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Abstract

Crystallization is a fundamental physical phenomenon with broad impacts in science and

engineering. Nonetheless, mechanisms of crystallization in many systems remain incompletely un-

derstood. Molecular dynamics (MD) simulations are a powerful computational technique that, in

principle, are well-suited to offer insights into the mechanisms of crystallization. Unfortunately, the

waiting time required to observe crystal nucleation in simulated systems often falls far beyond the

limits of modern MD simulations. This rare-event problem is the primary barrier to simulation stud-

ies of crystallization in complex systems. This dissertation takes a combined approach to advance

simulation studies of nucleation in complex systems. First, we apply existing tools to a challenging

problem — clathrate hydrate nucleation. We then use methods development, software development,

and machine learning to address the specific challenges to simulation studies of crystallization posed

by the rare-event problem.

Clathrate hydrate formation is an exemplar of crystallization in complex systems. Nu-

cleation of clathrate hydrates generally occurs in systems with interfaces, and even homogeneous

hydrate nucleation is inherently a multicomponent process. We address two aspects of clathrate hy-

drate nucleation which are not well-studied. The first aspect is the effects of interfaces on clathrate

hydrate nucleation. Interfaces are common in hydrate systems, yet there are few studies probing the

effects of interfaces on clathrate hydrate nucleation. We find that nucleation occurs through a homo-

geneous mechanism near model hydrophobic and hydrophilic surfaces. The only effect of the surfaces

is through a partitioning of guest molecules which results in aggregation of guest molecules at the

hydrophobic surface. The second aspect is the effect of guest solubility in water on the homogeneous

nucleation mechanism. Experiments show that soluble guests act as strong promoter molecules for

hydrate formation, but the molecular mechanisms of this effect are unclear. We apply forward flux

sampling (FFS) and a committor analysis to identify good approximations of the reaction coordinate
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for homogeneous nucleation of hydrates formed from a water-soluble guest molecule. Our results

suggest the possibility that the nucleation mechanism for hydrates formed from water-soluble guest

molecules is different than the nucleation mechanism for hydrates formed from sparingly soluble

guest molecules.

FFS studies of crystal nucleation can require hundreds of thousands of individual MD sim-

ulations. For complex systems, these simulations easily generate terabytes of intermediate data.

Furthermore, each simulation must be completed, analyzed, and individually processed based upon

the behavior of the system. The scale of these calculations thus quickly exceeds the practical limits

of traditional scripting tools (e.g., bash). In order to apply FFS to study clathrate hydrate nucle-

ation we developed a software package, SAFFIRE. SAFFIRE automates and manages FFS with a

user-friendly interface. It is compatible with any simulation software and/or analysis codes. Since

SAFFIRE is built on the Hadoop framework, it easily scales to tens or hundreds of nodes. SAF-

FIRE can be deployed on commodity computing clusters such as the Palmetto cluster at Clemson

University or XSEDE resources.

Studying crystal nucleation in simulations generally requires selecting an order parameter

for advanced sampling a priori. This is particularly challenging since one of the very goals of the

study itself may be to elucidate the nucleation mechanism, and thus order parameters that provide

a good description of the nucleation process. Furthermore, despite many strengths of FFS, it is

somewhat more sensitive to the choice of order parameter than some other advanced sampling

methods. To address these challenges, we develop a new method, contour forward flux sampling

(cFFS), to perform FFS with multiple order parameters simultaneously. cFFS places nonlinear

interfaces on-the-fly from the collective progress of the simulations, without any prior knowledge

of the energy landscape or appropriate combination of order parameters. cFFS thus allows testing

multiple prospective order parameters on-the-fly.

Order parameters clearly play a key role in simulation studies of crystal nucleation. However,

developing new order parameters is difficult and time consuming. Using ideas from computer vision,

we adapt a specific type of neural network called a PointNet to identify local structural environments

(e.g., crystalline environments) in molecular simulations. Our approach requires no system-specific

feature engineering and operates on the raw output of the simulations, i.e., atomic positions. We

demonstrate the method on crystal structure identification in Lennard-Jones, water, and mesophase

systems. The method can even predict the crystal phases of atoms near external interfaces. We
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demonstrate the versatility of our approach by using our method to identify surface hydrophobicity

based solely upon positions and orientations of nearby water molecules. Our results suggest the

approach will be broadly applicable to many types of local structure in simulations.

