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ABSTRACT 

The basidiomycete Cryptococcus neoformans is is an invasive opportunistic 

pathogen of the central nervous system and the most frequent cause of fungal 

meningitis. C. neoformans enters the host by inhalation and protects itself from 

immune assault in the lungs by producing hydrolytic enzymes, 

immunosuppressants, and other virulence factors. C. neoformans also adapts to 

the environment inside the host, including producing metabolites that may confer 

survival advantages. One of these, acetate, can be kept in reserve as a carbon 

source or can be used to weaken the immune response by lowering local pH or as 

a key part of immunomodulatory molecules. Thus, cryptococcosis could be treated 

by targeting acetate production. The Smith laboratory has identified two potential 

pathways for acetate production. The xylulose-5-phosphate/fructose-6-phosphate 

phosphoketolase (Xfp) - acetate kinase (Ack) pathway, previously thought to be 

present only in bacteria, converts phosphoketose sugars to acetate through acetyl-

phosphate. The pyruvate decarboxylase (Pdc) and acetaldehyde dehydrogenase 

(Ald) pathway, found in other fungi, converts pyruvate to acetate through 

acetaldehyde. The genes encoding enzymes from these pathways have been 

shown to be upregulated during infection, suggesting that acetate production may 

be a required part of cryptococcal infection. In Saccharomyces cerevisiae, Pdc 

works with one or more Alds to produce acetate. Eight of the nine C. neoformans 

Alds and the sole Pdc all contributed to the cellular acetate pool, and loss of some 

of these enzymes reduced cell survival during growth on various carbon sources, 
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under oxidative or nitrosative stress, under pseudo-hypoxia conditions, and when 

the cell wall integrity was disrupted. In addition, deletion mutants of of some of 

these enzymes affected capsule formation and melanization, two primary 

determinants of Cryptococcus, and led to decreased virulence in macrophages 

and Galleria mellonella, an invertebrate model of infection.  

Metabolic adaptability is an important attribute for fungal pathogens to 

successfully infect and cause disease. Carbon metabolism is critical for virulence 

in C. neoformans, but little is known about which carbon sources are utilized during 

infection. Lung alveolar macrophages, the first line of host defense against C. 

neoformans infection, provide a glucose- and amino acid-poor environment, and 

nonpreferred carbon sources such as lactate and acetate are likely important early 

in establishment of a pulmonary infection. A global screening was undertaken to 

identify C. neoformans proteins necessary in acetate utilization, as possible drug 

targets. From two libraries, together comprising 3936 gene knockouts, 41 mutants 

failed to grow on media with either glucose or acetate as the carbon source, or on 

both media. Of the known proteins lacking in these mutants, most function in 

gluconeogenesis, arginine biosynthesis, or mitochondrial transmembrane 

transport. Overall, this work elucidated the roles of C. neoformans acetate 

production and utilization pathways in virulence. 
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CHAPTER ONE 

LITERATURE REVIEW 

Cryptococcus neoformans: Epidemiology and sources of exposure 

 Cryptococcus neoformans, an opportunistic pathogen that belongs to the 

phylum Basidiomycota (Loftus et al., 2005; Sorrell, 2001), has two species that are 

most often found to infect humans: Cryptococcus neoformans, consisting of 

cryptococcal serotypes A and D, as well as a hybrid serotype AD, and 

Cryptococcus gattii, consisting of serotypes B and C (Litvintseva et al., 2011; 

Chayakulkeeree and Perfect, 2008). The vast majority of patients with 

cryptococcosis have defects in cell-mediated immunity, specifically in CD4+ 

lymphocytes. AIDS is a major risk factor with mortality rates in AIDS patients 

ranging from 15-20% in the US and 55-70% in Latin America and sub-Saharan 

Africa (Park et al., 2009). Immunosuppressive therapy for solid organ transplant 

patients is another major risk factor (Neofytos et al., 2010). 

 The current incidence of cryptococcal meningitis is estimated to be 

approximately 220,000 cases per year among HIV infected patients (Rajasingham 

et al., 2017) and possibly higher overall, leading to almost 150,000-200,000 deaths 

annually (Limper et al., 2017). The incidence rate is down from the ~1 million cases 

of fungal meningitis and over 600,000 deaths from cryptococcal meningitis 

estimated to have occurred in 2006 (Park et al., 2009). This recent decrease may 

seem contrary to the disproportionately high number of HIV-associated 

Cryptococcus infections, and deaths, in regions like sub-Saharan Africa; 
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nevertheless, the reasons for both of these effects are related. The general fate of 

HIV infected patients in developed, industrialized nations dramatically improved 

during the 1990’s with the introduction of Highly Active Anti-Retroviral Therapy 

(HAART); the mortality rate was significantly reduced and the incidence of various 

HIV-associated opportunistic infections like cryptococcosis has been decreasing 

since in wealthier countries (Kaplan et al., 2000; Mirza et al., 2003; Jahnke et al., 

1999). However, in parts of the world (and even in parts of the U.S.) where this 

therapy is still not affordable, HIV-associated opportunistic infection still poses an 

immense threat (McQuiston and Williamson, 2012; Kaplan et al., 2000; Mirza et 

al., 2003). AIDS-related cryptococcosis cases and deaths due to cryptococcal 

meningitis are much more prevalent in developing nations because the HIV 

pandemic rate is significantly higher, and/or access to proper medical treatment 

and therapeutic measures, including antifungal medications, is limited or entirely 

lacking, in these countries (Warnock, 2006; Park et al., 2009; Pyrgos et al., 2013). 

The majority of cryptococcal meningitis cases are found in low-income and middle-

income countries; almost 73% of the cases up until 2014 have been reported as 

occurring in sub-Saharan Africa (Rajasingham et al., 2017). Similarly, the highest 

rates of death due to cryptococcal meningitis were and still are observed in sub-

Saharan Africa (Figure 1.1), to a great extent because of the relatively high number 

of untreated HIV/AIDS patients there (Mitchell and Perfect, 1995; Park et al., 2009; 

Rajasingham et al., 2017). Hence, in the United States, AIDS patients face a 

mortality rate of 15-20%, whereas the rate is 55-70% in Latin America and Sub-



3 
 

Saharan Africa (Brown et al., 2012). This indicates that greater patient access to 

HAART in developing nations may reduce the prevalence of cryptococcosis, fungal 

meningitis, and associated death, just as it has in developed ones. However, even 

in countries where HAART has reduced the mortality in HIV-infected patients, 

cryptococcosis remains a major cause of invasive fungal infection in non-HIV 

patients who are immunocompromised or immunosuppressed due to therapies 

they are receiving in the form of monoclonal antibodies, corticosteroids, or other 

immunosuppressive agents, and cryptococcosis can even occur in 

immunocompetent non-HIV patients  (Snydman et al., 2008; Wu et al., 2009; 

McQuiston and Williamson, 2012).  

 Cryptococcosis is the third most common invasive fungal infection in sold 

organ transplant recipients after infections by Candida and Aspergillus species 

(Neofytos et al., 2010), and, in the U.S. alone, 20-60% of invasive fungal infections 

in non-HIV-infected patients have been reported to be cryptococcosis (Vilchez et 

al., 2002). With the increasing application of immunosuppressive therapeutic 

regimens, cryptococcosis and other fungal infections are suspected to rise 

proportionally as the leading symptomatic diseases in non-HIV-infected patients 

(Aratani et al., 2006). Furthermore, amongst the most common diseases prevalent 

in sub-Saharan Africa excluding HIV/AIDS, cryptococcal infection is the  fourth 

leading cause of death (Figure 1.2; Park et al., 2009), and it is estimated that the 

mortality rate of infections caused by pathogenic fungi such as C. neoformans, C. 

albicans, and A. fumigatus is actually much higher than that of malaria and 
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tuberculosis (Denning and Bromley., 2015; Meyer et al., 2016). Therefore, it is of 

great importance to better understand the metabolism and virulence-related 

pathways of C. neoformans in order to develop drugs that can kill this pathogen. 

Ecological niche of Cryptococcus 

 Outside of the human host, C. neoformans is found in very diverse 

ecological niches, depending on the local environment. The first strain of C. 

neoformans was isolated in 1894 by Sanfelice from fruit juice (Emmons, 1951). 

Moreover, the presence or absence of such ecological habitats can affect the 

distribution and virulence of C. neoformans in any given geographic region. C. 

neoformans is commonly found in decaying material in the hollows of at least 

eighteen different tree species around the world, including eucalyptus, as well as 

in avian excreta, particularly the waste of feral pigeons (Chowdhary et al., 2012; 

Randhawa et al., 2003; Reimão et al., 2007). Pigeons only develop a latent 

infection, not an active one, as their higher body temperature is not suitable for 

fungal growth, but they act as good vectors, since their excrement provides the 

required nutrients for C. neoformans var. grubii cells to survive until the cells can 

enter the human host as basidiospores through inhalation (Littman and Borok, 

1968; Hiremath et al., 2008). Furthermore, since C. neoformans can survive in its 

saprophyte form in excreta, it can be found on any surface that comes into contact 

with bird droppings, including contaminated soil, fruits, and vegetables, as well as 

inside homes in regions of the world where birds can enter through open windows; 

this is particularly dangerous for HIV seropositive patients in such regions, since 
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they can be regularly re-infected in their own homes (Jarvis and Harrison, 2007; 

Chowdhary et al., 2012; Swinne et al., 1989, 1994). Cryptococcus species can 

reside inside soil nematodes and free-living amoebae and use them as replicative 

hosts; both C. neoformans and C. gattii are capable of doing this in the laboratory 

(May et al., 2016). However, prevalence of C. neoformans is more widespread 

than C. gatti in terms of host tree species that it was isolated from (17 host tree 

species for C. neoformans in contrast to 12 for C. gatti) (Chowdhary et al., 2012), 

which results in wide arboreal distribution for C. neoformans and therefore 

increased chance of host pathogen interaction 

Mechanism of infection and host response 

 Within the human host, Cryptococcus neoformans can gain access to the 

respiratory system by inhalation of spores or desiccated airborne yeast cells from 

the environment (Taylor-Smith, 2017). Encapsulated fungal cells often measure 

around 5-10 μm, and are therefore susceptible to removal from lung epithelia by 

mucociliary clearance (Okagaki and Nielsen, 2012). However, basidiospores or 

desiccated cells of C. neoformans isolated from soil or from bird droppings 

measure around 0.6-3 μm, which is a sufficiently small size for alveolar deposition 

following inhalation (Levitz, 1991; Lin and Heitman, 2006), possibly via the 

mucociliary movement itself (Sabiiti and May, 2012). Within the lungs, there are 

four possible outcomes to the infection (Sabiiti and May, 2012). The two less 

harmful outcomes are that the fungi can be controlled and cleared by the host 

immune system or that the infection can become latent and remain in the lungs 
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symptom-free (Sabiiti and May, 2012; Jarvis and Harrison, 2007; Goldman et al., 

1994). The third outcome is that the latent infection can revive in the lungs upon 

weakening of the immune system, such as due to HIV infection or pharmacological 

immune suppression, leading to more serious outcomes (Goldman et al., 1994; 

Garcia-Hermoso et al., 1999; Lindell et al., 2006; Jarvis and Harrison, 2007) and 

cause lung inflammation and pulmonary disease. The fourth outcome and the most 

dangerous is dissemination of Cryptococcus from pulmonary site to other organs 

such as the urinary tract, the prostate gland, the skin, bones, the liver, the spleen, 

lymph nodes, and, especially, the brain (Liu et al., 2009; Jarvis and Harrison, 2007; 

Hernandez, 1989; Sabesin et al., 1963). In fact, the organs most commonly 

affected when C. neoformans infects a host are the lungs and the brain, and, in 

immunocompromised patients, not only can lung infection lead to pneumonia, but 

infection of the blood (fungemia) which often leads to the fatal meningoencephalitis 

(Goldman et al., 1994; Chrétien et al., 2002; Sabiiti and May, 2012).  

 In immunocompetent individuals, there are a number of stages of the 

immune response to infection. When C. neoformans cells enter the alveoli of the 

lungs, alveolar macrophages attempt to phagocytose the fungal cells and either 

kill them or sequester them in granulomas (Rohatgi and Pirofski, 2015; Vecchiarelli 

et al., 1994a; Mitchell and Friedman, 1972; McQuiston and Williamson, 2012; 

Sabiiti and May, 2012). If a macrophage is successful in engulfment, the fungal 

cell is sequestered inside the phagolysosome, an organelle formed by the fusion 

of a phagosome and a lysosome to produce a local environment of low pH, 
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hydrolytic enzymes, antimicrobial peptides, and toxic free radicals that the 

macrophage utilizes to try to destroy the pathogen (Hampton et al., 1998; Vieira et 

al., 2002; Cox et al., 2003; Tohyama et al., 1996; Ma and May, 2009). Free 

radicals, specifically reactive oxygen species (ROS) and reactive nitrogen species 

(RNS), are capable of damaging the fungal cell wall and cell membrane and may 

attack the DNA and cellular proteins as well (Bergamini et al., 2004; Dedon and 

Tannenbaum, 2004; Upadhya et al., 2013), while the hydrolytic enzymes break 

apart pathogen proteins into peptides. Optimally, the pathogen is destroyed and 

its peptides are presented by the macrophage via the Major Histocompatibility 

Complex (MHC) cell surface receptors to activate T-cells, and the macrophage is 

also activated to release cytokines that attract neutrophils and other immune cells 

(Dong et al., 1997; Del Poeta, 2004). In particular, CD4+ helper T cells are activated 

upon binding of their T cell receptors to the cryptococcal peptides, and these helper 

T cells, in turn, release cytokines that regulate the attack upon the fungal pathogen 

(Campbell et al., 2008). One subset of these helper T cells are Th1 cells, and 

overexpression of Th1 cytokines like tumor necrosis factor α (TNFα) and interferon 

γ (IFNγ) has been shown to effectively control the fungal burden by increasing the 

inflammatory and immune response (Kawakami et al., 1995; Wormley et al., 2007). 

Once macrophages and helper T cells recruit the rest of the immune system to the 

site of infection, the cell mediated immune response against C. neoformans is 

mostly driven by interleukin 2 (IL-2) activated CD8+ cytotoxic T cells and Natural 

Killer (NK) cells, which can detect and destroy the pathogen in an MHC dependent 
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or independent manner (Levitz et al., 1994). Natural killer cells and cytotoxic T cells 

secrete various proteins, including granulysin, perforin, and granzymes, which 

induce cryptococcal lysis and permeabilization and also force infected host cells 

to undergo apoptosis (Ernst et al., 2000; Voskoboinik et al., 2006).  

Cryptococcal response to immune attack and dissemination 

C. neoformans is able to survive in the lungs and disseminate to other 

organs because of its ability to evade, counteract, or circumvent the immune 

response. For example, the pathogen exploits the fact that, after activating T helper 

cells, macrophages have essentially opposite responses to feedback regulation 

imposed on them by the cytokines secreted by Th1 versus Th2 T helper subsets 

(Voelz et al., 2009). This opposing feedback regulation is the reason for the almost 

direct correlation, in HIV infected patients, between cryptococcal virulence and the 

degree to which the release of Th1 "pro-inflammatory" cytokines is compromised, 

and for the similar correlation observed between virulence and the increased 

release of "anti-inflammatory" cytokines by Th2 cells in transplant recipients given 

immunosuppressive drugs to counter transplant rejection (Voelz and May, 2010). 

Th1 cytokines recruit and activate macrophages and neutrophils and make them 

release microbicidal oxidative and nitrosative bursts (Shoham and Levitz, 2005; 

Voelz et al., 2009). In contrast, macrophages activated by Th2 cytokines have a 

lower expulsion probability, and allow a higher intracellular proliferation of the 

fungal pathogen, compared with those activated by Th1 cytokines (Voelz et al., 

2009). C. neoformans inhibits the Th1 response by expressing eicosanoids 
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(Noverr et al., 2003), uses components of its polysaccharide-based capsule to 

decrease the release of Th1 pro-inflammatory cytokines while increasing the 

release of anti-inflammatory IL-10 from Th2 cells (Shoham and Levitz, 2005), and 

shifts the Th1-Th2 balance more towards Th2 cells (Voelz and May, 2010), thereby 

manipulating the host immune system to its own advantage.  

C. neoformans utilizes a number of mechanisms to ensure that it can remain 

and survive in the host. Immediately after entry into the alveoli of the lungs, C. 

neoformans can secrete Phospholipase B, an enzyme that breaks down 

dipalmitoyl phosphatidylcholine (DPPC), the major lipid present in the natural, 

tension-reducing surfactant coating the epithelial lining, thus allowing the fungal 

cells to attach directly to lung epithelial cells (Ganendren et al., 2006). C. 

neoformans can grow into extremely large, polyploid cells, called titan cells, that 

have ten-fold the diameter of normal C. neoformans in vivo via pheromone 

signaling following mating between opposite mating types (a or α) and therefore 

resist phagocytosis, as well as block the phagocytosis of nearby normal-sized 

fungal cells (Okagaki et al., 2010; Zaragoza et al., 2010; Okagaki and Nielsen, 

2012; May et al., 2016). Just like these titan cells, cryptococci that enlarge their 

capsules after they reach the lungs resist being engulfed by macrophages (Levitz 

and Tabuni, 1991; Xie et al., 2012; May et al., 2016). This permits the cryptococcal 

cells to pass into the bloodstream and thereby enter the systemic circulation, 

causing fungemia, via direct internalization by the lung epithelial cells to which they 

had attached (Sabiiti and May, 2012; May et al., 2016). The polysaccharide 
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capsule also prevents phagocytosis by macrophages in other ways, including by 

interaction with the surfactant in the host lung. Inside the lungs of 

immunocompetent individuals, opsonization of pathogenic microorganisms by 

surfactant proteins A and D (SPA and SPD) normally promote engulfment by 

alveolar macrophages, but SPA has no effect on phagocytosis of C. neoformans 

(Geunes-Boyer et al., 2012; Schelenz et al., 1995; Giles et al., 2007). Similarly, C. 

neoformans cells either use the capsule components glucuronoxylomannan 

(GXM) and mannoprotein 1 (MP1) to prevent opsonization by SPD, or, if they lack 

an effective capsule, can actually use the SPD coating to protect themselves from 

the ROS and RNS mediated chemical attack after engulfment by macrophages 

(Geunes-Boyer et al., 2012; Schelenz et al., 1995; Levitz and Tabuni, 1991; Van 

de Wetering et al., 2004).  

If phagocytosed, C. neoformans can use multiple virulence factors, 

including but not limited to the capsule and its components, to survive inside and 

to parasitize macrophages, thereby giving rise to a dormant infection (Feldmesser 

et al., 2001). Upon subsequent immunosuppression of the host, latent cryptococci 

in the granulomas initially produced by macrophages to protect the host, or the 

cryptococci surviving inside parasitized macrophages, are reactivated and can 

enter the systemic circulation by leaving the macrophages through vomocytosis, a 

nonlytic exocytosis (Nicola et al., 2011; Alvarez and Casadevall, 2006). Worse, C. 

neoformans cells that have parasitized macrophages can use the macrophages 
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as "Trojan Horse" vehicles to travel to other parts of the body, effectively hidden 

from the immune system (Charlier et al., 2009; Santiago-Tirado et al., 2017). 

As mentioned above, among the various tissues and organs to which C. 

neoformans can disseminate, the most notable are those of the central nervous 

system (CNS), especially the brain. The CNS is both an immune-privileged site, 

allowing C. neoformans cells that have traveled there to evade immune 

surveillance, and is a highly sterile environment, eliminating competition from other 

pathogens (May et al., 2016). Normally, the blood-brain barrier (BBB) prevents 

pathogens from reaching the brain, but Cryptococcus neoformans has evolved 

methods to traverse the BBB and reside in the meningeal tissues surrounding the 

brain or in the neurons of the brain itself (Charlier et al., 2005). There are three 

different proposed mechanisms for dissemination of C. neoformans to the CNS 

(Figure 1.3). First, the fungal cells can cross the BBB by forcing their way between 

the tight junctions of the vascular endothelial cells in a process known as 

paracytosis (Chen et al., 2003; Vu et al., 2013; May et al., 2016). In the second 

method, called transcytosis, C. neoformans uses hyaluronic acid on its surface to 

bind to CD44 on the luminal endothelium, leading to a protein kinase C-dependent 

actin remodeling activity in the endothelial cells that drives these cells to engulf the 

cryptococcal cells. The fungal cells then exit out the other side, thereby crossing 

the BBB by going through the endothelial cells (Chang et al., 2004; Jong et al., 

2008; May et al., 2016). The third mechanism is known as the ‘Trojan Horse’ 

hypothesis, in which cryptococcal cells cross the BBB by hitchhiking within host 
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phagocytes (such as macrophages), which are then able to breach the BBB using 

enzymes the same way that they normally cut through extracellular matrix or tight 

junctions to reach a site of infection (Sorrell et al., 2016; May et al., 2016; Santiago-

Tirado et al., 2017).  

 The physiological changes that C. neoformans goes through after it has 

traversed the BBB into the CNS are not very well understood, but it is known that 

fungal cells found in the cerebrospinal fluid (CSF) are metabolically very active and 

upregulate various genes involved in core metabolic processes and stress 

responses (Chen et al., 2014). The transcriptional profile approximately matches 

that of cryptococci grown in nutrient-rich media (Chen et al., 2014), which suggests 

that CSF provides many of the essential nutrients that are required for the growth 

and activity of C. neoformans. In fact, the pathogen can, depending on the location 

to which it has disseminated, upregulate a wide variety of metabolic pathways at 

the site of the infection, including those involved in energy production, protein 

synthesis and degradation, as well as upregulate genes involved in stress 

responses, transport of small molecules, and signaling pathways, even under low 

nutrient and hypoxic conditions (Steen et al., 2003; Kronstad et al., 2012). This 

metabolically active state of C. neoformans and its responsiveness to the 

environmental conditions is likely one of the causes of its survival and virulence. 

This responsiveness to local environmental conditions may be just as 

important as the ability to counteract the immune response in the survival and 

virulence of the pathogen. C. neoformans faces a number of environmental 
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challenges inside the human host, including a temperature that is higher than the 

optimal growth temperature of Cryptococcus species and low oxygen conditions 

found in many cells and tissues of the human body. C. neoformans grows optimally 

at atmospheric oxygen concentration (~21%), and its growth is significantly 

reduced at lower oxygen concentrations (Odds et al., 1995; Ingavale et al., 2008). 

Oxygen concentrations in the human body can range widely between 1% and 15%, 

with a normal oxygen concentration of ~14% in the lungs, ~5.3% in the venous 

blood, and only 1-5% in the brain (Erecinska and Silver, 2001; Carlsson et al., 

2001; Studer et al., 2000). In order for C. neoformans to invade the CNS after 

inhalation into the lungs, reach the brain, and cause meningitis, it must be able to 

cope with the significantly lower concentrations of oxygen in the brain (Ingavale et 

al., 2008). Furthermore, oxygen levels in host tissues can be further reduced by 

thrombosis, inflammation and necrosis associated with the infection (Chun et al., 

2007; Nau and Brück, 2002; Sawyer et al., 1991), thus posing a challenge for the 

survival of the pathogen.  

Virulence factors  

 Given the number of hurdles that cryptococci must overcome to infect and 

spread in a body, it is not surprising that many virulence factors help with the 

pathogenesis of C. neoformans by allowing survival and proliferation inside the 

host, evasion or escape from the host immune system, and exploitation of damage 

to the host to provide nutrients and survival factors to the pathogen. The virulence 

of C. neoformans is due to a concert of many factors and cannot be attributed to 
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any single one. However, some of the main virulence factors that contribute to the 

pathogenicity of C. neoformans (and C. gattii) are polysaccharide capsule 

formation, melanin production and deposition along the cell wall, and the ability to 

grow at 37°C (Coelho et al., 2014; Casadevall et al., 2000; Kronstad et al., 2011; 

Ma and May, 2009). The cryptococcal capsule and melanin, together, are 

protective against phagocytosis and the ROS secreted by immune cells (Wang et 

al., 1995; Mednick et al., 2005; Shoham and Levitz, 2005; Rohatgi and Pirofski, 

2015).  

Several proteases, lipases, and other enzymes, as well as many 

metabolites produced by C. neoformans after infection, also play a role in its 

virulence. For example, C. neoformans Phospholipase B breaks down host cell 

lipids to allow fungal cell exit from macrophages or for use as fungal nutrients (Cox 

et al., 2001; Chrisman et al., 2011). As mentioned above, this enzyme is also used 

by the fungus to cleave one of the lung surfactant lipids, thereby helping with 

adherence to alveolar epithelial cells (Ganendren et al., 2006; Sabiiti and May, 

2012), and to produce eicosanoids out of macrophage lipids, which are then used 

to suppress the Th1 immune response (Noverr et al., 2003; Sabiiti and May, 2012).  

Metabolites produced by the fungus that aid in virulence include the 

carbohydrate trehalose, which assists in the ability of the fungus to survive at the 

host body temperature (Chen and Haddad, 2004; Gancedo and Flores, 2004), and 

the lipid prostaglandin E2, which downregulates host antifungal activity (Valdez et 

al., 2012).  
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Ion acquisition by the pathogen is assisted by the upregulation of 

expression of specific fungal genes and their encoded proteins during infection 

(e.g. copper or dual copper/iron acquisition is increased via expression of Ctr4 or 

Cft1/Cfo proteins, respectively), to facilitate survival (Jung et al., 2009; Ding et al., 

2013). Homeostasis of iron and copper is critical for virulence, including survival in 

the high-copper environment of the lungs and low copper environment of the brain, 

or for dissemination to the brain, and mutation or deletion of many of the genes 

involved in iron or copper transport, redox state, and homeostasis, including CFT1, 

CFT2, FRE2, FRE4, and CUF1 reduces virulence (Jung et al., 2008, 2009; Saikia 

et al., 2014; Waterman et al., 2012). Some proteins, like Cft1, Cft2, Cfo1, Ctr1, 

Ctr4, and Cu-detoxifying metallothionein (CMT) are expressed differently in 

response to, or used to counteract, temperature, oxidative, and/or osmotic stress 

or variability in iron and copper levels (Jung et al., 2008, 2009; Lee et al., 2014; 

Saikia et al., 2014; Zhang et al., 2016; Sun et al., 2014; Ding et al., 2013; 

Waterman et al., 2012). 

Polysaccharide capsule 

 One of the most complex and versatile virulence factors is the fungal 

capsule. It provides protection from antimicrobial compounds, toxic free radicals, 

and various stress conditions (Zaragoza et al., 2008; Zaragoza, 2011). It has been 

shown that acapsular mutants of C. neoformans are avirulent (Chang and Kwon-

Chung, 1994). During inhalation, the fungal spores are generally unencapsulated 

(Velagapudi et al., 2009) as smaller size helps in passage through the airway, but 
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capsule size increases dramatically during infection as the spore reaches the 

alveoli (Bergman, 1965; Cruickshank et al., 1973). Furthermore, the location of 

infection plays an important role in the regulation of capsule biosynthesis. It has 

been shown that the environment in the lung is a potent inducer of capsule 

formation and enlargement (Zaragoza et al., 2003), while, in the brain, the capsule 

is smaller than in the lungs, but larger than that of cells outside the host (Rivera et 

al., 1998; Zaragoza et al., 2003). A larger capsule, especially combined with a 

large (titan) cell, blocks phagocytosis of the fungal cells by macrophages in the 

lungs (Okagaki et al., 2010; Zaragoza et al., 2010; Okagaki and Nielsen, 2012; 

May et al., 2016). The ability of the capsule to interfere with phagocytosis has been 

demonstrated in vitro, where there is essentially no phagocytosis of encapsulated 

C. neoformans in the absence of opsonins (Shoham and Levitz, 2005). If 

phagocytosis does occur, capsule polysaccharides are released into vesicles 

around the phagosome (or phagolysosome) inside the engulfing macrophages, 

and accumulation of these vesicles in the cytoplasm of the host cell leads to 

macrophage dysfunction and lysis (Tucker and Casadevall, 2002). Furthermore, 

the capsule is also used to counteract attempts by the macrophage to destroy the 

fungal cell by neutralizing the reactive oxygen and nitrogen species produced by 

the macrophage to attack the cryptococci (Zaragoza et al., 2008). Additionally, 

capsule polysaccharides act as a acid-base buffer to maintain a pH that is optimal 

for fungal cell growth but non-optimal for the acid hydrolases used by 

macrophages to break down pathogen proteins (De Leon-Rodriguez et al., 2018).  
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 Cryptococcal capsules and their components have very strong 

immunomodulatory properties, (Chang et al., 2006; Chiapello et al., 2008) which 

C. neoformans can use to evade or counteract the host immune response, 

secondary to preventing phagocytosis. The capsule, or polysaccharides shed from 

it, interfere with the ability of macrophages to present cryptococcal peptides via 

MHC receptors, including by downregulating the expression of the MHC receptors; 

they also make the macrophages express Fas ligand (FasL) that binds to Fas 

receptor on the surface of nearby T cells, thereby inducing the T cells to undergo 

apoptosis as well as drive the macrophages to undergo apoptosis (Vecchiarelli et 

al., 2003; Monari et al., 2005; Villena et al., 2008; Siegemund and Alber, 2008; 

Ben-Abdallah et al., 2012). In addition, capsular material is also reported to delay 

maturation and activation of, and antigen presentation by, human dendritic cells 

(Vecchiarelli et al., 2003). The capsule or its components also function to inhibit 

the secretion of pro-inflammatory cytokines by the host immune cells, reduce 

complement activation, inhibit antibody production, and reduce leukocyte 

migration, thereby conferring a considerable survival advantage to C. neoformans 

within the host (Zaragoza, 2011; Siegemund and Alber, 2008; Villena et al., 2008; 

Vecchiarelli, 2007; Ellerbroek et al., 2004b, 2004c; Bose et al., 2003; Buchanan 

and Murphy, 1998; Vecchiarelli et al., 1994b). Leukocyte migration to the site of 

infection is impeded in a number of ways. These include interfering with chemokine 

receptor function and reducing the attraction of leukocytes to chemokines, forcing 

the leukocytes to shed from their membranes the L-selectins they use to migrate 
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along the blood vessel endothelial cell lining, increasing IL-10 production (by anti-

inflammatory immune cells), and repressing neutrophil expression of C5a and 

TNF-α receptors (Ellerbroek et al., 2004b, 2004c). These processes are all 

mediated by the abundant polysaccharides shed from the capsule into the host 

bloodstream (Ellerbroek et al., 2004b, 2004c) or via the fully formed capsule. 

 To form a capsule, C. neoformans produces glucuronoxylomannan (GXM), 

which comprises about 90-95% of the capsule polysaccharides, and 

galactoxylomannan (GalXM), which makes up another ~5% of the capsule 

polysaccharides (Rakesh et al., 2008; Vecchiarelli et al., 2011). GXM is a large 

polymer made of repeating units of α-1,3-mannose, with β-D-xylopyranosyl, β-D-

glucopyranosyluronic acid, and 6-O-acetyl groups branching off of the mannose 

sugars (Cherniak et al., 1998; Rakesh et al., 2008). These three different mannose 

modifications vary in number and order within the GXM polymer, leading to the 

formation of different serotypes with sharp antigenic heterogeneity (McFadden et 

al., 2007). GXM has been found to be associated with lipids of intracellular and 

extracellular vesicles (Oliveira et al., 2009). The presence of GXM in C. 

neoformans extracellular vesicles suggests that the fungus synthesizes its capsule 

from the outside of the cell to allow for the cell to grow (Rodrigues et al., 2007). 

The abovementioned induction of apoptosis of nearby T cells via forced 

upregulation of FasL in macrophages have been attributed to GXM that is either 

released from inside macrophages or secreted into the blood, from where it binds 

to Toll-like receptors (e.g. TLR4) on macrophages or other peripheral blood 
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mononuclear cells to induce the production of FasL (Shoham et al., 2001; Monari 

et al., 2005; Vecchiarelli, 2007). This FasL induction occurs without stimulating the 

activation of NF-κB or the production of TNFα (Shoham et al., 2001; Monari et al., 

2005; Vecchiarelli, 2007).  

GalXM is an α-1,6-galactan that contains branches of β-1,3-galactose, α-

1,4-mannose and α-1,3 mannose chains, and therefore is technically a 

glucuronoxylomannogalactan (Vaishnav et al., 1998; Heiss et al., 2009; 

Vecchiarelli et al., 2011).  GalXM is a critically important factor in the suppression 

of T cell activation and in the induction of the subsequent FasL-mediated apoptosis 

of those T cells, as well as in the indirect induction of B cell and macrophage 

apoptosis (Pericolini 2006, 2010; Vecchiarelli et al., 2011). Together, these 

polysaccharides interfere with the activation and proliferation of T cells, thereby 

reducing the effect of the cell-mediated immune response (Yauch et al., 2006). 

These capsule polysaccharides are produced under low iron conditions in the 

presence of CO2 (Granger et al., 1985; Vartivarian et al., 1993; Vecchiarelli et al., 

2011). Along with GXM and GalXM, β1,4 N-acetylglucosamine molecules similar 

to those polymerized into the chitin layer between the cell membrane and the cell 

wall, and several mannoproteins (the latter of which constitute <1% of the capsule 

components) are also found to be associated with the capsule and help in 

anchoring the GXM polymers to the fungal cell wall (Ramos et al., 2012; 

Vecchiarelli et al., 2011; Fonseca et al., 2009; Rodrigues et al., 2008a; Huang et 

al., 2002; Levitz, 2001; Van Dyke and Wormley, 2018; Erwig and Gow, 2016). 
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Addition of chitinase to C. neoformans cells causes detachment of the capsule 

from the cell wall (Rodrigues et al., 2008a). Acetate and its metabolism are 

important in capsule formation, stability, and function (Hu et al., 2008), and, once 

converted into acetyl CoA, it can be used in the formation of the β1,4 N-

acetylglucosamine that links the cell wall to the capsule (Hu et al., 2008). 

Additionally, acetate is the source for the acetylation of GXM, and, despite the 

surprising hypervirulence of C. neoformans mutants lacking acetyl groups on their 

capsule (Janbon et al., 2001), this acetylation is required for the GXM-mediated 

reduction of neutrophil migration to the site of infection (Ellerbroek et al., 2004a). 

 There are several genes that are involved in capsule formation and 

synthesis. CAP59 was the first capsule-associated gene to be isolated, and it 

encodes a transmembrane protein (Chang and Kwon-Chung, 1994, 1998, 1999; 

Chang et al., 1996) that is required in the process of export of GXM out of the cell 

and into the capsule (Garcia-Rivera et al., 2004). CAP64 was the second gene 

identified in the capsule formation pathway, and deletion of this gene results in an 

acapsular phenotype (Chang et al., 1996, 1997). CAP60 and CAP10 must also be 

involved in capsule formation, since deletion of these genes results in an acapsular 

phenotype, although the biochemical function of their products is still elusive 

(Chang and Kwon-Chung, 1998, 1999). UDP glucuronic acid (UDP-GlcA) is a 

critical precursor in the biosynthesis of cryptococcal polysaccharides and 

mutations in the UGD1 gene, encoding the UDP-glucose dehydrogenase that is 

necessary to synthesize UDP-GlcA, or in CAP10, CAP59, CAP60, or CAP64, lead 
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to an acapsular phenotype (Moyrand and Janbon, 2004; Griffith et al., 2004). A 

deficiency in UDP-glucose dehydrogenase leads to temperature sensitivity and 

loss of thermotolerance, preventing growth at the 37°C host temperature, as well 

as morphological defects and an overall decreased virulence (Moyrand and 

Janbon, 2004; Griffith et al., 2004). The production of UDP-GlcA is also important 

because it can be converted into UDP-xylose; about 20% of GalXM molecules 

contain xylose, while 40-60% of GXM molecules contain xylose and GlcA (Griffith 

et al., 2004).   

 Proteins required for transporting the products of enzymes encoded by CAP 

genes are as important as the synthesizing enzymes themselves. For example, 

the UDP-GlcA transporter, Uut1, has a vital role in capsule formation. C. 

neoformans with a reduced ability to transport UDP-GlcA exhibit growth defects 

and metabolic abnormalities, resulting in greater phagocytosis by macrophages in 

vitro and faster clearance of the infection in vivo (Li et al., 2018).  

 Several other genes and their corresponding proteins play an important but 

non-essential role in capsule synthesis. For instance, CAS1 and CAS3 are 

required for acetylation of GXM (Janbon et al., 2001; Moyrand and Janbon, 2004). 

Other genes, including UXS1, UGD1, CAS31, CAS32, CAS33, CAS34 and 

CAS35, are important for xylosylation of GXM (Bar-Peled et al., 2001; Moyrand 

and Janbon, 2004). Computational analysis of the approximately 20 megabase 

genome of C. neoformans revealed 30 new genes that have potential roles in 

capsule synthesis (Loftus et al., 2005). These include seven members of the 
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CAP64 capsule associated gene family and a second CAP10 family of six capsule 

associated genes (Loftus et al., 2005). Capsule formation is controlled largely by 

the Gα protein-cAMP-PKA signaling cascade (Alspaugh et al., 2002; Hicks et al., 

2004), but is also negatively regulated by the high osmolarity glycerol (HOG) 

pathway. (Bahn et al., 2005). The HOG pathway, also referred to as the HOG1 

pathway based on the major gene of the pathway, has been shown to be involved 

in the response to external environmental stress, such as high temperature, 

oxidative stress, or osmotic shock (Bahn et al., 2005). Hog1, an upstream MAP 

kinase in the HOG pathway, may have distinct functional roles depending on the 

cryptococcal serotype. For example, deletion of HOG1 induces the synthesis of 

capsule and melanin in C. neoformans var. grubii, which is serotype A, but not in 

C. neoformans var. neoformans, which is serotype D (Bahn et al., 2005). 

Melanin production and laccase activity  

 C. neoformans produces melanin for use as a protective molecule. The 

exact molecular structure of the cryptococcal melanin pigment is unknown and it 

has often been said to be ‘melanin-like’ pigment; regardless, it is a negatively 

charged, hydrophobic molecule of high molecular weight, which is synthesized 

from phenolic and/or indolic components via oxidative polymerization (Frases et 

al., 2007; Steenbergen and Casadevall, 2003; Nosanchuk and Casadevall, 2003; 

Hamilton and Gomez, 2002; Jacobson, 2000). Although melanized cryptococcal 

cells have been shown to be responsible for the initial human infection, the 

environmental sources of melanin production prior to infection of a host are still 
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unclear (Williamson, 1997; McFadden and Casadevall, 2001; Steenbergen and 

Casadevall 2003; Frases et al., 2007; Eisenman et al., 2007). During infection, 

cryptococcal melanin is synthesized from exogenous precursors such as 

catecholamines, including epinephrine, norepinephrine, L-DOPA, dopamine, and 

aldehydes, obtained from host cells, but not from endogenous chemicals like 

amino acids (Williamson, 1997; McFadden and Casadevall, 2001; Steenbergen 

and Casadevall 2003; Frases et al., 2007; Eisenman et al., 2007).  

 Melanin (or the cryptococcal melanin-like pigment) has the properties of a 

stable free-radical that allow it to function as an efficient antioxidant (Jacobson and 

Emery, 1991a; Jacobson and Tinnell, 1993; Steenbergen and Casadevall 2003) 

and also provides protection against both cold and heat, helping C. neoformans to 

survive at the host body temperature (Nosanchuk and Casadevall, 2003). Melanin 

can also induce complex immunomodulatory effects that increase the virulence of 

C. neoformans by eliciting changes in the host cytokine/chemokine response to 

infection (Mednick et al., 2005; Huffnagle et al., 1995). Additionally, melanized 

cryptococcal cells are less susceptible to the action of amphotericin B (Van Duin 

et al., 2002), an anti-fungal agent.  

 C. neoformans melanin or melanin-like pigments are produced by enzymes 

known as laccases, members of the multicopper oxidase family of proteins, using 

copper as the co-factor (Walton et al., 2005). These laccase enzymes are 

important, since laccase-deficient mutants of C. neoformans with a corresponding 

melanin deficiency have reduced virulence (Kwon-Chung et al., 1982; Rhodes et 



24 
 

al., 1982). In C. neoformans, melanin is produced using two laccase enzymes, 

Lac1 and Lac2, which are spatially separated. Lac1 is abundantly associated with 

the cell wall, whereas Lac2 is present in the cytoplasm (Zhu et al., 2001; Waterman 

et al., 2007). Although it has been suggested that Lac1 plays the predominant role 

in infection, the genes for the two enzymes share 75% identity, and both isoforms 

are required for full virulence (Missall et al., 2005; Pukkila-Worley et al., 2005). 

 Once produced, melanin is deposited in the cell wall, creating an electron 

dense layer (Solano, 2014) from where the melanin fulfils its antioxidant function, 

offering protection to the cryptococcal cells from free oxygen and nitrogen radicals 

and other toxic molecules generated within macrophages to attack the fungal cell 

wall, membrane and other internal components (Williamson, 1997; Eisenman and 

Casadevall, 2012; Wang and Casadevall, 1994a, 1994b, 1994c). It is possible that 

more than one melanin-like pigment is produced, and that insoluble melanin is 

deposited in granules in the cell wall, while soluble melanin-like pigments are also 

localized to the cell wall but can diffuse (Nosanchuk and Casadevall, 2003). 

Regardless, this cell wall deposition is probably achieved by vesicular secretion of 

melanin outside the cell membrane and even of the laccase enzymes themselves 

(Rodrigues et al., 2008b, Eisenman et al., 2009). Both are commonly found in 

cryptococcal extracellular vesicles (Rodrigues et al., 2008b). Such vesicle 

mediated melanin deposition has also been reported in other fungi like Candida 

albicans (Walker et al., 2010).  
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 The laccases have additional roles besides melanin production. For 

example, by catalyzing the production of prostaglandin E2 from extracellular, 

macrophage-derived arachidonic acid (Erb-Downward et al., 2008), laccases can 

modulate the immune response and interfere with the control of infection by the 

host. Prostaglandins have been shown to reduce phagocytosis, lymphocyte 

proliferation, chemokine production, and Th1 response. (Erb-Downward and 

Huffnagle, 2007; Noverr et al 2002). Moreover, by functioning as an iron oxidase, 

laccase enzymes can convert Fe(II) to Fe(III), thereby neutralizing the antimicrobial 

oxidative effect of hydroxyl radicals generated inside the macrophages, and 

protecting the fungal cells (Liu et al., 1999; Casadevall et al., 2000). Laccase 

activity in Cryptococcus is induced by metals or metal ions like copper and calcium, 

and is repressed by the presence of nutrients such as nitrogen and glucose and 

nitrogen (Zhu and Williamson, 2004; Wang et al., 2001; Nyhus and Jacobson, 

1999; Jacobson and Compton., 1996; Zhu et al 2003). Copper regulates laccase 

activity not only as a co-factor, but also through the transcription factor encoded 

by CUF1, which drives the expression of LAC1 (Jiang et al., 2009). The presence 

of iron within the phagolysosome of an engulfing macrophage should be toxic to 

the fungal cell; instead, it induces the abovementioned iron oxidase function of the 

laccase, which acts to reduce potentially toxic Fenton reactants and hydroxyl 

radicals (Liu et al., 1999).  Likewise, infected brain tissue has decreased levels of 

glucose, which should decrease survival by C. neoformans inside the neurons, but, 

instead, the low glucose levels induce laccase expression (i.e., expression of both 
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LAC1 and LAC2) through the protein encoded by TSP2-1, facilitating further 

infection of brain cells by the pathogen (Zhu and Williamson, 2004; Li et al., 2012; 

Pukkila-Worley et al., 2005). Fortunately for the host, other metals and 

biomolecules, as well as elevated host temperatures, can repress laccase activity 

(Jacobson and Emery, 1991b; Zhu and Williamson, 2004). Thus, while 

inflammation of the brain is harmful, it may also be the way that the body tries to 

raise the brain temperature to repress laccase activity, as well as the activity of 

other enzymes, in meningoencephalitis.  

 Laccase gene expression is also regulated by signaling pathways. It has 

been observed that the Gα-cAMP-PKA signaling pathway, initiated by the 

activation of the Gα protein Gpa1 upon binding of extracellular stimuli like 

hormones and nutrients to receptors, might be involved in the modulation of 

laccase expression in C. neoformans (Pukkila-Worley et al., 2005; Zhu and 

Williamson, 2004; Alspaugh et al., 1997, 2002). Likewise, the HOG1 pathway 

negatively regulates melanin production on a serotype-specific basis; serotype A 

(H99 strain) but not serotype D (strain JEC21) hog1 mutants exhibit significantly 

increased melanin production (Bahn et al., 2005). Other studies have shown a role 

for MAP kinase cascade targets Ste12a and Ste12alpha in regulating laccase 

expression (Chang et al., 2000, 2001). Wang et al. (2001) have demonstrated a 

role for two homologues of cyclophilin A, a protein involved in the inflammatory 

response in humans, in laccase activity, and C. neoformans lacking both isoforms 

of cyclophilin A have reduced melanin levels.   
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Thermotolerance 

 C. neoformans is capable of growing at the mammalian host body 

temperature of 37°C, which gives C. neoformans an advantage over other fungi 

when it comes to infecting mammalian hosts (Steenbergen and Casadevall, 2003; 

Perfect, 2005). Less than 0.01% of outdoor fungi possess this virulence factor; 

most soil fungi and even most cryptococcal species lack this ability and are 

therefore non-pathogenic (Steenbergen and Casadevall, 2003; Perfect, 2005). 

The importance of thermotolerance as a virulence factor is evidenced by the 

inability of temperature-sensitive mutants of C. neoformans to infect a mammalian 

host, despite being capable of producing a capsule and melanin (Kwon-Chung et 

al., 1982; Odom et al., 1997). However, at temperatures of 39°C-40°C, even C. 

neoformans grows poorly, and intracellular vacuolization, aberrant budding, and 

the formation of pseudohyphal structures indicate that the cells are not healthy at 

this temperature (Mitchell and Perfect, 1995; Steenbergen and Casadevall, 2003). 

 Cryptococcal thermotolerance involves a number of cellular pathways. A 

genome-wide transcriptome analysis of C. neoformans cells subjected to two 

different temperatures (25°C and 37°C) revealed the upregulation of several 

important genes at the higher temperature (Steen et al., 2002). In particular, 

differences were observed in the levels of C. neoformans mRNAs encoding 

histones, heat shock proteins, components of the translational machinery, 

mitochondrial proteins, and stress-response proteins such as superoxide 

dismutase (Steen et al., 2002). The upregulation of the expression of (the mRNAs 



28 
 

for) heat shock proteins (and chaperones) Hsp60 and Hsp70 was especially 

significance, as these proteins have been found to be prominent antigens in 

cryptococcal infection of animals and humans (Steen et al., 2002). Additionally, 

higher levels of transcripts encoding phenolic metabolism enzymes at 37°C 

suggest a direct correlation between increased temperature and a greater need 

for melanin synthesis inside the mammalian host (Steen et al., 2002).  

