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Abstract

Electrical impedance tomography (EIT) and Diffuse Optical Tomography (DOT) are

imaging methods that have been gaining more popularity due to their ease of use

and non-ivasiveness. EIT and DOT can potentially be used as alternatives to tradi-

tional imaging techniques, such as computed tomography (CT) scans, to reduce the

damaging effects of radiation on tissue.

The process of imaging using either EIT or DOT involves measuring the ability for

tissue to impede electrical flow or absorb light, respectively. For EIT, the inner distri-

bution of resistivity, which corresponds to different resistivity properties of different

tissues, is estimated from the voltage potentials measured on the boundary of the

object being imaged. In DOT, the optical properties of the tissue, mainly scattering

and absorption, are estimated by measuring the light on the boundary of the tissue

illuminated by a near-infrared source at the tissue’s surface.

In this dissertation, we investigate a direct method for solving the EIT inverse prob-

lem using mollifier regularization, which is then modified and extended to solve the

inverse problem in DOT. First, the mollifier method is formulated and then its efficacy

is verified by developing an appropriate algorithm. For EIT and DOT, a comprehen-
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sive numerical and computational comparison, using several types of regularization

techniques ranging from analytical to iterative to statistical method, is performed.

Based on the comparative results using the aforementioned regularization methods,

a novel hybrid method combining the deterministic (mollifier and iterative) and sta-

tistical (iterative and statistical) is proposed. The efficacy of the proposed method

is then further investigated via simulations and using experimental data for damage

detection in concrete.
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Chapter 1

Introduction

In 1896, the German physicist Wilhelm Conrad Röntgen invented a new kind of ray

called X-ray, and he was able to measure the absorption of X-rays traveling through

a body to obtain direct images of the body’s interior [72]. Nowadays most hospitals

use commercial computed tomography (CT) machines, which are used to measure

the absorption of radiation by a body for early detection of cancer and other types

of problems. However, CT imaging involves the use of x-rays, which are a form of

ionizing radiation. Exposure to ionizing radiation is known to be harmful and may

increase the risk of cancer. Hence, it is desirable to find new, non-invasive medical

imaging methods for early detection of cancer. In this dissertation, we present analyt-

ical and iterative methods for solving the inverse problems for Electrical Impedance

Tomography (EIT) and Diffuse Optical Tomography (DOT) inverse problems, two

potentially non-invasive alternatives to CT imaging.

The theory and applications for inverse problems in EIT and DOT has been signifi-
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cantly developed and advanced in recent years, particularly in the context of medical

imaging. However there is still a need to advance current techniques for solving the

EIT and DOT inverse problems by improving existing methods and developing new

tomographic methods. In contrast to the CT inverse problem, the EIT and the DOT

inverse problems are neither linear nor well-posed [22, 46, 48, 78], which makes solving

the inverse problem very challenging in terms of obtaining highly resolvable images

of a body’s internal resistivity distribution. According to Hadamard’s definition of

well-posedness [36]:

Definition 1. (Well-posedness) A Problem is well-posed if

• A solution exists.

• The solution is unique.

• The solution depends continuously on the data.

If a problem is not well-posed it is called ill-posed.

1.1 Electrical Impedance Tomography

Electrical impedance tomography (EIT) uses low-frequency electrical current to probe

a body and measure its resistance or impedance of electrical flow; the method is there-

fore sensitive to changes in electrical conductivity. By injecting known amounts of

current and measuring the resulting electrical potential field at points on the bound-

ary of the body, it is possible to invert such data to determine the conductivity or

2



Figure 1.1: Typical EIT experiment (this figure is adapted from [61])

resistivity inside the body probed by the currents. EIT methods have shown to work

well in both geophysical and industrial settings and, therefore, it is possible that fu-

ture medical imaging applications may follow rather rapidly in applicability from the

advancements in other applications.

In Electrical Impedance Tomography (EIT), the internal resistivity distribution is

reconstructed using electrical measurement from the boundary of the object. This

resistivity distribution carries valuable information about the interior of the object.

The EIT forward problem is described by the elliptic differential equation, with known

electrical conductivity σ, for the electric potential u with Neuman boundary condition

−div(σ∇u) = 0, in Ω (1.1)

where Ω ⊂ Rd, d = 2 or 3, is a bounded, connected open Lipschitz domain and σ ∈

L∞(Ω), i.e. there exists constants σ1, σ2 ∈ R, s.t., 0 < σ1 < σ < σ2 <∞. The electric

potentials at the electrodes are measured to compute the voltage measurements. The

inverse problem then involves determining the electrical conductivity of σ from these

noisy voltage measurements.

3



1.2 Diffuse Optical Tomography

In optical tomography an image is constructed by reconstructing the optical param-

eters, usually the optical scattering and absorption coefficients, within a medium.

These optical parameters are determined by illuminating the medium with a flash of

near-infrared light and taking measurements on the surface. Typically this source is

laser light in the visible (about 400 to 700 nm ) or near infrared range. By ”near-

infrared”, we are referring to wavelengths between 700 and 1000 nanometers (nm),

with most experimental techniques usually falling between 700 nm and 850 nm.

Basically, DOT is a type of optical imaging, is the process of imaging an object

through sectioning by use of an optical wave. Tissues are highly scattered medium,

so, as the collimated laser beam passes through the tissue, some of the light is ab-

sorbed by chromophores (such as hemoglobin, lipid and water), but most of it is

scattered. In fact, in the near infrared range, it has been shown that absorption of

light by biological tissue is minimized, so it can penetrate up to about 6 cm in breast

tissue and about 2 to 3 cm in the brain and joints [45].

The forward problem in DOT involves solving an elliptic partial differential equation

with Robin boundary conditions where µa and D are known. The solution u describes

the photon density of the scattered light arriving at the detectors. The complete DOT

experiment is given in the frequency domain, with Robin boundary condition

−∇ · (D∇u) + (µa + ik)u = 0 in Ω (1.2)

γRu = u+ 2D
∂u

∂n
= f on ∂Ω (1.3)

here, D is the diffusion coefficient, µa is the absorption coefficient, k = ω/c is the

imaginary wave number, ω is the modulation frequency of the laser, c is the speed of

4



light, and f is the source.

1.3 Contribution and Overview

A framework for hybrid regularization and comprehensive comparison combining an-

alytical, iterative and statistical algorithms is presented in this dissertation for the

image reconstruction problem in EIT and DOT. In this dissertation we:

• Extend the mollifier approach to solve the inverse problems in EIT to DOT.

• Investigate the appropriate modification of the formulaiton of the mollifier

method for EIT.

• Develop computational algorithms for the mollifier method to verify the efficacy

of the analytical approach using simulations and experimental data.

• Perform a comprehensive comparison of a wide range of regularization tech-

niques for EIT and DOT, including analytical mollifier, statistical and iterative

regularization methods, by devising computational algorithms in MATLAB.

• Propose hybrid algorithms for both EIT and DOT reconstructions based on

the comparison of of these methods; we combine several methods, which are

mainly the deterministic (mollifier and iterative) and statistical (iterative and

statistical).

• Verify the efficacy of the proposed hybrid methods both in simulation and using

experimental data for damage detection in concrete.
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This dissertation is structured as follows. In chapter 2, we briefly introduce the EIT

forward problem and the Complete Electrode Model (CEM), a more complete version

of EIT for experimental data. We also discuss the well-posedness of the forward

operators for EIT and CEM. In chapter 3, the forward model of DOT and it’s well-

posedness are discussed. The existence and uniqueness of the forward solution is

also represented. Chapter 4 contains the analytical setting of the inverse problem for

both EIT and DOT. In chapter 5, we discuss the analytical framework of the mollifier

regularization for EIT inverse problem, and propose an extension of the method to

DOT. In addition, we also identify a few corrections to the method for EIT that

exists in the literature. We present the implementation of the classical iteratively

regularized Gauss-Newton (IRGN) method for solving the inverse problems in EIT

and DOT in chapter 6. In chapter 7, we solve the inverse problems of EIT and

DOT from simulated and experimental data. Finally, in chapter 8, we conclude this

dissertation.
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Chapter 2

Electrical Impedance Tomography

Electrical Impedance Tomography (EIT) is a noninvasive imaging technique in which

the electrical conductivity, permitivity and impedance of a part of the body, Ω, is

inferred from the surface, ∂Ω, electrode measurements and used to form a tomographic

image of that part, [17, 11, 37]. EIT can be applied to nondestructive testing [25,

65], the monitoring of oil and gas mixtures in oil pipelines [44], noninvasive medical

imaging [17, 41, 9], etc. For example, EIT has been used in civil engineering to monitor

water infiltration into soil [25, 12, 21, 23]. Stacey [76] also studied the EIT’s feasibility

by monitoring moisture movement in Berea sandstone. Hou and Lynch [42] applied

EIT to loaded cementitious composites that were fiber reinforced. Among further

applications for EIT is geophysical prospection [50]. The majority of EIT systems

apply small alternating currents at a single frequency, however, some EIT systems use

multiple frequencies to better differentiate between normal and suspected abnormal

tissue within the same organ. In this chapter, we discuss the forward model for EIT

and its well-posedness.
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2.1 EIT forward problem

Suppose an electric current f is applied to ∂Ω, boundary of a body Ω, and the electric

potential g is measured on ∂Ω. Then the forward problem for EIT is described by the

elliptic differential equation, with known σ, for the electric potential u with Neuman

boundary conditions

−div(σ∇u) = 0, in Ω (2.1)

σ
∂u

∂n
= f, on ∂Ω (2.2)

and with Dirichlet conditions

−div(σ∇u) = 0, in Ω (2.3)

u = g, on ∂Ω (2.4)

where Ω ⊂ Rd, d = 2 or 3, is a bounded, connected open Lipschitz domain and

σ ∈ L∞(Ω), i.e. there exists constants σ1, σ2 ∈ R, s.t., 0 < σ1 < σ < σ2 < ∞. The

Neumann trace ΓN and the Dirichlet trace ΓD are defined, respectively as,

ΓN : H̃1(Ω)→ H̃−1/2(∂Ω) (2.5)

u 7→ σ
∂u

∂n
|∂Ω (2.6)

and

ΓD : H̃1(Ω)→ H̃1/2(∂Ω) (2.7)

u 7→ u|∂Ω (2.8)
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where the spaces above are defined as,

H1(Ω) = {v ∈ L2(Ω)|
∫

Ω

|∇v|2 + v2dx <∞}

H̃1(Ω) = {v ∈ H1(Ω)|
∫
∂Ω

vds = 0}

H1
0 (Ω) = {v ∈ H1(Ω)|ΓD(v) = 0}

H̃−1/2(∂Ω) ∼= {ΓN(v)|v ∈ H̃1(Ω)/H̃1
0 (Ω)}

H̃1/2(∂Ω) ∼= {ΓD(v)|v ∈ H̃1(Ω)/H̃1
0 (Ω)}.

Here H̃−1/2(∂Ω) is the dual space of H̃1/2(∂Ω). The inner product for the space H1(Ω)

is defined as,

〈u, v〉H1 =

∫
Ω

(∇u · ∇v + uv)dx (2.9)

In EIT, one uses the following inner product, induced by an equivalent norm ||.||∗ to

||.||H1 in H̃1(Ω),

〈u, v〉H1(Ω) =

∫
Ω

∇u · ∇vdx (2.10)

Lemma 1. If u ∈ H̃1(Ω), then the norm ||u||2∗ =
∫

Ω
|∇u|2dx is equivalent to ||u||2H1(Ω) =∫

Ω
|∇u|2 + |u|2dx.

Proof. Clearly, ||u||2∗ =
∫

Ω
|∇u|2dx ≤

∫
Ω
|∇u|2 + |u|2dx = ||u||2H1(Ω).

From Poincare’s inquality, there exists a constant c > 0, such that,

c

∫
Ω

|∇u|2dx ≥
∫

Ω

|u|2dx

9



Therefore,

∫
Ω

|∇u|2dx =
1

1 + c

∫
Ω

|∇u|2 + c|∇u|2dx

≥ 1

1 + c

∫
Ω

|∇u|2 + |u|2dx =
1

1 + c
||u||2H1(Ω)

Thus there exists a constant c > 0, such that,

1

1 + c
||u||2H1(Ω) ≤ ||u||2∗ ≤ ||u||2H1(Ω).

Hence the claim is complete.

Next we discuss the well-posedness of the Dirichlet and Neumann problems.

2.2 Well-posedness of the forward problem

To discuss the well-posedness of the EIT forward problem, we need some preliminary

results.

Definition 2. (Bilinear Form) A function B : V × V → F is called a bilinear form

if for any u, v, w ∈ V and any c ∈ F, the following conditions are satisfied.

(i)B(u+ v, w) = B(u,w) +B(v, w)

(ii)B(u, v + w) = B(u, v) +B(u,w)

(iii)B(cu, v) = B(u, cv) = cB(u, v)

where V is a vector space and F is a field of a scalar.
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Theorem 1. (Lax Miligram Theorem,[10]) Let B : H × H → K, where K = R or

C, be a bilinear (K = R)/ sesquilinear (K = C) form and 〈·, ·〉 be an inner product

defined in the Hilbert space H. If there exists c1, c2 > 0 such that for all u, v ∈ H,

(i)B is coercive, i.e.,c1||u||2 ≤ B(u, u)

(ii)B is bounded, i.e.,|B(u, v)| ≤ c2||u||||v||

then for any bounded linear functional F : H → K, there exists a unique u ∈ H such

that 〈F (u), v〉 = B(u, v). Moreover, ||u|| ≤ 1
c
||F ||, where c > 0 is a constant.

Theorem 2. (Riesz Represenation Theorem, [26, 73] Let H be a Hilbert space, and

f be a continuous linear functional on H. Then there exists a unique u ∈ H such

that f(v) = 〈v, u〉, for all v ∈ H. Furthermore, ||f ||H∗ = ||v||H , where H∗ denotes

the dual space of H.

2.2.1 Well-posedness of the Dirichlet EIT problem

First, we discuss the uniqueness and existence of the following elliptic problem.

Lemma 2. Let Ω be an open, bounded set and f ∈ H−1(Ω), then for u ∈ H1
0 (Ω),

there exists a unique weak solution to the following equations

−∇ · (σ∇u) = f, in Ω

u = 0, on ∂Ω

with 0 < σ1 < σ < σ2 <∞ ∈ L∞(Ω).
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Proof. Weak formulation of the above problem can be easily obtained using Green’s

theorem as, for any v ∈ H1
0 (Ω)

∫
Ω

σ∇u · ∇vdx =

∫
Ω

fvdx

=⇒ B(u, v) = F (v)

where B(u, v) =
∫

Ω
σ∇u · ∇vdx and F (v) =

∫
Ω
fvdx.

Claim. B(u, v) is a bilinear form.

Let u, v, w ∈ H0
1 and λ ∈ R. Then,

(i)

B(u+ w, v) =

∫
Ω

σ∇(u+ w) · ∇vdx

=

∫
Ω

σ∇u · ∇vdx+

∫
Ω

σ∇w · ∇vdx

= B(u, v) +B(w, v)

(ii)

B(u, v + w) =

∫
Ω

σ∇u · ∇(v + w)dx

=

∫
Ω

σ∇u · ∇vdx+

∫
Ω

σ∇u · ∇wdx

= B(u, v) +B(u,w)
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(iii)

B(λu, v) =

∫
Ω

σ∇λu · ∇vdx

=

∫
Ω

σ∇u · ∇λvdx = B(u, λv)

= λ

∫
Ω

σ∇u · ∇vdx = λB(u, v)

Hence, B(u, v) is bilinear.

Claim. B(u, v) is coercive and bounded.

(i) B(u, u) =
∫

Ω
σ|∇u|2dx ≥ σ1||u||2∗ ≥ σ1

1+c
||u||2

H1
0 (Ω)

, for some constant c > 0.

Thus B(u, v) is coercive.

(ii)

|B(u, v)| = |
∫

Ω

σ∇u · ∇vdx|

≤ σ2|
∫

Ω

∇u · ∇vdx|

≤ σ2||u||∗||v||∗ ≤ σ2c2||u||H1
0 (Ω)||v||H1

0 (Ω)

Hence, B(u, v) is bounded.

Clearly, F (v) is linear and by assumption it is bounded. Hence by Lax-Miligram

theorem, there exists a unique u ∈ H1
0 (Ω), such that,

B(u, v) = F (v)

. Hence, the proof.

Now consider the Dirichlet EIT forward problem (2.3,2.4). We want to retrieve a ho-
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mogeneous problem that can be solved. Since ∂Ω is C1 continuous and g ∈ H1/2(∂Ω),

then there exists ug ∈ H1(Ω), such that, ug|∂Ω = g. We define, u0 = u− ug, then the

Dirichlet EIT forward problem is equivalent to the follwoing elliptic problem,

−∇ · (σ∇u0) = ∇ · (σ∇ug), in Ω

u0 = 0, on ∂Ω

The weak formulation of the problem above can be simplified as,

∫
Ω

σ∇u0 · ∇vdx = −
∫

Ω

σ∇ug · ∇vdx, for u0, v ∈ H1
0 (Ω) (2.11)

which can be denoted as, B(u0, v) = FD(v). Previously, we proved that B(u0, v) is a

bilinear form for any u0, v ∈ H̃1 and it is coercive and bounded. Clearly, FD(v) is a

linear functional. We want to prove that FD(v) is bounded.

Now,

|FD(v)| = |
∫

Ω

σ∇ug · ∇vdx|

≤ σ2|
∫

Ω

∇ug · ∇vdx|

≤ σ2||ug||H1
0
||v||H1

0
= σ2||ug||H̃1||v||H1

0

≤ σ2||u||H̃1/2→H̃1||g||H̃1/2||v||H1
0

≤ σ2c||v||H1
0 (Ω)

where c > 0 is a constant.

