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ABSTRACT 

 The spectacular array of diverse plant forms as well as the predominantly sessile 

life style of plants raises two questions that have been fascinating to scientists in the field 

of plant biology for many years: 1) how do plants develop to a specific size and shape? 2) 

how do plants respond to environmental stresses given its immobility?  

 Plant organ development to a specific size and shape is controlled by cell 

proliferation and cell expansion. While the cell proliferation process is extensively studied, 

the cell expansion process remains largely unknown, and can be affected by several factors, 

such as cell wall remodeling and the incorporation of new wall materials. To better 

understand the genetic basis of plant development, we identified an Arabidopsis T-DNA 

insertion mutant named development related Myb-like 1 (drmy1), which showed altered 

size and shape in both vegetative and reproductive organs due to defective cell expansion. 

We further demonstrated that the defective cell expansion in the drmy1 mutant is linked to 

the change in cell wall composition. Complementation testing by introduction of DRMY1 

into the mutant background rescued the phenotype, indicating that DRMY1 is a functional 

regulator of plant organ development. The DRMY1 protein contains a single Myb-like 

DNA binding domain and is localized in the nucleus, and may cooperate with other 

transcription factors to regulate downstream gene expression as DRMY1 itself does not 

possess transactivation ability. DRMY1 expression analysis revealed that its expression is 

reduced by the plant hormone ethylene (a negative regulator of cell expansion) while 

induced by ABA (a positive regulator of cell expansion). Furthermore, whole transcriptome 

profiling suggested that DRMY1 might control cell expansion directly by regulating genes 
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related to cell wall biosynthesis/remodeling and ribosome biogenesis or indirectly through 

regulating genes involved in ethylene and ABA signaling pathways.  

 Plants cannot “escape” from salinity stress but have evolved different mechanisms 

for salt tolerance over the time of adaptation to salinity. About 1% of plant species named 

halophytes can survive and thrive in environments containing high salt concentrations, 

which makes it important to understand their salt tolerance mechanisms and the responsible 

genes. Here, we investigated salt tolerance mechanisms in Supreme, the most salt-tolerant 

cultivar of a halophytic warm-seasoned perennial grass, Seashore paspalum (Paspalum 

vaginatum) at the physiological and transcriptomic levels by comparative study with 

another cultivar Parish, which possesses moderate salinity tolerance. Our results suggest 

that Na+ accumulation under normal conditions and further increased accumulation under 

high salinity conditions (400 mM NaCl), possibly by vacuolar sequestration is a crucial 

mechanism for salinity tolerance in Supreme. Our data suggests that Na+ accumulation in 

Supreme under normal conditions might trigger the secondary messenger Ca2+ for signal 

transduction and the resulting upregulation of salt stress related transcription factors in 

addition to serving as cheap osmolytes to facilitate water uptake. Moreover, the retention 

of K+ under salt treatment, which can counteract the toxicity of Na+, is a protective 

mechanism for both cultivars. A strong oxidation-reduction process and nucleic acid 

binding activity under high salinity conditions are two other contributors to the salinity 

tolerance in both cultivars. We also identified ion transporters including NHXs and H+-

PPases for Na+ sequestration and K+ uptake transporters, which can be used as candidate 
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genes for functional studies and potential targets to engineer plants for enhanced salinity 

tolerance, opening new avenues for future research.  
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CHAPTER ONE 

LITERATURE REVIEW AND RESEARCH OBJECTIVES 
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Part I: The Regulation of Plant Development 

Plant organ growth is regulated by a complex gene regulatory network that enables 

two successive but overlapping processes of cell proliferation and cell expansion. Over the 

past decades, our understanding of the molecular pathways controlling cell proliferation 

and cell expansion has been considerably moved forward by forward and reverse genetic 

studies. In this review, I will summarize our current knowledge about how the intrinsic 

genetic control of cell proliferation and cell expansion is executed during organ 

development at the cellular level and how these two processes are coordinated by organ-

wide regulatory mechanisms. 

Cell Proliferation 

Cell proliferation determines the number of cells in the leaf (Powell and Lenhard 

2012). Cell proliferation rate is an important factor that contributes to this process. 

Assuming that the duration of cell proliferation in which new cells are generated is constant, 

the time to complete an entire cell cycle will decide the total number of cells that form a 

leaf. Cell proliferation rate is tightly controlled by the plant cell cycle machinery that 

ensures correct DNA replication and successful progression through different phases of the 

cell cycle.  

The basic cell cycle machinery is composed of the catalytic cyclin-dependent 

kinases (CDKs) and the regulatory cyclins (CYCs) that control CDK activity. Plant CDKs 

are classified into eight classes based on their cyclin-binding domain, namely CDKA to 

CDKG and CDKL. Different CDKs-CYCs complex phosphorylate an array of substrates 

to drive the progression of the cell cycle from one phase to another. The major drivers of 

the plant cell cycle are CDKA and CDKB. CDKA controls the G1-S and G2-M transition 
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by association with CYCD and CYCB respectively while CDKB functions in association 

with CYCA and CYCB, which is necessary for G2-phase and M-phase, respectively.   

CDKA and CYCD play a central role in G1 to S transition and progression of the 

S phase in which cells undergo DNA replication. Overexpression of a dominant negative 

allele of CDKA;1 in meristematic cells decreased the cell division rate within the SHOOT 

MERISTEMLESS (STM) domain of the shoot apex as well as the developing organs 

(Gaamouche et al. 2010). Triple loss-of-function mutants cycd3;1-3 in Arabidopsis showed 

reduced cell number in developing leaves by regulating the duration of the mitotic phase 

(Dewitte et al. 2007). In the presence of plant hormones such as auxin, cytokinins (CK), 

brassinosteroids (BR), CYCD associates with CDKA, forming an inactive CDKA/CYCD 

complex (Inzé and De Veylder 2006). The CDKA/CYCD complex is then activated by 

phosphorylation which is catalyzed by CDK activating kinases (CDKF and CDKD 

associated with CYCH). The activity of the CDKA/CYCD complex is also regulated by 

two different families of CDK inhibitors, Kip-Related Proteins (KRPs) and the plant-

specific SIAMESE (SIM)-related protein (Verkest et al. 2005) (Churchman et al. 2006). 

The Arabidopsis genome encodes seven KRPs, designated as KRP1-7. KRP1 is the target 

of two different ubiquitin protein ligases for its degradation, SCF and the RING protein 

RKP, suggesting the important role of proteolysis in the cell cycle regulation (Ren et al. 

2008). Ectopic expression of KRP2 inhibited cell proliferation in the leaf primordia without 

affecting the timing of cell cycle exit (De Veylder et al. 2001). Using Arabidopsis pollen 

development as a model system, Zhao et al. (2012) identified a quadruple negative 

regulatory cascade regulating the G1/S transition, which is composed of four components: 

CDKA;1, KRPs, the F-box protein (FBL17) and RBR1. FBL17 plays a central role in this 
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regulatory network which mediates the degradation of KRPs but itself is repressed by 

RBR1 (Zhao et al. 2012).  

Upon activation by phosphorylation, the CDKA/CYCD complex phosphorylates 

RBR, which triggers its dissociation from the transcriptional activator E2Fa/b-DP 

heterodimeric complex. In addition, the activated CDKA/CYCD complex also 

phosphorylates the transcriptional repressor E2Fc-DP, which is targeted for protein 

degradation by the SCF E3 ubiquitin protein ligase. Once the E2Fa/b-DP complex is 

released from RBR, it triggers the onset of G1 to S transition by activating gene expression 

relevant to DNA replication initiation, including CDC6, CDT1, ORC3, and MCM3. CDC6 

and CDT1 together with ORC3 enable the loading of MCM3 to the replication initiation 

site. Then, the DBF-CDC7 complex phosphorylates and dislodges ORC3, exposing the 

replication origins to the replisome complex and allowing DNA replication to start (Francis 

2007).   

Arabidopsis has six E2Fs: E2Fa, E2Fb, E2Fc, E2Fe/DEL1, E2Fd/DEL2 and 

E2Ff/DEL3 with the former three in association with two DPs (DPa and DPb) (Mariconti 

et al. 2002). E2Fa and E2Fb perform as transcriptional activators and stimulate the G1 to 

S transition and the progression of the S phase. Overexpression of AtE2Fa and AtDPa can 

induce non-dividing leaf cells to reenter the S phase (Rossignol et al. 2002). E2Fb is 

induced by auxin and coexpression of E2Fb with its dimerization partner DPa stimulated 

cell proliferation and shortened cell cycle duration time, resulting in increased cell numbers 

(Magyar et al. 2005). On the other side, E2Fc acts as a transcription repressor of the S 

phase, the stability of which is regulated by proteolysis. Overexpression of a stable form 

of AtE2Fc negatively affects cell division and represses the expression of CDC6 (Del Pozo, 
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Boniotti, and Gutierrez 2002). For three atypical E2Fs/DELs, it is still elusive whether they 

can repress gene expression actively or compete with three typical E2Fs (E2Fa, E2Fb and 

E2Fc) for binding the target sites (Berckmans and De Veylder 2009).  

After DNA replication, cells exit from S phase to enter G2 phase, in preparation for 

cell division through mitosis. CDKA and CDKB associated with CYCA, CYCB and 

CYCD are involved in this process. Some B-type CDKs are regulated by the E2Fa/b-DP 

complex, suggesting a potential mechanism by which different cell cycle phases 

communicate with each other. Similar to G1/ S phase, the CDK/CYC complex during 

G2/M phase can be activated by the CDK-activating kinase pathway, which involves 

CDKF and CDKD coupled with CYCH. The activated CDK/CYC complex phosphorylates 

and activates three repeat MYB transcription factors, which then promote the expression 

of G2/ M phase specific genes by binding to the M phase specific activator (MSA) element 

in their promoter regions (Berckmans and De Veylder 2009). In tobacco, there are three 

MYB3R proteins, namely NtMYBA1, NtMYBA2 and NtMYBB, which are structurally 

similar to animal c-MYB proteins. Transient expression assays showed that NtMYBA1 

and NtMYBA2 act as transcriptional activators whereas NtMYBB performs as a repressor 

by modulating  B-type cyclin genes (Ito et al. 2001). In Arabidopsis, MYB3R1 and MYB3R4, 

which encode homologs of NtMYBA1 and NtMYBA2, respectively, act as positive 

regulators in cytokinesis and are functionally redundant. The myb3r1myb3r4 double 

mutant is defective in cytokinesis, mainly caused by a reduced expression of an MSA 

element containing gene called KNOLLE, which is essential for the cell plate formation 

during cytokinesis (Haga et al. 2007).  
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On the other hand, like in the G1/S phase, the activity of CDK/CYC complex is 

also inhibited by KRPs during G2/M phase. Additionally, its activity can be negatively 

regulated through phosphorylation by the WEE1 protein kinase which is upregulated in 

response to DNA replication termination or DNA damage. WEE1-deficient mutant plants 

exhibited no obvious phenotype under normal growth conditions but the mutant showed 

hypersensitivity to agents that inhibit DNA replication. Overexpression of the WEE1 gene 

inhibited plant growth by limiting cell cycle in the G2 phase (De Schutter et al. 2007).  

Cell cycle progression is an irreversible process. Exit from mitosis requires rapid 

degradation of cell cycle regulatory proteins by the 26S proteasome upon ubiquitination by 

the anaphase-promoting complex/cyclosome (APC/C) and its two activators, CCS52 and 

CDC20. In addition, there are two negative regulators of APC/C activity, named UVI4 and 

DEL1, suggesting a fine-tuning of APC/C activity during the cell cycle. The APC/C is an 

E3 ubiquitin ligase, which destroys cell cycle proteins and promotes exiting from mitosis. 

Overexpression of APC10, a subunit of APC/C complex, leads to enhanced leaf size due 

to accelerated cell division during early stage of leaf development. Further analysis 

revealed that the proteolysis rate of CYCLIN B1;1(CYCB1;1) was increased in 35S-

APC10 transgenic plants (Eloy et al. 2011). Similarly, Ectopic overexpression of another 

subunit of APC/C, Arabidopsis CDC27a, in tobacco also promotes plant growth by 

enhancing the cell division rate (Rojas et al. 2009). Changes in GA metabolism in stress 

conditions lead to stability of the DELLA protein, which triggers mitotic exit by 

modulating the APC/C activity through down regulation of DEL1 and UVI4 (Claeys et al. 

2012).  
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Cytoplasmic Growth 

Cytoplasmic growth is coupled with cell proliferation to maintain cells at a constant 

cell size while proliferating. It mainly relies on macromolecular biosynthesis, mostly 

proteins, which is an energy-consuming process. Therefore, cytoplasmic growth is tightly 

linked to the nutritional and energy level of plants. Given the sessile attribute of plants, 

plants must evolve a regulatory mechanism that connects the environmental nutritional 

conditions to growth regulation in order to maintain survival under the available resources. 

Recent findings illuminated the central role of the Target of Rapamycin (TOR) signaling 

pathway in conveying the nutrient-derived signals and regulating cell growth. TOR is a 

serine/threonine protein kinase, which operates in a multi-protein complex with the 

Regulatory-associated protein of TOR (RAPTOR) and the Lethal with Sec Thirteen 8 

(LST8) protein. Overexpressing AtTOR produces bigger leaves with larger cells while 

inducible down-regulation of TOR produces smaller leaves with smaller cells, which is 

related to decreased polysome accumulation and soluble proteins (Deprost et al. 2007). 

Ribosomal protein S6K is one of the well-characterized substrates of TOR, as evidenced 

by decreased S6K phosphorylation under the conditions of chemical inhibition or 

knockdown of TOR gene activity (Xiong and Sheen 2012; Schepetilnikov et al. 2013). 

TOR-activated S6K contributes to translation-mediated cell growth by several mechanisms. 

Firstly, TOR-activated S6K showed increased kinase activity towards the ribosomal 

protein S6 that contributes to ribosome biogenesis (Rexin et al. 2015). Moreover, TOR-

activated S6K in plants has been shown to promote reinitiation of mRNA translation after 

upstream open reading frame (uORF) translation by phosphorylating eukaryotic initiation 
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factor 3H (eIF3H) and thus stabilizing the association of the ribosomes with mRNAs in 

Arabidopsis (Schepetilnikov et al. 2013).  

The TOR signaling pathway is also involved in a wealth of other biological outputs 

related to plant development. A recent study identified the E2Fa transcription factor as a 

novel TOR kinase substrate for activation of S-phase genes during cell cycle, bypassing or 

acting downstream of the universal CYC-CDK-RBR cascade (Xiong et al. 2013). By 

performing metabolite profiling in combination with transcript profiling, Caldana et al. 

(2013) revealed regulation of genes involved in the cell cycle, cell wall remodeling and 

nutrient recycling processes such as senescence or autophagy, together with substantial 

accumulation of lipids and starch in Arabidopsis plants with down-regulation 

of AtTOR expression (Caldana et al. 2013). The TOR pathway also affects cell wall 

structures. LRR-extensin1 (LRX1) is known as an extracellular protein involved in cell 

wall development in Arabidopsis root hairs (Diet et al. 2006). Inhibition of TOR signaling 

by rapamycin led to specific changes to galactan and arabinogalactan proteins of cell walls 

and caused suppression of the aberrant root hair phenotype in the lrx1 mutant (Leiber et al. 

2010).  

Endocycle 

After several rounds of mitosis, many of the newly formed cells then switch into 

endocycle, a process in which cells increase their ploidy level by successive rounds of 

DNA replication without mitosis. For cells to timely transit into the endocycle, they should 

be directed by developmental signals. For example, the auxin gradient in the root meristem 

plays a vital role in coordinating the developmental switch from mitotic cycle into 

endocycle. A high concentration of auxin in the proximal region of the meristem is required 
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to maintain mitotic cycles and repress endocycles while a lower concentration of auxin 

triggers an exit from mitotic cycle and an entry into endocycle (Ishida et al. 2010).   

To promote the progression of endocycle, the activity of CDK has to be kept below 

a level that inhibits mitosis. Different mechanisms account for the CDK inhibition to 

initiate endocycle. The first mechanism is transcriptional repression of premitotic/mitotic 

CDKs. CDKB1;1 along with CYCA2;3, which form an active complex during the G2-M 

transition are down-regulated in leaves undergoing endoreduplication (Boudolf et al. 2009). 

Mitotic CDKs activity can also be down-regulated by APC-mediated proteolysis of A- and 

B-type cyclins, which are required for the functions of mitotic CDKs.  CCS52, which is an 

APC substrate targeting subunit, plays a central role in promoting the transition into the 

endocycle by physical interacting with several A-type and B-type CYCs in Arabidopsis 

(Fülöp et al., 2005). This type of mechanism seems to be conserved among higher plants 

as elevated transcript levels of CCS52 were observed in endoreduplicating nodule cells in 

Medicago and its downregulation decreases cell size by altering the ploidy level (Cebolla 

et al., 1999). Another mechanism of CDKs inhibition is through direct binding to cyclin 

kinase inhibitors (CKIs). The SIAMESE-RELATED (SMR) family is a class of plant-

specific CKIs that potentially targets both CDKA and CDKB. SIAMESE (SIM) is the 

founding member of the SMR family, which is required for endoreduplication in leaf 

trichomes. In sim recessive mutants, the endocycle is repressed in trichomes, resulting in 

multicellular trichomes with low ploidy level. This phenotype is strikingly different from 

wild-type trichomes, which are unicellular with a ploidy level of 16 to 32C (Churchman et 

al. 2006).   
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Maintaining endoreduplication cycle also requires a plant orthologue of archaeal 

topoisomerase VI, which belongs to type IIB subclass of type II topoisomerases in archaea 

and is composed of an A2B2 heterodimer complex with subunit A (topo VIA) and subunit 

B (topo VIB). In archaea, topoisomerase VI functions to decatenate replicated 

chromosomes. In plants, the mutation of topoisomerase VI components such as 

RHL1/HYP7, AtSPO11-3/RHL2/BIN5, AtTOP6B/RHL3/HYP6/BIN3, and MIDGET 

(MID) caused a dwarf phenotype, implying the structural requirements for 

endoreduplication in plants too (Sugimoto-Shirasu et al. 2002; Sugimoto-Shirasu et al. 

2005; Hartung et al. 2002; Yin et al. 2002; Kirik et al. 2007). Bin4 is a DNA binding protein 

that functions as another component of the plant DNA topoisomerase VI complex through 

interaction with both AtSPO11-3/RHL2/BIN5 and RHL1/HYP7. The loss of Bin4 initiates 

various DNA damage repair processes by activating the expression of genes involved in 

the DNA damage response, thus leading to an early arrest of endocycles (Breuer et al. 

2007). 

Most of the factors identified in the regulation of the plant endocycle act at the entry 

point and how plants terminate endocycling is not well known. GT-2-LIKE1 (GTL1), a 

trihelix transcription factor was found to be involved in mediating endocycle termination 

in leaf trichomes. The GTL1 loss-of-function mutation leads to an additional round of 

endocycle and growth extension of trichomes without altering trichome branching (Breuer 

et al. 2009). Further study demonstrated that GTL1 directly represses the transcription 

of CCS52 to stop the endocycle progression, implying the important role of APC-mediated 

proteolysis in endocycle termination (Breuer et al. 2012).  
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Ploidy levels vary greatly among different species and cell types. High ploidy 

usually occurs in the cells with specialized differentiation such as leaf epidermal pavement 

cells, trichomes, and xylem cells or cells of high metabolic activity, such as endosperm 

cells (Sugimoto-Shirasu and Roberts 2003). In Arabidopsis, leaf epidermal pavement cells, 

trichomes, hypocotyls and roots often exhibit high ploidy level varying from 2C to 32C 

(Sonoda et al. 2009). Maize endosperm cells possess a DNA content as high as 96C or 

192C (Kowles and Phillips 1985). Increased ploidy level is strongly correlated with cell 

growth, which supports the “nuclear-cytoplasmic ratio” theory that cytoplasmic growth is 

adjusted with respect to the DNA content of nucleus by a controlled mechanism (Sugimoto-

Shirasu and Roberts 2003). However, it should be noted that uncoupling of cell growth 

from ploidy level has also been reported. One example involves Arabidopsis root cells from 

different ecotypes, which are varied in sizes but no correlation was found between cell size 

with ploidy level (Beemster et al. 2002). Thus, it was suggested that an increase in ploidy 

level may set the maximum capacity for cell growth instead of determining the exact level 

of cell growth with its contribution depending on the developmental context (Breuer, Ishida, 

and Sugimoto 2010; De Veylder, Larkin, and Schnittger 2011).  

Cell Expansion 

Cell growth occurs in both proliferating cells and expanding cells where the former 

grows by increasing cytoplasmic volume while the latter grows by increasing vacuolar 

volume (Kalve, De Vos, and Beemster 2014). Cytoplasmic growth is closely related to the 

energy and nutritional status of the cell as discussed previously while post-mitotic cell 

expansion is triggered by turgor pressure, which is generated by water uptake and pushes 

up against the cell wall, inducing wall loosening for stress relaxation. The extended cell 
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wall allows further water uptake and volume enlargement of the cell. Finally, biosynthesis 

and deposition of new wall materials is required to reinforce the stretched cell wall 

(Cosgrove 2014). The following cell wall related processes are involved in turgor driven 

cell expansion: first, cell wall hydration; second, cell wall loosening; third, synthesis and 

deposition of new cell wall materials.  

Cell wall hydration is induced by acidification of apoplast and membrane 

hyperpolarization as a result of the activation of the P-type plasma membrane proton 

ATPase (AHA) in the presence of auxin or BR (Cleland 2010; Caesar et al. 2011). The 

increased hydration promotes the subsequent cell wall loosening, which refers to the cell 

wall modification that leads to relaxation of cell wall stress imposed by turgor pressure. 

There are four mechanisms of wall loosening which involve the following wall loosening 

agents: expansin, xyloglucan endotransglucosylase (XET), endo-(1,4)-β-d-glucanase 

(EGases) and hydroxyl radicals.  

The plant primary cell wall is a complex structure with cellulose microfibrils 

embedded in a matrix of hemicelluloses, pectins and a small amount of proteins (Cosgrove, 

2005). Expansins are small secreted proteins in the cell wall, which are thought to promote 

cell wall loosening by disrupting the hydrogen bonds between cellulose and the main 

hemicellulose called xyloglucan (XGs) (Cosgrove 2005). Plant expansins are a large 

superfamily with 36 and 58 members in Arabidopsis and rice, respectively and can be 

divided into four families: EXPA, EXPB, EXLA and EXLB. EXPA and EXPB families 

have been demonstrated to have the ability to extend cell wall and mediate cell expansion 

(Cosgrove 2005). For example, when AtEXP10 was expressed maximally in the growing 

leaf, Arabidopsis had larger leaf blades and cells than the controls (Cho and Cosgrove 
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2000). 35S-AtEXP3 transgenic plants also showed better growth performance than the 

controls when they are allowed to germinate in the soil (Kwon et al. 2008).   

Xyloglucan endotransglucosylase (XET) is part of a large family of xyloglucan 

endotransglucosylase/hydrolase (XTH). XET is capable of cutting pre-existing 

xyloglucans and grafting newly secreted xyloglucans. The role of XTH in the regulation of 

cell wall loosening is controversial as contradictory results were observed. Saladie et al. 

showed that the biomechanical properties of plant cell walls were not affected by 

incubation with tomato SlXTH5, in the presence or absence of xyloglucans (Saladié et al. 

2006). However, Van Sandt et al. demonstrated that exogeneous XTH can act on isolated 

onion epidermis cell walls by significantly increasing cell wall extension (Van Sandt et al. 

2007). 

Endo-(1,4)-β-d-glucanase (EGase) induces wall loosening probably by digesting 

the non-crystalline parts of the cellulose, which releases xyloglucans from cellulose 

microfibrils (Cosgrove 2005). In Arabidopsis, the EGase gene family is composed of more 

than 20 members, which are divided into two groups: membrane-bound and wall secreted. 

Knockdown of the secreted EGase gene CEL1 in Arabidopsis plants led to shorter stems 

and roots with abnormal cell wall deposition, which relates to defects in cell wall relaxation 

during cell expansion (Tsabary et al. 2003).  

Hydroxyl radicals have been proposed as a cell wall loosening reagent by cleaving 

cell wall polysaccharides non-enzymatically based on the result that exogenous application 

of artificially generated hydroxyl radicals can induce cell wall extension in vitro (Liszkay 

and Schopfer 2003). A plasma membrane NADPH oxidase, which is activated by 

increasing cytoplasmic calcium as a result of opening calcium channels under cell wall 
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relaxation, can generate superoxide at the extracellular regions. The produced monovalent 

O2 is further converted into hydrogen peroxide, which then forms hydroxyl radicals. The 

site-specific production of the hydroxyl radicals in the apoplast space can cleave 

polysaccharides present in the cell wall (Cosgrove 2005). Studies showed that auxin 

promotes the generation of hydroxyl radicals, which is required for inducing elongation 

growth of coleoptile in maize seedlings (Schopfer et al. 2002).   

Biosynthesis and deposition of new cell wall materials is the final step in the cell 

expansion process to reinforce the thickness and strength of the loosened cell wall. While 

cellulose microfibrils are synthesized at the plasma membrane by a membrane localized 

cellulose synthase complex (CSC), hemicelluloses and pectins are generated in the Golgi 

apparatus and delivered to the cell wall through vesicles (Cosgrove 2005). CSC consists of 

cellulose synthase (CESA) proteins that are arranged into a rosette-shaped structure. In 

Arabidopsis, the CESA family contains 10 genes, of which CESA1, 3, and 6 are required 

for the primary cell wall synthesis while CESA4, 7 and 8 are required for the secondary 

cell wall formation (Taylor et al. 2003). KORRIGAN (KOR), which is a membrane-bound 

endoglucanase, is also required for the formation of cellulose microfibrils, as suggested by 

its mutant phenotype, which is a defect in crystallizing the synthesized (1,4)-linked β-D-

glucan properly into microfibrils (Nicol et al. 1998). The CSC synthesizes the cellulose 

microfibrils along the cortical microtubule (CMT) arrays (Paredez, Somerville, and 

Ehrhardt 2006). Thus, the pattern of CMT arrangement can impact the deposition of the 

cellulose microfibrils, which will determine the direction of growth. For example, the 

abnormal CMT arrangement was found in angustifolia (an) leaf which exhibited reduced 

growth in the leaf width direction, suggesting that the plant CtBP family member AN might 
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regulate the polarity of cell expansion by modulating the CMT arrangement (Kim et al. 

2002).  

Compensation Mechanism: Organ-Wide Regulation 

Compensation is a phenomenon in which enhanced/decreased post-mitotic cell 

expansion is associated with a decrease/increase in cell number during determinate organ 

development. It is a heterogeneous phenomenon that is governed by at least three 

mechanisms revealed by genetic and kinetic study of the compensation-exhibiting mutants 

(Ferjani et al. 2007; Ferjani et al. 2013). The first mechanism is the increase of the post-

mitotic expansion rate with its duration unaffected while the second mechanism is the 

increase of duration with its rate unchanged. The third type of compensation, which is 

represented by a cyclin-dependent kinase KRP2, was reported to show larger cell size in 

proliferating cells and further increase in cell size by an enhanced post-mitotic expansion 

rate but not the period.   