 In addition to the observed upregulation of certain genes in response to 

higher temperature, which may or may not be necessary for virulence, several 

genes have been demonstrated to be important for the basic survival of 

Cryptococcus at the human physiological temperature (Perfect, 2005). For 

example, the vacuolar ATPase VPH1, CCN1 (a protein used in DNA replication, 

transcription and splicing), basic amino acid metabolism genes such as ILV2, and 

signaling pathways genes such as RAS1, CNA1, CNB1, MPK1 and CTS1, are all 

important in high temperature growth (Perfect, 2005). Disruption of RAS1 or CNA1 

causes severe deleterious effects on fungal virulence at 37°C, as does disruption 

of TPS1 or SOD2 (Perfect, 2005; Alspaugh et al., 2000). It makes sense that 

SOD2, which encodes the C. neoformans mitochondrial manganese superoxide 

dismutase involved in neutralizing ROS (Giles et al., 2005a), is necessary to deal 

with the stress caused by higher temperature. Likewise, the Ras proteins regulate 

cellular morphogenesis and RAS1 encodes a C. neoformans Ras protein 

responsible for attachment, mobility, and cytoskeletal integrity at high 

temperatures (Alspaugh et al., 2000). Ras1 fulfills these functions via Cdc42, 
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expression of which is increased in, and necessary for survival of, cryptococcal 

cells at 37°C (Ballou et al., 2010). TPS1 and TPS2 encode trehalose-6-phosphate 

synthase and trehalose-6 phosphate phosphatase, respectively, and both are 

necessary to provide the thermotolerance effect of the trehalose sugar metabolite 

(Perfect, 2005). Trehalose has been reported to play an important role in the 

survival of several bacteria and fungi under stress conditions (Chen and Haddad, 

2004; Gancedo and Flores, 2004), and likely does so for C. neoformans. Other 

genes, such as STE20α and CPA1 (which encodes cyclophilin) are required for 

survival at very high temperature (39°C to 40°C), even if they are not strictly 

necessary for growth at 37°C (Perfect, 2005). 

Resistance to hypoxia 

 Since the brain uses a vast amount of ATP energy and is therefore a highly 

oxidative organ, it consumes a disproportionately large portion of the body's 

oxygen pool (Erecinska and Silver, 2001). Despite this, there is a highly variable 

but generally low oxygen concentration and partial pressure in the brain (Erecinska 

and Silver, 2001), posing a challenge to the survival of C. neoformans cells that 

have disseminated into brain tissue. However, the pathogenic fungus adapts to 

these conditions and causes infection in both immunocompromised and normal 

patients (Ingavale et al., 2008). In order to adapt to the variable oxygen 

concentrations in the brain and other tissues that it infects, C. neoformans must 

first be able to sense to the concentration of oxygen. In Schizosaccharomyces 

pombe, cells respond to environmental oxygen concentrations by sensing changes 
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in sterol levels in cell membranes, using the sterol response element binding 

protein (SREBP) pathway in which the proteins Sre1 and Scp1 monitor oxygen 

dependent sterol synthesis (Hughes et al., 2005; Todd et al., 2006). Under low 

sterol conditions, SREBP (Sre1) is cleaved by SREBP cleavage activating protein 

(SCAP/Scp1), and is thus activated (Hughes et al., 2005). The activated Sre1 

facilitates the transcription of genes involved in sterol biosynthesis and uptake 

(Hughes et al., 2005; Todd et al., 2006). In S. pombe, the Sre1 protein is also 

activated in response to low oxygen conditions, and stimulates the expression of 

genes required for survival under hypoxia (Hughes et al., 2005). These genes have 

orthologues in C. neoformans that have been shown to be important for 

cryptococcal survival under hypoxic conditions; for example, deletion of SRE1 in 

C. neoformans decreases the growth of the pathogen under low oxygen 

conditions, both in vitro and in an animal model (Chang et al., 2007; Bien et al., 

2007). The in vitro experiments also established that, like in S. pombe, C. 

neoformans Sre1p is activated by hypoxia via cleavage of the precursor protein 

(Chang et al., 2007; Chun et al., 2007). Hypoxia can be mimicked in vitro by the 

use of cobalt chloride, and both Sre1p and Scp1p have been shown to be essential 

during growth under a cobalt chloride induced pseudo-hypoxic environment (Lee 

et al., 2007). In addition to the Sre1 pathway, Tco1, a member of a highly 

conserved family of fungal-specific histidine kinases, also plays a role in the 

resistance to low oxygen conditions (Chun et al., 2007). The C. neoformans tco1 

mutant is sensitive to hypoxia, and a tco1-sre1 double knock-out strain shows even 
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more sensitivity to hypoxia than the individual single mutants, verifying that Tco1 

functions in a pathway parallel to Sre1 (Chun et al., 2007). Tco1 positively 

regulates the aforementioned HOG/MAPK pathway, and thereby negatively 

regulates melanin synthesis (Chun et al., 2007). Besides these pathways, several 

genes in C. neoformans related to sterol, heme, and fatty acid metabolism are 

upregulated, and pathways involved in translation, vesicle trafficking, and cell wall 

and capsule synthesis are downregulated, in response to low oxygen conditions 

(Chun et al., 2007).  

Response to oxidative and nitrosative stress 

Upon entry into the host pulmonary system, C. neoformans encounters 

alveolar macrophages, the first line of host defense. Once the pathogen is 

phagocytosed by the macrophage, it faces the toxic effects of the ROS and RNS 

molecules that break down the fungal cell's membrane lipids and proteins, as well 

as other cellular molecules, including the DNA (Bergamini et al., 2004; Dedon and 

Tannenbaum, 2004; Upadhya et al., 2013; Missall et al., 2004a; Hampton et al., 

1998; Vieira et al., 2002; Cox et al., 2003; Liu et al., 1999; Tohyama et al., 1996). 

It has been shown that macrophages produce nitric oxide (NO), a key type of RNS, 

in response to infection (Tripathi et al., 2007; Maffei et al., 2004) and that the anti-

cryptococcal activity of macrophages is mostly dependent on RNS, and, to a lesser 

degree, ROS (Cox et al., 2003; Tohyama et al., 1996; Maffei et al., 2004). 

Therefore, it is important for C. neoformans to protect itself from nitrosative (and 

oxidative) damage in order to survive inside the host system. The pathogen also 
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alters gene expression in response to ROS (Upadhya et al., 2013), and genomic 

and proteomic analyses of C. neoformans cells subjected to nitrosative stress 

revealed an upregulation of proteins involved in the oxidative stress response and 

downregulation of proteins involved in the osmotic and starvation stress response 

pathways (Missall et al., 2006),. Additionally, RNS specifically attacks and 

inactivates proteins that contain iron, iron-sulfur clusters, and copper, or thiol 

groups, including aconitase and ribonucleotide reductase, as well as cytochrome 

c oxidase and proteins of complexe I and II of the electron transport chain, which 

requires the pathogen to mount a specific response to nitrosative stress (Missall 

et al., 2004a). Therefore, it is notable that the enzymes transaldolase (Tal1), 

aconitase (Aco1) and thioredoxin-dependent thiol peroxidase (Tsa1) were 

repeatedly found to be altered in their expression levels as well as modified post-

translationally in response to NO (Missall et al., 2006). Likewise, TSA1 and another 

thiol peroxidase gene, TSA3, are transcriptionally induced in C. neoformans 

treated with hydrogen peroxide, a form of ROS (Missall et al., 2004b). C. 

neoformans tsa1 mutants have reduced growth and virulence (Missall et al., 

2004b). Similarly, cryptococcal mutants of glutathione reductase (GLR1), which is 

upregulated following nitrosative stress, were found to be avirulent in a mouse 

infection model and are also specifically sensitive to nitrosative burst (Missall et 

al., 2006). C. neoformans also relies on cytochrome C peroxidase (Ccp1), 

superoxide dismutase (Sod1), and catalase enzymes to defend itself from 

oxidative stress (Cox et al., 2003; Giles et al., 2005b, 2006) and the absence of 
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any one of these enzymes adversely affects the virulence of the pathogen 

(Narasipura et al., 2003). PKC1, another important gene involved in resistance to 

environmental stress that is employed in maintaining cell wall integrity, is also 

upregulated in wild type C. neoformans following oxidative and nitrosative burst 

(Gerik et al., 2008), while pkc1 mutants have defects in the production of melanin 

and capsular polysaccharides important for protecting the pathogen against free 

radicals and are unable to withstand nitrosative and oxidative stress (Gerik et al., 

2008).  

Degradative enzymes involved in Cryptococcus virulence 

Phospholipases B and C  

 Phospholipases are members of a heterogeneous group of hydrolases that 

break down the ester linkages in glycerophospholipids, which are the principal 

components of cell membranes and of lung surfactants (Djordjevic, 2010).  Thus, 

fungal phospholipases play a significant role in the process of pulmonary invasion 

(Djordjevic, 2010). Phagocytosed C. neoformans cells secrete phospholipases 

that can degrade membrane phospholipids in order to lyse the host cell and escape 

into the bloodstream or brain (Santangelo et al., 2004; Maruvada et al., 2012). 

Furthermore, even inside phagocytic cells, phospholipid degradation facilitates 

damage to phagolysosomal membranes, which allows the engulfed fungus to 

access the host cytoplasmic components and intracellular nutrients, thereby 

ensuring fungal survival inside the host cell (Feldmesser et al., 2000).  
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 C. neoformans expresses two classes of phospholipases to promote its own 

virulence, phospholipase B and phospholipase C (Chen et al., 1997a; Chrisman et 

al., 2011). A secreted phospholipase, encoded by PLB1, can function as 

phospholipase B, lysophospholipase, or lysophospholipase transacylase, 

depending on the substrate (Chen et al., 1997a,b; Chrisman et al., 2011). C. 

neoformans is sensitive to the presence of phospholipids, and addition of 

phospholipids to cryptococcal culture causes significant induction of Plb1 activity 

(Coelho et al., 2014). Plb1 has been shown to act primarily on dipalmitoyl 

phosphatidylcholine (DPPC) and phosphatidylglycerol (PG), which are abundant 

in lung surfactant (Merkel et al., 1999; Chen et al., 2000). Thus, C. neoformans 

utilizes Plb1 to drive the adhesion of cryptococci to human lung epithelial cells 

(Ganendren et al., 2006), the initiation of interstitial pulmonary infection, and 

dissemination from the lung via lymphatic and blood vessels (Santangelo et al., 

2004). Plb1 is also essential in the production of eicosanoids, such as 

prostaglandins and leukotrienes, which are bioactive anti-inflammatory molecules 

that suppress the host immune system, thereby promoting survival and 

dissemination of the pathogen within the host (Noverr et al., 2002, 2003; 

Ganendren et al., 2006). The precursor of these eicosanoids, arachidonic acid, is 

not present within the fungal cell itself; rather, it is suspected that the pathogen 

appropriates the host cell arachidonic acid and derives the necessary eicosanoids 

from it (Wright et al., 2007). Plb1 also plays a major role in the capsule enlargement 

of C. neoformans in response to macrophage interaction (Chrisman et al., 2011) 



35 
 

and in the formation of titan cells (Evans et al., 2015). Plb1 is also employed by 

the fungus to activate the Rac1 GTPase of endothelial cells and thereby alter the 

actin cytoskeleton of these cells to allow transcytosis and penetration of the blood 

brain barrier by the pathogen; lack of Plb1 significantly reduces the transcytosis 

efficiency (Maruvada et al., 2012). The importance of this enzyme to the virulence 

of the pathogen is confirmed by the fact that mice infected with Plb1-deficient 

mutants of C. neoformans survive better than mice infected with the wild type 

strain, which suggests that Plb1-deficient cryptococci have reduced pathogenicity, 

including having greater difficulty in invading brain tissue (Cox et al., 2001). 

Intracellular growth and survival within macrophages is also reduced in plb1 

mutants (Evans et al., 2015).  

 C. neoformans has two phospholipase C enzymes, Plc1 and Plc2 

(Chayakulkeeree et al., 2008). PLCs act on phosphatidylinositol (PI), 

phosphatidylinositol-4-monophosphate (PIP), and phosphatidyl inositol-4,5-

bisphosphate (PIP2), as the substrate (Heinz et al., 1998). In fact, in C. 

neoformans, Plc1 acts on PIP2 to produce inositol-3,4,5-triphosphate (IP3) for use 

by enzymes such as the inositol polyphosphate kinase Arg1; a deficiency in either 

Plc1 or Arg1 impairs thermotolerance, as well as capsule formation and melanin 

production, and compromises the integrity of the cell wall (Lev et al., 2013). The 

secretion of fungal Plb1 depends on the removal of a glycosylphosphatidylinositol 

(GPI) anchor (Djordjevic et al., 2005; Chayakulkeeree et al.,2008), which might be 

a function of one of these phospholipase C enzymes, especially Plc1. Regardless, 



36 
 

deletion of plc1 also produces avirulent cryptococcal cells that are unable to 

produce melanin or induce nonlytic exocytosis (Chayakulkeeree et al., 2008). In 

addition to Plc1 and Plc2, a C. neoformans inositol phosphorylsphingolipid-

phospholipase C (encoded by ISC1) protects the pathogen from excessively low 

pH and from oxidative and nitrosative stresses, conditions found in the 

phagolysosome (Shea et al., 2006). 

Urease 

 Urease is a nickel-dependent enzyme that hydrolyzes urea into ammonia 

and carbamate, and the degradation of the urea causes alkalization of the 

surrounding environment, thereby facilitating acquisition of nitrogen (Coelho et al., 

2014). Urease has been found to be an important virulence factor for bacterial 

pathogenesis (Eaton et al., 1991) and has been postulated to have a major role in 

cryptococcal pathogenesis. One feature that distinguishes C. neoformans from 

other yeast species in clinical specimens is the detection of urease activity 

(Canteros et al., 1996). In C. neoformans, urease is initially an apoenzyme, 

encoded by URE1 (Cox et al., 2000). Similar to other organisms that use the 

urease system, a nickel transporter, encoded by NIC1, and accessory proteins 

encoded by the URE4, URE6, and URE7 genes, are required for the apoenzyme 

to become functional (Singh et al., 2013). Another gene, URE2, is also expressed 

in C. neoformans and appears to be necessary for utilization of urea as a nitrogen 

source (Varma et al., 2006). Urease deficient strains of C. neoformans have been 

isolated from clinical samples only rarely, suggesting the importance of the urease 
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activity in virulence, and a ure1 mutant strain was less virulent in both inhalation 

and intravenous injection mouse infection models (Cox et al., 2000); however, the 

effect of URE2 deficiency on virulence may depend on the route of infection, since 

some ure2 mutants exhibit delayed dissemination from the lung, while others are 

no different from wild type controls in virulence (Varma et al., 2006). The urease 

system and its components enhance either passage across the lung epithelium 

into the bloodstream or passage through the endothelial layer of the blood vessel 

wall into the brain (Singh et al., 2013; Shi et al., 2010; Olszewski et al., 2004). 

Furthermore, the pattern of dissemination of urease-deficient C. neoformans 

strains in the brain, spleen, and other organs after intravenous inoculation is 

different from that of the wild type strain, suggesting that urease enhances the 

sequestration of the pathogen within microcapillary beds, thereby facilitating 

invasion into the CNS, but may not actually be required for dissemination to the 

brain (Olszewski et al., 2004).  

Proteinases  

 Once C. neoformans enters the human body via the respiratory pathway, 

the fungus utilizes enzymes that can degrade proteins and lipids (i.e., 

proteinases/proteases and lipases, respectively), present in the lung membrane, 

to penetrate lung parenchyma within a few hours after its entry into the alveolar 

space (Goldman et al., 1994). Both environmental and clinical isolates of C. 

neoformans have been shown to have proteinase activity (Casadevall and Perfect, 

1998), and the first report of the detection of extracellular proteinase activity from 
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C. neoformans dates back to 1972 (Müller and Sethi, 1972). The action of 

cryptococcal proteases on host membranes during infection was evident in 

histopathological sections of Cryptococcus-infected tissues from beige mice, in 

which collagen fibrils were found to be degraded (Salkowski and Balish, 1991). 

Similarly, Chen et al., (1996) confirmed the presence of protease activity capable 

of degrading collagen fibers, and possibly elastin and fibrinogen proteins, of the 

extracellular matrix around host cells (Ma and May, 2009). Cryptococcal 

supernatant containing secreted serine proteinases is also capable of degrading 

human fibronectin, as well as laminin and type IV collagen (Rodrigues et al., 2003). 

Besides degrading host membranes and extracellular matrix proteins, fungal 

proteinase activity may also be utilized by the pathogen to compromise host 

immunity by degrading immunologically important proteins, such as antibodies and 

complement factors (Chen et al., 1996).  

 Cytoplasmic and extracellular cryptococcal proteases include at least one 

membrane-bound aspartyl protease and an elastinolytic-like metalloprotease, as 

well as multiple serine proteases/proteinases, some of which are embedded in the 

membrane by GPI anchors (Eigenheer et al., 2007; Il Yoo et al., 2004; Pinti et al., 

2007; Rodrigues et al., 2003). Metalloprotease deficient strains of C. neoformans 

are incapable of crossing the endothelium of the blood-brain barrier and the Mpr1 

metalloprotease is required to invade the CNS (Vu et al., 2014), verifying the 

importance of proteases in cryptococcal pathogenesis. In addition to the 
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metalloproteases, Cryptococcal serine protease activity also augments the 

permeability of the blood-brain barrier (Xu et al., 2014).  

Metabolites important for C. neoformans infection  

 Besides the virulence factors discussed above, C. neoformans utilizes small 

metabolites to inhibit the immune system of the mammalian host and for other 

survival purposes. Heat inactivated supernatant of C. neoformans, in which 

proteins are presumably denatured, can induce apoptosis of neutrophils, and 

characterization of these supernatants from cryptococcal cultures revealed the 

presence of thirty different metabolites, including amino acids, alditols, 

nucleosides, acetate, and ethanol (Wright et al., 2002). These findings confirmed 

the results from a second, earlier study, in which C. neoformans grown in culture 

also secreted a number of these metabolites, including mannitol, glucitol, erythritol, 

glycerol, derivatives of choline and ethanolamine, γ-aminobutyric acid (GABA, an 

inhibitory neurotransmitter), nucleosides, and amino acids, and, most of all, 

ethanol and acetic acid (Bubb et al., 1999). 

Mannitol  

 Mannitol is one of the alditol metabolites released in the culture media by 

C. neoformans, and the presence of mannitol correlates with cryptococcal 

virulence (Wong et al., 1990). As an intracellular product of the pathogen, it is 

believed to protect C. neoformans from heat and osmotic stress and likely helps 

during infection by scavenging and neutralizing extracellular hydroxyl radicals 

produced by phagocytes (Chaturvedi et al., 1996a). Mutants of C. neoformans that 



40 
 

produce less mannitol are more susceptible to in vitro killing by normal neutrophils 

and ROS, suggesting that mannitol is important for virulence (Chaturvedi et al., 

1996b).  Addition of mannitol in the medium as a carbon source induces capsular 

polysaccharide production in C. neoformans in vitro, and, in vivo, GXM production 

was found to be regulated by mannitol supplementation in a mice model 

(Guimarães et al., 2010). Moreover, the large amounts of mannitol released by C. 

neoformans following brain infection may increase the osmolarity of the tissue, 

thereby causing cerebral edema (Chaturvedi et al., 1996a; Wong et al., 1990), 

which benefits the pathogen. Increased mannitol production is thought to have 

contributed to the raised intracranial pressure that resulted in mortality of 

cryptococcal meningitis patients (Hoang et al., 2004). The presence of mannitol in 

the CSF of HIV infected patients with cryptococcal meningitis was previously 

reported to increase intracranial pressure (Megson et al., 1996), but this finding 

has also been disputed (Liappis et al.,2008).  

Ethanol  

 Ethanol is another metabolite that has been found to be secreted in vitro by 

C. neoformans cultures, at a concentration as high as 0.3% (w/v), into the culture 

supernatant (Bubb et al., 1999; Wright et al., 2002). However, this concentration is 

much higher than the highest amount of ethanol produced (0.064%) by one strain 

of C. neoformans in a previous study (Pappagianis et al., 1966), and ethanol levels 

as low as 0.0004% have been reported in spinal fluid inoculated with cryptococci 

(Dawson and Taghavy, 1963). Likewise, although an ethanol concentration above 
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0.79% is detrimental to leukotriene generation and to the subsequent responses 

of human neutrophils, such as oxidative metabolism, aggregation, elastase 

release, migration, and chemotaxis (Nilsson et al., 1995), this concentration is 

higher than the maximum concentration secreted from the in vitro culture. Thus, 

the effect of the ethanol produced and secreted by C. neoformans during infection 

and its significance as a virulence factor is questionable. 

Trehalose  

 Alpha-glucopyranosyl-alpha-D-glucopyranoside, more commonly called 

trehalose, is a disaccharide produced by several organisms, including plants, 

fungi, and invertebrates. Trehalose is rapidly produced in these organisms in 

response to cellular stress to act as a stress protectant (Elbein, 1974; Gancedo 

and Flores, 2004), and its production in S. cerevisiae has been shown to increase 

resistance to heat (Lewis et al., 1995; De Virgilio et al., 1993; Attfield, 1987) and 

to dehydration and desiccation (Gadd et al., 1987; Hottiger et al., 1987), mostly by 

preventing the denaturation of certain proteins (Hottiger et al., 1987). Besides 

preventing denaturation of protein, trehalose also suppresses the aggregation of 

already denatured proteins (Singer and Lindquist, 1998). It has also been shown 

that trehalose can protect the cell membrane from stressful conditions (Crowe et 

al., 1984). Like other sugars, trehalose can also be utilized by cells as a source of 

carbon and energy (Francois and Parrou, 2001; Kane and Roth, 1974; Lillie and 

Pringle; 1980; Thevelein and Hohmann, 1995).  
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 The phosphorylated trehalose sugar (trehalose-6-phosphate, T6P) has 

been shown to regulate glycolytic flux by regulating hexokinase II in some fungi 

(Blázquez et al., 1993). Studies conducted in S. cerevisiae have revealed that 

trehalose synthesis is dependent on two enzymes, T6P synthase (Tps1) and T6P 

phosphatase (Tps2) (Bell et al., 1992; Vuorio et al., 1993), while unutilized 

trehalose is hydrolyzed by a neutral trehalase encoded by NTH1 (Kopp et al., 

1993).  

 Expression of the homologous genes involved in the trehalose synthesis 

pathway has been detected in C. neoformans by transcriptional analysis of the 

CSF in an experimental model of cryptococcal meningitis utilizing infected rabbits 

(Steen et al., 2003), indicating that, like S. cerevisiae, C. neoformans produces 

trehalose in vivo. Similarly, nuclear magnetic resonance (NMR) studies of tissues 

surrounding cryptococcomas, large-mass lesions resulting from infection, in 

infected rat brain and lungs, revealed a high abundance of trehalose (Himmelreich 

et al., 2001, 2003).  

 Trehalose has been shown to be important for C. neoformans virulence. In 

a murine infection model, a trehalose synthesis-deficient C. neoformans tps1 

mutant was far less lethal, allowing the mice to survive for over 60 days after 

infection, than the H99 wild type strain that killed infected mice by day 16 (Petzold 

et al., 2006). In contrast, mutations to trehalose degrading enzyme (Nth1) did not 

have much of an effect on the virulence of the pathogen in this model (Petzold et 

al., 2006). However, a recent study by Botts et al. (2014) demonstrated that NTH1 
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deletion results in defective germination and sexual development of cryptococcal 

spores. Interestingly, deletion of a previously unrecognized and only recently 

identified gene for trehalase, NTH2, results in hypervirulent fungal strains (Botts et 

al., 2014), possibly indicating that accumulation of trehalose (as a result of a 

degradation defect) provides for greater survival and infectivity of C. neoformans. 

Acetate 

 Acetate is one of the major metabolites secreted by cryptococci cultured in 

vitro (Bubb et al., 1999). Using NMR, substantial amounts of acetate have been 

detected from pulmonary cryptococcomas (Himmelreich et al., 2001). Acetate is 

believed to provide a survival advantage to the pathogen by two mechanisms, the 

first of which is through its effect on pH. An excess of acetate in the infected tissue 

presumably decreases the pH in cryptococcomas (Wright et al., 2002), thereby 

facilitating the activity of phospholipase B at the sites of cryptococcal infection 

(Evans et al., 2015; Sharon et al., 2000). Reduced pH in the environment around 

C. neoformans can also shield the pathogen from an immune attack, by either 

reducing the migration of neutrophils or increasing their necrosis (Hu et al., 2008; 

Wright et al., 2002). Lowering of pH also increases neutralization of free radicals 

and specifically decreases the formation of superoxide (Wright et al., 2002), thus 

limiting the ability of immune cells to use such chemicals to kill infecting 

cryptococci.  
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Four eukaryotic acetate production pathways in protists  

Acetate metabolism has been studied for many years in bacteria, but has 

received less attention in eukaryotic microbes even though acetate is a major 

metabolic end product (Wright et al., 2002; Bubb et al., 1999). Four different 

pathways for the production of acetate from acetyl-CoA have been identified in 

eukaryotic microbes (Tielens et al., 2010). In the first pathway, ADP-forming acetyl-

CoA synthetase is used in acetate production by amitochondriate protists (like 

Entamoeba histolytica and Giardia sp.) and some species of Archaea (Reeves et 

al., 1977; Mazet et al., 2013). Kinetoplastids and Trichomonas use the second 

pathway, in which acetate:succinate-CoA transferase is employed as the primary 

enzyme for acetate production (Mazet et al., 2013). The third pathway is the 

phosphotransacetylase-acetate kinase (Pta-Ack) pathway, which is required for 

interconversion of acetate and acetyl-CoA, and is found in green algae (such as 

Chlamydomonas) and Phytophthora (Atteia et al., 2006; Ingram-Smith et al., 

2006). In Chlamydomonas, two parallel Pta-Ack pathways have been identified, 

and upregulation of the mRNAs encoding the enzymes of these pathways (Ack1, 

Ack2, Pat1, and Pat2, with "Pat" used instead of "Pta" in Chlamydomonas) under 

dark, anaerobic conditions correlates with the production and excretion of acetate 

under these conditions (Yang et al., 2014; Mus et al., 2007). Based on both 

proteomics analyses (Atteia et al., 2006; Terashima et al., 2010) and localization 

studies, the enzymes of one of the two Chlamydomonas pathways, Pat1 and Ack2, 

are localized to the mitochondria, while those of the other pathway, Pat2 and Ack1, 
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are localized to the chloroplasts (Yang et al., 2014). Null ack1 and pat2 mutants 

are highly sensitive to anoxia (Yang et al., 2014), possibly indicating the 

importance of the Pta-Ack pathway to the production of ATP under fermentation 

conditions. In fact, the Ack-Pta pathway has been shown to be critical for 

Chlamydomonas survival under anoxia, although some acetate was still produced 

under anoxia in an ack1-ack2 double mutant, suggesting that other pathway(s) 

may also be used to produce acetate and ATP in Chlamydomonas (Yang et al., 

2014). In the fourth pathway, acetyl-CoA hydrolase is employed in peroxisomal 

acetate production, including in animals and in fungi like S. cerevisiae (Lee et al., 

1990; Tielens et al., 2010).  

Acetate production pathways in fungi 

In addition to the above peroxisomal acetate production pathway present in 

yeast, three cytoplasmic or mitochondrial acetate production pathways have been 

identified in fungi. The pathways employ 1) acetyl-CoA synthetase, 2) xylulose 5-

phosphate/fructose 6-phosphate phosphoketolase and acetate kinase, or 3) 

pyruvate decarboxylase and acetaldehyde dehydrogenase. 

Acetyl-CoA synthetase 

 Acetyl-CoA synthetase (Acs) has generally been considered to operate 

solely in the direction of acetyl-CoA formation, so enzymatic studies have largely 

ignored the enzymatic reaction in the acetate-forming direction. Acetylation of a 

conserved lysine in Acs enzymes from bacteria to mammals blocks acetyl-CoA 

formation during the first step of the reaction (Starai et al., 2002, Starai and 
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Escalante-Semerena, 2004; Gardner et al., 2006), and this acetylation is 

presumed to be a deliberate regulatory mechanism by which the enzymatic activity 

is directed. In Aspergillus nidulans, acetylation of the enzyme influences the 

directionality of the enzymatic reaction, such that unacetylated Acs works to 

synthesize acetyl-CoA, whereas acetylation of the enzyme favors synthesis of 

acetate (Takasaki et al., 2004). This acetylation of Acs occurs under anaerobic 

growth conditions in which the fungus both ferments ammonia and substantially 

increases acetate production (Takasaki et al., 2004). The site of acetylation has 

not yet been not identified, so whether this acetylation is at the conserved lysine 

residue discussed above or not is unknown. 

Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase-acetate 

kinase pathway 

 However, similar to other fungal species, and some bacterial species, C. 

neoformans may utilize alternate sources of acetate, apart from acetyl-CoA, and 

therefore alternative pathways. In lactic acid bacteria and in species of the genus 

Bifidobacterium, acetate kinase can make acetate from the acetyl phosphate 

produced by xylulose-5-phosphate/fructose-6-phosphate phosphoketolase 

(Xfp1/Xfp2) out of either xylulose-5-phosphate or fructose-6-phosphate (Meile et 

al., 2001), and homologous enzymes are present in C. neoformans (Ingram-Smith 

et al., 2006). Although it is missing in Saccharomyces cerevisiae  and 

Schizosaccharomyces pombe, an open reading frame (ORF) encoding Ack is 

present in euascomycete and basidiomycete fungi, (Ingram-Smith et al., 2006; 
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Papini et al., 2012). However, these fungi lack an ORF encoding Pta and instead 

express one or two XFP genes (XPF1/2), encoding xylulose 5-phosphate 

phosphoketolase  to convert xylulose 5-phosphate to acetyl phosphate and 

glyceraldehyde 3-phosphate  and/or fructose 6-phosphate phosphoketolase  to 

convert fructose 6-phosphate to acetyl phosphate and erythrose 4-phosphate 

(Jeffries, 1983; Ingram-Smith et al., 2006). This pathway appears to function in a 

manner similar to the modified pentose phosphate pathway (called the pentose 

phosphoketolase pathway) used by heterofermentative bacteria, as well as lactic 

acid bacteria and bifidobacteria, to produce ethanol, acetate, and lactate (Jeffries, 

1983; Meile et al., 2001; Kleijn et al., 2005; Papini et al., 2012). Therefore, in 

euascomycete and basidiomycete fungi, instead of partnering with Pta, Ack 

processes the acetyl-phosphate product of Xfp1/2 to acetate (Meile et al., 2001; 

Ingram-Smith et al., 2006), making ATP in the process. The existence of this 

pathway is supported by the fact that all fungi with an open reading frame encoding 

an acetate kinase also have at least one open reading frame encoding an Xfp 

enzyme, and in some cases, such as in C. neoformans, there are two, 

phylogenetically distinct Xfps, designated as Xfp1 and Xfp2 (Ingram-Smith et al., 

2006).  In fact, in Aspergillus nidulans, which has a single gene encoding an Xfp, 

the Xfp-Ack pathway is known to function in central carbon metabolism 

(Panagiotou et al.,2008), although Xfp is designated Phk in A. nidulans. Over-

expression of PHK increased growth on xylose, glycerol, and ethanol as carbon 

sources (Panagiotou et al.,2008). Similarly, Aspergillus niger has genes encoding 
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both Xfp1 and Xfp2, as well as encoding Ack (Poulsen et al., 2012). Likewise, the 

fungus Metarhizium anisopliae, an insect pathogen, has two XFP genes, encoding 

Xfp1 and Xfp2, and xfp2 mutants have reduced virulence (Duan et al., 2009). 

The S. pombe Xfp has not been specifically characterized, but the 

phosphoketolase has been recognized in proteomics analyses (Beltrao et  al., 

2009; Gunaratne et al., 2013; Meyer et al., 2014). Analysis of the S. pombe 

response to environmental stresses, such as oxidative and osmotic stresses, heat, 

alkylation, and heavy metal toxicity, found that the expression of mRNA encoding 

fructose-6-phosphate phosphoketolase (Xfp1) is increased as part of the core 

stress response (Chen et al., 2003α), and the level of this mRNA doubles during 

cell entry into the G0 quiescent state in response to limited nitrogen availability, 

relative to during normal growth (Marguerat et al.,2012). This indicates that the S. 

pombe XFP1 may serve an important role in the stress response; however, an S. 

pombe XFP1 deletion mutant is able to grow at temperatures between 25-32°C in 

YES medium enriched with glucose (Kim et al., 2010; Hayles et al., 2013), so Xfp1 

may not be necessary for growth under ideal circumstances. When fused via its C-

terminus to yellow fluorescent protein (YFP), S. pombe Xfp1 was found in both the 

nucleus and cytosol (Matsuyama et al.,2006). Additionally, it is phosphorylated at 

Ser454 (Beltrao et al., 2009), an amino acid that is conserved in other fungal Xfp1 

proteins but that is altered to glycine in both bacterial and fungal Xfp2 proteins, 

indicating that Xpf1 proteins may need to be phosphorylated to function, but Xfp2 

proteins may not (Kerry Smith, Ph.D., personal communication). 
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 As mentioned above, there are two ORFs for Xfp enzymes, XFP1 and XFP2 

in C. neoformans (Ingram-Smith et al., 2006). However, only Xfp2 has been 

biochemically characterized, and it has been found that the enzyme prefers 

xylulose-5-phosphate over fructose-6-phosphate as a substrate (Glenn et al., 

2014). C. neoformans Xfp2 utilizes divalent cation in its function, preferably Mg2+, 

but potentially Ca2+, Co2+, Mn2+, and Ni2+ instead (Glenn et al., 2014). It functions 

optimally in the 37-40°C temperature range (Glenn et al., 2014), indicating that it 

might be used after infection of a mammalian host. It requires a pH range of 4.5 to 

6.0 for optimal function, with a maximal activity at pH 5.5, and does not function 

well at a pH of 7.0 or above (Glenn et al., 2014). C. neoformans Xfp2 is subject to 

allosteric inhibition by ATP, phosphoenolpyruvate (PEP), and oxaloacetate (OAA), 

as well as positive allosteric regulation by AMP, positive cooperativity when bound 

at the active site by phosphoketose substrates, and negative cooperativity when 

bound at the active site by inorganic phosphate (Glenn et al., 2014). C. neoformans 

also expresses an Ack enzyme, for which the crystal structure has been 

determined (Thaker et al., 2013). 

Pyruvate decarboxylase – acetaldehyde dehydrogenase pathway 

 In S. cerevisiae, the primary biosynthetic pathway for cytosolic acetate 

production during growth on glucose is the pyruvate dehydrogenase bypass, which 

utilizes pyruvate decarboxylase (Saint-Prix et al., 2004; Remize et al., 2000; Pronk 

et al., 1996). Through this pathway, pyruvate is decarboxylated to form 

acetaldehyde, which is oxidized to acetate by acetaldehyde dehydrogenase in the 



50 
 

presence of NADP+ (Saint-Prix et al., 2004; Remize et al., 2000; Pronk et al., 

1996). Acetate produced by this pathway is then used for producing acetyl-CoA 

(Saint-Prix et al., 2004; Remize et al., 2000). Again, the homologues for these 

enzymes are present in C. neoformans (Hu et al., 2008). However, there are a 

number of C. neoformans aldehyde dehydrogenases, and which one participates 

in acetate production is not known. Therefore, a better understand of the function 

of each of the C. neoformans aldehyde dehydrogenases would advance the overall 

understanding of C. neoformans metabolism. Analysis of the C. neoformans 

pyruvate decarboxylase, including by comparison to the S. cerevisiae homologue, 

and determination of whether the C. neoformans pyruvate decarboxylase and 

acetaldehyde dehydrogenase function in a single pathway, would also inform 

possible treatment of cryptococcosis. 

Pyruvate decarboxylase (PDC)  

 Pyruvate decarboxylase, a tetrameric enzyme that requires Mg2+ and 

thiamine pyrophosphate as cofactors, catalyzes the decarboxylation of pyruvate to 

acetaldehyde and CO2 (Lohmann and Schuster, 1937; Schellenberger, 1967; 

Pronk et al., 1996). In S. cerevisiae, Pdc is a key player in the acetate production 

pathway (Saint-Prix et al., 2004; Remize et al., 2000) as the Xfp-Ack pathway is 

absent and is likely to be important for acetate production in C. neoformans (Hu et 

al., 2008). It might therefore be an important target for therapeutic reduction of 

fungal virulence in the treatment of cryptococcal meningitis.  
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 Pyruvate decarboxylase is a branch point in the choice of energy derivation 

pathway used in Saccharomyces (Agarwal et al., 2013; Møller et al., 2004), so an 

overview of Pdc deficient mutants and of structural and regulatory PDC genes in 

S. cerevisiae is called for and yields important information. Schmitt and 

Zimmermann (1982) isolated several S. cerevisiae point mutants with reduced Pdc 

activity and categorized them into two complementation groups, PDC1 and PDC2. 

The pdc-1 mutants have growth defects and are semi-dominant, i.e. the diploid 

organism produced by mating with the wild type strain has reduced pyruvate 

decarboxylase activity, but not to the extent of the haploid mutant (Schmitt and 

Zimmermann, 1982). One of these mutants, pdc1-8, completely fails to grow on 

glucose-containing medium (Schmitt and Zimmermann, 1982), indicating that S. 

cerevisiae requires pyruvate decarboxylase activity for normal growth. In contrast, 

the pdc-2 mutants have reduced enzyme activity as a recessive phenotype; diploid 

strains produced by mating with the wild type strain have normal growth (Schmitt 

and Zimmermann, 1982). The pdc-1, pdc-2 double mutants do not show any 

pyruvate decarboxylase activity and are unable to ferment glucose (Schmitt and 

Zimmermann, 1982).  

 Since the work of Schmitt and Zimmermann (1982), it has been discovered 

that there are actually six Pdc-encoding genes, PDC1 through PDC6, in 

Saccharomyces species (Seeboth et al., 1990; Kaiser et al., 1999; Agarwal et al., 

2013). However, under normal growth conditions, the enzyme encoded by the 

PDC1 gene is the main contributor of pyruvate decarboxylase activity in wild type 
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strains of fermenting yeast cells (Schmitt and Zimmermann, 1982; Schmitt et al., 

1983; Kellermann et al., 1986; Hohmann and Cederberg, 1990; Hohmann 1991a; 

Hohmann, 1993). Mutation of the PDC1 gene causes decreased growth because 

of over accumulation of pyruvate, which can slow down the production of energy 

by glucose breakdown in S. cerevisiae (Schmitt and Zimmermann, 1982). For 

example, the pdc1-8 point mutant exhibits excessive secretion of pyruvate and a 

redox imbalance in the cytosol (Van Maris et al., 2004) and, even though pyruvate 

decarboxylase is normally connected with a fermentation pathway, this S. 

cerevisiae mutant is unable to use glucose to grow under either respiratory or 

fermentative conditions (Schmitt et al., 1983).   

 Surprisingly, unlike with the abovementioned point mutants, a complete 

deletion mutant of the PDC1 gene (pdc10) generated by Seeboth et al. (1990) has 

no effect on the growth of S. cerevisiae on glucose-containing medium, since 60-

70% of pyruvate decarboxylase activity is still present. This remaining activity is 

the result of upregulation of expression of the PDC5 gene, which is 88% identical 

to PDC1, in response to the complete absence of PDC1 in these S. cerevisiae 

mutants (Seeboth et al., 1990; Agarwal et al., 2013; De Assis et al., 2013). It 

appears that Pdc5 is expressed at low levels when functional Pdc1 is present in 

wild type cells, and is expressed at a much higher level in null or deletion mutants 

than in point mutants of the PDC1 gene, suggesting that expression of PDC genes 

is autoregulated in S. cerevisiae based on the level of pyruvate decarboxylase 

activity already present in the cell (De Assis et al., 2013; Muller et al., 1999; 
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Eberhardt et al., 1999; Hohmann and Cederberg, 1990; Schaaff et al., 1989; Kaiser 

et al., 1999). However, even if Pdc5 and/or the other pyruvate decarboxylases are 

expressed in pdc1 null mutants, the rate of the reaction they catalyze appears to 

be one-fourth that of Pdc1, therefore allowing the level of pyruvate in the pdc1 null 

mutant to accumulate to over twice that of the wild type strain; yet, the rate of 

reaction appears to be high enough to produce enough acetaldehyde (and ethanol) 

to match the relatively low levels present in the wild type strain (Remize et al., 

2000). Because of this (or due to the production of acetate via another pathway) 

the acetate concentration in the pdc1 null mutant is about the same as that of the 

wild type strain (Remize et al., 2000).   

 Insertional mutagenesis of both PDC1 and PDC5 genes results in double-

mutant S. cerevisiae strains with essentially no detectable pyruvate decarboxylase 

activity, and a triple mutant that is also knocked out for PDC6 cannot grow for very 

long using glucose as the energy source (Flikweert et al., 1996). The S. cerevisiae 

PDC6 gene is weakly expressed and the function of the corresponding protein is 

not clear (Hohmann, 1991b; Kaiser et al., 1999), but sulfur limiting conditions and 

high sugar stress have been shown to induce ScPdc6 expression (Erasmus et al., 

2003; Fauchon et al.,2002). In summary, under normal growth conditions, Pdc1p 

appears to be the major pyruvate decarboxylase in S. cerevisiae and, when it 

cannot be expressed, the yeast prefers to use Pdc5p instead of Pdc6p unless the 

cells are under certain types of stress (De Assis et al., 2013; Muller et al., 1999; 
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Eberhardt et al., 1999; Hohmann and Cederberg, 1990; Schaaff et al., 1989; Kaiser 

et al., 1999). 

 Both PDC1 and PDC5 mRNA levels and the activity levels of the 

corresponding enzymes are dependent on the carbon source; low levels of PDC1 

and PDC5 mRNA are observed when S. cerevisiae is provided with ethanol as the 

carbon source, while the addition of glucose leads to rapid increase in the level of 

PDC1 mRNA (Hohmann and Cederberg, 1990; Schmitt et al., 1983). This is 

because of ethanol-repressed elements in the promoters of the PDC1 and PDC5 

genes that suppress the expression of the genes in the presence of ethanol 

(Liesen et al., 1996). Thus, while Pdc1 activity is regulated by glucose 

concentrations (Schmitt and Zimmermann, 1982), the transcription of PDC1 is 

regulated based on the presence or absence of ethanol (Liesen et al., 1996).  

 The regulation of transcription of PDC1 and PDC5 and the level of Pdc1p 

and/or Pdc5p enzyme activity also depends on the product of the PDC2 gene, 

which has an important but indirect role in pyruvate metabolism as a regulatory 

protein in S. cerevisiae (Hohmann, 1993; Kaiser et al., 1999). Transcription of the 

PDC5 gene, and high-level transcription of the PDC1 gene, requires the presence 

of Pdc2p, a transcriptional activator that is strongly expressed in fermenting yeast, 

and Pdc2p may be involved in the PDC1/PDC5 autoregulation in S. cerevisiae 

(Hohmann, 1993; Kaiser et al., 1999). A PDC2 deletion mutant and, to a lesser 

extent, a point mutant of the gene, both demonstrate significantly reduced pyruvate 

decarboxylase activity, and exhibit slow, oxygen-dependent growth on glucose 
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and accumulation of pyruvate, as expected of S. cerevisiae mutants that are 

unable to use fermentation and the pyruvate decarboxylase-dependent pyruvate 

dehydrogenase by-pass pathway (Hohmann, 1993). In short, although PDC2 does 

not encode an enzyme, Pdc2p is still important for pyruvate decarboxylase enzyme 

activity, and mutants with reduced Pdc2p levels are unable to grow on glucose 

because of their inability to properly express the PDC1 and PDC5 genes 

(Velmurugan et al., 1997).   

 PDC3 was identified by Wright et al., (1989) as the affected gene in the 

pdc1-30 mutant that complemented both, and was therefore not allelic to either, 

the pdc1 and pdc2 mutant groups identified by Schmitt and Zimmermann (1982). 

Like PDC2, PDC3 also encodes a regulatory subunit, based on the finding that, 

unlike PDC1 mRNA, the level of PDC3 mRNA does not change between glycolytic 

and gluconeogenic growth, indicating that PDC3 is not a structural gene (Wright et 

al., 1989).  Similarly, PDC4 also appears to encode a regulatory protein (Seeboth 

et al., 1990). Thus, while S. cerevisiae has six PDC genes, Pdc2p, Pdc3p, and 

Pdc4p regulate the expression and/or activity of Pdc1p, Pdc5p, and Pdc6p, the 

three pyruvate decarboxylase enzymes.   

 Unlike S. cerevisiae, there is only one known PDC gene in C. neoformans, 

which was found to be expressed abundantly at both 25°C and 37°C, i.e. room and 

mammalian body temperatures (Steen et al., 2002). This implies that there may be 

a role for this enzyme in the thermotolerance. A transcriptomic analysis of C. 

neoformans isolated from the lungs of infected mice showed an elevated 
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expression of the PDC transcript, along with the transcripts of other genes 

putatively involved in acetate formation (Hu et al., 2008). Pdc was identified among 

the proteins present in the extracellular vesicles produced by C. neoformans 

(Rodrigues et al., 2008b). 

Aldehyde dehydrogenases (ALDs) 

 Organic compounds like aldehydes are present ubiquitously in nature; even 

low level accumulation of many of these aldehydes causes toxicity and thus, it is 

important to regulate their levels in the cells (Perozich et al., 1999). The aldehyde 

dehydrogenase (Aldh) superfamily constitutes a class of enzymes that catalyzes 

the oxidation of aldehydes to their corresponding carboxylic acids, which are less 

toxic to the cells (Perozich et al., 1999). This superfamily is highly conserved 

throughout Eubacteria, Archaea, and Eukarya, which suggests an important role 

of this enzyme throughout evolutionary history (Perozich et al., 1999). In 

eukaryotes, there are close to twenty families of aldehyde dehydrogenase (Aldh or 

Ald) enzymes (Sophos and Vasiliou, 2003). In recent years, a great deal more 

information regarding gene and protein sequences of a large number ALDH genes 

(also referred to as ALD genes) has been made available than has been previously 

analyzed. For example, in 2002 alone, 555 ALD gene sequences were reported, 

including 32 sequences from Archaea, 351 from Eubacteria, and 172 from Eukarya 

(Sophos and Vasiliou, 2003). 

