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Abstract

During the past twenty years, plasmonic nanostructures have evolved as one of the most 

promising candidates for applications in miniaturized optical and electronic devices, bio-

sensors and photonic circuits, etc. Silver nanoparticles can interact with light more strongly 

than any known materials with similar dimensions, and support tunable optical properties 

based on their size, shape and sounding medium, which are more stable than optical 

properties of traditional pigments and dyes.  

Thanks to the recent progress in the synthesis of various silver nanoparticles with different 

shape and sizes, which has opened doors to the exciting research field of plasmonics. 

However, silver nanoparticles tend to aggregate when cast on substrates from its aqueous 

suspension, which compromises their plasmonic properties. In Chapter 2, we describe a 

simple and reliable method to immobilize silver nanoparticles on polymer coated substrates 

to mitigate aggregation and allow further chemical modification of silver nanoparticles, if 

needed. In this project, interesting nanostructured craters were discovered, which were 

extensively studied using atomic force microscopy (AFM).  

Fluorescence is widely used in many biosensing applications such as the quantification of 

disease markers, protein activity, cytokine and small molecule signals. Metallic 

nanoparticles alter fluorescence emission by influencing either the incident excitation field, 

or the radiative and non-radiative decay rates of dye molecules. In Chapter 3, we describe 

a simple method for tuning the shape of silver nanoparticles to synergistically achieve high 

fluorescence enhancements in an ensemble of dye molecules. Specifically, we show that 

the fluorescence emission from Rhodamine B (RhB) is enhanced by >30 folds (with respect 

to RhB on bare glass) in the presence of Ag nanodisks due to a simultaneous increase in 

the excitation intensity and photon mode density. Moreover, our detailed finite-element 

simulations, which account for incident, scattered, and dipole radiated electric fields, 
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evidenced that the enhancement is strongly dependent on the orientation of RhB dipole 

relative to Ag NPs and nanodisks.  

While aggregation of silver nanoparticles is not desirable, it facilitates creation of 

fascinating nanostructures that exhibit new properties due to the mystical coupling between 

plasmonic resonances of particles within the aggregate. Prior research has shown that such 

coupling leads to Fano resonances, greatly enhanced local electromagnetic fields, 

unidirectional scattering of light, etc. In Chapter 4, we describe a method for assembling 

silver nanoparticles into specific configurations, such as a linear chain or a nanoring by 

manipulating individual silver nanoparticles into such configurations with the help of the 

AFM tip. We discovered novel far field focusing properties of light by nonorings, which is 

a result of coupled plasmonic resonances of nanoparticles present within the nanoring. 
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Chapter 1  

Introduction to light matter interactions and experiment 

techniques 

Light matter interactions have been studied in several contexts such as, understanding the 

color of the sky, rainbows, and clouds since prehistoric times; and much of the classical 

experimental studies were related to the far-field behavior. Although both near and far field 

descriptions were included in the original classical studies, the former was inaccessible for 

experimental verification until the advent the nanoscience and nanotechnology. The rapid 

advances in nanotechnology, and light matter interactions at nanoscale have led to the 

development of plasmonic materials, viz., materials that exhibit collective oscillations of 

free electrons. Although, plasmonics effects were known in the literature since early 21st 

century, it was only after the advent of nanotechnology that the field of light scattering by 

small particles came into prominence due to its continuing surprising phenomena with new 

insights and applications. Since then, plasmonic properties of nanoparticles have found its 

way into a wide range of applications for cancer detection [1], solar cells [2], single 

molecule fluorescence [3], surface enhanced Raman scattering [4], and super-fast 

computing chips [5].  

Light scattering by small particles is an important problem in electrodynamics, which was 

first introduced by Lord Rayleigh in 1871 through the concept of an electric dipole moment. 

A homogeneous electromagnetic field incident on the particle induces a polarization (i.e., 

the induced dipole), which is determined by the dielectric function of the material (e.g., 

gold or silver), leading to the scattering of the light. The main assumption is that the phase 

remains constant over a region of interest since the particle size is less than the wavelength 

of light.  
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1.1 Lorentz-Drude model 

 

In order to study the optical properties of materials one employs the classical harmonic 

oscillator formalism as introduced by Lorentz. According to the Lorentz model, the 

dielectric function of a non-conducting material can be written as  

                                                   (1.1),  

where  and f represent the resonant frequency and oscillator strength of the bound 

electrons, and  is the damping constant. However, for metals the Lorentz model is 

modified as the Lorentz-Drude model which takes into account the contribution of free 

electrons, which is expressed as  

                     (1.2), 

where the summation is over different oscillators. The free electron part in the above 

equation represents the contribution due to the electron plasma of the metal, which is 

described by the parameters p and e that represent the resonant plasma frequency and 

damping constant of bulk plasma. When light is incident on a metallic particle, the charges 

are set in oscillation where the net effect is manifested in the emission of secondary 

radiation known as scattering. In addition to scattering, part of the incident radiation may 

be extinguished within the particle provided that it is absorbing, i.e., having a complex 

index of refraction. Hence, scattering and absorption leads to the temporal implication of 

reduction of the incident light after traversing a particle. The net effect of radiation 

extinguished from the incident beam is termed extinction. 

 

1.1.1 Mie theory 

 

Rayleigh scattering describes the elastic scattering of light by spheres that are much smaller 

than the wavelength of light, and the intensity of the Rayleigh scattered radiation increases 
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rapidly as the ratio of particle size to wavelength increases. Furthermore, the intensity of 

Rayleigh scattered radiation is identical in the forward and reverse directions. The Rayleigh 

scattering model breaks down when the particle size becomes larger than ~10% of the 

wavelength of the incident radiation. In the case of particles with dimensions greater than 

this, Mie's scattering model can be used to determine the intensity of the scattered radiation 

which differs from Rayleigh scattering in several respects: it is roughly independent of 

wavelength and it is larger in the forward direction than in the reverse direction. The greater 

the particle size, the more of the light is scattered in the forward direction.  

The early studies of light scattering by small particles were developed by Lorenz and 

Thomson towards the end of the 20th century [6]. However, a better understanding of 

scattering of light from spherical particles was provided by Gustav Mie in 1908 which laid 

the foundation for light matter interactions. Notably, Mie theory provided a rigorous 

solution based on electromagnetic theory for scattering of light by spherical particles with 

sizes that are similar to the wavelength of the light. Mie theory in modified form, also 

called corrected Mie theory, can be readily used to explain light scattering by particles of 

non-spherical shape such as ellipsoids or cylinders with an arbitrary radius regardless of 

the composition of the particles and medium. Importantly, the Mie theory is also applicable 

to scattering of light by any number of particles even in the absence of coherent phase 

relations; in other words, when distances between particles are large enough so that there 

are no coherent phase relations among the scattered light from different particles. An 

example of a shortcoming of the Mie theory is the electromagnetic hot spot between two 

nearby particles, which depends on coherency. 

A description of light scattering by spherical particles can be obtained by solving the 

Laplace equation for the scalar electric potential in the quasi-static approximation (refers 

to equations that keep a static form and do not involve time derivatives even if some 

quantities are allowed to vary slowly with time), 

                                              (1.3), 



- 4 - 

 

with the following boundary conditions 

                                      (1.4), 

where E = E0z, a, p and m represent the electric field along the z direction, radius of the 

particle, and the dielectric functions of the particle and the medium, respectively. By 

comparing the scattering potential from Laplace equation with that of a dipole, the effective 

dipole moment can be expressed as [7] 

                                                 (1.6), 

where P represents the dipole moment. The incident electric field on the particle induces a 

dipole moment, and the scattering field radiated by the dipole can be used to determine the 

scattering and absorption cross sections. The related expressions for cross sections are as 

follows [7]: 

                                        (1.7), 

 

                  (1.8), 

where geom = a2 is the geometrical cross section. Qsc and Qabs are dimensionless cross 

sections of scattering and absorption respectively, and q = ka represents the dimensionless 

size wherein k is the wave vector of light in the medium. Lastly, d =p/m represent the 

relative dielectric function. The absorption and scattering cross sections are proportional 

to particle size as a3 and a6 respectively, which implies that the absorption efficiency will 

dominate over scattering as the particle size is decreased. Thus, it is difficult to detect very 

small particles by light scattering.  

 

1.2 Materials and Methods 
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1.2.1 Silver nanoparticles 

 

The use of silver metal dates back to the times of Greeks and Romans. Vessels made of 

silver were used to store water to prevent microbial contamination. In early 1800’s silver 

was used in medical applications, e.g., silver nitrate was used in eye drops and administered 

to new born babies. In the early 1900’s silver was also used to heal wounds. While bulk 

silver has been used by mankind for centuries in applications ranging from simple 

ornaments to wound healing, it is only after the advent of nanotechnology and development 

of advanced characterization techniques that silver nanoparticles found extensive use in 

advanced fields such as plasmonic solar cells [2], photocatalysis [8], antibacterial coatings 

for use in washing machines and fabrics [9], conductive inks [10], surface enhanced Raman 

spectroscopy (SERS) [4], metal enhanced fluorescence [11], biological markers [12], DNA 

sensors [13] and gas detectors [14].  

 

Moreover, when silver nanoparticles are excited by an electromagnetic radiation, light 

matter coupling results in strong localized surface plasmon resonances. When an external 

electro-magnetic field is incident on the metal, the conduction electrons undergo collective 

oscillations known as plasma oscillations, or plasmons. These plasmons are often confined 

to the metal surface and are spatially localized in case of nanoparticles (size < 100 nm). 

This surface plasmon oscillation has an associated resonance frequency which is different 

from the plasma frequency of the bulk metal. Thus, surface plasmon resonance (SPR) is 

defined as a collective oscillation mode of plasma localized near the metal surface (LSPR). 

Of all the metal nanoparticles, Au and Ag nanoparticles (AuNPs and AgNPs) have been 

extensively studied due to their large scattering cross sections. This dissertation is mainly 

focused on study of plasmonic properties of AgNPs for the following reasons: 

a) AgNPs interacts with light more strongly than any other known materials with the same 

dimensions; 

b) The synthesis of size- and shape-tunable AgNPs has been vastly studied in recent years, 



- 6 - 

 

which makes AgNPs ideal materials with optical tenability;  

c) AgNPs are chemically stable in both aqueous and air and the cost of silver is much lower 

than gold as well, 

  

The LSPR oscillation is dependent on the shape and size of the Ag nanoparticles. In general, 

larger the dimensions of Ag nanoparticles, longer are the resonant wavelengths [7].  

