate cell-seeded scaffolds and an electrical stimulus like physiological 

conditions, Flexcell Bioflex® 6-well plates were modified as previously described (see 

Chapter 5). Briefly, inserts were designed to hold constructs in place and to hold two 
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wired carbon electrodes parallel to each other to transfer an electrical stimulus across the 

cell-seeded scaffold in each well. Flexcell Bioflex® 6-well plates were cut for addition of 

a positive/negative connector for connection of external wires and electrodes were 

bridged with platinum wires for electrical stimuli. Continuity was tested with a voltmeter 

and plates were sterilized with ethylene oxide. 

A FX-5000™ Compression System sold by Flexcell International Corporation was 

modified to allow for mechanical and electrical stimulation of the hCM cell seeded 

decellularized porcine myocardium scaffolds (see Chapter 5). The cyclic pressure 

waveform to mimic diastole and systole of the left ventricular wall was modelled using 

provided Flexcell software, at 1.17 Hz (~70 beats per minute) with an amplitude of 0-

120-0 mmHg (350 msec duration) with a static at 0 mmHg (450 msec duration). This was 

confirmed with the addition of a pressure transducer and a data acquisition module in a 

custom-written LabView program. Another LabView program triggered a square-wave 

electrical pulse of 5V (2.78V/cm2, 20 msec-width) at the rising edge of every pressure 

wave for a coordinated pulse.  

6.2.5 Cell Culture and Expansion 

Progenitor human cardiac myocytes (hCMs) were expanded in normal glucose. They 

were then cultured for 14 days in normal glucose or high glucose media before seeding 

on prepared and sterilized decellularized porcine myocardial scaffolds. Normal and high 

glucose media constituted of Dulbecco’s Modified Eagle Medium (DMEM), 10% Fetal 
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Bovine Serum (FBS), and 1% antibiotic/antimycotic (penicillin-streptomycin), with 5mM 

(1g/L) and 25mM (4.5g/L) glucose, respectively.  

6.2.6 3D Kube Minibioreactor Setup  

For the 3D Kube minibioreactor systems, sterile scaffolds were then placed in normal 

glucose media constituted of DMEM, 10% FBS, and 1% antibiotic/antimycotic 

(penicillin-streptomycin) overnight at 37 degrees Celsius. The next day, these scaffolds 

were injected with a 26½ gauge needle aseptically with hCM with 200,000 cells per 

scaffold. After 48 hours of static resting in either normal (n=11) or high (n=10) glucose 

media, two bioreactors (one normal and one with high glucose media) were aseptically 

assembled utilizing 3D Kubes to house the respective reseeded scaffolds. The bioreactors 

were housed in an incubator (37°C, 5% CO2). A multi-channel peristaltic pump provided 

a flow rate of 1mL/min from a fluid reservoir. 1% antibiotic/antimycotic was injected 

every 3.5 days into the closed system to replenish degraded antibiotics and media was 

changed every week for each bioreactor. The scaffolds were subjected to these conditions 

for 14 days then analyzed (Table 6.1). Cell viability was confirmed with a 

LIVE/DEAD® Viability/Cytotoxicity kit for Mammalian Cells from Molecular Probes 

(Eugene, OR). 

Conditions # Samples: Protein # Samples: Histology # Samples: Live/Dead # Samples: Cryosections
Normal Glucose 6 2 1 1

High Glucose 6 2 1 1

3D Kube Minibioreactor

 

Table 6.1: Sample size and analysis for 3D Kube minibioreactor. 
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6.2.7 Electromechanical Bioreactor Setup 

Sized, sterile, decellularized porcine myocardium was incubated overnight at 37 degrees 

Celsius in cell culture medium comprised of Dulbecco’s Modified Eagle’s medium 

(DMEM), 10% fetal bovine serum (FBS), and 1% antibiotic/antimycotic (penicillin-

streptomycin). Before seeding, scaffolds were incubated 2 hours at 37°C in 6 well plates 

to allow removal of excess medium. Scaffolds were secured into two modified Flexcell 

Bioflex® 6-well plates (Flexcell International Corp., Burlington, NC, USA) and 

progenitor human cardiomyocytes (hCM) at passage 6 were aseptically injected and 

dropwise seeded (2 million per scaffold) with a sterile 26 ½ gauge needle. Plates were 

placed in an incubator for 1 hour to allow for hCM attachment and then 4 mL of cell 

culture media (normal or high glucose, depending on expansion conditions) was added to 

each well. Tissue was statically cultured for 3 days before subjecting tissue cultured in 

either normal or high glucose to preconditioning in the bioreactor. Preconditioning was 

performed with a cyclic waveform of 0-40-0 mmHg for two days, followed by two days 

with a cyclic waveform of 0-80-0 mmHg, and then tissue engineered myocardium was 

subjected to 0-120-0 mmHg cyclic waveform with electrical stimuli for 14 days. Normal 

and high glucose media was changed every day and 7 mL was added to each well to 

cover the dynamic tissue and account for evaporation. Cell viability was confirmed with a 

LIVE/DEAD® Viability/Cytotoxicity kit for Mammalian Cells from Molecular Probes 

(Eugene, OR). Samples were divided and processed for analysis (Table 6.2, Figure 6.1). 
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Conditions # Samples: Protein, RNA, and Histology # Samples: Live/Dead, Cryosections
Normal Glucose 11 1

High Glucose 11 1

Electromechanical Bioreactor 

 

Table 6.2: Sample size and analysis for electromechanical bioreactor.  

 

Figure 6.1: Division of electromechanical scaffolds for analysis. 

6.2.8 Histological Analysis 

After 14 days in either the 3D Kube minibioreactor or electromechanical bioreactor, 

normal and high glucose samples were fixed in 10% formalin for 48 hours and 

histologically processed, paraffin embedded, and sectioned on slides. Rehydrated paraffin 

sections (5um) were stained with hematoxylin and eosin (H&E), Movat’s pentachrome, 

and Masson’s trichrome kits for normal and high glucose samples. Manufacturer’s 

guidelines were followed for these.  