 The large variety of Aldhs take part in a wide range of different physiological 

processes and exhibit specificity for various substrates. Some Aldhs act on only a 
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few specific substrates, while others have a broader specificity, yet most Aldhs 

require the presence of NAD+ or NADP+ as a cofactor in order to function (Lindahl, 

1992; Yoshida et al., 1998). Although most Aldh family members protect the cell 

by keeping in check the levels of harmful aldehydes, they also demonstrate 

enzymatic functionality beyond detoxification. For example, Aldhs are important for 

the synthesis of important biomolecules like retinoic acid, betaine, and folate 

(Marchitti et al., 2008; Vasiliou et al., 2000; Sobreira et al., 2011). Aldhs also 

modulate cell proliferation, differentiation, and cell survival, mainly by participating 

in retinoic acid synthesis (Marchitti et al., 2008). Some of the members of the 

superfamily also exhibit roles independent of their enzymatic activity, including 

acting as crystallins and absorbing ultraviolet irradiation in the cornea and binding 

to hormones and other small molecules including androgens, cholesterol, thyroid 

hormone, and acetaminophen (Pereira et al., 1991; Marchitti et al., 2008; Estey et 

al., 2007). ALDH activity is important for cellular function, and enzyme deficiency 

in humans leads to diseases and medical conditions such as cataracts (ALDH1A1, 

ALDH3A1, ALDH18A1), seizures (ALDH7A1), hyperprolinaemia (ALDH4A1), 

heart disease (ALDH2), alcohol sensitivity (ALDH1A1, ALDH1B1, ALDH2) and 

some cancers (ALDH2) (Marchitti et al., 2008).  

Aldehyde dehydrogenase in fungi 

 Fungi are continually exposed to different stresses during their growth; in 

particular, the metabolic products ethanol and acetaldehyde can accumulate to 

toxic levels (Ingram and Buttke, 1985; Jones, 1990). In order to convert these and 
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other aldehyde toxic by-products to less harmful chemicals, yeast employ 

dedicated enzymatic pathways that involve one or more of the aldehyde 

dehydrogenases (Marchitti et al., 2008; Vasiliou and Nebert, 2005; Black et al., 

2009; Sládek, 2003). For example, via pathways utilizing acetaldehyde 

dehydrogenase, acetaldehyde derived from pyruvate, ethanol, or other sources is 

oxidized to form acetate (Pritchard and Kell, 2002; Saint-Prix et al., 2004). Just like 

C. neoformans, S. cerevisiae also has multiple aldehyde dehydrogenases, but, in 

the latter species, the role of each of the enzymes in a number of both distinct and 

overlapping metabolic pathways on a number of aldehyde substrates, including 

acetaldehyde, has been thoroughly investigated (Aranda and del Olmo, 2003; 

Saint-Prix, et al., 2004). In S. cerevisiae, Ald6p, Ald2p, and Ald3p are cytosolic 

aldehyde dehydrogenases, while Ald4p and Ald5p are mitochondrial (Aranda and 

del Olmo, 2003; Meaden et al., 1997; Saint-Prix et al., 2004). The cytosolic 

enzymes are activated by Mg2+, use NADP+ as a coenzyme, and are expressed 

independent of the level of glucose (Aranda and del Olmo, 2003; Meaden et al., 

1997). In contrast, the mitochondrial enzymes are activated by K+ and thiols and 

use NAD+ or NADP+ as coenzymes, and their expression is suppressed in the 

presence of glucose (Aranda and del Olmo, 2003). Functionally, the cytosolic 

enzymes form acetate (from acetaldehyde) as a final product of anaerobic glucose 

metabolism, whereas the mitochondrial enzymes are employed when S. 

cerevisiae needs to utilize ethanol as the carbon source (Aranda and del Olmo, 

2003). Nevertheless, the mitochondrial enzymes can play an important role in 
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acetate production in S. cerevisiae; studies on aldehyde dehydrogenase mutants 

suggest that cytosolic and mitochondrial enzymes can compensate for each other 

(Aranda and del Olmo, 2003).  

 Similarly, the S. cerevisiae enzyme encoded by ALD6, a homologue of at 

least one Ald in C. neoformans, plays an important role in the formation of acetate, 

as demonstrated by Meaden et al. (1997), and Ald6p may function as the major 

cytosolic acetaldehyde dehydrogenase. This is supported by Remize et al. (2000), 

who found that S. cerevisiae cells lacking Ald6p display abnormal growth and 

reduced acetate production when undergoing fermentation. In agreement with 

these other two groups, Saint-Prix et al. (2004) analyzed the growth and acetate 

production of several single-deletion and multiple-deletion ald mutants in two S. 

cerevisiae strain backgrounds, and found that both Ald6p and Ald5p play an 

important role in acetate production during fermentation. Deletion of either ALD5 

or ALD6 reduces acetate production significantly during anaerobic growth (Saint-

Prix et al., 2004).  Although this result was in contrast to a study by Wang et al., 

(1998), Saint-Prix et al., (2004) concluded that Ald5p is required for full acetate 

production, based on a decrease in acetate production by 22-26% in yeast deleted 

for ALD5, and based on the observation that the levels of ALD5 mRNA are 

upregulated in the exponential growth phase and during fermentation (Saint-Prix 

et al., 2004). 

 Another S. cerevisiae aldehyde dehydrogenase, Ald4p, localized in the 

mitochondria, is not considered to be primarily involved in acetate formation 
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(Aranda and del Olmo, 2003; Meaden et al., 1997; Saint-Prix et al., 2004; Remize 

et al., 2000). ALD4 expression starts only in the late exponential phase of 

fermentation, and deletion of ALD4 does not affect the acetate levels in at least 

two S. cerevisiae strain backgrounds (Saint-Prix et al., 2004). However, it is 

possible that the activity of Ald4p is dependent on the level of glucose present and 

on genetic background (Saint-Prix et al., 2004). Furthermore, it appears that Ald4p 

plays a minor role in acetaldehyde metabolism and is partly able to compensate 

for Ald6p, since the ald6, ald4 double mutant has a reduced growth rate, and 

exhibits reduced acetate production, relative to either single mutant (Saint-Prix et 

al., 2004; Remize et al., 2000). Furthermore, the ald6 mutant yeast appears to use 

the partial redundancy between Ald4p and Ald6p to its advantage; Ald4p levels, 

and even ALD4 mRNA levels, are increased in this mutant, and ALD4 expression 

begins earlier than in wild type yeast, to allow the mutant to survive by 

compensating for the loss of Ald6p with increased levels and possible 

accumulation of Ald4p (Saint-Prix et al., 2004).  

 Similar to the limited acetaldehyde dehydrogenase function of the 

mitochondrial Ald4p, and unlike the confirmed role of cytosolic Ald6p, whether the 

other two cytosolic aldehyde dehydrogenases, Ald2p and Ald3p, are actually 

acetaldehyde dehydrogenases is uncertain, and the evidence indicates that they 

are not involved in acetate production in S. cerevisiae (Navarro-Aviño et al., 1999; 

Saint-Prix et al., 2004). Double mutants of the two genes have lower growth rates 

on ethanol (Navarro-Aviño et al., 1999), but Ald2p and Ald3p may function primarily 
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in redox metabolism under stress, particularly under osmotic stress but also in 

glucose depletion, heat shock, and oxidative stress (Navarro-Aviño et al., 1999; 

Blomberg and Adler, 1989). In fact, Saint-Prix et al. (2004) suggests that Ald2p 

and Ald3p are not involved in the acetate production pathway at all, since the ald2, 

ald3, ald4, ald6 quadruple mutant phenotype is no different than that of the ald4, 

ald6 double mutant, and a mutant that is null for ALD2, ALD3, ALD4, ALD5, and 

ALD6 has a similar phenotype to that of the ald4, ald5, ald6 triple mutant. 

 Given the number and possible functional overlap of aldehyde 

dehydrogenases in S. cerevisiae, the regulation of expression of each of the genes 

is also important. Although which of the specific S. cerevisiae ALD genes is 

expressed under various growth conditions, and which of the corresponding 

enzymes are active, can depend on both environmental conditions and genetic 

background, one environmental condition of interest is the ethanol and 

acetaldehyde stress faced by S. cerevisiae specifically during the fermentation and 

biological ageing of wine (Aranda and del Olmo, 2003). In order to determine the 

effect of these stress conditions on aldehyde dehydrogenase activity, Aranda and 

del Olmo (2003) studied the differential ALD gene expression and the 

corresponding enzymatic activities in fermentative and flor yeast strains, the latter 

of which are industrial strains responsible for the biological aging of sherry wines, 

when these two types of yeast were grown in media with and without acetaldehyde. 

Previously, Aranda et al. (2002) had demonstrated that aldehyde stress can 

modulate transcription of heat shock protein genes, which may, in turn, regulate 
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the stability of other proteins. Aranda and del Olmo (2003) determined that 

acetaldehyde stress can also affect the expression of aldehyde dehydrogenase 

genes directly, although the effect of aldehyde stress on the transcription of ALD 

genes is also determined by the genetic background of the yeast strain, the carbon 

source available for yeast growth, and the gene itself. In particular, when 

acetaldehyde is added to glucose-rich media, yeast generally decrease expression 

of ALD6. However, if yeast are grown in ethanol-rich media, acetaldehyde stress 

increases ALD6 mRNA levels well above that of the normally low ALD6 expression 

in ethanol without acetaldehyde (Aranda and del Olmo, 2003). Conversely, in flor 

yeast grown in glucose media, supplementation with acetaldehyde increases 

ALD2 and ALD3 mRNA levels from the normally low level of expression in glucose 

media only, while the mRNA levels decrease in ethanol upon addition of 

acetaldehyde (Aranda and del Olmo, 2003). Likewise, ALD2 and ALD3 expression 

is increased with growth in ethanol versus with growth in glucose, while ALD6 

expression is the opposite (Aranda and del Olmo, 2003). Thus, the expression 

patterns of ALD2 and ALD3 are essentially inverted to those of ALD6, even though 

all three genes encode cytosolic aldehyde dehydrogenases, possibly indicative of 

the relative roles of the corresponding enzymes in the acetate production (or 

acetaldehyde degradation) pathway. Similar functional compensation between 

aldehyde dehydrogenases, such as between Ald6p, Ald5p, and, under certain 

conditions, Ald4p, in S. cerevisiae, as well as expression regulation of the 



63 
 

corresponding genes, may also apply to the C. neoformans aldehyde 

dehydrogenases. 

 Aldehyde dehydrogenase pathways are of significance in C. neoformans 

since acetate production is tightly correlated with the virulence of this pathogen 

(Hu et al., 2008). ALD transcripts were found to be upregulated in the fungus during 

the onset of pulmonary infection in mice and cryptococcal meningitis in rabbits (Hu 

et al., 2008; Steen et al., 2003). ALD gene expression, in particular the expression 

of ALD5, was also increased in C. neoformans (var grubii) following engulfment by 

macrophages (Derengowski et al., 2013), even though expression of Pdc, which 

produces acetaldehyde, was decreased (Derengowski et al., 2013). Thus, 

elucidation of the function of the various aldehyde dehydrogenases, and of which 

ones, if any, work with C. neoformans pyruvate dehydrogenase to produce 

acetate, may reveal whether or not these enzymes can be targeted in order to treat 

potentially lethal cryptococcal meningitis. 

Summary and Study Objective 

 Cryptococcus neoformans, the most frequent cause of fungal meningitis, is 

a huge threat to immunocompromised patients (Loftus et al., 2005; Sorrell, 2001; 

Litvintseva et al., 2011; Chayakulkeeree and Perfect, 2008; Park et al., 2009; 

Rajasingham et al., 2017; Limper et al., 2017; Brown et al., 2012). The pathogen 

enters the respiratory system upon inhalation and the spores can pass through the 

lungs to the alveoli to establish a successful pulmonary infection (Taylor-Smith, 

2017; Sabiiti and May, 2012). From there it can disseminate to other organs like 
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the brain, and can cause meningoencephalitis or other lethal conditions, especially 

if combined with immunosuppression such as occurs in HIV-infected patients (Liu 

et al., 2009; Jarvis and Harrison, 2007; Hernandez, 1989; Sabesin et al., 1963; 

Goldman et al., 1994; Chrétien et al., 2002; Sabiiti and May, 2012; Park et al., 

2009; Rajasingham et al., 2017; Limper et al., 2017). The death toll is larger in 

parts of the world where efficient medical treatment is not available or where the 

HIV pandemic rate is higher (Mitchell and Perfect, 1995; Park et al., 2009; 

Rajasingham al., 2017; Brown et al., 2012; McQuiston and Williamson, 2012; 

Kaplan et al., 2000; Mirza et al., 2003; Warnock, 2006; Pyrgos et al., 2013). 

Therefore, C. neoformans infection is a serious issue regarding the health of 

immunocompromised individuals in a large part of the world.  

 Once within the host, C. neoformans can counter attack by multiple 

components the cell mediated immune system; it can even survive within engulfing 

macrophages after being phagocytosed and manipulate the macrophages or the 

other aspects of cellular immunity to spread throughout the host (Sabiiti and May, 

2012; Noverr et al., 2003; Shoham and Levitz, 2005; Voelz and May, 2010; 

Okagaki et al., 2010; Zaragoza et al., 2010; Okagaki and Nielsen, 2012; May et 

al., 2016; Levitz and Tabuni, 1991; Xie et al., 2012; Geunes-Boyer et al., 2012; 

Schelenz et al., 1995; Van de Wetering et al., 2004; Feldmesser et al., 2001; Nicola 

et al., 2011; Alvarez and Casadevall, 2006; Charlier et al., 2005, 2009). Such 

robust survival is mostly attributed to various virulence factors, including the ability 

to grow at human physiological temperature, the production of capsule and 
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melanin, resistance to hypoxia and to oxidative and nitrosative stress, and the use 

of many degradative enzymes (Coelho et al., 2014; Casadevall et al., 2000; 

Kronstad et al., 2011; Ma and May, 2009; Cox et al., 2001, 2003; Chrisman et al., 

2011; Ganendren et al., 2006; Sabiiti and May, 2012; Noverr et al., 2002, 2003; 

Ingavale et al., 2008; Missall et al., 2004a, 2004b, 2006; Giles et al., 2005b, 2006; 

Santangelo et al., 2004; Maruvada et al., 2012; Feldmesser et al., 2000; Chen et 

al., 1997a,b; Chayakulkeeree et al., 2008; Goldman et al., 1994). The pathogen 

also produces a variety of metabolites that confer survival advantages, as well as 

create a suitable microenvironment for the fungi, such as mannitol, trehalose, 

ethanol, and acetate (Bubb et al., 1999; Wright et al., 2002; Chen and Haddad, 

2004; Gancedo and Flores, 2004; Perfect, 2005; Wong et al., 1990; Chaturvedi et 

al., 1996a; Guimarães et al., 2010; Steen et al., 2003; Himmelreich et al., 2001, 

2003; Hu et al., 2008).  

 As a metabolite, acetate could play a crucial role in the survival of C. 

neoformans under anaerobic conditions, including the potential use as a source of 

carbon and/or energy in a glucose deficient environment (Price et al., 2011; Hu et 

al., 2008; Kronstad et al., 2012). Acetate can also be used by Cryptococcus to 

change the local environmental pH to increase the efficiency of fungal enzymes 

that act as virulence factors while decreasing the effectiveness of the immune 

response to infection, as well as to neutralize reactive oxygen and nitrogen species 

used by the immune system to destroy the pathogen (Hu et al., 2008; Wright et al., 

2002). This might explain the findings that acetate is one of the major metabolites 
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secreted by C. neoformans, both when this pathogen is grown as an in vitro culture 

(Bubb et al., 1999) and when the cryptococci are localized in pulmonary 

cryptococcomas following infection (Himmelreich et al., 2001). Two possible 

pathways have been identified for the production of acetate in Cryptococcus: the 

Xfp1/2 – Ack pathway that produces acetate from D-xylulose 5-phosphate or D-

fructose 6-phosphate and the Pdc-Ald pathway to produce acetate from pyruvate. 

Surprisingly, relatively little attention has been given to uncovering the precise 

metabolic pathway for the production of acetate and to revealing its role in the 

virulence of this pathogen. Given that it might be possible to treat cryptococcal 

meningitis or general cryptococcal infection by inhibiting the corresponding 

enzymes in order to save lives, it would be especially unfortunate this avenue 

remains unexplored. Therefore, even gaining a better understanding of the 

enzymes in one or more of the putative acetate production pathways could be 

highly useful. 

 In S. cerevisiae which lacks the Xfp-Ack pathway (Ingram-Smith et al., 

2006), the pathway for acetate synthesis is the pyruvate dehydrogenase bypass 

(Saint-Prix et al., 2004; Remize et al., 2000), which appears to depend on either 

cytosolic or mitochondrial acetaldehyde dehydrogenases. The enzyme encoded 

by ALD6 is the primary cytosolic aldehyde dehydrogenase in S. cerevisiae, and 

mutants of this gene produce reduced levels of acetate and exhibit growth defects 

(Remize et al., 2000; Saint-Prix et al., 2004). The mitochondrial aldehyde 

dehydrogenase encoded by ALD5 is upregulated in S. cerevisiae during 
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fermentation, and ald5 mutants produce reduced acetate levels (Saint-Prix et al., 

2004). Similarly, C. neoformans PDC and ALD genes, especially ALD5, are 

upregulated in the fungal cells recovered from the lungs of infected mice (Hu et al., 

2008). Together, these findings support a pathway involving the use of Ald and 

Pdc enzymes in the production of acetate by C. neoformans that is highly 

advantageous, if not absolutely necessary, for the growth of the pathogenic fungus 

inside a human host. The possible contribution of Ald and Pdc enzymes in the 

survival, growth, and virulence of C. neoformans under physiological conditions 

was investigated, and the functional family of C. neoformans aldehyde 

dehydrogenases was studied, as described herein. 
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Figure 1.1: Global burden of HIV-related cryptococcal meningitis in 2017. The 

estimated yearly cases of meningitis caused by cryptococcal infection in HIV 

patients in various geographical regions across the world are shown. Sub-Saharan 

Africa has the highest number of occurrences per year. Data adapted from 

Rajasingham et al., Lancet Infectious Diseases 2017. 
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Figure 1.2: Cryptococcal infection is the fourth leading cause of death, 

excluding HIV, in Sub-Saharan Africa. Deaths due to cryptococcal infection are 

more prevalent than those due to tuberculosis, but less prevalent than those due 

to malaria. Image adapted from Park et al., AIDS 2009. 
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Figure 1.3: Cryptococcus neoformans pathogenesis cycle. After spores or 

dry cryptococcal cells are inhaled, they reach the alveoli in the lungs via 

mucocilliary movement. Activated alveolar macrophages attempt to 

phagocytose and kill the fungal cells, but C. neoformans can survive due to 

antiphagocytic functions and other protective properties of the fungal capsule 

(Sabiiti and May, 2012; ). a) Upon immuno-suppression of the host, latent 

cryptococci in granulomas or inside parasitized macrophages are reactivated 

and can enter the systemic circulation by lytically or non-lytically exiting the 

macrophages, resulting in fungemia, or reside, replicate, and ride inside the 

macrophages (Sabiiti and May, 2012). Alternatively, C. neoformans can form 

large "titan cells" that resist phagocytosis and thereby enter the systemic 
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circulation directly (Sabiiti and May, 2012). b) Once it moves through the 

circulation to the capillaries of the blood brain barrier (BBB), the fungal cell gets 

through the BBB via any one of three mechanisms: i) Paracytosis: entry 

between endothelial cells, enhanced by damage to tight junctions (facilitated by 

activation of host plasminogen by fungal mannoproteins); ii) Transcytosis: 

adherence to brain microvascular endothelial cells, followed by endocytosis and 

then exocytosis on the other side of the cell; or iii) Trojan horse: riding in 

parasitized immune cells such as macrophages (Sabiiti and May, 2012) that can 

force their way through tight junctions. Image adapted from May et al., 2016, 

with permission. 
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Abstract 

 
Cryptococcus neoformans is a fungal pathogen that quickly senses changes in the 

host environment and adapts to it by producing a range of metabolites important 

for optimizing the pH of the host environment, evading the host immune system, 

use as carbon sources, or other purposes. One of the major metabolites found in 

biopsies of infected mouse brain and lung tissues, and secreted in vitro, is acetate. 

Herein, aldehyde dehydrogenases, previously identified in S. cerevisiae as 

important in acetate production, are characterized in terms of their role in the 

pathogenesis and stress survival response of C. neoformans. Comparison of the 

nine different aldehyde dehydrogenases (Alds) of C. neoformans with putative 

homologues suggested that they may have diverse functions. Subsequent 

analysis of knockouts of eight of the nine ALD, revealed interesting deficiency-

associated phenotypes. All of the mutants displayed a statistically significant but 

incomplete reduction in acetate production, but only three mutants, CNAG_06628 

(ald5Δ), CNAG_05113 (designated ald13Δ), and CNAG_03269 (designated 
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ald69Δ), displayed growth defects when cultured on media containing different 

carbon sources. The ald5Δ mutant failed to grow on ethanol-containing media 

suggesting that it might encode an acetaldehyde dehydrogenase. The ald13Δ 

mutant produced small colonies on acetate and ethanol but grew normally on 

glucose. Conversely, the ald69Δ mutant failed to grow on glucose but grew 

normally on acetate or ethanol, likely reflecting distinct roles for the corresponding 

enzymes in the use of different carbon sources. With regard to virulence factors, 

none of the mutants produced a capsule of normal thickness. Only the ald69Δ 

mutant showed a reduced level of melanin, whereas the ald5Δ mutant exhibited 

increased melanization. The deficiency of certain aldehyde dehydrogenases 

negatively impacted various stress responses, with the exception of a normal 

response to osmotic stress. The ald29Δ mutant had reduced growth under 

hypoxia-mimicking conditions, but, notably, was rescued with acetate. The ald69Δ 

mutant could not maintain cell wall integrity nor survive under oxidative stress, and 

demonstrated partial inhibition of the adenine biosynthesis pathway under 

nitrosative stress. The observed abnormal phenotypes apparently affected in vitro 

virulence, since the ald5Δ, ald29Δ, and ald69Δ mutants had a statistically 

significant reduction, as did the ald78Δ and ald13Δ mutants, but to a lesser extent, 

in survival after engulfment by murine macrophages. Similarly, Galleria mellonela 

larvae, an in vivo infection model, injected with ald5Δ or ald78Δ mutant C. 

neoformans (but not those injected with the ald13Δ strain) survived longer than 

those injected with the wild type strain, indicating that the ald5Δ and ald78Δ 
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mutants were significantly less virulent. Overall, these genetic and biochemical 

assays establish the roles of different Ald enzymes in modulating the stress 

response and virulence of C. neoformans.   
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Introduction 
 

Cryptococcus neoformans is an invasive opportunistic pathogen of the 

central nervous system (CNS) and the most frequent cause of fungal meningitis in 

humans (Lin and Heitman, 2006), leading to significant annual global mortality, 

especially in sub-Saharan Africa (Park et al., 2009, Pappas, 2001; Lui et al., 2006; 

Franzot et al., 1999; Dromer et al., 1996; Tortorano et al., 1997; Powderly, 1993; 

Jarvis and Harrison, 2007; Kisenge et al., 2007). This fungus mainly affects 

immunosuppressed individuals (Hull and Heitman, 2002), especially HIV/AIDS 

patients and solid-organ transplant recipients, with a reported mortality of up to 

82% (Abhilash et al., 2015; Park et al., 2009). The source of C. neoformans 

infections are desiccated yeast cells or spores, which are found in the environment 

after deposition or aerosolization of bird guano as well as in decomposing organic 

material and in the soil (Steenbergen and Casadevall, 2003; Velagapudi et al., 

2009). These desiccated cells or fungal spores are inhaled by mammalian hosts 

and pass into the lungs, leading to an initial pulmonary infection which often 

disseminates to the brain, causing a potentially lethal meningoencephalitis (Sabiiti 

and May, 2012; Velagapudi et al., 2009). There are a number of virulence factors 

that allow the pathogen to survive and spread in the host body, including 

production of a polysaccharide capsule and melanin (or a melanin-like pigment) 

and the ability to grow at the 37°C host body temperature (Coelho et al., 2014; 

Casadevall et al., 2000; Kronstad et al., 2011; Ma and May, 2009). One of the 

other mechanisms C. neoformans utilizes to propagate and disseminate inside the 
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host body, in which the availability of glucose can vary, is to adapt to utilization of 

different carbon sources to obtain energy (Price et al., 2011). C. neoformans can 

utilize glucose or ethanol inside the host to produce energy, and it can also use 

acetate for a similar purpose (Hu et al., 2008; Price et al., 2011). C. neoformans 

also adapts metabolically to the environment inside the mammalian host to infect, 

survive, spread, and cause disease. In particular, the pathogen produces a range 

of metabolites including acetate (Figure 2.1) that confer survival advantages by 

creating an optimal microenvironment for itself (Bubb et al., 1999; Wright et al., 

2002; Hu et al., 2008; Price et al., 2011; Himmelreich et al., 2001; Kronstad et al., 

2012). 

 Acetate is one of the major metabolites secreted by cryptococci cultured in 

vitro (Bubb et al., 1999). Acetate has also been found to be a major metabolite 

associated with infection, based on analyses of brain and lung tissue biopsies from 

infected rats (Wright et al., 2002; Himmelreich et al., 2003). Furthermore, 

substantial amounts of acetate have been detected from pulmonary 

cryptococcomas, using nuclear magnetic resonance (NMR) (Himmelreich et al., 

2001). Although the role of acetate in virulence has not yet been fully elucidated, 

there is much evidence that it augments fungal survival, perhaps via 

immunomodulatory mechanisms (Rakesh et al., 2008; Vecchiarelli et al., 2011; Hu 

et al., 2008; Ellerbroek et al., 2004a, b, c; Li et al., 2018; Siegemund and Alber, 

2008; Villena et al., 2008; Yauch et al., 2006). 
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 Two putative pathways for the production of acetate in C. neoformans have 

been identified: the xylulose 5-phosphate/fructose 6-phosphate phosphoketolase 

(Xfp) – acetate kinase (Ack) pathway and the pyruvate decarboxylase (Pdc) – 

acetaldehyde dehydrogenase (Ald) pathway. In fungi that lack the Xfp – Ack 

pathway such as Saccharomyces cerevisiae, the primary pathway makes use of 

pyruvate decarboxylase (Pdc) and an acetaldehyde dehydrogenase function of 

one or more of the aldehyde dehydrogenase (Ald) enzymes (Saint-Prix et al., 2004; 

Remize et al., 2000; Pronk et al., 1996).  

 We have identified nine C. neoformans aldehyde dehydrogenases, but 

which, if any, participate in acetate production is not known. The expression of the 

transcript encoding one of these aldehyde dehydrogenases (ALD5) is increased in 

C. neoformans obtained from the lungs of infected mice, as is the expression of 

mRNAs encoding other enzymes (i.e. pyruvate decarboxlyase and acetyl-CoA 

synthetase) believed to function in acetate metabolism in this pathogen (Hu et al., 

2008). An mRNA encoding a C. neoformans aldehyde dehydrogenase was also 

found to be upregulated in a rabbit infection model (Steen et al., 2003).  Similarly, 

various other studies using nuclear magnetic resonance (NMR) analysis have 

reported high levels of acetate in the media from C. neoformans culture and from 

infected-tissues  (Bubb et al., 1999; Himmelreich et al., 2003). Thus, it is likely that 

at least one C. neoformans Ald is an acetaldehyde dehydrogenase that may plays 

a role in cryptococcal virulence. A thorough characterization of these nine putative 

aldehyde dehydrogenases has not yet been reported, and the exact role of each 
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aldehyde dehydrogenase in cryptococcal virulence needs to be fully elucidated. A 

better understanding of the function of each of the C. neoformans aldehyde 

dehydrogenases would advance the overall understanding of C. neoformans 

metabolism. 

For eight out of the nine Ald genes, knockout mutants were available from 

the Madhani laboratory (UCSF) through the Fungal Genetics Stock Center (Chun 

and Madhani, 2010). In order to determine which, if any, of these genes are 

important in C. neoformans pathogenesis, the mutants were assayed for 

phenotypes associated with virulence, including growth on different carbon/energy 

sources, survival and growth under various stress conditions (i.e. osmotic stress, 

oxidative and nitrosative stresses, and hypoxia), and maintenance of cell wall 

integrity. The effect of the loss of each Ald on the avoidance of, or survival after, 

phagocytosis by immune cells was also assayed, as was in vivo virulence using 

an invertebrate infection model. The effect of deficiency of each of the aldehyde 

dehydrogenases on these phenotypes was correlated with the effect on acetate 

production by the corresponding mutant, which was also assayed. Overall, this 

study demonstrated that deficiency of at least some of the aldehyde 

dehydrogenases negatively impacts the production of acetate and the survival and 

growth of C. neoformans in vitro and  in vivo. 
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Materials and methods 

Fungal Strains: 

A wild type strain in the KN99a background was used as the control in all 

experiments unless specified otherwise. All eight ald mutant strains of 

Cryptococcus neoformans var grubii (in a KN99a strain background) were 

obtained from the Madhani lab University of California San Francisco (UCSF) gene 

deletion collection (via the Fungal Genetics Stock Center). These single knockout 

mutants were maintained under selection for nourseothricin (NTC) resistance, 

since a nourseothricin acetyltransferase cassette (NAT, which encodes an enzyme 

that neutralizes NTC) was used to replace each gene by insertional mutagenesis 

mediated by homologous recombination (Chun and Madhani, 2010). Table 2.1 

shows the gene identification numbers of all of the strains (and corresponding gene 

and protein identification numbers) used in this study, the predicted mitochondrial 

or cytoplasmic cellular location of each protein (determined using the MitoFates 

website; Fukasawa et al., 2015), as well as the chromosomal location of each 

corresponding gene (obtained from the Fungi Database, 

https://fungidb.org/fungidb/).  

Phylogenetic tree: 

 The amino acid sequences of 43 proteins including of the C. neoformans 

aldehyde dehydrogenases and putative homologs in other species were 

downloaded from the FungiDB website (http://fungidb.org/fungidb/srt.jsp). 

Alignment and phylogeny reconstruction were performed using Molecular 
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Evolutionary Genetics Analysis (MEGA X) software (Kumar et al., 2001). First, 

alignment was carried out with Clustal W software (Thompson et al., 1994). Then, 

aligned sequences were used to construct a Maximum Likelihood (ML) tree, under 

an assumption of a uniform rate of substitution among all amino acid sites, using 

the Jones-Taylor-Thornton model (Jones et al., 1992), with 1000 bootstrap 

replicates (Felsenstein, 1985) to verify the reliability of the tree. The initial tree was 

constructed using both Neighbor Joining (NJ) and BioNJ algorithms and optimized 

via the Nearest Neighbor Interchange (NNI) version of the ML heuristic method 

with a "moderate" branch swap filter setting.  

Confirmation of deletion of the corresponding gene in each aldehyde 

dehydrogenase mutant by PCR analysis: 

Deletion of the aldehyde dehydrogenase genes was confirmed by PCR 

analysis using primers specific to each gene (Table 2.2) and assessing the 

absence of PCR product. Since all of the ald mutant strains at UCSF were 

generated in the Madhani lab by replacing the corresponding gene with the NAT 

gene conferring resistance to the nourseothricin (NTC) antibiotic (Chun and 

Madhani, 2010), the presence of NAT was also verified using primers synthesized 

based on sequences obtained from the Madhani lab, as follows: 

NAT Forward primer (107): CCTAGCAGCGGATCCAAC 

NAT Reverse primer (108): CGCATCCCTGCATCCAAC  

 DNA was isolated from all the strains using the cetyl/hexadecyl-

trimethylammonium bromide (CTAB) DNA isolation protocol (Pitkin et at, 1996). 
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Gene amplification was performed using the KOD Hot Start DNA Polymerase kit 

(Novagen/Millipore-Sigma, St. Louis, MO) with a thermocycler program as follows 

for the ALD genes: initial denaturation at 95°C for 2 min, followed by 35 cycles of 

denaturation at 94°C for 30 sec., annealing at 60°C for 30 sec., and extension at 

72°C for 2 min., followed by final extension at 72°C for 5 minutes. The thermocycler 

program utilized to amplify NAT differed only in that 30 cycles were used and the 

annealing temperature was set to 55°C. 

Quantitative and qualitative growth analysis in various carbon sources: 

 C. neoformans strains mentioned above were cultured overnight in Yeast 

Extract Peptone Dextrose (YPD) media (1% Difco Yeast extract, 2% Bacto 

Peptone, and 2% glucose) at 30°C, in a rotating shaker at 200 rpm (Barnstead 

MaxQ 4000 Orbital Incubator Shaker). The next morning, ~25 μl from each 

overnight culture was used to inoculate a corresponding 2 ml volume of YPD, to 

produce a refreshed culture with an optical density at 600 nm wavelength (OD600) 

of ~0.075, which was then incubated to OD600 of ~0.2 as measured using an 

Evolution 60 spectrophotometer (ThermoScientific, Waltham, MA). The refreshed 

cells were pelleted at 8,000×g, washed twice in Corning Dulbecco’s Phosphate 

Buffered Saline (D-PBS; LifeSciences, Oneonta, NY), and counted using a 

hemocytometer.  

 For qualitative analysis, spot assays were performed. Refreshed cells were 

initially diluted to 5×103 cells/μl, and then 10-fold serially diluted three times. From 

each dilution, 2μl were spotted onto Yeast Nitrogen Base (YNB; HiMedia) plus 
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agar (YNB-agar) supplemented with 2% of either glucose, acetate, or ethanol. 

Thus, 1×104 cells, 1×103 cells, 100 cells, and 10 cells of the wild type strain and 

each of the mutant strains were plated and were allowed to grow at 30°C for 

approximately 3 days. Images of colonies were captured using the Canon EOS 

Rebel T1i camera.  

 For quantitative growth analysis 1×104 cells/μl were used to inoculate YNB 

media supplemented with 2% of either glucose, acetate, or ethanol as the carbon 

source. Cultures were set up in each medium in triplicate in microtiter plates. Cells 

were allowed to grow in a shaking incubator at 30°C for 48 hours, and their growth 

was monitored over time using the Epoch Multi-Volume Microplate Reader (BioTek 

Instruments, Inc., Winooski, VT) to measure the OD600.  

Measurement of acetate production: 

 To analyze acetate production by C. neoformans, the hydroxamate assay 

was performed as described previously (Fowler et al., 2012; Aceti and Ferry, 1988; 

Rose et al., 1954). As detailed above, C. neoformans strains were grown overnight 

in YPD media at 30°C. To refresh cells, 25 μl from each of these overnight cultures 

was used to inoculate a corresponding 5 ml volume of YNB supplemented with 2% 

glucose, which was incubated to an OD600 of ~0.2. Cells were counted using a 

hemocytometer and each of the 5 ml cultures were adjusted to a concentration of 

1×104 cells/μl. The 5 ml cultures were vortexed briefly to fully resuspend the cells 

and 1 ml of each culture was transferred to a corresponding eppendorf tube, which 

was  centrifuged at 10,000×g. The recovered supernatants were transferred to 
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fresh tubes and frozen down at –80°C. The remaining culture volumes were 

incubated at 30°C, and, every 12 hours, up to and including 48 hrs, the process 

was repeated. Once all supernatants were collected, the hydroxamate assay was 

performed on triplicate 225 μl samples from each 1 ml of supernatant media from 

each strain as described by Aceti and Ferry (1988). Briefly, 75 μl of hydroxamate 

reaction mix (2.4 M hydroxylamine-HCl at pH 7.0, 0.4 M Tris at pH 7.5, 80 mM 

MgCl2, and 90 μM ATP disodium salt hydrate) was added to each 225 μl of 

supernatant and the mixture was incubated at 37°C for 5 minutes. Then, 5 μl of 

Methanosarcina thermophila acetate kinase (purified by Dr. Cheryl Ingram-Smith)  

was added to a final concentration of 0.023 ng/μl, and the reaction was mixed to 

homogeneity by pipetting and incubated at 37°C for 15 minutes. Finally, the 

reaction was quenched using an equal volume of a stop solution (10% 

trichloroacetic acid and 2.5% FeCl3 in 2 N HCl) and the absorbance was read at 

540 nm using the Epoch Multi-Volume Microplate Reader spectrophotometer. A 

standard curve was prepared by performing exactly the same protocol using 

known concentrations of acetate solution ranging from 0.1 mM - 2 mM instead of 

supernatant media.  

Capsule formation assay: 

 Capsule production by C. neoformans was induced using previously 

published conditions (Zaragoza and Casadevall, 2004). Briefly, wild type and 

mutant strains were grown overnight in 2 ml of Sabouraud medium (4% glucose 

and 1% bacto peptone, pH 5.6) at 30°C. The following day, cells were collected by 
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centrifugation (8,000-10,000×g) for 2 minutes at room temperature, washed twice 

with PBS (137 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, and 8.5 mM Na2HPO4), 

and resuspended in 0.1x Sabouraud medium (pH of 7.3). Cells were counted, 

diluted to 5×106 cells/ml in 2 ml of the above 0.1x Sabouraud medium, and 

incubated for 24 hours at 37°C to induce capsule formation.  

Capsules of the wild type and mutant strains were observed under the 

Axiovert Inverted Microscope (Carl Zeiss, Inc., Thornwood, NY) after 10 μl of each 

cell suspension were mixed with 10 μl of India Ink (Becton Dickinson, NJ) to 

provide contrast. Images were taken at 40x magnification and processed with 

Zeiss software and Image J. At least five different fields were randomly chosen 

and photographed, and 25 to 30 cells were observed.  

Melanin production assay: 

C. neoformans wild type and ald mutant strains were grown as described 

above and then harvested by centrifugation for 2 min at room temperature, washed 

twice in D-PBS, and counted using the hemocytometer. Each strain was diluted to 

1×105 cells/ml and a 5μl volume of each strain was plated on agar-containing 

melanin-induction medium (8 mg/ml KH2PO4, 2 mg/ml glucose, 2 mg/ml L-glycine, 

1 μg/ml D-biotin, 1 μg/ml thiamine, 0.92 mg/ml MgSO4×7H2O, and 0.4 mg/ml L-3,4-

dihydroxyphenylalanine [L-DOPA]) in order to induce melanin production (Li et al., 

2018). Plates were incubated at 30°C for 2-3 days, and then imaged using the 

Canon EOS Rebel T1i camera. The experiment was performed thrice.  
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Growth under hypoxia and under oxidative and nitrosative stresses:  

C. neoformans wild type and ald mutant strains were grown overnight and 

refreshed the next morning as described above, then harvested by centrifugation 

for 2 min at room temperature, washed twice in D-PBS, counted using the 

hemocytometer, and diluted to 5×103 cells/μl. Next, three 10-fold serial dilutions of 

cells were prepared, and 2μl of each of these four dilutions were spotted at 1×104, 

1×103, 100 and 10 cells per spot onto media that mimicked different stress 

conditions that the fungus encounters during infection. To mimic hypoxia, cells 

were spotted onto YES-agar (0.5% yeast extract, 2% glucose, 1.5% agar and 225 

μg/mL of each of uracil, adenine, leucine, histidine, and lysine) supplemented with 

0.7 mM CoCl2 (Lee et al., 2007). To test the effects of oxidative and nitrosative 

stresses, cells were spotted onto sodium succinate-adjusted YNB-agar medium 

(1.34 g/liter yeast nitrogen base without amino acids, 4 g/L glucose, and 5 mM 

sodium succinate to adjust the pH to 4.0, filter sterilized and mixed 1:1 with 4% 

agar to a final concentration of 2% agar) supplemented with either 1 mM hydrogen 

peroxide (H2O2) or 1.5 mM sodium nitrite (NaNO2), respectively, or not 

supplemented as control (Gerik et al., 2008). Plates were incubated at 30°C for 2-

3 days and then imaged using the Canon EOS Rebel T1i camera. Each experiment 

was repeated thrice.  

Growth under osmotic stress:  

 Wild type and ald mutant fungal cells were cultured overnight, refreshed and 

counted the next day, diluted, and spotted as described above, except that osmotic 



123 
 

stress generating medium (1% yeast extract, 2% Bacto Peptone, 2% glucose, and 

2% agar, supplemented with either 1.5 M NaCl or 1.2 M KCl) was used. Plates 

were incubated at 30°C for 3 days and then imaged using the Canon EOS Rebel 

T1i camera. Each experiment (with NaCl or KCl) was repeated thrice.  

SDS and Congo red assays for cell wall integrity: 

 Wild type and ald mutant fungal cells were cultured overnight, refreshed and 

counted the next day, diluted, and spotted onto plates as above, except that the 

various strains were spotted onto media with 1% yeast extract, 2% Bacto Peptone, 

2% agar, and 1% glucose (all from Difco) supplemented with either 0.5% Congo 

red (Sigma-Aldrich/Millipore Sigma, St. Louis, MO) or 0.03% sodium dodecyl 

sulfate (SDS; Calbiochem/Millipore Sigma, St. Louis, MO). Plates were incubated 

at 30°C for ~72 hours and then images were captured using the Canon EOS Rebel 

T1i camera. Each experiment was repeated three times. 

Macrophage culture: 

A murine macrophage-like cell line J774A.1 (gift From Dr. Jeffrey Anker, 

Clemson University), originally derived from a BALB/c mouse reticulum cell 

sarcoma (Fan et al., 2005), was maintained in macrophage medium (Dulbecco’s 

Modified Eagle Medium [DMEM] supplemented with 10% heat-inactivated fetal 

bovine serum, 1% non-essential amino acids, 1% penicillin-streptomycin, and 10% 

NCTC-109 medium, all from Gibco Life Technologies). Cells were passaged at a 

1:10 split approximately every 5-7 days when they reached 80% confluence.  
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Macrophage survival assay: 

At ~80% confluence, cultured macrophages were washed twice with D-

PBS, harvested by scraping after addition of fresh macrophage medium, and then 

diluted to 1×103 cells/μl. Into two 96-well flat-bottom tissue culture treated plates 

(Corning Inc., Corning NY), one for one-hour co-incubation and the other for 24-

hour co-incubation with fungal cells, 100 μl of the cell suspension (1×105 cells) in 

macrophage media were transferred into three wells per C. neoformans strain. 

Both plates were incubated overnight at 37˚C in the 5% CO2 incubator.  

Concurrently, wild type (KN99a) and mutant C. neoformans strains were 

grown overnight in liquid YPD media at 30°C. The next day, the strains were 

pelleted by centrifugation at 8,000×g for 1 min, washed twice with D-PBS, and 

resuspended in macrophage medium. The fungal cells were then diluted to 125 

cells/μl in 1 ml of macrophage media (i.e. 1.25×104 C. neoformans cells per 100 

μl). To enhance macrophage phagocytosis by opsonization, each strain of C. 

neoformans was incubated for one hour at 37˚C with 1μg/ml (final concentration) 

of the MAb18B7 monoclonal antibody (gift from Dr. Arturo Casadevall, Johns 

Hopkins University School of Medicine) that binds to the glucuronoxylomannan 

(GXM) capsule component (Casadevall et al., 1998). As soon as the C. 

neoformans strains with antibody were placed in the incubator, two plates 

containing macrophages were processed as follows. The media was gently 

removed from each well and replaced with 100 µl macrophage media containing 



125 
 

10 nM phorbol myristate acetate (PMA), and then both plates were incubated at 

37˚C in 5% CO2 for one hour to activate the macrophages (Forman and Torres, 

2001). 

After separate one hour incubations of the macrophages and fungal cells, 

the medium in each well from both 96-well macrophage plates was replaced, 

without disrupting the macrophage monolayer, with a 100 µl volume of cell 

suspension (i.e. 1.25×104 cells) of one of the wild type or ald mutant C. neoformans 

strains, in triplicate, at an 8:1 macrophage to fungal cell ratio. In a third, 96-well 

tissue culture treated plate, the cell suspensions of C. neoformans wild type or 

mutant strains were added, in triplicate, at 100 µl (i.e. 1.25×104 cells) per well, in 

the absence of macrophages as a control. All three plates were left at 37˚C in 5% 

CO2 for one hour, after which, each well in the one-hour and 24-hour plates with 

macrophages, but not in the control plate without macrophages, were gently 

washed thrice with 200 μl D-PBS to remove non-phagocytosed C. neoformans. To 

the 24-hour plate, 100 μl of fresh macrophage media were added to each well, and 

the plate was placed back into the 37˚C, 5% CO2 incubator for 24 hours.  

To the one-hour plate, 200 µl of sterile distilled, deionized water (ddH2O) 

were added to each well, and the plate was incubated at room temperature for 5 

minutes to lyse the macrophages. A pipette tip was then scraped against the 

bottom of the wells to lift up the adherent macrophages, and the cells suspended 

in the water were pipetted up and down to disrupt and further lyse the 

macrophages. The 200 µl lysate was then transferred to a microfuge tube. Again, 
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200 µl of sterile ddH2O were added to each well, the wells were scraped, and the 

suspensions were pipetted up and down. The additional lysates generated were 

combined with the corresponding original lysates. These steps were repeated 

twice more, but with 300 µl of sterile ddH2O, so that, by the end of the procedure, 

each microfuge tube held 1 ml final volume of lysate. For the plate of C. 

neoformans strains without macrophages, since the wells were not washed prior 

to addition of sterile ddH2O, the volume of original media plus sterile ddH2O 

transferred to each microfuge tube was 300 µl; then 200 µl, 200 µl, and 300 µl 

volumes were used and transferred to the corresponding microfuge tube. The 

same procedure that was used on the one-hour plates with macrophages was 

used, without modification, to obtain macrophage lysates from the 24-hour plate 

the next day. For each 96-well plate, macrophage lysis (or recovery of fungal cells 

from wells without macrophages) was conducted in sets of one well per strain, in 

triplicate sets, to obtain the fungal cells from the three wells per strain.   

 Immediately after C. neoformans cells were obtained from the macrophage 

lysates or from the fungal cell suspensions (i.e. from the no-macrophage control 

plate), the cells were diluted 1:10, then again 1:2.5 for a final dilution of 1:25, or a 

(theoretical) maximum concentration of 500 cells/ml in a total volume of 0.5 ml. For 

each C. neoformans strain, from this final dilution, 100 μl were plated on YPD-agar 

plates, one plate per corresponding well from each 96-well plate. This resulted in 

triplicate YPD-agar plates for each wild type and mutant strain, with a maximum of 

50 cells per plate from each corresponding well of the 96-well plates (at least from 
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the 1-hour plate, although due to replication of the fungal cells, more than this 

number was possible from the 24-hour plate). YPD-agar plates were incubated at 

30°C for ~48 hours and then colony forming units (CFU) were counted for each 

plate and the percentage survival was calculated for each strain using the following 

formula, in which MΦ refers to macrophages and the CFU are the average of the 

individual CFU from the triplicate YPD-agar plates: 

% Phagocytosis = (CFUC. neoformans with MΦ @ 1hr ÷ CFUC. neoformans without MΦ) × 100    

% Survival = (CFUC. neoformans with MΦ @ 24 hrs ÷ CFUC. neoformans with MΦ @ 1 hr) × 100  

In vivo C. neoformans virulence assay using an invertebrate model: 

To examine the virulence of mutant C. neoformans strains, either the wild 

type C. neoformans strain or one of ald5, ald13, or ald78 mutant strains, all in the 

H99 strain background, were injected into the larvae of the greater wax moth, 

Galleria mellonella, and larval survival was assayed. C. neoformans strains to be 

injected were grown in YPD media at 30°C overnight and refreshed the next 

morning by inoculation of new 2 ml cultures and incubation to an OD600 of ~0.2. 