Hence by the Lax-Miligram theorem, we have a unique solution u0 of the problem,

and a unique solution to the Dirichlet problem (2.3-2.4) can be obtained by setting

u = u0 + ug.
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Now for the well-posedness of the Dirichlet problem, we need to prove that the solution

depends continuously on the data.

Lemma 3. ||u||H̃1(Ω) ≤ c||g||H̃1/2(∂Ω).

Proof. Previously we showed that,

|FD(v)| = |
∫

Ω

σ∇ug · ∇vdx| ≤ σ2||ug||H̃1||v||H1
0

Hence,

||FD||H1
0 (Ω) = sup

||v||
H1

0(Ω)
6=0

|FD(v)|
||v||H1

0 (Ω)

≤ sup
||v||

H1
0(Ω)
6=0

σ2||ug||H̃1(Ω)||v||H1
0 (Ω)

||v||H1
0 (Ω)

= σ2||ug||H̃1(Ω)

Thus,

||u||H1(Ω) = ||u0 + ug||H1(Ω)

≤ ||u0||H1
0 (Ω) + ||ug||H̃1(Ω)

≤ ||FD||H1
0→R + ||ug||H̃1(Ω)

≤ σ2||ug||H̃1(Ω) + ||ug||H̃1(Ω) ≤ c||g||H̃1/2(∂Ω)

Therefore, the solution continuously depends on g.

Hence the Dirichlet forward problem for EIT is well-posed. Next we will show the

well-posedness of the Neumann forward problem.
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2.2.2 Well-posedness of the Neumann EIT Problem

Consider the Neumann EIT forward problem described in (2.1)-(2.2). As before, we

derive the weak formulation of the Neumann problem by the use of Green’s theorem

as follows.

−
∫

Ω

∇ · (σ∇u)vdx = 0

=⇒
∫

Ω

σ∇u · ∇vdx−
∫
∂Ω

σ
∂u

∂n
vds = 0

=⇒
∫

Ω

σ∇u · ∇vdx =

∫
∂Ω

fvds

=⇒ B(u, v) = FN(v)

In section 2.2.1.,we showed that B(u, v) is bilinear, coercive and bounded. To show

the uniqueness and existence of the solution to the Neumann problem, we need to

prove the following lemma.

Lemma 4. There exists a constant c > 0, such that,

|FN(v)| = |〈f, v〉H̃−1/2(∂Ω)×H̃1/2(∂Ω)| ≤ c||v||H̃1(Ω).

Proof. Let S : H̃−1/2(∂Ω) → H̃1/2(∂Ω) be a Riesz map, as described in Theorem 2.
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Then we have,

|〈f, v〉H̃−1/2(∂Ω)×H̃1/2(∂Ω)| = |〈Sf, v〉H̃1/2(∂Ω)×H̃1/2(∂Ω)|

= |〈FD(Sf), v〉H̃1(Ω)

≤ ||FD(Sf)||H̃1(Ω)||v||H̃1(Ω)

≤ c||v||H̃1(Ω)

Hence FN is bounded.

Thus the weak solution of the Neumann problem (2.1), (2.2), satisfies the conditions

of the Lax-Miligrm therorem, which establish the uniqueness and existence of the

weak solution of the Neumann EIT forward problem. For the well-posedness of the

Neumann problem, we need to prove the following lemma.

Lemma 5. ||u||H̃1(Ω) ≤ c||f ||H̃1/2(∂Ω)

Proof. From the Lax-Miligram theorem, there exists a constant c1, such that

||u||H̃1(Ω) ≤
1

c1

||FN ||H̃1(Ω)→R.

From the previous lemma, we also have,

|FN | ≤ ||FD(Sf)||H̃1(Ω)||v||H̃1(Ω)
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Hence,

||FN ||H̃1(Ω)→R = sup
||v||H1 6=0

|FN(v)|
||v||H1

≤ sup
||v||H1 6=0

||FD(Sf)||H̃1(Ω)||v||H̃1(Ω)

||v||H1

= ||FD(Sf)||H̃1(Ω).

Thus,

||u||H̃1(Ω) ≤
1

c1

||FN ||H̃1(Ω)→R

≤ 1

c1

||FD(Sf)||H̃1(Ω)

≤ c2

c2

||S(f)||H̃1/2(∂Ω)

≤ c2

c1

||S||H̃−1/2(∂Ω)→H̃1/2(∂Ω)||f ||H̃−1/2(∂Ω)

≤ c2c3

c1

||f ||H̃−1/2(∂Ω)

where S is the Riesz map described in the previous lemma, and c1, c2, c3 > 0 are

constants. Hence we conclude that the Neumann solution depends continuously on

data.

2.3 Complete Electrode Model (CEM)

In EIT, we determine the conductivity distribution inside an object by applying

electric currents at the boundary through electrodes and measuring the voltages at

the boundary as well. The governing equations for EIT problems (2.1) is provided in
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the previous chapter. In practice, currents are applied to the electrodes on the surface

∂Ω of the body. These currents produce a current density with inward pointing normal

component,

σ
∂u

∂n
= j, on ∂Ω, (2.12)

together with the conservation of charge condition
∫
∂Ω
jds = 0 and the condition∫

∂Ω
uds = 0. This model is commonly known as the continuum model, [17]. Unfor-

tunately, due to the lack of knowledge of the current density j, the continuum model

does not perform well for real experiments [17, 19]. It became important to model the

electrodes in order to comparing predictions of the resulting model with experimen-

tal data, [56, 75]. In this chapter, we briefly discuss the Complete Electrode Model

(CEM) for the EIT problems, which is now the standard model for the EIT experi-

ments. We briefly describe the formulation of the CEM, derive the variational form.

We have also discuss the well-posedness, uniqueness and existence of the solution to

the forward CEM.

2.3.1 Model

The Complete Electrode Model is the most accurate model for EIT as it accounts for

the contact impedance between the object and the electrodes, [19, 75, 83]. Suppose

L electrodes have been fixed around the surface of an object. Current is applied

to a subset of these electrodes, and the resulting voltage is measured at all other

electrodes. This EIT experiment is repeated several times with different electrode

configurations to efficiently characterize the imaged object. The inverse problem
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then is to reconstruct the conductivity distribution inside the object from a finite set

of surface point measurements.

The equation (2.1) is used to solve the electric potential at the electrodes and inside

Ω for some applied current I. We obtained (2.1) by a scaling analysis of Maxwell’s

equation for electromagnetic fields inside of an object [17, 83]. We denote the class

of admissible conductivities as

A = {σ ∈ L∞(Ω)|σ(x) ≥ σ0 > 0, for x ∈ Ω and σ0 ∈ R}.

Currents are applied to electrodes on the surface ∂Ω of the body. Let j denote the

inward unit normal component for the current density that is produced by current

on the surface. Then, the Neumann boundary condition is

σ
∂u

∂n
= j on ∂Ω. (2.13)

(2.1) and (2.13) are known as the continuum model. In practice, the current density

j at the electrodes is unknown, but
∫
El
σ ∂u
∂n
dS = Il is known, where n is the unit

outward normal to Ω, el is the surface area of the lth electrode and Il is the current

injected into el. Thus the Neumann condition (2.13) can be rewritten as

∫
el

σ
∂u

∂n
dS = Il for l = 1, 2, ..., L. (2.14)

Furthermore, we know j = 0 for the current density on the boundary between the

electrodes, such that

σ
∂u

∂n
= 0 on ∂Ω/ ∪Ll=1 el. (2.15)
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The potential on the electrodes is considered to be constant: Ul = constant. This

property is known as the shunting effect, which is represented by

u = Ul, on el, for l = 1, 2, ..., L. (2.16)

There is also an electro-chemical effect due to the formation of a thin and highly

resistive layer between the electrodes and the body. Electrical impedance from this

layer, zl, is called the effective contact impedance or surface impedance at el. This

effect changes (2.16) to

u+ zlσ
∂u

∂n
= Ul on el for l = 1, 2, ..., L. (2.17)

The complete electrode model (CEM) consists of (2.1), (2.14), (2.15) and (2.17),

together with the following conditions.

L∑
l=1

Il = 0 (conservation of charge) (2.18)

L∑
l=1

Ul = 0 (choice of a ground) (2.19)

Although the CEM has a unique solution, the accuracy of it is determined by the

predicted experimental measurements [75].

2.3.2 Weak formulation of CEM

Proposition 1. Let Ω, σ and the electrodes el satisfies the conditions described before,

and let zl ∈ R, 1 ≤ l ≤ L. Assuming (u, U) ∈ H = H1(Ω)⊕ R̃L and that u is a weak
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solution to

∇ · (σ∇u) = 0, in Ω (2.20)

subject to the boundary conditions on ∂Ω,

u+ zlσ
∂u

∂n
= Ul, on el, 1 ≤ l ≤ L (2.21)

σ
∂u

∂n
= 0 on ∂Ω/(∪Ll=1el) (2.22)∫

el

σ
∂u

∂n
= Il for 1 ≤ l ≤ L (2.23)

where R̃L = {v ∈ RL|
∑L

i=1 vi = 0}. Then for any (v, V ) ∈ H,

b((u, U), (v, V )) =
L∑
l=1

IlVl (2.24)

where b((u, U), (v, V )) =
∫

Ω
σ∇u · ∇vdx+

∑L
l=1

1
zl

∫
el

(u− Ul)(v − Vl)dS.

Conversely, if (u, U) ∈ H satisfies (2.24) for all (v, V ) ∈ H, then (u, U) also satisfies

(2.20)-(2.23).

Proof. Let (u, U) ∈ H satisfies (2.20)-(2.23). Let us denote the test functions v ∈

H1(Ω) and V ∈ R̃L. We multiply v with (2.20) and integrate over Ω to obtain

∫
Ω

v∇(σ · ∇u)dx = 0. (2.25)
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Applying Green’s formula, we have

∫
Ω

σ∇u · ∇vdx−
∫
∂Ω

σ
∂u

∂n
vdS = 0 (2.26)

=⇒
L∑
l=1

∫
el

u− Ul
zl

vdS +

∫
Ω

σ∇u · ∇vdx = 0. (2.27)

Here we used (2.15) and the result from (2.17), such that σ ∂u
∂n

= u−Ul

zl
on ∂Ω.

Multiplying (2.17) by the test functions Vl ∈ R̃L and integrating over each electrode

el, we have

L∑
l=1

1

zl

∫
el

(u− Ul)VldS +
L∑
l=1

VlIl = 0. (2.28)

Combining (2.27) and (2.28), we have

L∑
l=1

1

zl

∫
el

(u− Ul)(v − Vl)dS +

∫
Ω

σ∇u · ∇vdx =
L∑
l=1

VlIl. (2.29)

Defining the map b : H ×H → R as

b((u, U), (v, V )) =

∫
Ω

σ∇u · ∇vdx+
L∑
l=1

1

zl

∫
el

(u− Ul)(v − Vl)dS. (2.30)

Thus, the weak form of CEM is

b((u, U), (v, V )) = f(v, V ), for all (v, V ) ∈ H1(Ω)⊕ R̃L. (2.31)

where f(v, V ) =
∑L

l=1 IlVl is a functional that maps H 7→ R.

Conversely, suppose (u, U) ∈ H satisfies (2.30) for any (v, V ) ∈ H. Choosing v ∈
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H1(Ω) and V = 0, then (2.30) is,

∫
Ω

σ∇u · ∇vdx = 0

Thus u is a weak solution of (2.20). Now using Green’s theorem we have,

∫
Ω

σ∇u · ∇vdx =

∫
∂Ω

σ
∂u

∂n
vdS −

∫
Ω

∇ · (σ∇u)vdx

=

∫
∂Ω

σ
∂u

∂n
vdS (2.32)

Combining this with (2.24), we have,

∫
∂Ω

σ
∂u

∂n
vdS +

L∑
l=1

1

zl

∫
el

(u− Ul)vdS = 0. (2.33)

Since v is chosen as arbitrary, we can say that u must satisfies (2.21) and (2.22). Now

for v = 0, (2.24) is,

−
L∑
l=1

1

zl

∫
el

(u− Ul)VldS =
L∑
l=1

IlVl

Equating coefficients of Vl, we get

− 1

zl

∫
el

(u− Ul)VldS = Il, for 1 ≤ l ≤ L

Using this result in (2.33), we have

∫
el

σ
∂u

∂n
vdS = Il, 1 ≤ l ≤ L

as Vl is arbitrary. Thus u satisfies (2.23).
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2.4 Well-posedness of CEM forward solution

We define R̃L = {I ∈ RL|
∑L

l=1 Il = 0} and H = H1(Ω) ⊕ R̃L. We observe that,

setting b((u, U), (u, U)) = 0 does not give us (u, U) = 0, rather it gives u = U1 =

... = UL = constant. This suggests that we have to introduce the quotient space

Ḣ = H/R, equipped with the usual norm,

||(u, U)||Ḣ = inf
c∈R

(
||u− c||2H1(Ω) + ||U − c||2R̃L

)1/2

(2.34)

We want to use the Lax-Miligram theorem to show the existence and uniqueness

of (u, U) satisfying CEM. We need the following results. However, to satisfy the

hypotheses of the Lax-Miligram theorem, we need a different norm in Ḣ defined as,

||(u, U)||2∗ = ||∇u||2L2(Ω) +
L∑
l=1

||u− Ul||2L2(el)
.

Lemma 6. || · ||Ḣ is equivalent to || · ||∗.

Proof. The sketch of the proof is given in [75, 47].

Claim. There exists a constant C > 0 such that ||(u, U)||2∗ ≤ C||(u, U)||2
Ḣ

.

For (u, U) ∈ H, we can choose c ∈ R, such that

||u− c||2H1(Ω) + ||U − c||2RL
≤ ||(u, U)||2

Ḣ
+ ε, for an arbitrary ε > 0
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We can rewrite the norm || · ||∗ as,

||(u, U)||2∗ = ||∇(u− c)||2L2(Ω) +
L∑
l=1

||(u− c)− (Ul − c)||2L2(el)

= ||∇(u− c)||2L2(Ω) +
L∑
l=1

∫
el

|(u− c)− (Ul − c)|2ds

≤ ||∇(u− c)||2L2(Ω) + 2
L∑
l=1

∫
el

|(u− c)|2ds+
L∑
l=1

∫
el

|(Ul − c)|2ds

= ||∇(u− c)||2L2(Ω) + 2
L∑
l=1

∫
el

|(u− c)|2ds+ 2
L∑
l=1

|el|2|(Ul − c)|2.

We know that H1/2(∂Ω) ⊂ L2(Ω). Then using the Sobolev embedding theorem and

the trace theorem [30], we have,

2
L∑
l=1

∫
el

|(u− c)|2ds ≤ 2
L∑
l=1

∫
∂Ω

|(u− c)|2ds

= 2||u− c||2L2(∂Ω)

≤ C1||u− c||2H1/2(∂Ω)

≤ C1||u− c||2H1(Ω).

Using the above we have,

||(u, U)||2∗ ≤ C1||u− c||2H1(Ω) + C2|(U − c)|2CL , with C2 = max
1≤l≤L

{2|el|}

≤ C
(
||u− c||2H1(Ω) + |(U − c)|2CL

)
, with C = max{C1, C2}

= C
(
||(u, U)||2H(Ω) + ε

)
.
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Since ε > 0 is taken as arbitrary, we can say that,

||(u, U)||2∗ ≤ C||(u, U)||2
Ḣ(Ω)

Claim. There exists a constant c > 0 such that c||(u, U)||2
Ḣ(Ω)

≤ ||(u, U)||2∗.

Using trace theorem and Poincare’s inequality, we have

||(u, U)||2
Ḣ

= inf
c∈R

(
||u− c||2H1(Ω) + ||U − c||2RL

)
≤ ||∇(u− c)||2L2(Ω) + ||(u− c)||2L2(Ω) +

L∑
l=1

|Ul − c|2, for any c ∈ R

≤ ||∇(u− c)||2L2(Ω) + ||(u− c)||2L2(Ω) +
L∑
l=1

1

|el|
||Ul − c||2L2(el)

≤ ||∇u||2L2(Ω) + ||(u− c)||2L2(Ω) +
L∑
l=1

1

|el|
||Ul − u||2L2(el)

+
L∑
l=1

1

|el|
||u− c||2L2(el)

≤ ||∇u||2L2(Ω) + 2||(u− c)||2L2(Ω) +
L∑
l=1

1

|el|
||Ul − u||2L2(el)

≤ (1 + c1)||∇u||2L2(Ω) + C2

L∑
l=1

||Ul − u||2L2(el)
, with C2 = max

1≤l≤L
{ 1

|el|
}

≤ C||(u, U)||2∗.

Hence the two norms are equivalent.

Now we are ready to show that b((u, U), (v, V )) satisfies the hypotheses of the Lax-

Miligram theorem.