 Immunohistochemistry (IHC) was performed for detection of superoxide 

dismutase-2 (SOD-2), light chain 3B (LC3B), carboxymethyl lysine (CML), inositol-



 140 

requiring enzyme 1 (IRE-1) and caspase-3 to compare high and normal glucose samples. 

Briefly, antigen retrieval was performed on rehydrated paraffin sections (5um) with 

heated (90-100 degrees C, 10 min) 10mM citric acid (pH=7.4). Slides were 

permeabilized with 0.025% Triton X-100 for 5 minutes and then incubated in normal 

blocking serum for 45 minutes. Primary antibodies (rabbit anti-SOD-2 1ug/mL dilution, 

rabbit anti-LC3B 5ug/mL dilution, rabbit anti-IRE-1 4ug/mL, mouse anti-CML 2ug/mL, 

or rabbit anti-caspase-3 4ug/mL dilution) were incubated overnight at 4 degrees Celsius. 

Negative controls were obtained by omitting the primary antibody. Endogenous 

peroxidases were blocked with 0.3% hydrogen peroxide in 0.3% normal horse serum for 

30 minutes. The secondary biotinylated anti-rabbit antibody was applied for 30 minutes. 

Antibody staining was visualized using the Vector ABC peroxidase substrate kit and then 

lightly counterstained with diluted hematoxylin, before mounting. A Zeiss Axiovert 

40CFL microscope with AxioVision Release 4.6.3 digital imaging software (Carl Zeiss 

MicroImaging, Inc. Thornwood, NY) was utilized to obtain images. 

6.2.9 Lipid Staining  

Lipid accumulation was visualized in both bioreactor system samples via oil red O on 

cryosectioned normal and high glucose samples. Slides were fixed in 4% 

paraformaldehyde, rinsed in distilled, deionized water (ddH2O), rinsed in 60% 

isopropanol, and stained in 0.3% Oil Red O in isopropanol solution. Slides were then 

rinsed twice in 60% isopropanol, stained in a 1 to 1 hematoxylin in ddH2O solution, 

rinsed in ddH2O, and mounted with aqueous Vectashield mounting medium. Light 

images were taken on a Zeiss Axiovert 40CFL microscope, as described before. 
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6.2.10 Detection of Caspase-3, SOD-2, CML, AGE, LC3B, and PERK 

Western blotting was employed to compare amounts of caspase-3, SOD-2, CML, 

advanced glycation endproducts (AGEs), LC3B, and protein kinase RNA-like 

endoplasmic reticulum kinase (PERK) between normal glucose and high glucose 

conditioned samples run in the electromechanical bioreactor for 14 days. Proteins were 

extracted by radioimmunoprecipitation assay (RIPA) extraction buffer (50mM Tris-HCl 

pH 7.4, 150mM sodium chloride (NaCl), 1mM ethylenediaminetetraacetic acid (EDTA), 

1% Triton X-100, 1% Sodium Deoxycholate, 0.1% sodium dodecyl sulfate (SDS), with 

protease inhibitor cocktail). Protein concentrations in the samples were found using a 

bicinchoninic acid protein (BCA) assay. For each sample, 20ug of protein per lane was 

loaded and a pre-stained molecular weight standard was loaded in one of the lanes. 

Protein from the gels were transferred to polyvinylidine fluoride membranes. Primary 

antibodies (mouse anti-caspase-3 1ug/mL, rabbit anti-SOD-2 1ug/mL, mouse anti-CML 

1ug/mL, rabbit anti-AGE 1ug/mL, rabbit anti-LC3B 1ug/mL, or rabbit anti-PERK 

1ug/mL) were applied overnight at 4°C. The secondary antibody from the anti-

mouse/rabbit kit was then applied for 45 minutes at room temperature. The 

polyvinylidine fluoride membranes were fluorescently tagged with detection solution 

from the anti-mouse/rabbit kit (1 minute) and then imaged using the Chemi-Doc™ XRS+ 

system from Bio-rad (Hercules, CA). Relative band intensities were determined using 

Bio-rad Image Lab Software Version 5.1, beta build 1 and values were analyzed. 

 Relative amounts of caspase-3 between groups in the electromechanical 

bioreactor were examined with the ApoTarget Caspase-3 / CPP32 Colorimetric Protease 
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Assay from Invitrogen (Carlsbad, CA). Manufacturer’s protocol was followed. Total 

protein was measured via a BCA assay and 100ug was used per sample (n=5 per group). 

Intensities were measured using the Synergy H1 Hybrid Reader System from BioTek 

(Winooski, VT). 

6.2.11 Matrix Metalloproteinase Activity Analysis 

Matrix Metalloproteinase (MMP) activity in high and normal glucose media and tissue 

protein lysates were analyzed by gelatin zymography. For media analysis, 10uL of 

normal or high glucose media per sample was loaded into a gelatin zymography gel with 

1x sample buffer. For protein lysate analysis, 20ug of protein was loaded. A pre-stained 

molecular weight standard was loaded into a separate lane for each gel. After 

electrophoresis separation, the zymography gel was washed in a triton-X solution and 

MMPs were activated with a brij-35 development buffer for 24 hours at 37 degrees 

Celsius. After staining with Coomassie and destaining, MMP clear bands were imaged 

using the Chemi-Doc™ XRS+ system and evaluated by densitometry using the using 

Bio-rad Image Lab Software. 

6.2.12 Statistical Analysis 

 Results are expressed at mean ± standard deviation (SD). Statistical analysis was 

performed between groups utilizing Welch’s two-tailed t-test in excel. Significance was 

determined with an alpha (α) value of 0.05. 
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6.3 Results 

6.3.1 3D Kube Minibioreactor Results 

6.3.1.1 Analysis of Cell Seeding and Viability in 3D Kube Minibioreactor 

 Constructs were placed in either a high or normal glucose 3D Kube 

minibioreactor under perfusion conditions in an incubator (Figure 6.2). Before placing 

hCM seeded scaffolds into the 3D Kube minibioreactor, analysis of cell viability was 

performed after sitting statically for 48 hours to allow for hCM attachment. As seen in 

Figure 6.3, hCMs seeded in the scaffold were viable at 48 hours after injection. Scaffolds 

from both high and normal glucose dynamically conditioned in the 3D Kube 

minibioreactor for 14 days had live cells (Figure 6.3). As revealed in Figure 6.4, 

hematoxylin and eosin (H&E) staining of these samples after conditioning showed hCM 

within the decellularized porcine myocardium scaffolds. 