The cells were then pelleted and washed once with sterile water and twice with D-

PBS. Each strain was then resuspended in D-PBS to a final concentration of 1×105 

cells/µl. Subsequently, milky-white G. mellonella larvae without any dark spots and 

weighing between 0.27 g and 0.30 g were chosen. Ten larvae per C. neoformans 

strain were selected and disinfected using alcohol wipes just prior to inoculation. 

Using Hamilton syringes, each of the ten larvae were injected in the bottom-left 

proleg with 10 µl of one of the C. neoformans strain resuspensions. To determine 



128 
 

the level of death due solely to injection, 10 µl of D-PBS were injected into ten 

more larvae (as a control) and survival was monitored over time. Similarly, as a 

negative control, the C. neoformans wild type strain (in the H99 background) was 

heat-killed via incubation at 65°C for one hour and 1×106 of these dead cells were 

injected into each of ten larvae. After all strains and controls were injected into G. 

mellonella, the larvae were incubated at 37°C and monitored daily. Death was 

scored based on blackened appearance (indicative of either necrosis or complete 

melanization) and a lack of normal rolling-over behavior. The numbers of dead 

larvae in each injection group were tallied and graphed in a Kaplan-Meier survival 

curve. 

Statistical analysis of results: 

All of the graphs were prepared using GraphPad Prism; the significance of 

the results were determined using the analysis of variance (ANOVA) software 

within Prism, with Dunnet, Sidak, or other post-test multiple comparison, as 

recommended by the software. One-way ANOVA was used when triplicate values 

generated at the end of the experiment were compared, but when multiple time 

points were compared as well as the various strains, two-way ANOVA was utilized. 

For the macrophage survival assay, data was first analyzed using Microsoft Excel 

to calculate the relative percent survival (or recovery, versus the wild type strain) 

after phagocytosis of each strain prior to graphing the data and conducting 

statistical analyses via Prism. For Kaplan-Meier survival curves, the Gehan-
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Breslow-Wilcoxon test and/or Log-Rank test was used to compare the virulence of 

mutant strains to that of the wild type strain. 
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Results 

Phylogeny of the C. neoformans Ald family: 

In C. neoformans, nine genes have been predicted to encode proteins that 

could have aldehyde dehydrogenase (Ald) activity. In order to further understand 

the function of these genes, sequence similarity analysis was performed on the 

corresponding protein sequences using Molecular Evolutionary Genetics Analysis 

(MEGA X) (Kumar et al., 2001) phylogenetic software (Figure 2.2). 

A mutant strain deficient for one aldehyde dehydrogenase in C. 

neoformans, CNAG_02377, also known as CKF44_002132 (in the H99 and H99-

derived KN99 strains, respectively), was not available for experimental analysis. 

However, by the phylogenetic analysis, the protein sequence for this Ald was found 

to diverge from a common ancestor with, and was evolutionarily most related to, 

CNBG_4084, an Ald from Cryptococcus deuterogattii. CNAG_02377 is next most 

closely related to AGR57_15224, the NAD-Ald of Phanerochaete chrysosporium, 

a basidiomycota, and then to FOC4_Q10007570, the lactaldehyde dehydrogenase 

of Fusarium oxysporam. These four Ald sequences form GROUP 1 in the 

phylogenetic tree (Figure 2.2). 

CNAG_05029 (Ald29) in the H99 strain of C. neoformans (var grubii), known 

as CKF44-004510 in the KN99 strain, is closest to CC1G_03873, the Ald of 

Coprinopsis cinerea, a basidiomycota fungi. According to the fungi database, both 

proteins are referred to as meiotic Sister-Chromatid recombination aldehyde 

dehydrogenases (https://fungidb.org/fungidb/app/record/gene/CNAG_05029, and 
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https://fungidb.org/fungidb/app/record/gene/CC1G_03873). The next most closely 

related protein to these is PH9BL_176604, a betaine aldehyde dehydrogenase 

from Phycomyces blakesleeanus, a filamentous fungi in the phylum Zygomycota. 

These sequences form GROUP 2 of the phylogenetic tree. 

CNAG_06018 (Ald18) and CNAG_06010 (Ald10) in the H99 strain have 

corresponding putative enzymes in the KN99 strain, CKF44_005401 and 

CKF44_005393, respectively. CNAG_06010 is most closely related to 

CGBM_0210C, an Ald in Cryptococcus gattii, but CNAG_06018 is the next most 

closely related aldehyde dehydrogenase from among all of those considered. 

These sequences, along with the next most closely related sequence, 

AGR57_7717, the NAD-aldehyde dehydrogenase from Phanerochaete 

chrysosporium, a basidiomycota fungi, form GROUP 3 of the phylogenetic tree.  

CNAG_03269 (Ald69) in the H99 strain, known as CKF44_002909 in the 

KN99 strain, is closest to CGB_G2310C, an Ald in C. gattii. Together with the next 

closest protein, ACLA_062670, an Ald in Aspergillus clavatus, these sequences 

form GROUP 4 of the phylogenetic tree. 

Phylogenetic GROUP 5 consists of CNAG_00735 (Ald35) in the H99 strain 

or CKF44_000642 in the KN99 strain, along with AGR57_4875, an NAD-Ald in P. 

chrysosporium, and BDEG_01128, the Ald family 7 member A1 of 

Batrachochytrium dendrobatidis, a fungus known to cause chytridiomycosis in 

amphibians (Rebollar et al., 2014; Zumbado-Ulate et al., 2019). 
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CNAG_01078 (Ald78) and CNAG_05113 (Ald13) in the H99 strain have 

corresponding proteins CKF44_000949 and CKF44_004585, respectively, in the 

KN99 strain. CNAG_05113 is most closely related to the CNBG_4577 NAD-Ald 

from C. deuterogatti, but is next most closely related to CNAG_01078. 

CNAG_06628 (Ald5) in the H99 strain, or CKF44_005930 in the KN99 strain, is 

the next most closely related Ald to both CNAG_01078 and CNAG_05113 and 

completes the phylogenetic GROUP 6. These three C. neoformans Alds are the 

most closely related, among all C. neoformans Alds, to S. cerevisiae Ald4p, Ald5p, 

and Ald6p, which can act as acetaldehyde dehydrogenases to produce acetate 

(Remize et al., 2000; Saint-Prix et al., 2004). However, as C. neoformans Ald5, 

Ald13, and Ald78 are more closely related to each other than any is to S. cerevisiae 

Ald4p, Ald5p, and Ald6p, and, conversely, since these S. cerevisiae enzymes are 

more closely related to each other than to any C. neoformans Alds, it is difficult to 

predict, based on the function of the S. cerevisiae enzymes,  which one of Ald5, 

Ald13, or Ald78 may function in acetate production. 

Verification of ALD deletions: 

The ald mutants obtained from the Madhani deletion collection (Chun and 

Madhani, 2010) were checked for the deletion of the appropriate ALD and for the 

presence of the nourseothricin acetyltransferase (NAT) cassette, that was used to 

replace the ALD gene. Primers specific for each ALD were designed and used in 

PCRs to amplify a portion of the corresponding gene from wild type and mutant 

strain genomic DNAs. Similarly, primers specific for the NAT cassette were used 
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to amplify this gene from genomic DNA from the mutant strains. The results from 

each PCR confirmed the deletion of the respective ALD genes in the mutants used 

in this study (Figure 2.3a). Amplification of NAT (~1600 bp) from all of the ald 

mutants, but not from the wild type KN99a strain, was also observed (Figure 2.3b).  

Impact of ALD deletions on the growth of C. neoformans on different carbon 

sources:  

Under normal conditions, C. neoformans favors glucose over other carbon 

sources for growth (Hu et al., 2008; Sabiiti and May, 2012). However, during early 

stages of infection, it is challenged by low glucose and low amino acid conditions 

and must utilize alternative carbon sources like acetate and lactate to survive (Hu 

et al., 2008; Price et al., 2011). To investigate whether each of the ald mutants 

could grow in media supplemented with alternative carbon sources like acetate 

and ethanol as well as they could in glucose-rich media, spot assays and growth 

curve analyses were performed by spotting the yeast on YNB-agar, or by culturing 

them in YNB liquid medium, respectively, supplemented with 2% glucose, 2% 

acetate, or 2% ethanol.  

All of the ALD mutants exhibited normal growth when cultured on YNB-agar 

supplemented with 2% glucose except the ald69Δ (CNAG_03269) mutant, which 

demonstrated a major growth defect on this media (Figure 2.4a). Under this growth 

condition, the ald69Δ mutant produced fewer colonies of very small size, a 

phenotype which was clearly visible at the lower dilutions of cells (Figure 2.4a). In 

contrast, the ald69Δ mutant strain did not have a significant defect in growth on 
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YNB-agar supplemented with either 2% acetate or 2% ethanol (Figure 2.4b and 

2.4c).   

 Conversely, in the ald13Δ (CNAG_05113) mutant, the absence of the Ald13 

protein, which is predicted to reside in the mitochondria (MitoFates website, 

http://mitf.cbrc.jp/MitoFates/cgi-bin/top.cgi; Fukasawa et al., 2015), resulted in 

smaller sized colonies on YNB-agar plates containing 2% acetate or 2% ethanol 

relative to colonies on YNB-agar plates containing 2% glucose, and versus the 

average colony size of the wild type strain on 2% acetate or 2% ethanol 

supplemented YNB-agar (Figure 2.4). However, no difference in the number of 

colonies, as compared with the wild type strain (or other mutant strains), was 

observed.  

 In addition to the phenotypes of the ald69Δ and ald13Δ strains, the ald5Δ 

mutant strain exhibited a severe growth defect (i.e. no growth) specifically when 

plated on YNB-agar with 2% ethanol, but not on YNB media supplemented with 

2% glucose or 2% acetate (Figure 2.4c). 

In order to quantify the previous decline in growth of ald69Δ and ald5Δ 

mutants, but not of other mutants, all aldehyde dehydrogenase mutants were 

cultured in liquid medium containing 2% glucose, 2% acetate, or 2% ethanol as 

the carbon source. A quantitative growth analysis was performed over a 48-hour 

time course. The ald69Δ mutant displayed a growth defect reminiscent of the 

smaller number of colonies observed in the spot assay. Specifically, this mutant 

exhibited a slower growth rate at later time points in medium with 2% glucose 
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(Figure 2.5a; P-value = 0.0210, 0.0429, 0.0315, and 0.0320 at 24, 31, 38, and 48 

hours, respectively, all less than the 0.05 cutoff value for significance), but not in 

media with 2% acetate or 2% ethanol. Similarly, the ald5Δ mutant grew poorly in 

medium supplemented with 2% ethanol (Figure 2.5c; P-value = 0.0052 for the 

overall growth curve versus the wild-type growth curve), just as it did on the 

equivalent plates in the spot assay, but grew normally in media with 2% glucose 

(Figure 2.5a) or 2% acetate (Figure 2.5b), just as it did on the 2% glucose and 2% 

acetate supplemented YNB-agar. The quantitative growth curve analysis 

conducted over 48 hours correlated with the qualitative spot assay results, with 

clear growth defects in ald5Δ and ald69Δ. All strains, including the wild type strain, 

exhibited slower growth in media supplemented with 2% acetate, so no significant 

differences were observed between the wild type and any of the mutant strains 

(Figure 2.5b). 

Acetate production is reduced in ald mutants: 

Acetaldehyde dehydrogenase has been shown to be involved in the 

production of acetate in S. cerevisiae (Pronk et al., 1996). In order to determine 

whether each Ald enzyme in C. neoformans functions in the production of acetate, 

the levels of acetate produced by the various ald mutants cultured in YNB media 

supplemented with 2% glucose were measured. The concentration of acetate 

produced by the wild type strain and each of the various strains deficient in different 

aldehyde dehydrogenases was determined every 12 hours. All of the mutants 

could utilize glucose in the media and produce acetate. However, although the 
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acetate production by the ald mutants was not eliminated, it was significantly 

reduced relative to the wild type KN99a strain at all time points after 12 hours 

(Figure 2.6; P-value < 0.0001 overall). In particular, after 12 hours, ald5Δ, ald10Δ,  

ald18Δ,  ald35Δ, and ald78Δ exhibited very significantly (P-value < 0.01) reduced 

acetate production versus the wild type strain, (with P-values of 0.0095, 0.005, 

0.0033, 0.0092, and 0.0053, respectively), while ald13Δ and ald29Δ exhibited 

highly significantly (P-value < 0.001) reduced acetate production versus the wild 

type strain (with P-values of 0.0008 and 0.0002, respectively), and ald69Δ  

exhibited extremely significantly (P-value < 0.0001) reduced acetate production 

versus the wild type strain. 

Capsule formation: 

 C. neoformans forms a polysaccharide capsule that protects the fungal cell 

from the immune response and increases fungal virulence (Reese and Doering, 

2003; Bose et al., 2003). To characterize capsule formation in wild type and ald 

mutants, strains were incubated in capsule-inducing medium and then stained with 

India Ink to visualize capsule thickness under the microscope. It was found that 

the capsules of all ald mutants were smaller than that of the wild type KN99α strain, 

although the ald10 mutant had a larger capsule than the other mutants (Figure 

2.7). This suggests that production and completion of the capsule is highly 

compromised in the absence of any one of the Alds.  
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Melanin production:  

Melanin neutralizes reactive oxygen species and prevents oxidative 

killing by phagocytes, thus acting as another important virulence factor during 

infection (Ma and May, 2009). Spot assays were performed in L-DOPA 

supplemented plates to determine whether a deficiency of any of the aldehyde 

dehydrogenases has an effect on melanin production. Most of the mutants, 

namely ald13Δ, ald78Δ, ald10Δ, ald18Δ, ald29Δ, and ald35Δ, had no melanin 

production defect and produced melanin at levels comparable to the wild type 

strain (Figure 2.8). However, there was a significant reduction in the production 

of melanin by the ald69Δ mutant, suggesting a role for the corresponding 

enzyme in the production of melanin (Figure 2.8). Surprisingly, the ald5Δ mutant 

displayed increased melanin production, relative to the wild type strain (Figure 

2.8), suggesting that the normal function of the Ald5 enzyme has, either directly 

or indirectly, a negative effect on the production of melanin. This data suggests 

that Ald69 is required for optimal production of melanin, while functional Ald5 

apparently reduces the need for melanin. 

Response to hypoxia, and oxidative and nitrosative stresses: 

In the host brain, C. neoformans faces low oxygen conditions, which are 

detrimental to its survival (Ingavale et al., 2008; Erecińska and Silver, 2001). In 

order to understand whether any of the Alds are important for the survival of the 

pathogen under hypoxic conditions, each mutant was tested for the ability to grow 

in YES medium supplemented with CoCl2, which induces the Sre1p ergosterol 
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production pathway used by the cells as an oxygen sensing pathway, and thereby 

drives the cells into a metabolic state similar to that induced by hypoxia (Lee et al., 

2007). All of the mutants survived normally when subjected to hypoxia conditions 

except ald29Δ (Figure 2.9b). The ald29Δ mutant, which grew normally in YES 

media without CoCl2, i.e. under normoxia (Figure 2.9a), exhibited defective growth 

when subjected to the low oxygen simulating conditions (Figure 2.9b). Surprisingly, 

when this mutant was provided with acetate in the CoCl2 containing plates, it 

recovered normal growth (Figure 2.9c).  

While surviving hypoxia matters after dissemination to the brain, at the 

initiation of infection, upon inhalation of cryptococcal cells or spores, the fungal 

cells encounter alveolar macrophages in the lungs that attempt to engulf them and 

to destroy them using ROS and RNS (Hampton et al., 1998; Vieira et al., 2002; 

Cox et al., 2003; Tohyama et al., 1996). To determine if any of the Alds play a role 

in the survival of the pathogen under oxidative conditions, wild type and ald mutant 

strains were grown on YNB-agar (buffered to pH 4.0 using sodium succinate), 

either alone as control or supplemented with 1 mM H2O2. When subjected to this 

oxidative stress condition, all of the mutants except ald69Δ had growth comparable 

to the wild type KN99α strain (Figure 2.10). The ald69Δ mutant displayed reduced 

growth under oxidative stress (Figure 2.10). This result suggests a specific 

requirement for the Ald69 enzyme in C. neoformans survival under the oxidative 

stress conditions encountered within macrophages, indicating that this Ald may 

play a role in C. neoformans virulence. 
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Similarly, when the wild type and mutant strains were grown under 

nitrosative stress by 1.5 mM sodium nitrite, only the ald69Δ mutant displayed a 

phenotype different from that of the wild type strain (Figure 2.11b). However, 

instead of showing a defect in growth, the ald69Δ mutant formed pink/red colonies 

(Figure 2.11b, bottom row). It has long been established that S. cerevisiae mutants 

with deficiencies in either adenine or biotin production grow as pink/red colonies 

(Smirnov et al., 1967). Therefore, to test whether the ald69Δ mutant turned pink 

under nitrosative stress due to adenine deficiency, 225 μg/ml adenine was added 

to the media along with 1.5 mM sodium nitrite and the growth of all wild type and 

mutant strains was reanalyzed. The red pigmentation was not observed, even in 

the ald69Δ mutant, when the cells were grown in adenine-supplemented 

nitrosative stress media (Figure 2.11c). This suggests that the ALD genes are not 

required for growth under nitrosative stress conditions; however, the function of 

the Ald69 enzyme plays a role in the production of adenine in the pathogen under 

nitrosative stress.  

All ald mutants exhibited a normal osmotic stress response: 

C. neoformans has evolved specialized pathways, including the production 

and use of mannitol (Chaturvedi et al., 1996) and the HOG1 pathway (Bahn et al., 

2005), to survive high osmolarity environments inside the host body and the 

corresponding osmotic stress. To investigate whether the C. neoformans aldehyde 

dehydrogenases function in the osmotic stress response, the wild type strain and 

each of the ald mutants were grown on YPD-agar supplemented with either 1.5 M 
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NaCl or 1.2 M KCl to osmotic stress. It was found that all of the ald mutants grew 

normally under these high salt conditions, that is, to a degree similar to that of  the 

growth of the wild type strain (Figure 2.12). These results suggest that the ALD 

genes are not required for growth under osmotic stress. 

The ald mutants, especially ald69Δ, have partially compromised cell wall 

integrity: 

The C. neoformans cell wall protects the fungal cell from environmental 

challenges. in order to survive attack by ros and rns produced by macrophages 

when they phagocytose a pathogen, the cryptococcal cells upregulate pathways 

used to build the cell wall (Gerik et al., 2005). The capsule is attached to the cell 

membrane  via the cell wall, and melanin is deposited in the cell wall; therefore, 

these virulence factors that protect against reactive oxygen species require an 

intact cell wall for their functioning (Baker et al., 2007; Van Dyke and Wormley, 

2018). The integrity of the cell wall of the wild type and aldehyde dehydrogenase 

mutant strains was tested by spotting serial ten-fold dilutions of cells on YPD-agar 

treated with sodium dodecyl sulfate (SDS) or Congo red. Congo red binds to 

components of  chitin and of the cell wall and interferes with cell wall construction, 

while SDS dissolves and thereby disrupts the plasma membrane, lysing the cells 

(García et al., 2015; Banks et al., 2005; Ram and Klis., 2006; Baker et al., 2007; 

Gerik et al., 2005; Wood et al., 1983). Strains with cell wall integrity defects will not 

survive in the presence of either Congo red or SDS, depending which layer of 

capsule, cell wall, or chitin is deficient. The growth of cryptococcal cells on media 
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with SDS was not affected in the ald mutant strains (Figure 2.13b), indicating that 

the SDS could not pass through the chitin layer to dissolve the cell membrane in 

these mutants. While media with Congo red inhibited the growth of both wild type 

and mutant strains (Figure 2.13c) in comparison to normal media (Figure 2.13a), 

the Congo red affected the growth of ald mutants more. Even when spotted at 

higher cell concentrations, mutant cells did not grow as robustly as the wild type 

cells on the Congo red supplemented media, and the mutant strains displayed 

smaller colonies overall (Figure 2.13c), possibly reflecting the effect of their smaller 

capsules. The most affected mutant was ald69Δ, which did not grow at all when 

lower concentrations of cells were spotted, and grew poorly when the highest 

concentration of cells was used (Figure 2.13c, bottom row). This indicates that the 

corresponding enzyme may have a special role in the maintenance of cell wall 

integrity.  

The majority of ald mutants exhibited reduced survival and/or recovery after 

phagocytosis: 

To investigate the contribution of the various aldehyde dehydrogenases to 

the survival of C. neoformans against attack by host immune cells, the percentage 

of wild type or ald mutant fungal cells surviving engulfment by murine 

macrophages was determined. First, fungal cells were co-incubated, in triplicate, 

with macrophages for 1 hour, after which the non-phagocytosed fungal cells were 

removed, the macrophages were lyzed, and the fungal cells from within those 

macrophages were plated onto YPD. The average percent phagocytosis of each 
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triplicate set was determined by comparing the number of colonies to the colonies 

from identically cultured fungal cells without macrophages, and then normalized to 

the wild type result. The relative percentages of input cells phagocytosed (ald5Δ: 

111.32%; ald10Δ: 98.44; ald13Δ: 133.74; ald18Δ: 98.8; ald29Δ: 144.32; ald35Δ: 

107.08; ald69Δ: 165.17; ald78Δ: 136.76) were not significantly different from that 

of the wild type strain (100%). In a parallel plate, after removal of non-internalized 

fungal cells, the macrophages were given 24 hours to destroy the phagocytosed 

C. neoformans cells and were then lysed to release surviving, presumably growing, 

C. neoformans cells, which were plated on YPD. The number of colonies of each 

strain were divided by the average percent phagocytosis from the previous step to 

determine the percent survival (and recovery) after phagocytosis. The percent 

survival was reduced, relative to the wild type strain, for most, but not all, mutant 

strains (Figure 2.14). The mutant strains designated ald10, ald18, and ald35 did 

not exhibit a significant difference in survival/recovery after phagocytosis 

compared with the wild type strain. In contrast, the C. neoformans cells from the 

ald5, ald13, ald29, ald69, and ald78 mutants, showed significantly reduced relative 

survival (and recovery) inside the macrophages (40.45%, 65.47%, 28.08%, 

22.95% and 30.09% survival, respectively, with P-value = 0.0006, P-value = 

0.0417, P-value < 0.0001, P-value = 0.0004, P-value = 0.0028, respectively).  In 

short, the lack of the corresponding enzymes in the ald5Δ, ald29Δ, and ald69Δ 

mutant strains, significantly diminished survival after engulfment by macrophages. 
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The ald5 and ald78 mutants had significantly reduced virulence in the 

invertebrate Galleria mellonella infection model: 

Virulence of mutant strains of C. neoformans in vivo  is often assayed using 

an invertebrate model, the larvae of the greater wax moth Galleria mellonella. To 

determine whether each of the corresponding Ald enzymes has a role in 

pathogenesis, in three independent experiments,1×106 of the wild type or ald5Δ, 

ald13Δ, or ald78Δ mutant C. neoformans H99 strains were injected into ten 

healthy larvae in parallel.   

The results of a representative experiment demonstrated increased 

survival of the G. mellonella larvae that were infected with any of the three ald 

mutant C. neoformans strains, when compared with those infected with the wild 

type H99 strain (Figure 2.15). Specifically, larvae infected with wild type H99 cells 

started dying on day 6 post-injection and all such larvae were dead by day 9, while 

at least some larvae infected with the ald5Δ, ald13Δ, or ald78Δ strain survived 

until day 12, 13, or 17 respectively, with the ald78Δ strain-infected larvae starting 

to die only on day 9. For comparison, the two negative controls, larvae injected 

with PBS or with heat-killed wild type H99 cells, only started to die on day 8, and 

at least some larvae survived until day 18 at minimum. Larvae injected with the 

ald78Δ strain did not display any significant difference from the negative control 

larvae. The median survival time of wild type H99-injected larvae was 8 days, 

whereas the median survival time of ald5Δ strain-injected larvae was 8.5 days, 

and that of ald13Δ strain-injected larvae was 8.5 days. The ald78Δ strain-injected 
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larvae had a median survival time of 12 days. The survival curve of the ald5Δ 

strain-injected larvae was statistically different from that of the wild type H99-

injected larvae (P-value = 0.0243, as determined using a Gehan-Breslow-

Wilcoxon test, or, according to the Log-Rank test, P-value = 0.0188), but the 

survival curve of the ald13Δ strain-injected larvae was not statistically different 

from that of the wild type injected larvae (P-value = 0.1386 using the Gehan-

Breslow-Wilcoxon test, or, using the Log-Rank test, P-value = 0.0734). The 

ald78Δ strain-injected larval survival curve was extremely statistically significantly 

different from the survival curve of larvae injected with wild type C. neoformans 

(P-value < 0.0001 from both statistical tests). These results indicate that the 

absence of Ald5 has a greater effect on the virulence of C. neoformans than that of 

the aldehyde dehydrogenase deficient in the ald13Δ mutant, but still allows for 

pathogenicity, unlike a deficiency of the aldehyde dehydrogenase deficient in the 

ald78Δ mutant, which appears to abolish virulence. 
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Discussion  
 
 C. neoformans has evolved several mechanisms to survive inside the host 

system by producing virulence factors like the capsule and melanin, enzymes like 

phospholipase B, urease, and proteases, and metabolites like trehalose, ethanol 

and acetate (Ma and May., 2009; Coelho et al., 2014; Bubb et al., 1999; Wright et 

al., 2002). This pathogen also shows the ability to switch to different carbon 

sources and use them as sources of energy whenever necessary, and therefore 

can survive in host tissues with low glucose (Hu et al., 2008; Price et al., 2011). 

One of the carbon sources that C. neoformans can depend on is acetate, which 

the pathogen can convert into acetyl-CoA to use in the tricarboxylic acid cycle, 

gluconeogenesis, or the glyoxalate cycle (Hu et al., 2008).  

 It has also been seen that high amounts of acetate are produced by C. 

neoformans, both in vitro and after infection of lung tissue in a mouse model (Bubb 

et al., 1999; Wright et al., 2002; Hu et al., 2008). Acetate is believed to provide a 

survival advantage to the pathogen, among other ways, through its effect on pH. 

Unlike other fungi, such as Aspergillus fumigatus or Candida albicans, C. 

neoformans grows only in a specific pH range; however, this range includes a pH 

of 7.4, which is the pH of human blood and cerebrospinal fluid, as well as in the 

more acidic environment inside the macrophage phagolysosome, with a pH of 4.0-

5.0 (O'Meara et al., 2010; Nyberg et al., 1992), which it actually prefers. When 

growing in a location in the host body that has a pH outside this preferred acidic 

range, such as in cerebral cryptococcomas, the pathogen secretes excess acetate 
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into the infected tissue in order to decrease the pH of the local environment (Wright 

et al., 2002), thereby optimizing the activity of phospholipase B, and potentially 

other enzymes, at the site of cryptococcal infection (Evans et al., 2015; Sharon et 

al., 2000). Reduced pH in the environment around C. neoformans can shield the 

pathogen from an immune attack by either reducing the migration of neutrophils or 

increasing their necrosis, as well as by permitting the neutralization of free radicals 

and decreasing the formation of superoxide, thereby limiting the ability of immune 

cells to use such chemicals to kill infecting cryptococci (Hu et al., 2008; Wright et 

al., 2002). 

 The exact pathway(s) by which C. neoformans produces acetate is 

unknown. In S. cerevisiae, the primary biosynthetic pathway for cytosolic acetate 

production during growth on glucose is the pyruvate dehydrogenase by-pass, 

which utilizes pyruvate decarboxylase; in this pathway, pyruvate, originally 

produced via glycolysis, is decarboxylated to form acetaldehyde, which is oxidized 

to acetate by one or more of the aldehyde dehydrogenase (Ald) enzymes 

functioning as an acetaldehyde dehydrogenase (Saint-Prix et al., 2004; Remize et 

al., 2000; Pronk et al., 1996). Not only does C. neoformans express similar 

enzymes, but mRNAs encoding both pyruvate decarboxylase and an aldehyde 

dehydrogenase are increased in C. neoformans cells recovered from the lung 

tissue of infected mice (Hu et al., 2008) or from the cerebrospinal fluid of a rabbit 

cryptococcal meningitis model (Steen et al., 2003). An aldehyde dehydrogenase 

has also been shown to be upregulated following engulfment by macrophages 
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(Derengowski et al., 2013). This suggests that the Pdc-Ald pathway may be used 

by C. neoformans to generate acetate, which may augment the virulence of the 

pathogen. However, C. neoformans may also use Pdc and Ald to enhance 

virulence in other ways. To better understand the functions of C. neoformans 

aldehyde dehydrogenases in growth and pathogenicity, mutants for the genes 

encoding aldehyde dehydrogenase enzymes were analyzed via various assays. 

This approach was complicated by the fact that nine different genes coding for 

different aldehyde dehydrogenases exist in the C. neoformans genome. These 

aldehyde dehydrogenases may have a wide array of functions, including reducing 

the toxicity of chemicals that the fungus may encounter, or producing various 

metabolites. 

Like C. neoformans, S. cerevisiae has multiple aldehyde dehydrogenases, 

so a review of the functions of the different S. cerevisiae enzymes and of their roles 

in survival under stress can inform the analysis of the results obtained in C. 

neoformans in the assays described above. To cope with the continuous stress 

they are subjected to during growth, most yeast species have devised stress 

detection and response mechanisms, including the high osmolarity glycerol (HOG) 

response pathway and pathways that respond to oxidative stress and DNA 

damage, heat shock, and nutritional starvation (Brewster et al., 1993; Hohmann, 

1997; Siderius et al., 1997; Estruch, 2000). Most relevant here, the accumulation 

of ethanol and acetaldehyde in growing cells can eventually lead to toxic cell death 

(Ingram and Buttke, 1985; Jones, 1990), so yeast utilize alcohol dehydrogenase 
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and one or more of the aldehyde dehydrogenases, respectively, to metabolize 

them into less toxic molecules (Aranda and del Olmo, 2003). For example, more 

than one S. cerevisiae aldehyde dehydrogenase can function as an acetaldehyde 

dehydrogenase to oxidize acetaldehyde into acetate (Pritchard and Kell, 2002; 

Saint-Prix et al., 2004).  

In S. cerevisiae, although the cytosolic aldehyde dehydrogenases Ald2p 

and Ald3p may not function as acetaldehyde dehydrogenases (Navarro-Aviño et 

al., 1999; Saint-Prix et al., 2004), the cytosolic Ald6p and the mitochondrial Ald5p, 

as well as the mitochondrial Ald4p specifically in ALD6 deletion strains, all appear 

to convert acetaldehyde to acetate, such that these three can partly, but not 

completely, compensate for each other (Aranda and del Olmo, 2003; Meaden et 

al., 1997; Saint-Prix et al., 2004; Remize et al. 2000). For example, both Ald6p and 

Ald5p play an important role in acetate production, and deletion of either 

corresponding gene reduces acetate production and growth under anaerobic 

conditions; additionally, levels of ALD5 mRNA are upregulated during both 

exponential growth and fermentation (Remize et al. 2000; Saint-Prix et al., 2004). 

Similarly, in the ald6Δ mutant, ALD4 mRNA is expressed earlier, and the levels of 

this mRNA and of Ald4p protein are increased to compensate for the loss of Ald6p 

with increased levels and possible accumulation of Ald4p (Saint-Prix et al., 2004). 

Thus, in an organism in which more than one aldehyde dehydrogenase exists, the 

enzymes might compensate for each other (Remize et al., 2000). This would 

explain the results from the various C. neoformans ald mutants, which had 
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reduced, but not abolished, acetate production, indicating a similar partial 

redundancy of the various Ald enzymes. 

Functions and evolutionary relatedness of aldehyde dehydrogenases in 

various species 

 Aldehyde dehydrogenases are not only present in fungi, but also in a vast 

array of species, since their substrates, organic compounds known as aldehydes, 

are present ubiquitously in nature (Perozich et al., 1999). Accumulation of these 

aldehydes causes toxicity, so it is important to regulate their levels in the cells 

(Lindahl, 1992; Perozich et al., 1999; Kozak et al., 2014). The aldehyde 

dehydrogenase (ALDH) superfamily consists of a class of enzymes that catalyzes 

the oxidation of aldehydes to their corresponding carboxylic acids, which are less 

toxic to the cells (Perozich et al., 1999). The various activities of these enzymes, 

including but not limited to this detoxification, have likely been critical throughout 

evolutionary history, since this superfamily is highly conserved in Eubacteria, 

Archaea, and Eukarya (Perozich et al., 1999). As seen in S. cerevisiae, some 

ALDHs are localized to the mitochondria, while others are localized to the cytosol, 

depending on the specific enzyme (Marchitti et al., 2008; Vasiliou and Nebert, 

2005; Black et al., 2009; Sládek et al., 2003). 

 There are a large variety of ALDHs in nature, and they take part in different 

physiological processes and exhibit specificity for various substrates. Some 

ALDHs will act on only a few specific substrates, while others have a broader 

specificity, yet most ALDHs require the presence of NAD+ or NADP+ as a cofactor 
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in order to function (Lindahl, 1992; Yoshida et al., 1998). Although most ALDH 

family members protect the cell by keeping in check the levels of harmful 

aldehydes, they also demonstrate functionality beyond detoxification; for example, 

aldehyde dehydrogenases are important for the synthesis of vital biomolecules like 

retinoic acid, folate, and betaine (Marchitti et al., 2008; Vasiliou et al., 2000; 

Sobreira et al., 2011). ALDHs also modulate processes like cell proliferation, 

differentiation, and cell survival, mainly through participation in retinoic acid 

synthesis (Marchitti et al., 2008). Some of the members of the ALDH superfamily 

also exhibit functions independent of their enzymatic activity. These alternate 

activities include acting as crystallins in the cornea, absorbing ultraviolet radiation 

there, and binding to hormones or other small molecules, including androgens, 

cholesterol, thyroid hormone, and acetaminophen (Pereira et al., 1991; Marchitti 

et al., 2008; Estey et al., 2007), as well as roles in abiotic stress tolerance, male 

fertility/sterility, embryo development, and seed viability and maturation in plants 

(Kotchoni et al., 2010). ALDH activity is also required for catalysis of the 

phytohormone indole-3 acetic acid (IAA) from indole-3-acetaldehyde (Cooney and 

Nonhebel, 1989; Basse et al., 1996; Tam and Normanly, 1998; Fedorova et al., 

2005; Spaepen et al., 2007; Reineke et al., 2008). Moreover, ALDH proteins can 

participate in osmoregulation and can operate as antioxidants (Marchitti et al., 

2008; Vasiliou and Nebert, 2005). 

 The protein sequences of human and horse mitochondrial and cytosolic 

ALDHs, as well as the sequence of rat dioxin-inducible ALDH, have been known 
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since as early as 1988 (Von Bahr-Lindström et al., 1984; Hempel et al., 1985, 1989; 

Johansson et al., 1988). In 1999, Perozich and coworkers investigated the 

evolutionary relationships between 145 ALDH family members, spanning multiple 

phyla. This led to the identification of several conserved residues and motifs in the 

ALDH superfamily (Perozich et al., 1999). There are ten highly conserved motifs, 

all clustered around the active site, suggesting the importance of these motifs to 

the function of all ALDH enzymes, regardless of specific substrate (Perozich et al., 

1999). Perozich et al., (1999) reported that there were 13 ALDH families, but this 

number has been increased to 20 (Sophos and Vasiliou, 2003), following the 

availability of improved and more efficient sequencing and alignment technologies 

and access to sequences of more aldehyde dehydrogenases. In fact, a great deal 

of information is now available for gene and protein sequences of far more ALDH-

encoding genes (usually referred to as ALD genes) than previously analyzed. As 

of 2002, 555 ALD gene sequences were reported, including 351 from Eubacteria, 

32 from Archaea, and 172 from Eukarya (Sophos and Vasiliou, 2003).  

 The evolutionary relatedness of the nine C. neoformans aldehyde 

dehydrogenases to each other and to enzymes from other fungal species was 

analyzed (Figure 2.2), to attempt to discern specific roles for each C. neoformans 

aldehyde dehydrogenase. Three important observations were made from the 

phylogenetic tree. First, the nine proteins could be divided principally into two major 

groups based on their predicted common ancestor. CNAG_01078 (Ald78), 

CNAG_05113 (Ald13), and CNAG_06628 (referred to as Ald5 because that is the 
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official designation of the protein) formed the first monophyletic group, whereas 

CNAG_06010 (Ald10), CNAG_06018 (Ald18), CNAG_05029 (Ald29), 

CNAG_03269 (Ald69), CNAG_00735 (Ald35), and CNAG_02377 formed a second 

monophyletic group. Within this second group, Ald10 and Ald18 are most closely 

related, and then most closely related to Ald29, then to CNAG_02377, next to 

Ald69, and finally to Ald35. All of the enzymes in this second group are 

evolutionarily very distant from the aldehyde dehydrogenases of S. cerevisiae and 

A. nidulans, which was the second major observation.  

 The above two major groups could be further divided into six groups, in 

which one or more of the proteins showed evolutionary relatedness to specific 

aldehyde dehydrogenases from other species. For example, CNAG_05029 

(Ald29), the predicted meiotic sister-chromatid recombination aldehyde 

dehydrogenase in C. neoformans var grubii, is closely related to the meiotic sister-

chromatid recombination aldehyde dehydrogenase of Coprinopsis cinerea, 

supporting the prediction of a role for Ald29 in sister-chromatid exchange, and also 

to the betaine aldehyde dehydrogenase of Phycomyces blakesleanus. These 

three enzymes are predicted to have oxidoreductase activity, utilizing NAD+ as an 

electron acceptor.  

 Ald18 (CNAG_06018) and Ald10 (CNAG_06010) were found to be closely 

related, not only to each other, but also to aldehyde dehydrogenases in 

Cryptococcus gattii and Phanerochaete chrysosporium, suggesting that they could 

function in a similar role in C. neoformans as these enzymes. Unfortunately, the 
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specific functions of those enzymes in C. gattii and P. chrysosporium are not 

known. Nevertheless, the phylogenetic relatedness of CNAG_06018 and 

CNAG_06010 is based on their similarity in amino acid sequence, indicating these 

proteins are sufficiently alike that they may have redundant or overlapping 

functions.  

 ALD10 and ALD18 (CNAG_06010 and CNAG_06018, respectively) are not 

only evolutionarily closely related to each other, but also physically close to each 

other in the same chromosome, which might lead one to speculate that they may 

be similar to the S. cerevisiae genes ALD2 and ALD3, which are also located in 

tandem (Navarro-Aviño et al., 1999). However, S. cerevisiae ald2p and ald3p are 

outgroups in the MEGA phylogeny tree and therefore are not closely related to any 

of the C. neoformans ALD genes assayed herein. According to the phylogenetic 

tree, they are not even closely related to each other, with Ald3p acting as the outlier 

group to all other aldehyde dehydrogenases. 

 Ald69 (CNAG_03269) was found to be most closely related to a C. gattii 

aldehyde dehydrogenase (CGB_G2310C), which, according to the Fungi 

Database (https://fungidb.org/fungidb/app/record/gene/CGB_G2310C), is in turn 

homologous to vanillin dehydrogenases from other fungal species, indicating that 

Ald69 may function as a vanillin dehydrogenase or other oxidoreductase. Ald35 

(CNAG_00735) was found to be most closely related to an NAD-aldehyde 

dehydrogenase in P. chrysosporium (AGR57_4875), which the Fungi Database 
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indicated is homologous to succinate-semialdehyde dehydrogenase enzymes 

from other species, suggesting that Ald35 may have this function in C. neoformans. 

 Ald78 (CNAG_01078) and Ald13 (CNAG_05113) were found to be most 

closely related to an aldehyde dehydrogenase from Cryptococcus deuterogattii; 

unfortunately, a search in the Fungi Database for this protein did not reveal a more 

specific function. However, these aldehyde dehydrogenases, along with Ald5 

(CNAG_06628) and the equivalent aldehyde dehydrogenase in the KN99 strain, 

were determined to be similar to each other and evolutionarily related to S. 

cerevisiae aldehyde dehydrogenases Ald4p (YOR374W), Ald5p (YER073W), and 

Ald6p (YPL061W) that all act on acetaldehyde as a substrate and/or produce 

acetate under different conditions (Aranda and del Olmo., 2003; Saint-Prix et al., 

2004). This was the third major observation based on the phylogenetic analysis, 

and it was an important one, since it strongly suggests that one or more of 

CNAG_01078, CNAG_05113, and CNAG_06628 (Ald5) are most likely to be the 

acetaldehyde dehydrogenase(s) in C. neoformans that function in acetate 

production.  

All ald mutants have reduced acetate production 

 In order to determine whether any of the eight out of nine C. neoformans 

Alds for which mutants were obtained from the Madhani library, especially Ald5, 

Ald13, or Ald78, can function as an acetaldehyde dehydrogenase (leaving 

CNAG_02377 as the last option if not), all of the mutants were confirmed to be 

deleted for the corresponding gene and assayed for production of acetate. It was 
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observed that acetate production was decreased in each of the mutant strains 

relative to the wild type strain (Figure 2.6), but, interestingly, was not completely 

eliminated. In other words, a complete loss of acetate production did not occur in 

cells deficient for any given Ald, suggesting that when a single ALD gene is 

deleted, either one or more of the aldehyde dehydrogenases encoded by the other 

genes may partially compensate and produce acetate. As mentioned above, this 

has been previously shown for the ald6 mutant in S. cerevisiae, in which the yeast 

compensates for the deletion of ALD6 by upregulating ALD4 (Saint-Prix et al., 

2004). Alternatively, other pathways not utilizing aldehyde dehydrogenases, such 

as one employing Xfp1/2 and Ack, may be used for the production of acetate when 

one of the ALD genes is lost, or may contribute to acetate production in general 

(Figure 2.1). The retention of some degree of acetate production disproves the 

hypothesis that only one of Ald78, Ald13, or Ald5 is the sole C. neoformans 

acetaldehyde dehydrogenase, but it strengthens the hypothesis that one of these 

may be the major acetaldehyde dehydrogenase, with the other Alds acting as 

"backup." Therefore, it is informative to review the results of the other assays to 

determine the relative contribution of the various aldehyde dehydrogenases to the 

degradation of acetaldehyde (to prevent toxicity) and to the production of acetate, 

as well as to identify clues as to the alternative, specific functions of the eight 

aldehyde dehydrogenases for which mutants were available. 
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Growth assays reveal abnormalities in three C. neoformans ald mutants 

 The first of these other assays measured growth using glucose or 

alternative primary carbon sources. In order to propagate and disseminate inside 

the host body despite possible location-to-location differences in the availability of 

glucose, C. neoformans utilizes different carbon sources to obtain energy, 

including glucose, ethanol, and acetate (Hu et al., 2008; Price et al., 2011). 

Therefore, the growth of the mutants on glucose, ethanol, or acetate supplemented 

minimal media was compared, both qualitatively and quantitatively, with the growth 

of the wild type strain, to determine whether each of the aldehyde dehydrogenases 

was necessary for the growth on alternative carbon sources, and therefore in 

virulence.  

The ald5Δ mutant had a growth defect when it was provided with ethanol 

instead of glucose as the primary carbon source (Figures 2.4c and 2.5c). Under 

anaerobic conditions, pyruvate, produced from glucose, or ethanol, via alcohol 

dehydrogenase, can be converted to acetaldehyde and then to acetate in order to 

store energy (within NADPH) in S. cerevisiae (Pronk et al., 1996; Cheung et al., 

2017). At the same time, acetaldehyde is toxic to S. cerevisiae at or above certain 

levels (Aranda and del Olmo, 2003; Aranda and del Olmo, 2004), so an inability to 

convert it to acetate could kill the cells. In C. neoformans, when ethanol is the sole 

or primary carbon source, as it was when the ald5Δ mutant was unable to grow 

normally, the ethanol is likely converted to acetaldehyde by the fungus, even under 

the aerobic conditions of the experiment. It is therefore possible that the growth 
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defect of the ald5Δ mutant may be due to accumulation of acetaldehyde to toxic 

levels if deletion of ALD5 results in deficiency of the acetaldehyde dehydrogenase 

that converts the acetaldehyde to acetate. In other words, the growth defect on 

ethanol suggests that ALD5 encodes the principal acetaldehyde dehydrogenase 

and that, to the extent that any mutant cells are able to grow on ethanol, the 

aldehyde dehydrogenases encoded by the other ALD genes may partially 

compensate by processing the acetaldehyde at lower rates of conversion.  

 In contrast, the growth assays did not support a role for the enzyme deficient 

in the ald13Δ strain as an acetaldehyde dehydrogenase. The ald13Δ mutant 

displayed small colonies in the spot assay when grown using acetate or ethanol 

(Figure 2.4b or c, respectively), but otherwise grew normally, including producing 

normal size colonies when grown using glucose as the carbon source (Figure 

2.4a). It also grew normally in the quantitative growth curve assay in liquid media 

(Figure 2.5), in which colonies do not form, indicating that deficiency of the Ald13 

enzyme has a relatively minor, non-cell autonomous effect on the growth of C. 

neoformans, since it did not affect the cells individually, only en masse. Thus, other 

than concluding that Ald13 facilitates the use of alternative carbon sources besides 

glucose, and that accumulation of its aldehyde substrate by multiple cells 

eventually hinders colony growth, it is difficult to discern the specific role for this 

enzyme based on the growth assays alone. 

 The ald69Δ mutant exhibited diminished growth (relative to the wild type 

strain) in media supplemented with glucose (Figure 2.4a, 2.5a), whereas it grew 
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normally on media containing acetate or ethanol as the primary carbon source 

(Figure 2.4 b and c; Figure 2.5 b and c), suggesting that the Ald69 enzyme has a 

role in a glucose metabolism pathway. One possible role for this aldehyde 

dehydrogenase is as a glyceraldehyde-3-phosphate dehydrogenase in glycolysis. 

However, two other C. neoformans var. grubii glyceraldehyde-3-phosphate 

dehydrogenases, CKF44_06699 and CKF44_004057 (FungiDB; 

http://fungidb.org/fungidb/), have been identified, and their protein sequences are 

not similar enough (i.e. sharing only 17.67% and 16.67% identity, respectively) 

with that of Ald69 to support this hypothesis. Nevertheless, the fact that the ald69Δ 

mutant can grow using acetate or ethanol, but not glucose, supports a role for the 

enzyme in an upstream part of a glucose metabolism pathway, and not a role as 

an acetaldehyde dehydrogenase. 