Lemma 7. b((u, U), (v, V )) =
∫

Ω
σ∇u · ∇vdx +

∑L
l=1

1
zl

∫
el

(u − Ul)(v − Vl)dS is a

bilinear form.
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Proof. Let (u, U), (v, V ), (w,W ) ∈ H and λ ∈ R. Then,

(i)

b((u+ w,U +W ), (v, V )) =

∫
Ω

σ∇(u+ w) · ∇vdx+
L∑
l=1

1

zl

∫
el

((u− Ul) + (w −Wl)) (v − Vl)dS

=

∫
Ω

σ∇u · ∇vdx+
L∑
l=1

1

zl

∫
el

(u− Ul)(v − Vl)dS

+

∫
Ω

σ∇w · ∇vdx+
L∑
l=1

1

zl

∫
el

(W −Wl)(v − Vl)dS

= b((u, U), (v, V )) + b((w,W ), (v, V ))

(ii)

b((u, U), (v + w, V +W )) =

∫
Ω

σ∇u · ∇(v + w)dx+
L∑
l=1

1

zl

∫
el

(u− Ul)((v − Vl) + (w −Wl))dS

=

∫
Ω

σ∇u · ∇vdx+
L∑
l=1

1

zl

∫
el

(u− Ul)(v − Vl)dS

+

∫
Ω

σ∇u · ∇wdx+
L∑
l=1

1

zl

∫
el

(u− Ul)(w −Wl)dS

= b((u, U), (v, V )) + b((u, U), (w,W ))

(iii)

b(λ(u, U), (v, V )) =

∫
Ω

σ∇λu · ∇vdx+
L∑
l=1

1

zl

∫
el

(λu− λUl)(v − Vl)dS

=

∫
Ω

σ∇u · ∇λvdx+
L∑
l=1

1

zl

∫
el

(u− Ul)(λv − λVl)dS = b((u, U), λ(v, V ))

= λ

∫
Ω

σ∇u · ∇vdx+ λ

L∑
l=1

1

zl

∫
el

(u− Ul)(v − Vl)dS = λb((u, U), (v, V ))
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Hence, b(u, v) is bilinear.

Lemma 8. b((u, U), (v, V )) is bounded and coercive.

Proof. We have,

|b((u, U), (v, V ))| = |
∫

Ω

σ∇u · ∇vdx+
L∑
l=1

1

zl

∫
el

(u− Ul)(v − Vl)dS|

≤ σ2|
∫

Ω

∇u · ∇vdx|+
L∑
l=1

1

zl
|
∫
el

(u− Ul)(v − Vl)dS|

≤ σ2||∇u||L2(Ω)||∇v||L2(Ω) +
L∑
l=1

1

zl
||u− Ul||L2(el)||v − Vl||L2(el)

≤ C1

(
||∇u||L2(Ω)||∇v||L2(Ω) +

L∑
l=1

||u− Ul||L2(el)||v − Vl||L2(el)

)

≤ C||(u, U)||∗||(v, V )||∗, for some C > 0.

Thus b((u, U), (v, V )) is bounded.

Now,

|b((u, U), (u, U))| = |
∫

Ω

σ|∇u|2dx+
L∑
l=1

1

zl

∫
el

(u− Ul)2dS|

≥ σ1||∇u||2L2(Ω) +
L∑
l=1

1

zl
||u− Ul||2L2(el)

≥ k||(u, U)||2∗, for some k > 0.

Hence b(u, U), (v, V )) is coercive.

In order to apply the Lax-Miligram theorem, we need to prove the following lemma.
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Lemma 9. The mapping f(v, V ) =
∑L

l=1 IlVl, with I, V ∈ R̃L is well-defined and

continuous.

Proof. Suppose (v, V ) = (v∗, V∗) ∈ H(Ω). Then,

f(v, V ) =
L∑
l−1

IlVl

=
L∑
l−1

Il(Vl − c), for some c ∈ R and using
L∑
l−1

Il = 0

=
L∑
l−1

Il(V∗ − c) =
L∑
l−1

IlV∗ = f(v, V∗).

Thus f(v, V ) is well-defined. Now there exists a constant c ∈ R such that,

(
||v − c|2H1(Ω) + ||V − c||2RL

)1/2

≤ ||(v, V )||+ ε

for some ε > 0. Then,

|f(v, V )| =
L∑
l−1

Il(Vl − constant)

≤ ||I||2RL||Vl − constant||2RL

≤ ||I||2RL (||(v, V )||+ ε) .

Hence f(v, V ) is continuous.

Using lemma 7-9, we conclude that the weak formulation of the CEM satisfies all the

hypotheses of Lax-Miligram theorem. Hence it has a unique solution.
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2.5 Fréchet differentiability of the CEM operator

For the inversion procedure and implementing IRGN method, we need to compute

the jacobian of the forward operator, F (σ), required for carrying out the numerical

computation using iterative Newton methods. First we linearize the forward model

by replacing σ, u and U in (2.20 - 2.23) by (σ+η), (u+w) and (Ul+Wl), respectively,

and denote the linearized operator by F ′(σ). Here η is an arbitrary direction of σ

with η|∂Ω = 0, (w,W ) ∈ H(Ω). Then ignoring the higher order terms, we arrive at,

−∇ · (σ∇w) = ∇ · (η∇u) in Ω (2.35)

w + zlσ
∂w

∂n
= Wl, on el, l = 1, 2, ..., L (2.36)∫

el

σ
∂w

∂n
ds = 0, for l = 1, 2, ..., L (2.37)

σ
∂w

∂n
= 0, on ∂Ω/(∪Ll=1el). (2.38)

If the regularity assumptions on the domain and the coefficients are satisfied, the

forward operator is differentiable, established by the following theorem, [56].

Theorem 3. Let I be a fixed current vector and zl, l = 1, ..., L be fixed positive contact

impedances. The operator F that maps σ ∈ int(A) to the solution (u, U) ∈ H of the

forward problem, is Fréchet differentiable. If η ∈ L∞(Ω) = {v(x) : supx∈Ω |v(x)| <

∞}, such that σ + η ∈ A, then the derivative F ′(σ)η = (w,W ) ∈ H satisfies the

following variational problem,

b((w,W ), (v, V )) = −
∫

Ω

η∇u · ∇vdx (2.39)

for all (v, V ) ∈ H, where (u, U) = F (σ).
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Proof. The proof of the above theorem is well established in the literature, see, [56,

49].

The above theorem establishes the differentialbility of the forward CEM operator

F (σ). We denote the derivative operator as F ′(σ), and the matrix, called the jacobian

of F (σ), [56, 68]. Let ∇tF (σ) be the gradient of F (σ) with respect to the t-th

component of σ ∈ Qh. Then F ′(σ) has the form,

F ′(σ) =



∇1F (σ)

∇2F (σ)

...

∇|T |F (σ)


∈ R|T |×LP

We denote, ∇tF (σ) = (U1
t , U

2
t , . . . , U

L
t ) ∈ RLP , then we can compute the vectors

Um
t ∈ R̃L, as part of the solution (umt , U

m
t ) of the variational problem (2.39).
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Chapter 3

Diffuse Optical Tomography

Diffuse Optical Tomography (DOT) is a non-invasive technique that utilize light in

the near infrared spectral region to measure the optical properties of physiological

tissue. This technique requires the object being imaged to be least partially light-

transmitting or translucent, so it works best on soft tissues, such as breast and brain

tissues. By monitoring spatial-temporal variations in the light absorption and scat-

tering properties of tissue, regional variations in oxy- and deoxy-hemoglobin concen-

tration as well as cellular scattering can be imaged. Based on these measurements,

spatial maps of tissue properties such as total hemoglobin concentration, blood oxy-

gen saturation and scattering can be obtained using model-based reconstruction al-

gorithms. DOT has been applied in various deep-tissue applications including breast

cancer imaging [45, 27, 67, 28], brain functional imaging [34, 86, 55, 32, 80, 81, 82],

stroke detection [53], arthritic finger [39] etc.

In a typical DOT experiment, an optical wave from a light source is projected onto

the body. Usually, this is a laser light in the visible (about 400 to 700nm), or near
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Figure 3.1: DOT experiment

infrared range (about 700 to 1600nm). Due to scattering properties of tissues, some

of the light beam is absorbed by chromophores (such as hemoglobin, lipid and water)

inside the tissue, and the rest is scattered. To collect this scattered beam, multiple

detectors are placed on the boundary of the tissue, as shown in figure 3.1. From this

data a 2-D image (slice) of the tissue is reconstructed in the form of a spatial map

of the tissue’s absorption and scattering coefficients [45]. Since cells in tumors have

higher absorption coefficients than normal cells due to an increased water or ionic

concentration, and they also scatter photons differently, the absorption and scatter-

ing coefficients of the cells being imaged are the most important parameters to be

determined in most medical applications [45, 85].

Given a light source f on the boundary and the absorption and scattering coefficients

µa and µs, respectively, for all locations x ∈ Ω, the forward problem in DOT is to

determine the measurements g on the boundary ∂Ω of Ω. The relationship between

these variables is most often described using the radiative transport equation (RTE),

[2, 16, 22, 33, 78].

1

c

∂Ĩ

∂t
+ ŝ · ∇Ĩ + (µa + µs)Ĩ = µs

∫
p(ŝ′, ŝ)Ĩ(x, ŝ′)dŝ′ (3.1)
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where Ĩ(x, ŝ, t), the variable of interest, is the specific intensity, also known as the

spectral radiance (number of photons per unit volume), at position x, in the direction

ŝ at time t [4].

However, the RTE is computationally expensive and in practice, researchers use an

approximation equation to RTE with Robin boundary equation [38]. The most com-

mon approximation is the diffusion approximation, which results in a modality known

as diffuse optical tomography (DOT).

∇− ·(D∇u) + (µa + ik)u = h, in Ω (3.2)

where u is the photon density, h is the source, D is the diffusion coefficient, expressed

as D = 1
3(µa+µ′s)

, where µa is the absorption coefficient and µ′s is the reduced scattering

coefficient. In practice, source cannot be placed inside he body, so in this dissertation

we set h = 0. The diffusion model is a first order approximation to the radiative

transport equation, assuming µ′s >> µaand the detector and source are not too close

together [4, 45].

As the previous chapter, in this chapter we discuss the well-posedness of the DOT

forward problem and the existence and uniqueness of it’s solution.

3.1 The DOT forward problem

The DOT forward problem involves solving an elliptic partial differential equation

with Robin boundary conditions where µa and D are known. The solution u describes

the photon density of the scattered light arriving at the detectors. The complete DOT

35



experiment is given in the frequency domain, with Robin boundary condition

−∇ · (D∇u) + (µa + ik)u = 0 in Ω (3.3)

γRu = u+ 2D
∂u

∂n
= f on ∂Ω (3.4)

here, D is the diffusion coefficient, µa is the absorption coefficient, k = ω/c is the

imaginary wave number, ω is the modulation frequency of the laser, c is the speed

of light, f is the source, and γR : H1(Ω) → H−1/2(∂Ω) is the Robin trace map,

with the solution space defined as, H1(Ω) = {v ∈ L2(Ω)|
∫

Ω
(|∇v|2 + v2)dx < ∞}

and H1/2(∂Ω) ' {γD(v)|v ∈ H1(Ω)/H1
0 (Ω)}. We also consider Ω ⊂ Rn, n = 2, 3 a

bounded, connected Lipschitz domain. Furthermore, the DOT model with Neumann

boundary condition is given by,

−∇ · (D∇u) + (µa + ik)u = 0, in Ω (3.5)

γNu = −D∂u
∂n

= g, on ∂Ω (3.6)

where g the measurements of the scattered photons on the boundary, and γN :

H1(Ω) → H−1/2(∂Ω) is the Neumann trace map, with H−1/2(∂Ω) ' {γN(v)|v ∈

H1(Ω)/H1
0 (Ω)}. Note that, H1

0 (Ω) = {v ∈ H1|
∫
∂Ω
vds = 0}. For the well-posedness,

we need D, µa to be bounded. That is there exists constants D0, D1 and µ0, µ1 such

that,

0 < D0 ≤ D ≤ D1 <∞, 0 < µ0 ≤ µa ≤ µ1 <∞ (3.7)

Thus we can define the parameter space for DOT as,

Q̃ := {(D,µa) ∈ L∞(Ω)× L∞(Ω) : 0 < D0 < D < D1 0 < µ0 < µ1 < µ1}

We note that H1
0 (Ω) ↪→ H1(Ω) ↪→ L2(Ω) is the dual space of H1/2(∂Ω). In general,

these spaces are known as Sobolev spaces. The Sobolev space W k
p (Ω) is formally
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defined as

Wm
p (Ω) = {u ∈ Lp(Ω)|Dαu ∈ Lp(Ω),∀|α| ≤ m}.

That is W k
p (Ω) is the set of all functions in Lp(Ω) whose |α| ≤ m weak partial

derivatives are also in Lp(Ω). It is convenient to let Wm
2 (Ω) = Hm(Ω), which we

adopt here.

3.2 Well-posedness of the DOT problem (Robin

boundary condition)

Consider the Robin problem described in (3.3) - (3.4).

−∇ · (D∇u) + (µa + ik)u = 0 in Ω

γRu = u+ 2D
∂u

∂n
= f on ∂Ω

where u ∈ H1(Ω), g ∈ H1/2(∂Ω) and q = (D,µa) ∈ Q̄, as described before. To discuss

the well-posedness of the Robin problem, first we derive the weak formulation.

For any test function v ∈ H1(Ω), we have

−
∫

Ω

∇ · (D∇u)v̄dx+

∫
Ω

(µa + ik)uv̄)dx = 0

=⇒
∫

Ω

D∇u · ∇v̄dx+

∫
Ω

(µa + ik)dxuv̄ −
∫
∂Ω

D
∂u

∂n
v̄ds = 0
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where v̄ represents the complex conjugate of v. Now using the boundary condition

(3.4), we get

∫
Ω

D∇u · ∇v̄dx+

∫
Ω

(µa + ik)dx =
1

2

∫
∂Ω

(g − u)v̄ds

=⇒
∫

Ω

D∇u · ∇vdx+

∫
Ω

(µa + ik)dx+
1

2

∫
∂Ω

uv̄ds =
1

2

∫
∂Ω

gv̄ds (3.8)

Defining B(u, v) =
∫

Ω
D∇u · ∇vdx +

∫
Ω

(µa + ik)uv̄dx + 1
2

∫
∂Ω
uv̄ds and fR(v) =

1
2

∫
∂Ω
gv̄ds, we have the weak formulation of the robin problem as,

B(u, v) = fR(v), for any u, v ∈ H1(Ω).

Recall the definition of a sesquilinear form.

Definition 3. (Sesquilinear form) A map b : V × V → C, is called a sesquilinear

form, if it satisfies the following conditions,

(i) b(x+ y, z + w) = b(x, z) + b(y, z) + b(x,w) + b(y, w),

(ii) b(c1x, c2y) = c1c̄2b(x, y)

where x, y, z, w ∈ V and c1, c2 ∈ C.

Lemma 10. B(u, v) =
∫

Ω
D∇u·∇v̄dx+

∫
Ω

(µa+ik)uv̄dx+ 1
2

∫
∂Ω
uv̄ds is a sesquilinear

form.
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Proof. (i) For any u, v, w, z ∈ H1(Ω), we have

B(u+ v, z + w) =

∫
Ω

D∇(u+ v) · ∇(z̄ + w̄)dx+

∫
Ω

(µa + ik)(u+ v)(z̄ + w̄)dx

+
1

2

∫
∂Ω

(u+ v)(z̄ + w̄)ds

=

∫
Ω

D∇u · ∇z̄dx+

∫
Ω

(µa + ik)uz̄dx+
1

2

∫
∂Ω

uz̄ds

+

∫
Ω

D∇u · ∇w̄dx+

∫
Ω

(µa + ik)uw̄dx+
1

2

∫
∂Ω

uw̄ds

+

∫
Ω

D∇v · ∇z̄dx+

∫
Ω

(µa + ik)vz̄dx+
1

2

∫
∂Ω

vz̄ds

+

∫
Ω

D∇v · ∇w̄dx+

∫
Ω

(µa + ik)vw̄dx+
1

2

∫
∂Ω

vw̄ds

= B(u, z) +B(u,w) +B(v, z) +B(v, w).

(ii) For any c1, c2 ∈ C, we have,

B(c1u, c2v) =

∫
Ω

D∇c1u · ∇ ¯c2vdx+

∫
Ω

(µa + ik)c1u ¯c2vdx+
1

2

∫
∂Ω

c1u ¯c2vds

= c1c̄2

(∫
Ω

D∇u · ∇v̄dx+

∫
Ω

(µa + ik)uv̄dx+ c1c̄2
1

2

∫
∂Ω

uv̄ds

)
= c1c̄2B(u, v).

Hence B(u, v) is a sesquilinear form.

We will use the Lax-Milgram theorem for sesquilinear form to show the existence and

uniqueness of the solution to the robin problem. The inner product for the space

H1(Ω) is

〈u, v〉H1(Ω) =

∫
Ω

(∇u · ∇v + uv)dx. (3.9)
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In order to show the boundedness and coerciveness of b(u, v), it is convenient to define

an equivalent norm for the space H1(Ω)×H1(Ω) as,

||u||2∗ =

∫
Ω

D|∇u|2dx+

∫
Ω

µa|u|2dx+
1

2

∫
∂Ω

|u|2ds

Lemma 11. ||u||H1 and ||U ||∗ are equivalent.

Proof.

||u||2H1 =

∫
Ω

|∇u|2 + |u|2dx

≤
∫

Ω

D(x)

D0

|∇u|2 +
µa(x)

µ0

|u|2dx

=
1

D0

∫
Ω

D|∇u|2dx+
1

µ0

∫
Ω

µa|u|2dx

≤ max{ 1

D0

,
1

µ0

}
(∫

Ω

D|∇u|2 + µa|u|2dx+
1

2

∫
∂Ω

|u|2ds
)

≤ C1||u||2∗

where C1 = max{ 1
D0
, 1
µ0
}. Now

||u||2∗ =

∫
Ω

D|∇u|2dx+

∫
Ω

µa|u|2dx+
1

2

∫
∂Ω

|u|2ds

≤ D1

∫
Ω

|∇u|2dx+ µ1

∫
Ω

|u|2dx+
1

2

∫
∂Ω

|u|2ds

≤ max{D1, µ1}
(∫

Ω

|∇u|2dx+ µ1

∫
Ω

|u|2dx
)

+ c(Ω)

∫
Ω

|∇u|2dx, using Sobolev Trace theorem

≤ max{D1 + c(Ω), µ1}
(∫

Ω

|∇u|2dx+ µ1

∫
Ω

|u|2dx
)

= C2||u||2H1

where C2 = max{D1 + c(Ω), µ1}. Hence the proof.
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Lemma 12. B(u, v) is bounded and coercive.