 

1.2.2 Synthesis of silver nanoparticles 

The AgNPs were prepared by reducing saturated silver oxide solution in ultrapure water 

using ultrahigh purity hydrogen at 73°C [15]. By controlling the reaction time and 

simultaneously monitoring the extinction spectra of the suspension, the size of the Ag NPs 

can be controlled. The reaction can be represented as 

Ag2O(aq) + H2(g)         2Ag0(s) + H2O(l) 

The obtained AgNPs were polyhedral single crystals as shown in Figure 1.1 and Figure 1.2 

with a narrow size distribution determined from both AFM and TEM studies. AgNPs with 

varying size distributions were synthesized according to the experimental need.  

 

Figure 1.1 TEM image of as-synthesized AgNPs. 
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Figure 1.2 An AFM image of as-synthesized AgNP.  

 

1.2.3 Atomic Force Microscopy 

The scanning tunneling microscope (STM) was first invented in 1981 by Gerd Binnig and 

Heinrich Roher at IBM Zürich, which could provide topographic imaging with extremely 

high resolution (0.1 nm lateral resolution and 0.01 nm depth resolution) for conducting and 

semiconducting samples. In STM, a conductive tip is brought in very close proximity (~ 

0.3-1.0 nm) of the sample surface so that electrons tunnel between the sample surface and 

the tip via quantum tunneling effect when a voltage bias is applied between them. The 

resultant tunneling current provides information about the tip-surface distance and the local 

density of states (LDOS) of the sample. Since STM only works for conducting and 

semiconducting samples, and a few years later the atomic force microscopy (AFM) was 

invented which could facilitate topographic imaging of even insulating samples with high 

resolution. 

Typically, an AFM contains these basic components (Figure 1.3): 1) a micron-scale 

cantilever with a sharp tip (also termed as probe, which is normally made of 

silicon or silicon nitride) at one end of the cantilever; 2) a scanner made of piezoelectric 

https://en.wikipedia.org/wiki/Nanometre
https://en.wikipedia.org/wiki/Local_density_of_states
https://en.wikipedia.org/wiki/Local_density_of_states
https://en.wikipedia.org/wiki/Silicon
https://en.wikipedia.org/wiki/Silicon_nitride
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materials which controls the X-Y-Z position of the tip on the sample surface; 3) a laser 

which measures the deflection of the cantilever, and a detector which records the change 

in the position of the reflected laser beam; and 4) a feedback loop which helps the tip 

maintain a constant interaction with the sample.  

 

 

Figure 1.3: A schematic for an atomic force microscope. 

When the sharp tip scans across a sample surface, the forces developed between them cause 

the cantilever to bend in accordance to the Hooke's law. Such forces include van der Waals 

forces, electrostatic forces, capillary forces, chemical bonding, magnetic forces, etc. By 

monitoring the deflection of the cantilever using the laser-detector combination, the 

distance between the tip and sample surface can be inferred, and thus a topographic image 

can be generated by scanning the tip across the sample surface. The first design of AFM in 

1986 employed the contact mode, which is typically used for characterizing the topography 

of hard samples. In the contact mode configuration (Figure 1.4), the cantilever is designed 

to scan over the sample surface at a fixed deflection which means a constant force is 

maintained on the cantilever during the scan. Normally the resonant frequency of typical 

https://en.wikipedia.org/wiki/Hooke%27s_law
https://en.wikipedia.org/wiki/Van_der_Waals_force
https://en.wikipedia.org/wiki/Van_der_Waals_force
https://en.wikipedia.org/wiki/Coulomb%27s_law
https://en.wikipedia.org/wiki/Capillarity
https://en.wikipedia.org/wiki/Chemical_bond
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cantilevers is around 50 KHz and its force constant is below 1 N/m. Contact AFM can 

measure samples in air, liquids or vacuum. In ambient condition, strong capillary forces 

exist due to the presence of a thin liquid film on the surface of the sample which decreases 

the resolution, and this problem can be circumvented by operating the AFM either in 

vacuum or a liquid. Notwithstanding the above attributes, contact AFM is not suitable for 

biological samples since they often tend to be soft or weakly bound to the surface and hence 

could easily be damaged by the AFM tip. 

Later in 1987, the non-contact mode of operation was introduced for the AFM, which is 

capable of scanning even soft samples without causing any damage due to much lower 

forces exerted on the sample compared to that in the contact mode operation. In the non-

contact mode, the AFM tip is excited at its resonance frequency by a piezoelectric 

transducer, and this oscillating tip senses the van der Waals forces. Normally a constant 

tip-sample distance is maintained during the non-contact mode operation, and the changes 

in the amplitude, frequency and phase of the cantilever are recorded. It is worth mentioning 

that the phase imaging provides image contrast arising from the differences in surface 

adhesion and viscoelasticity, which is very useful for characterizing co-polymers or 

distinguishing different components with similar height but different surface chemistry 

properties.  

As mentioned above, by bringing the tip closer to the sample surface under ambient 

conditions may lead to a liquid meniscus between the tip and sample which is a major 

problem during contact mode operation. To overcome this issue, the tapping mode 

operation (also named AC mode, dynamic contact mode, or intermittent contact mode) was 

developed in 1993, which has become the most widely used AFM mode since it can be 

used for samples either in air or liquids. In the tapping mode, the oscillating tip at its 

resonant frequency gently taps the surface of the sample. The stable oscillations of the 

tapping tip are expected to overcome adhesive and capillary forces which is a significant 

problem in contact mode. Another advantage of operating AFM in the tapping mode is that 
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the gentle tapping mitigates the damaging lateral forces compared with those in the non-

contact mode.  

 

 

Figure 1.4 A schematic for the contact, non-contact and tapping mode operations of an 

AFM. 

Other AFM operation modes include the: 1) lateral force microscopy (LFM) where the 

probe torsional movement is monitored and the frictional forces are measured, 2) 

conductive AFM where the conductivity map of the surface is measured by monitoring the 

current flow between the tip and the surface, 3) Kelvin mode which measures the surface 

potential of the sample, 4) electric force microscopy (EFM) which measures electric field 

gradient distribution on the sample, and 5) magnetic force microscopy (MFM) which 

characterizes the magnetic field distribution on a sample. Overall, AFM is a powerful 

surface technique for not only characterizing sample surfaces with nanoscale resolution but 

also for elucidating the properties of the sample surface through LFM, EFM and MFM 

maps without destroying or altering the surface of the sample.  
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In this dissertation, AFM topographic imaging is used extensively to characterize isolated 

and arrays of AgNPs.  

 

1.2.4 AFM manipulation 

Not only can AFM characterize sample surfaces and provide topographic and phase images, 

but can also manipulate nanoparticles present on a substrate. This goal is achieved by 

switching the AFM between its contact and tapping mode operations in the following 

sequence (Figure 1.5): 1) scan a selected area under tapping mode to obtain a clear 

topographic image, 2) place the AFM tip next to a selected nanoparticle, 3) switch the AFM 

contact mode to decrease the tip-nanoparticle distance which consequently increases the 

interaction between tip and the nanoparticle of interest, 4) move the AFM tip, and thus the 

nanoparticle, to the desired location on the substrate under contact mode (normally the 

nanoparticle would be pushed by the AFM tip during this step), and 5) switch AFM back 

to the tapping mode operation and scan the area of interest on the substrate to confirm that 

the nanoparticle moved to the desired location. By repeating these steps, and with patience 

and care, complicated configurations of nanostructures can be assemble, which have come 

to be known as artificial atoms in the field of plasmonics.  

In this dissertation, AFM manipulation was used extensively to prepare coupled plasmonic 

nanoring structures by moving individual naked polygonal silver nanoparticles on glass.  
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Figure 1.5 A schematic for the AFM manipulation of nanoparticles. 

1.3 Transmission electron microscopy (TEM) 

 

In 1873, Ernst Abbe discovered the fundamental resolution limit, which is known as the 

Abbe diffraction limit and is roughly half the wavelength of light. The wavelength of 

visible light ranges from about 350-750 nm, which is not suitable for studying 

nanoparticles by conventional optical microscope. Electromagnetic radiation with shorter 

wavelength, such as ultraviolet or x-rays, were considered as plausible options as 

illumination sources in an optical microscope, but the resolution was still insufficient for 

nanoparticles. The negatively charged electrons possess a mass of 9.1 ×10-31 kg and a de 

Broglie wavelength that is much shorter than that of visible light, which theoretically 

provides a much better resolution compared to light. More importantly, electrons are 

influenced by electric and magnetic field, which provides the possibility of the 

manipulating and focusing of electron beam as well as imaging. The invention of 

electrostatic lens and magnetic lens enabled the concept of imaging electron beams after 

they have interacted with the sample.  
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A typical TEM consists of: 1) a vacuum chamber which is maintained at a low pressure of 

10-7 to 10-9 Pa, 2) an electron gun (the illumination source) from which the electrons are 

emitted upon heating; 3) an electron lens which focuses the parallel electron beam at a 

focal plane; 4) an aperture, which is a ring-shaped metal plate, which blocks those electrons 

scattered at large angles and only allow axial electrons to pass. Although a TEM has 

excellent resolution of 0.1 - 0.2 nm, the disadvantage of the TEM includes the following: 

1) measurements must be performed with samples under vacuum; 2) the thickness of the 

sample must be reduced to submicron scale due to strong scattering and absorption of 

electrons by the sample; 3) the focused electron beam may heat up the sample and even 

damage it.  

In this dissertation, TEM was used to characterize silver nanoparticles which is an 

electron dense material, and high quality images with high contrast were obtained.  

 

1.4 Dark-field microscope 

While the stars are clearly visible at night they can hardly be seen during the day due to the 

fact that the bright sunshine masks the relatively weaker light from the stars. Compared to 

a conventional bright-field microscope, a dark-field microscope uses a similar concept and 

excludes the unscattered light from the image to enhance the contrast and provide high 

quality images of the sample. In the former, both the illuminating light and the light 

scattered by the sample are collected, while in the latter, only scattered light is collected by 

the objective lens and the illuminating light is blocked from reaching the detector. This is 

realized by a simple design (Figure 1.6) - an opaque disc (termed as a light stop or beam 

stop) is placed underneath the condenser lens to form a hollow cone of light (in contrast, a 

full cone of light is used to illuminate the specimen) and the central illumination rays along 

the optical axis of the microscope are blocked. Only oblique rays with large angles are 

incident on the sample, and the light scattered from the sample is collected by the objective 
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lens. In a dark-field microscope, the entire field of view appears dark when no sample is 

present on the microscope stage. 