Capsule defects and loss of cell wall integrity was observed in the ald 

mutants 

 In addition to the use of organic molecules as carbon sources to obtain 

energy from the environment, C. neoformans also uses them to form, among more 

complex molecules, carbohydrates employed as virulence factors.  For example, 

acetate, via acetyl-CoA, is important in acetylation of the GXM capsule 

polysaccharide that constitutes 90-95% of the capsule carbohydrates, and this 

acetylation is necessary for the GXM that is shed from the capsule to be able to 

reduce neutrophil migration (Rakesh et al., 2008; Vecchiarelli et al., 2011; Hu et 

al., 2008; Ellerbroek et al., 2004a, b, c). Additionally, GXM or other capsule 
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polysaccharides, when shed into the extracellular space, can inhibit the ability of 

host immune cells to generate and secrete pro-inflammatory cytokines (Li et al., 

2018; Siegemund and Alber, 2008; Villena et al., 2008), deplete complement 

proteins, and reduce the migration of immune cells, including leukocytes, to sites 

of infection (Li et al., 2018; Ellerbroek et al., 2004a,b,c). These capsule 

polysaccharides, when shed near or within macrophages, can also directly 

interfere with phagocytosis and with the ability of macrophages to present peptides 

from phagocytosed fungal cells via their surface MHC molecules (Li et al., 2018; 

Siegemund and Alber, 2008; Villena et al., 2008), and even cause macrophage 

death, as well as induce macrophages to express Fas ligand and thereby trigger 

apoptosis of nearby Fas receptor-expressing T cells (Monari et al., 2005; Ben-

Abdallah et al., 2012; Lupo et al., 2008; Vecchiarelli et al., 1994b). The shed 

polysaccharides can also drive down the T-cell response in other ways and 

interfere with the activation and proliferation of T cells (Vecchiarelli et al., 2011; 

Yauch et al., 2006). Hence, capsule polysaccharides are used for a number of 

virulence-enhancing immunomodulatory functions and the fungus may use acetate 

to enhance these functions. 

 The intact capsule is also important for C. neoformans virulence. Upon 

entering the lungs, C. neoformans attempts to evade phagocytosis by 

macrophages by enlarging its polysaccharide capsule (Okagaki et al., 2010; 

Zaragoza et al., 2010; Okagaki and Nielsen, 2012; Levitz and Tabuni, 1991; Xie et 

al., 2012; Sabiiti and May, 2012; May et al., 2016). A larger capsule prevents 
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macrophages from phagocytosing the fungal cells and allows any phagocytosed 

C. neoformans to neutralize the destructive reactive oxygen species produced by 

the macrophage (Giles et al., 2009, Velagapudi et al., 2009). Capsule attachment 

to the cell wall depends on the chitin monomer, β-1,4 N-acetyl glucosamine, the 

production of which requires acetyl groups that can be generated from acetate 

(Ramos et al., 2012; Vecchiarelli et al., 2011; Fonseca et al., 2009; Rodrigues et 

al., 2008a; Huang et al., 2002; Levitz, 2001; Van Dyke and. Wormley, 2018; Erwig 

and Gow, 2016; Hu et al., 2008). Although mutants that are defective in capsule 

acetylation are actually hypervirulent (Janbon et al., 2001), acetate production is 

likely very important in capsule formation, stability, and function.  

 It is possible that, through a negative effect on acetate production, or via 

other mechanisms, the lack of one or more of the aldehyde dehydrogenases could 

negatively affect capsule formation. Therefore, capsule formation/size in the ald 

mutants was compared to that of the wild type strain. All of the mutants had much 

thinner capsules than the wild type strain, except for the ald10Δ mutant, which also 

displayed a smaller capsule, but which was affected to a lesser degree (Figure 

2.7). As a further step, the capsule and cell wall integrity of the mutant and wild 

type strains were assayed on media containing Congo red or SDS. By binding to 

(1,4) β-glucans (or to the chitin monomer, β-1,4 N-acetyl glucosamine), Congo red 

interferes with cell wall construction and with the attachment of the chitin and 

capsule to the cell wall, while SDS that traverses gaps in the capsule, chitin, or cell 

wall lyses the cells by dissolving the plasma membrane (García et al., 2015; Banks 
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et al., 2005; Ram and Klis, 2006; Baker et al., 2007; Gerik et al., 2005; Wood et 

al., 1983). Thus, in the assays, cells with incompletely formed capsules or cell walls 

will have growth defects on these media. While the SDS had no visible effect on 

colony growth of either the wild type or mutant strains, all of the mutants were more 

seriously affected than the wild type strain by the Congo red, and developed fewer, 

smaller colonies (Figure 2.13c), indicating a partial loss of capsule and/or cell wall 

integrity. In other words, the lack of ability to grow in media containing Congo red 

may reflect a greater permeability for the dye due to the thinner capsules of the ald 

mutants. The ald5Δ mutant (Figure 2.13c, second row from the top) while unable 

to grow as well as the wild type strain, was least affected by the Congo red, which 

may given the potential importance of acetate in capsule formation, weaken the 

argument for Ald5 being the principle acetaldehyde dehydrogenase. In contrast, 

the ald69Δ mutant exhibited the most severe growth defect. It did not grow at all if 

plated at low cell concentrations and grew poorly at higher concentrations of plated 

cells (Figure 2.13c, bottom row). This indicated that the enzyme lacking in the 

ald69Δ mutant is necessary for capsule and cell wall integrity, likely via a role in 

cell wall construction or attachment of the cell wall to the capsule; this may involve 

a function for the enzyme in the production or utilization of acetate. Alternatively or 

additionally, the failure to process a particular aldehyde due to a lack of the 

aldehyde dehydrogenase in each mutant may lead to accumulation of the 

respective aldehyde to levels that impede capsule formation. The aldehyde 

processed by the Ald69 enzyme might be the most toxic, potentially most strongly 
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inhibiting an enzyme, or inhibiting the most enzymes, involved in cell wall 

production or in maintaining cell wall and capsule integrity, while the aldehyde 

processed by Ald5 appears to be least inhibitory to the maintenance of capsule/cell 

wall integrity. This interpretation of the results also matches with the acetate 

production results, in which all of the mutants exhibited a similarly reduced ability 

to make acetate. If acetate production was the limiting factor in capsule and cell 

wall integrity, all of the mutants should have been equally affected by Congo red.  

The ald69Δ mutant was sensitive to oxidative and nitrosative stress. 

 One of the reasons why capsule and cell wall integrity matter to C. 

neoformans virulence is that, upon engulfment by an alveolar (or other) 

macrophage, C. neoformans is chemically attacked by high concentrations of 

reactive oxygen and nitrogen species inside the phagolysosome, leading to its 

destruction if it cannot neutralize these free radicals (Missall et al., 2004a). 

Therefore, to be pathogenic, C. neoformans that is unable to avoid phagocytosis 

must be able to survive oxidative and nitrosative stress, and, to do this, it must be 

able to maintain cell wall and capsule integrity (Gerik et al., 2005). As mentioned 

above, the capsule protects against reactive oxygen and nitrogen species 

produced by phagocytes by neutralizing them and generally keeping them away 

from the cell wall (which acts as a second protective layer) and from the cell 

membrane (Zaragoza et al., 2008; Zaragoza, 2011). Furthermore, if one or more 

of the aldehyde dehydrogenases that are variously deficient in the mutants 

produces acetate, since acetate itself or the change in pH it can induce in the 
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environment protects the pathogen from the ROS and RNS produced by 

macrophages (Giles et al., 2009, Velagapudi et al., 2009), the mutant lacking the 

appropriate Ald enzyme should be more sensitive to oxidative or nitrosative stress. 

Thus, it was important to determine whether the various ald mutants were more 

sensitive to ROS or RNS than the wild type strain. All strains were grown on plates 

with hydrogen peroxide as an ROS source or sodium nitrite as an RNS source 

(Figures 2.10 and 2.11, respectively). Surprisingly, in both cases only the ald69Δ 

mutant was affected. Under oxidative stress, the ald69Δ mutant grew poorly 

(Figure 2.10b, bottom row), while under nitrosative stress it turned pink (Figure 

2.11b, bottom row), a phenotype reversed when adenine was added to the media 

with the sodium nitrite (Figure 2.11c, bottom row). This indicated that the ald69Δ 

mutant was inhibited in the production of adenine, such that the accumulation of 

either of two red intermediates in the adenine biosynthesis pathway caused the 

color change, whereas providing adenine to the cells eliminated the need to use 

the pathway and produce the intermediate. The same phenotype has been 

observed in S. cerevisiae mutants with deficiencies in adenine production (Smirnov 

et al., 1967). Whether the lack of the enzyme deficient in the ald69Δ mutant caused 

inhibition of the adenine production pathway via the lack of the enzyme product or 

by accumulation of the aldehyde substrate of the enzyme, is unknown. Likewise, 

whether an already existing suppression of the adenine biosynthesis pathway due 

to lack of Ald69 was enhanced by nitrosative stress or the nitrosative stress 

activated the adenine synthesis pathway, which was then inhibited downstream by 
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the lack of Ald69, is also unknown. Together with the growth defect on glucose 

observed for the same mutant, it does seem that the ald69Δ mutant may have a 

more general growth defect than that expected from a role as an acetaldehyde 

dehydrogenase or from a lack of acetate production alone. Regardless, it is 

interesting that only the ald69Δ mutant, and not the ald5Δ, ald13Δ, or ald78Δ 

mutant, or, for that matter, any other aldehyde dehydrogenase deficient mutant, 

exhibited sensitivity to both ROS and RNS. 

Melanin production is altered in the ald69Δ as well as in the ald5Δ mutant 

 The correlation between resistance to ROS/RNS and virulence is well 

established, indicating that more than one mechanism must be used by virulent 

cryptococci to neutralize free radicals. Indeed, secondary to the capsule, melanin 

production and deposition in the cell wall promotes resistance to ROS and RNS 

(Wang et al., 1995; Xie et al., 1997; Wang and Casadevall, 1994) because melanin 

is itself a stable free radical that can react with and directly neutralize ROS/RNS 

(Jacobson and Emery, 1991a; Jacobson and Tinnell, 1993; Steenbergen and 

Casadevall, 2003). Melanin is therefore used by fungal cells to provide protection 

from oxygen and nitrogen derived radicals produced by macrophages, thus 

protecting C. neoformans from immune attack, by scavenging these free radicals 

(Samarasinghe et al., 2018; Jacobson and Tinnell, 1993; Polacheck and Kwon-

Chung, 1988). In fact, melanin deficient mutants of C. neoformans that produce 

100-fold less melanin are less virulent than melanin producing strains (Wang et 

al., 1995).  
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 C. neoformans synthesizes melanin (or at least a black, melanin-like 

pigment) from chemicals obtained from host cells or from the environment, namely, 

catecholamines like L-DOPA, and potentially, aldehydes (Williamson, 1997; 

Casadevall et al., 2000; McFadden and Casadevall, 2001; Steenbergen and 

Casadevall, 2003; Frases et al., 2007; Eisenman et al., 2007). Conversely, lack of 

melanin production may make a mutant more vulnerable to aldehyde accumulation 

resulting from ROS/RNS-mediated membrane damage. A failure to counteract 

oxidative stress leads to oxidative degradation of cell membrane lipids (i.e. lipid 

peroxidation), which gives rise to hundreds of different reactive and toxic 

aldehydes (Singh et al., 2013). Thus, C. neoformans aldehyde dehydrogenases 

may be necessary to protect against the effects of ROS and RNS by reducing the 

levels of those aldehyde by-products (Singh et al., 2013). The ald69Δ mutant 

produced abnormally low levels of melanin, which may be directly related to the 

growth defect under oxidative and nitrosative stress also exhibited by this mutant. 

In contrast, the ald5Δ mutant appeared more melanized than the wild type strain, 

which should have made it more resistant to ROS/RNS than the wild type strain, 

but it was not. Thus, the mechanisms for the melanin phenotypes of the two 

mutants appear to be divergent. 

 Melanin, and the laccase enzyme that produces it, are located in the 

cryptococcal cell wall (Perez-Dulzaides et al., 2018; Walton et al., 2005; Zhu et al., 

2001; McFadden and Casadevall, 2001), which allows the melanin to neutralize 

any free oxygen and nitrogen radicals before they can reach the cell membrane 
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(Wang et al., 1995; Wang et al., 1996). However, this localization also means that 

disruption of cell wall integrity leads to leaking out and loss of the melanin (Perez-

Dulzaides et al., 2018). Along with low melanin levels, the ald69Δ mutant also 

exhibited significant defects in capsule formation and thickness, as well as in cell 

wall integrity in the Congo red assay. So, it is reasonable to hypothesize that the 

loss of cell wall integrity in the ald69Δ mutant is directly responsible for the lack of 

melanin, and that, in combination with a deficiency in the ability to eliminate a 

potentially toxic aldehyde from the cell, this results in increased cell death under 

oxidative stress in the ald69Δ mutant. The reduced capsule thickness observed in 

the ald69Δ mutant supports this melanin leakage hypothesis.  However, since 

melanization of the cell wall increases cell wall thickness (McFadden and 

Casadevall, 2001; Feldmesser et al., 2001), it is also possible that the lack of 

melanin contributes to the lack of cell wall integrity, either causatively or in a 

negative feedback cycle. The block in the adenine synthesis pathway observed in 

the ald69Δ mutant under nitrosative stress may be an indicator of a constitutive 

defect (that is simply enhanced in the presence of RNS) resulting in generally low 

cyclic AMP (cAMP) levels. Since laccase function is regulated by a signal 

transduction pathway that is dependent on cAMP (Pukkila-Worley et al., 2005), low 

levels of cAMP in the ald69Δ mutant could result in low laccase activity, low 

melanin production, and low cell wall integrity, in that order.  

As mentioned above, in contrast with the ald69Δ mutant, the ald5Δ mutant 

produced more melanin. The capsule of the ald5Δ mutant is no larger than the 
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capsule of the ald69Δ mutant, precluding the possibility that more melanin is simply 

being retained. Therefore, the simplest explanation for the increased pigmentation 

of the ald5Δ mutant is that deficiency of the Ald5 enzyme lead either to a lack of a 

metabolic product that normally inhibits laccase activity or to an excess of the 

aldehyde substrate of Ald5, which then accumulated and was used as a substrate 

by one or both laccases to produce more melanin (Williamson, 1997). Another 

possibility is that the ALD5 gene might enhance or play a role in the high osmolarity 

glycerol/HOG1 pathway that inhibits melanin production specifically in serotype A 

strains of C. neoformans, so a deficiency of ALD5 lead to increased melanin in the 

KN99a-derived, and thus serotype A (Nielsen et al., 2003), ald5Δ mutant strain 

assayed herein, similar to that observed in the hog1 mutant of this serotype (Bahn 

et al., 2005). However, if the ALD5 deficiency does interfere with the high 

osmolarity glycerol pathway, then the ald5Δ mutant should have had an abnormal 

response to hyperosmolarity in the NaCl/KCl osmotic stress assay, which neither 

it nor any other ald mutant exhibited. Yet, it is still possible that Ald5 directly or 

indirectly inhibits melanin production downstream of the HOG1 pathway, or that 

the aldehyde accumulated in the ald5Δ mutant inhibits the HOG1 pathway 

downstream of the response to hyperosmolarity. The substrate or product of Ald5 

may also regulate melanin production by influencing some other signaling 

pathway. 

 Since melanin pigmentation was found to be unaltered in the other ald 

mutants, either the corresponding genes play no role in the regulation of melanin 
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production or the corresponding enzymes are somewhat redundant in function, so 

loss of one aldehyde dehydrogenase is compensated for by the other enzymes 

and thus has no effect on melanin production. In either case, it is clear that at least 

Ald5 plays either a metabolic or regulatory role in melanin production, regardless 

of whether or not it functions in acetate production, while the enzyme deficient in 

the ald69Δ strain plays a role either in melanin production or in cell wall or capsule 

integrity, or both. 

Only the ald29Δ mutant has a defective hypoxia response, which is rescued 

by the presence of acetate  

After dissemination, C. neoformans encounters and must cope with a 

hypoxic state in infected tissues (Erecińska and Silver, 2001; Kronstad et al., 2012; 

Chang et al., 2007). For example, oxygen concentrations in the human brain are 

significantly lower, at 1-5%, than atmospheric levels and levels present in the lungs 

(i.e. ~14-21% oxygen), requiring C. neoformans to adapt to this hypoxia to infect 

the brain (Erecińska and Silver, 2001; Kronstad et al., 2012; Chang et al., 2007). 

Growth under hypoxia forces the use of fermentation, in which acetaldehyde 

dehydrogenase activity may be utilized by wild type C. neoformans to produce 

acetate and NADPH. So, a growth defect of an ald mutant under hypoxia might 

signify a deficiency of the acetaldehyde dehydrogenase function of the 

corresponding enzyme. Therefore, the survival/growth of the wild type and mutant 

strains under conditions mimicking hypoxia was assayed. 
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Many mammalian studies have used cobalt chloride (CoCl2) to induce 

hypoxia-mimicking conditions (Goldberg et al., 1987; Wang and Semenza, 

1993a,b; Wang et al., 2000; Huang et al., 2003; Grasselli et al., 2005). Likewise, it 

has been shown that growth of fungi on media containing CoCl2 can be used to 

mimic hypoxia in fungal assays, although the mechanism of action is different from 

that in animals (Goldberg et al., 1987; Wang and Semenza, 1993a, b; Lee et al., 

2007; Chun et al., 2007; Chang et al., 2007). In fungi, including in C. neoformans, 

CoCl2 induces the Tco1/HOG pathway, as well as expression and activation of 

Sre1p and Scp1p, which drive the oxygen dependent, and therefore oxygen 

sensing, sterol synthesis pathway; CoCl2 does this in the same way as hypoxia 

itself, making the fungal cells behave as if they are in low oxygen (Lee et al., 2007; 

Chun et al., 2007; Chang et al., 2007; Bahn et al., 2005). Hence, the growth of the 

ald mutant and wild type strains on cobalt chloride containing media was assayed.  

Of note, cobalt chloride treatment also increases the production of ROS (Guzy et 

al., 2007), since the cobalt ion in the cobalt chloride can drive the production of 

ROS via the Fenton reaction just like iron (Ingavale et al., 2008), so results from 

the hypoxia and oxidative stress assays were analyzed together to determine if 

any mutant phenotype was due to hypoxia or ROS. 

Only the ald29Δ mutant (and not the ald5Δ nor the ald69Δ strain) was 

sensitive to the use of cobalt chloride to mimic hypoxia. Moreover, this sensitivity 

was due to the lack of ability of the mutant to respond properly to hypoxia, and not 

due to a sensitivity to ROS or RNS, since this mutant grew normally on media with 



170 
 

hydrogen peroxide or sodium nitrite. This, together with the finding that 

supplementing CoCl2 treated plates with acetate restored normal growth of the 

ald29Δ mutant, strongly suggests that the corresponding aldehyde dehydrogenase 

functions in fermentation and acetate production. Therefore, it is possible that 

Ald29 functions as a major acetaldehyde dehydrogenase and produces acetate, 

despite the lack of homology to the major acetaldehyde dehydrogenases in S. 

cerevisiae. The specific requirement for the Ald29 enzyme for cryptococcal survival 

under low oxygen conditions indicates that this Ald is a virulence factor in C. 

neoformans and that either it plays a role in the production of acetate by an 

anaerobic, fermentation-based pathway such that supplementing with acetate 

eliminates the need for the enzyme, or it functions in a hypoxia response pathway 

that can be replaced by a secondary, acetate-dependent pathway. 

In vitro and in vivo virulence assays reveal a role for several Alds in 

pathogenicity 

Once the effects of a deficiency of the various aldehyde dehydrogenases 

on survival under the assortment of stresses associated with infection of a host 

were determined, the next logical step was to test the effects on virulence itself, 

using in vitro and in vivo assays. Part of the virulence for C. neoformans involves 

evading or surviving phagocytosis. C. neoformans var neoformans isolated from 

the lungs of previously infected mice express high levels of an ALD transcript (Hu 

et al., 2008) encoding a protein with 96.25% sequence identity to Ald5 from C. 

neoformans var. grubii. Moreover, after ingestion by macrophages, C. neoformans 
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var grubii upregulates expression of ALD5 (Derengowski et al., 2013). This 

indicates that expression of this aldehyde dehydrogenase is important to protect 

the fungal cell from phagocytosis or from destruction by the macrophage after 

engulfment. Expression of other ALD genes may also be required to survive 

phagocytosis. Furthermore, the smaller capsules observed for the aldehyde 

dehydrogenase mutants in the capsule formation assay should make these 

mutants more prone to phagocytosis and destruction by macrophages.  Therefore, 

the effect of deficiency of each Ald, in the corresponding knockout mutant, on 

phagocytosis and survival after engulfment was quantified in an in vitro 

macrophage assay (Figure 2.14). The C. neoformans ald5Δ, ald13Δ, ald29Δ, 

ald69Δ, and ald78Δ  mutants exhibited statistically significantly reduced survival 

inside the macrophages and recovery afterwards, versus the wild type strain 

(40.45%, 65.47%, 28.08%, 22.95% and 30.09% survival after phagocytosis, 

respectively, with P-value = 0.0006, P-value = 0.0417, P-value < 0.0001, P-value 

= 0.0004, and P-value = 0.0028, respectively). This confirms a role for each of the 

corresponding Ald enzymes in virulence. However, it does not reveal their specific 

roles in pathogenesis. Whether the inability of the ald5Δ mutant to grow on ethanol 

plays any role in its low survival inside macrophages is uncertain, and the ald5Δ 

and ald69Δ mutants have opposite defects in melanization, eliminating a common 

melanin-production defect as the cause for low survival. While the growth defect 

of the ald29Δ mutant under hypoxia-mimicking conditions, and the dependence of 

this defect on the absence or presence of acetate, as well as the lack of cell wall 
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integrity and sensitivity to ROS/RNS of the ald69Δ mutant, are most likely relevant 

to the decreased survival of these mutants inside the macrophages, these 

phenotypes are not shared between ald5Δ,  ald29Δ, and ald69Δ mutants, so no 

one phenotype is associated with reduced recovery from phagocytosis. Likewise, 

all of the mutants, including those that had normal survival after phagocytosis, 

exhibited smaller capsules and produced lower than normal levels of acetate, so 

these phenotypes, while potentially relevant, are not the cause of the reduced post-

engulfment survival of the ald5Δ, ald13Δ, ald29Δ, ald69Δ, and ald78Δ  strains. 

Thus, it appears that each of these mutants was more vulnerable to phagocytosis 

than the wild type strain due to the loss of individual pathways resulting from the 

deletion of the corresponding gene. Nevertheless, Ald5 and the enzymes deficient 

in the ald29Δ and ald69Δ mutants are clearly required for virulence of C. 

neoformans, at least in vitro. 

For the in vivo virulence assay, the larvae of Galleria mellonella, commonly 

known as the greater wax moth, were used. G. mellonella is an ideal model to study 

the processes of C. neoformans infection and virulence. The larvae are quite easy 

to obtain, are inexpensive to grow and maintain in the lab since they can be kept 

in Petri dishes with wood chips, and can be infected or treated with various reagents 

via any one of multiple delivery systems, including topical application, oral delivery, 

or injection, without significantly traumatizing the insect (Fuchs et al., 2010; 

Kavanagh and Sheehan, 2018). The latter property permits relatively quick 

infection of multiple larvae with specific fungal pathogens. G. mellonella 
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encounters various microbes in its natural environment and has therefore evolved 

the capacity to produce specific immune responses that are similar to those of 

potential mammalian hosts of C. neoformans (Fuchs et al., 2010; Kavanagh and 

Sheehan, 2018). Specifically, the early phagocyte response can be studied using 

this model organism, as it possess 6 different types of phagocytic cells: 

prohemocytes, coagulocytes, spherulocytes, oenocytoids, plasmatocytes, and 

granulocytes;  additionally, a change in the concentration of hemocytes subsequent 

to infection reflects the overall immune response (Arvanitis et al., 2013; Tsai et al., 

2016). Moreover, the structural, cellular, humoral, and molecular level responses of 

these phagocytic cells are similar to those of the mammalian innate immune 

response (London, et al., 2006). Furthermore, the ability of G. mellonella to grow 

at 37°C, which is human body temperature, as opposed to 25°C, the preferred 

temperature for many other non-mammalian model organisms, makes it an ideal 

system to study factors required for mammalian infection by fungi like C. 

neoformans, without the expense associated with a mammalian model organism 

(Fuchs, et al., 2010; Kavanagh and Sheehan, 2018). To study the virulence of C. 

neoformans, the mortality rate of the larvae can be assessed over a short span of 

time after infection, due to a relatively short time course from infection to lethality, 

and thus, the importance of numerous C. neoformans genes in virulence can be 

investigated with high efficiency (Arvanitis et al., 2013). Here, the wild type and 

certain ald mutant strains were injected into the larvae and their virulence was 

assayed in vivo. At the time that the G. mellonella larvae were available in the lab, 
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only a version of the ald5Δ, ald13Δ, and ald78Δ mutant strains in the H99 

background, had been obtained. When these mutants were tested for their ability 

to kill the G. mellonella larvae, the ald5Δ strain exhibited statistically significantly 

reduced virulence relative to the wild type H99 strain, in that the larvae infected 

with ald5Δ mutant cells survived longer than the larvae infected with the same 

number of wild type cells (Figure 2.15). Larvae injected with the ald13Δ strain also 

survived longer than those injected with the wild type strain, but the overall 

difference in the larval survival curves was not significant, likely because the first 

larvae of each group died on the same day post-injection. The ald78 mutant 

exhibited severely reduced virulence, and larvae injected with this mutant had 

close to the same survival as larvae injected with PBS alone or with heat killed wild 

type cells, the two negative controls. These results confirm that Ald5 is required 

for full C. neoformans virulence in vivo just as it is in vitro,  and strongly supports 

the in vitro assay result that the enzyme deficient in the ald78Δ strain is critical for 

the virulence of C. neoformans. It is possible that, if the virulence of the other 

mutant strains were assayed in the G. mellonella model, the ald29Δ and ald69Δ 

strains would also take longer to kill the larvae, and this should be tested in the 

future. 

In summarizing the evidence for a role in overall pathogenicity across 

multiple assays, several Ald enzymes rise to prominence. Ald5 seems to be an 

important virulence factor, based on the results of the melanin production assay, 

the macrophage survival assay, and the Galleria infection/survival assay (Figures 
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2.8, 2.14, and 2.15, respectively). The enzyme deficient in the ald78Δ mutant is 

also important for pathogenicity, since the mutant has reduced survival after 

macrophage engulfment and severely attenuated virulence in Galleria larvae 

(Figures 2.14 and 2.15, respectively). The fact that the ald29Δ mutant is unable to 

grow under hypoxia-mimicking conditions unless acetate is provided (Figure 2.9b 

and 2.9c, respectively) and exhibits reduced survival/recovery after engulfment by 

macrophages relative to the wild type strain (Figure 2.14), strongly suggests that 

the corresponding enzyme is also required for C. neoformans virulence. The 

ald69Δ mutant not only lacked the ability to utilize glucose (Figure 2.4a and Figure 

2.5a), but also exhibited a growth defect under oxidative stress (Figure 2.10), a 

mutant phenotype, albeit an unexpected one, under nitrosative stress (Figure 

2.11), a severe growth defect when its cell wall integrity was challenged (Figure 

2.13c), reduced levels of melanin compared with the wild type strain (Figure 2.8), 

and, finally, a statistically significant reduced survival after engulfment by 

macrophages (Figure 2.14), all indicative of a role for the corresponding enzyme 

in virulence. 

Ald5 and Ald29 are the leading candidates for the C. neoformans 

acetaldehyde dehydrogenase 

 Following infection, C. neoformans may depend for survival inside the host 

on alternate carbon sources like acetate or ethanol (Ries et al., 2018), the latter of 

which is first converted to acetaldehyde and then, via acetaldehyde 

dehydrogenase, to acetate for use. The evolutionary relatedness of C. neoformans 
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Ald5 (CNAG_06628), Ald78 (CNAG_01078), and Ald13 (CNAG_05113) to the S. 

cerevisiae acetaldehyde dehydrogenases Ald4p, Ald5p, and Ald6p (Saint-Prix et 

al., 2004), suggests that may  be used by C. neoformans to produce acetate. The 

finding that the ald5Δ mutant was unable to grow on ethanol, both in the spot assay 

(Figure 2.4c) and in the liquid media quantitative assay (Figure 2.5c), is in line with 

a role for Ald5 as an acetaldehyde dehydrogenase. In contrast, although the 

ald13Δ mutant also exhibited a growth defect on acetate or ethanol supplemented 

minimal media, the lack of a cell autonomous mutant phenotype in the equivalent 

growth curve assays indicates that Ald13 is not likely to function as an 

acetaldehyde dehydrogenase. The ald78Δ mutant grew normally on ethanol, 

implying that Ald78 also is not an acetaldehyde dehydrogenase.  

 Ald29 is not as closely related to the S. cerevisiae acetaldehyde 

dehydrogenases, yet it is a candidate for the C. neoformans acetaldehyde 

dehydrogenase. The ald29Δ mutant is unable to grow under hypoxia mimicking 

conditions (Figure 2.9b), but recovers when provided acetate (Figure 2.9c), which 

suggests that the corresponding enzyme may be an acetaldehyde 

dehydrogenase, but, given the lack of a mutant phenotype under other stresses, 

may be used only under hypoxia. Under this hypothesis, deficiency of this enzyme 

prevents anaerobic production of sufficient levels of acetate for survival. One can 

speculate that the pathogen primarily uses Ald5 to produce acetate to alter the pH 

in an environment in which oxygen is present, for an immunomodulatory or other 

protective purpose, while using Ald29 to generate acetate and NADPH under 
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anaerobic/hypoxic conditions for use in fermentation and growth in ethanol. If so, 

Ald29 might have evolved an acetaldehyde dehydrogenase function 

independently, and not from any evolutionary relationship with Ald5, Ald78, or S. 

cerevisiae aldehyde dehydrogenases. 
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Potential future experiments 

 While the assay results described herein provide clues as to which C. 

neoformans aldehyde dehydrogenases may function as acetaldehyde 

dehydrogenases, greater certainty of this role might be possible with more 

evidence.  

 As mentioned above, the reduced (but not eliminated) acetate production in 

each C. neoformans ald mutant is similar to that observed in S. cerevisiae mutants 

deficient in Ald6p or deficient in Ald5p. In S. cerevisiae this was considered 

evidence for partial compensation for deletion of one ALD gene by the remaining 

enzymes via upregulation of the remaining aldehyde dehydrogenase genes 

(Aranda and del Olmo, 2003; Meaden et al., 1997; Saint-Prix et al., 2004; Remize 

et al. 2000). The hypothesis that the C. neoformans enzymes also partly 

compensate for each other via the same upregulation mechanism can be tested 

by quantifying the expression of the remaining ALD genes in each C. neoformans 

ald deletion mutant.  

 Additionally, quantifying the level of the mRNAs encoding each aldehyde 

dehydrogenase in wild type (or pyruvate decarboxylase deficient) C. neoformans 

grown on media supplemented with glucose, ethanol, acetate, or acetaldehyde 

might also reveal which Ald functions in acetaldehyde/acetate metabolism. When 

Aranda and del Olmo (2003) quantified the mRNA levels of the three S. cerevisiae 

cytoplasmic aldehyde dehydrogenases in fermentative and flor (industrial wine 

aging) yeast strains grown in glucose or ethanol containing media, they found that 
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ALD2 and ALD3 expression is increased with growth in ethanol versus with growth 

in glucose, while ALD6 expression is the opposite. Furthermore, yeast grown in 

glucose generally decrease expression of ALD6, while yeast grown in ethanol 

increase expression of ALD6, after acetaldehyde is added (Aranda and del Olmo, 

2003). Conversely, flor yeast grown in glucose increase, while those grown in 

ethanol decrease, ALD2 and ALD3 mRNA levels when acetaldehyde is added 

(Aranda and del Olmo, 2003). These inverse expression patterns of the S. 

cerevisiae cytosolic aldehyde dehydrogenase mRNAs may be imitated by the C. 

neoformans aldehyde dehydrogenases. The major C. neoformans acetaldehyde 

dehydrogenase(s) should have an ALD6-like expression pattern in glucose or 

ethanol with and without acetaldehyde when measured by quantitative reverse 

transcription PCR (qPCR).  

 Additionally, based on the findings of Aranda and del Olmo (2003), as well 

as the SAGE analyses of Hu et al. (2008) and Derengowski et al. (2013) after 

cryptococcal infection of model organisms, qPCR or RNA-Seq experiments can be 

used to determine which genes involved in various metabolic and virulence 

pathways are upregulated or downregulated in the mutants grown on various 

carbon sources (i.e. glucose, ethanol, or acetate) with or without acetaldehyde or 

under various stresses. Changes in the gene expression profile of the mutants 

versus the wild type strain under these various assay conditions combined with a 

gene ontology analysis of the transcriptome could provide clues about the function 
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of the enzyme deficient in each mutant, including whether or not the enzyme is 

necessary to process acetaldehyde.  

 The results of these assays could also be correlated with measurement of 

acetate production by the strains grown with and without non-toxic levels of 

acetaldehyde, since one would expect that the mutant lacking acetaldehyde 

dehydrogenase function would not have increased acetate production through the 

conversion of the acetaldehyde, but all other mutants would increase the 

expression of the corresponding gene missing in this mutant. 

 It would be informative to conduct the assays involving growth under 

oxidative and nitrosative stress, growth on Congo red containing medium, and 

induction of capsule and melanin formation, all using media supplemented with 

acetate to see if the mutants that exhibit phenotypes in those assays are rescued 

by supplementation with acetate that they are perhaps unable to make on their 

own, just as acetate supplementation rescued the ald29Δ mutant in the hypoxia 

assay. If so, the deficient enzyme is likely to have a significant role in the production 

of acetate, likely as one of the acetaldehyde dehydrogenases.  

 It might also be informative to produce ald double and triple mutants in C. 

neoformans. Such mutants are informative in S. cerevisiae. For example, the 

reduced growth of the ald4, ald6 double mutant compared with either single mutant 

indicated a previously overlooked role for Ald4p. The role of Ald5p in acetaldehyde 

and acetate metabolism is emphasized by the fact that an ald4, ald5, ald6 triple 

knockout has a more severe phenotype, both in terms of a growth defect and in 
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terms of acetate production, than the ald4, ald6 double mutant (Saint-Prix et al., 

2004). In contrast, Ald2p and Ald3p were revealed to be irrelevant to acetate 

production based on the finding that the ald2, ald3, ald4, ald6 quadruple mutant 

phenotype is no different than that of the ald4, ald6 double mutant, and a mutant 

that is null for ALD2, ALD3, ALD4, ALD5, and ALD6 has a similar phenotype to 

that of the ald4, ald5, ald6 triple mutant (Saint-Prix et al., 2004). Thus, generation 

of double, triple, or quadruple ald mutant strains of C. neoformans, followed by 

measurement of their acetate production, might reveal the relative contributions of 

each C. neoformans Ald in the production of acetate, and assaying the growth and 

other phenotypes of these multiple mutants might uncover the relative importance 

of each Ald in virulence. 

 While the assays already conducted strongly suggest which aldehyde 

dehydrogenase enzymes are most important for virulence of C. neoformans, it 

might be informative to repeat the Galleria larval survival assay using the KN99α 

strain mutants (as opposed to the H99α-based mutants), in particular the ald5Δ, 

ald13Δ, ald29Δ, ald69Δ, and ald78Δ strains that exhibited significant differences 

from the wild type strain in one or more of the other assays described herein. On 

the other hand, while G. mellonella is an optimal invertebrate model to study the 

processes of C. neoformans infection and virulence, the study of dissemination of 

C. neoformans to various organs cannot be assessed using this model organism, 

due to vastly different visceral organs between insects and vertebrates and the 

lack of lungs and a true brain in G. mellonella. The macrophage survival assay can 
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address some of these concerns, since it uses mouse macrophages, making at 

least some analysis of post-infection host cell genome expression changes 

possible. However, in order to truly understand the progress of infection, vertebrate 

organisms, generally mice or zebrafish, must be used as infection models, 

especially to study the effect of deficiency of a particular C. neoformans aldehyde 

dehydrogenase on dissemination to the brain as a critical step in virulence. 

Moreover, the results already described from the Galleria survival assay may 

reflect a disparity between insect immune systems and mammalian immune 

systems (Tojo, S. et al., 2000), and the use of a mammalian model organism is 

required in order to verify these results. Therefore, it would be advisable to test the 

ald5Δ, ald13Δ, ald29Δ, ald69Δ, and ald78Δ strains, as well as the wild type strain, 

all in a KN99α background, for their virulence (along with PBS and heat killed wild 

type strain as negative controls) in a mouse model of pulmonary infection or 

cryptococcal meningitis. 

 Based on the results already obtained in this work, a complete analysis of 

these mutants, including the experiments proposed above, will likely reveal one or 

more of the corresponding aldehyde dehydrogenases to be a suitable target for 

pharmaceutical intervention to treat cryptococcal meningitis in humans and reduce 

its lethality. 
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Table 2.1: List of genes/enzymes deficient in the mutants used in this study. 

Name 
used in 

this 
study 

Official Enzyme name† Identification 
Number† 

Chromosome† Location‡ 

ald5 Aldehyde dehydrogenase 
(NAD) 

CNAG_06628 7 Cytoplasmic 

ald10 Aldehyde dehydrogenase 
(NAD), variant 

CNAG_06010 12 Cytoplasmic 

ald13 Aldehyde dehydrogenase 
(NAD) 

CNAG_05113 4 Mitochondria 

ald18 Aldehyde dehydrogenase 
(NAD), variant 

CNAG_06018 12 Cytoplasmic 

ald29 Meiotic Sister-Chromatid 
recombination aldehyde 

dehydrogenase 

CNAG_05029 4 Cytoplasmic 

ald35 Aldehyde dehydrogenase 
family 7 member A1 

CNAG_00735 1 Mitochondria 

ald69 Aldehyde dehydrogenase CNAG_03269 8 Mitochondria 

ald78 Aldehyde dehydrogenase 
(NAD) 

CNAG_01078 5 Cytoplasmic 

†The official enzyme name and identification number, as well as the chromosomal 

location of each corresponding gene, were obtained from the Fungi Database, 

https://fungidb.org/fungidb/app/record/gene/CNAG_06628. 

‡The predicted mitochondrial or cytoplasmic cellular location of each protein was 

determined using the MitoFates website http://mitf.cbrc.jp/MitoFates/cgi-

bin/top.cgi; (Fukasawa et al., 2015).  
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Table 2.2: List of primers used to verify deletion of ALD genes in mutant 

strains. 

Mutant 
strain 

ID # Forward primer Reverse primer bp product 

ald5 CNAG_06628 cgcttgttgaggatgcattg tatcaaggtcccgctccatc 1496 
ald10 CNAG_06010 caatctcctcgttcgccaag ggtactgaagaagcacctcg 1381 
ald13 CNAG_05113 gcaactggtgaatgagtccc caagcttatcactgtcccgc 1473 
ald18 CNAG_06018 tgaacccctcatgtcccttc tgcttgatactcatacagcgc 1317 
ald29 CNAG_05029 agtcgtcgagttctgcatcc gcacccaaccacgaacattac 1641 
ald35 CNAG_00735 tcgattgcttgtttccctcg gatttggcgaacgacctctc 1630 
ald69 CNAG_03269 ccgaaaagctcagtcactcg ctcacgtttccagttcaccg 1559 
ald78 CNAG_01078 acgtcacggaatttcttgcc tctttgctggcggtttgaac 1718 
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Figure 2.1: Various C. neoformans metabolic pathways that utilize pyruvate. 

Ethanol, glucose and acetate can be used as sources of carbon by C. neoformans. 

Under anaerobic conditions glucose is converted to acetate by the action of 

pyruvate decarboxylase (Pdc) and acetaldehyde dehydrogenase enzymes. 

Ethanol in the cells is converted to acetaldehyde via alcohol dehydrogenase, which 

is then converted to acetate via acetaldehyde dehydrogenase.  
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Figure 2.2: Phylogenetic tree analysis showing evolutionary relatedness 

between specific aldehyde dehydrogenases (Alds) of C. neoformans and 

Ald6p, Ald4p and Ald5p of S. cerevisiae. The sequences of putative 

cryptococcal aldehyde dehydrogenases and potential homologues from other 

fungal species were analyzed using Molecular Evolutionary Genetics Analysis 

(MEGA X) software to build a phylogenetic tree. Depending on the sequence 

similarity, each of the Alds could be subdivided into 6 groups (shown in different 

colors). From the analysis, it was deduced that CNAG_01078 (Ald78), 

CNAG_05113 (Ald13), and CNAG_06628 (Ald5) of C. neoformans were closer to 

aldehyde dehydrogenases Ald4p, Ald5p, and Ald6p of S. cerevisiae than 

CNAG_06010 (Ald10), CNAG_06018 (Ald18), CNAG_05029 (Ald29), 
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CNAG_00735 (Ald35), CNAG_03269 (Ald69), or CNAG_02377. C. neoformans 

Ald78, Ald13 and Ald5 were also closely related to each other, while Ald10 and 

Ald18 were closely related to each other, and to lesser extent, to Ald29. 
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Figure 2.3: Verification of the deletion of each ALD gene in the 

corresponding mutant. Primers specific for each aldehyde dehydrogenase gene 

(either 1 and 2, or 3 and 4, as shown above) and for the NAT gene conferring 

resistance to the nourseothricin antibiotic (107 and 108 above) were used in PCR 

to confirm the insertional mutagenesis and deletion of the aldehyde 
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dehydrogenase gene in each of the corresponding ald mutants obtained from the 

Madhani lab at UCSF. Specifically, these mutants were checked for the 

replacement of the ALD genes with the nourseothricin resistance cassette (NAT). 

(a) The presence of a band representing each gene in the lanes corresponding to 

the reactions with wild type (WT) strain DNA, but not in the lanes corresponding to 

the respective mutants (D), corroborated the deletion of the respective ALD genes 

in the mutants used in this study. (b) The presence of the NAT gene (~1600 bp) in 

all of the ald mutants, but not in the wild type strain (KN99a) was confirmed, 

verifying that resistance to nourseothricin in the mutants is due to the presence of 

the NAT cassette and not due to metabolic changes in the cells. 
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Figure 2.4: Qualitative growth analysis revealed growth defects in ald5Δ, 

ald13Δ, and ald69Δ mutants. Four 10-fold serial dilutions (2 µl of 5000, 500, 50, 

and 5 cells/µl) of each mutant strain, and of the wild type (WT) KN99a strain, of C. 

neoformans were spotted from left to right on YNB-agar media supplemented with 

(a) 2% glucose, (b) 2% acetate, or (c) 2% ethanol. The ald69Δ mutant strain 

exhibited reduced growth (relative to wild type) on a) 2% glucose, while the ald13Δ 

mutant strain had a smaller colony size (relative to wild type) on b) 2% acetate, 

and c) 2% ethanol. The ald5Δ mutant grew extremely poorly on c) 2% ethanol, but 

grew normally on a) 2% glucose and on b) 2% acetate. 
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Figure 2.5: Quantification of the impact of deletion of ALD genes on growth 

in liquid media with various primary carbon sources. Growth curves for the 
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wild type (KN99a) strain and for each ald mutant strain of C. neoformans were 

generated over a 48-hour time course in YNB media supplemented with a) 2% 

glucose, b) 2% acetate, or c) 2% ethanol as the primary carbon source. The 

ald69Δ mutant displayed a reduced growth rate in a) glucose (* = significant, P< 

0.05; P-value = 0.0210, 0.0429, 0.0315, and 0.0320 at 24, 31, 38, and 48 hours, 

respectively), but not in b) acetate or c) ethanol, while the ald5Δ mutant displayed 

a reduced growth rate in c) ethanol (** = very significant, P<0.01; P-value = 0.0052 

overall), but not in a) glucose or b) acetate.  
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Figure 2.6: All ald mutants produced significantly less acetate than the wild 

type strain after 12 hours. A 48-hour time course analysis revealed significantly 

reduced acetate production by all of the ald mutant strains after 12 hours (P-value 

< 0.0001 overall), compared with the KN99a wild type (WT) strain. The degree of 

significance of the difference between the acetate production by each mutant and 

the wild type strain is indicated as follows: ** P-value < 0.01 (very significant), *** 

P-value < 0.001 (highly significant), **** P-value < 0.0001 (extremely significant).  
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Figure 2.7: ALD genes played an important role in capsule formation. Cells 

from each of the various mutant strains and from the wild type KN99a strain were 

cultured in capsule-inducing medium and stained with India Ink. A white line shows 

the width of the capsule in the wild type (WT) KN99a strain (left-most image). The 

width of the capsule in all of the mutant strains was reduced relative to that of wild 

type, as observed visually at 40x magnification, although the capsule of the ald10Δ 

mutant was slightly larger than that of the other mutants. 
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Figure 2.8: The ald69Δ mutant produced less melanin and the ald5Δ mutant 

produced more melanin than the wild type strain. A spot assay was conducted 

to visually compare the level of melanin production in ald mutants relative to the 

wild type (WT) KN99a strain. Cells from each strain were allowed to grow on plates 

supplemented with L-DOPA, which is converted to the brown, melanin-like pigment 

by laccase enzymes (Williamson, 1997; Li et al., 2018). The ald69Δ mutant 

displayed a lighter coloration, whereas the ald5Δ mutant exhibited a darker 

coloration, compared with the wild type strain. 
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Figure 2.9: The ald29Δ mutant grew poorly under hypoxia-mimicking 

conditions. Spot assays were conducted in which the wild type (WT) KN99a strain 

and ald mutants (in the same strain background) were grown on a) nutrient rich 

YES media without CoCl2 as normoxic control (Normoxic Control), or b) YES 

media supplemented with 0.7 mM CoCl2, which induces cells to behave 

physiologically as if they were growing in hypoxia (0.7 mM CoCl2). The ald29Δ 

mutant grew normally on the control plate but exhibited a growth defect when 

conditions mimicked hypoxia. c) This growth defect was reversed when plates with 

CoCl2 were supplemented with acetate (0.7 mM CoCl2 + 2% Acetate). 
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Figure 2.10: Ald69 was important for the survival of C. neoformans under 

oxidative stress. Wild type (WT) and ald mutant strains (in the KN99a strain) were 

grown on YNB-agar media with sodium succinate pH 4.0 buffer, either a) alone as 

control or b) supplemented with 1 mM H2O2 to generate reactive oxygen species. 