Proof. We will use Cauchy-Schwartz inequality to prove this.

|B(u, v)| = |
∫

Ω

D∇u∇v̄dx+

∫
Ω

µauv̄dx+

∫
∂Ω

1

2
uv̄ds|

≤
(∫

Ω

|D∇u|2dx
)1/2(∫

Ω

|∇v|2dx
)1/2

+

(∫
Ω

|µau|2dx
)1/2(∫

Ω

|v|2dx
)1/2

+
1

2

(∫
∂Ω

|u|2ds
)1/2(∫

∂Ω

|v|2ds
)1/2

≤ D1

(∫
Ω

|∇u|2dx
)1/2(∫

Ω

|∇v|2dx
)1/2

+ µ1

(∫
Ω

|u|2dx
)1/2(∫

Ω

|v|2dx
)1/2

+
c1

2

(∫
Ω

|∇u|2dx
)1/2(∫

Ω

|∇v|2dx
)1/2

, using Sobolev Trace theorem

≤ C

((∫
Ω

|∇u|2dx
)1/2(∫

Ω

|∇v|2dx
)1/2

+

(∫
Ω

|u|2dx
)1/2(∫

Ω

|v|2dx
)1/2

)

≤ C||u||H1(Ω)||v||H1(Ω)

where C = max{D1 + c2
2

+ µ1}. Hence B(u, v) is bounded. Next We need to show

B(u, v) is coercive.

|B(u, u)| ≥ |Re(B(u, u)|

≥ |
∫

Ω

D|∇u|2dx+

∫
Ω

µa|u|2dx+

∫
∂Ω

1

2
|u|2ds|

= ||u||2∗.

Hence B(u, v) is coercive.

To satisfy all the hypotheses of the Lax-Miligram theorem, we need to show that

f(v) = 1
2

∫
∂Ω
gv̄ds is a bounded linear functional.
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Lemma 13. fR(v) is a bounded linear functional.

Proof. Clearly, fR(v) is linear. We have the duality pairing,

fR(v) = 〈g, v〉H−1/2(∂Ω)×H1/2(∂Ω)

By Riesz representation theorem, there exists a bounded linear operator S : H−1/2 7→

H1/2, such that,

|〈g, v〉H−1/2(∂Ω)×H1/2(∂Ω)| = |〈Sg, v〉H1/2(∂Ω)×H1/2(∂Ω)|

≤ ||Sg||H1(Ω)||v||H1(Ω)

≤ c||v||H1(Ω), using boundedness of S.

Thus fR(v) is a bounded linear operator.

From Lemma 12-13, we have that the hypotheses of the generalized Lax-Miligram

theorem are satisfied. So we can conclude that the there exists a unique solution of

(3.3)-(3.4).

3.3 Fréchet differentiability of the DOT operator

The inverse problem of the DOT problem is to estimate the diffusion (D) and the

absorption (µ) coefficient for a source function f . We solve the inverse problem using

iteratively regularized Gauss-Newton (IRGN) method, for which a Fréchet differen-

tiablity of the map γ0F
(k,q†)
N (0, f) is a necessary tool. Recall that Fréchet differentia-
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bility of γ0F
(k,q†)
N (0, f) is defined as

lim
||η||∞→0

||γ0F
(k,q†)
N (q + η : 0, f)− γ0F

(k,q†)
N (q : 0, f)− γ0F

′
N

(k,q†)(q : 0, f)η||
||η||∞

= 0

Theorem 4. Suppose q1 = (D1, µ1), q2 = (D2, µ2) are two pairs of real-valued L∞(Ω)

functions satisfying,

0 < mD ≤ D1,2(x) ≤MD, 0 ≤ µ1,2(x) ≤Mµ, for some mD,MD,Mµ > 0

then there exists a constant C, such that,

||γ0F
(k,q†)
N (q2 : 0, f)− γ0F

(k,q†)
N (q1 : 0, f)− γ0F

′
N

(k,q†)(q1 : 0, f)η|| ≤ C||η||2∞ (3.10)

where η = q2 − q1. In particular, γ0F
′
N

(k,q†)(q1 : 0, f) is the Fréchet derivative of

γ0F
(k,q†)
N (0, f) with respect to q at q1.

Proof. See [63].

43



Chapter 4

Inverse Problem for EIT and DOT

Inverse problems are important because of their abundance in application. Many of

the problems we encounter in daily life are inverse problems: given an observed or

desired effect, what was the original cause? Mathematically, we represent a general

inverse problem with the equation F (x) = y, where the output y is known, as well

as the transformation function F , but the input data x are unknown. Such problems

are relatively straight forward mathematically if F has an inverse. However as math-

ematicians know, inverse often do not exist or can only be approximated numerically.

In addition such inverses are very unstable in the sense that a small change to the

input data can lead to a large change in the output. Another way to say this is that

inverse problems are often sensitive, they do not depend continuously on the data,

violating the third condition of Hadamard (see Definition 1) and thus are ill posed.

Inverse problems arise naturally in medical imaging as the unknowns are the geometry

and physiological properties of the tissue being imaged. In the case of optical imag-

ing like DOT, as well as in EIT, the ”output data” y is the data about the scattered
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photons read by the detectors at the boundary of the tissue. Due to the sensitivity of

the unknown parameter values to small perturbations in the data measurements at

the boundary, these problems are ill-posed and can only be solved through numerical

optimization. Further due to sensitivity of the solution regularization is needed.

In this chapter, we discuss the existence and uniqueness of the inverse problems for

EIT and DOT.

4.1 Inverse problem for EIT

In EIT, the conductivity distribution σ ∈ Ω is unknown, and the inverse problem

is to reconstruct σ from simultaneous measurements of boundary voltages V given

the corresponding current densities I. The Dirichlet EIT forward problem is to find

u ∈ H1(Ω) for a given σ ∈ L∞(Ω). Then the Dirichlet-to-Neumann (DtN) map is

defined as the operator ∧σ : H1/2(∂Ω)→ H−1/2(∂Ω) given by,

u 7→ σ
∂u

∂n
on ∂Ω.

Theoretically, we want to determine σ from the knowledge of the DtN map. However,

in practice, the reconstruction is done with the partially known DtN map. In chapter

2, we have shown the well-posedness of the EIT forward problem. But, unlike the

EIT forward problem, the inverse problem is highly ill-posed, i.e., small perturbation

in the measurement can lead to highly different solutions in the parameter space of σ.

In this section, we discuss the existence and uniqueness of the solution to the inverse

EIT problem with the assumption that we have a complete knowledge of the DtN

map.
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4.1.1 Existence and uniqueness of the inverse EIT solution

In this section, we discuss the existence and uniqueness of the inverse EIT problem.

For that, we need more smoothness for the parameter σ in the parameter space. We

consider σ ∈ {H2(Ω) : 0 < σ1 < σ < σ2 < ∞}. We will establish the uniqueness by

converting the governing equation into a Schrödinger type equation using a Liouville

transformation by setting w =
√
σu. Using this transformation into (2.3) we have,

0 = ∇ · (σ∇u)

= ∇ ·
(
σ∇

(
w√
σ

))
= σ4

(
w√
σ

)
+∇

(
w√
σ

)
· ∇σ

= σ4
(
w√
σ

)
+ 2
√
σ

(
∇
(
w√
σ

)
· ∇
√
σ

)
, using product rule

= σ4u+ 2
√
σ∇u · ∇

√
σ

=
√
σ4u+ 2∇u · ∇

√
σ, as 0 < σ1 < σ (4.1)

Now

4w = ∇ · ∇(
√
σu)

= ∇ ·
(√

σ∇u+ u∇
√
σ
)

=
√
σ4u+ 2∇u · ∇

√
σ + u4

√
σ

= u4
√
σ

=⇒ 4w − w
(
4
√
σ√
σ

)
= 0
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which is a Schrödinger type equation. Similarly, we want to find the Dirichlet and

Neumann boundary conditions w.r.t. w. Consider,

w = ĝ, on ∂Ω

∂w

∂n
= f̂ , on ∂Ω

Then using the transformation above and the boundary conditions described in (2.4)

and (2.1), we have

u =
w√
σ

=
ĝ√
σ

= g, on ∂Ω

σ
∂u

∂n
= σ

∂

∂n

(
w√
σ

)
= σw

∂σ−1/2

∂n
+
√
σ
∂w

∂n
= σĝ

∂σ−1/2

∂n
+
√
σf̂ = f, on ∂Ω

In matrix form we have,

 1√
σ

0

σ ∂σ
−1/2

∂n

√
σ


ĝ
f̂

 =

g
f

 .
The system above has a unique solution. Hence one can easily convert the Dirichlet

and Neumann problem into a Schrödinger type equation. Therefore the inverse EIT

problem has a unique solution as Schrödinger equation has a unique solution.

4.1.2 Cost functional for EIT

Unlike the forward problem, the inverse problem suffers from ill-posedness due to the

partial knowledge of the DtN map from using N number of experiments. Hence one
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has to consider minimization of the following regularized functional,

Jλ(σ) =
1

2
||ΓDFN(u)− gδ||2L2(Ω) + λRp(σ − σb) (4.2)

where, σb is the background conductivity, λ is the regularization parameter, gδ is the

noisy measurement or data and Rp(·) is a penalty term which is set as Rp(σ − σb) =

1
p
||σ−σb||pLp(Ω). The penalty term is convex and weakly lower semi-continuous, [47]. In

this dissertation we consider p = 2, which is the most widely used classical smoothing

penalty, known as the Tikhonov regularization. The minimization of (4.2), is also

studied for total variation (TV) and Mumford-Shah penalty in [70, 71]. The existence

of the minimizer of (4.2) is established in the following theorem, [47].

Theorem 5. There exists a minimizer σλ to Jλ(σ) over the admissible space A =

{σ ∈ L∞ : 0 < σ1 < σ < σ2 < ∞}. Let gn ⊂ L2(Ω) be a sequence of noisy data

converging to gδ, and σn is the minimizer corresponding to gn. Then the sequence σn

has a subsequence converging in H1(Ω′) to a minimizer of Jλ. Moreover if λ = λ(δ)

satisfies limδ→0 λ(δ) = 0 and limδ→0
σ2

λ(δ)
= 0, then the sequence of minimizers {σn}

has a subsequence converges in H1(Ω′) to an Rp(·) minimizing solution σλ as δ → 0.

Furthermore if σT is unique then the whole sequence converges.

Proof. Sketch of the proof is given in [47, 40].

4.2 Inverse problem for DOT

In diffuse optical tomography(DOT), a light source of near-infrared range is projected

on the tissue. This interacts with the tissue primarily through the scattering and
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absorption coefficients of the photons.

This interaction is modeled in chapter 3, in the time independent (or dc) case, by the

diffusion approximation

−∇ · (D∇u) + µau = 0 in Ω (4.3)

u+ 2D
∂u

∂n
= f on ∂Ω (4.4)

In [3], the authors showed that the unique recovery diffusion and absorption coeffi-

cients can not occur simultaneously.

We want to reconstruct a spatial map of the optical parameters D and µa, given the

information of scattered photons collected at the detectors placed on the boundary

of the medium. Thus the inverse problem can be stated as: given data g on ∂Ω find

q = (D,µa).

In other words, we wish to find q̃ = (D,µa), such that F̃ (q̃) = g, and ||g − gδ|| ≤ δ,

where g is the measured data for q̃ obtained by using the forward operator F̃ and gδ,

is the perturbed measurement from the data given by,

gδ = γN F̃ (q∗) + ε

where γN is the Neumann trace, q∗ = (D∗, µ∗a) are the true optical parameters, ε is

the data noise, and δ is an upper bound of the noise. This problem is nonlinear and

unstable [52, 5], and ill-posed [4, 64] since it is under-determined for a finite set of

data.

We will denote q̃ = (D,µa) to represent the values of the optical parameters, and

q̃b = (Db, µb) to represent their values on a homogeneous background representing
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healthy tissue. Thus, in the image reconstruction problem, we would like to determine

q̃ knowing the complete Robin to Neumann map given by,

−∇ · (D∇u) + µau = 0 in Ω (4.5)

u+ 2D
∂u

∂n
= f on ∂Ω (4.6)

−D∂u
∂n

= g on ∂Ω (4.7)

4.2.1 Existence and uniqueness of the inverse DOT solution

Due to the well-posedness of the forward problem of DOT, it was sufficient to con-

sider q̃ ∈ Q̃. However more smoothness in the parameter space is needed to prove

the uniqueness of the solution to the inverse problem. Thus we will consider q̃ ∈

{H2(Ω)×L∞(Ω), 0 < D0 ≤ D ≤ D1 <∞, 0 < µ0 ≤ µa ≤ µ1 <∞}. Given the higher

regularity it can be shown that Hadamard’s first two conditions for well-posedness

are met.

In this section, we discuss the existence and uniqueness of the inverse DOT prob-

lem. We will establish the uniqueness by converting the governing equation into a

Schrödinger type equation with the knowledge of Dirichlet to Neumann pairs instead

of Robin to Neumann pairs. Using the Liouville transformation by setting w =
√
Du

50



in (4.5) we have,

0 = −∇ ·
(
D∇

(
w√
D

))
+ (µa + ik)

w√
D

= −D4
(

w√
D

)
−∇

(
w√
D

)
· ∇D + (µa + ik)

w√
D

= −D4
(

w√
D

)
− 2
√
D

(
∇
(

w√
D

)
· ∇
√
D

)
+ (µa + ik)

w√
D
, using product rule

= −D4u− 2
√
D
(
∇u · ∇

√
D
)

+ (µa + ik)u

= −
√
D4u− 2∇u · ∇

√
D + (µa + ik)u. (4.8)

Now

4w = ∇ · ∇(
√
Du)

= ∇ ·
(√

D∇u+ u∇
√
D
)

=
√
D4u+ 2∇u · ∇

√
D + u4

√
D

=⇒ 4w − w

(
4
√
D√
D

)
=
√
D4u+ 2∇u · ∇

√
D.

Using the result in (4.8) we can write,

−4w + w

(
4
√
D√
D

)
+ (µa + ik)

w√
D

= 0

−4w +

(
4
√
D√
D

+
µa + ik

D

)
w = 0

−4w + bw = 0
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where b =
(
4
√
D√
D

+ µa+ik
D

)
. This is a Schrödinger type equation. Similarly, we want

to find the Dirichlet and Neumann boundary conditions w.r.t. w. Consider,

w = ĝ, on ∂Ω

∂w

∂n
= f̂ , on ∂Ω

Then using the transformation above and the boundary conditions described in (4.6)

and (4.7), we have

u =
w√
D

=
ĝ√
D

= g, on ∂Ω

D
∂u

∂n
= D

∂

∂n

(
w√
D

)
= Dw

∂D−1/2

∂n
+
√
D
∂w

∂n
= Dĝ

∂D−1/2

∂n
+
√
Df̂ = f, on ∂Ω

In matrix form we have,

 1√
D

0

D ∂D−1/2

∂n

√
D


ĝ
f̂

 =

g
f

 .
The system above has a unique solution, as the determinant of the coefficient matrix

is −1 6= 0. Hence one can easily get the full knowledge of Dirichlet-to-Neumann map

from the knowledge of Robin-to-Neumann map. This is summarized in the following

theorem, [22].

Theorem 6. Assuming D is known on ∂Ω, then the frequency domain inverse prob-

lem with a Robin-to-Neumann setting is equivalent to determining q = (D,µa) ∈

H2(Ω) × L∞(Ω) from all possible Dirichlet-to-Neumann pairs (ĝ, f̂) ∈ H1/2(∂Ω) ×
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H−1/2(∂Ω) which are related by the Schrödinger type boundary value problem:

−4w +

(
4
√
D√
D

+
µa + ik

D

)
w = 0

w = ĝ on ∂Ω

∂w

∂n
= f̂ on ∂Ω

4.2.2 Cost functional for DOT

It is understood that a uniqueness of the solution to the inverse problem follows with

a complete knowledge of the Robin-to-Neumann map and appropriate restrictions to

the parameter space. However, in practice we only have access to finitely many source

configurations and experiments, instead of the complete knowledge of the Robin-to-

Neumann map. Hence the inverse problem is solved by minimizing a cost functional

for a finite number of source and measurement pairs (gi, fi). The most natural cost

functional is simply output least squares,

minq̃∈Q̃J(q̃) =
1

2
||γnF̃R(0, f)− g||2L2(∂Ω) + β||q̃ − q̃b||2 (4.9)

where F̃R(0, f) is forward Robin operator, f is a fixed source and g represents the

Neumann data (usually a noisy measurement gδ). The second term in the sum is the

smoothing term, which helps smooth and final image, with regularization parameter

given by β.

Theorem 7. There exists a minimizer to (4.9).
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Proof. The proof is well-established in [22].

We give the outline of the proof. The proof uses the Fréchet differentiability of

the forward operator γnF̃R(0, f), closedness of the parameter space Q̃ for q, which

eventually shows the existence of a convergent subsequence qn ∈ Q̃ converging to

q ∈ Q̃ satisfying the restrictions (3.7).
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Chapter 5

Analytical Method for EIT and

DOT

The inverse problems in EIT and DOT, are extremely challenging mathematical prob-

lem, as they are nonlinear and extremely ill-posed in the Hadamard sense. Because

of the promising applications and challenging mathematics, EIT and DOT attracts a

vast majority of researchers across the world, all started from the pioneering work of

Caldèron, [15]. The algorithms that are used to such reconstructions can be catego-

rized as

1. iterative solvers tackling the full nonlinear problem, [1, 78].