6.3.1.2 Investigation of Matrix Metalloproteinase Activity and AGEs 

 Matrix metalloproteinase (MMP) activity and advanced glycation endproduct 

(AGE) formation within high and normal glucose 3D Kube minibioreactor samples were 

determined with a gelatin zymography and protein western blotting analysis, respectively. 

As shown in Figure 6.5, there were no significant differences between groups in overall 

MMP, MMP9, and MMP2 activity. Protein analysis of AGEs revealed no significant 

differences between the two groups (Figure 6.6). 
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Figure 6.2: Set-Up of 3D Kube minibioreactor. (A) Minibioreactor was housed in incubator. (B) 

Diagram illustrating media flow in the system. (C) 3D Kube minibioreactor platform fully 

assembled with tubing, manifolds, reservoir, and 3D Kubes housing seeded constructs. 
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Figure 6.3: Viability analysis of hCM seeded on decellularized porcine myocardium scaffolds. 

Static seeding after 48 hours (top), and dynamic minibioreactor conditioned normal (middle) and 

high (bottom) glucose after 14 days. (green=live cells, red=dead cells). 
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Figure 6.4: Hematoxylin and eosin (H&E) staining of samples after 14 days in 3D Kube 

minibioreactor. Normal (left) and high (right) glucose showed cells (purple) and tissue (pink).  

6.3.1.3 Antioxidant Defenses and Lipid Accumulation 

 Antioxidant defense mechanisms were investigated with immunohistochemical 

(IHC) staining and western blotting for protein analysis. Superoxide dismutase 2 (SOD-

2), an endogenous antioxidant defense mechanism, was shown to be present in both high 

and normal glucose samples stained via IHC (Figure 6.7). SOD-2 had an upward trend in 

the high glucose group as seen in western blotting. Lipid accumulation was visualized 

with staining and was only found in high glucose samples (Figure 6.8). 

6.3.1.4 Examination of Apoptosis and Autophagy  

Caspase-3 was employed to determine programed death or apoptosis within samples. 

This protein was present in both normal and high glucose conditioned groups, as seen 

with IHC staining (Figure 6.9). IHC staining of samples for light chain 3B (LC3B), an 
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autophagic marker, revealed its presence in both groups (Figure 6.10). Western blotting 

analysis showed significantly higher expression of LC3B in the high glucose group.  

 

Figure 6.5: Overall matrix metalloproteinase (MMP), MMP9, and MMP2 activity in 3D Kube 

normal and high glucose media via gelatin zymography. RDU= relative densitometry units. 
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Figure 6.6: Detection of advanced glycation endproducts (AGEs) in 3D Kube minibioreactor 

samples by employing western blotting. RDU= relative densitometry units. 
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Figure 6.7: Investigation of antioxidant superoxide dismutase 2 (SOD-2) in 3D Kube normal and 

high glucose groups. (A) Immunohistochemical (IHC) staining of samples for SOD-2 

visualization. (brown=positive, dark purple=nuclei; inserts=negative controls) (B) SOD-2 protein 

western blotting analysis of the two groups. RDU= relative densitometry units.   
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Figure 6.8: Staining for lipid accumulation in normal and high glucose samples. Red= lipids. 

 

 

Figure 6.9: Visualization of apoptosis marker caspase-3 in normal and high glucose 3D Kube 

minibioreactor samples via immunohistochemistry (IHC). (brown=positive, dark purple=nuclei; 

inserts=negative controls). 
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Figure 6.10: Inquiry of light chain 3B (LC3B), a marker of autophagy, between 3D Kube groups. 

(A) Immunohistochemical (IHC) staining of samples for LC3B. (brown=positive, dark 

purple=nuclei; inserts=negative controls) (B) Western blotting analysis of LC3B in groups. 

RDU= relative densitometry units.  * indicates statistical difference. 



 152 

6.3.2 Electromechanical Bioreactor Results 

6.3.2.1 Analysis of Cell Seeding and Viability in Electromechanical Bioreactor 

 Before mounting into the electromechanical bioreactor, we determined that hCM 

seeded on decellularized porcine myocardium were viable after one hour and three days 

after static seeding (Figure 6.11). After 14 days under dynamic conditions, engineered 

tissues contained live cells in both normal and high glucose conditions (Figure 6.12). 

Trichrome and pentachrome staining both showed hCM integrated within the collagen 

ECM scaffold (Figure 6.13).  

6.3.1.2 Investigation of Matrix Metalloproteinase Activity and AGEs 

 MMP activity and accumulation of AGEs were examined in electromechanically 

stimulated normal and high glucose conditioned engineered tissues and media. When 

investigating MMP activity in media samples, there were no differences found between 

the two groups for overall MMP, MMP9 and MMP2 activity (Figure 6.14). MMP 

activity in tissue lysates showed no significant difference in overall MMP, MMP9, and 

active MMP2, with significantly higher pro MMP2 and overall MMP2 in high glucose 

conditions, as seen in Figure 6.15. Carboxymethyl lysine (CML), an AGE, was shown to 

be present in both groups with IHC staining and slightly greater in the high glucose group 

with western blot analysis (Figure 6.16). Western blotting for AGE detection indicated 

comparable amounts in both groups. 
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Figure 6.11: Viability of human cardiomyocytes (hCM) after seeding. Live images show viable 

(green) hCM after 1 hour (left) and 3 days (right) of static seeding. 

 

Figure 6.12: Cellular viability after 14 days of electromechanical stimuli in normal and high 

glucose conditions. Green= live cells. 

6.3.1.3 Examination of Cellular Antioxidant Defenses, Autophagy, and Apoptosis 

 Cellular changes known as DCMP hallmarks were studied such as antioxidant 

defense mechanisms, autophagy, and apoptosis. Superoxide dismutase 2 (SOD-2), an 

endogenous antioxidant, was visible in both normal and high glucose bioreactor samples 
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with IHC staining (Figure 6.17). SOD-2 protein detection with western blotting revealed 

a greater inclination in high glucose samples. IHC staining and western blotting of light 

chain 3B (LC3B), an autophagy protein, indicated similar amounts in each group (Figure 

6.18). Caspase-3, an apoptosis marker, stained in both groups (Figure 6.19). Protein 

analysis of caspase-3 revealed an upward trend in high glucose samples with western 

blotting and similar expression in both with a caspase-3 assay. 