  

Figure 1.6 A schematic for a transmission dark-field microscope (left) and reflection dark-

field microscope (right). Figure reproduced from reference [16]. 

 

In this dissertation, isolated and assemblies of AgNPs were viewed using a dark-field 

microscope, and high quality images were recorded with excellent signal-to-noise ratio. 

Moreover, the scattered light spectra revealed exciting plasmonic phenomena which are 

described in subsequent chapters.  

1.5 Ultraviolet–visible spectroscopy (UV-Vis) 

UV-vis spectroscopy measures the wavelength and intensity of absorption of a sample in 

the near-ultraviolet and visible spectral range. Typically, as in Figure 1.7 an UV-Vis 

spectrometer contains of: 1) an illumination source; 2) the monochromator including the 

entrance slit, a dispersing element which spreads light into various wavelengths, and the 

exit slit, 3) the sample, and 4) the detector.  

http://elchem.kaist.ac.kr/vt/chem-ed/spec/spectros.htm#absorption
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Figure 1.7 A schematic of a single beam UV-Vis spectrometer. 

 

UV-Vis spectroscopy is widely used to characterize molecules and inorganic ions or 

complexes in solution. By measuring the absorbance signal at a particular wavelength, the 

analyte’s concentration in the solution can be determined using the Beer-Lambert law since 

the measured absorbance is proportional to the analyte concentration. This principle can be 

also be applied to determine the concentration of silver nanoparticles in a colloid 

suspension at relatively low concentration. The diameter of silver nanoparticles determines 

its resonance spectrum: 1) according to Mie theory, smaller particles mainly absorb light 

rather than scatter light; 2) smaller diameter particles experience more uniform 

electromagnetic field and hence behave more as a dipole due to a strong restoring force 

with its resonance peak position in the blue region of the electromagnetic spectrum; 3) 

large particles whose diameters are comparable to the incident wavelength experience 

relatively less uniform electromagnetic field leading to a quadrupolar behavior, or even 

higher order modes whose resonance peak position is  located in the red region of the 

electromagnetic spectrum. The UV-Vis spectroscopy can be also used to monitor the 

particle size during their synthesis and also serve as a quick way to estimate aggregation 

of AgNPs in a suspension. 

In this dissertation, UV-Vis spectroscopy was used to measure the resonance peak of 2D 

arrays of AgNPs, AuNPs and Ag2S NPs.  

https://en.wikipedia.org/wiki/Absorbance
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Chapter 2 

 

Stabilization of 2D assemblies of silver nanoparticles by  

spin-coating polymers 

 

2.1 General Introduction 

Silver nanoparticles (AgNPs) self-assembled on poly(4-vinylpyridine) modified surfaces 

were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and 

polystyrene from anisole and toluene solutions. The polymers filled the space between the 

particles thereby providing stabilization of the assemblies against particle aggregation 

when dried or chemically modified. The polymers did not coat the top surface of the 

nanoparticles rendering chemical accessibility to the AgNP surface, which was confirmed 

by converting stabilized AgNPs into silver sulfide through electrochemical reduction of 

AuNPs. Etching away the AgNPs resulted in crater-like polymeric structures extending 

down to the underlying substrate. This study has been published in Applied Surface 

Science, Volume 357, p. 1587-1592.  

 

2.2 Background 

When AgNPs are closely spaced, the coupling between the collective electrons oscillations 

(the plasmon coupling) in individual particles results in new plasmon modes. It was 

previously demonstrated that the coherent plasmon coupling in 2D arrays of self-assembled 

AgNPs produces a sharp resonance that can be used for various sensing applications owing 

to its sensitivity to the refractive index of the surrounding medium [17,18]. In addition, the 

enhanced local EM field in spaces between the nanoparticles was utilized for surface 

enhanced Raman spectroscopy [19]. The plasmon coupling depends on the interparticle 
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distance, particle size and the dielectric constant of the surrounding medium. As the 

dielectric constant increases, or the interparticle distance decreases until the optimum value, 

the coupling becomes stronger for the same size of the particles [20,21]. However, even a 

small degree of aggregation has a detrimental effect on the coherent coupling and the 

sharpness of the resonance peak. 

 

Figure 2.1 SEM images of dried AgNP arrays on a bare substrate (left) and a substrate 

treated with 5% PMMA solution (right). The circled regions in the left image show the 

aggregated AgNPs. Figure reproduced from reference [21].  

 

The self-assembly of nanoparticles is an efficient and easily scalable method for fabricating 

nanostructured surfaces. It is often challenging to maintain such assemblies without 

particle aggregating on the surface, particularly when there is a need for further chemical 

modifications or the transfer of the assemblies into different media. For example, drying 

2D assemblies of AgNPs causes the nanoparticles to aggregate into clusters due to the 

solvent surface tension producing lateral forces on the particles as in Figure 2.1 [22]. 

Consequently, solvents with lower surface tension, from which the self-assembly is carried 

out, tend to cause less aggregation when drying. It is important to recognize that particles 

aggregate even when they are chemically attached to the surface that is uniformly modified 

with affinity ligands as in the case of metal nanoparticles on thiolated surfaces. However, 

when the affinity ligands are patterned on the surface, the aggregation of nanoparticles is 
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less critical because the particles are physically confined to only patterned areas [22–24]. 

The aggregation is usually an irreversible process, and the particles remain aggregated after 

rewetting the assemblies. This causes irreproducibility or complete loss of properties of 

nanostructured surfaces [22]. 

Malynych et al. stabilized the coupled 2D array of Ag NPs and preserved their sharp 

plasmon resonance by embedding the arrays into a poly(dimethylsiloxane) matrix. 

However the particles were fully covered by the polymer coating which rendered the metal 

surface unsuitable for chemical modifications [22]. Matrubara et al. reported the fabrication 

of silver nanodisks on both flat and textured surfaces by transfer-printing, and the resulting 

nanostructures were stable toward aggregation because they were physically anchored to 

the substrates [26]. In another work, periodic metal nanodot arrays were fabricated by the 

pulsed laser melting induced fragmentation of prepatterned metal nanostrips [27]. 

Chichkov et al. reported the use of a laser-induced transfer of molten metal nanodroplets 

for building 2D and 3D arrays [28]. The nanostructures in both reports were stable because 

the nanoparticles were spatially confined. The problem of the nanoparticle aggregation in 

solutions was mainly addressed through chemical modifications of the particles’ surface or 

by encapsulating the particles in protective shells. Negatively charged citrate ions that 

adsorb on the metal surface stabilize the nanoparticles by the electrostatic repulsion, but 

such suspensions are limited to low concentrations and the particles aggregate irreversibly 

upon the addition of electrolytes [29,30]. Thiol groups have high affinity to noble metal 

surfaces and alkanethiols were used to obtain thermally stable and air-stable metal 

nanoparticle powders that can be repeatedly re-dissolved in organic solvents [31,32]. 

Amine, phosphine and its oxide, carboxylate, iodine, isocynide and acetone were also used 

as stabilizing ligands [33–40]. These small ligands can desorb easily or be replaced by 

other ligands with stronger affinity to the metal surface. 

Nanoparticles coated with a shell of different materials become sterically stabilized and 

more resistant to high electrolyte con-centration. Poly(4-vinylpyridine) (PVP) stabilized 



- 19 - 

 

AgNPs are more stable than citrate stabilized Ag NPs in standard media [41,42]. 

Polyethylene glycol (PEG) is an inert, amphiphilic and biocompatible linear polymer 

soluble in water, organic polar and apolar solvents, which forms random coils on the metal 

nanoparticles’ surface when hydrated in water and the particles are stable in electrolytes 

and biological environments [43–45]. Chitosan is a biodegradable and biocompatible linear 

polysaccharide used to stabilize noble metal nanoparticles [46,47]. Dendrimers provide 

both electrostatic and steric stabilization for nanoparticles, so do polymers that form linear 

chain structures grafted to the nanoparticles’ surface [48–50]. Various silica coated metal 

nanoparticles were made based on Stöber process usually with controlled thickness by 

adjusting tetraethyl or thosilicate (TEOS) concentration [51–54]. However, these methods 

are not very effective for preventing the aggregation of nanoparticles attached to substrates 

because the particles remain ‘free’ to roll on the surface. Rubinstein et al. reported metal 

nanoparticle films on glass stabilized by 3.0–3.5 nm silica coating that preserved the 

original plasmon response [55]. 

In this chapter, a simple and reliable method for stabilizing 2D assemblies of AgNPs is 

described. The method is based on affixing the nanoparticles to substrates with a PVP layer 

followed by spin-coating polymers in the space between the nanoparticles. Similar method 

was previously used to change the dielectric function of the medium to study its effect on 

the plasmon coupling [20,21]. By adjusting the spin-coating parameters, the thickness of 

the polymer layer can be adjusted to stabilize the assemblies without coating the metal 

surface. After etching the nanoparticles, crater-like polymeric structures were obtained. A 

similar approach was used to produce thin porous silicate films with submicron polystyrene 

spheres as templates as well as silica films on glassy carbon electrodes with 2D assemblies 

of hemispherical cavities [56,57]. 

2.3 Experiment and results 

2.3.1. Materials 

http://www.sciencedirect.com/science/article/pii/S0169433215024265#bib0270
http://www.sciencedirect.com/science/article/pii/S0169433215024265#bib0450
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Hydrogen peroxide (30–35%) from Fisher Science, sulfuric acid (98%) from J.T.Baker, 

anisole (>99.0%) from Fluka Analytical, ethanol (99.98%) from Pharmco-Aaper, silver(I) 

oxide (99.99%) powder and hydrogen tetrachloroaurate(III) (99.99%) from Alfa Aesar, 

ferric nitrate nonahydrate (98.7%) from Fisher Chemical, poly(4-vinylpyridine) (PVP) 

[MW 60,000], poly(methylmethacrylate) (PMMA) [MW 996,000], 

poly(butylmethacrylate) (PBMA) [MW 337,000] and polystyrene (PS) [MW 280,000], 

sodium sulfide nonahydrate (98%) from Sigma Aldrich were used as received. Ultrapure 

water (<18 MΩ cm) was obtained from Millipore-Q system and both ultrahigh purity 

nitrogen and hydrogen were purchased from Air Gas. Microscope glass slides (VWR) and 

ITO glass with Rs = 8–12 Ω/sq. (Delta Technologies) were cut into 

25 mm × 15 mm × 1.0 mm pieces. About 120 nm thick Ag and Au films were deposited 

via the thermal evaporation in vacuum.  