All mutants grew normally relative to the wild type strain, except the ald69Δ mutant 

(bottom row), which exhibited a growth defect when subjected to oxidative stress. 
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Figure 2.11: The ald69 mutant exhibited an adenine production defect under 

nitrosative stress. Wild type and ald mutant strains (in a KN99a background)  

were grown on YNB-agar media with sodium succinate pH 4.0 buffer, either a) 

alone as control or b) supplemented with 1.5 mM NaNO2. All mutants grew 

normally relative to the wild type strain, except that the ald69Δ mutant grew as pink 

colonies under nitrosative stress (b, bottom row), possibly indicative of 

accumulation of a red substrate, P-ribosylamino imidazole (AIR) or P-ribosylamino 

imidazolecarboxylate (CAIR), (Sharma et al., 2003; Smirnov et al., 1967) in the 

adenine synthesis pathway due to a blockage in the pathway. c) Nitrosative stress 

from the NaNO2 was confirmed to cause this adenine production defect, and this 

defect was confirmed to be the reason for the pink colonies, when all strains were 

grown on media supplemented with both 1.5 mM NaNO2 and 225 µg/ml adenine; 
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the addition of adenine negated the need for the manufacture of adenine by the 

cells and thereby eliminated  the pink color of the ald69Δ mutant colonies. The 

global contrast of this image was increased by 20% to better reveal the pink color.  
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Figure 2.12: ald mutants grew normally under high salt conditions. Wild type 

and ald mutant strains (in the KN99a background) were grown on YPD-agar plates 

a) without further salt added (as control) or supplemented with b) 1.5 M NaCl or c) 

1.2 M KCl in order to induce osmotic stress. All mutants grew normally relative to 

the wild type strain.  
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Figure 2.13: The ald69Δ mutant had defects in cell wall and/or capsule 

integrity. Wild type (WT) and ald mutant strains (in a KN99a background) were 

grown on YPD-agar plates, either a) alone or supplemented b) with 0.03% SDS 

for cell membrane disruption or c) with 0.5% Congo red, which disrupts cell wall 

production by passing through the capsule and binding to components of the cell 

wall and chitin layers. No growth defect was observed on SDS containing media 

(b), whereas, in Congo red containing media (c), all mutants exhibited a slight 

growth defect and smaller colonies, either reflecting the greater permeability of 

their thinner capsules or indicating a loss of cell wall integrity and resulting 

reduction in fitness. The ald69Δ mutant displayed the most obvious growth defect 

in the presence of Congo red (c, bottom row, left spot).  
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Figure 2.14: Percent survival of wild type and ald mutant C. neoformans 

strains after engulfment by macrophages. The ald5Δ, ald13Δ, ald29Δ, ald69Δ, 

and ald78Δ mutants demonstrated statistically decreased survival and recovery, 

relative to the wild type KN99α strain, after phagocytosis and attempted killing by 

macrophages (* = significant, P-value < 0.05; ** = very significant, P-value < 0.01; 

*** = highly significant, P-value < 0.001; **** = extremely significant, P-value < 

0.0001), but not ald10Δ, ald18Δ, or ald35Δ. 
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Figure 2.15: Galleria mellonella survival assay. The survival of Galleria 

mellonella larvae was analyzed after infection with 1×106 fungal cells of 

various strains of C. neoformans, ten larvae per strain. The percent survival 

of these larvae over time, after injection with the wild type H99 (black), ald5Δ 

(orange), ald13Δ (blue), or ald78Δ (red) strains of C. neoformans, or with the 

negative controls of phosphate buffered saline (PBS; dotted black) or heat-

killed wild type strain (Dead H99; dashed black), are graphed as Kaplan-Meier 

survival curves. Statistical analysis of the overall survival curves, using either 

a Gehan-Breslow-Wilcoxon test or Log-Rank test, indicated that the ald5Δ 

strain was less pathogenic (* P-value < 0.05) than the wild type strain, while 

the ald13Δ strain was either only slightly (non-significantly) less pathogenic, or no 

less pathogenic, than the wild type strain. Deletion of the corresponding gene 

in the ald78Δ strain effectively eliminated pathogenicity of this mutant strain 

(**** P-value < 0.0001).  
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CHAPTER THREE 

 

THE ROLE OF PYRUVATE DECARBOXYLASE IN THE STRESS RESPONSE 

AND PATHOGENESIS OF C. NEOFORMANS 

Mufida Ammar, Nitya Muppala, Erin Mihealsick, and Kerry Smith 

Department of Genetics and Biochemistry, Clemson University, Clemson, South 

Carolina, USA 

 

Abstract 

Acetate is one of the major metabolites secreted by cryptococci cultured in vitro 

and found in biopsies of infected rat brain and lung tissues. In this study, the role 

of Cryptococcus neoformans pyruvate decarboxylase, the first enzyme in a 

putative acetate-production pathway, in the stress response and pathogenesis of 

C. neoformans was investigated. A C. neoformans pdcΔ mutant was ineffective in 

producing acetate and exhibited substantially reduced growth in an environment 

where glucose was the only carbon source. Additionally, melanization and capsule 

formation, which are important for pathogen virulence, negatively affected in the 

mutant. Surprisingly, despite the significant capsule formation defect, the ability of 

the pathogen to neutralize reactive oxygen and nitrogen species and to grow under 

high osmolarity conditions was not affected in the pdcΔ strain. However, the pdcΔ 

mutant was unable to cope in an assay mimicking the low oxygen conditions found 

in the host brain and the survival of the pathogen inside murine macrophages was 
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compromised. Nevertheless, no changes were observed in the ability of the pdcΔ 

mutant versus wild type C. neoformans to kill injected larvae of the greater wax 

moth Galleria mellonela in an in vivo infection model. Overall, by using genetic and 

biochemical techniques, this work provides evidence for the role of Pdc in acetate 

production by C. neoformans, and in the hypoxia stress response and virulence of 

this pathogen. 
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Introduction 

Cryptococcus neoformans is an invasive fungal pathogen that infects lung 

and brain tissue and is the most frequent cause of fungal meningitis in humans, 

leading to significant annual global mortality (Lin and Heitman, 2006; Park et al., 

2009, Pappas PG., 2001; Lui et al., 2006; Franzot et al., 1999; Dromer et al., 1996; 

Tortorano et al., 1997; Powderly, 1993). When desiccated yeast cells or spores, 

found in bird droppings, decomposing organic material, or soil (Steenbergen and 

Casadevall., 2003; Velagapudi et al., 2009) are inhaled by mammalian hosts, they 

enter the lungs and then may disseminate to the brain, causing a potentially lethal 

meningoencephalitis (Sabiiti and May, 2012; Velagapudi et al., 2009). In order to 

survive and disseminate, the pathogen requires a number of virulence factors, 

including a polysaccharide capsule, melanin, and the ability to grow at the host 

body temperature of 37°C (Coelho et al., 2014; Casadevall et al., 2000; Kronstad 

et al., 2011; Ma and May, 2009). C. neoformans also undergoes metabolic 

adaptation to conditions inside the mammalian host. For example, the pathogen 

produces many metabolites, including acetate, that it then may use to create an 

optimal microenvironment (Bubb et al., 1999; Wright et al., 2002; Hu et al., 2008; 

Price et al., 2011; Himmelreich et al., 2001; Kronstad et al., 2012). 

 Acetate is one of the major metabolites secreted by cryptococci cultured in 

vitro and found in biopsies of infected rat brain and lung tissues (Bubb et al., 1999; 

Wright et al., 2002; Himmelreich et al., 2001, 2003). It is believed to provide a 
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survival advantage to the pathogen by two mechanisms: altering pH and providing 

a source of carbon or energy. 

 The fairly narrow pH range in which C. neoformans can grow (relative to 

that of some other fungal species) includes the pH 4.0-5.5 environment inside the 

macrophage phagolysosome, as well as the pH 7.4 of human blood and 

cerebrospinal fluid (O'Meara et al., 2010; Nyberg et al., 1992), although the 

pathogen actually prefers the former, more acidic environment as an optmal pH 

range. If the pathogen infects or disseminates to a location in the body that is more 

basic than this optimal range, it can secrete excess acetate into the local 

environment to reduce the pH (Wright et al., 2002). This lower pH enhances the 

activity of the fungal phospholipase B and potentially other enzymes at the site of 

cryptococcal infection (Evans et al., 2015; Sharon et al., 2000) and can shield the 

pathogen from an immune attack by neutralizing free radicals and decreasing the 

formation of superoxides produced by phagocytes, or by reducing the migration or 

increasing the necrosis of neutrophils (Hu et al., 2008; Wright et al., 2002).  

 Two putative pathways for the production of acetate in C. neoformans have 

been identified: the xylulose 5-phosphate/fructose 6-phosphate phosphoketolase 

(Xfp) – acetate kinase (Ack) pathway and the pyruvate decarboxylase (Pdc) – 

acetaldehyde dehydrogenase (Ald) pathway. In fungi that lack the Xfp-Ack 

pathway, such as Saccharomyces cerevisiae, the primary acetate production 

pathway utilizes pyruvate decarboxylase (Pdc) and aldehyde dehydrogenase (Ald) 

(Saint-Prix et al., 2004; Remize et al., 2000; Pronk et al., 1996).  
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 In S. cerevisiae, pyruvate is an important metabolic intermediate that is 

acted upon by different enzymes at the branch point of oxidative respiration and 

non-oxidative fermentation, depending on growth conditions (Agarwal et al., 2013; 

Møller et al., 2004). During aerobic respiration, pyruvate can be converted via 

pyruvate dehydrogenase to acetyl-CoA, which can then be fed into the TCA/Krebs 

cycle to produce energy. This pathway works inside mitochondria (Møller et al., 

2004; Remize et al., 2000), and the mitochondrial acetyl-CoA cannot diffuse into 

the cytoplasm (Remize et al., 2000). During non-aerobic fermentation, acetyl-CoA 

for use in the cytosol can be produced from pyruvate via the pyruvate 

dehydrogenase by-pass pathway. In this cytosolic pathway pyruvate 

decarboxylase converts pyruvate to acetaldehyde, which is oxidized via 

acetaldehyde dehydrogenase to acetate and subsequently to acetyl-CoA via 

acetyl-CoA synthetase (Pronk et al., 1994; Remize et al., 2000). In this process, 

the oxidation of acetaldehyde is used to reduce NAD+/NADP+ to NADH/NADPH to 

store energy and to maintain a redox balance in the cell (Saint-Prix et al., 2004; 

Remize et al., 2000). Alternatively, the acetaldehyde can serve as an electron 

acceptor and be reduced to ethanol, thereby allowing the oxidation of NADH to 

NAD+ for use in glycolysis (Pronk et al., 1994). At the branch point between the 

respiratory and fermentative pyruvate catabolic pathways, the efficiency of 

pyruvate decarboxylase determines whether pyruvate will be diverted either 

towards the TCA cycle or towards fermentation (Agarwal et al., 2013). A similar 

set of pathways is believed to exist in C. neoformans (Figure 3.1).  



227 
 

 S. cerevisiae requires pyruvate decarboxylase activity for anaerobic growth, 

as is evident from early studies of pdc null mutants which were either unable to 

grow or grew more slowly on media supplemented with glucose when forced to 

utilize fermentation (Lam and Marmur, 1977; Schmitt and Zimmermann, 1982). 

There are actually multiple Pdc-encoding genes in Saccharomyces species; 

however, under normal growth conditions, Pdc1p is the main contributor of 

pyruvate decarboxylase activity in wild type strains undergoing fermentation 

(Schmitt and Zimmermann, 1982; Schmitt et al., 1983; Kellermann et al., 1986; 

Hohmann, 1991a). Pdc1 deficiency affects the enzymatic activity more severely 

than deficiency of either of the other two major Pdc enzymes, Pdc5 and Pdc6 

(Flikweert et al., 1996). Nevertheless, a mutant of the PDC1 gene (pdc10) 

generated by Seeboth et al. (1990) could grow on glucose even when cellular 

respiration was blocked, and 60-70% of pyruvate decarboxylase activity was 

retained in the mutant, probably due to the upregulation of expression of the PDC5 

gene in these mutants (Seeboth et al., 1990; Hohmann and Cederberg, 1990). 

Similarly, deletion of the PDC1 gene in S. cerevisiae results in no significant 

change in the acetate yield or in the amount of secondary metabolites, possibly 

because Pdc5 can be used instead of Pdc1 (Remize et al., 2000). The PDC6 gene 

is weakly expressed and the function of the corresponding protein is not clear 

(Hohmann, 1991b). The PDC2 gene, on the other hand, has an important but 

indirect role in pyruvate metabolism, in that it is involved in regulating the 

expression of PDC1 and PDC5 or the corresponding enzyme activities (Hohmann, 
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1993). Pdc activity in S. cerevisiae is low under ethanol-only growth conditions, 

whereas it increases by 10 to 20 fold over time under high glucose conditions 

(Schmitt and Zimmermann, 1982). The expression of the PDC1 gene also 

increases in glucose supplemented media versus in media with ethanol as the only 

major carbon source due to an ethanol-dependent repression (Schmitt and 

Zimmermann, 1982; Schmitt et al., 1983). Thus, Pdc activity may play a role in the 

utilization of alternative carbon sources in S. cerevisiae.  

 In C. neoformans, unlike in other fungal species, there is only one putative 

PDC gene, which may play a role in virulence. The levels of mRNAs encoding 

acetyl-CoA synthetase (Acs1), aldehyde dehydrogenase, and pyruvate 

decarboxylase, enzymes that may function in the production of acetyl-CoA from 

pyruvate via acetaldehyde and acetate, are increased in C. neoformans cells 

recovered from pulmonary tissue in a mouse infection model (Hu et al., 2008). This 

suggests that pyruvate decarboxylase plays an important role during pulmonary 

infection.  

 Additionally, Rodrigues et al. (2008) identified Pdc as one of the 

components of extracellular vesicles (EVs) utilized by the fungus, further evidence 

for a role of C. neoformans Pdc in the virulence of the pathogen. EVs are produced 

in all domains of life (Raposo and Stoorvogel, 2013) and in fungi were first 

identified in C. neoformans (Rodrigues et al., 2007). Vesicular secretion is a 

common mechanism used by C. neoformans for transporting many virulence-

related components, including capsular GXM polysaccharide (Rodrigues et al., 



229 
 

2007), phospholipase B (Cox et al., 2001), urease (Cox et al., 2000; Perfect and 

Casadevall., 2002), melanin (Eisenman et al., 2009), superoxide dismutase (Cox 

et al., 2003), and laccase (Rodrigues et al., 2008; Salas et al., 1996) through the 

cell wall for use outside the cell. The presence of Pdc in these EVs is highly 

unusual, since, unlike the other components and enzymes listed, Pdc is a 

metabolic enzyme involved in energy production. The fact that C. neoformans 

exports it out of the cell may indicate a role for the enzyme in virulence, such as in 

production of acetate that is used in the acetylation of cell wall and chitin 

carbohydrates as part of cell wall and capsule formation and attachment of the 

capsule to the cell wall (Rakesh et al., 2008; Vecchiarelli et al., 2011; Hu et al., 

2008; Ellerbroek et al., 2004). 

 Thus, the role of the C. neoformans Pdc in growth on glucose, ethanol, and 

acetate, during hypoxia, oxidative and nitrosative stresses, and osmotic stress, in 

the production of the capsule and melanin, which are important virulence factors, 

in cell wall and membrane integrity, and in actual virulence in vitro and in vivo. was 

assayed herein using a knockout mutant of the C. neoformans PDC gene, and was 

compared with the effect of deficiency of the pyruvate decarboxylase enzyme on 

acetate production. 
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Materials and methods 

Fungal Strains: 

Wild type and pyruvate decarboxylase (pdcΔ) mutant strains of 

Cryptococcus neoformans var grubii, in the KN99a background, were obtained 

from the Madhani lab, University of California San Francisco (UCSF) gene deletion 

collection (via the Fungal Genetics Stock Center). These were used for all of the 

experiments, except for the in vivo Galleria mellonella virulence assay, in which 

similar strains in an H99a background (Fungal Genetics Stock Center) were used. 

The pdcΔ knockout mutants in each background were maintained under selection 

for nourseothricin (NTC) resistance, since a nourseothricin acetyltransferase 

(NAT) cassette was used to disrupt the PDC gene by insertional mutagenesis 

(Chun and Madhani, 2010). Information on the C. neoformans pyruvate 

decarboxylase gene/enzyme, including the gene and protein identification 

numbers and the predicted mitochondrial or cytoplasmic cellular location of the 

protein (determined using the MitoFates website, http://mitf.cbrc.jp/MitoFates/cgi-

bin/top.cgi; Fukasawa et al., 2015), as well as the chromosomal location of the 

gene (obtained from the Fungi Database, https://fungidb.org/fungidb/) is provided 

in Table 3.1.  

Phylogenetic tree: 

Fungal pyruvate decarboxylase protein sequences were downloaded from 

the FungiDB (http://fungidb.org/fungidb/srt.jsp). Alignment and phylogeny 

reconstruction were performed using Molecular Evolutionary Genetics Analysis 
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(MEGA X) software (Kumar et al., 2001) as follows. Alignment was carried out with 

Clustal W (Thompson et al., 1994), and the aligned sequences were used to 

construct a Maximum Likelihood (ML) tree, under an assumption of a uniform rate 

of substitution among all amino acid sites, using the Jones-Taylor-Thornton model 

(Jones et al., 1992), with 500 bootstrap replicates (Felsenstein J., 1985) to verify 

the reliability of the tree. The initial tree was constructed using both Neighbor 

joining (NJ) and BioNJ algorithms and optimized via the Nearest Neighbor 

Interchange (NNI) version of the ML heuristic method with a "moderate" branch 

swap filter setting. 

Confirmation of deletion of PDC in the mutant by PCR analysis: 

The deletion of PDC in the pyruvate decarboxylase (pdcΔ) mutant from the 

Madhani lab was confirmed by PCR using the following gene-specific primers and 

assaying for a lack of PCR product.  

PDC forward primer: TGACGGTTCTTTGCAGTTGG 

PDC reverse primer: TTGAAGGCGAAGGTTGTGTG 

Additionally, the presence of the NAT gene (in replacement of PDC) was 

verified using primers synthesized based on sequences obtained from the 

Madhani lab: 

NAT forward primer (107): CCTAGCAGCGGATCCAAC 

NAT reverse primer (108): CGCATCCCTGCATCCAAC  
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 DNA was isolated from wild type and mutant strains using the 

cetyl/hexadecyl-trimethylammonium bromide (CTAB) DNA isolation protocol 

(Pitkin et at, 1996). Gene amplification was performed using the KOD Hot Start 

DNA Polymerase kit (ThermoScientific) with a thermocycler program as follows for 

the NAT gene: initial denaturation at 95°C for 2 min, followed by 30 cycles of 

denaturation at 94°C for 30 sec, annealing at 55°C for 30 sec, and extension at 

72°C for 2 min, followed by final extension at 72°C for 5 min. The thermocycler 

program utilized to amplify PDC differed only in that 35 cycles were used and the 

annealing temperature was set to 60°C. 

Quantitative and qualitative growth analysis in various carbon sources: 

 C. neoformans wild type and pdcΔ strains were cultured overnight in Yeast 

Extract Peptone Dextrose (YPD) media (1% Difco Yeast extract, 2% Bacto 

Peptone, and 2% glucose) at 30°C, in a rotating shaker at 200 rpm (Barnstead 

MaxQ 4000 Orbital Incubator Shaker). The next morning, the cultures were 

refreshed: 25 μl from each of the overnight cultures were used to inoculate a 

corresponding 2 ml volume of YPD, which was incubated to an optical density at 

600 nm wavelength (OD600) of ~0.2 as measured using an Evolution 60 

Spectrophotometer (ThermoScientific, Waltham, MA). These cells were pelleted at 

8,000×g and washed twice in Dulbecco’s Phosphate Buffered Saline (D-PBS; 

LifeSciences, Oneonta, NY), then counted using a hemocytometer.  

For qualitative analysis, spot assays were performed. Refreshed cells were initially 

diluted to 5×103 cells/μl, and then 10-fold serially diluted three times. From each 
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dilution, 2μl were spotted onto Yeast Nitrogen Base (YNB; HiMedia) plus agar 

(YNB-agar) supplemented with 2% of either glucose, acetate, or ethanol. Thus, 

1×104 cells, 1×103 cells, 100 cells, and 10 cells of the wild type and pdcΔ mutant 

strains were each plated and were allowed to grow in an incubator at 30°C for 

approximately 3 days. Images of colonies were captured using the Canon EOS 

Rebel T1i camera. 

 For quantitative growth analysis (growth curve assay) 1×104 cells/μl were 

used to inoculate YNB media supplemented with 2% of either glucose, acetate, or 

ethanol, as the carbon source. Cultures were set up in each medium in triplicate in 

microtiter plates. Cells were allowed to grow in a shaking incubator at 30°C for 48 

hours, and their growth was monitored over time using the Epoch Multi-Volume 

Microplate Reader (BioTek Instruments, Inc., Winooski, VT) to measure the OD600 

at each time point.  

Measurement of acetate production: 

 To analyze acetate production by C. neoformans, the hydroxamate assay 

was performed as described previously (Fowler et al., 2012; Aceti and Ferry, 1988; 

Rose et al., 1954). As detailed above, C. neoformans strains were grown overnight 

in YPD media at 30°C. To refresh cells, 25 μl from each of these overnight cultures 

was used to inoculate a corresponding 5 ml volume of YNB supplemented with 2% 

glucose, which was incubated to an OD600 of ~0.2. Cells were counted using a 

hemocytometer and the 5 ml cultures were adjusted to a concentration of 1×104 

cells/μl. The 5 ml cultures were vortexed briefly to fully resuspend the cells and 1 
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ml of each culture was transferred to a corresponding eppendorf tube, which was 

centrifuged at 10,000×g; the recovered supernatants were transferred to fresh 

tubes and frozen down at –80°C. The remaining culture volumes were incubated 

at 30°C, and every 12 hours, up to and including 48 hrs, the process was repeated. 

Once all supernatants were collected, the hydroxamate assay was performed on 

triplicate 225 μl samples from each 1 ml of supernatant media from each strain as 

described by Aceti and Ferry (1988). Briefly, 75 μl of hydroxamate reaction mix 

(2.4 M hydroxylamine-HCl, pH 7.0; 0.4 M Tris pH 7.5; 80 mM MgCl2; 90 μM ATP 

disodium salt hydrate) was added to each 225 μl of supernatant and the mixture 

was incubated at 37°C for 5 min. Then, 5 μl of Methanosarcina thermophila acetate 

kinase (purified by Dr. Cheryl Ingram-Smith) was added to a final concentration of 

0.023 ng/μl, mixed to homogeneity by pipetting and incubated at 37°C for 15 

minutes. Finally, the reaction was quenched using an equal volume of a stop 

solution (10% trichloroacetic acid and 2.5% FeCl3 in 2 N HCl) and the absorbance 

was read at 540 nm using the Epoch Multi-Volume Microplate Reader 

spectrophotometer. A standard curve was prepared by performing exactly the 

same protocol using known concentrations of acetate solution ranging from 0.1 

mM - 2 mM instead of supernatant media.  

Capsule formation assay: 

Capsule production by C. neoformans was induced as previously described 

(Zaragoza and Casadevall, 2004). Briefly, wild type and pdcΔ strains were grown 

overnight in 2 ml Sabouraud medium (4% glucose and 1% bacto peptone, at pH 
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5.6) at 30°C. The following day, cells were collected by centrifugation (8,000-

10,000×g) for 2 min at room temperature, washed twice with PBS (137 mM NaCl, 

2.7 mM KCl, 1.5 mM KH2PO4, 8.5 mM Na2HPO4), and resuspended in 0.1x 

Sabouraud medium (pH7.3). Cells were counted, diluted to 5×106 cells/ml in 2 ml 

of the above 0.1x Sabouraud medium, and incubated for 24 hours at 37°C to 

induce capsule formation. Capsules were observed under the Axiovert Inverted 

Microscope (Carl Zeiss, Inc., Thornwood, NY) after 10 μl of each cell suspension 

were mixed with 10 μl of India Ink (Becton Dickinson, NJ) to provide contrast. 

Images were taken at 40x magnification and processed with Zeiss software and 

Image J. At least five different fields were randomly chosen and photographed, 

and 25 to 30 cells were observed.   

Melanin production assay: 

C. neoformans wild type and pdcΔ mutant strains were grown overnight and 

refreshed the next morning in the same way as described above and then 

harvested by centrifugation for 2 min at room temperature, washed twice in D-PBS, 

counted using the hemocytometer. Each strain was diluted to 1×105 cells/ml and a 

5μl volume of each strain was plated on agar-containing melanin-induction 

medium (8 mg/ml KH2PO4, 2 mg/ml glucose, 2 mg/ml L-glycine, 1 μg/ml D-biotin, 

1 μg/ml thiamine, 0.92 mg/ml MgSO4×7H2O, and 0.4 mg/ml L-3,4-

dihydroxyphenylalanine [L-DOPA]) in order to induce melanin production (Li et al., 

2018). Plates were incubated at 30°C for 2-3 days and the imaged using the Canon 

EOS Rebel T1i camera. The experiment was repeated thrice.  
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Growth under hypoxia and under oxidative and nitrosative stresses:  

Wild type and pdcΔ strains were grown overnight and refreshed the next 

morning as described above, then harvested by centrifugation for 2 min at room 

temperature, washed twice in D-PBS, counted using the hemocytometer, and 

diluted to 5×103 cells/μl. Next, three 10-fold serial dilutions of cells were prepared, 

and 2μl of each of these four dilutions were spotted at 1×104, 1×103, 100 and 10 

cells per spot onto media that mimicked different stress conditions that the fungus 

encounters during infection. To mimic hypoxia, cells were spotted onto YES-agar 

(0.5% yeast extract, 2% glucose, 1.5% agar and 225 μg/mL of each of uracil, 

adenine, leucine, histidine, and lysine) supplemented with 0.7 mM CoCl2 (Lee et 

al., 2007). To test the effects of oxidative and nitrosative stress, cells were spotted 

onto sodium succinate-adjusted YNB-agar medium (1.34 g/liter yeast nitrogen 

base without amino acids, 4 g/L glucose, and 5 mM sodium succinate to adjust the 

pH to 4.0, filter sterilized and mixed 1:1 with 4% agar to a final concentration of 2% 

agar) supplemented with either 1 mM hydrogen peroxide (H2O2) or 1.5 mM sodium 

nitrite (NaNO2), respectively, or not supplemented as control (Gerik et al., 2008). 

Plates were incubated at 30°C for 2-3 days and then imaged using the Canon EOS 

Rebel T1i camera. Each experiment was repeated thrice.  

Growth under osmotic stress:  

 Fungal cells were cultured overnight, refreshed and counted the next day, 

diluted, and spotted the same way as above, except that the wild type and pdcΔ 

strains were grown on osmotic stress generating medium (1% yeast extract, 2% 
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Bacto Peptone, 2% glucose, and 2% agar, supplemented with either 1.5 M NaCl 

or 1.2 M KCl). Plates were incubated at 30°C for 3 days and then imaged using 

the Canon EOS Rebel T1i camera. Each experiment (with NaCl or KCl) was 

repeated three times.  

SDS and Congo red assays for cell wall integrity: 

 Fungal cells were cultured overnight, refreshed and counted the next day, 

diluted, and spotted onto plates as above, except that the wild type and pdcΔ 

strains were spotted onto media with 1% yeast extract, 2% Bacto Peptone, 2% 

agar, and 1% glucose supplemented with either 0.5% Congo red (Sigma-

Aldrich/Millipore Sigma, St. Louis, MO) or 0.03% sodium dodecyl sulfate (SDS; 

Calbiochem/Millipore Sigma, St. Louis, MO). Plates were incubated at 30°C for 

~72 hours and then images were captured using the Canon EOS Rebel T1i 

camera. Each experiment was repeated three times.    

Macrophage culture: 

A murine macrophage-like cell line J774A.1 (gift from Dr. Jeffrey Anker, 

Clemson University), originally derived from BALB/c mouse reticulum cell sarcoma 

(Fan et al.,2005), was maintained in macrophage medium (Dulbecco’s Modified 

Eagle Medium [DMEM] supplemented with 10% heat-inactivated fetal bovine 

serum, 1% non-essential amino acids, 1% penicillin-streptomycin, and 10% 

NCTC-109 medium, Gibco Life Technologies). Cells were passaged at a 1:10 split 

approximately every 5-7 days when reached 80% confluence.  
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Macrophage survival assay: 

At ~80% confluence, cultured macrophages were washed twice with D-

PBS, harvested by scraping after addition of fresh macrophage medium, and then 

diluted to 1×103 cells/μl. These macrophages were transferred into three wells 

each for the wild type and pdcΔ C. neoformans strains into two 96-well flat-bottom 

tissue culture treated plates (Costar; Corning Inc., Corning NY), one for one-hour 

co-incubation and the other for 24-hour co-incubation with fungal cells, with 100 μl 

of the macrophage suspension (1×105 cells in macrophage media) added to each 

well. Both plates were incubated overnight at 37˚C in the 5% CO2 incubator.  

Concurrently, wild type (KN99a) and pdcΔ C. neoformans strains were 

grown overnight in liquid YPD media at 30°C. The next day, the strains were 

pelleted by centrifugation at 8,000×g for 1 min, washed twice with D-PBS, and 

resuspended in macrophage medium. The fungal cells were then diluted to 125 

cells/μl in 1 ml of macrophage media (i.e. 1.25×104 C. neoformans cells per 100 

μl). To enhance macrophage phagocytosis by opsonization, the two C. 

neoformans strains were each incubated for one hour at 37˚C with 1μg/ml (final 

concentration) of the MAb18B7 monoclonal antibody (gift from Dr. Arturo 

Casadevall, Johns Hopkins University School of Medicine) that binds to the 

glucuronoxylomannan (GXM) capsule component (Casadevall et al., 1998). As 

soon as the C. neoformans strains mixed with antibody were placed in the 

incubator, the two plates containing macrophages were processed as follows. The 

media was gently removed from each well and replaced with 100 µl macrophage 
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media containing 10 nM phorbol myristate acetate (PMA), and then both plates 

were incubated at 37˚C in 5% CO2 for one hour to activate the macrophages 

(Forman and Torres, 2001). 

After separate one hour incubations of the macrophages and fungal cells, 

the medium in each well from both 96-well macrophage plates was replaced, 

without disrupting the macrophage monolayer, with a 100 µl volume of  either the 

wild type or pdcΔ mutant cell suspension (i.e. 1.25×104 cells), in triplicate per C. 

neoformans strain, at an 8:1 macrophage to fungal cell ratio. In a third 96-well 

tissue culture treated plate, as a control, 100 µl (i.e. 1.25×104 cells) per well of the 

cell suspensions of C. neoformans wild type or pdcΔ strains were added, in 

triplicate, in the absence of macrophages. All three plates were left at 37°C in 5% 

CO2 for one hour, after which each well in the one-hour and 24-hour plates with 

macrophages, but not in the control plate without macrophages, were washed 

gently three times with 200 μl D-PBS to remove non-phagocytosed C. neoformans. 

To the 24-hour plate, 100 μl of fresh macrophage media were added to each well, 

and the plate was placed back into the 37˚C, 5% CO2 incubator for 24 hours.  

To the one-hour plate, 200 µl of sterile distilled, deionized water (ddH2O) 

were added to each well, and the plate was incubated at room temperature for 5 

minutes to lyse the macrophages. A pipette tip was then scraped against the 

bottom of the wells to lift up the adherent macrophages, and the cells suspended 

in the water were pipetted up and down to disrupt and further lyse the 

macrophages. The 200 µl lysate was then transferred to a microfuge tube. Again, 
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200 µl of sterile ddH2O were added to each well, the wells were scraped, and the 

suspensions were pipetted up and down. The additional lysates generated were 

combined with the corresponding original lysates. These steps were repeated 

twice more, but with 300 µl of sterile ddH2O, so that, by the end of the procedure, 

each microfuge tube held 1 ml final volume of lysate. For the plate of C. 

neoformans strains without macrophages, since the wells were not washed prior 

to addition of sterile ddH2O, the volume of original media plus sterile ddH2O 

transferred to each microfuge tube was 300 µl; then 200 µl, 200 µl, and 300 µl 

volumes were used and transferred to the corresponding microfuge tube. The 

same procedure that was used on the one-hour plates with macrophages was 

used, without modification, to obtain macrophage lysates from the 24-hour plate 

the next day. For each 96-well plate, macrophage lysis (or recovery of fungal cells 

from wells without macrophages) was conducted in sets of one well per strain, in 

triplicate sets, to obtain the fungal cells from the three wells per strain.     

 Immediately after wild type or pdcΔ mutant C. neoformans cells were 

obtained from the macrophage lysates or from the fungal cell suspensions (i.e. 

from the no-macrophage control plate), the cells were diluted 1:10, then again 

1:2.5 for a final dilution of 1:25, or a (theoretical) maximum concentration of 500 

cells/ml in a total volume of 0.5 ml. From this final dilution, 100 μl were plated on 

YPD-agar plates, one plate per corresponding well from each 96-well plate, 

resulting in triplicate YPD-agar plates of wild type and pdcΔ mutant cells. From the 

1-hour plate, it was expected that a maximum of 50 cells from each corresponding 
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well of the 96-well plates would form colonies, but, due to replication of the fungal 

cells, more than this number of colonies was possible from the 24-hour plate. YPD-

agar plates were incubated at 30°C for ~48 hours and then colony forming units 

(CFU) were counted for each plate and the percentage survival was calculated for 

each strain using the following formula, in which MΦ refers to macrophages and 

the CFU are the average of the individual CFU from the triplicate YPD-agar plates: 

% Phagocytosis = (CFUC. neoformans with MΦ @ 1hr ÷ CFUC. neoformans without MΦ) × 100    

% Survival = (CFUC. neoformans with MΦ @ 24 hrs ÷ CFUC. neoformans with MΦ @ 1 hr) × 100  

C. neoformans virulence assay with invertebrate model: 

To examine the virulence of mutant C. neoformans strains, the survival of 

larvae of the greater wax moth, Galleria mellonella, was assayed after injection, in 

parallel, with either the wild type or pdcΔ mutant C. neoformans strain; for this 

assay, both strains were in an H99 strain background. For use in this assay, the 

two C. neoformans strains were grown in YPD media at 30°C overnight and 

refreshed the next morning by inoculation of new 2 ml cultures and incubation to 

an OD600 of ~0.2. The cells from each strain were then pelleted and washed once 

with sterile water and twice with D-PBS, before being resuspended in D-PBS to a 

final concentration of 1×105 cells/µL. Subsequently, milky-white G. mellonella 

larvae without any dark spots and weighing between 0.27 g and 0.30 g were 

chosen. Ten larvae per C. neoformans strain were selected and disinfected using 

alcohol wipes just prior to inoculation. Using Hamilton syringes, the ten larvae were 

each injected in the bottom, left proleg with 10 µl (1×106 cells) of either the wild 
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type or pdcΔ strain. To determine the level of death due solely to injection, 10 µl of 

D-PBS were injected as a control into another ten larvae and death was monitored 

over time. Similarly, as a negative control, the wild type C. neoformans strain (in 

the H99 background) was heat-killed via incubation at 65°C for 1 hour and 1×106 

of these dead cells were injected into each of another ten larvae. After all strains 

and controls were injected into G. mellonella, the larvae were incubated at 37°C 

and monitored daily. Death was scored based on blackened appearance 

(indicative of either necrosis or complete melanization) and a lack of normal rolling-

over behavior. The numbers of dead larvae in each injection group were tallied 

and graphed in a Kaplan-Meier survival curve. 

Statistical analysis of results: 

All of the graphs were prepared using GraphPad Prism. When multiple time 

points were being analyzed in the experiment, the significance of the results were 

determined using the analysis of variance (ANOVA) software within Prism, with 

Dunnet, Sidak, or other post-test multiple comparison, as recommended by the 

software, generally using one-way ANOVA to compared the wild type to the pdcΔ 

strain.  When only triplicate values at one time point (such as in the macrophage 

survival assay, in which the relative percent survival values were first calculated 

using Microsoft Excel) were analyzed, a parametric, paired, two-tailed t-test was 

conducted. For Kaplan-Meier survival curves, the Gehan-Breslow-Wilcoxon test 

and/or Log-Rank test was used to compare the virulence of the mutant strain to 

that of the wild type strain.  
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Results 

Phylogenetic tree analysis: 

 The phylogeny of the pyruvate decarboxylase (Pdc) family was generated 

with protein sequences from C. neoformans var. grubii and var. neoformans and 

putative homologs from various other fungi (Figure 3.2) using MEGA X (Kumar et 

al., 2001) software. The C. neoformans var. grubii Pdc was, as expected, most 

closely related to that of C. neoformans var. neoformans and of Cryptococcus 

gattii, and, together with a hypothetical protein from Tremella mesenterica, form a 

monophyletic group (GROUP 1 in Figure 3.2) in the tree. These Pdc sequences 

are next most closely related to the putative Pdc1 from Sporisorium reilianum, a 

putative indolepyruvate decarboxylase from Ustilago maydis (UMAG_03994), the 

Pdc sequence from Coprinopsis cinerea (CC1G_03453), and the Pdc sequence 

from Phanerochaete chrysosporium (AGR57_8688), which, together, form the 

monophyletic GROUP 2 in Figure 3.2. Surprisingly, the C. neoformans var. grubii 

Pdc is only distantly related to Pdc proteins from a third monophyletic group 

(GROUP 3 in Figure 3.2) that includes Pdc1p, Pdc5p, and Pdc6p from S. 

cerevisiae and Pdc1p and Pdc4p from Schizosaccharomyces pombe, but is more 

closely related to those than to the regulatory S. cerevisiae protein Pdc2p 

(Hohmann, 1993; Kaiser et al., 1999) or to the related regulatory protein Pdc2p 

from Candida albicans (Kaiser et al., 1999). It is therefore likely that C. neoformans 

var. grubii and var. neoformans pyruvate decarboxylases have similar enzymatic 

function as Pdc1p, Pdc5p, and Pdc6p from S. cerevisiae. 
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Verification of PDC deletion: 

The pdcΔ mutant (in the KN99a strain background) obtained from the 

Madhani deletion collection (Chun and Madhani, 2010) was checked for the 

replacement of PDC with a nourseothricin acetyltransferase (NAT) cassette by 

PCR. The results confirmed the presence of PDC in the wild type strain (also in 

the KN99a strain background) and the deletion of the gene in the pdcΔ strain 

(Figure 3.3, lanes 2 and 3, respectively). No PCR product for NAT was observed 

for the wild type strain, while a band of the correct size (~1600bp) was observed 

for the pdcΔ strain (Figure 3.3, lanes 4 and 5, respectively).  

Absence of Pdc impacts glucose-dependent growth of C. neoformans:  

C. neoformans prefers glucose over other carbon sources for growth (Hu et 

al., 2008; Sabiiti and May, 2012), but inside the host it encounters conditions such 

as low glucose and low amino acid concentrations, which forces it to utilize acetate, 

lactate, or other alternative carbon sources to survive (Hu et al., 2008; Price et al., 

2011). Therefore, the growth of the pdcΔ mutant on YNB medium supplemented 

with glucose as the conventional carbon source, or with acetate or ethanol as 

alternative carbon sources, was investigated. Specifically, spot assays and growth 

curve analyses were performed on solid or liquid media supplemented with 2% 

glucose, 2% acetate, or 2% ethanol. In the qualitative spot assay, the pdcΔ mutant 

grew similarly to the wild type KN99a strain on all three media, suggesting that the 

function of the Pdc enzyme is not necessary for utilization by C. neoformans of 

different carbon sources (Figure 3.4). In the quantitative growth analysis, the pdcΔ 
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mutant did not grow as well as the wild type strain in medium supplemented with 

glucose (Figure 3.5a; P-value = 0.0011 overall), especially after 14 hours (P-value 

= 0.0053, 0.0084, 0.0047, and 0.0063 at 24, 31, 38, and 48 hours, respectively). 

Unlike in the colonies formed in the spot assay, in the quantitative growth assay, 

the constant shaking of fungal cells grown in liquid medium tended to separated 

individual cells from each other, preventing them from contributing to each other’s 

growth and survival via some type of en masse metabolic compensation 

mechanism; this might explain the discrepancy between the results of the two 

assays. Thus, the overall results of the growth assays demonstrated that the 

pyruvate decarboxylase-deficient mutant exhibited inefficient cell autonomous 

utilization of glucose, but could make use of acetate or ethanol as effectively as 

the wild type strain, since the two strains exhibited equivalent growth in the 

corresponding media (Figure 3.5b, c). 

Acetate production is reduced in the pdcΔ mutant: 

Pyruvate decarboxylase is used by S. cerevisiae to convert pyruvate to 

acetaldehyde, which is then be converted to acetate via an acetaldehyde 

dehydrogenase (Pronk et al., 1996). In order to determine whether the C. 

neoformans PDC gene is similarly involved in the production of acetate, the 

amount of acetate secreted into the extracellular media by wild type and pdcΔ  

strains grown on YNB supplemented with 2% glucose was measured every 12 

hours. It was observed that the pdcΔ mutant could produce acetate, but at a 

concentration very significantly (P-value < 0.01) lower concentration than that 
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produced by the wild type KN99a strain, (Figure 3.6; P-value = 0.0035 overall, with 

P-value = 0.0053 and P-value = 0.0206 at 36 and 48 hours, respectively), implying 

that C. neoformans Pdc is utilized in acetate production. 

Capsule formation is compromised in the pdcΔ mutant:  

The C. neoformans polysaccharide capsule protects against attack by the 

host immune system by downregulating inflammatory cytokines, decreasing the 

levels of complement proteins, and reducing the antigen presenting capacity of 

monocytes (Retini et al., 1998; Vecchiarelli et al., 2003; Vecchiarelli et al., 1995), 

as well as by protecting against phagocytosis by macrophages (Panepinto et al., 

2007; Cross and Bancroft, 1995) and quenching phagocyte-produced reactive 

oxygen species if the pathogen is engulfed (Zaragoza et al., 2008). To determine 

whether Pdc activity is important for production of the polysaccharide capsule, cells 

from wild type and pdcΔ mutant C. neoformans strains in the KN99α background 

were incubated in capsule inducing medium and then stained with India Ink to 

visualize capsule thickness under the microscope. Capsule thickness was reduced 

in the pdcΔ mutant relative to the wild type strain (Figure 3.7), indicating that 

pyruvate decarboxylase function is relevant to capsule production.  

Melanization is reduced in the pdcΔ mutant:  

Melanin is produced by C. neoformans, and protects the pathogen from 

attack by reactive oxygen and nitrogen species produced by macrophages after 

phagocytosis (Ma and May, 2009), so melanin deficient mutants of C. 

neoformans are less virulent (Wang et al., 1995). Wild type and pdcΔ mutant 
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cells were spotted onto plates supplemented with L-DOPA, which C. neoformans 

converts to melanin using the laccase enzymes (Williamson, 1997; Li et al., 

2018). The pdcΔ mutant colonies had visibly reduced coloration as compared 

with the wild type colonies, indicating that this pyruvate decarboxylase deficient 

mutant had defective melanin production (Figure 3.8).  

Deficiency of pyruvate decarboxlyase affects response to hypoxia: 

C. neoformans causes fungal meningitis by infecting the host nervous 

system and then surviving and growing under the low oxygen conditions found in 

the brain (Ingavale et al., 2008; Erecińska and Silver, 2001). Thus, identifying the 

enzymes used by C. neoformans to withstand hypoxia could generate therapeutic 

targets. Cobalt chloride induces both the Sre1p ergosterol production pathway and 

transcription of the fatty acid desaturase gene OLE1, which function in coordinating 

the cellular low-oxygen response (Guzy et al 2007; Lee et al., 2007). Cells react to 

CoCl2 as if they were under hypoxia (Guzy et al 2007; Lee et al., 2007). To 

determine whether Pdc plays a role in the survival of the pathogen under hypoxia, 

the pdcΔ mutant strain was grown in YES medium supplemented with CoCl2. The 

pdcΔ mutant grew normally in YES medium under normoxic conditions (Figure 

3.9a), but exhibited defective growth when subjected to the artificial hypoxia 

(Figure 3.9b). This suggests that Pdc is important for survival of the pathogen 

under low oxygen. However, when the pdcΔ mutant was cultured on CoCl2-

containing medium to which 2% acetate was added, it grew normally (Figure 3.9c). 

Therefore, the observed growth defect is likely due to insufficient production of 
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acetate by this pyruvate decarboxylase deficient mutant. Alternatively, Pdc 

functions in a hypoxia response pathway that can be replaced by a secondary, 

acetate-dependent pathway, although how this would work is uncertain.  

Pyruvate decarboxylase is not required for survival under oxidative, 

nitrosative, or osmotic stress 

While the pathogen needs to be able to survive hypoxia after dissemination 

to the brain, at a much earlier stage of infection immediately after inhalation into 

the host lungs, the cryptococcal cells (or spores) must be able to survive 

engulfment by alveolar macrophages, which generate and use reactive oxygen 

and nitrogen species to destroy the engulfed pathogen (Hampton et al., 1998; 

Vieira et al., 2002; Cox et al., 2003; Tohyama et al., 1996). To determine whether 

C. neoformans Pdc activity assists in the survival of the pathogen under oxidative 

or nitrosative conditions, the wild type and pdcΔ strains were grown on YNB-agar 

(buffered to pH 4.0 using sodium succinate) to which 1 mM H2O2 or 1.5 mM NaNO2 

was added, respectively. There was no significant difference in the growth of the 

pdcΔ mutant under either oxidative (Figure 3.10a) or nitrosative (Figure 3.10b) 

conditions relative to the wild type strain, indicating that Pdc plays no role in the 

neutralization of oxygen or nitrogen free radicals produced by the host immune 

system or in survival under oxidative or nitrosative stress. 

C. neoformans is also challenged with osmotic stress inside the human 

body, and produces metabolites like mannitol (Chaturvedi et al., 1996a,b) or 

utilizes the HOG1 pathway (Bahn et al., 2005) to survive in high osmolarity 
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environments. To assay whether Pdc has any function in the osmotic stress 

response, the wild type strain and the pdcΔ mutant were grown on YPD plates 

supplemented with 1.5 M NaCl and 1.2 M KCl to generate high salt conditions. It 

was found that the pdcΔ mutant grew as well as the wild type strain under these 

high salt conditions (Figure 3.11). This observation suggests that there is no 

involvement of the Pdc enzyme in the growth of C. neoformans under osmotic 

stress. 

Cell wall integrity is not affected in the pdcΔ mutant: 

The cell wall is an essential component that provides structure to 

cryptococcal cells and that protects C. neoformans from the oxidative environment 

inside the macrophages generated and used by these phagocytic cells to destroy 

the pathogen (Gerik et al., 2005). The cell wall plays a role in the attachment of the 

capsule to the cell membrane and harbors the laccase enzymes that produce 

melanin, which is deposited in the cell wall and protects against ROS and RNS 

(Baker et al., 2007; Van Dyke and Wormley, 2018). Therefore, an intact cell wall 

is required for full virulence. The cell wall integrity of the pdcΔ mutant strain was 

assayed by spotting decreasing concentrations of cells on media containing 

sodium dodecyl sulfate (SDS) or Congo red. Congo red binds to (1,4) β-glucans 

(or to the monomer, β-1,4 N-acetyl glucosamine), and thereby interferes with cell 

wall construction and with attachment to the cell wall of the chitin and capsule, 

while SDS that passes through gaps in the capsule, chitin, and cell wall dissolves 

the plasma membrane and lyses the cells (García et al., 2015; Banks et al., 2005; 
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Ram and Klis, 2006; Baker et al., 2007; Gerik et al., 2005; Wood et al., 1983). 

Hence, strains with cell wall integrity defects will not survive in the presence of 

either Congo red or SDS, depending which layer of capsule, cell wall, or chitin is 

deficient. The growth of the pdcΔ strain was not affected by SDS (Figure 3.12b) 

but was severely reduced at low cell concentrations or Congo Red (Figure 3.12c), 

indicating that the Pdc enzyme does play a role in building the cell wall or 

maintaining cell wall integrity, but the lack of this enzyme does not affect the 

integrity to such an extent that SDS can traverse the cell wall.  