 

Figure 6.13: Cell and ECM visualization in electromechanical normal and high glucose samples. 

Masson’s trichrome (red=muscle fibers, blue=collagen, black=nuclei) and Movat’s pentachrome 

(black=nuclei or elastic fibers, yellow=collagen or reticular fibers, blue=ground substance or 

mucin, bright red=fibrin, red=muscle) staining of groups from normal and high glucose 

conditions. 
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Figure 6.14: Matrix metalloproteinase (MMP) activity in media from electromechanically 

conditioned normal and high glucose samples via gelatin zymography. MMP activity results for 

all MMPs, MMP9, and MMP2 in media.  RDU= relative densitometry units. 
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Figure 6.15: Matrix metalloproteinase (MMP) activity in tissue lysates from electromechanically 

conditioned normal and high glucose samples via gelatin zymography. MMP activity results for 

all MMPs, MMP9, MMP2, proMMP2, and activeMMP2 in tissue. RDU= relative densitometry 

units. * indicates statistically significant difference. 
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Figure 6.16: Investigation of advanced glycation endproducts (AGEs) in normal and high 

glucose groups electromechanically stimulated. (A) Immunohistochemical (IHC) staining of 

samples for carboxymethyl lysine (CML), an AGE. (brown=positive, dark purple=nuclei; 

inserts=negative controls) (B) Western blotting analysis of CML in groups. (C) Western blotting 

analysis for AGE in samples. RDU= relative densitometry units.   
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Figure 6.17: Examination of antioxidant superoxide dismutase 2 (SOD-2) in electromechanical 

bioreactor normal and high glucose groups. (A) Immunohistochemical (IHC) staining of samples 

for SOD-2 visualization. (brown=positive, dark purple=nuclei; inserts=negative controls) (B) 

SOD-2 protein western blotting analysis of the two groups. RDU= relative densitometry units. 
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Figure 6.18: Inquiry of light chain 3B (LC3B), a marker of autophagy, between 

electromechanical bioreactor groups. (A) Immunohistochemical (IHC) staining of samples for 

LC3B. (brown=positive, dark purple=nuclei; inserts=negative controls) (B) Western blotting 

analysis of LC3B in groups. RDU= relative densitometry units.   
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Figure 6.19: Analysis of apoptosis marker, caspase-3, in electromechanically conditioned normal 

and high glucose groups. (A) Immunohistochemical (IHC) staining of samples for caspase-3 

visualization. (brown=positive, dark purple=nuclei; inserts=negative controls) (B) Caspase-3 

protein western blotting analysis of the two groups. RDU= relative densitometry units. (C) 

Results from ApoTarget caspase-3 assay. 
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Figure 6.20: Endoplasmic reticulum (ER) stress inspection in normal and high glucose 

electromechanical samples. (A) Immunohistochemical (IHC) staining of inositol requiring 

enzyme-1 (IRE-1) in samples. (brown=positive, dark purple=nuclei; inserts=negative controls) 

(B) Western blotting of protein kinase RNA-like ER kinase (PERK) in the two groups. RDU= 

relative densitometry units.  
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Figure 6.21: Staining for lipid accumulation in electromechanical bioreactor normal and high 

glucose samples. Red= lipids. 

6.3.2.4 Endoplasmic Reticulum Stress and Lipid Accumulation 

 Evaluation of endoplasmic reticulum (ER) stress and lipid accumulation was 

performed, as they are traits of DCMP.  IHC staining of inositol requiring enzyme-1 

(IRE-1), an ER stress marker, showed existence in both normal and high glucose 

conditions (Figure 6.20). Western blotting of another ER stress protein, protein kinase 

RNA-like ER kinase (PERK) showed no difference between groups. Oil red O staining 

revealed lipids within normal and high glucose samples, with more accrual in high 

glucose conditions (Figure 6.21). 

6.4 Discussion 

 DCMP is diagnosed once symptoms, including but not limited to, shortness of 

breath, angina, and fluid retention, are present in the patient.15 Currently, no cure exists 

for DCMP and its treatment is grouped with other heart failures.16 To diagnose and treat 
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or even reverse early stages of this disease, understanding the underlying mechanisms of 

its progression is key. As of now, animal models and cell cultures have been utilized to 

elucidate these initial changes.5 However, there are discrepancies that exist between 

rodent models and human patients, such as differing heart beats per minute, circulating 

lipid concentrations, CM electrophysiological properties, diabetes disease progression, 

and inflammatory response.7 Within rodent models, it is also difficult to study how 

individual cell types respond in a diseased state. In cell culture, specific cell types can be 

investigated, but it lacks a dynamic 3D ECM environment.   

Recently, the field of tissue engineering has moved towards mimicking diseases by 

employing organotypic models that are physiologically relevant and reproducible, with 

the intent to study specific cell changes within a disease and determine definitive 

interactions to halt and reverse disease progression.17–19 Tissue engineering holds 

substantial promise for addressing these needs, as it encompasses a wide variety of 

disciplines and organotypic 3D models are attractive as they are controllable, repetitive, 

and more cost efficient than animal testing.11  

Other groups have attempted to bridge this gap for the study of DCMP but have failed to 

either produce a complex and dynamic 3D ECM environment or have utilized animal 

cells, instead of human cells.10,12,13 Within our lab we have produced a complex 3D 

acellular scaffold from decellularized porcine myocardium, which has been proven to 

retain mechanical and vascular integrity, and important ECM basal lamina components 

crucial to recapitulating native myocardium, such as fibronectin, laminin, and collagen 

IV.14 Myocardial ECM is very diverse and this specific environment is essential for 
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inherent cellular interactions and tethering.20,21 Cell – ECM interactions in DCMP are 

especially pivotal in this disease, as myocardial fibrosis causes CMs to overcompensate 

to contract the left ventricle, leading to CM death and hypertrophy.22  

Primary hCM progenitor cells have recently been used for research in areas such as 

cardiotoxicity, therapeutic testing, scaffold biocompatibility, and the study of pathways 

involved in oxidative stress.23–26 They are more cost effective than induced pluripotent 

stem cells (iPSCs), can proliferate, and express cardiac markers, such as sarcomeric α-

actin, making them ideal for CM investigation.27 We have shown these cells respond to 

biochemical cues, such as normal (1 g/L) and high (4.5 g/L) glucose, in their milieu (see 

Chapter 4). 