2.3.2. Instrumentation 

UV-2501PC Spectrophotometer (Shimadzu) was used to record UV–Vis spectra. High-

resolution TEM-H9500 (Hitachi) was used to characterize the AgNPs (Figure 1.1). All 

glass and ITO substrates were cleaned with the Plasma Sterilizer PDC-32G (Harrick). AFM 

measurements were performed in a non-contact mode using AIST-NT SPM Smart system 

and cantilevers (HQ:NSC14/Al BS-50) from Micromasch. AIST-NT image analysis and 

processing (Version 3.2.14) software was used for AFM images analysis. Electrochemical 

Workstation, Model 400 A, (CH Instruments) was used for the electrochemical studies. 

2.3.3. Synthesis of Ag NPs 

The AgNPs were synthesized by reducing saturated silver oxide solution in ultrapure water 

by ultrahigh purity hydrogen at 73 °C in a round bottom flask, as previously reported [15]. 

The size of the AgNPs can be adjusted by controlling the reaction time simultaneously 

http://www.sciencedirect.com/science/article/pii/S0169433215024265#sec0060
http://www.sciencedirect.com/science/article/pii/S0169433215024265#bib0460
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monitoring the extinction spectra of the reaction suspension. Colloidal suspensions 

containing 55 ± 3 nm, 100 ± 5 nm and 120 ± 7 nm AgNPs were used in the study. 

2.3.4. 2D assemblies of AgNPs 

Glass substrates (25 mm × 15 mm × 1.0 mm) were treated by a mixture of 35% hydrogen 

peroxide and 98% sulfuric acid for 4 h, washed with copious amount DI water, dried with 

pure nitrogen and cleaned with plasma. Clean substrates were rolled on a hot-dog style 

roller in 0.01% PVP ethanol solution for 4.5 h, and rinsed several times with ethanol 

followed by the final rinse with DI water. The PVP modified substrates were exposed at 

constant agitation to AgNP suspensions (OD = 0.1, 0.3) for different times ranging from 

2.5 to 13 h followed by rinsing with water to obtain 2D assemblies with different 

nanoparticle density as in Figure 2.2. 

2.3.5. Polymer spin-coating and etching of Ag NPs 

The 2D assemblies of AgNPs were immersed first in pure anisole for a few seconds to 

remove excess surface water followed by immersing into polymer anisole solutions (0.6% 

PMMA, 1% PMMA, 1.2% PMMA, 1.8% PMMA, 3% PMMA; 1% PBMA; 1% PS, 2% 

PS, 3% PS) for 2 min. The wet substrates were mounted on a spin coater and additional 

30 μL of the corresponding polymer solution was dropped onto the substrates followed by 

spinning at 5000 rpm for 45 s. The substrates were annealed at 140 °C for 10 min. Etching 

of AgNPs was performed by dropping 45 μL of 1.5 M Fe(NO3)3 aqueous solution onto the 

substrates followed by thorough rinsing with DI water after a few seconds of the exposure. 

The procedures are schematically presented in Figure 1. 

2.3.6 Electrochemical silver deposition into craters 

PMMA-based craters were formed on ITO, Au or Ag coated substrates. Mixture of 0.1 M 

Na2SO4 and 0.1 mM Ag2SO4 deoxygenated by bubbling nitrogen gas for at least 15 min 

was used as electrolyte in all electrochemical experiments. The metal deposition was 

http://www.sciencedirect.com/science/article/pii/S0169433215024265#fig0005
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carried out in the ‘bulk electrolysis with coulometry’ mode at potentials between −0.57 V 

and −0.75 V vs. SHE for 3–10 s depending upon the desired metal thickness. 

 

 

Figure 2.2 A schematic of general steps of stabilization of 2D assemblies of 2D 

assemblies by spin-coating polymers  

 

Unmodified microscope substrates made of float glass have an average roughness less than 

5 nm. The average roughness was uniformly increased to about 8–9 nm after the PVP 

modification carried out from 0.01% ethanol solution for 4 h. The roughness was further 

increased when higher PVP concentrations were used. It is well recognized that high 

polymer concentrations favor more coiled structures of polymer molecules on surfaces 

leading to larger roughness [45]. The exposure of the modified substrates to aqueous 

100 nm AgNPs suspensions resulted in the 2D self-assembly of AgNPs. The density of the 

particles on the surface was controlled by adjusting the particle concentration in the 

suspension as well as the exposure time. The self-assembly was carried out from DI water 

with low ionic strength providing long range electrostatic repulsion between the particles 

due to the electric double layer associated with the metal surface. The electrostatic 

http://www.sciencedirect.com/science/article/pii/S0169433215024265#bib0465
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repulsion kept the individual particles well separated in the assembly. The Ag NPs absorb 

on the PVP surface through the formation of bonds between the lone pair electrons on the 

pyridyl ring and the silver surface. Despite this strong interaction, the particles can move 

on the surface. In order to move a particle to another location, the bond between the particle 

and the surface needs to be broken; however, a new identical bond is formed at the new 

location. This movement can be viewed as breaking of existing and simultaneous forming 

new surface bonds, the process that does not require additional energy. The particle 

assemblies in water are stabilized by the electrostatic repulsion, but drying negates this 

repulsion as well as produces lateral forces that push the particles together resulting in the 

aggregation. The lateral forces are caused by the surface tension of drying water. The 

stabilization of the particles in the assemblies was achieved by filling the spaces between 

the particles with polymers. The stabilized assembly could withstand repeated 

drying/rewetting cycles as well as various chemical modifications while retaining their 

original arrangement. The method can be applied to other polymer/nanoparticle assembly 

combinations. 

The average height of AgNPs in the assemblies, as measured with the AFM, was 97 ± 4 nm 

(Figure 2.3). The particles appeared with sharp corners suggesting that their surface was 

not covered with the PVP (Figure 1.2). It was initially suspected that, because of the high 

affinity of PVP to silver, the polymer molecules adsorbed on the surface of the substrate 

can also partially cover the particle surface to establish an equilibrium distribution between 

the two surfaces. 

http://www.sciencedirect.com/science/article/pii/S0169433215024265#fig0010
http://www.sciencedirect.com/science/article/pii/S0169433215024265#sec0060
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Figure 2.3 AFM images of 100 nm AgNPs on PVP coated glass substrates: (a) before 

polymer spin-coating; (b) after spin-coating PS from anisole solution. Insets: height 

profiles of AgNPs. 

 

To prevent the particle aggregation, the 2D assemblies were stabilized by spin-coating 

various concentrations of polymers such as PS, PMMA, PBMA from two different solvents, 

toluene and anisole. After the spin-coating, the average height of the particles decreased 

depending upon the concentration of the polymer, a general trend observed for all polymers 

and solvents used in this work. For example, when the PS concentration was increased 

from 0.3% to 1% and 3%, the average height of Ag NPs decreased from 97 ± 3 nm to 

90 ± 3 nm and 16 ± 3 nm, respectively. Further height decrease on the order of a few nm 

was observed after the substrates coated with 1% PS or 1% PMMA were annealed at 

150 °C for 25 min. The measured decrease of the particles’ height after the annealing seems 

counterintuitive. One would expect an increase of the measured height because the 

annealing at temperatures larger than that of the glass transition (∼110 °C) of PS and 

PMMA will cause the relaxation of the polymers causing the particles to float to the surface 
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of the polymer layer as neither PS nor PMMA have strong affinity to silver. The relaxation 

of the polymer layer was concluded from the AFM measurements of the surface roughness 

that changed from 4–5 nm to 1–2 nm for 1% polystyrene film and from 7–8 nm to 1–2 nm 

for 1% PMMA film. The discrepancy can be explained by considering the underlying PVP 

layer that will also soften at this temperature and pull the particles deeper inside the layers 

due to the PVPs strong affinity to silver. Mixing of PVP layer with PS or PMMA layers is 

also possible at this temperature. 

When the 2D assemblies of Ag NPs are stabilized by the spin-coating of polymers, it is 

important to know whether or not the metal surface is coated with the polymer. To address 

this question, etching of nanoparticles as well as chemical modifications of the metal 

surface was undertaken. Ferric nitrate can etch silver because its standard reduction 

potential (0.77 V) is close to that of Ag+ (0.80 V) and the resultant silver nitrate is a soluble 

compound [59]. After the etching of the assemblies with molar excess of ferric nitrate 

crater-like structures were observed thereby indicating that the silver surface was not 

covered with the polymers or, at least, the polymer layers were not sufficiently dense to 

prevent chemical accessibility to the metal surface (Figure 2.4). The height and the external 

diameter of the craters, as measured relative to the area of the substrate containing no 

nanoparticles, depended on both the type and the concentration of the polymer. For 

example, 100 nm Ag NPs and 1% of PBMA, PS and PMMA yielded the average height of 

40 ± 3 nm, 52 ± 3 nm, and 50 ± 4 nm whereas external diameters were 440–550 nm, and 

180–310 nm, 280–350 nm, respectively. No significant differences of the crater structures 

were found for glass and ITO substrates under the same conditions. Although the crater 

depth measurements were not reliable due to the limited penetration of the AFM tip inside 

the craters, there was a noticeable trend in that higher concentrations of polymers resulted 

in deeper craters. The solvent, in which the polymers were dissolved prior to spin-coating, 

had also effect on the crater dimensions, e.g. 1% PS in anisole consistently gave taller 

http://www.sciencedirect.com/science/article/pii/S0169433215024265#bib0470
http://www.sciencedirect.com/science/article/pii/S0169433215024265#fig0010
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craters than 1% PS in toluene [60]. Proportionally smaller craters were observed when 

smaller Ag NPs were used as templates. 

 

Figure 2.4 AFM images of crater-like structures after etching AgNPs with Fe(NO3)3 

Inset: the height profile of a crater in (b). 