Compensation is triggered when the cell number is reduced below a certain 

threshold, which is suggested by mutants in which the cell number is decreased but not 

enough to induce compensation (Horiguchi and Tsukaya 2011). For example, 

compensation did not occur when single oligocellula (oli) mutants oli2, oli5 and oli7 had 

moderate reduction in their cell number. However, when cell number was further reduced 

in double mutants, compensation was induced (Fujikura et al. 2009). Compensation 

syndrome is also observed in mutants with more but smaller cells (Usami et al. 2009; Hur 

et al. 2015). These studies are suggestive of a monitoring system for cell number 

measurement existing during plant development but how it works remains to be elucidated. 
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The above observations demonstrate that altered cell proliferation serves as a 

trigger for compensation. Conversely, is there any possibility of an opposite type of 

compensation in which altered post-mitotic cell expansion affects cell proliferation in the 

same developing organs? So far there is no clear evidence supporting this possibility as 

none of the genes identified in compensation exhibiting mutants are known to have specific 

functions involved in post-mitotic cell expansion. Rather, observations in several mutants 

with altered cell expansion but normal cell number suggested that alteration of post-mitotic 

cell expansion may not influence cell proliferation (Hu, Poh, and Chua 2006; Kim et al. 

2002; Qin et al. 2014). Further studies are needed in the future to gain insights into this 

possibility.   

Compensation occurs in both cell-autonomous and non-cell-autonomous manners. 

In the cell autonomous mode of compensation, the seesaw-like relationship between cell 

proliferation and cell expansion occurs at a single cell level while in the non-cell-

autonomous case, compensation occurs when the intercellular signal is generated and 

transmitted. These two modes of action were well illustrated by Kawade et al. (Kawade, 

Horiguchi, and Tsukaya 2010). It was shown that in KRP2 overexpressing chimeric leaves, 

only KRP2 overexpressing cells but not WT cells exhibit compensated cell expansion, 

indicating a cell-autonomous compensation. In an3 chimeric leaves, not only an3 mutant 

cells but also WT cells exhibit compensated cell expansion, indicative of a non-cell-

autonomous compensation and cell-to-cell communication. In this situation, interesting 

questions such as what intercellular signals are generated and how the signal is transmitted 

remains to be explored to increase our knowledge regarding the coordination of cell 

proliferation and post-mitotic cell expansion.  
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Part II: The Regulation of Plant Salt Stress Response 

Salinity is a major abiotic stress that causes substantial reduction in agricultural 

productivity in about 20% of the world cultivated lands (Rhoades and Loveday 1990). Low 

concentrations of salt have little or no effect on the yield of agricultural crops (Maggio et 

al. 2001). However, high salinity affects plants in two major ways. First, a water potential 

gradient between plant cells and the soil solution of high salt concentration results in the 

disturbance of water uptake by the roots. Second, intracellular accumulation of salts can be 

toxic to the plants as it inhibits enzymes and metabolic pathways (Munns and Tester 2008). 

As a consequence of these two primary effects, secondary effects often occur, such as 

oxidative stress due to the generation of reactive oxygen species (ROS) and nutrient 

imbalance as a result of competitive uptake of high levels of Na+ and Cl- (Lodeyro and 

Carrillo 2015).  Taken together, these effects lead to reduction in plant growth and survival.  

Over the time of acclimation to salinity, plants have evolved different types of 

adaptive mechanisms for salt tolerance, which will be briefly discussed in the forthcoming 

sections. It is worth noting that despite these tolerance mechanisms that plant has 

developed, crop yield is still decreased under salt stress, which is compounded by the 

increasing demand for food because of a rapidly expanding population (predicted to reach 

9.6 billion by 2050, http://www.un.org/en/development/desa/news/population/un-report-

world-population-projected-to-reach-9-6-billion-by-2050.html) and limited arable lands. 

In this context, a deeper understanding of salt tolerance mechanisms and engineering crops 

with candidate genes for enhancement of their salt tolerance ability is a very promising 

strategy to ameliorate these problems.    
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Na+ Transporters and Plant Salt Tolerance 

 Excessive Na+ accumulation in the cytoplasm is toxic to the plants. At the cellular 

level, plants have evolved three major mechanisms to prevent excessive cytoplasmic Na+ 

accumulation: 1) restriction of Na+ entry into the root cells, which is mediated largely by 

non-selective cation channels (NSCCs); 2) exclusion of Na+ out of the cells, which is 

controlled by the plasma membrane localized Na+/H+ antiporter Salt Overly Sensitive 1 

(SOS1, also known as AtNHX7 in Arabidopsis); and 3) compartmentalization of excessive 

Na+ into the vacuoles, which is regulated mainly by the vacuolar Na+/H+ antiporter NHX. 

At the whole plant level, inhibition of Na+ transport from root to the shoot through xylem 

or recirculation of Na+ from shoot to the root through phloem is also crucial for salinity 

tolerance (Tester and Davenport 2003). Studies in Arabidopsis suggested that the class I 

High-affinity K+ Transporter (HKT) plays an essential role in mediating Na+ exclusion 

from leaves by removing Na+ from xylem sap to root under salt stress, thus preventing Na+ 

accumulation in leaves and maintaining their photosynthesis activity (Horie, Hauser, and 

Schroeder 2009).  

NSCC transporters 

 NSCCs show a high preference for mediating passive fluxes of cations over anions 

through the plant membranes. They typically have a low selectivity among different 

monovalent cations and several of them are also permeable to divalent cations (Demidchik 

and Maathuis 2007; Pottosin and Dobrovinskaya 2014). The functions of NSCCs are well 

established on the basis of electrophysiological experiments but molecular studies are still 

lacking. A previous study suggested that NSCCs are primary mediators of Na+ influx to 

the root cells (Demidchik and Tester 2002). This could be beneficial by decreasing tissue 
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osmotic potential but could also be toxic if excess Na+ is not sequestrated (Shabala and 

Cuin 2008). It was suggested that NSCC may also play a role in mediating Ca2+ influx and 

K+ efflux in Arabidopsis root epidermis cells (Demidchik et al. 2011).  

SOS1 transporters 

Na+ efflux is another mechanism for eliminating Na+ accumulation. It is mediated 

by the plasma membrane-localized Na+/H+ antiporter Salt Overly Sensitive 1 (SOS1), 

which is empowered by the function of plasma membrane H+-ATPase. SOS1-mediated 

Na+ efflux involves the SOS pathway, in which SOS3, sensing the cytosolic increase in 

[Ca2+] induced by excess Na+ and high osmolarity, activates SOS2, a Ser/Thr protein kinase, 

to the plasma membrane where the SOS3-SOS2 protein complex phosphorylates and 

activates SOS1 (Qiu et al. 2002; Yamaguchi, Hamamoto, and Uozumi 2013). SOS1 

transcripts are predominantly expressed in epidermal cells at the root tip region and in 

xylem parenchyma cells at the root, leaf and stem (Shi et al. 2002). It was suggested that 

SOS1 not only functions in excluding Na+ from root at the root-soil interface but also plays 

a role in mediating Na+ efflux from the xylem vessels under severe salinity (Shi et al. 2002). 

Knockout of SOS1 in Arabidopsis led to greater Na+ accumulation in the root, xylem sap 

and shoot under severe salt stress (100 mM NaCl) (Shi et al. 2002). Consistent with the 

phenotype of the atsos1 mutant, overexpression of SOS1 by the CaMV 35S promoter in 

Arabidopsis resulted in less Na+ in the xylem stream and shoot, thus conferring salt 

tolerance (Shi et al. 2003). 

Vacuolar Na+/H+ antiporters from NHX family 

Another mechanism that plant cells employ to alleviate the excessive cytosolic Na+ 

accumulation is to compartmentalize Na+ into the vacuoles by vacuolar NHX transporters, 
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whose ion exchange activity is empowered by the electrochemical gradient created by the 

H+-ATPase and H+-pyrophosphatases (H+-PPases) (Roy, Negrão, and Tester 2014). 

Constitutive overexpression of AtNHX1 in Arabidopsis led to enhanced salt tolerance with 

a concomitant increase in Na+ content (Apse et al. 1999). Recent studies have also shown 

that vacuolar NHX transporters are also important for K+ uptake into vacuoles for turgor 

regulation and stomatal function (Barragán et al. 2012). Transgenic tomatoes 

overexpressing AtNHX1 had more K+ accumulation in vacuoles but no consistent increase 

in Na+ accumulation was observed under salt stress. The greater capacity of the transgenic 

tomatoes to retain intracellular K+ made them more salt tolerant when salt-shock was 

applied (Leidi et al. 2010). Besides the vacuolar NHX antiporters NHX1-4, a recent study 

by double knockout of endosomal NHX antiporters NHX5 and NHX6 in Arabidopsis 

suggested that endosomal NHX5 and NHX6 are also involved in salt tolerance in addition 

to their role in mediating cell growth and vesicular trafficking (Bassil et al. 2011). 

HKT transporters 

 The identification of the first HKT transporter in wheat (TaHKT2;1) (Schachtman 

and Schroeder 1994) which is responsible for Na+/K+ transport has led to the identification 

of many HKT transporters from various plant species (Horie, Hauser, and Schroeder 2009).  

HKT transporters can be divided into two groups: the class 1 HKT transporters that mediate 

Na+-selective transport and the class 2 HKT transporters that mediate both Na+ and K+ 

transport (Horie, Hauser, and Schroeder 2009; Deinlein et al. 2014). AtHKT1;1 was 

identified as a class 1 HKT transporter in Arabidopsis, which is localized at the plasma 

membrane of xylem parenchyma cells (Horie et al. 2005). AtHKT1;1 was suggested to be 

an important Na+ influx system in root as hkt1;1 knockout plants showed reduced 
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accumulation of Na+ in the root and higher salt resistance in the short-term root growth 

assay (Mäser et al. 2002). The current model in Arabidopsis suggests that AtHKT1;1 may 

play a major role in protecting leaf blades from excessive accumulation of Na+ by 

unloading of Na+ from the xylem sap (Davenport et al. 2007). In support of this model, 

hkt1;1 knockout plants exhibited higher Na+ sensitivity with increased Na+ accumulation 

in the leaf in a long-term growth assay (Mäser et al. 2002). Moreover, overexpression of 

AtHKT1;1 in mature root stele led to improved salt tolerance by decreasing root-to-shoot 

transfer of  Na+ (Møller et al. 2009). Interestingly, Arabidopsis plants constitutively 

overexpressing AtHKT1;1 driven by CaMV 35S promoter accumulated more Na+ in the 

leaves and displayed salt sensitivity probably due to the increased influx of Na+ into the 

roots (Møller et al. 2009). Thus, cell type-specific overexpression of HKT1;1 is essential 

to improve salinity tolerance.  

Compatible Solutes and Osmotic Adjustment  

 Plant response to the osmotic effect of salt stress lies in osmotic adjustment. One 

low energy-cost way to achieve this is to accumulate Na+ and Cl− ion in the vacuoles as 

cheap osmolytes. However, it also increases the risk of enhanced accumulation of toxic 

ions in the cytoplasm. Another way is de novo synthesis of compatible solutes (Shabala 

and Cuin 2008). Compatible solutes are a class of organic compounds that can accumulate 

to a high concentration without interfering with metabolic pathways because of their 

compatibility with metabolism (Lodeyro and Carrillo 2015). They are comprised of 

nitrogen-containing compounds, such as free amino acids (proline), quaternary ammonium 

compounds (glycine betaine), and polyamines; soluble sugars such as glucose, fructose, 

sucrose and raffinose; and sugar alcohols such as mannitol, sorbitol, myo-inositol, ononitol 
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and pinitol (Munns 2005a). Besides their role in providing osmotic protection and 

attenuating water loss, these compounds also serve other functions, such as stabilizing 

proteins and membrane structures (Lodeyro and Carrillo 2015), and scavenging ROS such 

as hydroxyl radical (OH˙) which cannot be efficiently detoxified by enzymes (Bose, 

Rodrigo-Moreno, and Shabala 2014). 

Antioxidative Defense Mechanism 

Salt stress can disrupt the balance of cellular metabolism, resulting in oxidative 

stress with elevated level of reactive oxygen species (ROS). ROS mainly comprises of free 

radicals like the superoxide radical anion (O2˙
−) and hydroxyl radicals (OH˙) and non-

radicals like hydrogen peroxide (H2O2) and singlet oxygen(1O2).  ROS acts as a double 

edged sword as on one hand, it acts as a secondary messenger under salt stress; on the other 

hand, it can cause oxidative damage to protein and membrane lipid peroxidation, DNA and 

RNA damage (Das and Roychoudhury 2014). Plants have developed two antioxidant 

defense systems to work in concert for ROS scavenging, and these include both enzymatic 

and non-enzymatic machinery. The major enzymatic antioxidants include catalase (CAT), 

superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), 

glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and 

dehydroascorbate reductase (DHAR) while the major non-enzymatic antioxidants include 

ascorbic acid (AA), glutathione (GSH), phenolic compounds, etc. (Gill and Tuteja 2010; 

Das and Roychoudhury 2014). 

Salt Signaling and Regulatory Pathways 

To mount various effective responses under salt stress, plants have developed a 

stress signaling pathway in which the stress signal of the hyperosmotic component and Na+ 
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ion is perceived/sensed, which results in the generation of many secondary messengers, 

such as Ca2+, ABA and ROS. The stress signal is then transduced downstream with the 

involvement of many proteins such as protein kinases and transcription factors, resulting 

in a change of stress-responsive gene expression and ultimately leading to physiological 

responses (Deinlein et al. 2014; Wang et al. 2016). So far, the identities of sensors for 

hyperosmotic component and Na+ ion still remained elusive. It was speculated that 

hyperosmotic stress is sensed by a mechanically gated Ca2+ channel on the basis of the 

following evidence: first, interfering with cuticle development which provides structural 

support to the cell affected many osmotic-induced responses, such as ABA production 

(Wang et al. 2011); second, cytosolic Ca2+ levels increase rapidly (within seconds) in 

response to NaCl or mannitol treatment (Knight, Trewavas, and Knight 1997).  Although 

how salt stress is sensed is still largely unknown, substantial progress has been made in 

dissecting the Ca2+ signaling pathway, ABA-dependent and -independent signaling 

pathways and transcriptional regulation during salt stress response.  

Ca2+ signaling pathway 

 Ca2+ is a very important second messenger in response to a wide range of external 

stimuli. The nature and the intensity of different external stimuli can be distinguished by 

specific Ca2+ signatures such as amplitude and duration (Bartels and Sunkar 2005). High 

salinity causes a rapid and transient increase in cytosolic Ca2+. The Ca2+ signal is further 

decoded by Calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) 

complex, which can activate Na+ transporters including the plasma membrane Na+/H+ 

antiporter SOS1 and vacuolar Na+/H+ antiporter NHX to maintain cytosolic Na+ 

homeostasis (Manik et al. 2015; Tuteja 2007). 
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ABA-dependent and -independent signaling pathways 

ABA biosynthesis and accumulation are induced by osmotic stresses, including 

drought, high salinity or cold stress. ABA produced in roots in response to osmotic stress 

is transported to the leaves through the xylem. ABA can also be synthesized in leaf cells 

under water-deficit conditions and distributed around the plant (Chaves, Flexas, and 

Pinheiro 2009). It was suggested that the ABA signal can be perceived by different cellular 

receptors and elicit specific cellular responses (Golldack et al. 2014). Under osmotic stress, 

the ABA signal is perceived intracellularly by Pyrabactin Resistance1/PYR1-

like/Regulatory Components of ABA Receptors (PYR1/PYL/RCARs) receptors, which 

inhibit type 2C phosphatases (PP2Cs) such as ABI1 and ABI2 (Ma et al. 2009; Park et al. 

2009). The inactivation of PP2Cs activates their downstream targets, such as the sucrose 

nonfermenting 1-related protein kinase 2 (SnRK2) (Vlad et al. 2009; Umezawa et al. 2009). 

SnRK2 regulates the ABA-responsive element binding protein/factors (ABRE/ABFs), 

which belongs to a distinct subfamily of bZIP transcription factors (TFs) and other TFs 

such as myelocytomatosis oncogene (MYC) and myeloblastosis oncogene (MYB) for 

regulation of ABA-responsive gene expression (Nakashima and Yamaguchi-Shinozaki 

2013). In guard cells, this ABA signaling cascade impedes stomatal opening and 

induces stomatal closure through regulation of ion fluxes in Ca2+ dependent and 

independent pathways (Jacob et al. 1999). Moreover, it also mediates transcriptional 

reprogramming for the expression of osmotic tolerance proteins, such as Late 

Embryogenesis Abundant (LEA) proteins (Nakashima and Yamaguchi-Shinozaki 2013).  

Gene expression in response to osmotic stress is also regulated by an ABA-

independent signaling pathway. Dehydration-responsive element binding protein 2 
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(DREB2) transcription factors play a pivotal role in ABA-independent gene expression 

regulation in response to osmotic stress (Yoshida, Mogami, and Yamaguchi-Shinozaki 

2014). Recent studies have shed light on the crosstalk between the ABA-dependent and 

ABA-independent pathways. DREB2A promoter regions contain an ABRE motif and ChIP 

analyses have demonstrated that DREB2A is regulated by ABF2, ABF3, ABF4 under 

osmotic stress (Kim et al. 2011). Moreover, DREB1A and DREB2A were shown to interact 

with ABF2 while DREB2C was shown to interact with ABF2, ABF3 and ABF4 (Lee et al. 

2010). By contrast, transcriptional regulation of AREB/ABFs is not well understood.   

 Evidence has been emerging that ABA-mediated abiotic stress response is linked 

and integrated with GA-mediated developmental signaling. GA stimulates growth by 26S 

proteasome–dependent degradation of DELLA (Fu et al. 2004). ABA treatment on wild-

type roots but not abi1-1 roots increased the accumulation of DELLAs and consequently 

induced growth inhibition. The quadruple DELLA mutant with functional losses of GAI, 

RGA, RGL1, and RGL2 is more resistant to the inhibitory effects of ABA. These results 

suggest that ABA-mediated growth inhibition is at least in part advanced by means of 

enhancement of DELLA restraint (Achard et al. 2006).  

Transcription regulation of salt stress response 

 In the past decades, considerable progress has been made to identify and 

characterize various transcription factors (TFs) in plant response to abiotic stress and to 

engineer these TFs to enhance plant stress tolerance in model and crop species (Wang et 

al. 2016). These TFs mainly include AREB/ABF, AP2/EREBP (such as DREB and ERF), 

MYB, WRKY, etc, functioning in either an ABA-dependent or ABA-independent manner. 
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 AREB/ABF  

 AREB/ABF TFs are major transcriptional regulators modulating ABA-responsive 

gene expression by binding to the ABA-responsive cis-element (PyACGTGG/TC) in the 

promoter region of the target genes (Joshi et al. 2016).  AREB/ABF TFs have a bZIP 

domain and four SnRK2 phosphorylation sites, which are activated upon phosphorylation 

by SnRK2 in a ABA-dependent manner (Fujita et al. 2011). 

 DREB  

 DREB TFs belong to the APETALA 2/Ethylene-responsive Element Binding 

Proteins (AP2/EREBPs) superfamily, which is defined by the presence of a AP2 DNA 

binding domain (Riechmann and Meyerowitz 1998). The AP2/EREBPs superfamily also 

includes AP2, RAV, ERF and other TFs (Sakuma et al. 2002). The DERB subfamily can 

be further classified into two major groups: DREB1 and DREB2, which regulate the 

expression of many stress-responsive genes mostly in an ABA-independent manner by 

binding to the Dehydration-responsive Element/C-Repeat Responsive Element (DRE/CRT) 

cis-element present in the promoter region of various stress-responsive genes (Lata and 

Prasad 2011). In Arabidopsis, the DERB1 subgroup consists of six proteins, which are 

involved in plant response to drought, salt, cold and freezing stress (Lata and Prasad 2011; 

Wang et al. 2016). For example, overexpression of OsDREB1A in rice led to enhanced 

tolerance to drought, high salinity and low temperatures, although the growth of transgenic 

plants was retarded under normal growth conditions (Dubouzet et al. 2003). The DREB2 

subgroup consists of eight proteins, which are involved in drought, salt and heat response 

(Wang et al. 2016; Lata and Prasad 2011). DREB2A and DREB2B are two major players 

under osmotic stress. Overexpression of AtDREB2A did not lead to any phenotypic 
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changes in Arabidopsis in the aspects of growth and stress tolerance, implying the 

requirement for post-translational modification for its activity (Liu et al. 1998). Following 

this up, overexpression of AtDREB2A-CA, which is a constitutively active form with the 

deletion of a negative regulatory domain within AtDREB2A, resulted in growth inhibition 

and higher drought tolerance with up-regulation of many stress-inducible genes in 

Arabidopsis (Sakuma et al. 2006). 

 MYB  

 MYB TFs function in many physiological and biochemical processes, such as 

development, metabolism and plant response to abiotic and biotic stresses (Ambawat et al. 

2013; Dubos et al. 2010). MYB TFs that are active in abiotic stress signaling are well 

documented (Li, Ng, and Fan 2015). Studies show that a single MYB TF can regulate a 

diversity of target genes, thus impacting various processes under abiotic stress. For 

example, studies of a ABA-responsive MYB TF, MYB96 in Arabidopsis showed that it 

can activate cuticular wax biosynthesis for drought resistance (Seo et al. 2011). Moreover, 

AtMYB96 can also activate the transcription of the lipid-transfer protein LTP3 for plant 

tolerance to drought and freezing stress (Guo et al. 2013). 

 WRKY  

 Previous studies have demonstrated that WRKY TFs are involved in various abiotic 

stresses such as drought, salt, cold, heat, nutrient starvation, UV radiation, high light and 

oxidative stresses, which have been extensively reviewed recently (Banerjee and 

Roychoudhury 2015). 
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In addition to the above-mentioned TFs, there are other TF families that are 

involved in plant response to multiple abiotic stresses, such as basic leucine zipper (bZIP) 

TFs, NAC TFs, heat shock TFs (HSFs), basic helix-loop-helix (bHLH) TFs, and 

homeodomain-leucine zipper (HD-Zip) TFs. It was suggested that these TFs not only 

function independently but also interact with each other by regulating common 

downstream targets (Wang et al. 2016).  

Salt Tolerance Mechanisms in Halophytes 

 Plants exhibit significant variations in their abilities to tolerate salinity. About 1% 

of the plant species named halophytes can survive and thrive under conditions with above 

200 mM NaCl (Flowers and Colmer 2008). It has been proposed that different mechanisms 

at the molecular and physiological levels work in concert for salinity tolerance in 

halophytic plants (Kosová, Prášil, and Vítámvás 2013; Zhang and Shi 2013).   

 It was suggested that three mechanisms contribute to high salinity tolerance in 

halophytes at the molecular level (Kosová, Prášil, and Vítámvás 2013). First, halophytic 

plants may possess higher copy number of salt-tolerant genes at their genome. For example, 

Genome sequencing of Thellungiella parvula, which is related to Arabidopsis thaliana and 

is endemic to saline environment revealed that Thellungiella parvula genome contains 

higher gene copy number of several genes related to salt stress adaptation than Arabidopsis 

thaliana, such as AVP1 and NHX8 (Dassanayake et al. 2011). Second, halophytic plants 

may have subtle gene expression at the transcriptomic level in both qualitative and 

quantitative ways. For example, a comparative transcriptome study of a salt-tolerant rice 

cultivar Pokkali and a salt-sensitive rice cultivar IR64 suggested that a higher expression 

of a set of salt stress responsive genes such as V-ATPase and GST in Pokkali than IR64 
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may contribute to higher salinity tolerance in Pokkali (Kumari et al. 2009). Third, 

halophytic plants may have higher activity levels for proteins involved in salt stress 

response.  A few studies comparing the proteomic response to salt stress between related 

plant species with different levels of salt tolerance have been published (Pang et al. 2010; 

Sengupta and Majumder 2009).  Two-dimensional gel electrophoresis (2-DE) coupled with 

mass spectrometry (MS) has enabled the identification of protein spots showing differential 

abundance. Functional analysis of these proteins needs to be conducted to unravel their 

roles in conferring salinity tolerance.   

 At the physiological level, halophytes have also developed different mechanisms 

for salinity tolerance and different types of halophytes may utilize specific mechanisms for 

adaptation to their habitats. Three different mechanisms at the physiological level will be 

discussed briefly below.  In salt-accumulating halophytes, such as plants from the genus of 

Suaeda, vacuole compartmentalization is a primary mechanism for salinity tolerance. 

Under NaCl treatment, the increased activity of vacuolar Na+/H+ antiporters and V-H+-

ATPase was observed in the leaves of Suaeda salsa (Qiu et al. 2007). Suaeda salsa also 

possesses an effective anti-oxidative defense system in chloroplasts which scavenges 

superoxide radicals in situ, reducing oxidative damage caused by NaCl (Qiu-Fang et al. 

2005). Salt-excluding halophytes, such as an Arabidopsis thaliana relative Thellungiella 

halophila from the genus of Thellungiella, accumulate less Na+ and more K+ in both shoot 

and root thus maintaining a higher K+/Na+ ratio compared to Arabidopsis thaliana under 

salinity stress, resulting in higher salinity tolerance (Volkov et al. 2004).  In salt-secreting 

halophytes, such as mangrove plants, salt excretion is considered to be an essential 

contributor to high salinity tolerance. Salt excretion is mediated by specialized tissues such 
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as salt glands and salt hairs for halophytes in arid areas, which are responsible for excreting 

excessive Na+ onto the leaf surface (Zhang and Shi 2013).    

 

Part III: The Objectives of the Current Research 

The regulation of plant development and stress response are two major research 

areas in the field of plant biology that have captured a lot of attention and achieved fruitful 

accomplishments in the past. Understanding the mechanisms underlying plant 

development and stress response has significant practical meanings in the context of 

rapidly expanding human populations and changing environment, such as sea level rise due 

to global warming. Genes that are involved in the regulation of plant organ growth and 

stress response are good candidates to engineer crops for enhanced yield as the former has 

the potential to alter plant architecture improving production and the latter can help 

enhance plant stress tolerance and maintain yield where unfavorable environmental 

conditions exist. However, the genetic basis underlying plant development and response to 

environmental stresses including high salinity has not been completely deciphered. For a 

better understanding of the genetic control of plant development and salt stress response, 

my dissertation research focuses on the following two projects. One is functional 

characterization of a novel Myb-like gene in plant development; another is comparative 

study of two cultivars Supreme (high salt-tolerance) and Parish (moderate salt-tolerance) 

from a halophyte named Seashore paspalum at the physiological and transcriptomic levels 

to better understand plant salt tolerance mechanisms and identify potential candidate genes 

for future molecular studies.   
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CHAPTER TWO 

DRMY1, A NOVEL MYB-LIKE TRANSCRIPTION FACTOR REGULATES CELL 

EXPANSION DURING PLANT DEVELOPMENT AND AFFECTS SEED 

PRODUCTION IN ARABIDOPSIS   
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Abstract 

Plant organ development depends on the coordination of cell proliferation and cell 

expansion. Although many genetic factors have been identified for organ development, the 

underlying mechanism especially for cell expansion is still largely unknown. Here we 

identify a novel Myb-like protein, Development Related Myb-like1 (DRMY1), which 

controls cell expansion during development of both vegetative and reproductive organs, 

and affects fertility in Arabidopsis thaliana. The loss-of-function mutant drmy1 leads to 

reduced organ growth and cell expansion, which is associated with increased accumulation 

of cell wall matrix polysaccharides. We demonstrate that DRMY1 is strongly expressed in 

developing organs and vascular tissues and its expression is reduced by the plant hormone 

ethylene while induced by Abscisic Acid (ABA). Furthermore, DRMY1 is localized in the 

nucleus but itself alone does not confer transactivation activities. Transcriptome analysis 

reveals that DRMY1 may control cell expansion directly by regulating the expression of 

genes involved in cell wall biosynthesis/remodeling as well as genes encoding for ribosome 

proteins. DRMY1 also regulates the expression of genes in ethylene and ABA signaling 

pathways, indicating that it may control cell expansion indirectly via hormone signaling 

pathways. Our results suggest that DRMY1 plays a vital role in organ development by 

regulating cell expansion either directly or indirectly through ethylene and ABA signaling 

pathways.  