We examined two DCMP tissue engineering platforms generated within our lab. We 

chose to combine hCM and decellularized acellular porcine myocardium in either (1) a 

3D Kube perfusion minibioreactor or (2) an electromechanical bioreactor we developed. 

3D Kubes have been employed by researchers for disease modelling, tissue angiogenesis 

investigations, and cell differentiation and seeding studies.28–31 Our electromechanical 

bioreactor has been shown to not alter the CM phenotype or ECM in normal conditions 

(see Chapter 5). Each were able to be housed within separate incubators and supported 

viable hCM in these scaffolds for 14 days in either normal or high glucose conditions.  

To investigate these models, we explored some known hallmarks of DCMP. Within the 

hyperglycemic and dyslipidemic diabetic environment there is a loss of metabolic 

plasticity and cells rely mainly in free fatty acids for energy.32 This leads to lipid 

peroxidation and accumulation, as well as prolonged accrual of reactive oxygen species 
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with oxidative stress as antioxidant defense mechanisms are overwhelmed.33 In this 

prolonged state, there is an increase in, endoplasmic reticulum (ER) stress, autophagy, 

and apoptosis.34,35 Hyperglycemia also increases accumulation of irreversible crosslinks 

formed by AGEs and hindered MMP activity, leading to fibrosis.36   

In examining early MMP activity and AGE buildup, we saw no differences in overall 

MMP activity in media and AGE expression between the normal and high glucose groups 

in either bioreactor system. This could be due to the experimental duration of 14 days 

being too short to see noticeable changes in AGE accumulation from protein lysates and 

overall MMP activity in media. Media analysis could be useful for determining specific 

diagnostic markers for patient blood testing. There were no differences in overall MMP, 

MMP9, and active MMP2 activity in tissue lysates. We did however, see a significant 

increase in overall MMP2 and pro MMP2 activity in high glucose electromechanical 

tissue lysates. At this early point we may be seeing initial stages of unbalanced MMP 

activity, as MMP2 is heightened in inflammation, and we know later on, in established 

diabetic patients’ serum, MMPs are significantly lowered.37,38 We were able to see higher 

lipid accumulation within the high glucose tissue in both platforms.  This is promising as 

this is a trait of diabetes.39 

Cellular alterations in hCM such as endogenous antioxidant defense mechanisms, 

autophagy, apoptosis, and ER stress were inspected. SOD-2, an endogenous antioxidant 

defense mechanism, was slightly elevated in high glucose samples in both systems. 

Autophagy was significantly increased within the 3D Kube minibioreactor high glucose 

group and no difference was seen between groups in the electromechanical bioreactor. 
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Apoptosis was seen in both states in the minibioreactor system and there was a slight 

increase in apoptosis in the high glucose electromechanically conditioned samples. ER 

stress was only examined in the electromechanical platform and no differences were 

found between groups. In examining early changes, it is important to note that there are 

some alterations that may occur before others and some that may not occur until later 

stages DCMP. These changes occur over the course of years. Currently, our 

understanding of initial stages of this disease is limited and these results are promising as 

we know that within the cell, autophagy has been shown to be increased in 

hyperglycemia and after a prolonged state, it can lead to apoptosis.40 In evaluating longer 

timepoints with these models, we could determine specifically when these modifications 

in hCM are occurring in the progression of DCMP.  

While this 3D Kube minibioreactor is a promising model for DCMP, there are some 

drawbacks with this platform. Due to the small size of the 3D Kube chambers, protein 

extraction and analysis is limited, as is sample throughput. Even though this perfusion 

system is dynamic in nature, it lacks physiological myocardial conditions such as, 

electrical and mechanical stimuli. The electromechanical bioreactor provides these 

conditions; however, it is not a perfusion system and media must be changed every day to 

support cell viability. Because of this, changes in DCMP and diabetes may not have 

shown, as they are caused by accrual of proteins and toxic intermediates within the body.  
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6.5 Conclusions 

Currently, limitations in animal and cell culture models of DCMP constrain our 

understanding of early alterations of specific cell types in this disease. Elucidating initial 

modifications are important for targeted therapies and patient diagnosis. Tissue 

engineering can bridge this gap with controllable, reproducible, and cost-effective 

organotypic models. We were able to combine acellular porcine myocardium and hCM 

within (1) 3D Kube minibioreactors and (2) an electromechanical bioreactor with added 

glucose for a DCMP tissue engineered models. Within these disease models, some early 

alterations in hCM and ECM were seen. While these systems are promising on their own, 

a more appropriate platform could be developed by combining these two. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

 

7.1 CONCLUSIONS 

 As the epidemic of diabetes continues to rise, it follows that instances of 

cardiovascular disease, such as diabetic cardiomyopathy, hypertension, and 

atherosclerosis in diabetic patients also rise.1,2 Diabetic cardiomyopathy (DCMP) occurs 

in diabetic patients as a ventricular dysfunction independent of coronary artery disease, 

hypertension or valvular abnormalities.3 Through cascading events over time, 

hyperglycemia and dyslipidemia can lead to this myocardial disease. Dyslipidemia leads 

to heightened utilization of circulating free fatty acids (FFA) that creates a highly 

oxidative environment that supersedes the endogenous antioxidant defense mechanism of 

cells, preceding oxidative stress, lipotoxicity, autophagy, and apoptosis of 

cardiomyocytes.4 Hyperglycemia causes the formation and accumulation of advanced 

glycation endproducts (AGEs) in the extracellular matrix, leading to fibrosis. These 

alterations in the myocardium can lead to cardiac inefficiency and heart failure.5  

Currently, mainly rodent models and two dimensional (2D) cell cultures have 

been employed to analyze early changes associated with DCMP. However, there are 

notable differences between rodents and humans that provide challenges when studying 

DCMP and 2D cultures lack a dynamic, three dimensional (3D) environment crucial to 

the progression of this disease.6 As of now, DCMP diagnosis and treatment is lumped in 

with other cardiomyopathies and heart failure, with an emphasis on blood glucose 
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control.2 Treatments for this disease do not target the source of the problem, only treat the 

symptoms. A more accurate model is needed to investigate specific cell type early 

cellular and extracellular modifications of DCMP for diagnosis and determine and test 

potential therapies. We believe tissue engineering can be used to bridge this gap. The 

tissue engineering paradigm can be utilized to developing a reproducible, native-like 

tissue engineered model of the myocardium by combining a scaffold, cells, and 

biochemical and physical stimuli to model DCMP.  