 

Whereas the dependence of crater dimensions upon the concentration of polymers is rather 

clear, the dependence upon the type of the polymer, substrate and solvent most likely 

reflected how the polymer solutions wetted both the substrate and the nanoparticles. The 

underlying layer of PVP on the substrate is expected to be wetted well by both solvents 

because of π–π interactions between the aromatic rings. Neither of the polymers nor 

solvents is expected to have specific affinity to the silver surface, so it is likely that all 

solutions wetted the surface of the nanoparticles to the same degree. The formation of the 

craters was due to the capillary force that pulled up the polymer solutions at the particle 

substrate interface. In the absence of strong interactions between a surface and a liquid, the 

capillary force depends upon the ratio of the surface tension to solvent density and is larger 

for anisole polymer solutions thereby leading to consistently larger craters formed from 

anisole than those from toluene. The dissolved polymers did not change substantially the 

surface tension from that of the pure solvents as was tested using the drop size method for 

1% polymer solutions. In this method, drops of the same volume of different polymers 

solutions were deposited on clean glass substrates and the spot sizes were compared to that 

of pure solvents. No statistically meaningful differences of the spot sizes were noticed 

http://www.sciencedirect.com/science/article/pii/S0169433215024265#bib0475
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thereby concluding that the polymers at such low concentration did not affect the surface 

tension of the solvents. 

Polymer stabilized 2D assemblies of AgNPs were exposed to HAuCl4 aqueous solution 

with the expectation that the gold salt will etch silver away producing gold nanoparticle 

(AuNP) assemblies. Indeed, the AFM imaging revealed the presence of nearly spherical 

particle clusters protruding on average 119 ± 5 nm from the surface of the substrates and 

arranged in the same way as the original AgNPs (Figure 2.5). Each cluster was composed 

of roughly 5 smaller gold particles with the estimated size of 30 nm. The UV–Vis 

spectroscopy confirmed the presence of the plasmon resonance peak at about 547 nm 

corresponding to small AuNPs as well as a weak shoulder at 645 nm due to the plasmon 

coupling between the particles in the clusters (Figure 2.5). It was concluded that each 

AgNP was completely dissolved because the strong plasmonic features from the AgNPs 

disappeared from the UV–Vis spectra after etching with the gold salt. 

 

 

Figure 2.5 (a) AFM images of Au clusters obtained by HAuCl4 treatment of 120 nm Ag 

NPs; (b) UV–Vis spectra of 2D assembly before (blue curve) and after (orange curves) 

the treatment. 

http://www.sciencedirect.com/science/article/pii/S0169433215024265#fig0020
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The structure of the gold clusters depended upon the surface density of AgNPs on the 

substrate. The size of the gold clusters was smaller and they appeared more like open circles 

on the rim of the crates as the AgNPs density decreased. This observation was rationalized 

as interplay between the local concentration of the zero valence gold and its diffusion from 

the substrate. Low surface densities of AgNPs lead to low local concentrations of the zero 

valence gold near the substrate. This zero valence gold partially diffused away from the 

substrate before it had a chance to assemble into small nanoparticles that became attached 

to the rim of the craters. At high silver densities, more zero valance gold was available near 

craters producing more Au NPs that formed 3D gold clusters on top of the craters. The zero 

valance gold that diffused from the substrate most likely formed AuNPs in the solution; 

however it was impossible to detect them using UV–Vis spectroscopy to due to their low 

concentration. 

The polymer stabilized 2D assemblies of AgNPs was also treated with Na2S aqueous 

solutions. AFM images revealed the simultaneous presence of small nanoparticle clusters 

and empty craters on the substrates (Figure 2.6).  

 
Figure 2.6 1% PS after treatment with 0.16 M Na2S for 3 min. Inset: close-up image of 

one particle; 0.11 M Na2S for 2 min (black); 20 min (orange). 

http://www.sciencedirect.com/science/article/pii/S0169433215024265#fig0025
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The average measured height of the clusters was 94 ± 5 nm. The plasmon resonance 

broadened and shifted to the red spectral region due to the formation of silver sulfide on 

the surface of the NPs (Figure 2.6). Silver sulfide has a large dielectric function and 

absorption coefficient casing the red shift and damping of the resonance. The formation of 

silver sulfide on AgNPs appeared to be a self-limiting reaction as large changes in the UV–

Vis spectra were observed during the first minute after exposure to Na2S followed by only 

small changes with time. As expected, the rate of the silver sulfide formation in the case of 

2D assemblies without spin-coating polymer layer was slightly larger (Figure 2.6). The fact 

that the 2D assemblies of AgNPs treated with Na2S retained their plasmonic spectral 

features, albeit damped, suggested that the nanoparticles composed of a silver core coated 

with small silver sulfide particles, as was evident from close-up AFM images of individual 

nanoparticles (Figure 2.6, Inset). The empty craters that were also observed most likely 

appeared after rinsing the substrates exposed to Na2S with water. Silver sulfide coated 

nanoparticles are expected to have no/low affinity to PVP modified substrates and can be 

easily washed away. 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0169433215024265#fig0025
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Figure 2.7 A schematic for electrochemically depositing AgNPs inside the nano-craters. 

 

Attempts were also made to electrochemically grow metallic silver in the craters. ITO, 

vacuum deposited gold or silver conducting substrates were coated with PVP followed by 

attaching AgNPs, spin-coating of PMMA and etching the nanoparticles to produce craters 

(Figure 2.7). The substrates containing craters were connected to the electrochemical 

workstation and the silver reduction was carried out at −0.58 V and −0.71 V vs. SHE. The 

growth of silver was not uniform on all three substrates with the gold substrates exhibited 

the most consistent results (Figure 2.8). AFM imaging revealed craters filled with silver 

together with empty craters as well as the presence of various size clusters of small AgNPs 

in the vicinity of the craters (Figure 2.8). The nonuniform electrochemical growth of silver 

was most likely due to the heterogeneity of the underlying conducting substrates. It is well 

known, for example, that the electrochemical deposition of metals on bare ITO proceeds 

via seeded growth, in which the metal reduction begins at defect sites, often at the 

boundaries between individual ITO crystallites that provide the smallest reduction 

overpotential [61]. Silver reduction occurred in places where a crater overlapped with such 

defect site. In some instances, zero silver diffused from the inside of craters forming silver 

clusters on the outside. More negative reduction potentials resulted in the formation of 

http://www.sciencedirect.com/science/article/pii/S0169433215024265#sec0060
http://www.sciencedirect.com/science/article/pii/S0169433215024265#fig0030
http://www.sciencedirect.com/science/article/pii/S0169433215024265#bib0480
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larger silver particles/clusters and decreased the number of empty craters. 

 

Figure 2.8 AFM images of AgNPs electrochemically deposited inside the nano-craters on 

conductive substrates 

 

2.4 Conclusions 

Spin-coating of polymers onto 2D assemblies of AgNPs was used to stabilize the 

assemblies against aggregation. The polymer filled the space between the particles leaving 

the metal surface uncoated and accessible to various chemical reactions. Etching 

nanoparticles produced crater-like structures, the size of which can be manipulated by 

changing the polymer concentration and the solvent. The method can be extended to other 

polymers and nanoparticle assemblies. 
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Chapter 3  

 

Enhancing emission of RhB by tuning the shape of silver 

nanoparticles 

 

3.1 General Introduction 

Fluorescence is widely used in many biosensing applications such as the quantification of 

disease markers, protein activity, cytokine and small molecule signals [62–72]. 

Accordingly, concerted efforts have been devoted towards achieving strong enhancements 

in fluorescence for improving the detection sensitivity of biomarkers [68, 72, 73]. The 

strong light-matter interactions in metallic nanostructures have been used for providing 

large fluorescence emission intensity enhancements, raise quantum yield, and also tune the 

far field angular distribution of fluorescence. For instance, silver and gold nanoparticles 

(Ag and Au NPs) have been widely used for improving the limits of detection through 

surface plasmon resonance (SPR) and surface plasmon coupled emission (SPCE) [74–76]. 

Metallic NPs alter fluorescence emission by influencing: A) the incident excitation field, 

and B) the radiative and non-radiative decay rates of dye molecules [77]. In the case of 

single-molecule fluorescence [77], these competing effects (A and B) have been 

experimentally shown to result in either fluorescence enhancement or quenching 

depending on the separation distance between dye molecules and NPs.  

 

3.2 Experiment and results 

Here, we posit that NP shape can be tuned to synergistically combine effects A and B to 

achieve high fluorescence enhancements in an ensemble of dye molecules. Specifically, 

we show that the fluorescence emission from Rhodamine B (RhB) is enhanced by >30 
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folds (with respect to RhB on bare glass) in the presence of Ag nanodisks due to a 

simultaneous increase in the excitation intensity and photon mode density. On the other 

hand, the fluorescence emission from RhB on polyhedral Ag NPs was at least ~2 times 

weaker compared to RhB on Ag nanodisks. Our detailed finite-element simulations, which 

account for incident, scattered, and dipole radiated electric fields, evidenced that the 

enhancement is strongly dependent on the orientation of RhB dipole relative to Ag NPs 

and nanodisks. The observed increase in Ag nanodisks is explained in terms of its upshifted 

scattering closer to RhB emission, which results in an increased local electric field and 

higher photonic mode density for Ag nanodisks. 

 

 

 

Figure 3.1 (a) and (b) show TEM images of (a) unpunched and (b) punched AgNPs (scale 

bar: 50 nm). A home-built puncher with a Teflon mandrel (c). Zoomed-in AFM images of 

(d) unpunched AgNPs and (e) punched AgNPs (@50N/50times) exhibiting a circular shape 

with reduced height. 
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For evaluating the effects of nanostructure morphology on RhB emission, polyhedral 

AgNPs were prepared via the method described in Chapter 2 [15]. Briefly, a saturated 

aqueous Ag2O solution was reduced by infusing hydrogen (ultrahigh purity) at ~73°C until 

a faint yellow color was observed indicating the formation of colloidal AgNPs. The as 

prepared AgNPs were found to exhibit a polyhedral single crystal morphology having 

corners, as shown in Figure 3.1a. To prepare AgNP coated slides, bare glass-microscope-

slides (25 mm × 15 mm × 1 mm) were functionalized with a polyvinyl pyrrolidone (PVP) 

layer (~10 nm) by submerging them in a 0.01 wt. % PVP-ethanol solution for 4 hours. 