Introduction 

 Plant organ development is regulated by genetic programs as well as the 

developmental and environmental cues, such as hormones, light, temperature and nutrients 

(Chaiwanon et al. 2016). Plant organ growth to its characteristic size and shape occurs 
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through two successive but overlapping processes: cell proliferation and cell expansion, 

increasing cell number and cell size, respectively (Gonzalez, Vanhaeren, and Inzé 2012; 

Hepworth and Lenhard 2014; Powell and Lenhard 2012; Kalve, De Vos, and Beemster 

2014). Cell proliferation is tightly controlled by plant cell cycle machinery composed of 

the catalytic cyclin-dependent kinases (CDKs) and the regulatory cyclins (CYCs) that 

control CDK activity. Different CDKs-CYCs complexes phosphorylate an array of 

substrates, ensuring correct DNA replication and successful progression through different 

phases of the cell cycle (Komaki and Sugimoto 2012). Cytoplasmic growth is coupled with 

cell proliferation to maintain cells at a constant cell size while proliferating. It mainly relies 

on macromolecular biosynthesis, mostly proteins, which is an energy-consuming process 

and is tightly linked to the nutritional and energy level of plants (Sablowski and Dornelas 

2014). Target of Rapamycin (TOR) is a central regulator of cytoplasmic growth by sensing 

and integrating the nutritional conditions and different developmental and environmental 

signals into growth decisions in order to maintain survival under the available resources 

(Zhang, Persson, and Giavalisco 2013). As cytoplasmic growth mainly relies on protein 

biosynthesis, the biogenesis of ribosomes as a translational machinery is essential for cell 

growth.  Ribosomal proteins are known for playing a fundamental role in ribosome 

assembly and protein translation. Recent studies also highlighted their functions in many 

aspects of plant development (Byrne 2009; Micol 2009). Deficiency in specific r-proteins 

causing developmental abnormalities with change in leaf shape have most frequently been 

reported (Byrne 2009; Micol 2009). For instance, Arabidopsis with mutations in PGY 

genes, PGY1, PGY2, and PGY3, which correspond to ribosome protein L10a, L9, and L5, 
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produced pointed and narrow rosette leaves with more pronounced marginal serrations than 

wild type (Pinon et al. 2008). 

 Cell proliferation to cell expansion transition then takes place progressively in a 

basipetal manner though cells committed to stomata and vascular lineage continue to divide 

(Powell and Lenhard 2012). Several mutants that are defective in this transition exhibited 

altered final leaf size, such as angustifolia 3 and aintegumenta, suggesting its important 

role in regulating organ size (Horiguchi, Kim, and Tsukaya 2005; Mizukami and Fischer 

2000). Post-mitotic cell expansion is a complex process which is triggered by turgor 

pressure and followed by cell wall remodeling and deposition of newly synthesized wall 

materials (Cosgrove 1993). Given the fact that plant cells are surrounded by cell walls, it 

is not surprising that alterations in cell wall content and organization affect cell size and 

shape. Such alterations are mediated by proteins involved in cell wall biosynthesis (such 

as cellulose synthase (CESA) proteins), deposition (such as microtubules and microtubule-

associated proteins), or remodeling (such as expansins, Xyloglucan 

Endotransglucosylase/Hydrolases (XTHs), Endo-β-1, 4-glucanases (EGases) and Pectin 

Methylesterases (PMEs)) (Cosgrove 2005). However, the mechanistic evidence regarding 

their transcriptional regulation remains largely unknown, making cell expansion a much 

more elusive process than cell proliferation. Cell expansion is often accompanied by ploidy 

increase through endoreduplication, which occurs through successive rounds of DNA 

replication without mitosis. However, there is evidence that ploidy level is often but not 

always associated with cell size (Sugimoto-Shirasu and Roberts 2003).  

 Cell expansion in plants is modulated by different plant hormones via their specific 

or cross-talk pathways. For instance, brassinosteroid (BR) plays an important role in 
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controlling polar cell expansion during organ development. BR deficient mutant 

rotundiolia 3 (rot3) and BR insensitive mutant brassinosteroid-insensitive 1 (bri1) 

exhibited a defect in cell expansion in the leaf-length direction (Kim et al. 2005; Clouse, 

Langford, and McMorris 1996). Ethylene also functions as an important modulator of cell 

expansion. The constitutive ethylene response mutant ctr1 produced smaller rosette leaves 

with a reduction in the size of epidermal cells, protruding gynoecium out of the unopened 

bud and infertile early flowers. Leaf epidermal cells from ethylene-treated WT plants were 

also smaller than those from air-grown WT plants, indicating that ethylene inhibits cell 

expansion (Kieber et al. 1993). Overexpression of an ethylene-induced gene RhNAC100 in 

Arabidopsis significantly reduced the petal size by inhibiting cell expansion, suggesting a 

negative role of ethylene in cell expansion (Pei et al. 2013). Ethylene also inhibits primary 

root length by reducing cell elongation (De Cnodder et al. 2005) (Růžička et al. 2007; 

Swarup et al. 2007). Despite the general view of ABA as a growth inhibitor, paradoxically 

there are a number of studies showing its stimulatory effect on cell expansion and organ 

growth (Humplík, Bergougnoux, and Van Volkenburgh 2017). In tomato, ABA-deficient 

mutants flacca (flc) and notabilis (not) showed inhibited leaf and stem growth. The stunted 

growth persisted when they were grown under well-watered conditions but can be restored 

by treatment of exogenous ABA, suggesting that ABA is required to maintain shoot growth, 

independently of its effects on water balance in plants (Sharp et al. 2000). In Arabidopsis, 

the ABA-deficient mutant abscisic acid deficient 1 (aba1) is characterized by reduced size 

of rosette leaves, inflorescence and flowers. The reduced growth of rosette leaves is due to 

a decreased cell size, which can be improved by exogenous application of ABA with low 

concentrations (up to 50 nM). Moreover, low concentrations of exogenous ABA increase 
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the mesophyll cell size of WT plants (Barrero et al. 2005), revealing a positive role for 

ABA in cell expansion during organogenesis. The Arabidopsis ABA-deficient mutant 

abscisic acid deficient 2 (aba2) exhibited severe growth defects in all vegetative organs 

and siliques in the absence of exogenous sugars and stress conditions, which is another 

important piece of evidence suggesting the role of ABA as a growth stimulator (Cheng et 

al. 2002).  

 In the Arabidopsis thaliana genome, there are 197 Myb family members. They are 

characterized by the presence of a Myb DNA-binding domain (DBD) that contains three 

α-helices. The second and third helices which form a helix-turn-helix structure are 

responsible for interaction with the major grooves of DNA (Ogata et al. 1994). Myb family 

proteins are classified into four major groups according to the number of Myb DBD present 

within the sequence, namely 1R-Myb/Myb-like, which usually but not always contain one 

Myb repeat, R2R3-Myb, R1R2R3-Myb and 4R Myb (Katiyar et al. 2012; Yanhui et al. 

2006). R2R3-Myb proteins are most extensively studied in Arabidopsis. They are involved 

in many biochemical and physiological processes, including primary and secondary 

metabolism, developmental processes, cell differentiation and defense responses (Dubos et 

al. 2010). Compared with R2R3-Myb proteins, Myb-like proteins are not well 

characterized. The first plant Myb-related protein (StMyb1) was isolated from potato. It 

has a Myb-like motif in the central region of the protein that confers DNA binding 

specificity and a C-terminal proline-rich region that functions as a transcriptional activation 

domain (Baranowskij et al. 1994). Functions of Myb-like proteins were then assigned for 

circadian clock control, such as CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and 

LATE ELONGATED HYPOCOTYL (LHY) (Alabadı́ et al. 2002; Mizoguchi et al. 2002; 
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Schaffer et al. 1998; Wang and Tobin 1998); epidermal cell differentiation, such as 

CAPRICE (CPC) (Wada et al. 1997); trichome patterning, such as TRIPTYCHON (TRY) 

(Pesch and Hülskamp 2011); telomeric DNA binding, such as AtTBP1 (Hwang et al. 2001); 

and controlling cell expansion by regulating ROS homeostasis, such as KUODA1 (Lu et 

al. 2014).  

 To better understand the underpinnings of cell expansion during organ development, 

here we identify a novel Myb-like protein, Development Related Myb-like1 (DRMY1), 

which controls growth of both vegetative and reproductive organs by regulating cell 

expansion, and affects seed production. By performing RNAseq, we hypothesized that 

DRMY1, possibly through interaction with other transcription factors, may regulate cell 

expansion either directly through regulating cell wall biosynthesis/remodeling and 

ribosome biogenesis or indirectly through ethylene and ABA signaling cascades to set the 

final size and shape of the organ.   

Methods 

Plant materials and growth conditions 

 The Arabidopsis thaliana ecotype Columbia-0 (Col-0) was used as the wild type 

(WT) in this study. The drmy1 T-DNA insertion mutant (SALK-012746) was obtained 

from Arabidopsis Biological Resource Center (ABRC) stock center. Seeds were planted in 

commercial nutrient-rich soil (3-B Mix, Fafard) and synchronized in darkness at 4℃ for 

three days before transferring to the growth chamber with photoperiod (16h, 22℃/8h, 20℃) 

and illumination of 100 µmol/m2/s. Fully expanded fifth leaves in 36-day-old plants were 

used to characterize the leaf phenotype. Bolting time was measured as the date when the 

inflorescence stem elongated by 1cm while flowering time was measured as the date when 
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the first flower opens. Flower buds and mature flowers from the primary inflorescence 

stem were used for observation of the flower phenotype. 45-old-day plants were used for 

measurement of seed production while 7-week-old plants were used for measurement of 

plant height. For phenotypic analysis of primary root length and lateral root number, 

sterilized seeds were plated on half-strength Murashige and Skoog (MS) medium 

supplemented with 1% sucrose and 0.6% agar and chilled in 4℃ for three days to 

synchronize germination before growing vertically in the growth chamber under the 

conditions described above. 1-week-old Arabidopsis seedlings were used for measurement 

of primary root length. Lateral root number was measured by counting the lateral root 

number emerged from the primary root in 10-day-old Arabidopsis seedlings.   

Cytological analyses 

 To assess the contribution of cell number and cell size to the organ size, fully 

expanded fifth leaves were excised and placed in a destaining solution (75% ethanol and 

25% acetic acid). After infiltration for 1 h and staying at room temperature for at least 24 

h, the destaining solution was exchanged with the basic solution (7% NaOH in 60% ethanol) 

for 15-20 min at room temperature followed by rehydration via an ethanol series (40, 20, 

and 10%) for 10-15 min at each step. After infiltration for 30 minutes in 25% glycerol 

(vol/vol) diluted in 5% ethanol, leaves were finally mounted in 50% glycerol and imaged 

under the microscope (MEIJI EMZ-5TR, Meiji Techno, Japan) (Yang, Wang, et al. 2014). 

The palisade cells at the central region beside leaf mid-vein were photographed to 

determine cell number and cell size. The total cell number per leaf was estimated as the 

product of total leaf area and average cell number per unit area. Average cell size was 

measured with ImageJ software (http://rsb.info.nih.gov/ij/).  

http://rsb.info.nih.gov/ij/
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 For observation of leaf adaxial epidermal cells and flower stigmatic papillae, leaves 

and flowers were fixed at FAA fixation solution (50% ethanol 89 ml, glacial acetic acid 6 

ml, formaldehyde 5 ml) for at least 24 h. They were then dehydrated through an ethanol 

series (70, 80, 90, 95 and 100%) for 15 min at each step followed by CO2 critical point 

drying in a K850 critical point drier (Quorum Technologies, UK), coated with Platinum in 

an HUMMER 6.2 sputtering system (ANATECH LTD, US), and then examined with a 

Variable-Pressure Scanning Electron Microscope S-3400N-2 (Hitachi, Japan). 

 To detect fluorescence of DRMY1 tagged with GFP using Confocal Laser Scanning 

Microscope (CLSM), WT (negative control), 35S-GFP transgenic plants (positive control) 

and 35S-DRMY1-GFP transgenic plants were grown on half-strength MS media for 4-5 

days with the bottom of the petri dish wrapped with aluminum foil to avoid fluorescence 

quenching by light. Roots were mounted under a coverslip with 20 µg/ml DAPI and 

photographed using the Leica TCS SPE confocal microscope with the following settings: 

laser excitation at 488 nm and a 505–550 nm emission filter for GFP; laser excitation at 

358 nm and a 461nm emission filter for DAPI.  

Pollen tube growth assay 

 Transgenic pollen harboring lat52-GUS was manually applied to WT and drmy1 

stigma at flower stage 13 (Smyth, Bowman, and Meyerowitz 1990). After 24 h, WT and 

drmy1 pistils were excised and mounted on double-sided tape to remove the ovary walls 

under the microscope (MEIJI EM-5, Meiji Techno, Japan). They were then immediately 

placed in a microcentrifuge tube containing 80% acetone overnight to fix cells and remove 

chlorophyll. WT and drmy1 pistils were then incubated in X-Gluc solution (2 mM 5-

bromo-4-chloro-3-indolyl β-D-glucuronide, 2 mM ferrocyanide, 2 mM ferricyanide, 0.2% 
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TritonX in 50 mM phosphate buffer, pH 7.2) at 37°C overnight. They were cleared in 70% 

ethanol, mounted under a coverslip with 50% glycerol and imaged under the microscope 

(MEIJI EM-5, Meiji Techno, Japan).  

Plasmid construction and plant transformation 

 For construction of the DRMY1 genomic DNA construct, genomic DRMY1 

including 2296bp of 5’UTR sequence, 4282bp of exons and introns, and 1145bp of 3’UTR 

sequence was cloned into pGEM-T Easy vector (Promega) and sequenced. The genomic 

DRMY1 fragment was then subcloned into the binary vector, p35S-bar. For the pDRMY1-

GUS construct, a 3.6 kb genomic fragment from the DRMY1 promoter was cloned into 

pGEM-T Easy vector and sequenced. The promoter sequence was then subcloned upstream 

of GUS gene in the binary vector, p35S-bar/GUS. To generate the DRMY1-GFP fusion 

construct, the DRMY1 coding sequence without the stop codon was amplified from cDNAs 

by RT-PCR, ligated into the pGEM-T Easy vector and sequenced. DRMY1 was then 

subcloned into the pCambia binary vector, p35S-C4ppdk1-sGFP(S65T)/p35S-hptII, in 

frame upstream of sGFP (S65T). For the DRMY1 overexpression construct, p35S-

DRMY1/p35S-hptII, DRMY1 coding sequence was amplified from cDNAs by RT-PCR, 

ligated into the pGEM-T Easy vector and sequenced, and was then subcloned into the 

pCambia vector. Primers used for generation of the above constructs are listed in 

Supplemental Table A-1. The generated constructs were transformed into Agrobacteria 

tumefaciens strain LB4404 by electroporation. Floral dip method was used for Arabidopsis 

thaliana transformation as described previously (Clough and Bent 1998).  

Sequence alignment and phylogenetic tree construction 
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The full-length amino acid sequences of DRMY1 and its paralog named DRMY1 

Paralog 1 (DP1) were obtained from the Arabidopsis Information Resource (TAIR) 

database. Sequence alignment of DRMY1 and DP1 full-length amino acid sequences was 

performed with the MultAlin software with default settings (Corpet 1988). The conserved 

domain of DRMY1 and DP1 was predicted using NCBI Conserved Domains Database 

(Marchler-Bauer et al. 2011). The BLAST tool in The Universal Protein Resource (Uniprot) 

database was used to search for proteins possessing similar domain with DRMY1 and DP1 

(Consortium 2017). Sequence alignment of DNA binding domains was conducted using 

Clustal Omega software with default settings (Goujon et al. 2010; Sievers et al. 2011). To 

elucidate the phylogenetic relationships among DRMY1 and its homologous proteins from 

land plants, full-length amino acid sequences of DRMY1 were blasted against non-

redundant (nr) protein database in NCBI. Proteins with similarity > 40% were retained and 

aligned with BioEdit software (Hall, 1999). Phylogenetic tree was constructed by the 

Maximum Likelihood method in MEGA 6 using 1,000 bootstrap replicates (Tamura et al. 

2013).  

Histochemical β-Glucuronidase (GUS) staining 

 GUS activity was assayed by histochemical staining with X-Gluc solution. Plant 

samples immersed in X-Gluc solution were vacuum infiltrated for 1 h, followed by 

incubation at 37°C overnight in the dark and then cleared in 70% ethanol and imaged under 

the microscope (MEIJI EM-5). 

Hormone treatment and gene expression analysis 

 For the hormone treatment, nine-day-old seedlings grown on half-strength MS solid 

medium were transferred to half-strength MS liquid medium containing GA3 (100 μm), 
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IAA (5 μm), ACC (5 μm), BL (1 μm) or ABA (50 μm) as previously reported (Qin et al. 

2014). Samples were collected after 3-h treatment.  

 Total RNA was isolated from 100 mg of plant materials using Trizol reagent 

(Invitrogen) following the manufacturer’s guided protocols. After digestion with DNaseI, 

RNA was reverse transcribed into first strand cDNA with ProtoScript II Reverse 

Transcriptase (Biolabs) and oligo (dT) primers for subsequent RT-PCR or real-time 

quantitative PCR (qRT-PCR) analysis.  

 qRT-PCR was performed with SYBR Green Supermix (Bio-Rad) according to the 

manufacturer’s guided protocols. AtACTIN2 was used as an endogenous control for qRT-

PCR analysis. The relative gene expression change was calculated based on the 2-ΔΔCT 

method (Livak and Schmittgen 2001). The experiments were conducted with two 

biological replicates (three technical replicates each). Primers used for expression analysis 

are shown in Supplemental Table A-1.  

Transactivation assay in yeast 

 The transactivation assay was performed according to the method previously 

described (Yang, Li, et al. 2014). The Yeast strain Y2HGold (Clontech), which contains 

the following four reporter genes HIS3, ADE2, AUR1-C, MEL1 (encoding α-galactosidase) 

with GAL4 binding elements in each of their promoters was used to examine whether 

DRMY1 possesses transactivation ability. DRMY1 and AtGRF1 coding sequence (CDS) 

were cloned into pGBKT7 vector (Clontech), respectively to produce the fusion protein 

with the GAL4 DNA-binding domain (DBD). The resulting construct pGBKT7-DRMY1, 

pGBKT7-AtGRF1 (positive control) and the empty vector pGBKT7 (negative control) 

were individually transformed into Y2HGold competent cells according to previously 
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described method (Agatep et al. 1998). The yeast cells were grown on synthetic dextrose 

(SD) medium without Trp (SD/-Trp) for 2-3 days at 30°C to select for successful 

transformants as the pGBKT7 vector harbors a tryptophan (Trp) selection gene. 

Transactivation activity was then assayed on the following selective media: SD/-Trp/-His, 

SD/-Trp/-Ade, SD/-Trp/-His/-Ade, SD/-Trp/-His/-Ade/+X-α-gal to test the expression of 

the reporter genes.  

Cell wall biochemical assay  

 The cell wall biochemical analyses were carried out as described previously (Foster, 

Martin, and Pauly 2010a, 2010b). Briefly, the lignocellulosic cell wall material was 

isolated from aerial parts of 18-day-old plants. After trifluoroacetic acid (2M) hydrolysis 

and subsequent derivatization of the neutral monosaccharides in the hydrolysate by alditol 

acetate, the polysaccharide composition was analyzed via GC-MS system (Agilent 7890A 

GC/5975C MS). The content of crystalline cellulose was determined by using the 

colorimetric anthrone assay after isolation and purification from the insoluble residue 

remaining from the TFA hydrolysis and hydrolyzation in sulfuric acid (72%). For the lignin 

content analysis, the acetyl bromide soluble lignin (ABSL) method was performed and 

assayed using a photospectrometer at 280 nm (Spectromax 384 plus). For the lignin content 

calculation, the molar extinction coefficient for maize (17.75 g-1Lcm-1) was used, which 

was previously determined in literature (Fukushima and Hatfield 2004). The lignin 

composition was quantitated using GC-MS analysis (Agilent 7890A GC/5975C MS) after 

liberation of the p-Hydroxylphenyl (H), Guaiacyl (G), and Syringyl (S) monomers by 

thioacidolysis method and subsequent silylation with BSA according to the published 

procedure (Harman‐Ware et al. 2016).  



` 

 44 

RNAseq library preparation and data analysis 

 Three replicates of aerial parts of 15-day-old plants were harvested from WT and 

homozygous drmy1 mutant plants. Total RNA was isolated using Trizol reagent 

(Invitrogen) following the manufacturer’s guided protocols. After digestion with DNaseI, 

it was then purified using RNeasy Mini Kit (Qiagen). Total RNA fractions with 260/280 

absorbance of 2.0 and RNA integrity of 8.0 or higher were used for RNAseq library 

construction. Each replicate was quantified by Qubit (Thermo Fisher Scientific) and 

normalized to 1 microgram.  RNAseq libraries were constructed using the stranded TruSeq 

mRNAseq kit (Illumina Technologies) following the manufacturer’s recommended 

procedures. Paired-end sequencing of each library (2x125bp) was collected on a HiSeq 

2500 (Illumina Technologies). The raw paired-end reads were scored for quality using 

FastQC version 0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and 

then trimmed to remove adapter sequences and low-quality bases using Trimmomatic 

version 0.36 (Bolger, Lohse et al. 2014). Preprocessed reads were aligned to the 

Arabidopsis thaliana reference genome assembly (TAIR10 release) using Tophat v2.1.1 

(Trapnell, Pachter et al. 2009). Read counts per gene were quantified using the 

feature.Counts program that accompanies Subread (v1.5.3)  (Liao, Smyth et al. 2013) for 

WT and drmy1 samples. The differential gene expression analysis was performed using 

edgeR release 3.5 (Robinson, McCarthy et al. 2010). Genes with 2-fold change or above, 

P < 0.05 and FDR < 0.05 after multiple testing adjustment were defined as differentially 

expressed genes (DEGs). Heatmaps showing expression profiles between WT and drmy1 

samples were generated based on the log2 counts-per-million (log2CPM) values. Gene 

Ontology (GO) enrichment analysis was performed using the functional annotation tool in 
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The Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 

(Dennis, Sherman et al. 2003). Enriched GO terms were identified with P value cut-off of 

< 0.05 and Bonferroni value cut-off of < 0.05. 

Results 

drmy1 exhibits pleotropic phenotypes in vegetative growth 

 To study the genetic networks underlying plant organ development, an Arabidopsis 

T-DNA insertion mutant named development related Myb-like 1 (drmy1) with altered 

organ growth was identified . Detailed phenotypic characterization of drmy1 revealed its 

delayed seed germination and reduced vegetative growth as compared to wild type (WT). 

As shown in Figure 2.1, when measuring daily seed germination frequencies over 7 days 

on half-strength MS solid media, about 70% of WT seeds germinated, whereas only 10% 

of drmy1 seeds germinated at 24 hours. All the WT seeds germinated within 48 hours, 

while only 79% of drmy1 seeds germinated at this time, indicating that the drmy1 mutant 

seeds have a slower seed germination rate than WT seeds. It is also interesting to note that 

about 6.7% of the drmy1 mutant seeds did not germinate at 168 hour, indicating that seed 

viability is affected in these seeds.  

  

Figure 2.1. Seed germination 

assay of WT and the drmy1 

mutant. The germination 

frequencies were scored every 24 h 

for 5 days after sown on half-

strength MS solid media. 48 h after 

that, the final germination 

frequency at the 7th day was 

measured. Error bars indicate SD. 

Asterisks represent statistically 

significant differences calculated by 

Student’s t-test (*, P < 0.05; **, P < 

0.01; ***, P < 0.001). 
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 Another striking phenotype of drmy1 was its reduced leaf growth (Figure 2.2A). 

The fifth rosette leaf was chosen as a representative for leaf growth kinetics (Figure 2.2B) 

because it was found to have the most reproducible features of all rosette leaves in 

Arabidopsis (Tsuge, Tsukaya, and Uchimiya 1996). As shown in Figure 2.2B, the drmy1 

mutant exhibited a slower leaf blade growth rate compared to WT.  Fully expanded fifth 

leaves in 36-day-old plants were then used to characterize the final leaf phenotype. Leaf 

petiole length was not changed in the drmy1 mutant (Figure 2.2C) but the average leaf 

blade area of drmy1 was reduced by 16.8% compared to WT (Figure 2.2D). Leaf shape in 

the drmy1 mutant was also altered with growth reduction in the width direction while not 

in the length direction (Figure 2.2E, 2.2F), leading to a narrower leaf with increased leaf 

index (the ratio of leaf blade length to leaf width).  

Figure 2.2. Leaf morphology of WT and the drmy1 mutant. (A) 21-d-old plants of WT (left) and the 

drmy1 mutant (right). Bar, 1 cm. (B) Growth kinetics of the fifth leaves in WT and the drmy1 mutant plants. 

The leaf area was determined from at least four leaves for each genotype after their emergence at 2-day 

intervals. Five fully expanded fifth leaves from each genotype were used for determination of the following 

leaf parameters: (C) Petiole length of WT and the drmy1 mutant leaves, (D) Leaf blade area of WT and the 

drmy1 mutant leaves, (E) Leaf blade length of WT and the drmy1 mutant leaves, (F) Leaf blade width of WT 

and the drmy1 mutant leaves. Error bars indicate SD. Asterisks represent statistically significant differences 

calculated by Student’s t-test (*, P < 0.05; **, P < 0.01; ***, P < 0.001).  
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 In addition to leaf growth defects, drmy1 also exhibited reduced primary root 

growth and lateral root number emerged from the primary root (Table 2.1). Moreover, 

drmy1 plant height was reduced by 15.6% compared to WT (Table 2.1, Figure 2.4A), 

indicating that stem development of drmy1 was also inhibited.   

               Table 2.1. Phenotype of WT and the drmy1 mutant 

               Student’s t-test: *, P < 0.05; **, P < 0.01; ***, P < 0.001 

 As the leaf has been shown to be a good model to characterize organ development 

(Tsukaya 2003, 2008), we then further investigated the contribution of cell number and cell 

size to the reduced organ size in drmy1. Firstly, epidermal pavement cells in the drmy1 

mutants exhibit an abnormal shape compared to the jigsaw puzzle-like epidermal pavement 

cells in WT when observed under the scanning electron microscope (SEM) (Figure 2.3A). 