We have shown that tools and methods used in our lab were able to detect known 

extracellular matrix (ECM) and cellular changes associated with DCMP in a 

streptozotocin (STZ) type 1 diabetic rat model. Furthermore, through examination of 

human cardiomyocytes (hCM), we were able to prove that these cells respond to 

hyperglycemia within their milieu. These techniques are useful for analyzing and 

detecting DCMP alterations in cells and the ECM such as, lipid accumulation, 

endogenous antioxidant mechanisms, advanced glycation endproduct (AGE) buildup, 

matrix metalloproteinase (MMP) activity, apoptosis, autophagy, endoplasmic reticulum 

(ER) stress, and perivascular and interstitial fibrosis.   

We produced a physiologically relevant electromechanical bioreactor within our 

lab and method for reproducible scaffolds from decellularized porcine myocardium. 

Through our in house decellularization procedure of whole porcine hearts, we were able 

to remove porcine cells efficiently while keeping important myocardial ECM proteins 

such as collagen IV and laminin intact. By designing and 3D printing a tissue slicer, 

myocardium was easily extracted for use. This myocardial scaffold supported viable 
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hCM for 18 days. Our electromechanical bioreactor sustained hCM seeded on and in 

these scaffolds for 14 days at mechanical and electrical physiological conditions. Cells 

were aligned, found throughout the scaffolds, and maintained the cardiomyocyte 

phenotype. The ECM was found to be unaltered in these dynamic conditions.  

We examined cardiac tissue engineered constructs in: (1) a perfusion 3D Kube 

minibioreactor and (2) the electromechanical bioreactor customized in our lab. Each 

platform contained decellularized myocardium seeded with human cardiomyocytes for 

two weeks; “diabetic” conditions were simulated by increased glucose concentration. 

Within these models some early alterations of DCMP were seen. We found were able to 

better mimic physiological conditions with our electromechanical bioreactor, compared 

to static and non-diabetic conditions, as well as to 2D cell culture.  

Our electromechanical tissue engineering platform shows promise for unveiling 

early cellular and matrix modifications in DCMP. The potential for this system is 

enormous; it could be useful for studying other cardiac diseases in many human cell 

types, testing potential therapies and drugs, and preconditioning tissue engineered 

myocardium prior to implantation. 

7.2 Project Challenges and Considerations 

Challenges in this project arose in seeding cells into decellularized porcine 

myocardium. Injection seeding of myocardium resulted in pockets of cells within the 

scaffold, which does not resemble the highly populated native myocardium. Dynamic 

stimulation, either perfusion or electromechanical, for the duration of 14 days did not 
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promote homogenous hCM migration into the scaffold. Cell seeding strategies are being 

investigated under other projects within our lab.  

Another challenge during this project was related to protein analysis of tissues 

cultured in the 3D Kube minibioreactor system. The tissue housed within 3D Kubes are 

very small and only so many cells can be seeded on them, this led to very low protein 

amounts. Protein lysates needed to be concentrated with spin columns before protein 

analysis with western blotting to be able to load 20ug per well. This limited proteins that 

were analyzed and led to a lower n-value. 

Our electromechanical bioreactor was able to house larger scaffolds seeded with 

hCM, which mitigated the protein analysis problem seen with the 3D Kube 

minibioreactor. This system, however, is not perfusion based, so media was changed 

every day. As DCMP and diabetes progress by the accumulation of proteins and toxic 

intermediates, this platform may not allow for early alterations in cells and the ECM to 

occur. This is currently being developed within our lab. 

A consideration for future DCMP models would include; the addition a known 

amount of lipids in media with the hyperglycemic environment to simulate dyslipidemia; 

increase in pressure to mimic hypertension; and addition of high cholesterol. Other 

Another consideration would be employing insulin to simulate a diabetic state with 

treatment to determine if cells are still altered. Fibroblasts should also be investigated in 

future research, as they are vital players in ECM turnover, are adversely affected in 

diabetes, and secrete important paracrine factors. More timepoints should be studied to 
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see when cellular and matrix changes are occurring. Microarrays for gene analysis would 

be useful for this. For a diagnostic potential, media should also be investigated for 

markers that could be targets for patient blood testing.   

7.3 Recommendations for Future Work 

7.3.1 Analysis of Perfusion Electromechanical Platform  

 The electromechanical bioreactor is now being modified to be perfusion based 

within our lab as of now. Testing of this platform will be performed to ensure hCM and 

human cardiac fibroblasts (FBs) maintain phenotype and the ECM is not adversely 

affected. hCM and FBs will be cultured and expanded until enough cells needed for 

seeding are reached. Decellularized porcine myocardium will be extracted with the tissue 

slicer, sterilized with peracetic acid, and left overnight in media (Dulbecco’s modified 

eagle medium, 10% fetal bovine serum, 1% antibiotic/antimycotic) at 37 degrees Celsius. 

Scaffolds will either be seeded with 3 million hCM or hFB per scaffold via dropwise and 

injection seeding. Some scaffolds will be seeded with both hCM (1.2 million; 40%) and 

hFB (1.8 million; 60%). Controls will have no cells. They will sit statically in the 

incubator for 1 hour, then 4mL of media will be added. Seeded scaffolds will remain in 

the incubator, static, for 3 days, with media changes each day. A PrestoBlue and 

live/dead assay will be performed as a checkpoint at this time.  