Following rinsing and drying, PVP functionalized slides were immersed into the 

synthesized AgNPs suspension under constant agitation for ~10 hours. This step facilitated 

the chemisorption of AgNPs that form bonds with the lone-pair electrons on the pyridyl 

ring of PVP coated on the slides. For altering the NP morphology, the glass-slides coated 

with AgNPs were deformed through the application of a transverse mechanical force using 

a home-built, motorized, Teflon coated circular puncher (automated to deliver 50 N force 

at 2 Hz) with a radius of ~1 cm (see Figure 3.1b inset). As the force was applied only over 

a part of the slide (corresponding to the puncher area ~3.14 cm2), we were able to obtain 

both as prepared AgNPs (in the unpunched regions) and Ag nanodisks (punched regions) 

on the same glass slide. The as prepared AgNPs were found to be mechanically deformed 

to nanodisks upon subjecting them to a force of 50 N for 50 times (Figure 3.1b). Although 

AgNPs displayed different morphologies before and after mechanical deformation, the 

lateral size of unpunched (104.5 ± 10 nm) and punched NPs (112.5 ± 9 nm) gleaned from 

transmission electron microscopy (TEM) was similar, with the deformed particles 

exhibiting slightly larger diameters. Considering that TEM is more reliable for measuring 

the lateral size, we conducted atomic force microscopy (AFM) to understand the effects of 

applied force on NP height. The unpunched AgNPs showed an average height of ~110 nm 

which is very similar to their lateral size (~104.5 nm) suggesting that they are nearly 
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spherical with an aspect ratio (diameter/height) ~0.95 (Figure 3.1c). On the other hand, 

punched AgNPs exhibited a smooth circular boundary with a height ~88 nm lower than 

their lateral size (112.5 ± 9 nm) indicative of a more ‘disc’ shaped morphology with an 

increased aspect ratio of ~1.34. In a recent publication, AgNPs were also mechanically 

deformed by rolling process, and at much lower rate (100-1000 micron/second) and 

resulted in more flattened and elongated nanodisc.  

 

 

 

Figure 3.2 a) A dark field image showing unpunched (blue) and punched (red) regions of 

the glass substrate; (b) corresponding red-shifted scattering spectra acquired from Cytoviva 

optical microscope; and (c) COMSOL simulations showing red-shift in extinction spectra 

from spherical AgNPs to punched Ag nanodisks. 

 

A dark-field transmission optical microscope equipped with the CytoViva hyperspectral 

imaging system (CytoViva HSI, Auburn, AL) was employed to obtain high-resolution 

scattering spectra from AgNPs and nanodisks. It is well known that any change in the size 



- 36 - 

 

or shape of metallic NPs drastically alters their optical and plasmonic properties [78]. 

Figure 3.2a shows a dark-field image of the substrate containing both unpunched (i.e., as 

prepared) and punched AgNPs. While the blue-region represents the unpunched portion of 

AgNPs, the reddish tinge arises due to the presence of punched Ag nanodisks. The 

corresponding scattering spectra (Figure 3.2b) showed a clear red-shift from as synthesized 

spherical AgNPs (~530 nm with a width ~150 nm) to the deformed Ag nanodisks (~600 

nm with a width ~180 nm), which is attributed to the increased aspect ratio. To better 

understand the effects of mechanical deformation, we simulated the extinction spectrum of 

Ag NPs and nanodisks (with the observed experimental sizes) by numerically solving the 

Helmholtz wave equation for the total electric field in the full field formulation with a plane 

wave incidence using COMSOL Multiphysics finite element method (Figure 3.2c). 

Permittivity values for silver were adopted from Johnson and Christy’s work [79]. The 

simulations confirmed that the higher aspect ratio of Ag nanodisks changes the frequency 

dependence of the scattered E-field leading to an upshifted peak in their extinction 

spectrum.  
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Figure 3.3 a) A plot showing the comparison of RhB fluorescence intensities recorded 

from regions consisting of punched and un-punched AgNPs and control substrates (scaled 

x7 for clarity). Corresponding white-light Raman microscope images are in the inset. (b) 

COMSOL simulation showing time-averaged Poynting vector for a point dipole located at 

the center. In the presence of punched Ag nanodisks, a dipole positioned at a distance of 

10 nm perpendicular (c) or parallel (d) to the nanodisk showed a change in the radiated 

field symmetry.   

 

The effect of nanoparticle morphology on fluorescence emission was studied by uniformly 

spin coating (3000 rpm for 60 s to form a ~30 nm overcoat) RhB fluorophore (1 mM) 

polymethyl methacrylate or PMMA on glass slides containing both punched and 

unpunched AgNPs. The fluorescence spectra of RhB molecules were collected using a 

Renishaw inVia micro-Raman spectrometer with a 532 nm laser excitation. Figure 3.3 

shows a comparison between the intensity of RhB fluorescence signals produced from 

a)	

b)	

c)	

d)	
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unpunched (AgNPs) and punched (Ag nanodisks) regions of the substrate. The emission 

from RhB coated on plain glass-slides served as a control. While the unpunched AgNPs 

produced high signal enhancements (~15 fold) over control substrates, the fluorescence 

signal doubled (~33 fold with respect to control) for RhB coated on punched Ag nanodisks. 

This result was also reflected in white-light microscope photographs (Figure 3.3 inset), 

where a more-intense orange color of RhB emission was observed from the Ag nanodisks 

relative to unpunched AgNPs. The higher enhancements observed for Ag nanodisks may 

be rationalized through the following analysis.  

 

In a simplified NP-dye model, the presence of NPs in the vicinity of dyes is known to 

change the frequency w( ) dependent radiation field due to the addition of scattered 

field ( ) leading to a new excitation field given by . 

While this simplification is apt for some cases such as the single-molecule case, the true 

excitation field must include an additional secondary field ( ) arising from the 

spontaneous emission of the dye. Each dye molecule acts as an emitting dipole whose field 

interacts with the NP to in turn backscatter  as a part of the excitation field. Beyond 

the single-molecule fluorescence case [16], the backscattered  may play more 

significant role in an ensemble of dyes due to a higher number of dye molecules associated 

with each NP. Thus, the true total excitation field ( ) for dye ensemble is given by

. Based on Maxwell’s equations, the secondary field may be 

expressed as , where  is the dyadic Green’s function 

connecting the E-field at a position r due to a dipole at r’ while  is the dipole moment 

of RhB [73, 79, 80, 81]. Thus, a self-consistent expression for the frequency-dependent 

dipole moment may be obtained from 
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       (3.1), 

 

where a(w)  is the polarizability of the dye. Considering the dipole moment to be aligned 

along a direction êd  yields the magnitude of p(w) given by 

 

 .                     (3.2),  

 

If the backscattered field from the radiating dipoles is ignored then the second term in the 

denominator becomes zero resulting in the standard form of the dipole moment. As 

mentioned earlier, the presence of NPs influences the excitation (effect A) due to changes 

in the local field. The NP-induced excitation enhancement is proportional to the ratio of 

square of the local electric field with and without NPs. Given that , 

the excitation enhancement factor (EEF) is equivalent to the ratio of square of the dipole 

moment strengths in the presence/absence of the NP.  

 

 .           (3.3), 

 

While the traditional excitation enhancement occurs solely due to the scattered field, the 

above expression for EEF combines the effects of secondary field dependent on an extra 

“field term” related to the dipole field. Similar to the enhancement of 
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excitement intensity, the presence of NPs also alters the radiative decay rate (effect B). The 

radiative decay rate (g ) of a dye molecule, from an excited state  k  of energy Ek to a 

lower state n  of energy En, through the emission of a photon of energy  may be 

understood in terms of the Fermi golden rule given by  

 

 .                    (3.4),  

 

The Fermi golden rule can also be expressed in terms of photon mode density or r(r,w)

within the vicinity of the dye, which is defined as the ratio of photon flow per unit area per 

second (i.e., power flow per photon) to the velocity of photons  

 

  ,                             (3.5),  

where, .  

The photon mode density, and thus the decay rate of a dye, is determined by the field term 

containing the dyadic Green’s function of the system in which the dye 

is embedded. The field term is frequency dependent and is sensitive to 

the changes in the scattering spectrum of the surrounding NPs. Given that the punched 

AgNPs or nanodisks show a red-shift in their scattering (closer to the emission of RhB), it 

may be rationalized that the field term at the emission frequency of RhB is higher for Ag 

nanodisks compared to polyhedral AgNPs due to increased local field from scattering. This 

increase in the field term is expected to simultaneously enhance both the excitation 

intensity (equation 3.3) and the decay rate (equation 3.5) leading to a higher enhancement.  
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We validated the observed enhancements by simulating the emission of an electric dipole 

(mimicking RhB molecule with dipole moment 9.78 D) 10 nm above spherical and 

punched Ag NP surface using the RF module in COMSOL Multiphysics v5.1. This full 

field model, which includes the effects of scattered and secondary fields, was used to 

compute both normalized electric field (normE) and time-average Poynting vector (Pav) 

(see Figures 3.3 b-d). Our simulations evidenced that the electric field of the radiating 

dipole changed from a spherically symmetric shape to a dumbbell shape in the presence of 

both AgNPs and nanodisks. Furthermore, the simulations showed that the total 

enhancement factor is dependent on the orientation of the dipole. The dipole showed a 

higher enhancement when it is oriented parallel to the NPs. Our experiment randomly 

averages the orientation of RhB in the dye ensemble relative to AgNPs or nanodisks. Thus, 

we obtained the overall enhancement factor from simulations by weighing 2/3 parallel 

versus 1/3 perpendicular direction. The Pav for Ag nanodisks showed a higher enhancement 

factor ~10 times over free space and ~4 times relative AgNPs concurring with our 

experimental results.  

 

3.3 Conclusion 

In summary, we experimentally found that the NP-induced enhancement in RhB 

fluorescence emission can be increased up to ~33 folds by tuning the NP morphology. We 

produced Ag nanodisks through mechanical deformation of polyhedral AgNPs dispersed 

on a glass slide. The higher enhancement factors in the presence of Ag nanodisks (~33 fold) 

compared to AgNPs (~15 folds) are rationalized in terms of the higher contribution from 

secondary E-field comprised of dipole radiation scattered by the nanostructure. The Ag 

nanodisks exhibited an upshift in their scattering spectrum due to a higher aspect ratio with 

a peak (~600 nm) closer to the RhB emission (~580 nm). Such an upshift resulted in a 
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better enhancement of both excitement intensity and radiative decay rate of RhB in the 

presence of Ag nanodiks relative to AgNPs. The experimentally observed upshift in 

scattering and the higher enhancement factors for Ag nanodisks were validated by a 

COMSOL finite element model, which considered the effects of both incident and scattered 

electric fields.  
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Chapter 4 

 

Far-field Focusing of Visible Light by Coupled Plasmonic 

Nanorings  

 

In this work, far-field light focusing of visible light was achieved by coupled plasmonic 

nanorings, which were prepared by AFM manipulation of ~110 nm diameter AgNPs. The 

relationship between the focal length and nanoring dimension was systematically studied. 