We then measured the number and size of palisade cells in drmy1 fully expanded fifth 

leaves compared with those in WT (Figure 2.3B). As shown in Figure 2.3C and 2.3D, the 

average size of palisade cells in drmy1 was decreased by 10.8% whereas the total palisade 

cell number remained almost unchanged. This result indicates that DRMY1 mainly impacts 

the process of cell expansion rather than cell proliferation during leaf development.  
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Figure 2.3. Cytological observation of WT and the drmy1 mutant leaf. (A) Scanning electron microscopic 

photographs of adaxial epidermal cells of the fifth leaf in WT (left) and drmy1 (right) 30-day-old plants. (B) 

Palisade cells of the fully expanded fifth leaf in WT (left) and drmy1 (right) plants. Bars, 100 µm. (C) 

Estimated palisade cell number per leaf (top) and (D) cell size (bottom) in WT and drmy1 plants. Five fully 

expanded fifth leaves from each genotype were cleared and visualized under a microscope to determine the 

palisade cell number per leaf and cell size. Error bars indicate SD. Asterisks represent statistically significant 

differences calculated by Student’s t-test (*, P < 0.05; **, P < 0.01; ***, P < 0.001).  

drmy1 produces fewer seeds than wild type, which is associated with abnormal flower 

development  

 Besides the growth defect in vegetative organs, drmy1 was also partially sterile 

(Figure 2.4A, 2.4B) and produced shorter and curved siliques compared to WT (Figure 

2.4C). We quantified the following four parameters to determine seed production in the 

drmy1 mutant: the number of inflorescence stems, total silique number in the primary stem, 

percentage of siliques with different length and shape in the primary stem, and seed number 

per silique. The number of inflorescence stems in the drmy1 mutant is similar to WT 

(Figure 2.4D), thus siliques in the primary stem were used as representatives for further 

characterization of seed production. The total number of siliques in the drmy1 primary 
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stems didn’t show significant change compared to those in WT (Figure 2.4E). However, 

they exhibited difference in length and shape, which could be divided into three categories: 

the long siliques (≥1cm), the short siliques (≤1cm) and the curved siliques that are 

completely sterile (Figure 2.4F). As shown in Figure 2.4F, the majority of drmy1 siliques 

are short and seedless and only a small percentage of them are long. The long siliques of 

drmy1 were then used to measure seed number per silique compared to WT normal siliques. 

There is an average of 57 seeds in WT siliques while only 13 seeds were set in drmy1 long 

siliques (Figure 2.4G). These data suggest that drmy1 has reduced seed production 

compared to WT.  

Figure 2.4. Silique phenotype and seed production in WT and the drmy1 mutant. (A) Whole plant of 

40-day-old WT and the drmy1 mutant. (B) Main inflorescence stem of WT and the drmy1 mutant, 

respectively. (C) Representative siliques of WT (top) and the drmy1 mutant (bottom) plants. Bar, 0.5 cm. 

Seed production was measured based on the following parameters: (D) number of inflorescence stems, (E) 

number of siliques in the main inflorescence stem in WT and the drmy1 mutant, (F) percentage of different 

types of siliques in WT and the drmy1 mutant, (G) average number of seeds in WT normal siliques versus 

drmy1 long siliques. Three plants from each genotype were measured. Error bars indicate SD. Asterisks 

represent statistically significant differences calculated by Student’s t-test (*, P < 0.05; **, P < 0.01; ***, P 

< 0.001). 
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 Seed production relies on normal flower development and a successful fertilization 

process. To investigate the cause for the reduced seed production in the drmy1 mutant, we 

observed its flower development compared to that of WT. Before flowering, WT flower 

buds are enclosed by sepals (Figure 2.5A) while drmy1 flower buds showed protruding 

pistils (Figure 2.5B), possibly due to the inhibited elongation of sepals. We also observed 

that mature drmy1 flowers are smaller than WT flowers (Figure 2.5C). We then removed 

part of the sepals and petals for the observation of pistil and stamen morphology. When the 

WT flower matures, its stamen is level with the stigma so that the released pollen can land 

on the stigma, which facilitates fertilization (Figure 2.5D). But in the drmy1 mutant, the 

fertilization process may be disrupted due to the defective growth of both pistils and 

stamens. First, we observed abnormal stigma papillae in drmy1 flowers (Figure 2.5E). 

Second, we observed curved pistils in drmy1 flowers (Figure 2.5F), which might lead to 

the curved siliques as observed previously. Moreover, some drmy1 flowers show growth 

defect in filament elongation (Figure 2.5G), rendering the inaccessibility of pollens to the 

stigma and thus preventing pollination. Anther dehiscence and pollen maturation are not 

affected in the drmy1 mutant, which is confirmed by microscopic observation and 1% 

iodine potassium iodide (I2-KI) staining, respectively (Supplemental Figure A-1A and A-

1B). We then used Scanning Electron Microscope (SEM) to better dissect the abnormal 

stigma papillae in drmy1 flowers. At flower stage 12 (Smyth, Bowman, and Meyerowitz 

1990), WT flowers showed elongating stigmatic papilla cells while the elongation of these 

cells is disrupted in drmy1 flowers (Figure 2.6A). When the flower opens at stage 13, 

stigmatic papilla cells were fully expanded in WT flowers but not in drmy1 flowers (Figure 

2.6B). Stigmatic papilla cells have essential roles during pollination by mediating pollen-
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pistil interactions (Elleman et al. 1988). Given their abnormal development, we 

hypothesized that the defective drmy1 stigma might be less receptive to mature pollen 

grains. To test this hypothesis, we manually pollinated WT and drmy1 defective stigma 

with pollens from transgenic plants harboring a pollen-specific lat52-GUS reporter (Figure 

2.7A). GUS staining was then used to visualize pollen tube growth after 24 hours. 

Surprisingly, we found that the defective growth of drmy1 stigmatic papilla cells did not 

seem to inhibit pollen germination and pollen tube growth. However, if pollinated 

pistilswere allowed to grow for two weeks for seed production, drmy1 has much fewer seed 

set in the siliques compared to WT (Figure 2.7B), suggesting that fertilization did not 

succeed or the fertilization process did succeed but the fertilized eggs cannot develop into 

seeds, resulting in less seed production in drmy1.  

 

Figure 2.5. Flower phenotypes of WT and the drmy1 mutant. (A) (B) Flower buds of WT and the drmy1 

mutant, respectively. Bars, 0.5 mm. (C) The first opened WT flower was larger than the drmy1 mutant flower 

in the same position, but the floral organization was similar. Bar, 2 mm. (D) A dissected mature flower of 

WT. Bar, 2 mm. (E) The drmy1 mature flower has abnormal stigma. Bar, 2 mm. (F) The drmy1 mature flower 

has a curved pistil, preventing pollination. Bar, 2 mm. (G) The drmy1 mature flower with the pistil longer 

than the stamens at floral stage 13, preventing pollination. Bar, 2 mm. 
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Figure 2.6. Flower development of WT and the drmy1 mutant. (A) Scanning electron microscopic 

photographs of stage 12 flower buds of WT and the drmy1 mutant with overall view (left, bar = 1 mm) and 

close-up view (right, bar = 400 µm). Note that stigmatic papillae of drmy1 are shorter than those of WT. (B) 

Scanning electron microscopic photographs of stage 13 flowers of WT and the drmy1 mutant with overall 

view (left, bar = 1 mm) and close-up view (right, bar = 400 µm). Note the retarded growth of stigmatic 

papillae cells in the drmy1 mutant flower.  

 

Figure 2.7. Observation of pollen penetration and seed production for WT and the drmy1 mutant pistils 

pollinated with lat52 promoter-GUS transgenic pollens. (A) Histochemical GUS staining for WT and 

drmy1 pistils manually pollinated with transgenic pollens harboring pollen-specific lat52 promoter-GUS. 

Note that pollens entered the transmitting tract of both genotypes. Bars, 0.5 mm. (B) Representative siliques 

WT and the drmy1 mutant fertilized with lat52 promoter-GUS transgenic pollens. Bar, 0.5 cm. Siliques were 

destained in 70% ethanol to remove chlorophyll. 
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The drmy1 mutant phenotypes are caused by the disruption of a novel Myb-like DNA 

binding protein 

 PCR and DNA sequencing revealed that the T-DNA was inserted in the second 

exon of DRMY1 (At1g58220) gene in an adjacent head-to-tail tandem configuration (Figure 

2.8A, 2.8B), resulting in the disruption of DRMY1 gene expression (Figure 2.8C). To 

confirm that the pleotropic mutant phenotypes of drmy1 were indeed caused by the T-DNA 

insertion, we first examined the genetic linkage of the mutant phenotypes with T-DNA 

insertion. To this end, we backcrossed drmy1 mutant with WT Columbia (Col-0) to 

generate F1, which were self-crossed to produce the F2 progeny. All F1 plants showed WT 

morphology and F2 plants showed a phenotypic segregation of WT: drmy1 as 3:1 (97:31, 

P>0.8, Student’s T-test) (Supplemental Figure A-2), indicating that the mutant phenotype 

co-segregates with the recessive mutation caused by the T-DNA insertion. To further 

confirm the functionality of DRMY1 in organ development, we introduced a construct 

harboring genomic DRMY1 into drmy1 mutant and generated complementary transgenic 

lines. We used two lines, C1 and C3, for phenotypic characterization, in which the 

expression level of DRMY1 is comparable to WT (Figure 2.9D). In the T1 generation, 

heterozygous C1 and C3 have segregating populations, in which plants with the restored 

phenotype correspond to the complemented transgenics while plants with the mutant 

phenotype correspond to the segregating drmy1 mutants (Figure 2.9A, 2.9B, 2.9C), 

suggesting that the mutant phenotype is caused by the disruption of DRMY1. 
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Figure 2.8. Schematic presentation of T-DNA insertions in the drmy1 mutant and expression analysis 

of DRMY1 in WT and the drmy1 mutant. (A) Schematic diagram showing double T-DNA insertions in the 

DRMY1 gene and primer locations. (B) PCR analysis of WT and drmy1 genomic DNA using three pairs of 

primers. Primer LB are designed for T-DNA while primer LP and RP are designed for the genomic region. 

(C) RT-PCR analysis of DRMY1 expression in WT and the drmy1 mutant. AtACTIN2 was used as an 

endogenous control.  

Figure 2.9. Phenotypic and molecular characterization of complementary transgenic plants with the 

introduction of genomic DRMY1 sequence into the drmy1 mutant. (A) Phenotypic observation of 2-week-

old complementary transgenic lines C1 and C3 in T1 generation. Note the presence of both complemented 

transgenics and the drmy1 mutant plants in T1 segregating populations. Bars, 1 cm. (B) Main inflorescence 

of WT, the drmy1 mutant, C1 and C3 from left to right. Bar, 1 cm. (C) PCR analysis for individual plants in 

T1 generation using primers for the Basta resistance gene that is present in the complemented transgenic 

plants but not in WT and the drmy1 mutant. Note the correspondence of the individual phenotype and the 

presence of amplicon. N: negative control; P: positive control. (D) qRT-PCR analysis for DRMY1 expression 

levels in C1 and C3 lines. 
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 DRMY1 protein has one Telomere Repeat Binding Factor (TRF)-like Myb DNA 

binding domain determined by searching Conserved Domains Database in NCBI 

(Marchler-Bauer et al. 2011), which belongs to the Myb-like subfamily that usually 

contains a single Myb repeat (Yanhui et al. 2006). In Arabidopsis thaliana, DRMY1 has a 

homolog we named DRMY1 Paralog 1 (DP1) with unknown function, which is predicted 

to have two alternatively spliced isoforms DP1-1 and DP1-2 with an overall protein 

sequence identity of 52.2% and 57.3% respectively to DRMY1 (Figure 2.10A). 

Interestingly, the dp1 T-DNA insertion mutant (SALK_113831C) did not show any 

significant phenotypic variation regarding organ development as shown in Supplemental 

Figure A-3, suggesting that DP1 may not play a role in controlling plant growth.  

 To gain insight into the possible role of DRMY1, we blasted the DRMY1 Myb 

DNA binding domain against The Universal Protein Resource (UniProt) database to search 

for proteins possessing a similar domain (Apweiler et al. 2004), among which only the 

human Telomeric repeat-binding factor 2 (hTRF2) (domain similarity: 38.9%) has been 

functionally characterized and reported in the literature (Smogorzewska et al. 2000). 

hTRF2 is one of the six components of human shelterin, which together with hTRF1 

functions in the protection of telomeres. TRF2 can also impose a restraint on telomerase, 

thereby a negative regulator of telomere length (Smogorzewska et al. 2000). To better 

characterize DRMY1’s Myb DNA binding domain, sequence alignment was conducted 

using the Myb DNA binding domain of DRMY1 and DP1, the telomere binding domains 

of hTRF2 and other known telomere binding proteins in Arabidopsis thaliana (AtTBP1, 

AtTRP1), rice (RTBP1) and tobacco (NgTRF1). Interestingly, DRMY1 does not possess a 

highly conserved motif LKDKW(R/K)(N/T) within the Myb-like DNA binding domain 
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that is typical of telomere binding proteins (Figure 2.10B). To gain further insight into 

DRMY1’s possible function, the complete amino acid sequence of DRMY1 was used to 

search for homologous proteins (similarity > 40%) in land plants (taxid: 3193) using NCBI 

BLASTP tool. A phylogenetic tree was generated as shown in Figure 2.10C, in which none 

of these proteins have known functions reported in the literature. 
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Figure 2.10. Sequence alignment and phylogenetic analysis of DRMY1 protein with its homologs. (A) 

Sequence alignment of DRMY1 protein and its paralog DP1 (two isoforms:  DP1-1, DP1-2) in Arabidopsis 

thaliana. The amino acid sequence in the black box was predicted to be a Myb DNA binding domain. (B) 

Sequence alignment of the DNA binding domain in DRMY1, DP1, human hTRF2 and other known telomere 

binding proteins in Arabidopsis thaliana (AtTBP1, AtTRP1), rice (RTBP1) and tobacco (NgTRF1). The 

conserved motif LKDKW(R/K)(N/T) present in the telomere binding proteins is enclosed in the black box. 

(C) Phylogenetic analysis of DRMY1 and its closely related proteins (homology > 40%) in land plants by 

the Maximum Likelihood method using MEGA 6. Numbers on each branch correspond to bootstrap estimates 

for 1000 replicate analyses.  

DRMY1 is highly expressed in developing organs and vascular tissues 

 To investigate the spatial and temporal expression pattern of DRMY1, we examined 

its expression in transgenic Arabidopsis harboring a DRMY1pro-GUS fusion gene by 

histochemical GUS staining. In the seedling stage (Figure 2.11A, 2.11B, 2.11C), DRMY1 

was abundantly expressed at leaf primordia, roots tips and leaf vascular bundles. In the 

reproductive growth stage, strong DRMY1 expression was observed in developing flowers, 

apices and bases of elongating siliques as well as the funiculus (Figure 2.11D, 2.11E, 2.11F, 

2.11G). We also detected the expression of DRMY1 in different organs at different 

developmental stages through qRT-PCR. Consistent with GUS staining assay, high 
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expression of DRMY1 was detected in young rosette leaves and developing flowers, in 

support of its role in regulation of leave and flower development (Figure 2.11H). By 

contrast, DRMY1 expression in the root and the stem is relatively low. 

Figure 2.11. Spatial and temporal expression of DRMY1. (A-G) Histochemical GUS staining of (A) 5-

day-old seedlings. Bar, 0.5 mm. (B) 15-day-old young leaf. Bar, 1 mm. (C) 15-day-old young root. Bar, 0.25 

mm. (D) Flower cluster, cauline leaf and stem in the primary inflorescence of 35-day-old plant. Bar, 2 mm. 

(E) Opened flower. Bar, 0.5 mm. (F) Elongating silique. Bar, 1mm. (G) Developing seeds. Bar, 0.5 mm. (H) 

Real-time PCR analysis of DRMY1 gene expression in different Arabidopsis organs with two biological 

replicates (three technical replicates each). AtACTIN2 was used as an endogenous control.   

DRMY1 is localized in the nucleus, but does not have transactivation ability 

 To elucidate the possible role of the DRMY1 protein, we then investigated the 

subcellular localization of the DRMY1 protein in drmy1 Arabidopsis roots carrying 35S-

DRMY1-GFP. The restored plant growth in the transgenic plants indicates that the fusion 

protein is functional (Supplemental Figure A-4). The GFP florescence signals were 

detected mainly in the nucleus with some signals also detected in the cell surface (Figure 

2.12). 
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Figure 2.12. Subcellular localization of DRMY1 in Arabidopsis thaliana root. 35S-DRMY1-GFP 

transgenic plants were grown for 4-5 days on half-strength MS solid medium with the bottom of the petri 

dish covered with aluminum foil to avoid quenching of fluorescence by light. Fluorescent signals were then 

detected with confocal laser scanning microscope. Fluorescence from DRMY1-GFP fusion protein (left 

panel), DAPI (middle panel) and merged images (right panels) were shown. Bars, 10 µm.  

 A typical Myb family protein usually acts as a transcription factor. To test whether 

DRMY1 has transactivation ability, a transactivation assay was conducted in yeast cells. 

The DRMY1 coding sequence was fused with the GAL4 DNA binding domain (DBD) in 

the pGBKT7 vector and transformed into the Y2HGold yeast strain containing four 

reporter genes as shown in Figure 2.13A. The transcription factor AtGRF1 fused with 

GAL4 DBD in pGBKT7 vector and the pGBKT7 empty vector were used as positive and 

negative controls, respectively. As shown in Figure 2.13B, successful transformants can 

grow on SD/-Trp medium as the pGBKT7 vector harbors a tryptophan (Trp) selection gene. 

Yeast transformants harboring AtGRF1-GAL4 DBD can grow on SD/-Trp/-His medium 

(Figure 2.13C) but not in SD/-Trp/-Ade, SD/-Trp/-His/-Ade or SD/-Trp/-His/-Ade/+X-α-

gal media (data not shown), indicating of a weak transactivation ability in yeast. DRMY1-

GAL4 DBD transformants can grow on none of these media, suggesting that DRMY1 itself 

alone may not possess transactivation ability. It is possible that DRMY1 may require other 

transcription factors to form a complex to regulate the expression of downstream genes.   

 



` 

 60 

 

Figure 2.13. Transactivation assay of DRMY1 protein in yeast cells.  (A) Schematic diagram illustrating 

the constructed effector vectors and the reporter vectors in Y2HGold yeast cells used for transformation. 

Growth of yeast cells transformed with GAL4BD-DRMY1, GAL4BD-AtGRF1 (positive control), GAL4BD 

empty vector (negative control) respectively on (B) SD/-Trp and (C) SD/-Trp-His media.  

Overexpression of DRMY1 does not lead to enhancement of plant growth and seed 

production 

 As the drmy1 mutant has reduced organ growth, we asked whether DRMY1 

upregulation may promote organ growth. We therefore generated transgenic lines, in which 

DRMY1 is constitutively overexpressed under the CaMV 35S promoter. Two transgenic 

lines, OE12 and OE10, were used for phenotypic analysis (Supplemental Figure A-5A, A-

5B). Interestingly, overexpression of DRMY1 does not enhance plant organ growth. 

Conversely, rosette leaf growth was significantly reduced in OE10 (Supplemental Figure 

A-5C, A-5D, A-5E, A-5F). Moreover, there is no significant difference in root and stem 

growth (Supplemental figure A-6A, A-6B, A-6C) and seed production (Supplemental 

Figure A-6D, A-6E, A-6F) between WT and DRMY1 overexpression transgenic plants.   
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The drmy1 mutant phenotypes are associated with an increase of matrix 

polysaccharides in the cell wall  

 Plant cells are surrounded by two types of cell wall, primary cell wall (PCW) and 

secondary cell wall (SCW). While SCW provides mechanical stiffness and rigidity to 

specific cell types such as xylem cells (Cosgrove 2012), PCW has a relatively thin and 

extensible property, and functions as a major regulator for the size and shape of plant cells 

(Geitmann 2010; Hamant and Traas 2010).  Given the evidence that drmy1 mutant has a 

smaller cell size and altered cell shape, we speculated that it might have abnormal cell wall 

architecture. To this end, we analyzed the cell wall composition in 18-day-old developing 

WT and the drmy1 mutant plants. As shown in Figure 2.14A, crystalline cellulose content 

did not show any significant difference between the two genotypes. However, all the 

analyzed matrix monosaccharide components that mainly constitute hemicellulose and 

pectin are significantly higher in the drmy1 mutant than in WT (Figure 2.14B). The content 

and composition of the secondary cell wall component lignin was relatively low in both 

genotypes and did not show any change in drmy1 (Figure 2.14C, 2.14D). 

  

Figure 2.14. Cell wall composition 

analyses in WT and the drmy1 

mutant. The lignocellulosic cell 

wall materials were prepared from 
18-day-old leaves of WT and the 

drmy1 mutant and were then used to 

determine (A) crystalline cellulose 
content, (B) matrix polysaccharide 

composition, (C) lignin content, and 

(D) lignin composition. The results 

are given as average (ug/mg of 

lignocellulosic cell wall material) of 

four independent biological 
replicates with three technical 

replicates within each biological 

replicate. Error bars indicate SD. 
Asterisks represent statistically 

significant differences calculated by 

Student’s t-test (*, P < 0.05; **, P < 

0.01; ***, P < 0.001). 
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The expression of DRMY1 is regulated by plant hormones ethylene and ABA 

 To investigate the possible upstream signals triggering DRMY1 expression, we 

analyzed the promoter sequence of DRMY1 using the Plant Cis-acting Regulatory Element 

(PlantCARE) database (Lescot et al. 2002). There are three different types of hormone-

responsive elements that were identified in DRMY1’s promoter as shown in Table 2.2, 

including two gibberellin-responsive elements, an auxin-responsive element and an 

ethylene-responsive element. To elucidate whether DRMY1 is responsive to plant 

hormones, qRT-PCR analysis of DRMY1 expression was conducted in WT seedlings 

treated with various hormones including GA3, IAA, ACC (ethylene precursor), and ABA. 

We found that the expression of DRMY1 is significantly reduced by ACC while induced 

by ABA although the magnitude of change is small, indicating that DRMY1 might function 

in hormone signaling pathways (Figure 2.15).   

         Table 2.2. Predicted hormone responsive elements in DRMY1’s promoter 

 

Figure 2.15. The transcriptional regulation of DRMY1 by different plant hormones. Error bars indicate 

SD. Asterisks represent statistically significant differences calculated by Student’s t-test (*, P < 0.05; **, P 

< 0.01; ***, P < 0.001). qRT-PCR was conducted with two biological replicates (three technical replicates 

each). AtACTIN2 was used as an endogenous control.   
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DEGs genes in the drmy1 mutant are involved in cell wall biosynthesis/remodeling, 

ribosome biogenesis and hormone signaling pathways  

 To investigate the downstream genes regulated directly or indirectly by DRMY1, 

we conducted RNAseq analysis of WT and drmy1 aerial organs of 15-day-old soil grown 

seedlings. There are 443 genes that were differentially expressed (2-fold-change, P < 0.05, 

FDR < 0.05), of which 335 genes were upregulated and 108 genes were downregulated. 18 

genes related to cell wall biogenesis/remodeling are differentially expressed (Figure 

2.17A). To understand other possible biological functions of these differentially expressed 

genes (DEGs), we performed GO enrichment analysis and identified over-represented gene 

ontology (GO) terms (P < 0.05, Bonferroni < 0.05) for up-regulated and down-regulated 

genes, respectively. We found that GO terms related to ethylene and ABA signaling 

pathways are significantly enriched in the up-regulated genes (Figure 2.16). Average gene 

expression level of DEGs in these two categories were shown in Figure 2.17B and 2.17C, 

respectively. Many GO terms related to plant response to biotic and abiotic stresses are 

also significantly enriched among the up-regulated genes, including “response to chitin”, 

“response to water deprivation”, “response to cold”, “response to wounding”, “response to 

salt stress”, “response to osmotic stress” and “response to jasmonic acid” (Figure 2.16), 

suggesting that DRMY1 may also play a role in plant response to environmental stresses 

on top of regulating organ development. All the enriched GO terms for the down-regulated 

genes are related to ribosomes, including “structural constituent of ribosome”, “cytosolic 

large ribosomal subunit”, “ribosome” and “cytosolic ribosome” (Figure 2.16), suggesting 

a role of DRMY1 in regulating ribosome biogenesis. The average gene expression level of 

DEGs assigned with GO term “structural constituent of ribosome” are shown in Figure 
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2.17D. We also confirmed the expression of a select number of DEGs by qRT-PCR, which 

is in a good agreement with RNAseq data (Figure 2.18).  

Figure 2.16. Functional enrichment analysis for DEGs identified in the drmy1 mutant. The y-axis shows 

significantly enriched gene ontology (GO) terms (P < 0.05, Bonferroni < 0.05) in three categories, Biological 

Process (BP), Molecular Function (MF) and Cellular Component (CC). The x-axis shows the –log
10

P values 

of these terms. Red bars indicate up-regulated genes; blue bars indicate down-regulated genes.  
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Figure 2.17. Heatmap diagrams depicting average expression level (log2CPM) of DEGs in WT and the 

drmy1 mutant. (A) differentially expressed cell wall biosynthesis and remodeling genes; (B) up-regulated 

genes with overrepresented GO term “ethylene-activated signaling pathway” in BP category; (C) up-

regulated genes with over-represented GO term “ABA-activated signaling pathway” in BP category; (D) 

down-regulated genes with over-represented GO term “structural constituent of ribosome” in MF category. 
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Figure 2.18. Gene expression confirmation by qRT-PCR. Data shown are mean 2
-ΔΔCT

 value from two 

biological replicates. Error bars indicate SD. Asterisks represent statistically significant differences 

calculated by Student’s t-test (*, P < 0.05; **, P < 0.01; ***, P < 0.001). qRT-PCR was conducted with two 

biological replicates (three technical replicates each). AtACTIN2 was used as an endogenous control.     

 Discussion 

 Plant organ growth to its characteristic size and shape depends on the coordination 

of both cell proliferation and cell expansion. While several gene regulatory networks have 

been identified for cell proliferation, the cell expansion process remains largely unknown. 

Here we identified an Arabidopsis T-DNA insertion mutant named drmy1, which showed 

reduced growth in both vegetative and reproductive organs due to defects in cell expansion. 

We further demonstrated that the defective cell expansion in drmy1 mutant is linked to 

changes in the composition of the cell wall, in which the matrix polysaccharides are more 

abundant in the drmy1 mutant than in WT. Complementation by introduction of the 

DRMY1 genomic DNA sequence into the mutant background rescued the phenotype, 

indicating that DRMY1 mutation is responsible for the phenotype. DRMY1 is strongly 
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expressed in developing organs and vascular tissues and its expression is reduced by the 

plant hormone ethylene while induced by ABA. The DRMY1 protein only contains a single 

Myb-like DNA binding domain and is localized in the nucleus, which may function with 

other transcription factors as a complex to regulate downstream gene expression as 

DRMY1 itself does not possess transactivation ability. Overexpression of DRMY1 did not 

lead to enhanced growth and yield, probably because there are not enough transcription 

factors as partners of DRMY1 to exert additional effect. Interestingly, DRMY1 

overexpression line OE10 exhibited reduced leaf growth, which is probably because 

abundant DRMY1 may also bind to transcription factors that negatively affect leaf growth. 

Furthermore, whole transcriptome profiling suggested that DRMY1 may control cell 

expansion directly by regulating genes related to cell wall biosynthesis/remodeling and 

ribosome biogenesis or indirectly through regulating genes involved in ethylene and ABA 

signaling pathways.  

DRMY1 may define novel binding targets in the Myb protein family 

 In the Arabidopsis thaliana genome, there are 197 Myb family members, among 

which 52 members were identified as Myb-like proteins that usually but not always contain 

one Myb repeat (Katiyar et al. 2012). Based on sequence alignment and phylogenetic 

analysis, Myb-like proteins are further divided into five major subfamilies: CIRCADIAN 

CLOCK ASSOCIATED1 (CCA1)-like, telomere binding proteins (TBP)-like, CAPRICE 

(CPC)-like, I-box-like and R-R-type (Yanhui et al. 2006; Du et al. 2013). DRMY1 and its 

paralog DP1 were classified into the TBP-like subfamily in a previous paper (Du et al. 