After this duration, scaffolds will be placed within modified 6-well plates of the 

perfusion electromechanical bioreactor system housed in an incubator and for two days 

will be subjected to a 0-40-0 mmHg waveform, followed by two days at 0-80-0 mmHg. 
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Once this conditioning period is complete, myocardial-like tissue will be exposed to the 

0-120-0 mmHg waveform with electrical stimulus. Static scaffolds in 6 well plates will 

be run in tandem as a control with 4mL of media changed every two days. Media in the 

electromechanical perfusion system will be changed once a week with supplemental 

antibiotic injections 3.5 days after media changes. Media will be collected from static and 

dynamic groups every week and frozen for examination.  

Static or Dynamic Cells on Scaffold Histology; Protein; RNA PrestoBlue & Live/Dead
Static hCM 5 1
Static hFB 5 1
Static hCM + hFB 5 1
Static No cells 5 1
Dynamic hCM 5 1
Dynamic hFB 5 1
Dynamic hCM + hFB 5 1
Dynamic No cells 5 1

Perfusion Electromechanical Bioreactor 
Samples Per Timepoint (2,4,6,8 weeks)Groups

 

Table 7.1: Sample analysis of perfusion electromechanical bioreactor.  

 

Figure 7.1: Diagram of dissection of scaffolds for analysis. 
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Timepoints analyzed will be two, four, six, and eight weeks. In order to have a 

high and desired n-value outlined in Table 7.1, this experiment will need to be performed 

four times. One myocardial-like tissue from each group will be assessed by PrestoBlue 

and a live/dead assay to determine cell viability at each timepoint. Scaffolds will be 

dissected as shown in Figure 7.1. Half of each scaffold will be placed in 10% formalin 

for 48 hours, processed, embedded, and sectioned to 5um on slides. Slides will be stained 

with hematoxylin and eosin, Movat’s pentachrome, Masson’s trichrome, and 

immunohistochemically stained for: cardiomyocyte markers such as, sarcomeric α-

actinin, connexin 43, desmin, and GATA-4; fibroblast markers such as vimentin, prolyl 

4-hydroxylase, and heat shock protein 47; and ECM proteins such as, collagen IV and 

laminin. One-fourth of each myocardial-like tissue will be used for protein isolation and 

flash frozen before stored in the -80-degree Celsius freezer until extraction via 

homogenizer and radioimmunoprecipitation assay (RIPA) buffer. Total protein from 

these samples will be determined by bicinchoninic acid (BCA) assay. Western blotting 

protein for cardiomyocyte markers such as, sarcomeric α-actinin, connexin 43, desmin, 

and GATA-4, and ECM proteins such as, collagen IV and laminin will be investigated. 

Matrix metalloproteinase (MMP) activity will be examined in media and lysates by 

gelatin zymography. One-fourth of each scaffold will be flash frozen and stored in -80-

degree Celsius freezer for ribonucleic acid (RNA) isolation. RNA samples will be sent 

away for microarray analysis for cardiomyocyte genes such as, GATA4 and myosin 

heavy chain-β; fibroblast genes such as, vimentin, collagen I and III, and fibroblast 

specific protein 1; and any other genes of interest.  
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7.3.2 Preliminary Dyslipidemic and High Cholesterol Testing 

 Preliminary testing of addition of FFAs and cholesterol will be performed to 

determine if they harm cell viability in culture. hCM and hFBs will need to be cultured in 

serum free conditions, so known amounts of cholesterol and FFAs can be added. hCM 

and hFBs (2:3 seeding ratio), hCM alone, and hFB alone will be cultured in 48 well 

plates and subjected to various conditions for 12, 24, 48, and 72 hour, and 1 and 2 week 

timepoints for viability and cytotoxicity with PrestoBlue, live/dead, and MTS assays. 

Cholesterol (Sigma-Aldrich, catalogue #: C3045) will be dissolved in ethanol and added 

to serum free media in a range of normal at 1g/L (100mg/dL) to high at 2.5g/L 

(250mg/dL) cholesterol. Palmitic acid (Sigma-Aldrich, catalogue #: P0500) and oleic 

acid (Sigma-Aldrich, catalogue #: O1008), main fatty acids in human nutrition, will be 

conjugated to bovine serum albumin and added to serum free media in a range from 

0.25mmol/L to 0.5mmol/L, as previously studied.7 Final concentrations in media will be 

assessed after sterile filtration with colorimetric enzymatic assays LabAssay™ 

Cholesterol and LabAssay™ Phospholipid (FUJIFILM, Wanko Chemicals) before 

addition to cells. Conditions and analysis will be performed as shown in Figure 7.2 and 

Figure 7.3. 

Once testing determines optimal high and normal concentrations of cholesterol 

and FFAs in cell culture, secondary preliminary testing will assess these in the two cell 

types (hCM + hFB, hCM, and hFB) with combinations of these in normal (1g/L) and 

high (4.5g/L) glucose at the same timepoints (12, 24, 48, and 72 hours, and 1 and 2 
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weeks). Cell viability and cytotoxicity with be analyzed with PrestoBlue, live/dead, and 

MTS assays at these timepoints as shown in Figure 7.4.  

 

Figure 7.2: 48 well plate layout of cholesterol testing. One plate for each timepoint and one cell 

type or combination. MTS=MTS assay. L/D=live/dead. PB=PrestoBlue.  

 

Figure 7.2: 48 well plate layout of FFA testing. One plate for each timepoint and one cell type or 

combination. MTS=MTS assay. L/D=live/dead. PB=PrestoBlue.  
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Figure 7.4: 48 well plate layout of combinational testing. One plate for each timepoint and one 

cell type or combination. MTS=MTS assay. L/D=live/dead. PB=PrestoBlue.  