Deficiency of Pdc greatly impairs survival after phagocytosis : 

To investigate the contribution of Pdc in the survival of C. neoformans 

against attack by host immune cells, the percentage of fungal cells surviving 

engulfment by murine macrophages was assayed. Wild type and pdcΔ mutant 

fungal cells were each co-incubated, in triplicate, with macrophages for 1 hour in 

a 96-well plate, and the fungal cells from lysed macrophages were plated on YPD. 

The relative percent phagocytosis of the mutant was determined by comparing 

colony forming ability of phagocytosed fungal cells to that of non-phagocytosed 

control cells and then to this ratio for wild type cells. In a parallel plate, the 

macrophages were given 24 hours to destroy internalized C. neoformans cells 

(after non-phagocytosed fungal cells were removed), and were then lysed. 

Surviving C. neoformans cells were plated on YPD, and the number of colonies of 

each strain were divided by the average number of colonies from phagocytosed 

cells of that strain from the percent phagocytosis analysis. The percent 



251 
 

phagocytosis of the mutant was marginally significantly increased relative to the 

wild type strain (161.39% vs. 100%; P-value = 0.0293). In contrast, the percent 

survival and recovery of growth capability inside the macrophages was highly 

significantly reduced for the pdcΔ strain, at only 39.11% (P-value = 0.0003) relative 

to the 100% normalized value for the wild type strain (Figure 3.13). These results 

indicate that deficiency of the pyruvate decarboxylase enzyme does negatively 

affect survival of C. neoformans inside macrophages in vitro. 

The pdcΔ mutant exhibits normal virulence in the invertebrate Galleria 

mellonella in vivo infection model: 

Since Pdc was found to be important for the production of the capsule and 

melanin, both of which are important virulence factors, and for survival in 

macrophages, an in vitro assay for virulence, it was reasonable to expect a role 

for Pdc in pathogenesis in vivo. Therefore, the virulence of the pdcΔ mutant 

strain was assessed in the invertebrate model, the larvae of the greater wax 

moth, Galleria mellonella. Fungal virulence was measured based on the number 

of days required for the first larva to die and then for all of the larvae to die, 

represented as a Kaplan-Meier survival curve (Figure 3.14). The two negative 

control groups of larvae only started to die off on day 8, and at least some larvae 

survived until day 18 at minimum. In contrast, larvae infected with wild type C. 

neoformans cells started dying on day 6 post-injection and all such larvae were 

dead by day 9. Similarly, larvae infected with pdcΔ mutant cells started dying on 

day 6 post-injection and all larvae were dead by day 10. In fact, the survival curve 
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of the pdcΔ strain-injected larvae was not statistically different from that of the 

wild type H99-injected larvae, as determined using a Chi-square-based Gehan-

Breslow-Wilcoxon test (P-value = 0.3395) or using a Log-Rank test (P-value = 

0.2700), whereas the two control survival curves were statistically different from 

the survival curve of the wild type injected larvae by either test (P-value < 0.0001 

for both controls). The median survival of the larvae injected with pdcΔ mutant 

cells was 8 days, the same as that of larvae injected with wild type C. neoformans 

cells; in contrast, the median survival of larvae injected with PBS or heat-killed 

C. neoformans cells were 13 and 15 days, respectively. These observations 

suggest that deficiency of pyruvate decarboxylase does not affect the virulence 

of C. neoformans when utilizing G. mellonella as a model, despite the effect of 

this deficiency on reducing capsule size, melanin content, and even survival in 

macrophages. 
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Discussion  
 

This is the first investigation of the role of Cryptococcus neoformans 

pyruvate decarboxylase in the virulence of the pathogen. S. cerevisiae requires 

Pdc activity for normal growth (Schmitt and Zimmermann, 1982) and has three 

structural PDC genes, PDC1, PDC5, and PDC6 (Seeboth et al., 1990; Kaiser et 

al., 1999; Agarwal et al., 2013). The enzyme encoded by PDC1 is the major 

pyruvate decarboxylase used during fermentation (Schmitt and Zimmermann, 

1982; Schmitt et al., 1983; Kellermann et al., 1986; Hohmann and Cederberg, 

1990; Hohmann 1991a; Hohmann, 1993). Mutation of PDC1 decreases growth 

because of excessive accumulation of pyruvate, which can slow down glycolysis 

in S. cerevisiae (Schmitt and Zimmermann, 1982). Some point mutants of PDC1 

are completely unable to grow on glucose-containing media under either 

respiratory or fermentative conditions (Schmitt and Zimmermann, 1982; Schmitt et 

al., 1983), and exhibit a cytosolic redox imbalance, as well as secrete excess 

cytosolic pyruvate into the growth medium (Van Maris et al., 2004). Complete 

deletion of the PDC1 gene apparently rescues growth on glucose, and the mutant 

retains 60-70% of pyruvate decarboxylase activity. The total lack of Pdc1 

expression causes the upregulation of expression of the PDC5 gene, which is 88% 

identical to PDC1 (Seeboth et al., 1990; Agarwal et al., 2013; De Assis et al., 2013). 

In short, Pdc1p appears to be the major pyruvate decarboxylase in S. cerevisiae 

and the yeast uses Pdc5p instead when it cannot express Pdc1p (De Assis et al., 

2013; Muller et al., 1999; Eberhardt et al., 1999; Hohmann and Cederberg, 1990; 
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Schaaff et al., 1989; Kaiser et al., 1999). A mutant in both PDC1 and PDC5 genes 

has no detectable pyruvate decarboxylase activity, and cannot grow for very long 

on glucose as the sole energy source, and the same is true of a triple mutant also 

lacking the weakly expressed PDC6 (Flikweert et al., 1996; Hohmann, 1991b; 

Kaiser et al., 1999). During fermentation, S. cerevisiae can use the Pdc activity in 

the pyruvate dehydrogenase by-pass pathway to convert pyruvate to acetyl-CoA, 

via acetaldehyde and acetate (Pronk et al., 1994; Remize et al., 2000), so loss of 

Pdc function is expected to decrease the level of acetate, but PDC1 gene mutation 

did not change the cytoplasmic acetate levels, even though it approximately 

doubled the level of pyruvate (Remize et al., 2000). The normal level of acetate 

may or may not result from low level expression and activity of Pdc5p or Pdc6p. 

 A distant relative of S. cerevisiae, Saccharomyces kluyveri, also has three 

PDC genes that code for functional Pdc enzymes. (Møller et al., 2004). Another 

taxonomic relative of S. cerevisiae, Kluyveromyces marxianus, has two genes 

coding for Pdc enzymes, KmPDC1 and KmPDC5; deletion of KmPDC1 results in 

decreased or no growth in aerobic or anaerobic conditions, respectively (Choo et 

al., 2018), indicating that it encodes the major Pdc. PDC is also reported to have 

homologues in several other yeast species, including in Pichia pastoris (Agarwal 

et al., 2013), Scheffersomyces stipitis (Lu et al., 1998), Wickerhamomyces 

anomalus (Fredlund et al., 2006) and Candida utilis (Franzblau and Sinclair, 1983), 

as well as in Ogataea polymorpha (Ishchuk et al., 2008), which, along with 
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Ogataea parapolymorpha, is actually a strain of the species Hansenula 

polymorpha (Suh and Zhou., 2010; Ravin et al., 2013). 

 The fungal pathogen Candida albicans has 3 PDC genes, PDC2, PDC11 

and PDC12 (Bahn et al., 2007; Kaiser et al., 1999). PDC12 likely encodes the 

actual pyruvate decarboxylase. PDC11 seems to encode a functionally related 

enzyme that localizes to the hyphal cell surface and that is upregulated under 

hyphae-inducing conditions in a cAMP dependent manner, but which is not found 

in the yeast cells themselves (Bahn et al., 2007). PDC12 is also upregulated by 

the cAMP signaling pathway, but is expressed in the yeast cells (Bahn et al., 2007). 

In contrast to the proteins encoded by PDC11 and PDC12, the protein encoded by 

PDC2 has a regulatory role (Kaiser et al., 1999). C. albicans requires Pdc activity 

to grow under hypoxic/anaerobic conditions. Pyruvate decarboxylase expression 

is highly responsive to oxygen levels in C. albicans, with expression of the Pdc 

apoform down-regulated in oxygen-rich environments, and upregulated in 

anaerobic conditions (Tylicki et al., 2008). The maximal rate of Pdc activity in C. 

albicans is reached at a much lower concentration of pyruvate than in S. cerevisiae 

(Tylicki et al., 2008), indicating that the Pdc enzymes in different fungal species, 

including in C. neoformans, may have different substrate affinities and enzyme 

kinetics.  

 When the protein sequence for the single C. neoformans Pdc was analyzed 

using phylogenetic software, it was found to be more closely related to the 

probable Pdc1 from Sporisorium reilianum, a putative indolepyruvate 
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decarboxylase from Ustilago maydis (UMAG_03994), the pyruvate decarboxylase 

from Coprinopsis cinerea (CC1G_03453), and the pyruvate decarboxylase from 

Phanerochaete chrysosporium (AGR57_8688) than to Pdc1p, Pdc5p, and Pdc6p 

from S. cerevisiae or to the C. albicans proteins, making it difficult to determine the 

function of the C. neoformans Pdc based on the S. cerevisiae or C. albicans 

proteins. Nevertheless, the review of Pdc enzymes from the latter two model 

organisms provided insight that allowed the interpretation of the results of 

biochemical and cellular assays of the C. neoformans pdcΔ mutant.  

 As C. neoformans disseminates from the lungs, it encounters different 

environments, such as those inside of macrophages, in the blood, or in the brain, 

and it must adapt to utilize different available nutrients; the fungus even changes 

the expression of genes important in the utilization of acetate, lactate, ethanol, or 

glucose as part of adjusting to the use of alternative carbon sources (Hu et al., 

2008). Therefore, the growth of the C. neoformans pdcΔ mutant on glucose, 

ethanol, or acetate as the sole carbon source was assayed. As mentioned above, 

S. cerevisiae pdc1 point mutants have reduced growth on glucose while deletion 

mutants grow normally by upregulating Pdc5p (Schmitt and Zimmermann, 1982; 

Schmitt et al., 1983; Seeboth et al., 1990; De Assis et al., 2013; Muller et al., 1999; 

Eberhardt et al., 1999; Hohmann and Cederberg, 1990; Schaaff et al., 1989; Kaiser 

et al., 1999). It was therefore surprising, despite the lack of evolutionary 

relatedness between the C. neoformans and S. cerevisiae enzymes, that the C. 

neoformans pdcΔ mutant grew normally on solid media with glucose as the sole 
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carbon source (Figure 3.4a) but displayed a growth defect in the equivalent media 

in liquid form (Figure 3.5a). This indicates that, despite having only one Pdc 

enzyme, C. neoformans cells deleted for the corresponding gene somehow work 

together to circumvent the function of the pyruvate metabolism pathway via some 

kind of compensation mechanism when grown at high density as colonies. This 

mechanism appears to function only when the cells are en masse, so that, when 

isolated from each other in liquid culture with constant agitation, the mutant cells 

do not grow as well as wild type cells. The C. neoformans pdcΔ mutant did not 

exhibit a growth defect on ethanol. Just as S. cerevisiae represses the expression 

of both PDC1 and PDC5 in the presence of ethanol (Liesen et al., 1996) since it 

can make acetaldehyde, and therefore acetate, from ethanol instead of from 

pyruvate, C. neoformans also should not need pyruvate decarboxylase when 

grown on ethanol. Likewise, if Pdc plays a role in acetate production, it should not 

be necessary for growth on acetate. In support of this potential function, the pdcΔ 

mutant grew normally on media containing acetate as the primary carbon source. 

 In addition to serving as a possible carbon source for C. neoformans, 

acetate is one of the major metabolites in infected tissues (Himmelreich et 

al.,2003) as well as in culture (Bubb et al., 1999; Wright et al., 2002). Based on 

studies in S. cerevisiae, pyruvate produced in the cryptococcal cell by glycolysis 

either could be shuttled to mitochondria to generate acetyl-CoA (via the TCA cycle) 

or could be channeled into a anaerobic pathway to make acetaldehyde, which 

would then be converted to acetate and acetyl-CoA via the functions of 
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acetaldehyde dehydrogenase and acetyl-CoA synthetase enzymes, respectively 

(Saint-Prix et al., 2004; Remize et al., 2000; Pronk et al., 1994, 1996). The latter 

pathway, again, based on S. cerevisiae, is also likely to be the major source of 

cytoplasmic acetate (Saint-Prix et al., 2004; Remize et al., 2000; Pronk et al., 1994, 

1996). Furthermore, Hu et al. (2008) reported that C. neoformans enzymes 

involved in metabolism or transport of acetate, including two acetate transporters, 

acetyl-CoA synthetase, an aldehyde dehydrogenase, and pyruvate 

decarboxylase, and are all upregulated during pulmonary infection. In order to 

assess the effect of the loss of the Pdc enzyme in C. neoformans on acetate 

production, the levels of acetate secreted by the wild type strain and by the pdcΔ 

mutant at different time points during growth in liquid media were quantified. A 

statistically significant decrease in the levels of acetate was observed in the pdcΔ 

mutant relative to the wild type strain (Figure 3.6), indicating that deficiency of 

pyruvate decarboxylase impaired acetate production and suggesting that Pdc 

plays an important role in the generation of acetate by C. neoformans. This is 

contradictory to the observation in S. cerevisiae, in which mutation of the PDC1 

gene did not affect the levels of acetate (Remize et al., 2000). The reason for this 

difference is likely that S. cerevisiae has at least two functioning Pdc enzymes that 

can compensate for each other (De Assis et al., 2013; Muller et al., 1999; 

Eberhardt et al., 1999; Hohmann and Cederberg, 1990; Schaaff et al., 1989; Kaiser 

et al., 1999), while C. neoformans has only one PDC gene, loss of which severely 

decreases the amount of acetate produced by C. neoformans. In combination with 
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the reduced acetate secretion observed in all of the C. neoformans aldehyde 

dehydrogenase mutants in the prevous chapter, the reduced levels of acetate 

secreted by the pdcΔ mutant supports the notion that Pdc and the Ald enzymes 

form a metabolic pathway by which a significant portion of the acetate generated 

by C. neoformans is made, although each could, instead, be part of different, 

parallel pathways. 

 Given the fact that acetate is produced by C. neoformans during in vivo 

infection (Himmelreich et al.,2003), it was obviously important to investigate 

whether reduced acetate levels, or reduced Pdc activity overall, could affect the 

virulence of the pathogen. Therefore, the status of various virulence factors, 

including capsule formation, levels of melanin, and cell wall integrity were 

assayed in the C. neoformans pdcΔ mutant. Indeed, the mutant exhibited a 

smaller and thinner capsule than the wild type strain (Figure 3.7). However, 

whether this reduction in capsule size is deleterious for fungal infection and 

survival in the host cell is actually questionable. C. neoformans spores are 

generally unencapsulated as smaller size helps in passage through the airway 

during inhalation (Velagapudi et al., 2009). Infection with hypocapsular strains 

leads to worse clinical outcomes because of the higher possibility of passage 

into the lungs (Sabiiti et al., 2014). Furthermore, at least one study showed that 

hypercapsular mutants of C. neoformans were less virulent, while hypocapsular 

strains were more virulent, and disseminated more effectively to the brain, in a 

mouse model (Pool et al., 2013). On the other hand, completely acapsular 
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mutants of C. neoformans have been shown to be avirulent (Chang and Kwon-

Chung, 1994), and cryptococci enlarge their capsules after reaching the lungs to 

prevent engulfment by macrophages (Levitz and Tabuni, 1991; Xie et al., 2012; 

May et al., 2016). Therefore, the lack of a proper capsule alone was not sufficient 

to predict the virulence of the pdcΔ mutant.   

 Besides the polysaccharide capsule, the survival of C. neoformans inside 

the host cells also depends on melanin. Melanin not only contributes to the 

maintenance of cell wall integrity, but also accumulates at the cell wall and 

neutralizes the free oxygen and nitrogen radicals produced by phagocytes 

before they can reach the fungal cell membrane, thereby protecting the pathogen 

from the chemical attack that is part of the immune response mounted by host 

cells (Wang et al., 1995; Wang et al., 1996; McClelland et al., 2006; Steenbergen 

and Casadevall, 2003). Analysis of the C. neoformans strain deficient for the Pdc 

enzyme showed a reduction in the level of melanin in the cells (Figure 3.8), which 

may have an impact on virulence. This decrease could be due to perturbation of 

the regulation of the melanin synthesis pathway, but a limited defect in cell wall 

integrity observed in the Congo red assay (Figure 3.12) could also contribute to 

the similarly limited reduction in melanization, since both melanin and the 

laccase enzymes that produce it are located in the C. neoformans cell wall 

(Perez-Dulzaides et al., 2018; Walton et al., 2005; Zhu et al., 2001; McFadden 

and Casadevall, 2001), and disruption of cell wall integrity leads to leaking out of 

melanin (Perez-Dulzaides et al., 2018). It is also possible that the smaller 
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capsule of the pdcΔ mutant (Figure 3.7) allowed the laccase enzyme and/or the 

melanin to escape, preventing the accumulation of the latter. 

 Since the pdcΔ mutant had both a smaller capsule and low melanin levels, 

the effect on growth of reactive oxygen and nitrogen species and of 

hyperosmolarity, which should affect these "unprotected" cells more, was assayed, 

but the mutants were unaffected by these stresses (Figures 3-10 and 3-11). This 

was an intriguing result, since it indicated that, either the degree of reduction in 

capsule size, cell wall integrity, and melanization was insufficient to increase 

sensitivity to these stresses, or other factors besides the capsule and melanin were 

protecting the cells from ROS/RNS-mediated cell damage or water loss. It is 

possible that the accumulation of pyruvate in these pdcΔ mutant cells might have 

been put to use by the cells to somehow neutralize the ROS/RNS and that the 

increasing concentrations of pyruvate increased the osmolarity within the cell, 

counteracting the hyperosmolarity in the media.  

 Just as C. neoformans cells have to be able to cope with oxidative (and 

nitrosative) stress, they also have to be able to cope with the near opposite 

condition, too little oxygen. C. albicans requires Pdc activity to grow under 

hypoxic/anaerobic conditions (Tylicki et al., 2008). Therefore, it is possible, that 

pyruvate decarboxlyase activity may also provide resistance to hypoxia stress in 

C. neoformans, just as it appears to do in C. albicans. Indeed, when tested for 

growth on media with cobalt chloride, which induces cells to behave as if they are 

in hypoxic conditions, the pdcΔ mutant was more sensitive than the wild type strain 
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(Figure 3.9b). The cobalt ion in the cobalt chloride can drive the production of ROS 

via the Fenton reaction just like reduced iron (Ingavale et al., 2008); however, the 

sensitivity of the pdcΔ mutant to cobalt chloride was due to its lack of ability to 

respond properly to hypoxia, and not due to a sensitivity to ROS or RNS, since the 

mutant grew normally on media supplemented with hydrogen peroxide or sodium 

nitrite. The pdcΔ mutant also grew normally on media supplemented with CoCl2 

when 2% acetate was also added to the media. This indicates that the partial 

dependence of C. neoformans on Pdc for survival under hypoxia is based on the 

role of pyruvate decarboxylase in acetate production, or at least, that the pathogen 

needs acetate to contend with hypoxia-like conditions, and the pdcΔ mutant is 

unable to make wild type levels of acetate, as demonstrated by the hydroxamate 

assay. 

 Once it was determined that important virulence factors like melanin 

production, capsule formation, and cell wall integrity were negatively affected in 

the pdcΔ mutant, and that this correlated with at least one phenotype potentially 

associated with reduced virulence (reduced growth under hypoxia), the next logical 

step was to test whether the lack of the Pdc enzyme reduced the actual virulence 

of the mutant in vitro and/or in vivo. In fact, the pdcΔ mutant did demonstrate 

significantly reduced survival (and recovery) after phagocytosis relative to the wild 

type strain in an assay utilizing mouse macrophages (Figure 3.13). This indicates 

that, while the smaller capsule, reduced cell wall integrity, and decreased 

melanization observed in the mutant did not affect the response to ROS/RNS, they 
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did affect the ability to survive the other types of attacks mounted by the 

macrophages after engulfment. Thus, deficiency of pyruvate decarboxylase 

activity did reduce C. neoformans virulence in vitro. 

 Nevertheless, the effects on virulence of deletion of a gene are best 

determined using an in vivo assay. Other C. neoformans mutants with defective 

melanin production have reduced virulence in the in vivo Galleria mellonela 

infection model (Firacative et al., 2014). Therefore, since the pdcΔ mutant strain 

had reduced melanization in addition to reduced survival after macrophage 

engulfment, it was expected to have reduced virulence when injected into G. 

mellonela larvae. However, pdcΔ mutant cells killed the larvae just as effectively 

as C. neoformans wild type cells. This discrepancy may be due to differences in 

genetic background between the strains used in the larval assay and those used 

in the other assays; unlike in the other assays, in which the mutant and wild type 

strain were from the KN99α background, in the G. mellonella survival assay, the 

strains used were in the H99α background. The H99α background strains were 

used in the in vivo assay because the KN99α strains had not yet been obtained 

when the larvae were available. On the other hand, this strain difference should 

have minimal effect on the assay results, since the KN99α background strain is 

derived from the H99 background strain. Even if differences in genetic background 

played no role in the dissimilarity between the virulence of the pdcΔ mutant as 

measured by the in vitro macrophage assay and that measured by the in vivo 

Galleria survival curve assay, the apparently contradictory results are not that 
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surprising. Work by Bouklas et al. (2015) shows that phagocytosis and killing by 

murine macrophages does not necessarily correlate with virulence in Galleria; 

instead, the results of assays in which killing by macrophages was used to assess 

virulence are moderately similar to the results obtained from a murine infection 

model. This suggests that the Galleria model works well for testing some virulence 

factors but it does not consistently show a correlation with a murine model for many 

other virulence factors. Since this is the case, and since a murine model of infection 

is much more likely to demonstrate the effects on virulence in humans of mutations 

in C. neoformans genes, it is recommended that the pdcΔ mutant be tested for 

virulence in a mouse pulmonary infection or cryptococcal meningitis model. 

 Overall, this study shows that Pdc is an important metabolic enzyme in C. 

neoformans that can regulate synthesis of the capsule and the level of melanin in 

fungal cells, as well as the ability to grow in hypoxic conditions in an acetate-

dependent manner, but that might or might not influence the virulence of the 

pathogen.  
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Potential future experiments 

The current results point to a role for the PDC gene in acetate production, 

since it is now clear that the lack of the Pdc enzyme caused reduced growth under 

hypoxia-mimicking conditions in an acetate-dependent manner, based on the 

rescue of normal growth via supplementation with acetate. However, the 

importance of this putative role and of normal acetate levels to phenotypes 

associated with virulence needs to be investigated further by the addition of 

acetate to capsule induction and melanin induction media, and to the Congo red 

containing media in order to uncover whether the capsule formation, melanization, 

and cell wall integrity phenotypes are due to insufficient acetate production by the 

mutant. Likewise, culturing the wild type and pdcΔ mutant strains in media 

containing acetate prior to using them in the macrophage survival assay will reveal 

whether the mutant is less able to counteract the destruction of the fungal cells in 

the phagolysosome because it cannot produce enough acetate. 

 While the pdcΔ mutant had reduced survival when engulfed by murine 

macrophages, it exhibited normal virulence in the Galleria mellonella in vivo assay. 

However, the mutant (and wild type) strain used in the G. mellonella assay was in 

the H99α background, and was the KN99α background strain used in other 

assays, so the G. mellonella assay result should be confirmed with wild type and 

pdcΔ mutant strains in the KN99α background. If the mutant still does not exhibit 

reduced virulence in the larvae, and therefore contradicts the macrophage survival 

assay result, then this might indicate an issue with the use of an invertebrate 
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infection model. In other words, the use of mammalian organisms as an in vivo 

infection model would better match the use of murine macrophages, which are part 

of the vertebrate immune system, than the use of insect larvae, which have 

macrophage-like cells, but not actual macrophages (Arvanitis et al., 2013; Tsai et 

al., 2016). So, further testing of the virulence of the pdcΔ mutant should be 

undertaken using murine or zebrafish infection models involving injection or 

inhalation of C. neoformans.  In particular, it is recommended that the pdcΔ mutant 

be tested for virulence in a mouse pulmonary infection or cryptococcal meningitis 

model.  Since oxygen levels in the brain are lower than in many parts of the body 

after infection (Erecińska and Silver, 2001; Kronstad et al., 2012; Chang et al., 

2007), cryptococcal dissemination and the development of cryptococcal meningitis 

requires C. neoformans to be able to grow under low oxygen. Therefore, the pdcΔ 

mutant, which exhibited a growth defect under hypoxia-mimicking conditions, is 

expected to be less virulent than the wild type pathogen in a mouse infection 

model. 

 Furthermore, the expression of various virulence-related and metabolic 

genes in the pdcΔ mutant could be analyzed after the C. neoformans are used in 

the infection of the mice. Hu et al. (2008) showed that levels of the mRNA encoding 

Pdc are upregulated in C. neoformans recovered from the lungs of mice from a 

pulmonary infection model. Therefore, the levels of the C. neoformans PDC mRNA 

could be determined by quantitative PCR after the fungal cells are grown under 

physiological conditions, under various stress conditions, or in or on different 
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carbon sources (i.e. glucose, acetate, or ethanol) to shed light onto the regulation 

of Pdc (mRNA) expression in Cryptococcus, and the level of expression of PDC in 

wild type cells, and of stress-response and metabolic genes in the wild type and 

pdcΔ mutant strains, could be determined after the fungal cells infect mouse lungs 

or brain tissue.  

Finally, growth analysis of two double mutants should be undertaken. The 

first, a pdcΔ, ackΔ double mutant has been generated to determine whether the 

two corresponding enzymes function in a single pathway or in parallel pathways in 

acetate production; this double mutant is in the process of characterization.  

Likewise, since both the ald29Δ and pdcΔ mutants exhibited a growth defect under 

hypoxia-mimicking conditions, and both recovered normal growth when provided 

acetate, it is possible that the corresponding enzymes work in a single acetate 

production pathway. Generation of a pdcΔ, ald29Δ double mutant and analysis of 

the growth of this second double mutant, in this case versus that of each single 

mutant and of the wild type strain on media with CoCl2 or with CoCl2 and acetate, 

would determine whether the two enzymes work in series or in parallel pathways. 

If they function in the same pathway, the double mutant phenotype should be no 

worse than that of either single mutant, while, if they operate in parallel, the double 

mutant should be completely unable to grow on cobalt chloride supplemented 

media, unless acetate is provided. Analysis of the phenotype of the double mutant 

versus each single mutant (and wild type) strain in other assays, such as the 
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hydroxamate assay for acetate production, should confirm the findings of the 

hypoxic growth assay.  

 All of these experiments would further the understanding of the role of 

pyruvate decarboxylase in C. neoformans growth and virulence, completing the 

work begun here.  
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Table 3.1: Information about the gene/enzyme deficient in the pdcΔ mutant 

strains used in this study. 

Gene Enzyme name† Identification 
Number† 

Chromosome† Predicted 

Location‡ 

PDC Pyruvate 
decarboxylase 

CNAG_04659 10 Cytoplasmic 

 
† The official enzyme name and identification number, as well as the chromosomal 

location of the corresponding PDC gene was obtained from the Fungi Database, 

https://fungidb.org/fungidb/app/record/gene/CNAG_04659. 

‡ The predicted mitochondrial or cytoplasmic cellular location of the protein was 

determined using the MitoFates website http://mitf.cbrc.jp/MitoFates/cgi-

bin/top.cgi; (Fukasawa et al., 2015).  
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Figure 3.1: Various metabolic pathways utilized by C. neoformans to harness 

energy and invade the host immune system. Glucose, ethanol, and acetate can 

be used as sources of carbon by C. neoformans. Under anaerobic conditions, 

glucose is likely converted to acetate by the action of pyruvate decarboxylase 

(Pdc) and acetaldehyde dehydrogenase enzymes. Ethanol in the cells is converted 

via alcohol dehydrogenase to acetaldehyde, which is then likely converted to 

acetate via acetaldehyde dehydrogenase.  
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Figure 3.2: Phylogenetic tree analysis shows evolutionary relatedness of  

Cryptococcus neoformans pyruvate decarboxylase enzymes to those of 

other fungal species. The protein sequences of cryptococcal pyruvate 

decarboxylase (Pdc) enzymes and potential homologues from other fungal 

species were analyzed using Molecular Evolutionary Genetics Analysis (MEGAX) 

software to build a phylogenetic tree. The Pdc enzymes from C. neoformans var 
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grubii and C. neoformans var neoformans were most similar to each other and 

then to the homologue from C. gattii, and, as a group, were next most closely 

related to enzymes from Sporisorium reilianum, Ustilago maydis, Coprinopsis 

cinerea, and Phanerochaete chrysosporium. The cryptococcal proteins were only 

distantly related to the enzymatic proteins Pdc1p, Pdc5p, and Pdc6p from 

Saccharomyces cerevisiae, but these were more closely related than were 

regulatory proteins like Pdc2p from S. cerevisiae or from Candida albicans.  
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Figure 3.3: Verification of the deletion of PDC in the corresponding mutant. 

PCR primers specific for the pyruvate decarboxylase gene (3 and 4 above) and for 

the NAT gene conferring resistance to the nourseothricin (NTC) antibiotic (107 and 

108) were used to confirm the replacement of PDC with the NAT cassette in the 

pdc mutant (pdcD) obtained from the Madhani lab at UCSF. The presence of a 

band representing PDC from the wild type DNA (WT; lane 2, yellow asterisk), but 

not from the mutant DNA (pdcD; lane 3), corroborated the deletion of PDC in the 

mutant.  The presence of the NAT gene in the pdcΔ mutant (lane 4, yellow asterisk, 

~1600 bp), but not in the wild type strain (lane 5), also confirmed that insertional 

mutagenesis had occurred.  
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Figure 3.4: No qualitative difference in growth using glucose, acetate, or 

ethanol as the carbon source was observed between wild type and pdcΔ 

mutant strains. Four 10-fold serial dilutions (2 µl of 5000, 500, 50, and 5 cells/µl) 

of the pdc mutant strain (pdcD), and of the wild type (WT) strain of C. neoformans 

(both in a KN99α strain background) were spotted from left to right on YNB-agar 

plates supplemented with (a) 2% glucose, (b) 2% acetate, or (c) 2% ethanol. The 

pdcΔ mutant strain exhibited normal growth (relative to the wild type strain) on all 

three media. 
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Figure 3.5: Quantification of the impact of deletion of PDC on growth in liquid 

media with various carbon sources. Growth curves for the wild type strain and 

for the pyruvate decarboxylase deficient strain (pdcD) of C. neoformans (both in a 
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KN99a strain background) were generated over a 48-hour time course in media 

supplemented with (a) 2% glucose, (b) 2% acetate, or (c) 2% ethanol as the 

primary carbon source. The pdcΔ mutant displayed a very statistically significant 

(** P-value < 0.01) reduced growth rate in glucose, but not in acetate or ethanol.  
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Figure 3.6: The pdcΔ mutant produced significantly less acetate than the wild 

type strain. A time course analysis over 48 hours revealed that the pdc mutant 

strain (pdcD) produced less acetate, than the wild type (WT) strain (both in the 

KN99a background). This difference was very statistically significant (** P-value < 

0.01).  
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Figure 3.7: The PDC gene plays an important role in capsule formation. Cells 

from the pdc mutant (pdcD) and wild type strain (in the KN99a background) were 

cultured in capsule-inducing medium, stained with India Ink, and observed under 

a Zeiss microscope at 40x magnification. A white line indicates the width of the 

capsule (the layer of secreted polysaccharides outside the cell wall, appearing as 

a grey zone),in the wild type strain. The capsule of the pyruvate decarboxylase 

deficient mutant is clearly reduced in width. 
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Figure 3.8: The pdcΔ mutant produces less melanin than the wild type strain. 

Wild type and pdc mutant strains (pdcD) in a KN99a strain background were grown 

in a spot assay on plates supplemented with L-DOPA, the substrate converted to 

a brown melanin-like pigment by laccase enzymes (Williamson, 1997; Li et al., 

2018). The pdcΔ mutant accumulate less of the pigment and was lighter in color. 

  



293 
 

 
 
Figure 3.9: The pdcΔ mutant grew poorly under hypoxic conditions. A spot 

assay mimicking growth under low oxygen, in which cobalt chloride induces cells 

to act metabolically as if they were growing in hypoxia, was conducted. The wild 

type strain (WT, in the KN99a background) and the pyruvate decarboxylase 

mutant (pdcD, also in the KN99a background) were grown on a) YES-agar media 

lacking CoCl2 as the normoxic control, in which the pdcΔ mutant grew normally, or 

b) YES-agar media supplemented with 0.7 mM CoCl2, (0.7 mM CoCl2; Hypoxia 

mimic), in which the pdcΔ mutant exhibited a growth defect, indicative of an 

abnormal response to hypoxia. c) This growth defect was reversed when media 

with CoCl2 were supplemented with acetate (0.7 mM CoCl2 + 2% Acetate).  
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Figure 3.10: The pdcΔ mutant grew normally under oxidative and nitrosative 

stresses. The wild type and pdc mutant strains (pdcD), both in the KN99a 

background, were grown on a) YNB-agar media (buffered to pH 4.0 with sodium 

succinate) either not supplemented (Control) or supplemented with 1mM H2O2 to 

assess sensitivity of the mutant to oxidative stress, or b) on sodium succinate 

buffered YNB-agar media not supplemented (Control) or supplemented with 

1.5mM NaNO2 to assess sensitivity of the mutant to nitrosative stress. Growth of 

the pdcΔ mutant was normal (comparable to wild type) under both stress 

conditions. 

  



295 
 

 
 
Figure 3.11: The pdcΔ mutant grew normally under high salt conditions. Wild 

type and pyruvate decarboxylase mutant (pdcD) strains (both in a KN99a 

background) were grown on a) YPD-agar alone as control, b) YPD-agar 

supplemented with 1.5 M NaCl, or c) YPD-agar supplemented with 1.2 M KCl in 

order to induce osmotic stress via the excess sodium or potassium chloride. The 

pdcΔ mutant grew normally relative to the wild type strain under all of these 

conditions. 
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Figure 3.12: The pdcΔ mutant had abnormal cell wall and capsule integrity. 

Wild type and pyruvate decarboxylase mutant (pdcD) strains (in a KN99a 

background) were grown on a) YPD-agar alone as control, b) YPD-agar 

supplemented with 0.03% sodium dodecyl sulfate (SDS), which can disrupt the cell 

membrane, or c) YPD-agar supplemented with 0.5% Congo red, which can disrupt 

the cell wall production and integrity by binding to components of the cell wall and 

chitin layers. The pdcΔ mutant was not sensitive to SDS, but the deficiency of the 

pyruvate decarboxylase enzyme did affect survival of cells spotted at low density 

on Congo red media, indicating that Pdc is required for full cell wall integrity. 
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 Figure 3.13: Percent survival of wild type and pdcΔ mutant C. neoformans 

cells after engulfment by macrophages in an in vitro assay. The pdcΔ mutant 

exhibits reduced survival and recovery (*** P-value < 0.001) after phagocytosis by 

macrophages than the wild type KN99α strain. 
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Figure 3.14: Galleria mellonella survival assay. The survival of Galleria 

mellonella larvae was analyzed after injection with the pdc mutant (pdcD; blue 

line) or wild type (WT; black line) strains of C. neoformans, in the H99 

background, or, as control for death of the larvae due to injection-related 

damage or excessive immune response to fungal infection, with phosphate 

buffered saline (PBS; dotted black line) or heat-killed H99 wild type strain 

(Dead H99; dashed black line), respectively. Here, the survival percentages, 

over time, of the larvae after injection with one million cells of the appropriate 

type are graphed as Kaplan-Meier survival curves. The survival curves of the 

pdcΔ and wild type strain-injected larvae were not statistically different, as 

determined via either a Gehan-Breslow-Wilcoxon test (P-value = 0.3395) or a 

Log-Rank test (P-value = 0.2700), while the survival curves for the two 

negative controls were statistically different (from the wild type survival curves) 

by either test (P-value < 0.0001 for both controls).  
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Abstract 

Cryptococcus neoformans is an opportunistic fungal pathogen that can adapt to 

use different carbon sources as needed. Additionally, it can produce and utilize 

acetate, ethanol, or other alternate carbon sources whenever there is insufficient 

glucose in the environment. The ability to use alternative carbon sources can be 

studied to develop drugs against the relevant pathways. In this study, a global 

screening approach was used to identify genes required for growth of the pathogen 

when provided with acetate or glucose as the only carbon source. A total of 3,936 

distinct strains from two gene-knockout libraries were screened for their ability to 

grow on acetate-containing medium. In total, 41 individual mutants failed to grow 

on either glucose- or acetate- containing medium. Of these, 12 failed to grow on 

medium containing glucose as the only carbon source, 15 mutants failed to grow 

on medium with acetate as the only carbon source, and 14 failed to grow on both 
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of these media. The corresponding genes were categorized, as far as possible, 

based on the pathways to which they belong. Many of these genes are involved in 

gluconeogenesis, arginine biosynthesis, or mitochondrial transport. Some of these 

genes have known homologues in other fungal species, like Saccharomyces 

cerevisiae, Aspergillus nidulans, Candida albicans, and Neurospora crassa, and 

the roles of these homologues have been studied with respect to acetate 

utilization. However, some of the genes identified in this screening are novel and 

have not been previously studied in the context of acetate utilization pathways. 

Herein, the C. neoformans genes identified by this screen for growth on acetate as 

an alternate carbon source, and, taking insights from other fungal species, the 

possible roles of some of these genes, are presented.  
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Introduction 

Cryptococcus neoformans is an opportunistic, invasive pathogen that often 

disseminates to the central nervous system (CNS) and is the most frequent cause 

of human fungal meningitis (Lin and Heitman, 2006). It causes significant annual 

global mortality (Park et al., 2009, Pappas, 2001; Lui et al., 2006; Franzot et al., 

1999; Dromer et al., 1996; Tortorano et al., 1997; Powderly, 1993). This fungus 

mainly affects HIV/AIDS patients, transplant recipients who are 

immunosuppressed to prevent immune-mediated graft rejection, and other 

immunocompromised individuals (Hull and Heitman, 2002). When C. neoformans 

cells enter the lungs, alveolar macrophages attempt to phagocytose the fungal 

cells and kill them, or at least sequester them into granulomas (Rohatgi and 

Pirofski, 2015; Vecchiarelli et al., 1994a,b; Mitchell and Friedman, 1972; 

McQuiston and Williamson, 2012; Sabiiti and May, 2012). If phagocytosis occurs 

and the pathogen is trafficked into the macrophage phagolysosome, a low pH 

environment, hydrolytic enzymes, antimicrobial peptides, and toxic free radicals 

are used to try to destroy the pathogen (Hampton et al., 1998; Vieira et al., 2002; 

Cox et al., 2003; Tohyama et al., 1996; Ma and May, 2009) and to break apart 

pathogen proteins into peptides for presentation to T cells in order to activate the 

adaptive immune response (Vecchiarelli et al., 1994a). In preparation for immune 

attack, C. neoformans increases the production and use of a capsule and of 

melanin to prevent phagocytosis, or if phagocytosed, to counteract the reactive 

oxygen species (i.e. free radicals) and modulate pH, thereby blocking the initial 
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steps of immune activation by macrophages (Wang et al., 1995; Mednick et al., 

2005; Shoham and Levitz, 2005; Tucker and Casadevall, 2002; Zaragoza et al., 

2008; De Leon-Rodriguez et al., 2018; Rohatgi and Pirofski, 2015). This, along 

with other virulence factors, including the ability to grow at the host body 

temperature of 37°C and the use of degradative enzymes, allows the pathogen to 

survive and spread inside the host (Coelho et al., 2014; Casadevall et al., 2000; 

Kronstad et al., 2011; Ma and May, 2009).  

Metabolic adaptability and flexibility are important attributes for fungal 

pathogens to successfully infect and cause disease. Although carbon metabolism 

is critical for virulence in C. neoformans (Price et al., 2011), very little is known 

about which carbon sources are utilized during infection. Lung alveolar 

macrophages, which present a first line of host defense against C. neoformans 

infection (Feldmesser et al., 2000; Feldmesser et al., 2001), provide a glucose- 

and amino acid-poor environment {Barelle et al., 2006; Lorenz et al., 2004), and 

nonpreferred carbon sources such as lactate and acetate are likely important early 

in establishment of a pulmonary infection (Price et al., 2011). 

 To identify C. neoformans genes not previously known to be important in 

acetate utilization, strains from two gene knockout libraries were screened for the 

ability to utilize acetate as the sole carbon source. From this screen, 26 genes 

were identified that encode proteins necessary for growth on acetate as a sole 

carbon source. Some of these genes, like those encoding acetyl-CoA synthetase 

and phosphoenolpyruvate carboxy kinase, were previously identified in other 
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fungal species like S. cerevisiae, Aspergillus nidulans, and Neurospora crassa, 

(Apirion, 1965; Sealy-Lewis, 1994; Flavell and Fincham, 1968a; Schüller, 2003) or 

even in C. neoformans itself (Hu et al., 2008), as important acetate utilization 

enzymes, thereby verifying the sensitivity of the assay, while others have been 

identified as important in acetate metabolism in C. neoformans for the first time.   
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Materials and methods 

Strains  

Two libraries of C. neoformans strains produced in 2015 and 2017 by the 

Madhani laboratory at the University of California San Francisco (UCSF) (Chun 

and Madhani, 2010; NIH R01AI100272), were obtained from the Fungal Genetic 

Stock Center.  

Screening of single-deletion strains from the libraries via spot assays 

Thawed 96-well plates with strains from the original knockout libraries were 

used to produce duplicate 96-well plates by inoculating corresponding wells 

containing 100 μl YPD with 2 μl from each of the wells of the original plates. The 

yeast in these duplicate plates were allowed to grow overnight at 30°C with 

constant shaking. The following day, cells from each well were refreshed by 

inoculating a corresponding well of 100 μl fresh YPD media in new 96-well plates 

(second duplicate plates) with 2 μl of the overnight culture. After a 3 hr incubation, 

2.5 μl of cells from each well were spotted onto corresponding locations on each 

of two YNB-agar plates, one supplemented with 2% glucose and the other 

supplemented with 2% acetate. After a ~48-hour incubation at 30°C, the glucose 

or acetate supplemented plates were imaged using a Canon EOS Rebel T1i 

camera. The identity of the genes mutated in strains that showed growth inhibition 

in either test condition were recorded.  

For the strains that did not grow on either glucose or acetate supplemented 

YNB-agar, the corresponding well in the duplicate plate #2 was assessed under a 
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light microscope under 20x magnification to ensure that there were cells in the 

wells. If no cells were observed, the same well in duplicate plate #1 was also 

checked. If neither duplicate plate had cells, the original stock was re-thawed, a 

small volume of cells from the corresponding mutant strain was plated onto YPD-

agar media, and a glycerol stock was generated to add to the original library stock. 

Once cells from the strains that did not grow on glucose or acetate supplemented 

media were obtained from either of the two duplicate plates or, if necessary, from 

the original stock, they were grown on YPD media and then plated once again on 

glucose or acetate supplemented YNB-agar to attempt to replicate the original 

result. 
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Results 

Previous reports suggest that acetate is a key carbon source for the survival 

of C. neoformans and other fungal pathogens at early stages of infection (Hu et 

al., 2008; Bubb et al., 1999; Wright et al., 2002; Himmelreich et al., 2001, 2003; 

De Sousa Lima et al., 2014; Baeza et al., 2017). Thus, obtaining a global overview 

of which fungal genes are involved in the synthesis, utilization, or transport of 

acetate in cryptococcal cells is potentially of both scientific and medical 

importance. Therefore, a library 3,936 distinct C. neoformans knockout strains, 

each produced by deletion within the open reading frame of the corresponding 

genes via insertional mutagenesis, was screened by spotting each individual strain 

on YNB-agar plates supplemented with either glucose or acetate as the sole 

carbon source. The growth of each of the mutant strains was assayed after 

incubating the plates for 48 hours at 30°C. The majority of the deletion mutants 

grew normally in the presence of either carbon source. However, some mutants 

were found to be compromised in their ability to utilize glucose and/or acetate as 

the sole carbon source, and grew poorly or not at all in the corresponding medium. 

Representative glucose and acetate supplemented plates are shown in Figures 4-

1a and 4-1b, respectively. Some strains, like the deletion mutant for SWR1-

Complex protein 4 (CNAG_02020), had an unusual phenotype of growth into 

seemingly more dense, slightly larger, creamy-white colonies on media with either 

glucose or acetate as the sole carbon source, or on both media (Figure 4.1 c). 



307 
 

Further analysis of these mutants is beyond the scope of this screen, but may be 

undertaken at a later date.  

Mutants that failed to grow were plated from the original library stock onto YPD-

agar media to provide nutrient-rich growth conditions, and then the strains on these 

plates were transferred to YNB-agar plates supplemented with either glucose or 

acetate to confirm that the growth defect observed was both verifiable and 

dependent on the requirement to use a specific carbon source, not a general 

growth defect.  In total, 12 deletion mutants failed to grow on media supplemented 

with glucose (Table 4.1), another 15 deletion mutants failed to grow on media 

containing acetate as the only carbon source (Table 4.2), and 14 deletion mutants 

failed to grow on glucose or acetate as the only carbon source (Table 4.3). The 

strains that failed to grow on glucose-containing medium included those mutant for 

genes encoding ste20 protein kinase (CNAG_00405), the V-type H+-transporting 

ATPase subunit AC39 (CNAG_00448), chitin deacetylase 2 (CNAG_01230), and 

the calcium sensor and enzyme regulator calmodulin (CNAG_01557), the latter of 

which plays a role in many cell functions, including thermotolerance (Kraus et al., 

2005).  