2013), in which a highly-conserved motif LKDKW(R/K)(N/T) is usually present. However 

in our study, we found that DRMY1 and DP1 shared the conserved motif of 
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LSQRW(G/A)(A/L) instead, which raises the question whether or not DRMY1 and DP1 

are telomere binding proteins. Furthermore, in Arabidopsis thaliana, known telomere-

binding proteins are divided into two families: the Single-Myb-Histone-like (SMH) family 

and the TRF-like (TRFL) family 1 (Schrumpfová, Schořová, and Fajkus 2016). While 

SMH family proteins contain a Myb-like domain at the N-terminus, a central histone-like 

domain and a coiled-coil region at the C-terminus (Schrumpfová et al. 2004), TRFL family 

proteins possess a Myb-like domain at the C-terminus and a Myb-extension (Myb-ext) 

domain that are both essential for double-stranded telomeric DNA binding in vitro 

(Karamysheva et al. 2004). DRMY1 and DP1 do not have other characteristic domains of 

known telomere binding proteins besides a TRF-like Myb DNA binding domain, 

suggesting that DRMY1 may not function as a telomere binding protein. Instead, we 

hypothesize that DRMY1 may function as a typical Myb DNA binding protein and confers 

regulatory function by binding to the promoter regions of downstream genes but may 

require the cooperation of other transcription factors to regulate gene expression as itself 

did not show transactivation activity. The uniqueness of the Myb DNA binding domain in 

DRMY1 may define a novel binding motif in the Myb protein family.  

DRMY1 may control cell expansion directly by regulation of cell wall 

biosynthesis/remodeling and ribosome biogenesis  

 It is proposed that cell expansion can be achieved by two major ways. One is 

cytoplasmic growth, which mainly relies on macromolecular biosynthesis, mostly proteins 

and is tightly linked to the nutritional and energy levels of plants as protein biosynthesis is 

an energy-demanding process. Another way is post-mitotic cell expansion, which is 

triggered by turgor pressure and requires cell wall remodeling to facilitate cell expansion 
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and deposition of newly synthesized wall materials to strengthen the stretched cell wall 

(Cosgrove 1993). How does DRMY1 contribute to cell expansion during organ 

development? We suggest that DRMY1 may regulate cell expansion directly in the 

following ways. First, DRMY1 may contribute to cell expansion by regulating cell wall 

biosynthesis/remodeling for the following reasons. On one hand, cell wall composition 

analysis revealed that the matrix monosaccharides in the walls of drmy1 mutants, which 

mainly constitute hemicellulose and pectin, are all significantly increased compared to WT. 

The over-accumulation of the matrix polysaccharides in the drmy1 mutant may impede cell 

expansion during organ development, leading to change in organ size and shape. On the 

other hand, expression of genes related to cell wall biosynthesis/remodeling is changed in 

the drmy1 mutant, such as xyloglucan endotransglycosylase 6 (XTR6), expansin A16 

(EXPA16) and extensin 4 (EXT4), although the direct binding of DRMY1 to their 

promoters needs to be further studied. Second, DRMY1 may contribute to cell expansion 

by downregulation of a variety of genes that encode ribosomal proteins (r-proteins). 

Evidence from previous studies shows that ribosomes have important developmental 

functions in addition to their fundamental role in protein biosynthesis (Byrne 2009; Micol 

2009). A study of 13 r-protein deficient mutant lines showed that these mutants all 

displayed smaller and narrower leaves compared to wild type due to either reduced cell 

number, reduced cell size or both (Horiguchi et al. 2011).  Thus, it is very likely that the 

deficiency of r-proteins in the drmy1 mutant is another cause for the growth defect.   

Could hormones be mediators of DRMY1-regulated growth? 

 DRMY1 may also control cell expansion indirectly via the signaling pathways of 

plant hormones ethylene and ABA. Ethylene was shown to be a negative modulator of cell 
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expansion. Ethylene-responsive factors (ERFs) are downstream transcription factors in the 

ethylene signaling pathway, which have been shown to regulate a set of developmental 

processes. For instance, an activation tagging of an ethylene responsive element binding 

protein (EREBP)-like transcription factor LEP produces leaves without a petiole and 

abnormal inflorescence branching and silique shape. DRMY1 may mediate cell expansion 

indirectly through the ethylene signaling pathway, possibly in the upstream of some ERFs, 

which is supported by two lines of evidence. First, the promoter of DRMY1 has a predicted 

ethylene-responsive motif (ATTTCAAA) and its expression is significantly reduced by 

treatment with ACC, an ethylene precursor, although the extent of reduction is not high. 

Second, a number of ERFs are up-regulated in the drmy1 mutant, suggesting that DRMY1 

may be situated upstream of these ERFs. Among these ERFs, ERF6 and ERF11 are known 

to repress leaf growth (Dubois et al. 2015; Dubois et al. 2013). Overexpression of ERF6 

and ERF11 led to reduced leaf growth by negatively affecting both cell number and cell 

size, partly consistent with the observed leaf phenotype in the drmy1 mutant. Whether 

ERF6 and ERF11 are downstream of DRMY1 can be further investigated by ChIP-qPCR 

and double mutant analysis. 

 Although ABA has long been considered as a growth inhibitor when applied 

exogenously, studies of ABA-deficient mutants in tomato and Arabidopsis suggests its 

critical role in promoting cell expansion and organ growth. In our study, we found that 

DRMY1 is significantly induced by ABA and its mutation resulted in up-regulation of a 

number of genes in the ABA signaling pathway, such as homeobox 7 (HB7), which is a 

putative transcription activator. AtHB7 is proposed to act as a negative regulator of growth 

and cell expansion. Constitutive overexpression of AtHB7 led to reduction in 
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inflorescence stem and leaf cell expansion (Hjellström et al. 2003), partially resembling 

DRMY1’s phenotype. It deserves further examination as to whether DRMY1 functions 

through negative regulation of HB7. 

Presumable role of DRMY1 in plant stress responses 

 Besides the fundamental role of DRMY1 in organ development, DRMY1 may 

also play a role in plant stress responses, as evidenced by enrichment of many GO terms 

related to a wide spectrum of stress responses among the up-regulated genes in drmy1 

mutant, including “response to chitin”, “response to water deprivation”, “response to cold”, 

“response to wounding”, “response to salt stress”, “response to osmotic stress” and 

“response to jasmonic acid”. A previous study showed that plants have evolved a fine-

tuned balance of the growth-defense tradeoff given their sessile lifestyle (Chaiwanon et al. 

2016). Although in this study we focused on the role of DRMY1 in regulating organ 

development, it would be very interesting to determine whether DRMY1 performs a 

function in plant response to biotic and abiotic stresses and balancing growth-defense 

tradeoff in the future.  

 Taking these results together, we suggest that DRMY1 plays a very important role 

in controlling cell expansion in Arabidopsis. We proposed a hypothetical model accounting 

for DRMY1’s action in cell expansion and organ development (Figure 2.19). DRMY1 may 

affect cell expansion directly by regulating cell wall biosynthesis/remodeling and ribosome 

biogenesis or indirectly through ethylene and ABA signaling pathways. 
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Figure 2.19. Proposed model of DRMY1-regulated cell expansion. DRMY1 modulates cell expansion 

either directly through regulating cell wall biosynthesis/remodeling and ribosome biogenesis or indirectly 

through ethylene and ABA signaling pathways.  

 

 In conclusion, we have identified a functional Myb-like protein controlling cell 

expansion and organ growth and propose a hypothetical mechanism by which it regulates 

cell expansion. ChIP-qPCR will be conducted in the future, which will help identify the 

direct binding targets of DRMY1 in combination with our RNAseq data and extend our 

knowledge about the regulatory pathways underlying cell expansion.  

Accession Numbers 

 Gene sequence in Arabidopsis thalinana mentioned in this work can be found in 

Arabidopsis Information Resource (TAIR) database as the following accession 

numbers: DRMY1 (AT1G58220), DP1 (AT1G09710), ACTIN2 (AT3G18780), AtTBP1 
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(AT5G13820), AtTRP1 (AT5G59430), AtGRF1 (AT2G22840). The GenBank accession 

numbers for tobacco NgTRF1, and rice RTBP1 are AF543195 and AF242298, respectively. 

  

https://www.arabidopsis.org/servlets/TairObject?id=132588&type=locus
https://www.ncbi.nlm.nih.gov/nuccore/AF543195
https://www.ncbi.nlm.nih.gov/nuccore/AF242298
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Abstract 

 Paspalum vaginatum, a halophytic warm-seasoned perennial grass, is tolerant of 

many environmental stresses, especially salt stress. Physiological analysis comparing 

highly (Supreme) and moderately (Parish) salinity-tolerant cultivars revealed that 

Supreme’s higher salinity tolerance is associated with higher Na+ and Ca2+ accumulation 

under normal conditions and further increase of Na+ under salt-treated conditions (400 mM 

NaCl), possibly by vacuolar sequestration. Moreover, K+ retention under salt treatment 

occurs in both cultivars, suggesting that it may be a conserved mechanism for prevention 

of Na+ toxicity. We sequenced the transcriptome of the two cultivars under both normal 

and salt-treated conditions (400 mM NaCl) using RNA-seq. De novo assembly of about 

153 million high-quality reads and identification of Open Reading Frames (ORFs) 

uncovered a total of 82,608 non-redundant unigenes, of which 3,250 genes were identified 

as transcription factors (TFs). Gene Ontology (GO) annotation revealed the presence of 

genes involved in diverse cellular processes in Seashore paspalum’s transcriptome. 

Differential expression analysis identified a total of 828 and 2,222 genes that are responsive 

to high salinity for Supreme and Parish, respectively. GO enrichment analysis 

demonstrated that genes involved in “oxidation-reduction process” and “nucleic acid 

binding” are significantly associated with salinity tolerance in both cultivars. Interestingly, 

compared to Parish, a number of salt stress induced transcription factors are enriched and 

show higher abundance in Supreme under normal conditions, possibly due to enhanced 

Ca2+ signaling transduction out of Na+ accumulation, which may be another contributor to 

Supreme’s higher salinity tolerance. Our data provide valuable molecular resources for 

functional studies and developing strategies to engineer plant salinity tolerance. 
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Introduction  

 High salinity stress, which is one of the most severe environmental stresses, impairs 

crop production on at least 20% of the cultivated land worldwide (Rhoades and Loveday 

1990). This problem becomes increasingly severe due to the rising sea level from global 

warming and inappropriate irrigation practice. Salt stress inflicts not only ionic stress but 

also osmotic stress on plants. As a consequence of these primary effects, secondary stresses 

such as oxidative stress often occur (Zhu 2001). To survive against these stresses, plants 

have evolved a complex of mechanisms involving multiple genes and strategies at 

physiological, molecular and metabolic levels (Gupta and Huang 2014). As high levels of 

cytosolic Na+ are toxic to plants by interfering with cellular K+/Na+ homeostasis and 

inhibiting enzyme activities, plants utilize three major mechanisms to prevent excess Na+ 

accumulation in the cytoplasm: restriction of Na+ entry into the cells, exclusion of Na+ out 

of the cells and compartmentalization of excessive Na+ into the vacuoles. Two types of 

plasma membrane localized transporter HKT are important salt tolerance determinants by 

regulating transportation of Na+ and K+. The Class 1 HKT transporters mediate Na+-

selective transport. The Current model in Arabidopsis suggests that the Class 1 HKT 

transporter AtHKT1 plays an essential role in protecting leaf blades from excessive 

accumulation of Na+ by unloading of Na+ from the xylem sap (Davenport et al. 2007). The 

Class 2 HKT transporters are suggested to mediate both Na+ and K+ transport (Rubio, 

Gassmann, and Schroeder 1995). Study of a Class 2 HKT transporter OsHKT2;1 in rice 

demonstrated a fail-safe mechanism of Na+ uptake under K+ starved rice roots (Horie et al. 

2007). The plasma membrane localized Na+/H+ transporter Salt Overly Sensitive 1 (SOS1) 

and the tonoplast localized Na+/H+ transporter NHX are another two important 
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determinants for maintaining low cytosolic Na+ concentration in plant cells by exporting 

Na+ out of the cell and sequestration of Na+ into the vacuoles, respectively (Apse et al. 

1999; Shi et al. 2000). To neutralize the negative effect of osmotic stress imposed by high 

concentration of salt, plants can accumulate compatible solutes (e.g. proline, glycine 

betaine, sugars, mannitol, myo-inositol) and proteins (e.g. Late-embryogenesis-abundant-

proteins (LEAs) and dehydrins) for osmotic adjustment or other protective functions 

(Munns 2005b). Most types of abiotic stresses including salinity disrupt the balance of 

cellular metabolism, resulting in oxidative stress with elevated level of reactive oxygen 

species (ROS), such as the superoxide radical anion (O2˙
−), hydrogen peroxide (H2O2), and 

hydroxyl radicals (OH˙). The elevated level of ROS plays a dual role in the salinity 

responses of plants. On one hand, the enhanced production of ROS is toxic to plants as 

they can cause protein and membrane lipid peroxidation, and DNA and RNA damage 

(Tuteja 2007). To ensure survival, plants have developed two efficient antioxidant defense 

systems to work in concert for ROS scavenging, which include both enzymatic and non-

enzymatic machinery. Major enzymatic components include catalase (CAT), superoxide 

dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and 

dehydroascorbate reductase (DHAR) while non-enzymatic antioxidants include ascorbic 

acid (AA), glutathione (GSH), phenolic compounds (Gill and Tuteja 2010; Das and 

Roychoudhury 2014). On the other hand, ROS can also act as a pivotal signaling molecule 

to trigger tolerance against stress (Mittler et al. 2011).  For example, loss-of-function of 

one of the NADPH oxidase members AtrbohF, which catalyzes the production of ROS in 

root vasculature systems, leads to salt hypersensitivity phenotype due to the elevated root-

to-shoot delivery of soil Na+ and consequently elevated shoot Na+ levels (Jiang et al. 2012). 
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 The plant kingdom has about 1% of plant species classified as halophytes that 

possess capacities for salt tolerance of around 200 mM NaCl or more as a result of 

evolutionary adaptation to their habitats (Flowers and Colmer 2008). The inherent 

potentiality of halophytes to counteract the negative impact of salinity stress makes it very 

interesting and promising to investigate the associated mechanisms. Seashore paspalum 

(Paspalum vaginatum) is a halophytic warm-season perennial grass of the Poaceae family, 

which is native to tropical and coastal regions worldwide and is among the most salinity-

tolerant turfgrass species. Previous studies show that its superior salinity tolerance is 

attributed to high level of photosynthesis and shoot growth rate, and tissue water 

maintenance through osmotic adjustment (Lee, Carrow, and Duncan 2004; Liu et al. 2011). 

However, little is known about the molecular mechanisms underlying its high salinity 

tolerance and the limited genomic information of Seashore paspalum has impeded further 

investigation. A recent study using the combination of 2-DE and MS technologies linked 

ROS detoxification and ATP biosynthesis to the superior salinity tolerance in Seashore 

paspalum’s roots (Liu et al. 2012). Another recent study using RNA-seq provided the 

global transcriptome data for the Seashore paspalum cultivar ‘Adalady’ for the first time 

(Jia et al. 2015).  However, no study has reported how the different cultivars of Seashore 

paspalum with inherent variation in their capabilities of salt tolerance undergo dynamic 

change of ion accumulation and how they respond to salt stress globally at the 

transcriptome level. This will help us better understand plant salinity tolerance mechanism 

at the physiological and molecular level and identify salt stress-related genes for functional 

study and application in the future.  
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 In this study, we monitored the dynamic change of Na+, K+ and Ca2+ accumulation 

before and after salt treatment comparing two cultivars of Seashore paspalum. One is called 

Supreme, which is the most salinity-tolerant cultivar of all commercially grown paspalums 

(http://georgiacultivars.com/cultivars/seaisle-supreme-paspalum). Another cultivar is 

called Parish, which is a moderately salinity-tolerant cultivar. We also applied RNA-seq 

analysis to reveal differences in gene expression between two cultivars under normal 

conditions and when they are exposed to salt stress. To our knowledge, this study provides 

the first transcriptome profile for Seashore paspalum under salt stress. By comparing ion 

dynamics and expression profiling data of the two cultivars under both non-stressed and 

salt-stressed conditions, this study provides a new insight into the physiological and 

molecular mechanisms of high salinity tolerance in halophytes and establish a solid 

foundation for future studies of genes involved in salinity tolerance.  

Methods  

Plant materials growth and treatment 

 Two cultivars of Seashore paspalum, Supreme and Parish were clonally propagated 

from the same number of tillers in pure sand for 8 weeks in 10 x 10 cm square containers. 

They were maintained in the growth room under 14 hours of photoperiod with 350 to 450 

μmol m−2 s−1 illumination. Temperature and humidity were maintained at 25°C and 30% 

during the daytime and 17°C and 60% at night. For the morphological observation of plant 

performance under salt stress, Supreme and Parish were immersed in a 400 mM NaCl 

solution supplemented with 0.2 g/l water soluble fertilizer (20:10:20 

nitrogen:phosphorus:potassium; Scotts). Twelve days after salt treatment, plants were 

recovered from salt stress by washing off NaCl and watering with 0.2 g/l water soluble 

http://georgiacultivars.com/cultivars/seaisle-supreme-paspalum
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fertilizer every other day. Plants were photographed 8 days after recovery for 

documentation. To collect salt-treated samples for RNA-seq, salt treatment was performed 

by washing the sand off roots and dipping them in 400 mM NaCl solution supplemented 

with 0.2 g/l water soluble fertilizer for 1 hour.  

Measurement of Na+, K+ and Ca2+ content  

 For Na+, K+ and Ca2+ content measurements, leaves from Supreme and Parish were 

collected before and after a 7-day treatment of 400 mM NaCl solution supplemented with 

0.2 g/l water soluble fertilizer, and then dried for 48 hours at 80°C.  Na+, K+ and Ca2+ 

content was determined based on previous protocols (Haynes 1980; Plank 1992). 

RNA isolation and cDNA library preparation 

 One hundred milligrams of mixed tissue (leaf:stem:root =1:1:1) was collected 

immediately after treatment and ground into a fine power for RNA exaction using Trizol 

(Invitrogen) following the manufacturer’s protocol. Total RNA was then treated with 

DNase to eliminate DNA contamination and purified using the RNeasy Mini Kit (Qiagen). 

Total RNA fractions with 260/280 absorbance of 2.0 and RNA integrity of 8.0 or higher 

were used for further experiments. cDNAs were then synthesized for RNA-seq library 

construction using the Illumina TruSeq® RNA Sample Preparation Kit with Oligo-dT 

beads capturing polyA tails. Eight cDNA libraries were constructed, which were divided 

into 4 groups with each of the group having two biological replicates: untreated Supreme 

(Snormal-1, Snormal-2), salt-treated Supreme (Ssalt-1, Ssalt-2), untreated Parish (Pnormal-1, 

Pnormal-2), and salt-treated Parish (Psalt-1, Psalt-2).  RNA extraction and an additional 4 

cDNA libraries were also constructed for drought-treated Supreme (Sdrought-1, Sdrought-2) 

and drought-treated Parish (Pdrought-1, Pdrought-2). The reads generated from these drought-
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treated samples were included in the de novo transcriptome assembly to increase assembly 

continuity but were not used for other analyses in this paper.   

Transcriptome sequencing and de novo assembly 

 Paired-end sequencing of cDNA libraries was performed using the HiSeq 2000 

(Illumina Technologies) platform. The raw reads were evaluated for quality using FastQC 

(version: 0.11.3, http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and then 

trimmed to remove adapter sequences and low quality bases using Trimmomatic 0.32 

(Bolger, Lohse, and Usadel 2014). The trimmed reads were used to generate a de novo 

assembly using Trinity (version: trinityRNA-seq-2.1.1) with default k-mer length of 25 

(Grabherr et al. 2011).  

ORF identification and sequence annotation 

 The next step in the pipeline is identifying potential protein coding genes by using 

TransDecoder (version: TransDecoder-2.0, http://transdecoder.github.io/). CD-HIT 

(version: cd-hit-v4.6.6) (Li and Godzik 2006) clustered the remaining genes with a 

sequence identity ≥ 95%. This generated a final set of 82,608 potential protein coding 

unigenes. To obtain sequence annotation, they were blasted against the NCBI non-

redundant (nr) protein database by using NCBI-BLAST+ (version: ncbi-blast-2.3.0+) 

(Camacho et al. 2009) with an E-value cutoff of 1E-5 and putative GO terms were assigned 

by running Blast2GO software (version 3.3) (Conesa et al. 2005). Unigenes were blasted 

against the plant transcription factor database (PlantTFDB) (Jin et al. 2017; Jin et al. 2015) 

(http://planttfdb.cbi.pku.edu.cn/index.php?sp=Ath) with E-value cutoff of 1E-5 to identify 

transcription factors in Seashore paspalum’s transcriptome. The blast results were then 

parsed by a Python script to count the number of unigenes that have at least one hit to the 

http://planttfdb.cbi.pku.edu.cn/index.php?sp=Ath
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putative transcription factors of Arabidopsis and Oryza in different transcription factor 

families.   

Differential expression analysis 

 To identify differentially expressed genes, the trimmed reads from each sample 

were aligned to the 82,608 reference unigenes and an abundance estimation for each 

unigene in each sample was then calculated with RSEM software (version: RSEM-1.2.28) 

(Li and Dewey 2011). The expected counts generated by RSEM were then used as input 

for differential expression analysis using DEseq2 software (Love, Huber, and Anders 2014). 

Four comparisons were conducted: 1) untreated Supreme (Snormal) versus untreated Parish 

(Pnormal), 2) salt-treated Supreme (Ssalt) versus untreated Supreme (Snormal), 3) salt-treated 

Parish (Psalt) versus untreated Parish (Pnormal), and 4) salt-treated Supreme (Ssalt) versus salt-

treated Parish (Psalt).  Differentially expressed genes are defined by a log2 fold change (FC) 

≥ 1.0 or ≤ -1.0, P value ≤ 0.01, and an adjusted P value ≤ 0.01. To determine the 

differentially expressed transcription factors, the generated lists of DEGs were overlapped 

with the potential transcription factors identified in Seashore paspalum’s transcriptome 

described above using a R script, and where they intersected defined the differentially 

expressed transcription factors. 

GO enrichment analysis 

 Given that Seashore paspalum does not have an official ontology, a custom 

annotation list was generated as described above. To find significantly enriched GO terms, 

we calculated the P value from a Fisher's exact test between the frequency of the GO terms 

for genes in the differentially expressed set and the custom annotation serving as our 

background by using a scipy.stats package in a Python script (Jones, Oliphant, and Peterson 
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2014). The P value threshold was set as P ≤ 0.05. To account for multiple testing, we 

adjusted the P values using a R script and used the Bonferroni value ≤ 0.05. 

qRT-PCR confirmation 

 RNA from each sample was used for cDNA biosynthesis using ProtoScript II 

Reverse Transcriptase (Biolabs), according to the manufacturer’s protocols. Quantitative 

real-time PCR (qRT-PCR) was conducted using SYBR Green (Thermo Fisher) in Bio-Rad 

iQ5 real-time PCR system (Bio-Rad) with the following thermal cycling conditions: 2mins 

denaturation at 95℃, followed by 40 cycles of 95℃ denaturation for 20s, 62℃ annealing 

for 20s and 72℃ extension for 15s. The dissociation curve was then generated by gradually 

heating the amplicons from 55 to 95℃. Actin was used as endogenous control for data 

normalization. The relative gene expression changes were calculated based on the 2-ΔΔCT 

method (Livak and Schmittgen 2001). qRT-PCR was carried out in three technical and two 

biological replicates.   

Results 

Ion dynamics of Supreme and Parish under normal and salt-treated conditions  

 Seashore paspalum (Paspalum vaginatum) is a halophytic warm-season perennial 

grass. Many studies have shown that Seashore paspalum is among the most salinity-tolerant 

warm-season turfgrass species with a NaCl tolerance threshold of 474.0 mM (Liu et al. 

2009). To study the mechanisms underlying Seashore paspalum’s high salt tolerance, 

Supreme, which is the most salinity-tolerant cultivar of all commercially grown paspalums 

(http://georgiacultivars.com/cultivars/seaisle-supreme-paspalum), and Parish, which is a 

moderately salinity-tolerant cultivar were used for morphological, physiological and 

comparative transcriptomics studies. Firstly, we compared their morphological differences 

http://georgiacultivars.com/cultivars/seaisle-supreme-paspalum
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in response to salt treatment. Supreme and Parish grown under the same conditions were 

exposed to 400 mM NaCl solution. After a 12-day treatment, chlorotic leaves were clearly 

observed in Parish while Supreme was not strongly affected, indicative of a more tolerant 

trait of Supreme than Parish (Figure 3.1B). Moreover, Supreme also has a better recovery 

capacity than Parish after salt treatment (Figure 3.1C). To reveal possible physiological 

mechanisms of differential performance of Supreme and Parish under salt stress, we 

measured their leaf ion contents under normal and salt-stressed conditions. Supreme has 

significantly higher Na+ content than Parish under both conditions, whereas their K+ 

contents are similar, and remain the same even upon exposure to salinity (Figure 3.1D, 

3.1E). In addition, Supreme has significantly higher Ca2+ content than Parish under normal 

conditions, but their Ca2+ contents are similar after treatment with salt (Figure 3.1F). The 

demonstration of higher salt tolerance of Supreme and its physiological characteristics 

implies the importance of the associated genetic underpinnings.  

 

Figure 3.1. Responses of Supreme and Parish to salt treatment. (A) Eight-week 

Supreme and Parish grown from the same number of tillers before salt treatment. (B) 

Performance of Supreme and Parish at a 12-day treatment of 400 mM NaCl. (C) 

Performance of Supreme and Parish 8 days after recovery from a 12-day treatment of 

400 mM NaCl. (D) Leaf Na+ content under normal conditions and 400 mM NaCl 

treatment. (E) Leaf K+ content under normal conditions and 400 mM NaCl treatment. 

(F) Leaf Ca2+ content under normal conditions and 400 mM NaCl treatment. The 

statistically significant difference was determined by one-way ANOVA analysis. 

Groups not sharing the same letter show a statistically significant difference (P < 0.05). 
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 To characterize and compare the transcriptome response of Supreme and Parish 

under salt treatment, we treated plants with 400 mM NaCl for 1 hour. We use this condition 

because it was suggested that genes that rapidly changed expression upon salt stress should 

be important for salt tolerance (Taji et al. 2004). The following four types of samples were 

used for RNA-seq: untreated Supreme (Snormal-1, Snormal-2), salt-treated Supreme (Ssalt-1, 

Ssalt-2), untreated Parish (Pnormal-1, Pnormal-2) and salt-treated Parish (Psalt-1, Psalt-2). 

Illumina sequencing of indexed and pooled RNA with polyA tails generated a total of 80.29 

million and 78.88 million paired-end reads with a single read length about 101bp for 

Supreme and Parish, respectively. The RNA-seq reads with quality scores were deposited 

in the NCBI Sequence Read Archive (SRA) with bioproject accession number 

PRJNA395934. An overview of the sequencing and assembly results are represented in 

Table 3.1. Among these raw reads, 95.89% and 95.77% remained after trimming for 

Supreme and Parish, respectively, which were then de novo assembled into one reference 

transcriptome using Trinity (version: trinityRNA-seq-2.1.1). De novo assembly of mixed 

trimmed reads generated 342,165 Trinity transcripts with an average length of 784 bp and 

N50 value of 1,339 bp, and a total of 244,926 Trinity genes with average length of 580 bp 

and N50 value of 761 bp. GC content, which is an important indicator of the gene and 

genomic composition as well as DNA stability is 49.7% in Seashore paspalum’s 

transcriptome, which is similar to the transcriptome GC composition of other monocot 

plants such as rice (51.1%), Triticum aestivum (51.4%) (Kuhl et al. 2004; Goyal et al. 2016). 