7.3.3 Perfusion Electromechanical Platform: DCMP Model 

 The same dynamic experimental setup described in 7.3.1 will be used, however in 

order to model a “diabetic” environment, glucose will be added (4.5 g/L), along with high 

FFAs and cholesterol (determined in 7.3.2) to serum free media in the perfused 

electromechanical bioreactor. Normal serum free media (1 g/L glucose, normal FFAs and 

cholesterol) will be run in tandem as a control. All scaffolds seeded with hCM, hFB, and 

hCM and hFB will be conditioned as described before, then subjected to physiological 

conditions in the perfused electromechanical system. Timepoints analyzed will be two, 

four, six, and eight weeks at normal and “diabetic” conditions for all three cell groups 
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(Table 7.2). Media will also be collected and samples at two, four, six, and eight weeks 

will be analyzed. Multiple bioreactor runs will be done for a high n-value and separate 

runs will be done for normal and “diabetic” conditions. A total of 8 runs will be 

performed (normal vs. “diabetic” at four timepoints). A PrestoBlue and live/dead assay 

will be used to determine cell viability at these timepoints in normal and “diabetic” 

groups. Myocardial-like tissue will be saved for paraffin and frozen cryosection 

histological staining, protein, and RNA analysis as shown in Figure 7.1 and Table 7.2. 

Examination of DCMP hallmarks such as lipid accumulation, endogenous antioxidant 

mechanisms, AGE buildup, MMP activity, apoptosis, autophagy, ER stress, and fibrosis 

will be completed as detailed in Chapter 6. Tissue and media will be sent away for 

microRNA analysis.  

Condition Cells on Scaffold Histology; Protein; RNA PrestoBlue & Live/Dead
1 Normal hCM 7 1
1 Normal hFB 7 1
1 Normal hCM + hFB 7 1
2 "Diabetic" hCM 7 1
2 "Diabetic" hFB 7 1
2 "Diabetic" hCM + hFB 7 1

Groups Samples Per Timepoint (2,4,6,8 weeks)
Perfusion Electromechanical Bioreactor 

Run

 

Table 7.2: Sample analysis of perfusion electromechanical bioreactor DCMP model.  
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Appendix A 

Abbreviations 

2D   two dimensional 

3D   three dimensional 

ABS   acrylonitrile butadiene styrene 

ACE   angiotensin converting enzyme 

ADSC   adipose derived stem cell 

AGE   advanced glycation endproduct 

Akt   protein kinase B 

ATF4   activating transcription factor 4 

ATF6   activating transcription factor 6 

ATP   adenosine 5’-triphosphate 

BCA   bicinchoninic acid protein assay 

BiP   binding protein 

BMDSC  bone marrow derived stem cell 

CD36   cluster of differentiation 36 

CHOP    CCAAT/-enhancer-binding protein homologous protein  

CM   cardiomyocyte 

cm   centimeters 

CML    carboxymethyl lysine 

CPC   cardiac progenitor cell 

CSC   cardiac stem cell 
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DAPI   4’,6-diamidino-2-phenylindole 

DAQ   data acquisition  

DCMP   diabetic cardiomyopathy 

ddH2O   distilled deionized water 

Decell   decellularization 

DMEM  Dulbecco’s modified eagle medium 

DNA   deoxyribonucleic acid 

DPP-4   dipeptidyl peptidase inhibitor 

DSC2   desmocollin-2 

EC   endothelial cell 

ECM   extracellular matrix 

EDTA   Ethylenediaminetetraacetic acid 

eIF2α   eukaryotic translation initiation factor 2 alpha 

eNOs   endothelial nitric oxide synthases 

EPC   endothelial progenitor cell 

ER   endoplasmic reticulum 

ERAD   endoplasmic reticulum associated degradation 

ESC   embryonic stem cell 

FB   fibroblast 

FBS   fetal bovine serum 

FFA   free fatty acid 

g   gram 
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GFP   green fluorescent protein 

GLP-1   glucagon-like peptide 1 

GLUT4  glucose transporter 4 

H&E    hematoxylin and eosin 

HCl   hydrochloric acid 

hCM   human cardiomyocyte 

Hz   hertz 

ICa-L   L-type calcium ion channel 

IHC   immunohistochemistry 

iPSC   induced pluripotent stem cell 

IRE-1   inositol-requiring enzyme 1 

IRS-1   insulin receptor substrate 1 

Ito   outward potassium current 

JNK   Jun N terminal kinase 

JUP   armadillo proteins plakiglobin 

L   liter 

LC3B   light chain 3B 

min   minute 

mL   milliliter 

mM   millimolar  

mmHg   millimeter of mercury 

MMP   matrix metalloproteinase 
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MRI   magnetic resonance imaging 

MSC   mesenchymal stem cell 

msec   millisecond 

NaCl   sodium chloride 

NADPH  nicotinamide adenine dinucleotide phosphate 

NCX   Na+2/Ca+2 exchanger 

NIH   National Institute of Health 

NOS   nitric oxide synthase 

Nrf2   (erythroid-derived 2)-related factor2  

OCT   optimal cutting temperature  

PDK4   pyruvate dehydrogenase kinase 4 

PERK   protein kinase RNA-like ER kinase 

PET    positron emission tomography 

PI3K    phosphoinositide 3-kinase  

PKC   protein kinase C 

PLB   phosphorylated phospholamban 

PPAR- α  peroxisome proliferator-activated receptor alpha 

RAGE   receptor for advanced glycation endproducts 

RDU   relative densitometry units 

RGD   arginylglycylaspartic acid 

RIPA   Radioimmunoprecipitation assay 

RNA   ribonucleic acid 
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ROS    reactive oxygen species 

RyRs   ryanodine receptor 

sarc. α-actinin  sarcomeric α-actinin  

SD   standard deviation 

SDS   sodium dodecyl sulfate 

SEM    scanning electron microscopy 

SERCA  sarcoplasmic/endoplasmic reticulum Ca+2-ATPase 

SMC   smooth muscle cell 

SOD   superoxide dismutase 

STZ   streptozotocin 

TGF-β   transforming growth factor-beta 

TIMP   tissue inhibitor of matrix metalloproteinase 

TNFα    tumor necrosis factor alpha 

Tris   tris(hydroxymethyl)aminomethane 

TZD   thiazolindinediones 

ug   microgram  

um   micrometer 

UPR   unfolded protein response 

UV   ultraviolet 

V   volts 

XPB-1   X-box binding protein 1 

ZDF   Zucker diabetic fatty rat 
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α   alpha  

α-SMactin  alpha smooth muscle actin 
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