2. direct methods, [60, 13, 18, 54, 35],

The iterative solvers exploits the Fréchet differentiability of the forward operator to

use Newton-type methods. These techniques are promising, however, they are com-

putationally expensive and slow to convergence, mostly due to the choice of proper
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parameters and initial guess to the conductivity. To reduce the computational cost,

researchers are encouraged to develop direct methods. Such reconstruction methods

are suitable for smooth conductivity distributions.

In this chapter, we represent the mollifier approach, [60], for EIT, where the con-

ductivity distribution is assumed to satisfy necessary smoothness condition. It uses

a simple transformation and combines the concept of mollifiers, [59, 57, 58] to es-

tablish a connection between the equations defining the inverse conductivity problem

and those used in inverse scattering, [20]. However, the method described in [60]

had some theoretical error, and we made the appropriate modification to the method

which are described in this chapter. Using the appropriate modification, we have also

proposed an extension to the method for solving the inverse problems in DOT.

5.1 Mollifier approach for EIT

Consider the EIT problem, described as

−∇.(σ∇u) = 0 in Ω (5.1)

σ
∂u

∂n
= f on ∂Ω (5.2)

u = g on ∂Ω (5.3)

where Ω ⊂ Rn, n = 2 or 3 is a bounded simply connected domain with boundary

∂Ω ∈ C2 and let σ be the conductivity distribution in Ω, where 0 < σ1 ≤ σ <∞ and
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σ ∈ C2(Ω) ∩ C1(Ω). Using the change of variables τ =
√
σ we have

4ψ(x) = −V (x)ψ(x), x ∈ Ω (5.4)

where

V (x) = −4τ(x)

τ(x)
(5.5)

ψ(x) = τ(x)u(x) (5.6)

In terms of the new variable, the reconstruction problem becomes that of finding V

(and consequently σ) from the knowledge of ψ and ∂ψ
∂n

on the boundary ∂Ω.

Definition 4. Suppose λ : Ω → R is bounded and H : Ω × Ω → R be a bounded

solution of the Schrödinger equation with respect to the second variable, i.e.

4yH(x, y) + λ(y)H(x, y) = 0, x, y ∈ Ω (5.7)

Let F be the set of functions f : Ω→ R which satisfy the Schrödinger equation

4yf(y) + λ(y)f(y) = 0, y ∈ Ω (5.8)

here H(x, .) ∈ L∞(Ω) and H(., y) ∈ H2(Ω).

Applying Green’s second identity, [30], to the functions ψ and H defined above we
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have,

ζ(x) =

∫
Ω

(ψ4H−H4ψ) dy

=

∫
Ω

X(y)H(x, y)dy (5.9)

=

∫
∂Ω

(
ψ(y)

∂H
∂n

(x, y)−H(x, y)
∂ψ(y)

∂n

)
dy, x ∈ Ω (5.10)

where X(y) = (V (y)− λ(y))ψ(y). Again if G0(x, y) is the free space Green’s function

of Shrödinger equation (5.7), then we also have the following integral equation of (5.4)

as

ψ(x) = ζ0(x) +

∫
Ω

X(y)G0(x, y)dy, x ∈ Ω (5.11)

where

ζ0(x) =

∫
∂Ω

(G0(x, y)
∂ψ(y)

∂n
− ψ(y)

∂G0

∂n
(x, y))dy, x ∈ Ω (5.12)

Since (5.9) is a Fredholm equation of first kind, it is severely ill-posed, hence needs

to be regularized. The reconstruction of σ in Ω using the formulation above is done

using the following four steps:

1. Solve the linear problem AX = ζ given by (5.9), where

A : L2(Ω)→ L2(Ω)

X 7→
∫

Ω

X(y)H(x, y)dy (5.13)

The reconstructed X(x) will be an approximation to (V (x)−λ(x))ψ(x), x ∈ Ω.
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2. Compute ψ(x) for x ∈ Ω using equation (5.11).

3. Compute V (x), x ∈ Ω using V (x) = X(x)
ψ(x)

+ λ(x).

4. From (5.5), compute τ(x) =
√
σ(x) for the given boundary information of τ(x)

and ∂τ
∂n

.

This procedure will transform the nonlinear ill-posed inverse problem into a linear ill-

posed problem (step-1). The reconstruction of X is done using the mollifier method

[59, 58], which is a pointwise reconstruction technique and is a generalization of the

Backus-Gilbert method [7, 6]. The mollifier method is based on a Dirac sequence

{eγ(ỹ, y)}, such that

∫
Ω

eγ(ỹ, y)X(y)dy → X(ỹ), as γ → 0 (5.14)

where the parameter γ is called the resolution or the regularization parameter at the

point ỹ. Using the mollifier method X is reconstructed as

Xγ(ỹ) =

∫
Ω

X(y)eγ(ỹ, y)dy = 〈eγ(ỹ, .), X〉L2(Ω) (5.15)

The adjoint operator A∗ of A defined in (5.13) is defined as

A∗ : L2(Ω)→ L2(Ω)

u 7→
∫

Ω

H(x, y)u(x)dx.

Clearly, A is a self adjoint operator. As a regularization technique, the mollifier
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method is used to find a function uγ(ỹ, .) at each reconstruction point ỹ, satisfying,

A∗uγ(ỹ, .) = eγ(ỹ, .) (5.16)

or to compute a minimum norm approximation to uγ(ỹ, .) by solving

min ‖A∗uγ(ỹ, .)− eγ(ỹ, .)‖L2(Ω) using AA∗uγ(ỹ, .) = Aeγ(ỹ, .) (5.17)

Then Xγ(ỹ) can be estimated as

Xγ(ỹ) = 〈eγ(ỹ, .), X〉L2(Ω)

≈ 〈A∗uγ(ỹ, .), X〉L2(Ω)

= 〈uγ(ỹ, .), AX〉L2(Ω) = 〈uγ(ỹ, .), ζ〉L2(Ω). (5.18)

The construction of uγ(ỹ, .) is obtained by solving the ill-posed operator (5.16). Let

ẽγ = A∗uγ, where uγ is the minimizer of (5.18). Thus instead of reconstructing Xγ

using (5.16), it can be reconstructed using the following

Xγ(x) =

∫
Ω

X(y)ẽγ(x, y)dy (5.19)

ẽγ can be obtained from the range of A∗, which depends on the choice of the integral

kernel H.

Lemma 14. Range(A∗) ⊂ F .
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Proof. Suppose f ∈ L2(Ω). Then we have

4yA
∗f(y) =

∫
Ω

4yH(x, y)f(x)dx

= −
∫

Ω

λ(y)H(x, y)f(x)dx, using (5.7)

= −λ(y)A∗f(y).

So if {hl(y)|l ∈ Z} is an orthonormal basis for F , the effective mollifier ẽγ at the point

ỹ can be expressed as,

ẽγ(ỹ, y) =
∑
l∈Z

〈eγ(ỹ, .), hl〉L2(Ω)hl(y) (5.20)

We can also choose H(x, y) as

H(x, y) =
∑
l∈Z

cl(x)〈eγ(ỹ, .), hl〉L2(Ω)hl(y) (5.21)

with bounded coefficients {cl(x)} satisfying

|cl(x)| ≤Ml, x ∈ Ω, where
∑
l∈Z

Ml <∞. (5.22)

With the choices of ẽγ and H we can reconstruct Xγ (i.e. X) proven in the following

theorem, [60].

Theorem 8. For a fixed ỹ ∈ Ω, let eγ(ỹ, y) ∈ L2(Ω) be the mollifier function, and

ẽγ(ỹ, y) its projection on F given by (5.20), then the approximation to the solution
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X at ỹ is given by,

Xγ(ỹ) = 〈ẽγ(ỹ, .), X〉L2(Ω) =

∫
∂Ω

(
ψ(y)

∂ẽγ(ỹ, y)

∂n
− ẽγ(ỹ, x)

∂ψ(y)

∂n

)
dy

Proof.

Xγ(ỹ) = 〈ẽγ(ỹ, .), X〉L2(Ω)

= 〈uγ(ỹ, .), ζ〉L2(Ω)

=

∫
Ω

uγ(ỹ, x)ζ(x)dx

=

∫
Ω

uγ(ỹ, x)

(∫
∂Ω

(
ψ(y)

∂H
∂n

(x, y)−H(x, y)
∂ψ(y)

∂n

)
dy

)
dx

=

∫
Ω

uγ(ỹ, x)

(∑
l∈Z

〈eγ(ỹ, .), hl〉L2(Ω)cl(x)

∫
∂Ω

(
ψ(y)

∂hl(y)

∂n
− hl(y)

∂ψ(y)

∂n

)
dy

)
dx

=
∑
l∈Z

〈eγ(ỹ, .), hl〉L2(Ω)

∫
∂Ω

(
ψ(y)

∂hl(y)

∂n
− hl(y)

∂ψ(y)

∂n

)
dy

=

∫
∂Ω

(
ψ(y)

∂ẽγ(ỹ, y)

∂n
− ẽγ(ỹ, x)

∂ψ(y)

∂n

)
dy (5.23)

The above theorem shows that that the calculation of the regularized solution Xγ at

a point ỹ ∈ Ω can be done by an integration over the boundary ∂Ω.
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5.1.1 Analytic formulation of Xγ

The fundamental solution of (5.7) is known as, [51], for any λ > 0,

G0(x, y) =

 −
1
4
Y0(
√
λ||x− y||) n = 2

1
4π

cos (
√
λ||x−y||)
||x−y|| n = 3

(5.24)

where Y0 is the Bessel’s function of the second kind.

Throughout the dissertation, we considered Ω to be a disc of radius R, i.e., Ω =

{(r cos θ, r sin θ) : 0 < r < R, 0 ≤ θ ≤ 2π}. The orthonormal solutions {hjl : l ∈

Z, j = 1, 2} of (5.7) are given by,

h1
l (r, θ) = ρlJl(

√
λlr) cos (lθ)

h2
l (r, θ) = ρlJl(

√
λlr) sin (lθ)

where ρl are the normalization constants, and λl = (αl

R
)2 with αl is the first zero of

the bessel function Jl.

Lemma 15. The normalization constants ρl are given as,

ρl =
1

R

√
2

πJl+1(
√
λl)2

(5.25)

63



Proof. In order to make the solutions orthonormal, we need

∫
Ω

hjl (y)2dy = 1

=⇒ ρ2
l

∫ R

r=0

∫ 2π

θ=0

Jl(
√
λlr) cos2 (lθ)rdrdθ = 1, for j = 1

=⇒ ρ2
l π

∫ R

r=0

Jl(
√
λlr)rdr = 1

=⇒ ρ2
l

R2

2
πJ2

l+1(
√
λl) = 1

=⇒ ρl =
1

R

√
2

πJl+1(
√
λlR)2

.

Lemma 16. If (s, ω) are the polar coordinates of ỹ, the center of the mollifier disc,

(r, θ) are the polar coordinates of any point in Ω, then

ẽγ(s, ω; r, θ) =
2√
λγ
J1(
√
λγ)

∑
l∈Z

ρ2
l Jl(
√
λls)Jl(

√
λlr) cos (l(ω − θ))

Furthermore, if the boundary data are sufficiently smooth to guarantee that ψ ∈

C(∂Ω), and both ψ and ∂ψ
∂n

are piecewise smooth on ∂Ω, then

Xγ(r, θ) =
2πRJ1(

√
λγ)√

λγ

∑
l∈Z

ρ2
l Jl(
√
λlr)

(
J
′

l (
√
λlR)

√
λl(al cos (lθ) + bl sin (lθ))

−Jl(
√
λlR)(cl cos (lθ) + dl sin (lθ))

)

where al, bl, cl, dl are the Fourier series coefficients of ψ(R, θ) and ∂ψ
∂n

(R, θ), respec-

tively.
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Proof. From the inner product in (5.20), we have

〈eγ(ỹ, ·), hl〉L2(Ω) =

∫
Ω

eγ(ỹ, y), hl(y)dy

=
1

πγ2

∫
B(ỹ,γ)

hl(y)dy

Using mean value theorem for Helmholtz equation, [24], we have,

∫
B(ỹ,γ)

hl(y)dy =

(
2πγ√
λ

)n/2
Jn/2(

√
λγ)hl(ỹ)

Hence from (5.20) and for n = 2, we have,

ẽγ(ỹ; y) =
2√
λγ
J1(
√
λγ)

∑
l∈Z

hl(ỹ)hl(y)

=
2√
λγ
J1(
√
λγ)

∑
l∈Z

ρ2
l Jl(
√
λls)Jl(

√
λlr) cos (l(ω − θ).

The analytical result for Xγ(r, θ) can be easily derived by substituting the above

result for ẽγ and the Fourier expansions of ψ(R, θ), ∂ψ
∂n

(r, θ) in the result of Theorem

8.

Knowing Xγ, the estimate of X, computation of ψ inside the unit disc is done using

the integral formulae in (5.11), (5.12), expressed as,

ψ(r, θ) = ζ0(r, θ) +

∫ 1

0

∫ 2π

0

ρG0(r, θ; ρ, v)Xγ(ρ, v)dρdv (5.26)

where

ζ0(r, θ) =

∫ 2π

0

(
G0(r, θ; 1, v)

∂ψ

∂n
(1, v)− ∂G0

∂n
(r, θ; 1, v)ψ(1, v)

)
dv (5.27)
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Now, G0 has a weak singularity when (r, θ) = (ρ, v). To avoid this singularity in

computing, a subtraction technique, [69], is used, which uses the following well-known

result,

∫ 1

0

∫ 2π

0

ρG0(r, θ; ρ, v)dρ = −
(

1

λ
+

π

2
√
λ
J0(
√
λr)Y1(

√
λ)

)
.

(5.26) is re written and further simplified as,

ψ(r, θ) = ζ0(r, θ) +

∫ 1

0

∫ 2π

0

ρG0(r, θ; ρ, v)[Xγ(ρ, v)−Xγ(r, θ)]dρdv

+Xγ(r, θ)

∫ 1

0

∫ 2π

0

ρG0(r, θ; ρ, v)dρ

= ζ0(r, θ)−Xγ(r, θ)

(
1

λ
+

π

2
√
λ
J0(
√
λr)Y1(

√
λ)

)
+

∫ 1

0

∫ 2π

0

ρG0(r, θ; ρ, v)[Xγ(ρ, v)−Xγ(r, θ)]dρdv

The integral term in the above formula can be computed using quadrature foumula

for numerical integration. We used a set of 172 quadrature points and weights for

the unit disc listed in [29]. Using these quadrature points (ρi, vi) and weights wi, the

above integral formula can be rewritten as,

ψ(r, θ) = ζ0(r, θ)−Xγ(r, θ)

(
1

λ
+

π

2
√
λ
J0(
√
λr)Y1(

√
λ)

)
+

172∑
k=1

wkG0(r, θ; ρk, vk)[Xγ(ρk, vk)−Xγ(r, θ)]

Once ψ is computed, then V (r, θ) is computed using the formula V (x) = X(x)
ψ(x)

+ (x),

described in step 3. Using V in (5.5), we compute τ as,

τ(r, θ) = τ0(r, θ) +

∫ 1

0

∫ 2π

0

ρG0(r, θ; ρ, v)V (ρ, v)τ(ρ, v)dρdv. (5.28)
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As before, the weak singularity of G0V is avoided by using the subtraction technique,

[69], and Engel’s quadrature points and weights, we rewrite τ(r, θ) as,

τ(r, θ) = τ0(r, θ)− V (r, θ)τ(r, θ)

(
1

λ
+

π

2
√
λ
J0(
√
λr)Y1(

√
λ)

)
(5.29)

+
172∑
k=1

wkG0(r, θ; ρk, vk)[V (ρk, vk)τ(ρk, vk)− V (r, θ)τ(r, θ)] (5.30)

where τ0(r, θ) can be computed numerically using the boundary data of τ(1, v) and

∂τ
∂n

(1, v),

τ0(r, θ) =

∫ 2π

0

(
G0(r, θ; 1, v)

∂τ

∂n
(1, v)− ∂G0

∂n
(r, θ; 1, v)τ(1, v)

)
dv. (5.31)

5.2 Mollifier approach for DOT

In light of the discussion in the previous section, we extend the mollifier approach for

solving the inverse DOT problem. Consider the DOT problem:

−∇.(D∇u) + (µ+ ik)u = 0 in Ω (5.32)

D
∂u

∂n
= f on ∂Ω (5.33)

u = g on ∂Ω (5.34)

where Ω ⊂ Rn, n = 2 or 3 is a bounded simply connected domain with boundary

∂Ω ∈ C2 and let D be the conductivity distribution in Ω, where 0 < D0 ≤ D < D1 <
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∞ and D ∈ C2(Ω) ∩ C1(Ω). Using the change of variables τ =
√
D we have

4ψ(x) = −V (x)ψ(x), x ∈ Ω (5.35)

where

V (x) = −4τ(x)

τ(x)
+
µ(x) + ik

τ 2(x)
= VR + iVI (5.36)

ψ(x) = τ(x)u(x) (5.37)

where, VR = Re(V ) = −4τ(x)
τ(x)

+ µ(x)
τ2(x)

and VI = Im(V ) = k
τ2(x)

. In terms of the new

variable, the reconstruction problem becomes that of finding V (and consequently D

and µ) from the knowledge of ψ and ∂ψ
∂n

on the boundary ∂Ω.

Definition 5. Suppose λ : Ω → C is bounded and H : Ω × Ω → C be a bounded

solution of the Schrödinger equation with respect to the second variable, i.e.

4yH(x, y) + λ(y)H(x, y) = 0, x, y ∈ Ω (5.38)

Let F̃ be the set of functions f̃ : Ω→ R which satisfy the Schrödinger equation

4yf̃ + λ(y)f̃ = 0, y ∈ Ω (5.39)

here H(x, .) ∈ L∞(Ω) and H(., y) ∈ H2(Ω).