In comparison with previously reported 32,603 Trinity genes from transcriptome analysis 

of Seashore paspalum’s cultivar ‘Adalady’, this study has generated more Trinity gene 
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sequences, thus providing additional genomic resources that can be exploited for gene 

discovery and functional study (Jia et al. 2015).  

 

 

 

ORF identification 

 169,391 ORFs (49.5% of all Trinity transcripts) were identified among 342,165 

Trinity transcript sequences using TransDecoder (version: TransDecoder-2.0, 

http://transdecoder.github.io/) based on the following criteria: a minimum length of 100 

amino acids ORF is found in a transcript sequence; an ORF with highest log-likelihood  

Figure 3.2. Size distribution of unigenes. Six groups of unigenes with different range of length were shown. 

The percentages of unigenes in each group out of the total unigenes (82,608) were indicated above each 

column.   

Items Supreme Parish 
Total raw reads 80,288,751 78,867,558 

Total clean reads 76,986,554 75,528,530 
Total Trinity transcripts 342,165 

Total Trinity genes  244,926 
Average transcript/gene length (bp) 783.7/580 

Transcript N50/gene N50 (bp)
a  1,339/761 

Average GC content (%) 49.69 

Table 3.1. Summary of transcriptome sequencing and de novo assembly 

a 
Transcript N50/gene N50 is defined as the length of the longest transcript/gene such that all 

transcripts/genes of the same or above that length compose at least 50% of the assembled base pairs. 
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score and greater than 0 is reported; if a shorter ORF is fully encapsulated by a longer ORF, 

the longer one is reported; any ORF that does not meet the above criteria but has homology 

to the UniProt and Protein family (Pfam) databases will also be retained. Using CD-HIT 

software (version: cd-hit-v4.6.6) (Li and Godzik 2006), the 169,391 ORFs were clustered 

into 82,608 unigenes. The length distribution of the unigenes is shown in Figure 3.2. 

Approximately 48.4% and 20.5% of the unigenes had a length >= 500bp and >= 1,000bp, 

respectively.  

Functional annotation of Seashore paspalum’s transcriptome 

 Homology-based functional annotation of the Seashore paspalum unigenes was 

then carried out. Distribution of the annotated unigenes in each database was shown in 

Table 3.2. 82,608 unigenes were blasted against the NCBI non-redundant (nr) protein 

database using Blastx with an E-value cutoff of 1E-5. 65,540 (79.3%) out of the 82608 

unigenes showed homology to the nr protein sequences. E-value distribution of blast results 

was shown in Supplemental Figure B-1. The best blastx hits against the nr database were 

then imported to Blast2GO software (version 3.3) (Conesa et al. 2005) for gene ontology 

(GO) classification and the result was shown in Figure 3.3. Among 82,608 unigenes, 

36,387 unigenes (44%) were successfully annotated with 16 GO terms (level 2) and 

classified into three ontologies: biological process (BP, Figure 3.3A), cellular component 

(CC, Figure 3.3B), and molecular function (MF, Figure 3.3C). Within the BP category, 

genes involved in metabolic process (16946), cellular response (14342), single-organism 

process (8922) and biological regulation (3787) are highly represented. The CP category 

mainly comprises genes involved in membrane (10287), cell (10050), cell part (9904), 
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membrane part (8528) and organelle (6716). Under MF, catalytic activity (15615) was the 

most abundant GO term, followed by binding (15411).  

Database Unigenes having homologous sequence 

Number Hit (%) 

nr 65540 79.3% 

Interpro 32860 39.8% 

GO 36387 44% 

TF 3250 4% 

  

  

 

  

Table 3.2. Summary of annotation statistics of Seashore paspalum’s transcriptome  
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Figure 3.3. Pie chart representation of Seashore paspalum’s transcriptome GO annotation on level 2. 

(A) Biological process; (B) Cellular component; (C) Molecular function. The number besides each GO term 

represents the number of sequences belonging to it. 

 

 To compare the gene repertoire of Supreme paspalum to other plant species, we 

aligned the unigenes against the nr protein database and performed the species distribution 

of the unigenes using Blast2GO software. As shown in Supplemental Figure B-2, the five 

top-hit species that best match the sequences of Supreme paspalum unigenes are Setaria 

italica, Sorghum bicolor, Zea mays, Oryza sativa Japonica Group and Brachypodium 

distachyon, all of which belong to the Poaceae family.   

Identification of transcription factors in Seashore paspalum’s transcriptome 

 

 Transcription factors (TFs) play a vital role in regulating plant stress response as 

important regulatory elements. To identify potential TFs in the Seashore paspalum’s 

transcriptome, 82,608 unigenes were searched against the PlantTFDB (Jin et al. 2017; Jin 

et al. 2015) using Blastx with E-value cutoff of 1E-5. There are 3,250 transcripts that have 

at least one hit to the Arabidopsis and Oryza TFs, representing about 4% of the total 

unigenes and covering 68 putative TF families (Supplemental Table S1). The TF gene 

families with ten or more unigenes identified in the Supreme Paspalum transcriptome are 
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presented in Figure 3.4, among which the five most abundant categories are Myb (419), 

followed by WRKY (370), G2-like (268), bZIP (240), and bHLH (185).  

Figure 3.4. Distribution of transcription factors (TFs) in Seashore paspalum’s transcriptome.  A total 

of 3,250 TF unigenes were identified by blastx against Arabidopsis and rice TF database with a E-value 

cutoff of 1E-5. 34 TF families with ten or more unigenes were plotted.  

 

Differentially expression analysis for Supreme and Parish under salt treatment 

 To compare gene expression levels in the control and salt-treated samples, the 

trimmed reads in each library were mapped to the 82,608 reference unigenes and the 

abundance of each unigene in different libraries was estimated using the RSEM software 

(version: RSEM-1.2.28) (Li and Dewey 2011). The expected count data produced by 

RSEM was used to identify DEGs with DEseq2 software (Love, Huber, and Anders 2014). 

To test reproducibility among two biological replicates, a MDS plot (Figure 3.5) was 

generated for the control and salt-treated samples of Supreme and Parish. The fact that our 

biological replicates cluster so closely to each other on an ordination plot demonstrates 
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their low inter-sample variability and therefore makes them generalizable to the overall 

population. Two comparisons were conducted: salt-treated Supreme versus untreated 

Supreme and salt-treated Parish versus untreated Parish. DEGs are defined by a P value ≤ 

0.01, an adjusted P value ≤ 0.01 and log2 fold change (FC) ≥ 1.0 or ≤ -1.0. As shown in 

Figure 3.6A, a total of 828 unigenes were differentially expressed for salt-treated Supreme 

while 2,222 unigenes were differentially expressed for salt-treated Parish. 34 and 107 

DEGs were identified to be potential transcription factors for Supreme and Parish, 

respectively (Figure 3.6B). Overlapping of two DEGs lists generated 231 unigenes that 

were commonly regulated by salt in both plants, out of which 12 unigenes were potential 

transcription factors (Figure 3.6A and 3.6B). The common regulated transcription factors 

in both cultivars under salt treatment are listed in Supplemental Table 2. We also confirmed 

the DEGs by qRT-PCR, indicating that our RNA-seq data and differential expression 

analysis were reliable in this study.  

 

Figure 3.5. MDS plot showing reproducibility among two biological replicates of our RNA-seq samples. 

The MDS plot was generated by using the filtered and normalized expected counts generated by RSEM to 

ordinate samples in multidimensional space based on differences in expression values. The close clustering 

of biological replicates indicates a high degree of consistency across all genes.  
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Figure 3.6. Venn diagram showing the number of common and specific DEGs with 2-fold change or 

above for Supreme and Parish under salt treatment. The number of common and specific DEGs (A) and 

transcription factors (B) with 2-fold change or above, P value ≤ 0.01, and adjusted P value ≤ 0.01 were shown 

in the overlapping and non-overlapping regions, respectively. Numbers within parentheses represent DEGs 

that have assigned GO terms. S
normal

: untreated Supreme; S
salt

: salt-treated Supreme; P
normal

: untreated Parish; 

P
salt

: salt-treated Parish.  

Gene enrichment analysis of DEGs identified in Supreme and Parish under salt 

treatment 

 To inspect the biological relevance of DEGs, GO terms were assigned using 

Blast2GO. Five-hundred out of 828 DEGs (60.4%) were annotated for Supreme while 

1,271 out of 2,222 DEGs (57.2%) were annotated for Parish (Figure 3.6A). GO enrichment 

analysis was then conducted to extract the over-represented GO terms that are significantly 

associated with the identified DEGs in Supreme and Parish under salt treatment, 

respectively. As shown in Figure 3.7A, genes that are up-regulated in salt-treated Supreme 

are involved in “oxidation-reduction process” and “nucleic acid binding” while genes that 

are down-regulated in salt-treated Supreme are involved in “regulation of transcription”, 

“transcription, DNA-templated”, “defense response” and “transcription factor activity”. 

GO functional enrichment analysis of DEGs in salt-treated Parish revealed that they are 



` 

 93 

involved in much broader processes (Figure 3.7B). Many biological processes that are 

associated with salt response are induced in Parish, such as “oxidation-reduction process”, 

“cellular oxidant detoxification”, “response to oxidative stress”. Interestingly, “oxidation-

reduction process” and “nucleic acid binding” are the most significantly enriched GO terms 

in the Biological Process (BP) category and Molecular Function (MF) category, 

respectively for up-regulated genes in both Supreme and Parish, implying their importance 

in salt tolerance in both cultivars. DEGs involved in “oxidation-reduction process” and 

“nucleic acid binding” are listed in Table 3.3 and Table 3.4, respectively.  

 

 

 

Figure 3.7. Functional enrichment analysis for DEGs identified in salt-treated Supreme and Parish, 

respectively. The y-axis shows significantly enriched gene ontology (GO) terms (P ≤ 0.05, Bonferroni ≤ 
0.05) in two categories, Biological Process (BP) and Molecular Function (MF). The x-axis shows the –log

10
P 

values of these terms. Red bars, up-regulated genes; blue bars, down-regulated genes.  
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Gene_ID Description Log
2
FC P value 

Adjusted P 

value 
 

m.219752 alcohol dehydrogenase [Aureimonas sp. Leaf324]  10.06 5.68E-12 9.88E-10 
 

m.162586 dimeric dihydrodiol dehydrogenase, putative [Phytophthora infestans T30-4]  8.99 3.19E-09 3.25E-07 
 

m.198035 Alternative oxidase [Phytophthora nicotianae] 8.93 1.67E-09 1.8E-07 
 

m.57181 

bifunctional acetaldehyde-CoA/alcohol dehydrogenase [Thermosynechococcus 

sp. NK55a]  8.81 3.25E-09 3.3E-07 

 

m.77775 hypothetical protein PHYSODRAFT_358973 [Phytophthora sojae]  8.68 6.43E-09 6.17E-07 
 

m.254086 hypothetical protein L915_21056 [Phytophthora parasitica]  8.63 1.1E-08 9.95E-07 
 

m.321045 
6-phosphogluconate dehydrogenase (decarboxylating), partial [Phytophthora 

parasitica] 8.51 1.94E-08 1.64E-06 
 

m.181937 hypothetical protein PHYSODRAFT_305881 [Phytophthora sojae]  8.35 2.68E-08 2.17E-06 
 

m.203632 peroxiredoxin [Aphanomyces invadans]  8.12 1.01E-07 7.26E-06 
 

m.294690 succinate dehydrogenase, cytochrome b556 subunit [Aphanomyces astaci]  7.98 1.97E-07 0.0000131 
 

m.39608 hypothetical protein PHYSODRAFT_352121 [Phytophthora sojae]  7.94 2.56E-07 0.0000167 
 

m.138453 

pyruvate dehydrogenase (acetyl-transferring) E1 component, alpha subunit 

[Aphanomyces astaci]  7.90 0.0000002 0.0000133 

 

m.37144 unnamed protein product [Albugo laibachii Nc14] 7.82 4.23E-07 0.0000262 
 

m.16736 hypothetical protein PHYSODRAFT_283992 [Phytophthora sojae]  7.72 9.29E-07 0.0000528 
 

m.37206 
NADH dehydrogenase flavoprotein 1, mitochondrial precursor [Phytophthora 

infestans T30-4]  7.69 9.66E-07 0.0000545 
 

m.99482 unnamed protein product [Albugo laibachii Nc14] 7.67 6.53E-07 0.0000383 
 

m.183628 glutathione-disulfide reductase [Aphanomyces astaci]  7.64 1.39E-06 0.0000749 
 

m.129505 hypothetical protein SORBIDRAFT_05g000680 [Sorghum bicolor]  7.47 1.11E-06 0.0000619 
 

m.106518 
glyceraldehyde-3-phosphate dehydrogenase, type I, partial [Phytophthora 

parasitica] 7.45 2.76E-06 0.0001386 
 

m.121913 hypothetical protein PHYSODRAFT_285408 [Phytophthora sojae]  7.39 0.0000242 0.000937 
 

m.39609 hypothetical protein PPTG_09100 [Phytophthora parasitica INRA-310]  7.37 0.0000078 0.0003505 
 

m.272094 

succinate dehydrogenase [ubiquinone] iron-sulfur subunit [Saprolegnia diclina 

VS20]  7.19 7.58E-06 0.0003423 

 

m.272278 manganese superoxide dismutase putative [Albugo laibachii Nc14] 7.12 0.0000324 0.0012105 
 

m.181668 isocitrate dehydrogenase, NADP-dependent [Phytophthora parasitica P1976] 6.88 0.0000468 0.0016592 
 

m.225391 enoyl-ACP reductase [Pedosphaera parvula]  6.72 0.0001661 0.0049238 
 

m.181849 hypothetical protein H310_08590 [Aphanomyces invadans]  6.61 0.0001954 0.0056474 
 

m.112242 hypothetical protein F442_14819 [Phytophthora parasitica P10297] 6.61 0.0001636 0.0048601 
 

m.273529 

hypothetical protein BATDEDRAFT_10803 [Batrachochytrium dendrobatidis 

JAM81]  6.58 0.0001378 0.004218 

 

m.264186 PREDICTED: cytochrome P450 71D8-like [Setaria italica]  3.33 2.18E-06 0.0001116 
 

m.26238 PREDICTED: DIBOA-glucoside dioxygenase BX6-like [Setaria italica]  2.91 2.67E-14 6.33E-12 
 

m.188036 hypothetical protein SORBIDRAFT_05g022340 [Sorghum bicolor]  2.87 1.31E-13 2.85E-11 
 

m.52678 PREDICTED: peroxidase 2-like [Zea mays]  2.58 4.5E-13 9.29E-11 
 

m.137462 hypothetical protein BRADI_4g09040 [Brachypodium distachyon] 2.53 3.41E-14 7.95E-12 
 

m.105343 hypothetical protein SORBIDRAFT_01g007240 [Sorghum bicolor]  2.52 2.77E-19 1.31E-16 
 

m.244824 PREDICTED: thioredoxin M-type, chloroplastic-like [Setaria italica]  2.39 1.2E-09 1.34E-07 
 

m.237571 PREDICTED: peroxidase 2-like [Setaria italica]  2.23 0.0000136 0.0005707 
 

m.266076 hypothetical protein SORBIDRAFT_07g001280 [Sorghum bicolor]  2.01 1.36E-08 0.0000012 
 

m.150499 aldehyde dehydrogenase 5 [Zea mays]  1.96 7.18E-13 1.44E-10 
 

m.126273 PREDICTED: peroxidase 57-like [Setaria italica]  1.96 0.0003207 0.0085632 
 

m.107171 replicase [Lolium latent virus]  1.83 1.28E-10 1.75E-08 
 

Table 3.3A. DEGs involved in “oxidation-reduction process” in salt-treated Supreme  
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m.64522 hypothetical protein SORBIDRAFT_03g034400 [Sorghum bicolor]  1.77 2.33E-12 4.35E-10 
 

m.245096 PREDICTED: peroxidase 1 [Setaria italica]  1.76 3.19E-12 5.82E-10 
 

m.206325 uncharacterized protein LOC107522037 [Zea mays]  1.74 0.0002303 0.0064728 
 

m.108821 PREDICTED: peroxidase 2 [Setaria italica]  1.73 1.27E-06 0.0000693 
 

m.245166 PREDICTED: cytochrome P450 78A9-like [Setaria italica]  1.68 2.24E-14 5.4E-12 
 

m.14787 uncharacterized protein LOC100283169 [Zea mays]  1.66 1.85E-45 7.65E-42 
 

m.285938 PREDICTED: peroxidase 72-like [Setaria italica]  1.57 4.93E-09 4.83E-07 
 

m.29517 PREDICTED: plant cysteine oxidase 2-like [Setaria italica]  1.51 7.8E-08 5.75E-06 
 

m.151533 PREDICTED: cytochrome P450 CYP72A219-like [Setaria italica]  1.50 0.0001813 0.0053016 
 

m.122847 hypothetical protein SORBIDRAFT_10g006050 [Sorghum bicolor] 1.47 0.0000608 0.0020866 
 

m.29512 PREDICTED: plant cysteine oxidase 2-like [Setaria italica]  1.45 4.64E-15 1.2E-12 
 

m.29518 PREDICTED: plant cysteine oxidase 2-like [Setaria italica]  1.38 8.63E-09 8.01E-07 
 

m.150497 hypothetical protein SETIT_000898mg [Setaria italica] 1.31 0.0002972 0.0080241 
 

m.34834 siroheme uroporphyrinogen methyltransferase 1 [Zea mays]  1.21 6.87E-10 8.12E-08 
 

m.239595 hypothetical protein SORBIDRAFT_04g034160 [Sorghum bicolor]  1.18 1.49E-45 6.76E-42 
 

m.218596 PREDICTED: peroxidase 2-like [Setaria italica]  1.13 1.63E-12 3.08E-10 
 

m.83369 PREDICTED: geraniol 8-hydroxylase-like [Setaria italica]  1.11 4.55E-08 3.53E-06 
 

m.206977 uncharacterized protein LOC100273624 [Zea mays]  1.05 0.0000361 0.0013296 
 

m.203926 hypothetical protein SORBIDRAFT_02g034370 [Sorghum bicolor]  1.02 6.22E-36 1.29E-32 
 

 

Gene_ID Description Log
2
FC P value 

Adjusted P 

value 

m.282685 hypothetical protein SORBIDRAFT_05g003100 [Sorghum bicolor] 4.38 7.78E-19 4.77E-17 

m.282690 PREDICTED: cytochrome P450 94C1-like [Setaria italica]  4.17 3.08E-30 3.97E-28 

m.198771 putative cytochrome P450 superfamily protein, partial [Zea mays] 4.01 0.0006585 0.004989 

m.74203 PsbA (chloroplast) [Bambusa oldhamii]  3.87 0.0000939 0.0008965 

m.267635 hypothetical protein SORBIDRAFT_05g003100 [Sorghum bicolor] 3.84 3.61E-15 1.56E-13 

m.187403 PREDICTED: 2'-deoxymugineic-acid 2'-dioxygenase-like [Setaria italica]  3.78 1.6E-91 2.19E-88 

m.283169 polyphenol oxidase [Setaria italica]  3.66 0.0010859 0.0077061 

m.204080 hypothetical protein SORBIDRAFT_01g030560 [Sorghum bicolor]  3.44 6.3E-11 1.69E-09 

m.154967 PREDICTED: cytochrome P450 734A6-like [Setaria italica]  3.30 6.18E-23 5.02E-21 

m.176435 cytochrome P450 94C1-like [Zea mays]  3.20 1.03E-06 0.0000151 

m.44266 hypothetical protein SORBIDRAFT_09g021040 [Sorghum bicolor]  3.12 0.000592 0.0045424 

m.17513 PREDICTED: cytochrome P450 734A5-like [Setaria italica]  3.11 5.83E-06 0.0000728 

m.26238 PREDICTED: DIBOA-glucoside dioxygenase BX6-like [Setaria italica]  3.05 7.45E-11 1.98E-09 

m.137462 hypothetical protein BRADI_4g09040 [Brachypodium distachyon] 2.93 1.36E-08 2.64E-07 

Table 3.3B. DEGs involved in “oxidation-reduction process” in salt-treated Parish 
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m.282702 PREDICTED: cytochrome P450 94C1-like [Setaria italica]  2.88 0.000011 0.0001303 

m.174331 NADH dehydrogenase subunit 5 (mitochondrion) [Bambusa oldhamii] 2.86 0.0005402 0.0041928 

m.88361 PREDICTED: peroxidase 5-like [Zea mays]  2.83 0.0014216 0.0097072 

m.59079 PREDICTED: peroxidase 9-like [Setaria italica]  2.81 0.0003372 0.0027726 

m.61296 PREDICTED: putative cytochrome P450 superfamily protein isoform X1 [Zea mays]  2.81 0.0012673 0.0087922 

m.64522 hypothetical protein SORBIDRAFT_03g034400 [Sorghum bicolor]  2.79 3.03E-20 1.99E-18 

m.127911 PREDICTED: proline dehydrogenase 2, mitochondrial-like [Setaria italica]  2.74 2.89E-145 1.72E-141 

m.219069 PREDICTED: L-ascorbate oxidase homolog [Setaria italica]  2.71 0.0000372 0.0003882 

m.4981 PREDICTED: peroxidase 25 [Setaria italica]  2.71 1.86E-06 0.0000256 

m.66489 PREDICTED: nitrate reductase [NADH] [Setaria italica]  2.71 1.75E-255 6.23E-251 

m.204071 hypothetical protein SORBIDRAFT_01g030560 [Sorghum bicolor]  2.63 1.95E-32 2.9E-30 

m.266076 hypothetical protein SORBIDRAFT_07g001280 [Sorghum bicolor]  2.61 9.94E-14 3.65E-12 

m.188036 hypothetical protein SORBIDRAFT_05g022340 [Sorghum bicolor]  2.56 1.82E-06 0.0000251 

m.237571 PREDICTED: peroxidase 2-like [Setaria italica]  2.55 6.86E-06 0.0000845 

m.113717 PREDICTED: abscisic acid 8'-hydroxylase 3 [Setaria italica]  2.55 3.54E-30 4.53E-28 

m.282695 hypothetical protein SORBIDRAFT_05g003100 [Sorghum bicolor] 2.50 9.65E-15 4.03E-13 

m.280138 hypothetical protein SORBIDRAFT_01g001160 [Sorghum bicolor]  2.48 3.07E-14 1.2E-12 

m.267641 hypothetical protein SORBIDRAFT_08g003110 [Sorghum bicolor]  2.48 7.06E-28 7.79E-26 

m.154930 hypothetical protein SORBIDRAFT_02g040500 [Sorghum bicolor]  2.47 2.13E-38 4.25E-36 

m.34834 siroheme uroporphyrinogen methyltransferase 1 [Zea mays]  2.47 1.02E-38 2.09E-36 

m.160156 predicted protein [Hordeum vulgare subsp. vulgare] 2.38 5.21E-06 0.0000656 

m.126273 PREDICTED: peroxidase 57-like [Setaria italica]  2.35 0.0006227 0.0047469 

m.245166 PREDICTED: cytochrome P450 78A9-like [Setaria italica]  2.33 1.63E-20 1.09E-18 

m.113905 PREDICTED: probable lipoxygenase 8, chloroplastic [Setaria italica]  2.30 2.32E-13 8.16E-12 

m.66495 

AChain A, Structural Studies On Corn Nitrate Reductase: Refined Structure Of The 

Cytochrome B Reductase Fragment At 2.5 Angstroms, Its Adp Complex And An Active 
Site Mutant And Modeling Of The Cytochrome B Domain  2.26 5.39E-38 1.05E-35 

m.198183 PREDICTED: cytochrome P450 72A15-like [Setaria italica]  2.25 3.86E-17 2.06E-15 

m.239595 hypothetical protein SORBIDRAFT_04g034160 [Sorghum bicolor]  2.24 2.4E-195 4.26E-191 
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m.52678 PREDICTED: peroxidase 2-like [Zea mays]  2.23 4.6E-11 1.25E-09 

m.62488 Cytochrome P450 99A2 [Aegilops tauschii] 2.22 1.28E-54 5.13E-52 

m.47963 unknown [Zea mays]  2.20 4.43E-43 1.09E-40 

m.127929 PREDICTED: proline dehydrogenase 2, mitochondrial-like [Setaria italica]  2.17 0.0004364 0.0034659 

m.50105 PREDICTED: HIPL1 protein-like [Setaria italica]  2.15 0.0007468 0.0055631 

m.127936 hypothetical protein SETIT_035342mg [Setaria italica] 2.11 1.89E-08 3.6E-07 

m.94094 hypothetical protein SETIT_029527mg [Setaria italica] 2.10 6.58E-09 1.35E-07 

m.139442 hypothetical protein SORBIDRAFT_09g021040 [Sorghum bicolor]  2.09 0.0002488 0.0021221 

m.26615 putative cinnamyl-alcohol dehydrogenase family protein [Zea mays]  2.06 1.42E-08 2.75E-07 

m.129962 PREDICTED: abscisic acid 8'-hydroxylase 1 [Setaria italica]  2.03 1.94E-75 1.87E-72 

m.51271 PREDICTED: uncharacterized protein LOC100381459 isoform X1 [Zea mays] 2.03 0.0001361 0.0012449 

m.23307 PREDICTED: cationic peroxidase 1-like [Setaria italica]  1.97 1.26E-21 9.17E-20 

m.22083 PREDICTED: cytochrome P450 714C2-like isoform X1 [Brachypodium distachyon]  1.95 1.7E-27 1.83E-25 

m.173810 taxane 10-beta-hydroxylase [Zea mays]  1.94 0.0006829 0.005154 

m.307652 hypothetical protein SORBIDRAFT_02g023150 [Sorghum bicolor]  1.94 1.65E-06 0.0000229 

m.151533 PREDICTED: cytochrome P450 CYP72A219-like [Setaria italica]  1.91 3.27E-06 0.0000429 

m.285938 PREDICTED: peroxidase 72-like [Setaria italica]  1.89 2.31E-11 6.58E-10 

m.51257 PREDICTED: respiratory burst oxidase homolog protein B-like [Setaria italica]  1.86 0.0000325 0.0003442 

m.29512 PREDICTED: plant cysteine oxidase 2-like [Setaria italica]  1.86 6.74E-32 9.75E-30 

m.8466 gibberellin 2-beta-dioxygenase [Zea mays]  1.84 1.06E-10 2.76E-09 

m.150499 aldehyde dehydrogenase 5 [Zea mays]  1.78 2.74E-09 5.93E-08 

m.26622 putative cinnamyl-alcohol dehydrogenase family protein [Zea mays]  1.78 0.000054 0.0005445 

m.206985 PREDICTED: tropinone reductase homolog At2g29170-like [Setaria italica]  1.78 0.0005698 0.0043875 

m.26185 hypothetical protein SORBIDRAFT_04g030310 [Sorghum bicolor]  1.78 1.85E-12 5.9E-11 

m.23347 PREDICTED: peroxidase 4-like [Setaria italica]  1.77 3.94E-48 1.22E-45 

m.83369 PREDICTED: geraniol 8-hydroxylase-like [Setaria italica]  1.77 7.78E-27 8.02E-25 