The strains that failed to grow on medium containing acetate as the sole 

carbon source included mutants with defects in genes encoding glucose-6-

phosphate isomerase (CNAG_03916), which is important for melanin and capsule 

production, as well as in cell wall integrity and stress resistance (Zhang et al., 

2015), fructose-1,6-bisphosphatase I (CNAG_00057), and phosphoenolpyruvate 
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carboxykinase (CNAG_04217), all of which function in gluconeogenesis (Hynes et 

al., 2002; Zhang et al., 2015). A mutant for the gene encoding acetyl-CoA 

synthetase (CNAG_00797), which converts acetate to acetyl-CoA that can be used 

for multiple purposes, including gluconeogenesis (Hu et al., 2008), was also unable 

to grow on the acetate supplemented, glucose-free medium. Two members of the 

solute carrier family 25, a mitochondrial carnitine/acylcarnitine transporter 

(CNAG_00499) and a mitochondrial citrate transporter (CNAG_02288), as well as 

two carnitine acetyltransferases (CNAG_00537 and CNAG_06551), also failed to 

grow on acetate-containing medium. Mutant strains that grew on neither acetate-

supplemented nor glucose supplemented media included those deleted for the 

mitochondrial amino-acid acetyltransferase (CNAG_02826), carbamoyl-

phosphate synthase arginine-specific large chain (CNAG_06112), ornithine 

carbamoyltransferase (CNAG_02812), and argininosuccinate lyase 

(CNAG_02825), all of which function in arginine biosynthesis (Rhodes and 

Howard, 1980), as well as the large subunit of a carbamoyl-phosphate synthase 

(CNAG_07373) that functions in other biosynthesis pathways. 
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Discussion 

Acetate is a two-carbon metabolite that plays a significant role in energy 

production in fungal pathogens after conversion to acetyl-CoA, especially after 

infection. The acetyl-CoA can be channeled into the tricarboxylic acid cycle, the 

glyoxylate cycle, or the gluconeogenesis pathway (Hu et al., 2008). A genetic 

screen for growth on two different carbon sources, glucose and acetate, was 

performed on an array of C. neoformans deletion mutants to uncover enzymes (or 

other proteins) not previously characterized as contributing to the growth of the 

pathogen when acetate is the only available carbon source. In total, 41 mutants 

were identified that failed to grow on media with either glucose or acetate as the 

only carbon source. Of these, 12 failed to grow on medium with glucose as the 

only source of carbon, another 15 did not grow on medium containing acetate as 

the sole carbon source, and 14 did not grow on either medium. 

Analysis of the mutants identified several genes that play a central or 

secondary role in the metabolism of acetate in the fungus. These mutants can be 

divided into three categories based on the types of pathways affected by the 

corresponding protein deficiencies. Those that could not grow with glucose as the 

only carbon source but could grow on acetate probably have a more general 

glucose utilization defect and will not be discussed further. Those deletion mutants 

that could not grow with acetate as the sole carbon source but could grow on 

glucose are likely to be deficient in either the conversion of acetate to acetyl group-

containing molecules used in various critical cellular functions or in the import of 
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these molecules (but not of glucose-derived alternatives) into the mitochondria for 

use in cellular respiration to produce ATP. Finally, those mutants that were able to 

grow on neither glucose nor acetate as the sole carbon source likely have a defect 

in either a metabolic pathway that combines acetyl group-containing molecules 

with biological derivatives of glucose or in (the downstream part of) a pathway by 

which acetate is utilized after it is derived from glucose or obtained from the 

environment.  

 Of the mutants that failed to grow on acetate (but that grew on glucose), 

some have not been previously identified, demonstrating the value of this screen. 

Among the proteins identified with predicted function, most were either 

mitochondrial transporters or enzymes in acetate or acetyl-CoA metabolic 

pathways, namely acetyl-CoA synthesis and gluconeogenesis, as determined 

based on the reported functions of homologues in other fungal species like S. 

cerevisiae, N. crassa, and A. nidulans (Apirion, 1965; Sealy-Lewis, 1994; Flavell 

and Fincham, 1968a; Schüller, 2003). For these, possible explanations for the 

inability of the corresponding C. neoformans mutant to grow on acetate as the sole 

carbon source are discussed below. 

Detection of an acs1 mutant validates the sensitivity of the screen  

 A growth defect on acetate supplemented, but not glucose supplemented, 

media was observed for the C. neoformans acs1 mutant. ACS1 (CNAG_00797) 

encodes acetyl-CoA synthetase, which generates acetyl-CoA from acetate 

(Schüller, 2003; Hu et al., 2008). Acetyl-CoA synthetase mutants of A. nidulans 
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(facA) (Apirion, 1965; Sealy-Lewis, 1994), in N. crassa (acu-5)(Flavell and 

Fincham, 1968a), and S. cerevisiae (acs1) (De Virgilio et al., 1992) also fail to grow 

on media containing acetate as the only carbon source. More importantly, a C. 

neoformans acs1 deletion mutant has been previously described as being unable 

to grow on acetate (Hu et al., 2008), so the identification of the acs1 mutant from 

the Madhani library verified the sensitivity of the screen used in the present study. 

Furthermore, acetyl-CoA synthetase is upregulated in C. neoformans isolated from 

pulmonary tissue obtained from a mouse infection model and acs1 loss of function 

mutants have reduced growth and virulence in this model (Hu et al., 2008), 

indicating that the library screening is capable of uncovering other genes that may 

connect acetate metabolism with C. neoformans virulence. Supporting these 

findings, acs1 has been shown to be a possible drug target (Koselny et al., 2016a, 

2016b). 

Mitochondrial transporters are necessary for growth of C. neoformans on 

acetate 

 The screening also demonstrated that a mutant that is deficient in solute 

carrier family 25 member 20/29 (AcuH; CNAG_00499), also known as 

mitochondrial carnitine/acylcarnitine transporter (or mitochondrial 

carnitine/acylcarnitine carrier)  was unable to grow on media containing acetate as 

the only carbon source. The equivalent S. cerevisiae carnitine/acylcarnitine carrier 

Crc1p, is located in the mitochondria, presumably in the inner mitochondrial 

membrane like the mammalian homologue, and exchanges carnitine present in 
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the mitochondrial matrix with acylcarnitine present in the cytosol (Indiveri et al., 

1990, 1994; Swiegers et al., 2001; Palmieri et al., 1999a; Van Roermund et al., 

1995). In S. cerevisiae and other fungi, acetyl-CoA first produced by β-oxidation in 

peroxisomes is converted by peroxisomal carnitine acetyltransferase to 

acetylcarnitine, which is exchanged with cytosolic carnitine, possibly by a predicted 

peroxisomal membrane-bound transporter similar to the mitochondrial 

carnitine/acylcarnitine transporter (Van Roermund et al., 1995; Elgersma et al., 

1995; Swiegers et al., 2001; Palmieri et al., 2006). In S. cerevisiae, the cytosolic 

acetylcarnitine is then imported into the mitochondria in exchange for the 

mitochondrial carnitine (Van Roermund et al., 1995; Elgersma et al., 1995; Palmieri 

et al., 1999a). In multiple fungi, including S. cerevisiae, a mitochondrial carnitine 

acetyltransferase then reverses the conversion, producing acetyl-CoA and 

carnitine from acetylcarnitine, and the acetyl-CoA is released into the mitochondrial 

matrix for use in the TCA cycle (Strijbis et al., 2010; Swiegers et al., 2001; Stemple 

et al., 1998; Kohlhaw and Tan-Wilson, 1977). The modification of carnitine to 

acylcarnitines (especially to acetylcarnitine) is one of the few ways, if not the only 

way, by which acetyl-CoA from the peroxisomes or produced from acetate in the 

cytoplasm can enter the mitochondria, at least in S. cerevisiae, since mitochondrial 

and peroxisomal membranes have very low permeability or are impermeable to 

acetyl-CoA (Swiegers et al., 2001; Kohlhaw and Tan-Wilson, 1977; Van Roermund 

et al., 1995; Elgersma et al., 1995; Todd et al., 1997; Palmieri et al., 1999a). This 

S. cerevisiae peroxisome-cytosol-mitochondria carnitine/acylcarnitine exchange 
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process is expected to be similar in C. neoformans, in which the mitochondrial 

import of acetylcarnitine most likely occurs via solute carrier family 25 member 

20/29.  

 This similarity extends to the use of carnitine O-acetyltransferases, and C. 

neoformans mutants lacking either of two carnitine O-acetyltransferases, 

CNAG_00537 or CNAG_06551, were unable to grow on media supplemented with 

acetate as the sole carbon source in the current screen. Both S. cerevisiae and C. 

albicans have three carnitine acetyltransferases, two in the cytoplasm and one that 

can localize to either the mitochondria or peroxisome (Strijbis and Distel, 2010; 

Strijbis et al., 2010). A third carnitine O-acetyltransferase, CNAG_05042, does 

exist in C. neoformans, but the Madhani laboratory was unable to produce a 

deletion mutant of the corresponding gene. Just like loss of the Cat2 

peroxisomal/mitochondrial carnitine acetyltransferase in C. albicans precludes 

growth on acetate or ethanol (Strijbis et al., 2008), single C. neoformans mutants 

of either CNAG_00537 or CNAG_06551 were unable to grow on acetate, 

indicating that each of these enzymes plays a unique, non-redundant, and critical 

role in acetate utilization in C. neoformans. In A. nidulans, there are two carnitine 

acetyltransferases, FacC and AcuJ, the first of which is in the cytoplasm, while the 

second contains both peroxisomal and mitochondrial targeting sequences (Hynes 

et al., 2011; Stemple et al., 1998), much like the Cat2 enzyme in C. albicans or S. 

cerevisiae (Elgersma et al., 1995; Strijbis and Distel, 2010). While the location of 

the three carnitine acetyltransferases in C. neoformans is uncertain, CNAG_06551 



314 
 

is the most similar in amino acid sequence to A. nidulans FacC, indicating that it 

may be the cytoplasmic carnitine acetyltransferase. 

In addition to having at least one similar carnitine acetyltransferase to C. 

neoformans, A. nidulans also has the overall acetyl-CoA/carnitine/acylcarnitine 

shuttling pathway (Hynes et al., 2011; Stemple et al., 1998). A carnitine 

transporter, encoded by acuH, has been identified in A. nidulans and lack of a 

functional version of this transporter results in loss of growth on media containing 

acetate as the only carbon source (De Lucas et al., 1999; Armitt et al., 1976). Toxic 

accumulation of acetyl-CoA in the cytosol has been observed in the A. nidulans 

acuH mutant cultured on acetate and is the probable cause of the growth defect; 

it could also be the reason for the defect in growth of the C. neoformans 

CNAG_00499 (acuH) mutant (Armitt et al., 1976; De Lucas et al., 1997, 1999, 

2008; Martínez et al., 2007). Another possible reason for the inability of the C. 

neoformans mutant to grow on acetate could be insufficient levels of acetyl-CoA in 

the mitochondria for continuous use in the TCA cycle (Strijbis et al., 2010; Stemple 

et al., 1998; Kohlhaw and Tan-Wilson, 1977).  

 A C. neoformans mutant deficient for another solute carrier family 25 

member, solute carrier family 25 member 1 protein (AcuL; CNAG_02288), 

exhibited complete growth failure on medium with acetate as the sole carbon 

source. The S. cerevisiae homologue to AcuL is referred to as the succinate-

fumarate carrier or succinate-fumarate antiporter (Sfc1p/Sfa), and it functions in a 

pathway that allows yeast to use acetate in the generation of ATP or to undergo 
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gluconeogenesis when acetate is the sole carbon source (Palmieri et al., 1997, 

2000). While succinate can be formed by succinyl-CoA synthetase in the 

mitochondrial TCA cycle, it is also made by isocitrate lyase in the glyoxylate cycle 

in the cytoplasm (Przybyla-Zawislak, et al., 1998; Schüller, 2003). In fungi such as 

S. cerevisiae and in plants, the glyoxylate cycle utilizes a combination of enzymes 

in the cytosol, peroxisomes, and mitochondria, so the products of theses enzymes 

need to be  transported between these compartments (Kunze et al., 2006; Flipphi 

et al., 2014). In particular, S. cerevisiae uses Sfc1p (or the dicarboxylate carrier, 

Dic1p, both of which are localized in the mitochondrial inner membrane) to transfer 

succinate produced in the cytoplasm into the mitochondria (Flipphi et al., 2014; 

Palmieri et al., 1999b, 2000; Lançar-Benba et al., 1996). Since Sfc1p (also called 

Acr1p) is an antiporter, it couples mitochondrial succinate import with export of 

fumarate into the cytoplasm by a strict counter-exchange mechanism (Palmieri et 

al., 1997) that makes the fumarate available for use in the cytoplasm. Fumarate is 

converted to malate and then to oxaloacetate which is used as a substrate for 

gluconeogenesis or is joined with acetyl-CoA in the TCA cycle after import into the 

mitochondria (Palmieri et al., 1997, 1999b; Flipphi et al., 2014). Reduction in the 

levels of succinate and oxaloacetate in mitochondria (the latter due to lack of 

fumarate in the cytoplasm) due to absence of the Sfc1p antiporter can hinder the 

TCA cycle and therefore usage of acetyl-CoA, which may accumulate in the 

mitochondria and in the cytoplasm. Acetyl-CoA toxicity has been described in A. 

nidulans acuL mutants grown on acetate (Armitt et al., 1976; De Lucas et al., 
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1997,1999, 2008; Martínez et al., 2007). This toxicity may explain the findings that 

S. cerevisiae acr1 or dic1 mutants, as well as the A. nidulans acuL mutant cannot 

grow on either ethanol or acetate as the sole carbon source (Palmieri et al., 1997, 

1999a; Fernández et al., 1994; Flipphi et al., 2014), corroborating the equivalent 

severe phenotype of the C. neoformans sfc1 mutant observed in the present 

screen. Given that the lack of export of fumarate to the cytoplasm can lead to toxic 

acetyl-CoA accumulation, it is noteworthy that Sfc1 actually plays multiple roles 

during growth on ethanol or acetate; not only is it required for the mitochondrial 

succinate-fumarate antiport, but Sfc1/Acr1 also regulates the expression of Acs1 

(Palmieri 1997, 2000). SFC1 expression is itself upregulated in C. neoformans 

during infection in a mouse model (Hu et al., 2008).  

 Interestingly, the induction of SFC1/ACR1 expression is co-regulated with 

that of the genes encoding isocitrate lyase and malate synthase of the glyoxylate 

cycle and phosphoenolpyruvate carboxykinase and fructose-1,6-bisphosphatase 

of the gluconeogenesis pathway (Bojunga et al., 1998; Redruello et al., 1999). 

Mutations in phosphoenolpyruvate carboxykinase and fructose-1,6-

bisphosphatase have been shown here and in the published literature to prevent 

or reduce growth on acetate of C. neoformans or other fungal species, including 

A. nidulans, C. albicans, N. crassa and S. cerevisiae (Rude et al., 2002, Flavell 

and Fincham, 1968a; Armitt et al., 1976; Lorenz and Fink, 2001; Hynes et al., 

2002).      
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The gluconeogenesis pathway is important for C. neoformans growth on 

acetate  

 Two mutants from the Madhani libraries, one deficient for 

phosphoenolpyruvate carboxykinase (Pck1; CNAG_04217), and the other for 

fructose-1,6-bisphosphatase I (Fbp1; CNAG_00057), were unable to grow on 

acetate as the sole carbon source. In many fungal species, including A. nidulans 

and C. neoformans, Pck1 converts oxaloacetate produced in the TCA cycle to 

phosphoenolpyruvate in the cytoplasm. This allows the fungi to undergo 

gluconeogenesis and thereby grow on  carbon sources that are processed into 

TCA cycle intermediates used to produce the oxaloacetate (Hynes et al., 2002). 

Similarly, Fbp1 converts fructose-1,6-bisphosphate to fructose-6-phosphate and is 

important for growth of fungi on all carbon sources that can only (or optimally) be 

utilized via gluconeogenesis (Hynes et al., 2002). A. nidulans acuF and acuG 

mutants lacking Pck1 and Fbp1 activity, respectively, fail to grow on media 

containing acetate as the sole carbon source (Armitt et al., 1976), just like the C. 

neoformans mutants in this study. Of importance, Pck1 activity was highly induced, 

and expression of the PCK1 gene was increased, in C. neoformans cells recovered 

from infected mouse brain or lung (Price et al., 2011; Hu et al., 2008; Fan et al., 

2005). Furthermore, lack of PCK1 in C. neoformans leads to impaired virulence in 

a murine inhalation model, even though it does not affect the persistence of the 

pathogen or its ability to disseminate to the brain in a rabbit cryptococcosis model 

(Panepinto et al., 2005; Price et al., 2011). Both PCK1 and FBP1 are upregulated 
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in C. neoformans after phagocytosis by macrophages (Derengowski et al., 2013).  

Together, these findings suggests that enzyme of gluconeogenesis, especially 

Pck1 and Fbp1, play an important role in the utilization of acetate as a carbon 

source and therefore, potentially, growth of the pathogen during infection, by 

converting two-carbon compounds (such as acetate) and intermediates of the TCA 

cycle to glucose, to allow continuous energy production even when glucose (or 

other hexoses) are not available. It is uncertain why gluconeogenesis is required 

for growth on acetate when TCA cycle intermediates such as oxaloacetate, or even 

acetyl-CoA, could be used to generate ATP via the TCA cycle itself, but it is clear 

that this is, in fact, the case.  

 In further support of this idea, a mutant that was deficient in glucose-6-

phosphate isomerase (CNAG_03916), which converts glucose-6-phosphate to 

fructose-6-phosphate and vice-versa in glycolysis and gluconeogenesis, 

respectively, also exhibited a growth defect in this screen on acetate as the sole 

carbon source. A similar result was observed in another study (Zhang et al., 2015), 

in which a mutant of glucose-6-phosphate isomerase (also known as 

phosphoglucoisomerase) that retains only 1.9% of the original enzyme activity due 

to insertional disruption of the promoter has reduced growth on media where 

acetate is the only carbon source. Surprisingly, just like the leaky mutant in Zhang 

et al. (2015), the mutant tested in the current screen, which is expected to entirely 

lack glucose-6-phosphate isomerase, was able to grow when provided with 

glucose as the sole carbon source, even though, without this enzyme, the 
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glycolysis pathway should not function. It is possible that C. neoformans is able to 

bypass glycolysis using the pentose phosphate pathway when deficient in glucose-

6-phosphate isomerase, much like Trichoderma reesei (Limón et al., 2011),  even 

though this does not occur in S. cerevisiae (Sierkstra et al., 1993; Heux et al., 

2008). Just like the glucose-6-phosphate isomerase mutant, a mutant deficient for 

transketolase (CNAG_06172) in the pentose phosphate pathway, is able to grow 

on the glucose-only medium in this screen, but this is not surprising, since it can 

utilize the glycolysis pathway. To test the hypothesis that the mutant lacking 

glucose-6-phosphate isomerase grew on glucose because it used the pentose 

phosphate pathway, one can generate a double mutant deficient in both 

CNAG_03916 and CNAG_06172 and test its ability to utilize glucose as the sole 

carbon source.   

 While glucose-6-phosphate isomerase is employed in both 

gluconeogenesis and glycolysis, Pck1 and Fbp1 are used only in gluconeogenesis, 

and, in fact, are regulated such that they cannot be used when glucose is present. 

In S. cerevisiae, Pck1 activity is repressed and degradation of the enzyme is 

induced in the presence of glucose (Burlini et al., 1989; Haarasilta and Oura, 

1975). Similarly, FBP1 is induced in the presence of non-glucose carbon sources, 

and its expression is repressed, while the corresponding enzyme is degraded via 

a ubiquitination-mediated pathway, in the presence of glucose (Giardina et al., 

2012; Gancedo, 1971; Holzer, 1989;  Schork et al., 1995; Schüle et al., 2000).  

Thus, overall, these results reflect the importance of the gluconeogenesis pathway 
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in the growth of C. neoformans when provided with acetate as the sole carbon 

source. 

The essential amino acid arginine is necessary for growth of C. neoformans 

in vitro  

 Several of the mutants that were detected in this screen as being unable to 

grow on both medium supplemented with glucose-only and that supplemented with 

acetate-only were knocked out for genes encoding enzymes in the arginine 

biosynthetic pathway. It is not surprising that these mutants were unable to survive, 

since as an amino acid, arginine is necessary for the production of many proteins 

with physiological and biochemical functions in the cell.  

 The arginine biosynthesis pathway in S. cerevisiae and other fungi 

combines several enzymatic reactions to form L-citrulline from ornithine and 

carbamoyl phosphate, and then converts the citrulline to arginine via a series of 

steps (Jauniaux, et al., 1978). The process could be considered to begin in the 

mitochondria, where amino acid acetyltransferase, also known as N-

acetylglutamate synthase, reacts L-glutamic acid with acetyl-CoA to form N-acetyl 

L-glutamic acid, which is then converted via three intermediates into L-ornithine 

(Jauniaux, et al., 1978). In parallel and possibly in the cytoplasm, depending on 

the species of fungus, carbamoyl phosphate synthetase, in particular the large 

subunit of an arginine-pathway-specific carbamoyl phosphate synthetase, 

catalyses the formation of carbamoyl phosphate from ammonia, bicarbonate, and 

ATP (Price et al., 1978; Jauniaux, et al., 1978). The carbamoyl from the carbamoyl 
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phosphate is then transferred to the L-ornithine, in a reaction catalyzed by ornithine 

carbamoyltransferase, to form L-citrulline (Price et al., 1978; Jauniaux, et al., 

1978). Argininosuccinate synthase converts the L-citrulline into argininosuccinate, 

which is turned into arginine by argininosuccinate lyase (Jauniaux, et al., 1978). 

 Thus, C. neoformans mutants that were deficient for amino acid 

acetyltransferase (CNAG_02826), the arginine-specific carbamoyl phosphate 

synthetase large subunit (CNAG_06112), or ornithine carbamoyltransferase 

(CNAG_02812) failed to grow on media containing either glucose or acetate as the 

carbon source because these mutants were unable to make L-ornithine, carbamoyl 

phosphate, or, citrulline, respectively. Without the ability to produce citrulline, these 

mutants were unable to make arginine, and were therefore unable to grow at all, 

regardless of the carbon source provided. These mutants, when grown on media 

with acetate or glucose as the carbon source but supplemented with arginine, grew 

normally (H. Al Mousa personal comunication), indicating that the lack of arginine 

was, in fact, the reason for the original lack of growth. In contrast, a mutant lacking 

the non-specific carbamoyl-phosphatase synthase (CNAG_07373), which 

primarily plays a role in synthesis of pyrimidines, was unable to grow even when 

provided with arginine (H. Al mousa personal comunication), since it was unable 

to make the pyrimidines needed for DNA and RNA synthesis. This also means that 

the (vast majority of) carbamoyl phosphate made by CNAG_06112 is used to 

produce citrulline, and is therefore unavailable (possibly due to 

compartmentalization of the enzymes and products of the arginine pathway) to 
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make sufficient pyrimidines for survival of the CNAG_07373-deficient mutant. The 

reverse is also apparently true, since the mutant deficient in CNAG_06112 is 

unable to make (sufficient) arginine from the carbamoyl phosphate produced by 

CNAG_07373 to survive without arginine supplementation. The inability to produce 

arginine does reduce virulence in other pathogenic fungal species. For example, it 

reduces or eliminates the penetration by Colletotrichum higginsianum of its (plant) 

host and the pathogenicity of Fusarium oxysporum, a melon fungus (Huser et al., 

2009), as well as the pathogenicity of Magnaporthe oryzae, a fungus that infects 

rice plants (Liu et al., 2016). Similarly, inability to produce arginine reduces the 

virulence of C. neoformans in a mouse infection model, although an 

arginosuccinate lyase mutant is able to regain virulence, presumably by obtaining 

arginine from the host (Rhodes and Howard, 1980).  

Other acetate utilization enzymes function in diverse pathways 

  Other C. neoformans mutants that failed to grow on acetate as the only 

carbon source included those deficient in 8-Amino-7-oxononanoate synthase 

(CNAG_00236), cytosine deaminase (CNAG_00613), a 53 kDa brg1-associated 

factor (CNAG_04048), a HAL protein kinase (HRK1; CNAG_00745), and a 

AGC/AKT protein kinase (YPK1; CNAG_04678). The identification of two kinases 

is of interest. Hrk1 functions downstream, as well as independently, of the high 

osmolarity glycerol response (HOG) pathway, which controls the stress response 

to a hypertonic environment through regulation of ergosterol biosynthesis and of 

expression of virulence factors in C. neoformans (Kim et al., 2011; Bahn and Jung, 
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2013). There are homologous proteins in S. cerevisiae (Rck1/2) and in 

Schizosaccharomyces pombe (Srk1) to C. neoformans Hrk1 (Kim et al., 2011), 

and inhibition of ergosterol biosynthesis enzymes with drugs results in toxic stress 

and disrupts membrane integrity in S. cerevisiae (Lee et al., 2012). The expression 

of HRK1 depends on the central protein in the HOG pathway, a mitogen activated 

protein kinase (MAPK) called Hog1, but an hrk1, hog1Δ double mutant is even 

more sensitive to hyperosmolarity than the hog1Δ mutant alone (Kim et al., 2011; 

Bahn and Jung, 2013) and than an hrk1Δ only C. neoformans mutant, which was 

not sensitive to osmolar stress (Lee et al., 2016). Hrk1 is not required for capsule 

biosynthesis, and is dispensable for C. neoformans virulence, but the protein does 

appear to be involved in melanin biosynthesis (Kim et al., 2011; Lee et al., 2016), 

although its role may be minor (Liu et al., 2008). Hrk1 also appears to be involved 

in metabolite transport (Liu et al., 2008). Furthermore, deficiency of this kinase 

confers sensitivity to sodium dodecylsulfate (SDS) in one hrk1Δ mutant, indicative 

of a cell wall or cell membrane integrity defect (Liu et al., 2008); however, this 

defect is not observed in another C. neoformans hrk1Δ mutant (Lee et al., 2016).     

 A recent study in Komagataella phaffii (previously Pichia pastoris) found 

that an hrk1 mutant is sensitive to the cytoplasmic acidity generated by entry of 

acetate into the cell (Xu et al., 2019). Moreover, in S. cerevisiae, expression of an 

Hrk1 protein, which regulates a membrane bound ATPase-associated proton 

pump in response to glucose metabolism changes, protected the yeast from this 

acetate-induced acidity (Mira et al., 2010). The identification, in the present screen, 
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of a C. neoformans hrk1Δ mutant among those unable to grow on acetate is in line 

with these findings in other species, and indicates that this screen was able to 

successfully detect genes involved in acetate-related processes beyond those 

functioning only in acetate utilization.  

The other protein kinase detected in this screen, Ypk1, is a member of the 

AGC kinase (protein kinases A, G or C) family and therefore likely plays a role in 

cell survival, growth, and proliferation (Lee et al., 2012). C. neoformans Ypk1 

shares 55% identity with S. cerevisiae Ypk1 and 69% identity with S. pombe Gad8, 

suggesting that these proteins are homologues (Lee et al., 2012). Just like the C. 

neoformans hrk1Δ mutant, the C. neoformans ypk1Δ mutant also exhibits 

sensitivity to inhibition of ergosterol (or other lipid) biosynthesis, which correlates 

with a similar phenotype in S. cerevisiae ypk1 mutants (Kim et al., 2011; Lee et al., 

2012; Lee et al., 2016). In C. neoformans, a kinase-dead mutant exhibits the same 

sensitivity to inhibition of ergosterol biosynthesis as the deletion mutant (Lee et al., 

2012). The C. neoformans ypk1Δ mutant also demonstrates similarity to the hrk1Δ 

mutant in that it has a melanin production defect (Kim et al., 2011; Lee et al., 2012; 

Lee et al., 2016). However, the C. neoformans ypk1 mutant has been reported to 

have several other phenotypes as well (Lee et al., 2012; Lee et al., 2016). It has a 

mild general growth defect and a mild temperature sensitivity, sensitivity to osmolar 

and oxidative stresses, and sensitivity to Congo red, Calcofluor white, and SDS, 

indicative of loss of cell wall and/or cell membrane integrity (Lee et al., 2016). In 
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contrast to Hrk1, Ypk1 plays a role in  C. neoformans virulence, since the ypk1Δ 

mutant exhibits reduced virulence in mice (Lee et al., 2012). 

Comparison to previously published screening results 

This screen identified some of the proteins important for acetate utilization, 

including acetyl-CoA synthetase (Acs1; CNAG_00797), Phosphoenolpyruvate 

carboxykinase (Pck1; CNAG_04217) and fructose-1,6-bisphophatase (Fbp1; 

CNAG_00057), and acetate transporters like the acetylcarnitine transporter (AcuH; 

CNAG_00499) and the succinate-fumarate antiporter (AcuL; CNAG_02288). 

However, previously published, alternate screening assays in other fungal species 

and in C. neoformans identified some acetate utilization mutants that were not 

detected in this screen. Thorough analysis of the literature indicated five possible 

reasons for the failure to identify previously recognized acetate utilization mutants 

and their corresponding genes in this screen. First, some published screens 

detected mutants only when the fungus was grown for screening at a different 

temperature than that used in this screening. For example, Hu et al. (2008) 

identified a mutant for Snf1 (CNAG_06552; a serine/threonine protein kinase also 

known as CAMK/CAMKL/AMPK protein kinase) that grows normally on glucose, 

acetate, and sucrose media at 30°C but at 37°C has reduced growth on media with 

sucrose and ethanol and exhibits a severe growth defect on acetate as the sole 

carbon source. This Snf1 protein kinase regulates the growth of fungi by 

modulating gluconeogenesis and alternative carbon source utilization pathways 

(Celenza and Carlson, 1986) and functions, in part, as a regulator of Acs1, which 
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converts acetate to acetyl-CoA in yeast (Young et al., 2003). C. neoformans cells 

grown on low glucose or acetate media have high levels of Snf1 mRNA, although 

cells recovered from infected mouse lung do not (Hu et al., 2008). This suggests 

that although Snf1 is not necessary for virulence, it is required for cryptococcal 

growth under stress, such as when glucose is not available and acetate is the sole 

carbon source, or, possibly, under higher temperatures, explaining the finding that 

the Madhani library mutant did not exhibit growth defects in the current screen 

because all mutants were grown at 30°C.  

The second potential reason is the difference in the carbon source 

concentrations used in the screening. For instance, an acetate transporter mutant, 

ady2Δ, was determined in the Smith lab to have an extreme growth defect in media 

supplemented with 0.2% acetate but was able to grow normally in 2% acetate 

(Kisirkoi, 2017). The equivalent  mutant from the Madhani (combined) library,  

deleted for the gene designated CNAG_05678, was also able to grow at the 2% 

acetate concentration used in the current screen, meaning that the growth defect 

was suppressed at the higher acetate concentration. This presumably because 

acetate at higher concentrations is able to diffuse adequately across the 

membrane to support growth in the absence of Ady2 (Kisirkoi, 2017). The current 

screening result supports this hypothesis. 

The third potential reason for differences between the current screen in C. 

neoformans and screens of other fungal species is that there may be multiple 

protein isoforms encoded by paralogous genes or other functionally redundant 
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proteins in C. neoformans. In the present screen, a C. neoformans mutant lacking 

a NAD+ specific malate dehydrogenase (CNAG_03266) grew normally on both 

acetate and glucose supplemented media, but this enzyme has previously been 

shown to be important for acetate utilization in other fungal species. For instance, 

an acetate-inducible NAD+-specific malate dehydrogenase mutant in N. crassa 

(acu-13) failed to utilize acetate as the sole carbon source and demonstrated a 

growth defect on 40 mM acetate (Owen et al., 1992). However, a search of the C. 

neoformans genome via the FungiDB website (https://fungidb.org/fungidb/) 

revealed the presence of a second malate dehydrogenase gene (CNAG_03225) 

located elsewhere in the same chromosome but coding for a similar protein (with 

56.51% identity by Clustal Omega analysis) that likely compensates for the 

absence of the first enzyme and thereby masks the effect of the loss of the first 

protein. Unfortunately, a double mutant of CNAG_03266 and CNAG_03225 was 

not available for analysis.  

The fourth reason is that the two libraries used in this screen do not cover 

the entire genome, so knockout mutants for many of the genes identified as critical 

for acetate utilization in other screens were unavailable for testing. There are 

~6500 intron-rich genes in total in the C. neoformans genome (Loftus et al., 2005), 

but using the Madhani libraries it was only possible to screen 3936 of these genes. 

One of the important proteins encoded by a gene missing from the libraries is 

isocitrate lyase (CNAG_05303), a key enzyme of the glyoxylate cycle, which, in S. 

cerevisiae, is encoded by ICL1 (Fernández et al., 1992; Fernandez et al., 1993; 
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Schüller, 2003). In S. cerevisiae, the glyoxylate cycle permits and is essentially 

required for yeast to grow on two-carbon molecules like ethanol or acetate as the 

sole carbon source. Acetyl-CoA produced from acetate that is not used in the 

tricarboxylic acid (TCA) cycle is fed into the glyoxylate cycle (Schüller, 2003; 

Lorenz and Fink, 2001; Fernández et al., 1992). Mutations in S. cerevisiae ICL1 

and in homologues of this gene in A. nidulans (acuD), N. crassa (acu-3), and C. 

albicans  (ICL1), as well as C. neoformans, caused defects in acetate utilization 

and in the growth of the fungi in acetate-containing media (Armitt et al., 1976; 

Flavell and Fincham, 1968a, Idnurm et al., 2007). C. neoformans cells grown on 

acetate as the sole carbon source and those recovered from a rabbit infection 

model both upregulate ICL1 transcription (Rude et al., 2002). However, while C. 

albicans icl1 deletion mutants have clearly diminished virulence in mice (Lorenz 

and Fink, 2001), S. cerevisiae icl1 deletion mutants have only slightly reduced 

virulence in a mouse infection model (Goldstein and McCusker, 2001; Rude et al., 

2002), and C. neoformans icl1 mutants exhibited no difference from wild type cells 

in growth inside macrophages, nor in virulence in mouse inhalation-based and 

rabbit meningeal infection models (Rude et al., 2002). Hence, isocitrate lyase 

seems to be critical for acetate utilization and growth on acetate-containing media, 

and perhaps enhances virulence, but is not required for pathogenesis, especially 

in C. neoformans (Idnurm et al., 2007; Hu et al., 2008). Thus, while it is extremely 

important to be able screen mutants for genes such as ICL1 that are not available 
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in the Madhani libraries, some of the acetate utilization defective mutants that were 

missed in the current screen may not themselves be of critical importance. 

 The fifth and final reason for the failure to identify genes in the current 

screen that in other species are important for growth on acetate is the absence of 

homologues of these genes in C. neoformans. Proteins like acetyl-CoA hydrolase, 

which is required for growth of N. crassa on acetate (Owen et al., 1992), and A. 

nidulans facB, a master transcriptional regulator of genes involved in acetate 

utilization, including genes encoding acetyl-CoA synthetase, isocitrate lyase, 

malate synthase, and phosphoenolpyruvate carboxykinase, (Todd et al.,. 1997; 

Apirion, 1965; Armitt et al., 1976; Hynes, 1977; Kelly and Hynes, 1982), do not 

have corresponding homologues in the C. neoformans genome. A. nidulans and 

N. crassa are from the phylum Ascomycota and evolved separately from C. 

neoformans of the phylum Basidiomycota, so it is not surprising that they harbor 

several genetic differences from C. neoformans.  

  Although some acetate utilization mutants identified in other screens were 

not detected in this screen, several C. neoformans enzymes previously known to 

function in pathways related to the use or transport of acetate as well as some 

proteins that have not previously been linked to acetate utilization were identified 

in this screen. C. neoformans may employ these enzymes to enhance growth and 

virulence after infection, such as in the host central nervous system. This study 

opens up new avenues for both fundamental research and drug discovery to 

understand and treat cryptococcal meningitis. Larger scale screenings, as 
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described by Motaung (2018), may provide yet more target proteins for the 

development of therapeutic pharmaceuticals to treat and reduce the lethality of C. 

neoformans-driven cryptococcal meningitis. 
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Summary and Conclusions 
 

The ability to utilize alternate carbon sources provides C. neoformans with 

survival advantages inside the host system, especially in organs like the brain 

where glucose levels are low (Polacheck et al., 1982; Zhu and Williamson, 2004). 

Targeting this ability to switch between carbon sources for drug development can 

open up new avenues for treatment of meningitis caused by cryptococcal infection. 

This study a global screen to discover genes that are important for acetate 

utilization and presumably would be important for targeting cryptococcal infections 

in the human brain. Fourteen genes that were important for acetate utilization by 

C. neoformans were identified that have homologues in other fungal species. Most 

of these genes belong to the gluconeogenesis pathway, mitochondrial membrane 

transport pathways, or the arginine biosynthesis pathway. Further characterization 

of the remaining genes, deleted in mutants not previously characterized as having 

a growth defect on acetate, will be required to determine their exact role in acetate 

utilization. 
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Table 4.1: Mutants from the Madhani laboratory C. neoformans strain 

libraries that were unable to grow on media with glucose as the only carbon 

source. 

Identifier Protein description 
CNAG_00405 Ste/ste20/ysk protein kinase 
CNAG_00448 V-type H+-transporting ATPase subunit AC39 
CNAG_00458 hypothetical protein 
CNAG_00461 Protein kinase C substrate 80K-H 
CNAG_01230 Chitin deacetylase 2 
CNAG_01487 hypothetical protein 
CNAG_01557 Calmodulin 
CNAG_02066 hypothetical protein 
CNAG_02588 Avenacinase 
CNAG_03168 Sulfite reductase (NADPH) flavoprotein alpha-component 
CNAG_05668 hypothetical protein 
CNAG_06230 hypothetical protein 
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Table 4.2: Mutants from the Madhani laboratory C. neoformans strain 

libraries that were unable to grow on media with acetate as the only carbon 

source. 

Identifier Protein description 
CNAG_00057 Fructose-1,6-bisphosphatase I    
CNAG_00236 8-Amino-7-oxononanoate synthase 
CNAG_00403 mitochondrial protein 
CNAG_00499 Solute carrier family 25 (Mitochondrial carnitine/acylcarnitine 

transporter), member 20/29; Carnitine/acyl-carnitine carrier; 
AcuH 

CNAG_00537 Carnitine O-acetyltransferase 
CNAG_00613 Cytosine deaminase 
CNAG_00745 HAL protein kinase 
CNAG_00797 Acetyl-CoA synthetase 
CNAG_02288 Solute carrier family 25 (Mitochondrial citrate transporter), 

member 1; Mitochondrial succinate-fumarate anti-porter; sfa; 
acuL 

CNAG_03916 Glucose-6-phosphate isomerase 
CNAG_04048 53 kDa brg1-associated factor b 
CNAG_04217 Phosphoenolpyruvate carboxykinase (ATP)  
CNAG_04290 hypothetical protein 
CNAG_04678 AGC/AKT protein kinase 
CNAG_06551 Carnitine O-acetyltransferase 

  



348 
 

Table 4.3: Mutants from the Madhani laboratory C. neoformans strain 

libraries that failed to grow on glucose and on acetate, each as the only 

carbon source. 

Identifier Protein description 
CNAG_00734  Dihydroorotase, homodimeric type, dihydroorotase, 

homodimeric type, variant 
CNAG_02795  Phosphoribosyl glycinamide formyl transferase  
CNAG_02812 Ornithine carbamoyltransferase 
CNAG_02825 Argininosuccinate lyase 
CNAG_02826  Amino-acid acetyltransferase, mitochondrial 
CNAG_02853  Amido phosphoribosyl transferase 
CNAG_03174  4'-phosphopantetheinyl transferase 
CNAG_04196  Actin binding protein 
CNAG_04647  Glutathione synthetase 
CNAG_05074  hypothetical protein 
CNAG_05445  Smooth muscle cell associated protein-1 isoform 2 
CNAG_06112  Carbamoyl-phosphate synthase arginine-specific large chain 
CNAG_06314  Phosphoribosylamine-glycine ligase 
CNAG_07373  Carbamoyl-phosphate synthase, large subunit 
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Figure 4.1: Representative plates of Madhani library strains screened for 

growth on a) glucose or b) acetate as the only carbon source. Strains that did 

not grow on original plates (circled) and that were re-tested are shown below each 

plate. c) Some strains, like the strain mutant for SWR1-Complex protein 4 

(CNAG_02020), had an odd phenotype; they grew into seemingly more dense, 
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slightly larger, creamy-white colonies on media with either glucose (top, circled) or 

acetate (middle, circled) as the sole carbon source, or on both media. This 

phenotype was also visible when the CNAG_02020-deficient mutant was re-grown 

on acetate as the sole carbon source (bottom). 
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APPENDIX 

This section contains supplementary material for Chapters Two and Three 

 Given the small capsules of aldΔ mutants, and, in particular, the loss of cell 

wall integrity in the Congo red assay, extremely low melanization, and sensitivity 

to reactive oxygen species (ROS) and reactive nitrogen species (RNS) of the 

ald69Δ mutant, quantification of the extent of membrane damage due to uptake of 

ROS seemed likely to be informative. Similarly, since the pdcΔ mutant exhibited a 

smaller than normal capsule, reduced melanization, and loss of cell wall integrity 

in the Congo red assay, even though it did not demonstrate sensitivity to ROS or 

RNS, determining the level of ROS-mediated membrane damage also was likely 

to be informative. 

Method: Flow cytometry analysis of oxidative stress and cellular integrity 

The concentration of ROS generated by treatment of cells with hydrogen 

peroxide as well as the level of ROS-induced cell wall/membrane damage in wild 

type and mutant C. neoformans strains were measured using a procedure modified 

from Peng et al., 2018. Colonies of C. neoformans wild type and mutant strains 

grown on YPD-agar media were transferred to 2ml YPD liquid medium and 

incubated overnight at 30°C with constant shaking. Cells were centrifuged at 

5000×g for 5 min and resuspended in 850 μl YPD medium. For each strain, the 

cell suspension was diluted in YNB medium (adjusted to pH 4.0 with sodium 

succinate) to a final OD600 of ~0.2 before cells were counted using a 

hemocytometer and the concentration was corrected to ~1×104 cells/μl. The cell 
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suspension of each strain was aliquoted into six tubes at 2 ml per tube, and either 

H2O2 to a final concentration of 5 mM, or sterile water as control, was added to 

three pairs of tubes each. The cultures were incubated at 30°C for 3 hours with 

constant shaking. Next, cells were harvested by centrifugation at 5000×g for 5 min, 

washed with 1X Dulbecco’s Phosphate-Buffered Saline without calcium and 

magnesium (D-PBS w/o Ca2+, Mg2+;Corning Inc., Corning, NY), resuspended in D-

PBS w/o Ca2+, Mg2+ supplemented with 20 μM 2′,7′ dichlorofluorescin diacetate 

(H2DCFDA; Sigma), and then transferred to fresh microfuge tubes, which were 

immediately covered with aluminum foil. The tubes were incubated for 20 min at 

30°C with constant shaking, after which cells were centrifuged again at 5000×g for 

5 min., washed with D-PBS w/o Ca2+, Mg2+, and then resuspended in 1 ml D-PBS 

w/o Ca2+, Mg2+ supplemented with 5 μg/ml propidium iodide (PI; Sigma). The tubes 

were covered again with aluminum foil and incubated for 40 min at 30°C with 

constant shaking. After this final incubation, cells were centrifuged one more time 

at 5000×g for 5 min, washed and then resuspended in 1 ml D-PBS w/o Ca2+, Mg2+, 

and sonicated (Q500 Sonicator, Qsonica) with 20% output strength for 5 seconds 

to ensure a single-cell suspension. Fluorescence was detected by flow cytometry 

with the Accuri C6 flow cytometer (BD Biosciences, San Jose, CA). The H2DCFDA 

was expected to react with ROS to form 2',7'-dichlorofluorescein (DCF), which was 

detected and quantified via the FITC-A channel (533/30 nm), while the PI that 

entered cells through gaps in the cell wall and membrane was detected and 

quantified via the PerCP-A channel (670 nm).  
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Results 

 It was considered informative to determine, quantitatively, whether oxidative 

stress and the introduction of ROS caused increased cell wall and membrane 

damage in aldehyde dehydrogenase mutants, or whether they were able to 

compensate by neutralizing the ROS or repairing their membranes. To establish 

which was true for each mutant, biological triplicates of the wild type and ald mutant 

strains, as well as of the pdcΔ mutant, were treated with hydrogen peroxide, or 

not, as control, and then stained with a compound that converts to a green 

fluorescent dye upon reacting with ROS, as well as with propidium iodide (PI), a 

red fluorescent molecule to which the cell membrane is impermeable. The intensity 

of fluorescence of the two dyes in the triplicate samples of wild type or mutant cells 

was quantified by flow cytometry. The intensity of the green fluorescence was 

assumed to be roughly indicative of the amount of ROS inside the cell. Cells with 

a high intensity of PI fluorescence were considered to have lost capsule, cell wall, 

and/or cell membrane integrity (referred to as "membrane damage" hereafter), 

allowing entry of the PI. Only the PI intensity of cells with high ROS was quantified. 

Of the ald mutants, only the ald78Δ mutant exhibited a statistically significant 

difference in the amount of ROS taken into the cell compared with the wild type 

strain (Supplementary Figure 2.1a; P-value = 0.0269). Strangely, the ald78Δ 

mutant has less ROS than the wild type strain. Similarly, none of the ald mutants 

exhibited increased membrane damage in cells with high ROS, in the sense that 

the cells of the wild type strain with high ROS had the highest membrane damage 



354 
 

of all strains, but not significantly so (Supplementary Figure 2.1b). The pdcΔ 

mutant appeared to be resistant to ROS uptake and membrane damage relative 

to the wild type cells (Supplementary Figure 3.1a and 3-1b, respectively), but the 

results were not statistically significant, indicating that lack of Pdc did not affect 

response to ROS in this assay. It is worth noting that there was a moderate amount 

of sample-to-sample variation in ROS and PI intensity measurements of several 

strains, making these results susceptible to error. Thus, it is difficult to conclude 

with certainty that the mutants were resistant to ROS and/or able to repair their 

membrane damage, but, tentatively, this appears to be the case. 

Overall conclusions and future directions 

The quantification of uptake of reactive oxygen species (produced from hydrogen 

peroxide) and of the unrepaired membrane damage resulting from the associated 

chemical attack on membrane lipids is a useful endeavor. It suggests how the wild 

type and mutant strains might respond within the phagolysosome of macrophages 

after engulfment. However, the current results are mostly not significant because 

of high sample-to-sample variation in signal intensity within each wild type or 

mutant strain. Thus, the experiment needs to be repeated after the technique is 

further optimized. Additionally, conducting the experiment with sodium nitrite to 

generate reactive nitrogen species may also be informative, especially since 

sodium nitrite is more stable than hydrogen peroxide, and since the chemical 

attack on pathogens that occurs in phagolysosomes of macrophages primarily 

utilizes reactive nitrogen species (Tohyama et al., 1996; Maffei et al., 2004). 
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Quantifying the extent of unrepaired ROS- or RNS-induced membrane damage of 

the pyruvate decarboxylase deficient mutant of C. neoformans or of mutants 

deficient in each of the aldehyde dehydrogenases should illuminate the role of 

these enzymes, and, potentially, of acetate production, in the neutralization of 

reactive oxygen and nitrogen species and/or in repair of membrane, cell wall, and 

capsule damage. 
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Appendix Figure 2.1: Effect of hydrogen peroxide treatment on reactive 

oxygen species (ROS) content and membrane damage. a) Change in ROS with 

H2O2. * significant, P-value < 0.05, b) Change in membrane damage (and, 

presumably, loss of cell wall and capsule integrity), based on propidium iodide (PI) 

entry into cells, with H2O2. 
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Appendix Figure 3.1: Effect of hydrogen peroxide treatment on reactive 

oxygen species content and membrane damage on wild type and pdcΔ 

mutant strains of C. neoformans. a) Change in reactive oxygen species (ROS) 

content with H2O2. b) Change in membrane damage, based on propidium iodide 

(PI) entry into cells, with H2O2. While it appears that the mutant had decreased 

ROS uptake and membrane damage relative to the wild type cells, the results were 

not statistically significant. 
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