Applying Green’s second identity [31] to the functions ψ and H̄, complex conjugate
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of H, defined above we have,

ζ̃(x) =

∫
Ω

(H4ψ − ψ4H)dy

=

∫
Ω

X̄(y)H(x, y)dy (5.40)

=

∫
∂Ω

(
ψ(y)

∂H
∂n

(x, y)−H(x, y)
∂ψ(y)

∂n

)
dy, x ∈ Ω (5.41)

where X̄(y) = (V (y)− λ(y))ψ(y). Again if G(x, y) is the free space Green’s function

of Shrödinger equation (5.38), then we also have the following integral equation of

(5.42) as

ψ(x) = ζ̃0(x) +

∫
Ω

X(y)G(x, y)dy, x ∈ Ω (5.42)

where

ζ̃0(x) =

∫
∂Ω

(
G(x, y)

∂ψ(y)

∂n
− ψ(y)

∂G
∂n

(x, y)

)
dy, x ∈ Ω (5.43)

The reconstruction of D and µ in Ω using the formulation above is can be done using

the following four steps:

1. Solve the linear problem ÃX = ζ̃ given by (5.40), where

Ã : L2(Ω)→ L2(Ω)

X 7→
∫

Ω

X̄(y)H(x, y)dy (5.44)

The reconstructed X̄(x) will be an approximation to (V (x)−λ(x))ψ(x), x ∈ Ω.

2. Compute ψ(x) for x ∈ Ω using equation (5.42).
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3. Compute V (x), x ∈ Ω using V (x) = X(x)
ψ(x)

+ λ(x) = VR + iVI .

4. Compute τ 2(x) = D(x) using VI = k
τ2(x)

and µ(x) using VR = −4τ(x)
τ(x)

+ µ(x)
τ2(x)

.

As described before, the reconstruction ofX(x) can be done using the mollifier method

as,

∫
Ω

X̄(y)eγ(ỹ, y)X(y)dy → X̄(ỹ), as γ → 0 (5.45)

where X̄ is the complex conjugate of X, and eγ is a standard choice of mollifier given

by

eγ(ỹ, y) =
1

|B(ỹ, y)|
.χB(y,γ)(y) (5.46)

Assuming that a reconstruction point ỹ and a desired resolution γ have been chosen,

instead of reconstructing X itself, we attempt a reconstruction of

X̄γ(ỹ) =

∫
Ω

X̄(y)eγ(ỹ, y)dy = 〈eγ(ỹ, .), X〉L2(Ω) (5.47)

The adjoint operator Ã∗ of Ã defined in (5.44) is defined as

Ã∗ : L2(Ω)→ L2(Ω)

u 7→
∫

Ω

H(x, y)ū(x)dx

where ū is the complex conjugate of u. We note that Ã is not a self-adjoint operator.

The idea of the mollifier method can similarly be extended in DOT as a regularization
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technique to find, at each reconstruction point ỹ, a function uγ(ỹ, .) satisfying

Ã∗uγ(ỹ, .) = eγ(ỹ, .) (5.48)

or to compute a minimum norm approximation to uγ(ỹ, .) by solving

min ‖Ã∗uγ(ỹ, .)− eγ(ỹ, .)‖L2(Ω) using ÃÃ∗uγ(ỹ, .) = Ãeγ(ỹ, .) (5.49)

Then Xγ(ỹ) can then be estimated as

X̄γ(ỹ) = 〈eγ(ỹ, .), X〉L2(Ω)

≈ 〈Ã∗uγ(ỹ, .), X〉L2(Ω)

= 〈uγ(ỹ, .), ÃX〉L2(Ω) = 〈uγ(ỹ, .), ζ̃〉L2(Ω). (5.50)

The construction of uγ(ỹ, .) requires us to solve the ill-posed operator (5.48). Let

ẽγ = Ã∗uγ, where uγ is the minimizer of (5.49). Thus instead of reconstructing Xγ

using (5.48), it can be reconstructed using the following

X̄γ(x) =

∫
Ω

X̄(y)ẽγ(x, y)dy (5.51)

Using the following lemma ẽγ can be obtained from the range of Ã∗.

Lemma 17. Range(Ã∗) ⊂ F̃ .

Proof. The proof is same as the lemma 14.

Based on the above lemma, our next goal is to obtain an orthonormal basis of F̃ .

71



The theoretical establishment of the mollifier method for DOT is based on identifying

an orthonormal basis of the solution space of the Schrödinger equation (5.38), with

complex potential. In [66], the authors constructed a self-adjoint dilation of the

operator representing (5.38). In [62], the author provided an integral expression for

the green’s function of the class of Schrödinger function with complex potential as,

G(x, y) = G0(x, y)−
∫

Ω

G0(x, y)λ(y)G(x, y)dy

where G0(x, y) is the green’s function defined in the previous section. So we can

assume that, there exists an orthonormal basis {h̃l(y)|l ∈ Z} for F̃ .

Expressing the effective mollifier ẽγ at the point ỹ is given by

ẽγ(ỹ, y) =
∑
l∈Z

〈eγ(ỹ, .), h̃l〉L2(Ω)h̃l(y) (5.52)

We can also choose H(x, y) as

H(x, y) =
∑
l∈Z

cl(x)〈eγ(ỹ, .), h̃l〉L2(Ω)h̃l(y) (5.53)

with bounded coefficients {cl(x)} satisfying

|cl(x)| ≤Ml, x ∈ Ω, where
∑
l∈Z

Ml <∞. (5.54)

With the choices of ẽγ and H we can reconstruct Xγ (i.e. X) using the following

theorem.

Theorem 9. For a fixed ỹ ∈ Ω, let eγ(ỹ, y) ∈ L2(Ω) be the mollifier function, and

ẽγ(ỹ, y) its projection on F̃ given by (5.52), then the approximation to the solution
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X at ỹ is given by,

Xγ(ỹ) = 〈ẽγ(ỹ, .), X〉L2(Ω) =

∫
∂Ω

(
ψ(y)

∂ẽγ(ỹ, y)

∂n
− ẽγ(ỹ, x)

∂ψ(y)

∂n

)
dy

Proof.

X̄γ(ỹ) = 〈ẽγ(ỹ, .), X〉L2(Ω)

= 〈uγ(ỹ, .), ζ̃〉L2(Ω)

=

∫
Ω

uγ(ỹ, x)ζ̄(x)dx

=

∫
Ω

uγ(ỹ, x)

(∫
∂Ω

(
ψ(y)

∂H
∂n

(x, y)−H(x, y)
∂ψ(y)

∂n

)
dy

)
dx

=

∫
Ω

uγ(ỹ, x)

(∑
l∈Z

〈eγ(ỹ, .), hl〉L2(Ω)cl(x)

∫
∂Ω

(
ψ(y)

∂hl(y)

∂n
− hl(y)

∂ψ(y)

∂n

)
dy

)
dx

=
∑
l∈Z

〈eγ(ỹ, .), hl〉L2(Ω)

∫
∂Ω

(
ψ(y)

∂hl(y)

∂n
− hl(y)

∂ψ(y)

∂n

)
dy

=

∫
∂Ω

(
ψ(y)

∂ẽγ(ỹ, y)

∂n
− ẽγ(ỹ, x)

∂ψ(y)

∂n

)
dy. (5.55)

Since the numerical computation of the orthonormal basis is hard, so in this extension

we are using {hl|l ∈ Z} as described in the subsecion 5.1.1, as an approximation to

h̃l.
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Chapter 6

Iterative Method for EIT and DOT

In this chapter, we briefly discuss the iterative approaches we used in this dissertation

for the inverse problems. We discuss the implementation of the classic iteratively

regularized Gauss-Newton (IRGN) method for solving the inverse problems in EIT

and DOT. The corresponding forward problems are solved using the finite element

(FEM) Galerkin method. For iterative algorithm, we reformulate the inverse problems

for CEM and DOT and discuss the implementation of IRGN for the reconstruction

of the parameters.
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6.1 IRGN method for EIT

We recover σ by minimizing the following cost functional iteratively from a finite set

of measurements, as EIT is severly ill-posed.

J(σ) = ||F (σ)− gδ||22

where gδ approximates the exact data g with the accuracy δ, i.e.,

||g − gδ|| < δ. (6.1)

However, regularization is needed to improve the ill-posed problem and instead, we

minimize,

Jλ(σ) = ||F (σ)− gδ||22 + λR(σ − σ∗)

where λ is the regularization parameter, R(·) is the regularization term and σ∗ is

the known background. There are several choices for R(·). The `p regularization

R`p(σ − σ∗) is defined as

R`p(σ − σ∗) = ||σ − σ∗||p.

where 0 < p ≤ 2 is a constant, [49]. The `p regularization enforces sparsity for

0 < p ≤ 1 and smoothness when p ≥ 2. Total variation regularization is used for

most practical applications to obtain smooth images. Total variation is defined as
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[77, 43, 1],

RTV (σ) = sup{
∫

Ω

σ div zdx|z ∈ C∞0 (Ω), ||z||∞ ≤ 1} = |Dσ|(Ω),

where | · |(Ω) is a finite Radon measure. In particular, for σ ∈ W 1,1(Ω), it reduces to

the standard notation for TV regularization,

RTV (σ) =

∫
Ω

|∇σ|dx.

The regularization function is represented by a norm for most analytical methods.

In this dissertation, we used one of the most successful methods for solving the ill-

conditioned problem, R`2 known as Tikhonov regularization. The cost functional

from Tikhonov regularization is

Jλ(σ) =
1

2
||F (σ)− uδ||22 +

λ

2
||W (σ − σ∗)||22, (6.2)

where W is weight function and upon discretization becomes a weight matrix. There

are several iterative approaches to minimize (6.2). In this dissertation, we used a

modified iteratively regularized Gauss-Newton (IRGN) method for the minimization,

which is described in this section.

Suppose λk is some sequence of regularizing parameters satisfying the conditions

λk ≥ λk+1 > 0, sup
k∈N∪{0}

λk
λk+1

= d̂ <∞, lim
k→∞

λk = 0. (6.3)

Let the unique global minimum of (6.2) be denoted by σ̃. Assume σ̃ satisfies the

invertibility conditions, then the unique global minimum of (6.2) is explicitly given
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by

σ̃ = σk − (F ′(σk)
TF ′(σk) + λkW2)−1{F ′(σk)T (F (σk)− gδ) + λkW2(σk − σ∗)}, (6.4)

where σk is the k-th approximation to σ and F ′(σk) is the jacobian matrix at the k-th

iteration, and W2 = W TW . The above algorithm is generalized further using a line

search procedure from [74, 1]. A variable step size, sk, is introduced, such that

0 < sk ≤ 1. (6.5)

The modified IRGN algorithm is then

σk+1 = σk−sk(F ′(σk)TF ′(σk)+λkW2)−1{F ′(σk)T (F (σk)−gδ)+λkW2(σk−σ∗)}. (6.6)

The line search parameter sk is chosen to minimize the scalar objective function

Φ(s) = J(σk + spk) (6.7)

where pk is the search direction, which solves

(F ′(σk)
TF ′(σk) + λkW2)pk = −

[
F ′(σk)

T (F (σk)− gδ) + λkW2(σk − σ∗)
]

(6.8)

This step is accomplished through a backtracking strategy until either one of the

strong Wolfe conditions,

J(σk + spk) ≤ J(σk) + c1s∇J(σk)
Tpk (6.9)

|∇J(σk + spk)
Tpk| ≤ |c2∇J(σk)

Tpk|. (6.10)
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is satisfied [84], or the maximum number of backtracking steps has been reached. We

use the theoretically derived values of c1 = 0.0001 and c2 = 0.9, derived in [84]. Due

to the inexact nature of uδ, we adopt a stopping rule from [8, 1] to terminate the

iterations at the first index K = K(δ), such that

||F (σK)− gδ||2 ≤ ρδ < ||F (σk)− gδ||2, 0 ≤ k ≤ K, ρ > 1. (6.11)

6.2 IRGN for DOT

In DOT, we want to solve the inverse problem and reconstruct both the diffusion

coefficient D and the absorption coefficient µa. Therefore, we need to make some

modifications to implement IRGN for solving the inverse problem in DOT. In this

section, we discuss the modifications we implemented.

As in EIT, we obtain the simulated data by solving the DOT forward problem using

the Galerkin FEM for known D and µa. The goal of the inverse problem is then to

obtain the distribution for D and µa which minimizes the following cost functional

using Tikhonov regularization,

Jγ(λ, q) =
1

2
||γ0F

(k,q)
N (0, f)− gδ||22 +

λ

2
||∇(q − qb)||22 (6.12)

where q = (D,µa)
T , qb = (Db, µb) is the known background, γ0F

(k,q)
N (0, f) is the

Neumann-to-Dirichlet data, gδ is the noisy data with a noise level of δ, satisfying

||γ0F
(k,q)
N (0, f) − gδ|| ≤ δ, and λ = (λD, λµa)T are the regularization parameters. As

we want to estimate D and µa, the discrete sensitivity relation, which is the jacobian
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matrix of Jγ(λ, q), is computed as

∇J = [JDk
, Jµk ]

where JD and Jµa are the jacobian matrices with respect to D and µa, respectively at

the k-th iteration. Thus the search direction pk = (pDk
, pµk)T for the IRGN algorithm

is obtained by solving the following block system,


JTDJD JTDJµa

JTµaJD JTµaJµa

+ λkW


pDk

pµk

 = −
(
JTD, J

T
µk

) (
γ0F

(k,q)
N (0, f)− gδ

)
− λkW (q − q∗)

(6.13)

where

W =

LTDLD 0

0 LTµL
T
µ

 .

6.3 Convergency of IRGN method

Assume that F is a nonlinear operator acts on the Hilbert spaces (H,H1), F : D(F ) ⊂

H → H1, and F is Fréchet differentiable in D(F ). We consider minimizing the

functional

J(q) = ||F (q)− gδ||2H1
(6.14)

where gδ approximates the exact data g with the accuracy δ, i.e.,

||g − gδ|| ≤ δ (6.15)
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Our interest is to find an element q̂ ∈ D(F ), s.t.

||F (q̂)− g||H1 = inf
q∈D(F )

||F (q)− g||H1 = 0 (6.16)

Consider the following conditions hold

||F ′(q1)|| ≤M1, for any q1 ∈ Bη(q̂) (6.17)

||F ′(q1)− F ′(q2)|| ≤M2||q1 − q2||, for any q1, q2 ∈ Bη(q̂) (6.18)

where Bη(q̂) = {q ∈ H : ||q − q̂|| ≤ η} ⊂ D(F ). The convergence analysis of IRGN is

done under the source condition

L∗L(q̂ − q) = F ′∗(q̂)S, S = {v ∈ H : ||v|| ≤ ε} (6.19)

and by the following theorem, [74].

Theorem 10. Assume that

(1) F satisfies (6.17) and (6.18) with η = l
√
τ0, conditions (6.15) and (6.16) holds.

(2) The regularization sequence {τk} and the step size sequence {αk} are chosen ac-

cording to (6.3) and (6.5), respectively.

(3) Source condition (6.19) is satisfied.

(4) The linear operator L∗L is surjective and there is a constant m > 0 such that

〈L∗Lh, h〉 ≥ m||h||2, for any h ∈ H (6.20)
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(5) Constants defining F and the iteration are constrained by

M2ε

m
+
d− 1

dα
+

√
ε

m

(
M2

2
+

M2
1

(
√
ρ− 1)2

)
≤ 1 (6.21)

||q0 − q̂||√
τ0

≤ ε
√
m
(
1− M2ε

m
− d−1

dα

) = l (6.22)

Then (1) For iterations (6.6)

||qk − q̂||√
τk

≤ l, k = 0, 1, ...,K(δ) (6.23)

(2) The sequence {K(δ)} is admissible, i.e.

lim
δ→0
||qK(δ) − z|| = 0, (6.24)

z is arg infq∈D(F ) ||F (q)− g||H1.

Proof. Since L∗L is surjective and there exists a constant m > 0, s.t.