m.280133 hypothetical protein SORBIDRAFT_01g001160 [Sorghum bicolor]  1.76 0.000027 0.0002903 

m.174651 hypothetical protein SORBIDRAFT_02g040520 [Sorghum bicolor]  1.73 3.22E-13 1.11E-11 
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m.29517 PREDICTED: plant cysteine oxidase 2-like [Setaria italica]  1.72 8.64E-10 2.01E-08 

m.198787 PREDICTED: cytochrome P450 93A2-like [Zea mays]  1.71 2.8E-08 5.19E-07 

m.226980 uncharacterized protein LOC100217119 [Zea mays]  1.70 8.78E-108 1.95E-104 

m.198335 PREDICTED: 1-aminocyclopropane-1-carboxylate oxidase 1 isoform X1 [Zea mays]  1.69 0.0003365 0.0027675 

m.173438 PREDICTED: cytochrome P450 86A1 [Setaria italica]  1.68 5.77E-17 3.01E-15 

m.187858 PREDICTED: laccase-10-like [Setaria italica]  1.66 0.000157 0.0014156 

m.29518 PREDICTED: plant cysteine oxidase 2-like [Setaria italica]  1.66 5.93E-12 1.8E-10 

m.94079 PREDICTED: flavin-containing monooxygenase FMO GS-OX-like 8 [Setaria italica]  1.59 0.0000572 0.0005741 

m.113684 PREDICTED: stearoyl-[acyl-carrier-protein] 9-desaturase 1, chloroplastic [Setaria italica]  1.58 1.45E-13 5.22E-12 

m.248182 hypothetical protein SORBIDRAFT_04g017460 [Sorghum bicolor]  1.57 1.27E-06 0.0000181 

m.239478 hypothetical protein SORBIDRAFT_06g018040 [Sorghum bicolor]  1.56 2.43E-72 2.16E-69 

m.248363 PREDICTED: polyphenol oxidase I, chloroplastic-like [Zea mays]  1.56 2.52E-16 1.23E-14 

m.147368 PREDICTED: thioredoxin H4-2 [Setaria italica]  1.55 1.54E-12 4.96E-11 

m.41429 PREDICTED: flavonol synthase/flavanone 3-hydroxylase [Oryza sativa Japonica Group]  1.55 2.28E-55 9.45E-53 

m.248170 hypothetical protein OsI_07154 [Oryza sativa Indica Group] 1.55 1.72E-09 3.85E-08 

m.56310 hypothetical protein SORBIDRAFT_01g030560 [Sorghum bicolor]  1.54 1.02E-38 2.09E-36 

m.206977 uncharacterized protein LOC100273624 [Zea mays]  1.54 1.03E-06 0.0000151 

m.41405 PREDICTED: 1-aminocyclopropane-1-carboxylate oxidase 5-like [Setaria italica]  1.53 1.55E-43 3.94E-41 

m.226420 PREDICTED: monothiol glutaredoxin-S2 [Setaria italica]  1.48 0.0010347 0.0073781 

m.83127 flavoprotein wrbA [Zea mays] 1.48 4.6E-23 3.76E-21 

m.98338 PREDICTED: peroxidase 45-like [Setaria italica]  1.47 1.86E-07 3.08E-06 

m.307657 hypothetical protein SORBIDRAFT_02g023150 [Sorghum bicolor]  1.46 0.0007168 0.0053697 

m.23335 PREDICTED: peroxidase 4-like [Setaria italica]  1.46 2.8E-46 8.15E-44 

m.18004 putative laccase precursor [Zea mays]  1.45 1.1E-17 6.12E-16 

m.301900 PREDICTED: L-gulonolactone oxidase-like [Zea mays]  1.44 5.43E-06 0.0000682 

m.303894 respiratory burst oxidase protein D variant alpha [Zea mays] 1.44 4.41E-08 7.99E-07 

m.196099 hypothetical protein SORBIDRAFT_07g024030 [Sorghum bicolor]  1.43 6.19E-06 0.0000769 

m.96471 uncharacterized protein LOC100381459 [Zea mays]  1.43 0.0004642 0.0036608 
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m.185746 PREDICTED: gibberellin 2-beta-dioxygenase 8-like [Setaria italica]  1.42 2.13E-06 0.000029 

m.98344 PREDICTED: peroxidase 45-like [Setaria italica]  1.42 0.000001 0.0000146 

m.41409 PREDICTED: 1-aminocyclopropane-1-carboxylate oxidase 5-like [Setaria italica]  1.40 4.14E-62 2.68E-59 

m.56113 ascorbate-specific transmembrane electron transporter 1 [Zea mays]  1.39 3.27E-24 2.84E-22 

m.299765 PREDICTED: cytochrome P450 CYP72A219-like [Setaria italica]  1.38 2.22E-13 7.82E-12 

m.158584 PREDICTED: glutamate dehydrogenase 2-like [Setaria italica]  1.35 4.49E-06 0.0000572 

m.40826 catalase [Saccharum hybrid cultivar NCo 376] 1.34 3.14E-13 1.09E-11 

m.143013 unknown [Zea mays]  1.34 1.52E-50 5.26E-48 

m.279952 
PREDICTED: uncharacterized oxidoreductase At1g06690, chloroplastic-like [Setaria 

italica] 1.31 2.03E-38 4.08E-36 

m.225221 PREDICTED: laccase-10-like [Setaria italica]  1.30 0.0000589 0.0005889 

m.291116 hypothetical protein SORBIDRAFT_07g024230 [Sorghum bicolor] 1.29 4.2E-09 8.85E-08 

m.303872 respiratory burst oxidase protein D variant alpha [Zea mays] 1.28 4.07E-57 1.88E-54 

m.98341 hypothetical protein SORBIDRAFT_01g007230 [Sorghum bicolor]  1.27 0.0000163 0.0001846 

m.265977 NAD(P)H-dependent oxidoreductase [Zea mays]  1.27 1.01E-11 3.01E-10 

m.255862 PREDICTED: peroxidase 16-like [Setaria italica]  1.26 8.32E-10 1.94E-08 

m.248186 hypothetical protein SORBIDRAFT_04g017460 [Sorghum bicolor]  1.26 1.68E-09 3.76E-08 

m.141480 PREDICTED: glyceraldehyde-3-phosphate dehydrogenase A, chloroplastic [Setaria italica]  1.26 2.64E-22 2.04E-20 

m.91343 PREDICTED: probable phospholipid hydroperoxide glutathione peroxidase [Setaria italica]  1.25 0.0001214 0.0011261 

m.190058 unknown [Zea mays] 1.24 0.0001114 0.0010438 

m.136651 
ALDR_HORVURecName: Full=Aldose reductase; Short=AR; AltName: Full=Aldehyde 

reductase  1.24 0.0001501 0.0013606 

m.309440 peroxidase 24 precursor [Zea mays]  1.23 2.45E-25 2.3E-23 

m.141474 glyceraldehyde-3-phosphate dehydrogenase A, chloroplastic precursor [Zea mays]  1.22 1.05E-48 3.27E-46 

m.41396 PREDICTED: flavanone 3-dioxygenase-like [Setaria italica]  1.21 1.46E-16 7.32E-15 

m.140358 PREDICTED: malate dehydrogenase, chloroplastic-like [Setaria italica]  1.21 3.44E-33 5.31E-31 

m.95209 PREDICTED: putative respiratory burst oxidase homolog protein H [Setaria italica]  1.21 2.06E-15 9.18E-14 

m.303885 PREDICTED: respiratory burst oxidase homolog protein B [Setaria italica]  1.20 3.91E-14 1.51E-12 

m.95198 PREDICTED: putative respiratory burst oxidase homolog protein H [Setaria italica]  1.20 5.27E-31 7.16E-29 

m.154951 hypothetical protein SORBIDRAFT_02g040490 [Sorghum bicolor]  1.19 0.000688 0.0051867 
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m.2413 hypothetical protein SORBIDRAFT_03g036760 [Sorghum bicolor]  1.19 1.09E-13 3.97E-12 

m.139906 PREDICTED: flavonoid 3'-monooxygenase-like [Setaria italica]  1.18 1.94E-08 3.69E-07 

m.307287 hypothetical protein SORBIDRAFT_10g022440 [Sorghum bicolor]  1.17 9.76E-06 0.0001165 

m.300523 hypothetical protein SORBIDRAFT_07g022650 [Sorghum bicolor]  1.17 6.47E-06 0.00008 

m.276373 hypothetical protein SORBIDRAFT_05g001000 [Sorghum bicolor] 1.13 1.02E-25 9.81E-24 

m.188251 PREDICTED: plant cysteine oxidase 5-like [Setaria italica]  1.12 1.96E-15 8.79E-14 

m.199448 hypothetical protein SORBIDRAFT_02g040190 [Sorghum bicolor]  1.12 5.61E-11 1.51E-09 

m.72825 PREDICTED: flavonol synthase/flavanone 3-hydroxylase-like [Zea mays]  1.12 1.61E-30 2.13E-28 

m.299275 uncharacterized protein LOC100281213 [Zea mays]  1.11 7.97E-24 6.81E-22 

m.187156 hypothetical protein SORBI_001G062300 [Sorghum bicolor] 1.11 4.84E-30 6.17E-28 

m.41447 PREDICTED: flavanone 3-dioxygenase-like [Setaria italica]  1.09 6.07E-17 3.15E-15 

m.203926 hypothetical protein SORBIDRAFT_02g034370 [Sorghum bicolor]  1.09 8.06E-42 1.87E-39 

m.14298 PREDICTED: extradiol ring-cleavage dioxygenase-like [Zea mays]  1.08 1.28E-20 8.67E-19 

m.27825 hypothetical protein SETIT_019843mg, partial [Setaria italica] 1.08 0.0003571 0.0029166 

m.150415 PREDICTED: peroxidase 11 [Setaria italica]  1.08 1.15E-21 8.45E-20 

m.5429 acc oxidase [Zea mays] 1.06 0.0000828 0.0008019 

m.124640 hypothetical protein SORBIDRAFT_06g032450 [Sorghum bicolor]  1.06 5.95E-69 4.81E-66 

m.216101 hypothetical protein SORBIDRAFT_02g036650 [Sorghum bicolor]  1.06 3.93E-06 0.0000507 

m.266697 hypothetical protein SORBIDRAFT_10g006650 [Sorghum bicolor]  1.03 2.58E-13 9.05E-12 

m.145682 PREDICTED: peroxidase 21 [Setaria italica]  1.03 0.0000589 0.0005895 

m.18076 gibberellin 2-beta-dioxygenase [Saccharum hybrid cultivar R570] 1.02 0.0000265 0.0002856 

m.232330 PREDICTED: fatty acid desaturase DES2 [Setaria italica]  1.02 7.88E-27 8.1E-25 

m.83132 flavoprotein wrbA [Zea mays] 1.02 9.21E-06 0.0001105 

m.41387 PREDICTED: flavanone 3-dioxygenase-like [Setaria italica]  1.01 7.1E-16 3.3E-14 

m.226979 uncharacterized protein LOC100217119 [Zea mays]  1.01 1.62E-08 3.11E-07 
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Gene_ID Description Log
2
FC P value 

Adjusted P 

value 

m.268973 splicing factor putative [Albugo laibachii Nc14] 10.39 9.13E-13 1.8E-10 

m.95962 hypothetical protein L917_04771 [Phytophthora parasitica] 7.20 0.000178281 0.005223068 

m.326868 hypothetical protein L915_18980 [Phytophthora parasitica]  6.97 0.000044 0.001570743 

m.319487 DEAD-box ATP-dependent RNA helicase 56 [Aphanomyces invadans] * 6.92 0.0000824 0.002708217 

m.71991 hypothetical protein SETIT_017165mg [Setaria italica] 5.72 0.000218737 0.006232131 

 

Gene_ID Description Log
2
FC P value Adjusted P value 

m.73458 PREDICTED: endonuclease 2-like [Setaria italica]  1.26 0.000978368 0.007035904 

m.226928 TPA: hypothetical protein ZEAMMB73_851898 [Zea mays] 1.66 5.60E-07 8.62E-06 

m.292931 PREDICTED: uncharacterized protein LOC101753419 [Setaria italica]  1.72 1.42E-09 3.20E-08 

m.159032 AF466646_7putative polyprotein [Zea mays] 1.77 1.42E-08 2.76E-07 

m.292921 PREDICTED: uncharacterized protein LOC101753419 [Setaria italica]  1.78 9.77E-67 7.24E-64 

 

Salt stress induced genes shows higher expression in Supreme than in Parish under 

normal conditions  

 Although Supreme has fewer genes that are responsive to salt treatment than Parish, 

Supreme exhibits much higher tolerance than Parish. It is possible that Supreme may have 

a higher expression of salt stress induced genes than Parish under normal conditions that 

may or may not be induced upon salt treatment, and therefore may be more prepared when 

exposed to salinity. To test this hypothesis, we selected 202 genes based on the following 

criteria: 1) salt-induced genes in Parish; 2) higher expression in Supreme than in Parish 

under normal condition; 3) not changed or further induced in Supreme under salt treatment. 

To get insight into the biological meanings of these genes, we conducted GO enrichment 

Table 3.4A. DEGs with “nucleic acid binding activity” in salt-treated Supreme  

Table 3.4B. DEGs with “nucleic acid binding activity” in salt-treated Parish 
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analysis and found the following over-represented GO terms: “proline catabolic process”, 

“transcription factor activity”, “proline dehydrogenase activity” and “monooxygenase 

activity” (Figure 3.8). We then further examined genes with “transcription factor activity” 

(Table 3.5). It is interesting that many of these transcription factors have been associated 

with salt tolerance in the previous studies, such as dehydration-responsive element-binding 

(DREB) proteins, ethylene-responsive transcription factors (ERFs), and WRKY 

transcription factors (Wang et al. 2016).  

Figure 3.8. Functional enrichment analysis for salt-induced genes that show higher expression in 

Supreme than in Parish under normal conditions. The x-axis shows significantly enriched gene ontology 

(GO) terms (P < 0.05, Bonferroni < 0.05) in two categories, Biological Process (BP) and Molecular Function 

(MF). The y-axis shows the –log
10

P values of these terms.  
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Gene_ID Description 

Log
2
FC 

(S
normal

/P
normal

) 

Log
2
FC 

(S
salt

/S
normal

) 

Log
2
FC 

(P
salt

/P
normal

) 

m.108243 hypothetical protein [Paspalum vaginatum] 2.26 NA
a

 1.95 

m.237095 hypothetical protein SORBIDRAFT_02g026630 [Sorghum bicolor] 2.27 NA 3.54 

m.114339 hypothetical protein SORBIDRAFT_03g034670 [Sorghum bicolor] 9.36 NA 7.50 

m.43990 hypothetical protein SORBIDRAFT_03g038210 [Sorghum bicolor] 1.49 NA 2.06 

m.108223 hypothetical protein SORBIDRAFT_04g031960 [Sorghum bicolor] 1.97 NA 2.02 

m.285764 hypothetical protein SORBIDRAFT_06g025900 [Sorghum bicolor] 3.56 NA 4.76 

m.133559 

PREDICTED: AP2-like ethylene-responsive transcription factor AIL5 [Setaria 

italica] 1.82 NA 1.51 

m.108267 

PREDICTED: dehydration-responsive element-binding protein 1A-like [Setaria 

italica] 1.81 NA 2.44 

m.85022 

PREDICTED: dehydration-responsive element-binding protein 1E [Setaria 

italica] 2.73 NA 3.88 

m.26812 
PREDICTED: dehydration-responsive element-binding protein 1H-like [Setaria 

italica] 2.72 1.01 4.46 

m.84649 PREDICTED: ethylene-responsive transcription factor 2 [Setaria italica] 1.07 NA 1.00 

m.204461 

PREDICTED: ethylene-responsive transcription factor ERF027-like [Setaria 

italica] 1.22 NA 1.67 

m.73960 

PREDICTED: ethylene-responsive transcription factor ERF109-like [Setaria 

italica] 1.84 NA 3.03 

m.195857 PREDICTED: homeobox-leucine zipper protein HOX25-like [Setaria italica] 1.30 NA 1.08 

m.60871 PREDICTED: probable WRKY transcription factor 4 [Setaria italica] 1.21 NA 2.28 

m.264805 PREDICTED: probable WRKY transcription factor 41 isoform X2 [Zea mays] 2.23 NA 1.78 

m.298519 PREDICTED: probable WRKY transcription factor 70 [Setaria italica] 1.23 NA 1.28 

m.160848 PREDICTED: transcription factor HBP-1b(c1)-like [Setaria italica] 1.23 NA 1.51 

m.73865 PREDICTED: WRKY transcription factor 18-like [Setaria italica] 1.55 NA 3.24 

m.263026 PREDICTED: zinc finger protein ZAT9 [Brachypodium distachyon] 1.17 NA 1.54 

m.264779 TPA: putative WRKY DNA-binding domain superfamily protein [Zea mays] 1.04 NA 1.61 

 

The possible role of vacuolar Na+/H+ antiporters and proton pump in conferring salt 

tolerance in Supreme  

 As Supreme accumulated more Na+ and showed higher salt tolerance than Parish, 

we speculated that the former may have developed a strong capacity to sequestrate 

excessive Na+ into the vacuole through vacuolar Na+/H+ antiporters, thus maintaining high 

Table 3.5. Summary of salt-induced transcription factors that are enriched among genes showing 

higher expression in Supreme than in Parish under normal conditions 

a
NA: not applicable. Expression change that didn’t pass the DEGs analysis statistics (2-fold change or above, P 

value ≤ 0.01, and adjusted P value ≤ 0.01) is annotated as NA.  
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osmotic pressure to facilitate water uptake and protecting the cytoplasm from Na+ toxicity. 

To test our hypothesis, we identified a total of seven presumable Na+/H+ antiporters 

(m.194123, m.133530, m.194121, m.194125, m.207121, m.28253, m.170234) in Seashore 

paspalum’s transcriptome, two of which, m.133530 and m.170234, have homology to Zea 

mays vacuolar NHX3 and NHX4, respectively by BLAST search in NCBI (Table 3.6A). 

We performed differential expression analysis for these putative Na+/H+ antiporters with 

the following four comparisons: Snormal vs. Pnormal, Ssalt vs. Snormal, Psalt vs. Pnormal, Ssalt vs. 

Psalt. For the two presumable Na+/H+ antiporters m.133530 and m.170234, the expression 

level of m.133530 did not show significant changes between the two cultivars under both 

normal and salt-treated conditions while the expression level of m.170234 is significantly 

higher in Parish than in Supreme under normal conditions (Table 3.6A). Among the 

remaining five putative Na+/H+ antiporters, m.194123 showed a significantly higher 

expression level in Supreme than in Parish under both normal and salt-treated conditions 

while m.194121 showed a significantly higher expression level in Parish than in Supreme 

under salt-treated conditions (Table 3.6A).  

 As vacuolar Na+/H+ antiporters are empowered by the electrochemical gradient 

created by H+-ATPases and H+-pyrophosphatases (H+-PPases) (Roy, Negrão, and Tester 

2014), we also identified eleven H+-ATPases and four H+-PPases in Seashore paspalum’s 

transcriptome, which are shown in Table 3.6B  and Table 3.6C, respectively. None of the 

H+-ATPases showed differential expression (Table 3.6B). Interestingly, all of the four 

vacuolar H
+
-PPases showed lower expression level in Supreme than in Parish under normal 

conditions, especially for one of the vacuolar H
+
-PPase m.112845 (Table 3.6C). However, 

m.112845 was induced by about 1024 times (FC=210.28) in Supreme under salt treatment, 
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suggesting a possible role in facilitating Na+ sequestration under high salinity and 

conferring salinity tolerance in Supreme (Table 3.6C).  

 

Gene_ID Description 

Log2FC 

(Snormal/Pnormal) 

Log2FC 

(Ssalt/Snormal) 

Log2FC 

(Psalt/Pnormal) 

Log2FC 

(Ssalt/Psalt) 

m.194123 PREDICTED: sodium/hydrogen exchanger 2-like [Setaria italica] 8.88 -0.22 -1.09 9.74 

m.133530* sodium/hydrogen exchanger [Zea mays] 0.49 0.02 -0.07 0.58 

m.194121 PREDICTED: sodium/hydrogen exchanger 2-like [Setaria italica] -0.01 -0.97 0.17 -1.15 

m.194125 PREDICTED: sodium/hydrogen exchanger 2-like [Setaria italica] 0.25 -0.43 0.3 -0.49 

m.207121 PREDICTED: sodium/hydrogen exchanger 6-like [Setaria italica] 0.55 -0.1 -0.1 0.55 

m.28253 PREDICTED: sodium/hydrogen exchanger 8 [Setaria italica] 0.52 0.09 -0.3 0.92 

m.170234* PREDICTED: sodium/hydrogen exchanger 2 [Setaria italica] -1.1 -0.1 -0.37 -0.83 

 

 

Gene_ID Description 

Log
2
FC 

(S
normal

/P
normal

) 

Log
2
FC 

(S
salt

/S
normal

) 

Log
2
FC 

(P
salt

/P
normal

) 

Log
2
FC 

(S
salt

P
salt

) 

m.102654 

PREDICTED: V-type proton ATPase catalytic subunit A 

[Brachypodium distachyon]  0.16 0.46 -0.07 0.69 

m.116106 PREDICTED: V-type proton ATPase subunit F-like [Setaria italica]  -0.22 0.04 0.15 -0.33 

m.117254 Vacuolar proton pump 16 kDa proteolipid subunit -0.23 0.15 -0.08 -0.01 

m.117255 
PREDICTED: V-type proton ATPase 16 kDa proteolipid subunit [Oryza 

brachyantha]  -0.19 0.26 0.19 -0.12 

m.117270 

PREDICTED: V-type proton ATPase 16 kDa proteolipid subunit [Oryza 

brachyantha]  -0.51 0.27 0.16 -0.39 

m.173282 PREDICTED: V-type proton ATPase subunit a1 [Setaria italica] 0.21 0.06 0.02 0.25 

m.190922 PREDICTED: V-type proton ATPase subunit E [Setaria italica]  -0.73 0.47 0.68 -0.94 

m.23021 putative ATPase, V1 complex, subunit A protein [Zea mays] 0.29 -0.08 0.34 -0.12 

m.230918 

PREDICTED: V-type proton ATPase subunit G1-like [Oryza 

brachyantha]  -0.58 0.13 0.18 -0.62 

m.232963 PREDICTED: V-type proton ATPase subunit a3-like [Setaria italica]  -0.38 0.24 0.17 -0.32 

m.279500 V-type proton ATPase subunit E-like [Zea mays]  -0.27 0.20 0.12 -0.19 

 

 

 

 

Table 3.6A. Summary of possible Na+/H+ antiporters in Seashore paspalum’s transcriptome and 

their expression change under different comparisons. DEGs (2-fold change or above, P value ≤ 0.01, 

and adjusted P value ≤ 0.01) are in the orange background.     

* m.133530 and m.170234 have homology to Zea mays vacuolar NHX3 and NHX4, respectively.  

Table 3.6B. Summary of possible vacuolar H+-ATPases in Seashore paspalum’s transcriptome and 

their expression change under different comparisons. Note that vacuolar H+-ATPases are not 

differentially expressed for different comparisons indicated below.  



` 

 106 

 

Gene_ID Description 

Log
2
FC 

(S
normal

/P
normal

) 

Log
2
FC 

(S
salt

/S
normal

) 

Log
2
FC 

(P
salt

/P
normal

) 

Log
2
FC 

(S
salt

P
salt

) 

m.112845 V-type H(+)-translocating pyrophosphatase [Aphanomyces invadans]  -8.48 10.28 0.69 1.12 

m.73322 
PREDICTED: pyrophosphate-energized vacuolar membrane proton 

pump-like [Setaria italica]  -1.68 -0.94 0.30 -2.92 

m.88459 
PREDICTED: pyrophosphate-energized vacuolar membrane proton 

pump-like [Setaria italica]  -1.83 -1.16 0.30 -3.29 

m.95345 
PREDICTED: pyrophosphate-energized vacuolar membrane proton 

pump-like isoform X1 [Setaria italica]  -2.20 1.11 0.43 -1.52 

 

Discussion 

Supreme takes advantage of Na+ accumulation for improved salt tolerance 

 It becomes evident that the mechanisms that contribute to high salt-tolerance in 

halophytes are conserved to those known in glycophytes although some halophytes have 

evolved special adaptive mechanisms such as salt glands to actively excrete salts (Zhang 

and Shi 2013). However, halophytes may possess unique genomic structure (e.g. a higher 

gene copy number and altered promoter sequences), and subtle gene regulation at the 

transcription and protein levels that leads to their better adaption to high salinity in the 

environment (Kosová, Prášil, and Vítámvás 2013).   

 In our study, we investigated the mechanisms underlying salt tolerance in a 

halophyte called Seashore paspalum by comparing two cultivars: Supreme (high salt-

tolerance) and Parish (moderate salt-tolerance) at physiological and transcriptome levels 

under both non-treated and salt-treated conditions (400 mM NaCl). Measurement of Na+ 

content suggests that Na+ accumulation under both normal and salt-treated conditions is a 

key mechanism underlying Supreme’s high salinity tolerance (Figure 1D). Na+ 

accumulation by Supreme under salt treatment is not surprising as previous studies suggest 

Table 3.6C. Summary of possible vacuolar H+-PPases in Seashore paspalum’s transcriptome and 

their expression change under different comparisons. DEGs (2-fold change or above, P value ≤ 0.01, 

and adjusted P value ≤ 0.01) are in the orange background.  
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that this is a common mechanism for both halophyte and glycophyte under salt stress to 

facilitate water uptake (Xu et al. 2016). However, the Seashore paspalum genotype, 

Supreme takes full advantage of this mechanism by accumulating Na+ in a significantly 

higher level than Parish under normal conditions, which may be evolved as a protective 

mechanism for osmotic adjustment to counteract high levels of Na+ in the surrounding 

environment.   

 We suggest that further increased Na+ in Supreme under salt-treated conditions is 

sequestrated into the vacuole to prevent its toxicity to the cytoplasm. Na+ sequestration into 

the vacuole takes place by the operation of vacuolar Na+/H+ antiporters (NHXs) in concert 

with two proton pumps H+-ATPases and H+-PPases. Genes involved in Na+ sequestration 

are promising candidate genes to engineer crops for salinity tolerance. Several salinity 

tolerant plants have been successfully developed by overexpression of either NHXs or H+-

PPases (e.g. AVP1) (Roy, Negrão, and Tester 2014). In our study, we identified at least 

two possible vacuolar Na+/H+ antiporters (NHXs), namely m.133530 and m.170234 (Table 

3.6A). Of the remaining five NHXs, m.194123 exhibits dramatically higher expression in 

Supreme than in Parish under both normal and salt-treated conditions, raising the question 

of whether or not m.194123 functions as a vacuolar Na+/H+ antiporter. We also identified 

four H+-PPases, namely m.112845, m.73322, m.88459 and m.95345, of which m.112845 

was highly induced by salt treatment in Supreme despite its lower expression than Parish 

under normal conditions (Table 3.6C). The function and activity of these NHXs and H+-

PPases are all worth further examination.  
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Elevated expression of salt stress induced transcription factors in Supreme under 

normal conditions, possibly due to enhanced Ca2+ signaling, is another contributor to 

Supreme’s higher salt tolerance  

 As a terminal transducer of the salt stress signaling pathway, transcription factors 

(TFs) can directly regulate the expression of an array of downstream stress-responsive 

genes through interaction with the specific cis-acting elements in their promoter region. In 

our study, we found that an array of salt stress induced transcription factors showed higher 

expression level in Supreme than in Parish under normal conditions (Table 3.5). Some of 

these transcription factors are associated with salt stress response, including dehydration-

responsive element-binding (DREB) proteins, ethylene-responsive transcription factors 

and WRKY transcription factors (Wang et al. 2016).  This result is consistent with previous 

study of transcriptomic variation of three different ecotypes of Arabidopsis (Col, Ler, and 

Sha) in response to salt stress, in which it was found that there existed extensive differences 

in gene expression between the salt-tolerant ecotype Sha and the other two relatively salt-

sensitive ecotypes Col and Ler for salt stress related TFs, such as heat shock TFs (HSF) 

under normal conditions (Wang et al. 2013). It is possible that the elevated expression of 

salt stress induced TFs in Supreme under normal conditions contributes to its higher salt-

tolerance and this mechanism may be conserved between different salt-tolerant plant 

species.  