For a better understanding of the plasmonic coupling within the nanoring structures, the 

resonance scattering spectra of various nanoring structures were measured in the 

transmission mode using dark-field microscopy. Nano-crescents also showed similar light 

focusing as the full nanorings do. This result is interesting and highly useful in 

manipulating visible light in both near-field and far-field.  

 

4.1 General Introduction 

Instruments  

The Atomic force microscope (AFM) topographic imaging and the AFM manipulations 

were performed using a AIST-NT SPM Smart system. AFM probes (HQ:NSC14/Al BS-

50) used for both AFM topographic imaging and AFM manipulations were purchased from 

Micromasch. AIST-NT image analysis and processing (Version 3.3.105ex1) software was 

used for AFM topographic analysis. As described in Chapter 1, the AFM manipulation of 

AgNPs into nanorings was achieved by switching the AFM between its contact mode and 

non-contact mode of operation.  
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The optical images of the plasmonic nanorings were collected by a 100x objective (UPlan 

Fl, 1.3NA) in a WITec Alpha 300S system under reflection mode. The WITec Alpha 300S 

system enabled fine control (~20 nm for each step) for moving the nanorings in and out of 

the focal plane. A home-made microscope system with a 100x objective (UPlan Fl, oil 

immersion, 1.3NA) was also used to view the nanoring structures under transmission mode. 

A Mira-900 laser (Coherent Inc.) was used to create laser-etched marks (width of 5 microns) 

on the coverslip substrates on which the nanorings were prepared. These marks were used 

for locating specific nanorings when the coverslip was transferred back-and-forth between 

the AFM and the dark field microscope. Transmission dark-field images and forward 

scattering resonance spectrum were collected by the CytoViva widefield hyperspectral 

imaging system; and reflection dark-field images were collected by a custom built WITec 

Alpha system. 

 

4.2 Preparation of coupled plasmonic nanorings by AFM manipulation 

4.2.1 Laser etched marking of coverslips  

Since manipulation of AgNPs using an AFM tip happens on a nanometer scale (which is 

far below the resolution ability of human eye) and the fact that AFM can only scan a limited 

area (normally hundreds or thousands of micon2), it is vital for the user to be able to quickly 

locate a specific nanostructures on the substrate (which in this study happens to be a 

coverslip) during AFM manipulation. Otherwise, it can be extremely challenging to 

systematically manipulate individual AgNPs into nanorings and spectroscopically 

characterize them. 

    

Coverslips (thickness of 0.17 mm) were first cleaned with acetone and followed with 

rinsing with DI water and air drying. Next, a Mira-900 laser (Coherent Inc.) was used to 

etch micron scale marks at the center of the coverslips which were easily visible under an 
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optical microscope. Normally, the width of the laser etched marks is between 4-8 microns, 

and asymmetric Roman letters such as “D” “F” are preferred since they can help in easy 

determination of the location of the nanorings on the coverslips, and help distinguish the 

top and bottom sides of the coverslip. Some hieroglyphic is also a good option for laser 

etched marking for their asymmetric shape. Figure 4.1 illustrates two optical images of 

etched marks examples of 1) Roman letter “A” “D” and 2) a hieroglyphic beneath the AFM 

cantilever.     

 

 

Figure 4.1 Optical images of laser etched marks on a coverslip. Examples include the 

Roman letters “A” and “D” (left) and a Chinses hieroglyphic (symbolizing “justice”) 

located beneath the AFM cantilever (right). 

 

Although these etched marks are tens of microns in dimension (much larger than the 

nanorings) they appear as tiny white dots on the coverslip to the naked eye and serve as a 

reliable coordinate for the user to locate nanorings of interest for spectroscopy or imaging.  

 

4.2.2 Assembling nanorings of AgNPs via AFM manipulation  

The marked coverslips are immersed in aqua regia for ~30 minutes and thoroughly rinsed 

with DI water, followed by drying with compressed nitrogen or air. Due to the surface 

tension of water, the AgNPs tend to aggregate during the drying step. To mitigate such 
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undesirable aggregation, about 50%-90% of ethanol is added to the aqueous suspension to 

accelerate the drying process. Using a pipette, a single drop (20-30 µL) of AgNP containing 

water/ethanol suspension is drop cast in the vicinity of the laser etched marking on the 

coverslip. It is preferred that the casted drop is not spread since a denser distribution of 

individual AgNPs is more favorable for AFM manipulation as several individual AgNPs 

will be closer to each other. 

 

 

Figure 4.2 A schematic for assembling coupled plasmonic nanorings via AFM 

manipulation. 

 

As described in detail in Chapter 1, manipulation of single AgNPs using AFM was 

achieved via a stepwise process in which the AFM was switched to operate in its contact 

or tapping modes (semi-contact mode). Several nanorings comprising of naked polygonal 

AgNPs were created in which each AgNP touches neighboring AgNPs. In all, a trimer and 

four nanorings consisting of 8, 9, 16 and 24 AgNPs, as well as two incomplete nanorings 

of 8, 12 AgNPs were constructed for far-field light focusing studies (Figure 4.3). These 

nanorings were used in light focusing experiments in a dark-field microscope operating in 

the reflection mode. Another set of nanorings consisting of 8, 11, 12, 16 and 27 AgNPs 
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were constructed for experiments in a dark-field microscope operating in the transmission. 

Compared to light focusing data obtained in the reflection mode, much better resolution 

and improved signal-to-ratio in the light scattering data were obtained in the transmission 

mode.     

 

 

Figure 4.3 Optical and AFM images of the coupled plasmonic nanorings. 

 

 

4.3 The optical far-field studies of coupled plasmonic nano-assemblies by 

bright-field microscope and reflection dark-field microscope 

 

Once the construction of nano assemblies was finished, the sample was viewed by the 

WITec Alpha 300S system under white LED illumination on reflection mode. Video was 

taken during gradually and slowly changing of the vertical distance (Z-value) by 20 nm for 

each step. The relative locations of the nano structures and their corresponding AFM 
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topographic images are present in figure. This sample was also viewed by reflection dark-

field microscope.  

 

 

 

Figure 4.4 An optical image depicting far-field focusing of light (for example by the 800 

nm diameter nanoring) when viewed under white LED illumination in reflection mode. 

The AFM images (1 x 1 micron2) of coupled plasmonic nanorings are also shown in the 

figure. 

 

4.3.1 The far-field observation and explanation for individual silver nanoparticles  

With increasing vertical distance from the focal plane (z direction), a 110 nm diameter 

individual AgNP appears as a small shiny dot, and then its intensity gradually weakens and 

becomes dim. This was observed for several isolated AgNPs which happens over a z ~ 0.4 

- 0.5 microns. It is well known that although the dimensions of an individual  
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AgNP are below the optical resolution limit of the dark field microscope, they can be 

imaged clearly with no blinking or no bleaching in an optical microscopy. The incident 

light in visible range drives the free conduction electrons of AgNPs into collectively 

oscillations, and the resultant scattered intensities are much higher than that from a non-

plasmonic nanoparticle of similar size. The scattering intensity of AgNPs is considerably 

and useful in single molecule detection, enhanced Raman scattering, solar energy materials, 

and biomedical applications, etc.  

 

As discussed in Chapter 1, the scattering cross section of a spherical particle (with radius 

a that is smaller or comparable to the incident wavelength) is proportional a6, while its 

absorption cross section is proportional to a3 [7]. It was experimentally demonstrated 

(Figure 4.5) that for small AgNPs (diameter < 37 nm), adsorption dominates scattering, 

and hence the small AgNPs are very difficult to detect by light scattering [82]. For 

relatively lager AgNPs (diameter > 75 nm), scattering largely contributes to the overall 

extinction spectrum [82].  
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Figure 4.5 Extinction (thick solid line), absorption (thin solid line), and scattering (dashed 

line) spectra of AgNP suspensions of different sizes normalized per single particle. The 

units on y-axis are multiplied by a factor of 1010. Figure cited from reference [82]. 

 

As isolated AgNPs were randomly located on the coverslip, and far away from each other 

(few microns or more), no near-field coupling is expected. Long range interactions can also 

be neglected since there is no long-range order among the sparsely dispersed AgNPs [83].  
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The scattered light by individual 110 nm AgNPs dimmed over a z of ~ 0.4-0.5 micron, 

which is understandable since the backscattered light from the 110 nm AgNPs further 

decreased in intensity as the scattered light dispersed and weakened in the optical far-field.  

 

Moreover, the individual AgNPs appeared green in color when viewed under a reflection 

dark-field microscope (Figure 4.6) implying a scattering resonance peak around 530 nm, 

which is consistent with previous reports [82]. 

 

Figure 4.6 Optical image of individual AgNPs as viewed under a reflection dark-field 

microscope. 

 

4.3.2 The far-field focusing by a discrete AgNP trimer 

The discrete AgNP trimer (100 nm x 400 nm in dimension) exhibited a remarkably high 



- 52 - 

 

brightness in the far field (z ~ 0.7 microns) as compared to that exhibited by individual 

AgNPs. The AFM image of this trimer revealed three 110 nm AgNPs with an average gap 

of ~13 nm. It should be note that in AFM the height of AgNPs can be measure more 

accurately compared to their lateral dimensions, and hence the measured gap values are 

smaller than the true gap distances.  

 

Discrete coupled plasmonic NPs haven drawn significant attention in recent years due to 

their significantly enhanced electromagnetic radiation in the gap region, which is very 

useful in sensing applications. Dai and co-workers proposed a delicate concept of a step-

by-step electromagnetic enhancement by a cascade trimer structure made of three 

plasmonic nanoparticles with conspicuously different sizes (Figure 4.7) [84]. After 

excitation by the incident light, the biggest particle’s LSPR will serve as the illumination 

source for the next medium sized particle wherein the electromagnetic field will be further 

enhanced, and subsequently the highest intensity appears between the medium-sized 

particle and smallest particle due to the excitation of LSPR on the smallest particle by the 

electromagnetic of the medium-sized particle.  

 

Figure 4.7 The electric field enhancement factors exhibited by a cascade of three 

plasmonic spheres. Figure cited from reference [84]. 
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Returning to the above described discrete trimer, each AgNP is only ~13 nm from its 

neighboring AgNP, which is much shorter than the range of LSPR for 120 nm AgNPs [20]. 

Thus upon excitation, the LSPRs of the three AgNPs overlap and couple with each other, 

leading to a much stronger light scattering.    