〈L∗Lh, h〉 ≥ m||h||2, for any h ∈ H (6.25)

Since,

〈F ′ ∗ (q)F ′(q)h, h〉 = 〈F ′h, F ′h〉 = ||F ′h||2 ≥ 0

We have,

〈[F ′∗(q)F ′(q)h+ τL∗L]h, h〉 ≥ τm||h||2
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for arbitrary τ > 0, q ∈ D(F ), h ∈ D(F ). Furthermore, [F ′∗(q)F ′(q)h + τL∗L]−1

exists, and setting h = [F ′∗(q)F ′(q)h+ τL∗L]−1w, we get

τm||h||2 ≤ 〈[F ′∗(q)F ′(q)h+ τL∗L]h, h〉

≤ ||h||||[F ′∗(q)F ′(q)h+ τL∗L]h||

=⇒ τm||h|| ≤ ||w||

=⇒ τm||[F ′∗(q)F ′(q)h+ τL∗L]−1w|| ≤ ||w||

=⇒ ||[F ′∗(q)F ′(q)h+ τL∗L]−1|| ≤ 1

τm

and thus iterations (6.6) are well-defined. Let σj =
qj−q̂√
τj
≤ l, for any j, 0 < j ≤ k <

K(δ). Now for 0 < j ≤ k ≤ K(δ), we have

F (qk) = F (q̂) + F ′(q̂)(qk − q̂)−B(qk, q̂)(qk − q̂)2

= g + F ′(qk)(qk − q̂)−B(qk, q̂)(qk − q̂)2, using (3)

F (qk)− gδ = F ′(qk)(qk − q̂)−B(qk, q̂)(qk − q̂)2 + g − gδ (6.26)

with B(qk, q̂) ≤ M2

2
. From (6.6), we have

qk+1 = qk−

αk[F
′∗(qk)F

′(qk) + τkL
∗L]−1{F ′∗(qk)(F (qk)− gδ) + τkL

∗L(qk − q̂)}

=⇒ qk+1 − q̂ = qk − q̂−

αk[F
′∗(qk)F

′(qk) + τkL
∗L]−1{F ′∗(qk)(F (qk)− gδ) + τkL

∗L(qk − q̂)}
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=⇒ qk+1 − q̂ = qk − q̂−

αkA
−1{F ′∗(qk)(F ′(qk)(qk − q̂)−B(qk, q̂)(qk − q̂)2 + g − gδ)

+ τkL
∗L(qk − q̂)}, using (6.26)

= qk − q̂−

αkA
−1A(qk − q̂)−

αkA
−1F ′∗(qk){−B(qk, q̂)(qk − q̂)2 + g − gδ}

= (1− αk)(qk − q̂)

− αkA−1F ′∗(qk){−B(qk, q̂)(qk − q̂)2 + g − gδ + τkv}

− αkτkA−1{F ′∗(qk)− F ′(q̂)}v

we set A = [F ′∗(qk)F
′(qk) + τkL

∗L] for convenience. For any bounded linear operator

in a Hilbert space a polar decomposition holds. Hence

F ′(qk) = U |F ′(qk)|

where |F ′(qk)| = (F ′∗(qk)F
′(qk))

1/2 and U is a partial isometry. Denoting

Ak = F ′∗(qk)F
′(qk), B = L∗L Ck = A

1/2
k B−1/2
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we have

||[F ′∗(qk)F ′(qk) + τkL
∗L]−1F ′∗(qk)|| = ||(Ak + τkB)−1A

1/2
k U∗||

≤ ||(Ak + τkB)−1A
1/2
k ||

= ||[B1/2(B−1/2AkB
−1/2 + τkI)B1/2]−1A1/2||

= ||B−1/2(C∗kCk + τkI)−1C∗k ||

≤ ||B−1/2|| ||(C∗kCk + τkI)−1C∗k ||

≤ 1√
m

max
t≥0

√
t

t+
√
τk
≤ 1

2
√
τkm

Then,

||qk+1 − q̂|| ≤ (1− αk)||qk − q̂||+
αk

2
√
τkm

(
M2

2
||qk − q̂||2 + δ + τk||v||

)
(6.27)

+
αkM2

m
||qk − q̂||||v||

≤
(

1− αk +
αkM2

m
ε

)
||qk − q̂||+

αk
2
√
τkm

(
M2

2
||qk − q̂||2 + δ + τkε

)

For k < K(δ), we have,

ρδ ≤ ||F (qk)− g||2

=⇒
√
ρδ ≤ ||F (qk)− g||+ ||g − gδ|| ≤M1||qk − q̂||+ δ

=⇒
√
ρδ − δ ≤M1||qk − q̂||

=⇒ δ ≤ M2
1

(
√
ρ− 1)2

||qk − q̂||2, assuming δ < 1
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So,

||qk+1 − q̂|| ≤
(

1− αk +
αkM2

m
ε

)
dl +

αk
2
√
m

(
M2

2
+

M2
1

(
√
ρ− 1)2

)
l2d+

αkdε

2
√
m

From (6.21) we have,

(
M2

2
+

M2
1

(
√
ρ− 1)2

)
≤ m

ε

(
1− M2ε

m
− d− 1

dα

)2

=
ε

l2
, using (6.22)

Using the above inequality, we can write,

||qk+1 − q̂|| ≤
(

1− αk +
αkM2

m
ε

)
dl +

αkdε√
m

=

(
1− αk(d− 1)

dα

)
dl, using (6.22)

≤ l

6.4 Statistical inverse problem

In this dissertation, we have combined the deterministic approach, such as IRGN,

described in the previous section, with statistical inversion method. We used the

Markov Chain Monte Carlo (MCMC) method and and Pilot Adaptive Metropolis

algorithm. For details of these methods, see [78, 1]. For convenience, we present a

summarization of the method for EIT and DOT in this section.
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Since the forward problems for EIT and DOT are well-posed, we can obtain the

probability from a observation vector ĝ given the values from the measurement noise

ε and the conductivity distribution ρ using the dirac delta functions as

P (ĝ|ρ, ε) = δ(ĝ −Θ(ρ, ε)).

Assuming the independance of ρ and ε and the noise to be additive, i.e. ĝ = Θ(ρ)+ε,

we get,

P (ρ, ĝ) = Pprior(ρ)Pnoise(ĝ −Θ(ρ)).

Thus the solution of the statistical inverse problem is,

P (ρ|ĝ) =
Pprior(ρ)Pnoise(ĝ −Θ(ρ))

c
.

where c = P (ĝ).

Typically we suppose identical independent Gaussian measurement noise, Pprior(ρ) as

regularizing prior density as,

Pprior(ρ) ∝


exp(−αR(ρ) if ρj > 0 for all j ∈ {1, 2, ...,m}

0 otherwise

,

where α > 0 and R(ρ) is a regularizing function chosen as

R(ρ) = β1

m∑
i=1

δi|ρi − ρ∗i |s + β2

z∑
j=1

dj| 4j ρ|,

where β1, β2 > 0 and 0 < s ≤ 2, ρ∗ is a prior estimate of ρ.
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Once the posterior distribution P (ρ|ĝ) is obtained, then we use MCMC method to

approx the Bayesian estimate.

6.4.1 Regularizing functions

In this dissertation, we use a combination of `1-type and TV priors for the statistical

setting of the inverse problem. The `p regularization R`p(y) is defined as

R`p(y) :=
n∑
i=1

ci|yi − ybi |p,

where ci represent weights, 0 < p ≤ 2 is a constant and yb the typical background

from y. Note that R`p(y) is a norm if p ≥ 1 and would only define a metric in case 0 <

p < 1. For analytical methods it is usually necessary that the regularization function

represents a norm, while for statistical reconstruction the case when 0 < p < 1 can

potentially also be handled.

The total variation regularization is defined as

RTVc(yc) :=

∫
Ω

|∇yc|dx,

where yc the continuous version of the parameter of interest y. The discrete analogue

for a two-dimensional body of the total variation regularization RTVc [49, 14] is

RTV (y) :=
h∑
i=1

li|4iy|,
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where li is defined as the length of the edge corresponding to the ith adjacent pixel

and

4i = (0, 0, ..., 0, 1a(1,i)
, 0, ..., 0,−1a(2,i)

, 0, ..., 0),

with a = (a(j,i))
h
i=1, j∈{1,2} is the set containing the numbers of all adjacent pixel tuples

(a(1,i), a(2,i)).

6.4.2 The Markov Chain Monte Carlo method

An estimator for the true parameter q∗ given the measurements g∗ is found, i.e. the

Bayesian estimator

E(q∗|g) =

∫
Rn

qπq∗(q|g)dq.

The Markov Chain Monte Carlo Method (MCMC) is then used to generate a large

random sample {q(i)}Ni=B+1 from the posterior density πq∗(q|g) in order to approximate

the Bayesian estimate by its sample mean,

E(q∗|g) =

∫
Rn

qπq∗(q|g)dq ≈ 1

N −B

N∑
i=B+1

q(i), (6.28)

where N is the total number of samples and B is the burn in time. A pilot adaptive

metropolis algorithm, [78], is used for generating this sample.

6.4.3 A pilot adaptive metropolis algorithm

The idea of this algorithm is to update the proposal distribution by changing its

covariance matrix in such a way that the acceptance ratio of the chain after the last

88



adaption is close by the optimal acceptance ratio ao of the chain.

Suppose we wish to perform M adaptions, one every m iterations, where 1 < mM <

B < N . The algorithm modifies the covariance matrix in the pilot time mM in

such a way that it comes closer to one which has an optimal acceptance ratio. Then

the standard Metropolis-Hastings algorithm begins with the latest state and proposal

distribution of the pilot time.
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Chapter 7

Computational Approach and

Simulation

In this chapter, we discuss the computational approaches used for reconstructing the

parameters in EIT and DOT. We also present all the numerical results and simula-

tions. There are different methods to solve the forward problem. In this dissertation,

we used the finite element method (FEM), as FEM can deal with more complex

2D or 3D geometries. Moreover, for elliptic problems, FEM is more suited to take

boundary conditions into account because natural boundary conditions are included

in the weak form of the equations. We represent the finite element descritization of

the forward problems for CEM and DOT. Then we present the reconstructions of

the EIT, CEM and DOT problems, using the proposed hybrid methods combining

the deterministic, statistical and analytic methods, obtained by simulation for both

synthetic and experimental data.
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7.1 FEM formulation for CEM

FEM is the most traditional method for solving pde problems involving elliptic equa-

tions. To use FEM for the numerical solution to the forward problem, we need to

find the variational form (weak form) of the equation. In chapter 2, we obtained the

variational form for CEM as, for any (v, V ) ∈ H1(Ω)× R̃L,

b((u, U), (v, V )) =
L∑
l=1

IlVl (7.1)

where b((u, U), (v, V )) =
∫

Ω
σ∇u · ∇vdx+

∑L
l=1

1
zl

∫
el

(u− Ul)(v − Vl)dS.

In FEM, the next step is to find a finite dimensional approximation to the solution of

the above variational problem. Let T = {T1, ..., T|T |} be the triangulation of Ω, which

has N mesh points for the finite dimensional subspace HN of H1(Ω). Any uN ∈ HN

is represented by

u(x) ≈ uN(x) =
N∑
i=1

αiφi(x), for αi ∈ R,

where φi(x) are the basis functions of Hh satisfying φi(xk) = δik for i, k = 1, . . . , N .

Electric potential on the electrodes is given by

UL =
L−1∑
k=1

βkνk = Gβ,

where νk, k = 1, . . . , L−1 compose the basis for R̃L are chosen as ν1 = (1,−1, 0, ..., 0)T ,

ν2 = (1, 0,−1, 0, ..., 0)T ∈ RL etc., and G ∈ RL×(L−1). We must determine the

coefficients αi and βk in this formulation. Choosing v = φi and V = νk when the

set of test functions is of the form (φ1, 0), ..., (φN , 0), (ν1, 0), ..., (νL−1, 0) results in the
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following system of equations in matrix form:

Âθ = f, (7.2)

where θ = (α, β)T ∈ RN+L−1, the matrix Â is of the form,

Â =

 B̂ Z

ZT D


where,

B̂(i, k) = b((φi, 0), (φk, 0)) =

∫
Ω

σ∇φi.∇φkdx+
L∑
l=1

1

zl

∫
El

φiφkds (7.3)

for i, k = 1, . . . , N

D(i, k) = b((0, νi), (0, νk)) =
L∑
l=1

1

zl

∫
El

(νi)l(νk)lds, (7.4)

for i, k = 1, ..., L− 1 and

Z(i, k) = b((φi, 0), (0, νk)) =
L∑
l=1

1

zl

∫
El

φi(νk)lds (7.5)

for i = 1, . . . , N, and k = 1, ..., L− 1

and

f(i) =


0 for i = 1, . . . , N

ITνi−N for i = N + 1, . . . , N + L− 1

. (7.6)
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If there are P > 1 current pattern, we can write α, β and I in matrix form as,

α =



α1
1 α2

1 . . . αP1

α1
2 α2

2 . . . αP2
...

... . . .
...

α1
N α2

N . . . αPN


, β =



β1
1 β2

1 . . . βP1

β1
2 β2

2 . . . βP2
...

... . . .
...

β1
L−1 β2

L−1 . . . βPL−1


, I = a



1 0 . . . −1

−1 1 . . . 0

0 −1 . . . 0

...
... . . .

...

0 0 . . . 1


L×M

where a is the amplitude of the injected currents.

7.2 Numerical results for CEM, [1]

We generate synthetic data for our simulations with a known conductivity distribu-

tion σ. We proceed to solve the forward problem using σ using FEM. For each of the

examples in this section, [1], we had two different discrete conductivity distributions

inside a circular domain Ω. We used |T | = 4128 triangles and N = 2129 linear basis

functions for u and σ on Ω. There are L = 16 equally spaced electrodes placed along

the boundary with each electrode covering a surface area of 5mm. Next, we added

random Gaussian noise with a standard deviation that is 1% and 3% of the maximum

measurement, respectively. In order to avoid the inverse crime, we reconstructed σ

on Ω with a smaller mesh size consisting of 1032 triangles with 549 mesh points.

Our simulations specifications are listed in the following table, which includes the

known σ with a residual δ in (6.11) and a stopping rule for choosing ρ in (6.1).

The sequence of step lengths sk is chosen through a backtracking strategy, s1, s1/2, ...

until either the strong Wolf condition from (6.9) or (6.10) is satisfied. The maximum
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number of backtracking steps was set to 16. We also imposed sk > ( d̂−1

d̂
)10−3 to

prevent singularity in the numerical computation.

Note that, no backtracking is possible if the sequence of regularization parameter λk

decreases too quickly. We define λk = λ1c
c+k−1

with λ1 = 1, c = 4, to provide us with

d̂ = 1.25.

Example 1. Single inclusion

The true conductivity consists of a homogeneous background and one circular inclu-

sion of radius 0.01mm centered at (0.0242mm, 0.015mm). The conductivities of the

background and the inclusions are 7 · 10−4Ohm and 10−8Ohm, respectively, as shown

in Figure 7.1.

Figure 7.1: True conductivity distribution with single inclusion

The reconstructions with 1% and 3% noise levels are shown in Figures 7.2(a) and

7.2(c) for the IRGN method and Figures 2(b) and 2(d) for the statistical inversion

method.

Inversion results from the IRGN method are smooth from Tikhonov regularization.

The inclusion location is effectively captured, but its support is slightly larger than

the true inclusion. In particular, its significantly extended towards the center of Ω
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(a) (b)

(c) (d)

Figure 7.2: Reconstructions for Example 1: by IRGN method (a) with 1% noise, (c)
with 3% noise; and by statistical inversion method (b) with 1% noise, (d) with 3%
noise

when the noise level is higher at 3%. The magnitude of the inclusion conductivity

is overestimated by 10−4Ohm compared to the true value of 10−8Ohm. In contrast,

the reconstruction by the statistical inversion method is more localized at the true

location with a reasonably homogeneous background. However, with a higher noise

level, the background conductivity starts to get distorted. We computed the `1 and

`2 reconstruction errors as e1 = ||σk−σT ||1
||σT ||1

and e2 = ||σk−σT ||2
||σT ||2

, where σT is the true

conductivity distribution.

Example 2. Double inclusion

The true conductivity consists of a homogeneous background and double circular
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1% Noise 3% Noise
IRGN Statistical Inversion IRGN Statistical Inversion

e1 0.0677 0.0636 0.1196 0.0911
e2 0.1187 0.1005 0.1598 0.1279

Table 7.1: Error comparison between IRGN and statistical inversion method for Ex-
ample 1.

inclusions of radius 0.01mm centered at (±0.036mm, 0mm). The conductivities of

the background and the inclusions are 7 · 10−4Ohm and 10−8Ohm, respectively, as

shown in Figure 7.3.

Figure 7.3: True conductivity distribution with double inclusions

1% Noise 3% Noise
IRGN Statistical Inversion IRGN Statistical Inversion

e1 0.1194 0.0946 0.1225 0.1063
e2 0.1725 0.1347 0.1775 0.1520

Table 7.2: Error comparison between IRGN and statistical inversion method for Ex-
ample 2.

The reconstructions with 1% and 3% noise levels are shown in Figures 7.4(a) and

7.4(c) for the IRGN method and Figures 7.4(b) and 7.4(d) for the statistical inversion

method. We observe that both methods are able to retrieve the inclusions. In IRGN

method, the supports of the inclusions are extended towards the center of Ω, and the
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(a) (b)

(c) (d)

Figure 7.4: Reconstructions for Example 2: by IRGN method (a) with 1% noise, (c)
with 3% noise; and by statistical inversion method (b) with 1% noise, (d) with 3%
noise

magnitude of the background conductivity is slightly overestimated. However, the

statistical approach provides a more localized solution with a sharper background.

We list the reconstruction errors for σ in Table 3, which shows that the errors e1 and

e2 are smaller for the statistical inversion method.

Example 3. Quadruple inclusion

The true conductivity consists of a homogeneous background and double circular in-

clusions of radius 0.01mm centered at (±0.036mm, 0mm) and (0mm, ± 0.036mm).

The conductivities of the background and the inclusions are 7·10−4Ohm and 10−8Ohm,
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respectively, as shown in Figure 7.5. Multiple inclusions are challenging for most

Figure 7.5: True conductivity distribution with four inclusions

(a) (b)

(c) (d)

Figure 7.6: Reconstructions for Example 3: by IRGN method (a) with 1% noise, (c)
with 3% noise; and by statistical inversion method (b) with 1% noise, (d) with 3%
noise

numerical algorithms. However, both the approaches we used in this paper produce
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reasonable reconstructions of σ for different noise levels. As expected, with higher

noise level and more inclusions, their support becomes larger in IRGN method, even-

tually making them barely observable. On the other hand, the statistical inversion

does produce significantly sharper images with more localized inclusions even for a

higher noise level.

1% Noise 3% Noise
IRGN Statistical Inversion IRGN Statistical Inversion

e1 0.2201 0.2016 0.2274 0.2028
e2 0.2563 0.2370 0.2609 0.2387

Table 7.3: Error comparison between IRGN and statistical inversion method for Ex-
ample 3.

Example δ1% δ3% ρ
1 0.0328 0.0812 2
2 0.0590 0.1265 2
3 0.0616 0.1643 2

Table 7.4: Choice of δ and ρ for different examples

7.3 FEM formulation for DOT

In chapter 3, we obtained the variational form for DOT as, for any u, v ∈ H1(Ω),

B(u, v) =
1

2

∫
∂Ω

gv̄ds (7.7)

where B(u, v) =
∫

Ω
D∇u · ∇vdx+

∫
Ω
µauv̄dx+ 1

2

∫
∂Ω
uv̄ds.