 Ca2+ is a very important second messenger in response to a wide range of external 

stimuli, including salt stress. High salinity causes a rapid and transient increase in cytosolic 

Ca2+, which is further decoded by Calcineurin B-like protein (CBL)-CBL-interacting 

protein kinase (CIPK) complex to initiate a phosphorylation/dephosphorylation cascade, 
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resulting in regulation of multiple stress-responsive genes and ultimately leading to 

phenotypic response of stress tolerance directly or indirectly (Mahajan, Pandey, and Tuteja 

2008). Higher Ca2+ accumulation in Supreme (possibly triggered by Na+ accumulation) 

than in Parish under normal conditions may account for the elevated expression of salt 

stress responsive TFs in Supreme through high Na+-triggered Ca2+ signaling pathway 

(Figure 3.1F). Supporting this hypothesis, salt-treated Parish accumulated Na+ and Ca2+ to 

a level that is comparable to the Na+ and Ca2+ content in non-treated Supreme, which 

coincides with the induction of many salt stress responsive TFs.  

Intracellular K+ retention under high salinity may contribute to salinity tolerance in 

both cultivars 

 K+ uptake at the root-soil interface is mainly mediated by high affinity uptake 

transporters (µM range) and low affinity uptake transporters (mM range). While the former 

uptake mechanism is performed by members of the KT/HAK/KUP family such as high 

affinity potassium transporter 5 (HAK5) and potassium uptake transporter 7 (KUP7), the 

latter uptake mechanism is achieved by K+ channels of the Shaker family, such as 

Arabidopsis K+ transporter (AKT1) (Assaha et al. 2017). Xylem K+ loading from the root 

is carried out by stelar K+ outward rectifying channels (SKORs) and KUP7 in Arabidopsis 

(Demidchik 2014) while K+ transport across the vascular bundle to mesophyll cells in the 

shoot has not been clearly elucidated so far. Under salt stress, high levels of Na+ often 

inhibit K+ uptake and induce K+ efflux in both root and leaf cells due to Na+-induced 

plasma membrane (PM) depolarization and a consequential inhibition of K+ uptake 

channels and activation of K+ efflux channels such as K+ outward rectifying channels 

(KORs) and nonselective cation channels (NSCCs). Thus, K+ deficiency often occurs 
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under salt stress, which results in growth inhibition (Mian et al. 2011; Assaha et al. 

2017). The capacity to retain intracellular K+, which counteracts the toxic effect of 

excessive Na+, was regarded as equally important mechanism to the regulation of toxic Na+ 

accumulation for salt stress tolerance (Janicka-Russak and Kabała 2015). In our study, both 

Supreme and Parish maintained a stable K+ level after salt treatment, suggesting that K+ 

retention, possibly by maintaining negative membrane potential may play a critical role for 

salinity tolerance in both cultivars. An important question to be addressed in the future is 

how Supreme and Parish alleviate Na+-induced PM depolarization to maintain negative 

membrane potential for K+ retention under salt conditions. Moreover, we identified a total 

of 18 putative potassium transporters in Seashore paspalum’s transcriptome, of which 

m.149226 is a high affinity potassium transporter and m.6215 is a predicted low affinity 

uptake channel AKT2 (Table 3.7). Further examination of their roles in potassium uptake 

and translocation is recommended. 

 

Gene_ID Description 

Log
2
FC 

(S
normal

/P
normal

) 

Log
2
FC 

(S
salt

/S
normal

) 

Log
2
FC 

(P
salt

/P
normal

) 

Log
2
FC 

(S
salt

/P
salt

) 

m.124553 PREDICTED: potassium transporter 10-like [Setaria italica]  0.56 0.00 0.82 -0.27 

m.149226* high-affinity potassium transporter [Phragmites australis] -0.85 2.86 1.26 0.75 

m.167648 PREDICTED: potassium channel KOR1 [Setaria italica]  -1.29 1.39 1.27 -1.17 

m.169812 potassium transporter [Phragmites australis] -1.12 -0.28 0.19 -1.59 

m.169813 potassium transporter [Phragmites australis] 0.97 -0.85 -0.24 0.36 

m.177897 PREDICTED: potassium transporter 1-like [Setaria italica]  0.00 2.08 0.86 1.23 

m.210030 PREDICTED: potassium transporter 25 [Setaria italica]  -1.54 -0.46 -0.12 -1.88 

m.222898 Putative potassium transporter 14 [Aegilops tauschii] -0.86 -0.08 0.21 -1.15 

m.259914 PREDICTED: two-pore potassium channel 2-like [Setaria italica]  -1.47 0.50 -0.70 -0.28 

m.261833 potassium channel [Saccharum hybrid cultivar] 1.32 -0.35 0.65 0.32 

m.268433 PREDICTED: probable potassium transporter 11 [Setaria italica]  -1.16 -0.26 0.41 -1.82 

m.307318 potassium transporter [Phragmites australis] 0.06 -0.37 0.26 -0.57 

m.307324 PREDICTED: probable potassium transporter 9 [Setaria italica]  1.08 0.31 2.00 -0.62 

m.58659 PREDICTED: probable potassium transporter 11 [Setaria italica]  -0.66 0.10 -0.06 -0.49 

m.5987 PREDICTED: potassium transporter 22-like [Setaria italica]  -0.25 -0.75 -0.12 -0.87 

m.6215* PREDICTED: potassium channel AKT2 [Setaria italica]  1.10 -0.38 0.45 0.27 

m.77121 PREDICTED: potassium transporter 24-like [Setaria italica]  0.04 -0.13 0.26 -0.35 

m.79462 PREDICTED: probable potassium transporter 16 [Setaria italica]  -1.82 0.43 0.08 -1.48 

 * m.149226 and m.6215 are transporters known for potassium uptake.  

Table 3.7. Summary of possible K+ 
transporters in Seashore paspalum’s transcriptome and their 

expression change under different conditions. DEGs (2-fold change or above, P value ≤ 0.01, and 

adjusted P value ≤ 0.01) are in the orange background.  
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Oxidation-reduction regulation and nucleic acid binding activity under high salinity 

may be other important factors for salinity tolerance in both cultivars 

 Salt stress can lead to the accumulation of ROS, causing oxidative stress to the 

plants. The oxidation-reduction process is critical for salinity tolerance in plants as it is 

involved in scavenging ROS and maintaining oxidation-reduction homeostasis. In our 

study, “oxidation-reduction process” is the most significantly enriched GO term in the BP 

category for both Supreme and Parish up-regulated genes under salt treatment (Figure 3.7), 

which indicates that this process may play an important role in salt tolerance in both 

cultivars. This result is consistent with previous transcriptome profiling study in a 

halophyte, ice plant (Mesembryanthemum crystallinum) under high salinity, suggesting 

that oxidation-reduction may be a conserved mechanism conveying salt tolerance 

(Tsukagoshi et al. 2015). Accordingly, several oxidoreductase genes such as glutathione-

disulfide reductase (GSR), superoxide dismutase (SOD), aldehyde dehydrogenase 

(ALDHs), and peroxidases are upregulated in Supreme (Table 3.3A) while more 

oxidoreductase genes including ALDHs and peroxidases are upregulated in Parish under 

salt treatment (Table 3.3B).  

  “Nucleic acid binding” is the most significantly enriched GO term in the MF 

category for both Supreme and Parish up-regulated genes under salt treatment, suggesting 

that this process may also play a crucial role in salt tolerance in both cultivars. In Supreme, 

a DEAD-box ATP-dependent RNA helicase gene (m.319487) was upregulated over 100-

fold (FC=26.92) under high salinity conditions (Table 3.4A), implying a possible role in 

salinity tolerance. DEAD-box RNA helicases are regarded as RNA chaperones as these 

proteins can unwind misfolded RNAs with non-functional secondary structures for correct 
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folding using energy derived from ATP hydrolysis, ensuring the translation initiation 

inhibited by stress to proceed (Tuteja 2007; Owttrim 2006). Overexpression of 

an Apocynum venetum DEAD-box helicase 1 (AvDH1) in cotton under CaMV 35S 

promoter confers salinity tolerance and increasing crop productivity in saline fields (Chen 

et al. 2016). Expression of a putative DEAD-Box RNA helicase gene SlDEAD31 in tomato 

was induced by heat, cold, and dehydration. Transgenic tomato plants overexpressing 

SlDEAD31 significantly improved salt tolerance and slightly improved drought resistance 

compared to wild-type plants (Zhu et al. 2015). It will be interesting to overexpress the salt 

stress induced DEAD-box RNA helicase identified in Supreme in model species such as 

Arabidopsis to test whether it confers salinity tolerance.  

 Based on our results, we proposed a hypothetical model depicting the mechanisms 

underlying Supreme’s high salt tolerance (Figure 11). We suggest that Na+ accumulation 

under normal conditions and the resulting osmotic adjustment and the expression of salt 

stress responsive transcription factors induced by Ca2+ signaling pathway, possibly due to 

Na+ accumulation under normal conditions, are two important protective mechanisms that 

are responsible for the higher salinity tolerance observed in Supreme. In addition, K+ 

retention, strong oxidation-reduction processes, and nucleic acid binding activities under 

high salinity conditions are three contributors to the salinity tolerance in both cultivars. Ion 

transporters, including NHXs coupled with H+-PPases and K+ uptake transporters, salt 

stress responsive transcription factors, oxidoreductases and the salt stress induced DEAD-

box RNA helicase identified in Supreme in this study can be used as candidate genes for 



` 

 113 

functional studies and potential targets to engineer plants for enhanced salinity tolerance, 

opening new avenues for future research.  

 

Figure 3.9. A schematic model for the salinity tolerance mechanisms in Supreme versus the salinity 

tolerance mechanisms in Parish. Numbers indicated are intracellular and extracellular Na+ concentrations. 

ROS detoxification and maintaining K+ uptake under salt stress are two common mechanisms for salinity 

tolerance in both cultivars. High Na+ levels in Supreme under normal and salt-treated conditions lower the 

water potential, preventing water loss. Moreover, an array of salt stress inducible transcription factors is 

highly expressed in Supreme under normal conditions, possibly induced by the Ca2+ signaling pathway due 

to Na+ accumulation under normal conditions, making Supreme prepared for salt stress.  
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CHAPTER FOUR 

CONCLUSIONS AND FUTURE PERSPECTIVES 
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The genetic basis that dictates plant size and shape and how plants respond to 

environmental stresses given their sessile life style has fascinated scientists for many years. 

In context of the rapidly rising world population and climate change such as global 

warming and a resulting sea level rise, getting a deep understanding of the underlying 

mechanisms governing plant growth and stress response are important for implementing 

feasible and sustainable strategies to address these challenges.  

Plant organ development to a specific size and shape is controlled by two cellular 

processes, cell proliferation and cell expansion. The current biological approach to study 

plant development has leveraged the power of Arabidopsis as a model system because of 

its simple life style and annotated genome sequence. Studies of single gene function by 

forward or reverse genetics progressing to studies of pathways and interaction/regulatory 

networks largely expanded our knowledge of the genetic control of organ size and shape 

in plants. However, a complete picture of how plants integrate different developmental 

pathways to a central growth mechanism, especially for the process of cell expansion is 

still poorly understood. To this end, my first project identified a novel Myb-like family 

protein named Development Related Myb-like1 (DRMY1) which is essential for cell 

expansion. We proposed a hypothetical mechanism of its action: DRMY1, possibly 

through forming a complex with other transcription factors as a trans-regulatory module, 

may regulate cell expansion directly through regulating cell wall biosynthesis/remodeling 

and ribosome biogenesis. Moreover, DRMY1 may also be a point of crosstalk between 

ethylene and ABA signaling pathways and control cell expansion indirectly through 

regulating the expression of genes in these two pathways. Interestingly, DRMY1 also 

regulates a variety of genes in response to a broad range of environmental stresses. A 
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number of questions still remain to be addressed in the future. Which downstream genes 

are directly regulated by DRMY1 among the DEGs identified by RNAseq? What is the 

binding sequence of DRMY1? What are the interaction partners of DRMY1? Does 

DRMY1 play a role in plant response to environmental stresses? If it does, could it also be 

an integration point of growth and defense signaling pathways to balance the growth-

defense tradeoff?  

Soil salinity is a major abiotic stress affecting crop productivity. It was estimated 

that 20 % of the world’s irrigated land is affected by salinity (Rhoades and Loveday 1990). 

Plant species vary in the level to which they tolerate salt-affected soils. Halophytes are 

plants that can develop and reproduce in the environmental conditions where the 

concentration of NaCl is around 200 mM NaCl or more as a result of evolutionary 

adaptation to their habitats (Flowers and Colmer 2008). The inherent capability of these 

fascinating plants to withstand high salinity makes it interesting to understand the 

associated mechanisms. Moreover, the salt-tolerant genes identified are very promising 

candidate genes for functional study and developing novel strategies for engineering crops 

to improve their salinity tolerance. In our study, we investigated the mechanisms of plant 

salt tolerance in Supreme, the most salt-tolerant cultivar of a halophytic warm-seasoned 

perennial grass, Seashore paspalum, at the physiological and transcriptomic levels by 

comparative study with another cultivar Parish, which possesses moderate salinity 

tolerance. Our data suggests that Na+ accumulation under normal conditions and the 

resulting osmotic adjustment and the expression of salt stress responsive transcription 

factors induced by Ca2+ signaling pathway, possibly due to Na+ accumulation under normal 

conditions, are two important protective mechanisms that are responsible for higher salinity 
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tolerance in Supreme. In addition, K+ retention, strong oxidation-reduction processes and 

nucleic acid binding activities under high salinity conditions are three contributors to the 

salinity tolerance in both cultivars. As Na+ accumulation and K+ retention are two major 

mechanisms for salinity tolerance, our major focus in the future will be cloning the vacuolar 

Na+/H+ antiporters along with H+-PPases and K+ uptake transporters using Rapid 

Amplification of cDNA Ends (RACE) and testing their functions by overexpression in 

Arabidopsis. Moreover, the salt stress responsive transcription factors, oxidoreductases and 

the salt stress induced DEAD-box RNA helicase identified in Supreme are also worth 

further examination in Arabidopsis. We hope to engineer crop species for enhanced salinity 

tolerance in the future if the candidate genes are verified to contribute to salt tolerance in 

Arabidopsis.  
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APPENDIX A 

SUPPORTING MATERIAL FOR CHAPTER TWO 

Supplemental Table A-1: Primers for gene cloning and PCR analyses  

Primer name Sequence (5' to 3') Purpose 

SALK_012746_PCR_LP CGCAACAGCTTCCGTTACTAC Selection for drmy1 homozygous T-

DNA insertion mutant 

SALK_012746_PCR_RP TTTCACACTCTCCTCCTCTCG Selection for drmy1 homozygous T-

DNA insertion mutant 

SALK_113831_PCR_LP AGGGTTCTCAGGAACCATCAG Selection for dp1 homozygous T-

DNA insertion mutant 

SALK_113831_PCR_RP ATGACGTCGTTGGCATAAGAC Selection for dp1 homozygous T-

DNA insertion mutant 

DRMY1_CDS_BamH 1_F CGGATCCATGGTTGATAACAGTAACAATAAGA

AG 

Cloning of DRMY1 coding sequence 

with stop codon 

DRMY1_CDS_BamH1_R AGGATCCCTACAACTCCTTCAGTCCGGTCC Cloning of DRMY1 coding sequence 

with stop codon 

DRMY1_CDS-

stopcodon_BamH 1_F 

CGGATCCATGGTTGATAACAGTAACAATAAGA

AG 

Cloning of DRMY1 coding sequence 

without stop codon in frame upstream 

of GFP 

DRMY1_CDS-

stopcodon_BamH 1_R 

CGGATCCTCCCACCGCTAAAGATAATGC Cloning of DRMY1 coding sequence 

without stop codon in frame upstream 

of GFP 

DRMY1_Genomic_AgeI_F1 GCATACCGGTGACTGATCGAGTCAATGTTAC Cloning of DRMY1 genomic DNA 

DRMY1_Genomic_ R1 TGGCGATGTCTGCTTCACTGATG Cloning of DRMY1 genomic DNA 
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DRMY1_Genomic_ F2 CAGTGAAGCAGACATCGCCACTC Cloning of DRMY1 genomic DNA 

DRMY1_Genomic_ R2 CCTTGATGGTACCGGATGAC Cloning of DRMY1 genomic DNA 

DRMY1_Genomic_F3 GTCATCCGGTACCATCAAGG Cloning of DRMY1 genomic DNA 

DRMY1_Genomic_AgeI 

_R5 

GCATACCGGTGGTTAGGGTGAAATTTGCAG Cloning of DRMY1 genomic DNA 

AtGRF1_CDS_F2_NdeI CATATG CCCATGGGAAAAATCTCTGA Cloning of GRF1 coding sequence 

AtGRF1_CDS_R2_PstI CTGCAG TTTTTGTTTTCGCAATTGTCC Cloning of GRF1 coding sequence 

DRMY1_RT_F AGAATGCTGTTTCTGCGTTG RT-PCR 

DRMY1_RT_R TCAGCCTTTGGTGCTGATAG RT-PCR 

DP1_RT_LP TTAGAGGAGAGAGAACCGCC RT-PCR 

DP1_RT_RP ACAGCAAGCTCCACTTCCAG RT-PCR 

DRMY1_qPCR_LP3 GCAACACTTCCGCCAAATAAA qRT-PCR 

DRMY1_qPCR_RP3 TAGGCATAAGGCTAGGAGGAG qRT-PCR 

ERF11_qPCR_F GCCCACTGCTTGAGTT qRT-PCR 

ERF11_qPCR_R ACACGTCGTCCTTCAT qRT-PCR 

ERF5_qPCR_F CGGAATTATGTGACTGGGATTTAAC qRT-PCR 

ERF5_qPCR_R ACAACGGTCAACTGGGAATAA qRT-PCR 

ERF4_qPCR_F AGATTCGTTACAGAGGCGTTAG qRT-PCR 

ERF4_qPCR_R CTCTTCAGCCGTATCGAAAGT qRT-PCR 

ERF6_qPCR_F CGAGGATCAAAGGCGATTCT qRT-PCR 

ERF6_qPCR_R CCGTCTCTCTTCCGTTTGTT qRT-PCR 
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AT4G28140_qPCR_F TGTGAATAAGGAAAGCGAGCTGC qRT-PCR 

AT4G28140_qPCR_R GGCTGTGGCGTTTCAGGTTC qRT-PCR 

AT1G64380_qPCR_F ACGACAACTACTACTGCGGTTAC qRT-PCR 

AT1G64380_qPCR_R GCAAGAACTTCCCAAATCAGCT qRT-PCR 

WAK-like 2_qPCR_F TAGGACGCAACCAGTGTAAAG qRT-PCR 

WAK-like 2_qPCR_R AGCAACAGTGCTGAACCTATAA qRT-PCR 

Pectate lyase 9_qPCR_F GACCACAACTCGCTCTCTAAC qRT-PCR 

Pectate lyase 9_qPCR_R CCCTAGCAACATCACCTCATC qRT-PCR 

GATL10_qPCR_F GCGATGGAGAGAAGGAGATTAC qRT-PCR 

GATL10_qPCR_R TCACCACCAAACACTAGAAGAA qRT-PCR 

GATL2_qPCR_F CAAACCCTTCTCTCTCCATCAC qRT-PCR 

GATL2_qPCR_R ATCTCCTTCTCGCCATTTCTTT qRT-PCR 

EXT4_qPCR_F ACCATTCTCCTCCTCCTCCA qRT-PCR 

EXT4_qPCR_R ATGAAGGGATCACACTCATTAACA qRT-PCR 

PP2CA_qPCR_F CGTCGGTTTGTGGTAGAAGA qRT-PCR 

PP2CA_qPCR_R CCGTCAAAGACACCGTAGAA qRT-PCR 
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Supplemental Figure A-1. Anther dehiscence and pollen viability of WT and the drmy1 mutant. (A) 

Anther dehiscence is normal in both genotypes. Bars, 0.1 mm. (B) I
2
-KI staining of mature pollen grains 

collected from WT and the drmy1 mutant.  Bars, 0.1 mm. 

Supplemental Figure A-2. Co-segregation analysis of the drmy1 mutant. A schematic diagram showing 

the co-segregation analysis procedure and the segregation ratio of 3:1 (97:31, P>0.8, Student’s T-test) in F2 

plants.  

Supplemental Figure A-3. Leaf morphology of WT and the dp1 mutant. (A) 28-d-old plants of WT (left) 

and the dp1 mutant (SALK_113831C, right). Bar, 2 cm. (B) RT-PCR analysis of DP1 expression in WT and 

the dp1 mutant. AtACTIN2 was used as an endogenous gene. Leaf parameters of fully expanded fifth leaf in 

WT and the dp1 mutant: (C) Petiole length, (D) Leaf blade area, (E) Leaf blade length, and (F) Leaf blade 

width. At least five leaves for each genotype were used for measurement. Error bars indicate SD. No 

significant difference was found between of WT and the dp1 mutant in different leaf parameters.  
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Supplemental Figure A-4. Phenotype of the drmy1 mutant and the drmy1 mutant carrying 35S-

DRMY1-GFP. The introduction of 35S-DRMY1-GFP into the drmy1 mutant background rescued the mutant 

phenotype, indicating that DRMY1-GFP is functional.  

Supplemental Figure A-5. Leaf morphology of WT and 35S-DRMY1 overexpression transgenic plants. 

(A) 28-d-old plants of WT (left) and the 35S-DRMY1 overexpression transgenic line 12 (middle) and line 10 

(right). Bar, 2 cm. (B) qRT-PCR analysis of DRMY1 expression in WT and two transgenic lines with two 

biological replicates (three technical replicates each). AtACTIN2 was used as an endogenous control. Leaf 

parameters of fully expanded fifth leaf in WT and two transgenic lines: (C) Petiole length, (D) Leaf blade 

area, (E) Leaf blade length, and (F) Leaf blade width. At least five leaves for each genotype were used for 

measurement. Error bars indicate SD. Asterisks represent statistically significant differences calculated by 

Student’s t-test (*, P < 0.05; **, P < 0.01; ***, P < 0.001). 
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Supplemental Figure A-6. Phenotype of root, stem and seed production in WT and 35S-DRMY1 

overexpression transgenic plants. (A) 1-week-old primary root length (n=16). (B) 10-day-old lateral root 

number (n=13). (C) 7-week-old plant height (n=6). (D) Number of inflorescence stems (n=5). (E) Number 

of siliques in the main inflorescence stem (n=5). (F) Average number of seeds per long silique (n=9). Error 

bars indicate SD.  
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APPENDIX B 

SUPPORTING MATERIAL FOR CHAPTER THREE 

Supplemental Table B-1: Transcription factors of different families in Seashore 

paspalum's transcriptome 

Family Number of genes 

MYB family protein 419 

WRKY family protein 370 

G2-like family protein 268 

bZIP family protein 240 

bHLH family protein 185 

C3H family protein 175 

NAC family protein 163 

B3 family protein 159 

C2H2 family protein 143 

SRS family protein 105 

FAR1 family protein 102 

pentatricopeptide (PPR) repeat-containing protein 81 

Trihelix family protein 77 

GATA family protein 74 

protein kinase family protein 74 

EIL family protein 62 

ARF family protein 47 

HB-other family protein 41 

E2F/DP family protein 39 

ERF family protein 37 

GRAS family protein 35 

HD-ZIP family protein 33 

NF-YB family protein 28 

LBD family protein 26 

GRF family protein 23 

histone-like transcription factor and archaeal histone family protein 23 

HB-PHD family protein 19 

CAMTA family protein 17 

AP2 family protein 17 

CPP family protein 12 

LSD family protein 11 

CO-like family protein 10 

HSF family protein 10 

STAT family protein 10 

ZF-HD family protein 9 

alpha/beta hydrolase fold, putative 8 

BES1 family protein 8 

WD-40 repeat family protein 8 
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MIKC family protein 7 

Nin-like family protein 7 

NF-YA family protein 6 

RIPER7 - Ripening-related family protein precursor 6 

GeBP family protein 5 

LFY family protein 5 

S1Fa-like family protein 5 

TCP family transcription factor, putative 5 

AP2 domain containing protein 4 

NF-YC family protein 4 

helix-loop-helix DNA-binding domain containing protein 3 

SBP family protein 3 

AGAMOUS-like 26 2 

ARR-B family protein 2 

BEE 3, putative, expressed 2 

Dof family protein 2 

APRATAXIN-like 1 

auxin response factor 19, putative 1 

auxin response factor 9 1 

B-box type zinc finger protein with CCT domain 1 

BBR-BPC family protein 1 

CCT/B-box zinc finger protein, putative 1 

DUF260 domain containing protein, putative 1 

ethylene response factor 110 1 

homeobox associated leucine zipper, putative 1 

no apical meristem protein, putative, expressed 1 

nuclear transcription factor Y subunit, putative 1 

pathogenesis related homeodomain protein A 1 

two-component response regulator, putative 1 

zinc finger C-x8-C-x5-C-x3-H type family protein 1 

Total 3250 
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Supplemental Table B-2: Summary of possible transcription factors that are 

commonly regulated by Supreme and Parish under salt-treated conditions 

Gene_ID Hit description 
Log

2
FC  

(S
salt

/S
normal

) 
Log

2
FC 

 (P
salt

/P
normal

) 

m.52678 Oryza sativa Indica Group MYB_related family protein 2.6 2.2 
m.237571 Oryza sativa Indica Group MYB_related family protein 2.2 2.6 
m.48837 Oryza barthii GATA family protein 2.1 1.8 

m.167648 Oryza barthii C3H family protein 1.4 1.3 
m.88900 Oryza sativa Indica Group WRKY family protein 1.2 1.4 
m.96240 Oryza barthii G2-like family protein 1.0 1.0 
m.54046 Oryza punctata G2-like family protein -1.1 -1.0 
m.32600 Oryza sativa Indica Group MYB family protein -1.1 1.1 

m.181019 Oryza punctata bZIP family protein -1.2 -1.3 
m.65089 Oryza sativa Japonica Group histone-like transcription factor -1.9 -3.0 
m.43705 Arabidopsis lyrata C3H family protein -2.5 1.4 
m.80449 Oryza barthii SRS family protein -2.9 -1.7 

 

 

Supplemental Figure B-1. E-value distribution of the Blastx hits against the nr protein database with 

a E-value cutoff of 1E-5.   
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Supplemental Figure B-2.  Species distribution of the top blast hits for each unigene with a E-value 

cutoff of 1E-5. 82,608 unigenes in Seashore paspalum’s transcriptome were blasted against the NCBI non-

redundant (nr) protein database using Blastx with an E-value cutoff of 1E-5. The best blastx hits were then 

imported to Blast2GO software to generate the species distribution diagram.  
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