 

As a further proof for the presence of plasmonic coupling in the discrete trimer, we also 

examined the intensity of far-field scattered light from a group of three individual 110 nm 

AgNPs (located to the left of the discrete trimer as seen in Figure 4.4 and Figure 4.9) with 

an interparticle gap distance of 350-650 nm. As expected, this group of three individual 

AgNPs appeared similar in intensity as other isolated AgNPs, and darker relative to the 

discrete trimer. 

 

There are several reports on resonant coupling in plasmonic dimers, trimers, and chains, 

which are often referred as oligomers in open literature. The interparticle distance, the 

polarization of incident light, the configuration and shape of the oligomer all play a role in 

the resultant scattering resonance spectrum. When the dipoles in each individual particle 

are arranged in a head-to-tail orientation (longitudinal mode), charges of opposite signs 

accumulate on either sides of the gap, which weakens the net restoring force in the oligomer 

(Figure 4.8). Thus the longitudinal plasmon mode reduces the restoring force, leading to a 

red shift in the scattering spectrum. In contrast, in the transverse mode, the charge 

distribution enhances the restoring force and an increased plasmon eigenfrequency, which 

is equivalent to a spectral blue-shift [85]. These two bright modes contribute towards the 

enhanced scattering intensity. Unfortunately, due to the lack of polarizers in the dark field 

microscope used in this study, these bright modes could not be experimentally observed. 

For simplicity, the dark modes of discrete trimer are not presented and can be found [85]. 
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Figure 4.8 A schematic for the two bright modes exhibited by the discrete trimer.  

 

It is well known that the longitudinal plasmon mode has a much higher scattering cross 

section than the transverse plasmon mode, leading to the presence of a red-shifted peak 

when illuminated by unpolarized white light [85]. This theoretical prediction is consistent 

with our experimental observation, i.e., in reflection dark-field microscope image the group 

of three sparsely located AgNPs appeared green (similar to other individual AgNPs) but 

and the discrete trimer appeared yellow/orange in color, signaling a red-shift in its 

scattering spectrum. 
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Figure 4.9 Optical image of individual and assembled AgNPs as viewed under a reflection 

dark-field microscope. The corresponding AFM images (1 x 1 micron2) are also shown in 

the figure. 

 

 

4.3.3 The far-field focusing of nanorings 

 

The remarkable far-field focusing of visible light by plasmonic nanorings is mainly due to 

the overlapping of the back scattered light. A coupled plasmonic nanoring is a wonderful 

design for both strong light scattering, and focusing of this scattered light in the far-field, 

for the following reasons:  
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1) Silver interacts with light more strongly than any other known materials. Especially for 

larger AgNPs, their light scattering ability increases with increasing diameter because more 

free conduction electrons are present in the larger AgNP resulting in a larger scattering 

cross section. For the nanorings discussed in this chapter, individual AgNPs were placed 

in such a way that they are in close contact with neighboring AgNPs, and the conduction 

electrons of each AgNP becomes part of the electron cloud which is spread across the entire 

ring structure. Thus, compared with individual silver nanoparticle, the nanorings have more 

free conduction electrons and hence much larger scattering cross section. 

2) The single crystalline AgNPs used in this study were prepared using wet chemistry 

methods. The AgNPs contain very limited numbers of internal boundaries, which means 

less radiation energy will be wasted in the form of heat. 

3) Compared with an ideally smooth ring, the constructed nanorings have a wavy terrain 

(on the scale of nanometers, but not that high enough to affect the height uniformity and 

homogeneity of the nanorings), and sometimes sharp corners of single crystalline 

polygonal AgNPs. Such roughness contributes supports strong light scattering because 

radiation tends to emit at a rougher surface.  

4) The plasmonic mode of individual AgNPs are coupled in a nanoring, leading to a highly 

coupled plasmon resonance. The AgNPs within the nanoring contact each other and can 

thus the nanoring can be viewed as a large plasmonic molecule, which is consistent with 

the observed red-shift in the forward scattering resonance spectrum measured by the 

transmission dark-field microscope.  

5) It is reasonable to expect the nanoring to behave as a focusing lens under certain 

experimental conditions. Such behavior has been observed in this study, for example, the 

far field focusing of light by the 24-particle nanoring; however, a rigorous explanation is 

presently lacking.  
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4.3.4 The 24-particle-nanoring 

As described previously in Figure 4.3, the 24-particle nanoring has an outer diameter of 

~800 nm and an inner diameter of ~600 nm. The 24-particle-nanoring appeared as a white 

bright ring (with an outer diameter of 1200 nm and an inner diameter of 350 nm) at the 

focal plane, which corresponded to a z = 0 microns. The image of this ring could be 

discerned even up to | z | ~ 0.7 microns, beyond which it became fuzzy as well as expanded 

in size. Interestingly, the central spot which was previously dark became brighter and 

brighter until a bright spot (420 - 500 nm in diameter) appeared in the image at z = 0.91-

1.63 micron. The intensity profiles are depicted Figure 4.10.  

 
 

Figure 4.10 The optical images of the 24- particle plasmonic nanoring at varying z 

positions. The inserts represent zoomed-in views of the optical images and intensity 

profiles.   

 

Figure 4.11 depicts the Mie scattering lobes that are expected for polarized or unpolarized 

light scattered by an AgNP. The strongly coupled plasmonic modes in the nanoring is 

expected to influence the shape of the backscattered Mie lobe, for example, higher order 

plasmonic modes may result in multiple backscattered Mie lobes. However, for simplicity, 
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we represent the backscattered Mie lobes as shown in Figure 4.12. 

 

 

Figure 4.11 Mie scattering plots for a 110 nm AgNP. Unpolarized (red), perpendicular 

polarized (green) or parallel polarized (blue) light is incident from the left hand side of the 

spherical AgNP located at the center of the polar plot.  

 

Figure 4.12 A plausible mechanism for far field focusing of light by a nanoring due to its 

overlapping backscattered Mie lobes. 

 

4.3.5 The 16-particle-nano-ring 
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A 16-particle nanoring showed a similar light focusing behavior as the 24-particle nanoring, 

but with a relatively shorter light focusing distance range ( z = 0.97-1.25 micron). This 

behavior can be explained in terms of overlapping backscattered Mie lobes as depicted in 

Figure 4.12. As the ring diameter decreases, the far field light focusing distance decreases 

as well since the backscattered Mie scattering lobes overlap at a smaller z value.    

4.3.6 The 8, 9-particle-nano-rings 

The 8 and 9-particle nanorings also exhibited far field light focusing. Consistent with the 

reduced focusing distance exhibited by the 16-particle nanoring, the 8 and 9-particle 

nanorings exhibited an even smaller focusing distance of ~0.7 micron. However, the 

images for the far field focusing by the 8 and 9-particle nanorings are not as crisp as the 

images cast by the 24-particle nanoring. The far field light focusing distance as a function 

of the nanoring diameter is depicted in Figure 4.13, which approximately mimics the 

dependence reported for a micro-lens.  
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Figure 4.13 Comparison of experimentally determined light focusing distance L (yellow) 

for nanorings used in this study to empirically derived L (purple) for a micro-lens [86]. 

While similar trends are observed for the yellow and purples traces in the above figure, a 

better agreement is achieved when the purple trace is upshifted by 0.3 microns. 

 

4.3.7 The far field focusing behavior of incomplete nanorings 

As shown in Figure 4.4 above, two incomplete nanorings were also assembled in this 

study: 1) a 12 particle crescent which can be considered as a three-fourth section of a 16-

particle nanoring; and 2) an 8 particle crescent which can be considered as half of the 16-

particle nanoring. As seen in their corresponding AFM images, both crescents have the 

same diameter (~600 nm) as the 16-particle nanoring. The 8- and 12-particle crescents 

show similar light focusing behavior as the 16-particle nanoring, albeit the intensities are 

weaker for 8-particle nanoring. However, almost similar light focusing distances were 

measured for the 8- and 12-particles crescents, which was similar to that of 16-particle 

nanoring. 

 

4.4 Dark-field transmission spectral fingerprints of coupled plasmonic 

nanorings 
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4.4.1 Influence of the shape of plasmonic assemblies on the scattering spectrum  

To better understand how the shape of plasmonic assemblies influence the s scattering 

resonance spectrum, we prepared three oligomers each comprised of 8 AgNPs as follows: 

1) an 8-particle nanoring; 2) an 8-particle crescent: and 3) an 8-particle linear chain. Their 

scattering resonance spectra were measured using a transmission dark-field microscope, 

and presented in Figure 4.14. The 8-particle nanoring and the 8-particle crescent have 

diameters of ~400 and ~600 nm, respectively, while the linear chain is 1000 nm in length. 

Figure 4.15 shows the possible charge density distributions of various LSPR modes for 

these assemblies, which lead to the observed differences in the scattering spectrum depicted 

in Figure 4.14.  
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Figure 4.14 The AFM images of 8-particle nanoring, 8-particle crescent and 8-particle 

linear chain, and their scattering resonance spectra measured by transmission dark-field 

microscope.  

 

The 8-particle linear chain shows two distinct peaks in Figure 4.14, which are due to the 

red (blue) shift caused by the longitudinal (transverse) modes explained in Figure 4.8. The 

relatively weaker transverse mode appears strong in this case due to the number of AgNPs 

present in the chain. 
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Figure 4.15 The possible charge density distributions of various LSPR modes for the 8-

particle nanoring, 8-particle crescent, and a 8-particle linear chain. 

 

The transmission dark-field microscope images of plasmonic nanorings and their scattering 

resonance spectra are presented in Figure 4.16. The electromagnetic field is relatively more 

uniform for the smaller 8-particle nanorings, and the major peak in its scattering spectrum 

appears in the red. As the size of the nanoring increases, higher order modes appear in the 

blue spectral region. For simplicity, if we only consider dipoles, the transvers mode 

intensity increases as the size of the nanorings increase, leading to a more intense peak in 

the blue spectral region.  
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Figure 4.16 Dark-field transmission microscope image of plasmonic nanorings. The 

associated AFM images for each of the nanorings consisting of 8, 11, 12, 16 and 27 AgNPs 

as marked (a), (b), (c), (d) and (e), respectively. 
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Figure 4.17 The scattering spectra of 8, 11, 12, 16, and 27 particle nanorings compared to 

that of an individual AgNP. 

 

 

In conclusion, discrete trimer, silver nano-ring structures of various diameters, and 

uncompleted rings were constructed by AFM manipulation and far-field light focusing was 

achieved under reflection illumination which has great application in manipulation of light 

in nano-optics and bio-sensoring. 
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