In FEM, the next step is to find a finite dimensional approximation to the solution of

the above variational problem. Let T = {T1, ..., T|T |} be the triangulation of Ω, which
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has N mesh points for the finite dimensional subspace HN of H1(Ω). Any uN ∈ HN

is represented by

u(x) ≈ uN(x) =
N∑
i=1

αiφi(x), for αi ∈ R,

where φi(x) are the basis functions of Hh satisfying φi(xk) = δik for i, k = 1, . . . , N .

Substituting u(x) by the above form and choosing v = φi for i = 1, ..., N in (7.7)

results in the following system of equations in matrix form:

Sθ = f, (7.8)

where θ = (α1, ..., αN)T ∈ RN ,

Si,j =

∫
Ω

D∇φi · ∇φjdx+

∫
Ω

µaφiφ̄jdx+
1

2

∫
∂Ω

φiφ̄jds, for i, j = 1, . . . , N

f(i) =
1

2

∫
∂Ω

gφ̄i, for i = 1, ..., N.

Solving (7.8) for θ, we get the solution of the forward DOT problem.

7.4 Numerical results for DOT

In this section, reconstructions using a pilot adaptive Metropolis algorithm [78, 1]

are presented. The photon density measurements were simulated on a mesh of 2097

triangles (Figure 7.7.A), then 1% Gaussian measurement noise has been added to the

measurements. The reconstructions where made, based on the noisy measurement

on a mesh of 541 triangles (Figure 7.7.B). The mesh for the simulations and the
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A B

Figure 7.7: A: Mesh containing 2097 triangles used for simulating measurements. B:
Mesh containing 541 triangles used for the parameter reconstruction.

reconstructions were chosen to be different in order to avoid committing an inverse

crime. We assume that the parameters of interest are known and constant on the

boundary, hence the number of parameters to be estimated for D and µ where with

477 parameters somewhat smaller then the number of triangles. Note that in order

to reduce the computational time the starting guess x(0) ∈ E has been selected to

be the reconstruction after a few iterations of IRGN method. In all reconstructions

we choose to perform M = 600 adaptions, one every m = 50 iterations, e.i. the

pilot time was chosen to be mM = 30.000. Further, the burn in time was chosen

to be B = 100.000 and the total number of samples was N = 150.000. We run this

method until convergence at approximately 150 iterations and compared with the

result obtained from IRGN method.

In figures 7.8-7.11, image A and B represent the true parameters µ and D in mesh

7.7.A, images C-D and E-F are the corresponding reconstructions using the TV recon-

struction and a mixture of the TV and the `1 regularization (general regularization),

respectively, from photon density measurements with 1% additive relative Gaussian

noise. It can be seen that both, the reconstructions with the TV, and the mixed TV
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and `1, regularizations obtain relatively good reconstructions from the true parame-

ters. However, in the presence of multiple inclusions (Figure 7.9) or more complex

inclusions (Figure 7.10 and 7.11) the mixed regularization seems to outperform the

TV regularization. Note that in figures G-H, which represent reconstructions with

the IRGN method.

Clearly, the reconstructions are strongly dependent on the choice of the regularization

parameters. There is a vast literature for choosing optimal regularization parameters

for linear problems. However, there are, to our knowledge, no good methods for

nonlinear problems like DOT. Hence, we chose the parameters add hock. That is

we used a computer cluster to run the algorithm with large set of regularization

parameters choices, then we evaluated the reconstructions and picked the visually

best parameters for the TV and the mixed regularizations. Note that once this

parameter was found it was kept fixed for all reconstructions in figures 7.8-7.11.

Example Example 1 Example 2 Example 3 Example 4
ξ 0.0018 0.0016 0.0016 0.0019

Residual, EN 0.0124 0.0101 0.01335 0.01302
Residual, ES 0.0129 0.0153 0.0139 0.0139

Table 7.5: Numerical results for noiselevel ξ and residual error, E = ||F (q)− gδ||22 (i)
EN using IRGN and (ii) ES using Statistical inversion for 1% noise

Relative
Noise
Level

l1 error
(TV)

l1 error
(GR)

l1 error
(IRGN)

l2 error
(TV)

l2 error
(GR)

l2 error
(IRGN)

1% 0.1447 0.1337 0.1234 0.3245 0.3398 0.3230
5% 0.1439 0.1347 0.1206 0.3192 0.3423 0.3212
10% 0.1462 0.1355 0.1258 0.3272 0.3390 0.3257
15% 0.1442 0.1328 0.1315 0.3232 0.3368 0.3287
20% 0.1404 0.1358 0.1144 0.3129 0.3441 0.3268

Table 7.6: Relative Numerical Errors of µ

In Table 7.6 and 7.7 the relative error of reconstructions of µ and D with different
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G H

Figure 7.8: A & B: The true parameters µ and D in the simulation mesh (Figure
7.7.A). Reconstructions of the parameters µ and D from measurements with 1%
additive Gaussian noise, C & D: using the TV regularization (adapted from [79]) E
& F: using a mixture of the TV and `1 regularization (adapted from [79]), G & H:
using IRGN Method.
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Figure 7.9: A & B: The true parameters µ and D in the simulation mesh (Figure
7.7.A). Reconstructions of the parameters µ and D from measurements with 1%
additive Gaussian noise, C & D: using the TV regularization (adapted from [79]), E
& F: using a mixture of the TV and `1 regularization (adapted from [79]), G & H:
using IRGN Method.
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Figure 7.10: A & B: The true parameters µ and D in the simulation mesh (Figure
7.7.A). Reconstructions of the parameters µ and D from measurements with 1%
additive Gaussian noise, C & D: using the TV regularization (adapted from [79]), E
& F: using a mixture of the TV and `1 regularization (adapted from [79]), G & H:
using IRGN Method.
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Figure 7.11: A & B: The true parameters µ and D in the simulation mesh (Figure
7.7.A). Reconstructions of the parameters µ and D from measurements with 1%
additive Gaussian noise, C & D: using the TV regularization (adapted from [79]), E
& F: using a mixture of the TV and `1 regularization (adapted from [79]), G & H:
using IRGN Method.
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A B C

D E F

Figure 7.12: Reconstruction of µ and D using statistical inversion method with, A,
D: 5% noise, B, E: with 10% noise, C, F: with 20% relative additive Gaussian noise,
respectively, figures adapted from [79].

A B C

D E F

Figure 7.13: Reconstruction of µ and D using IRGN method with, A, D: 5% noise,
B, E: with 10% noise, C, F: with 20% relative additive Gaussian noise, respectively.
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Relative
Noise
Level

l1 error
(TV)

l1 error
(GR)

l1 error
(IRGN)

l2 error
(TV)

l2 error
(GR)

l2 error
(IRGN)

1% 0.0625 0.0470 0.1002 0.1189 0.1227 0.1259
5% 0.0625 0.0455 0.0930 0.1161 0.1198 0.1192
10% 0.0638 0.0462 0.1159 0.1199 0.1216 0.1423
15% 0.0632 0.0449 0.1363 0.1204 0.1203 0.1653
20% 0.0598 0.0474 0.0923 0.1158 0.1242 0.1171

Table 7.7: Relative Numerical Errors of D

relative noise levels are listed. Note that the relative error of µ is defined as
||µt−µr||Lp

||µt||Lp
,

were µt represents the true parameter to be estimated and µr the reconstruction of µt.

The relative error of D is defined analogous. In table 7.6 and 7.7 the relative l1 and

l2 errors from the reconstructions using the Total Variation regularization (TV), the

general regularization (GR) as well as with the IRGN method have been computed.

As expected the reconstructions with using the Total Variation have mostly a smaller

l2 relative errors while reconstructions using the general regularization have mostly a

smaller l1 relative errors. We observe that, both the statistical inversion method and

the IRGN method become unstable for higher noise level, as expected.

7.5 Proposed hybrid approach for EIT

A computational disadvantage of iterative algorithm is that, the accuracy of the

solution depends on the initial guess. To overcome this disadvantage, we propose a

hybrid algorithm for EIT, where the initial solution is obtained by using the mollifier

regularization technique, discussed in chapter 5 under suitable assumptions. Using the

solution as an initial guess, we apply the IRGN method which provides an improved

approximation to the desired conductivity distribution. In this section, we present the
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reconstruction of the conductivity distribution using the mollifier approach. We then

presented the results obtained by combining the mollifier approach and the IRGN

method.

We reconstructed a conductivity distribution of an off-centered high conductivity

Figure 7.14: Conductivity distribution σ(x, y)

region with a constant background defined as,

σ(x, y) = 1 +
1

(x+ 0.6)2 + (y + 0.3)2 + 0.1

see Figure 7.14.

The reconstruction is obtained very rapidly, and same resolution, γ = 0.1, is used for

all reconstruction points. σ is reconstructed with noise free data for different current

patterns. Based on the table 7.8, we fixed the current pattern j(θ) = cos θ as our

Current pattern j(θ) = cos θ j(θ) = sin θ j(θ) = cos 3θ
l2 rel error 0.85256 2.0983 1.00457

Table 7.8: Relative error in σ for different current patterns with noise free data

optimal choice of current.

From table 7.9, we see that mollifier regularization can be used to obtain a decent

estimation to the parameter distribution in EIT. However, the proposed hybrid ap-
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A B

C D

E F

Figure 7.15: Reconstructed conductivity distribution, (A, C, E) using mollifier reg-
ularization, (B, D, E) using hybrid approach, with noise free, 1%, and 3 % noise in
data

Relative noise level Mollifier approach Hybrid Approach
0% 0.85256 0.29883
1% 0.85459 0.30985
3% 0.92345 0.30914

Table 7.9: Relative error, `2, table for mollifier and hybrid approaches for different
noise levels
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proach, which uses the mollifier estimate as an initial guess and update the solution

using the classical IRGN method, can improve the estimate significantly. The re-

constructions for different noise levels are shown in Figure 7.15. We note that, the

mollifier approach does not provide better estimate for high noise level, as expected,

as well as the hybrid approach.

7.6 Reconstructions from real data

With the advancements in computational power in recent years, real world applica-

tions of the hybrid approaches have become feasible. We applied the hybrid method

to study the corrosion of concrete using experimental EIT data. This is particularly

interesting because it has potential applications to test the degradation of concrete

constructions such as bridges.

We used 16 electrodes as shown in figure 7.16. Two neighboring electrodes are spe-

cially assigned, i and i + 1, one for direct current injection (positive) and the other

for direct current injection (negative). For each fixed direct current injection, I, we

measure 13 voltages, V . It is physically impossible to obtain those voltage observa-

tions in a direct way. But we are able to measure the electrical potentials, U . Hence,

the potential observations can be converted into voltage observations making use of

the additional condition that

∑
j∈{i+2,...,i+15}

U i
j = 0, where i, j ∈ Z/16Z (7.9)

that is, the potential difference between two adjacent electrodes, i.e. we define the

jth voltage from the ith current injection as V i
j := U i

j+1 − U i
j , where j ∈ {i + 2, i +
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3, ..., i+ 14}. Solving the following system, we compute the voltages.



U i
i+2 U i

i+3 . . . U i
i+14 U i

i+15 0

−U i
i+2 U i

i+3 . . . 0 0 V i
i+2

0 −U i
i+3 . . . 0 0 V i

i+3

...
...

. . .
...

...
...

0 0 . . . U i
i+14 0 V i

i+13

0 0 . . . −U i
i+14 U i

i+15 V i
i+14



Figure 7.16: Sixteen electrodes connected to the body Ω. Here, electrode 1 represents
the input current and electrode 2 the output current and U1

j = Uj,j+1 with j ∈
{3, 4, ..., 15} represents the thirteen corresponding potential measurements.

7.6.1 Description of the experiment and reconstructions

A mortar cylinders, of 100mm diameter and 200mm hight, with water-to-cement

ratio of 0.47 and aggregate content of 40% of cement were cast according to ASTM

C192-06. Type I Ordinary Portland Cement (OPC) and natural sand were used to
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Figure 7.17: Concrete cylinder.

cast the cylinders. A PVC pipe of 25.4mm diameter was embedded into the sample

to simulate the damage. The pipe was located at the midpoint of surface center and

boundary, as shown in Figure 7.17. Then, the samples cured for 28 days in 100%

humidity and 25◦C temperature before performing the test. Cylinders were removed

from the curing room and left in laboratory condition for a week. This time allowed

the surface moisture on the samples to be dried out. Then, a nickel-based conductive

paint was sprayed on top of the cylinder, as shown in Figure 7.17.

The EIT equipment for data acquisition is shown in Figure 7.18, the system con-

sisted of a Keithley 6221 low-noise AC/DC current source, a Keithley model 2700

high resolution multi-meter and switch system, computer and a PVC ring that car-

rying electrodes. Stainless steel screws were used as the electrodes. There were 16

electrodes equally distributed around the PVC ring (Figure 7.17) as described by

the model. As described earlier, the current was injected at two adjacent electrodes

in a clockwise fashion, then the potentials were measured on every two neighboring

electrodes. 10mA was used as the amplitude of injected direct current in this investi-

gation. Statistical inversion was used to reconstruct the conductivity of the concrete

cylinder based on the obtained measurements. The reconstruction was performed
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Figure 7.18: EIT equipment for data acquisition

(a) (b)

Figure 7.19: Reconstruction of a plane of the concrete cylinder in Figure 7.17. (a)
IRGN method (b) statistical inversion method
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in the in reconstruction mesh (Figure 7.7.b) of 281 triangles. A TV regularization

(Figure 7.19.a.) as well as a combination of the TV and the `1 regularization (Figure

7.19.b.) have been used. A `1 regularization has not been used because the conductiv-

ity of concrete is not exactly known, i.e. the conductivity of concrete depends from

many variables such as humidity, age and mixture. Both obtained reconstructions

(Figure 7.19) seem to be reasonably good. Note that with real data considerable

worse reconstructions should be expected in comparison to the simulated data case.

This is because the measurement noise might not be Gaussian as assumed in our

model. Further, the conductivity of concrete is generally not constant because it

depends from the humidity and mixture in each coordinate of the object.
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Chapter 8

Conclusions and Discussion

In this dissertation, we proposed a hybrid techniques for solving the inverse problem in

EIT and DOT. We investigated a direct method for EIT using mollifier regularization

that was modified and extended to solve the inverse problem in DOT. The extension

to DOT method requires existence of eigen-functions of non-symmetric operators,

which do exist; however, finding the analytical form is not tractable. Therefore,

we used the symmetric eigenfunctions as an approximation for the DOT mollifiers.

Appropriate formulation of the mollifier method is implemented and an appropriate

algorithm is devised for verification of the efficacy of the proposed method. For both

EIT and DOT, a comprehensive numerical and computational comparison of several

types of regularization techniques, ranging from analytical to iterative to statistical

method, was presented. Based on the results of the comparison of the regularization

methods, a novel hybrid method combining the deterministic (mollifier and iterative)

and statistical (iterative and statistical) was proposed. The efficacy of the proposed

method was then further investigated via simulations and using experimental data
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for damage detection in concrete.

We also formulated the EIT forward model using the CEM as the Galerkin finite

element approximation and also provided justification for the linearization for solving

the inverse problem. We investigated several regularization methods for the inverse

problem ranging from deterministic, analytical and iterative method, and to statisti-

cal method. We performed a comprehensive comparison between the regularization

functions for the statistical inverse problem and the regularization functions for the

deterministic case. We used the statistical algorithm that uses a Bayes’ estimate for

the unknown parameter that implements a smoothing criteria and enforces sparsity

in the prior distribution. We used both the `p and total variation priors for regular-

ization for the statistical method.

From our findings, we determined that sparsity and smoothness regularization are

needed during EIT inversion for improved image reconstruction. For this study, the

statistical algorithm provided better reconstructions compared to IRGN in terms of

both `2 and `1 errors. One drawback to the statistical approach is that it can be

computationally expensive to run compared to the IRGN method. For low dimen-

sional cases, the run times were about 40-45 minutes when we used the deterministic

method as an initial guess. However, the IRGN method with Tikhonov regularization

provided an initial guess to the solution within a few iterations, 5 - 15 on average,

and took about 5 - 10 minutes.

Additional disadvantages of the statistical algorithm and IRGN method are their de-

pendencies on the (1) location of the inclusions and (2) data noise. Reconstruction

errors are higher as data noise increases and the location of inclusions move further

inside the object. This result is a direct consequence of the ill-posed inverse problem.

We verified this effect by creating inclusions closer to the surface as well as deeper

into the body.
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We also compared the statistical formulation for the DOT inverse problem and com-

pared it with the classical IRGN method. From a visual point of view, we found that

the statistical method outperforms the IRGN method up to high levels of relative

noise. However, computing the statistical solution from the MCMC-based algorithm

is computationally very expensive compared to the IRGN method. Therefore, ana-

lytical and iterative methods, such as IRGN, significantly decrease the time required

for convergence of statistical methods.

Most experimental noise for EIT does not exceed 10%, however we do not know the

exact noise distribution for the experimental data. We applied the IRGN method

coupling with the statistical algorithm using experimental data for detecting damage

inside a cement block. Overall, we found that the hybrid approach is a promising

approach and computationally efficient. We conclude that, hybrid techniques may

have a significant role in improving the parameter reconstructions in ill-posed inverse

problems like EIT and DOT. Our future work is to investigate the non-symmetric

eigenfunctions for the mollifier method in DOT and develop a theoretical framework

for approximating the DOT eigenfunctions using symmetric eigenfunctions which will

provide reasonable results from simulations. Another new direction is to develop a

framework for comparing of various hybrid algorithms and determining an optimal

hybrid method. Another direction is to explore machine learning approaches using

the hybrid framework proposed in this dissertation.
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