We address several interdependent challenges to studying crystallization in molecular sim-

ulations by combining software development, method development, and machine learning. While

motivated by specific challenges identified during studies of clathrate hydrate nucleation, these con-

tributions help extend the applicability of molecular simulations to crystal nucleation in a broad

variety of systems. The next step of the development cycle is to apply these methods on complex

systems to motivate further improvements. We believe that continued integration of software, meth-

ods, and machine learning will prove a fruitful framework for improving molecular simulations of

crystal nucleation.
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Chapter 1

Introduction

Crystallization is the transition of matter from the liquid phase to a highly ordered solid

phase. The fundamental nature of this process makes it ubiquitous in science and engineering.

The canonical everyday example of crystallization is the freezing of liquid water to ice. In the

natural world, crystallization is involved in phenomena from fields as diverse as geology (e.g., mineral

formation) [5], biology (e.g., antifreeze proteins) [6, 7], and climate science (e.g. cloud formation)

[8, 9]. In engineering applications, the objective is to manipulate or control crystallization to achieve

some outcome. The chemical and pharmaceutical industries leverage crystallization as an important

separation and purification technique [10]. On the other hand, preventing crystallization can also be

an important engineering objective. Examples include preventing ice formation on surfaces [11, 12]

or clathrate hydrate formation in oil and gas pipelines [13, 14].

Crystallization consists of two major steps: nucleation and growth. Nucleation describes the

formation of the nascent crystal nucleus from the liquid, while growth considers how the boundary

between liquid and crystal propagates through the liquid once a sufficiently large crystal nucleus has

formed. Both nucleation and growth are inherently molecular-level processes. In experiments, the

combination of small length scales and short time scales are difficult to probe. In contrast, these

conditions seem precisely suited to molecular simulations. Indeed, molecular simulations can offer

substantial insights into crystal growth and dissociation. Nucleation, however, remains stubbornly

difficult to study in molecular simulations. Despite the macroscopic frequency of nucleation, it is an

extremely rare event on the time and length scales of molecular simulation. For example, the ice

nucleation rate at 235 K is an astounding 5× 1015 events m−3s−1 [15]. However, in the observation
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Figure 1.1: The multicomponent approach to advancing simulation studies of crystallization pre-
sented herein. This dissertation primarily builds the individual components as motivated by our
experiences studying hydrate nucleation. The eventual vision imagines integrating the various com-
ponents as shown by overlapping regions.

volume of a typical molecular simulation (e.g., 10×10×10 nm3, or ∼33,000 water molecules) the

simulation time required to observe a single nucleation event is 109 s. Current computational limits

are ∼10−5 s at best. This so-called rare event problem creates a series of challenges to studying

nucleation in molecular simulations.

This dissertation encompasses an integrated approach to address the challenges of study-

ing crystal nucleation in molecular simulations. To understand these challenges in the context of

complex systems, we study clathrate hydrate nucleation. This phenomenon is well-motivated from

the standpoint of engineering applications and is at the forefront of system complexity for which

nucleation can currently be investigated with molecular simulations. We applied straightforward

simulations and one of the best advanced sampling methods for crystal nucleation in our studies.

We then proceeded to develop a substantial extension to the advanced sampling method, software,

and a deep learning approach for structure identification to address specific challenges that arose

in our studies of clathrate hydrate nucleation. A schematic highlighting the components of our ap-
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proach is shown in Fig. 1.1. We do not believe these components represent an adequate solutions in

isolation — hence motivating an integrated approach. The remainder of this introduction is devoted

to the relevant background in nucleation, rare events in simulation, and clathrate hydrates.

1.1 Classical nucleation theory

Nucleation is the primary mechanism by which out-of-equilibrium metastable liquids relax to

equilibrium [16, 17]. The quantities of interest are the rate, or frequency, at which nucleation events

occur, and the molecular mechanism of nucleation. The nucleation rate describes the expected length

of time that the metastable liquid will exist before it irreversibly transforms to the equilibrium crystal

phase. Any good theory of crystal nucleation should thus offer predictions of the nucleation rate. We

focus on the case of homogeneous nucleation, i.e., nucleation from a well-mixed homogeneous phase

in the absence of any impurities or external interfaces [16]. The standard theoretical framework for

describing this situation is classical nucleation theory (CNT) [18, 19, 20, 21, 22]. CNT is a classical

thermodynamic theory that considers the free energy (or reversible work) required to form a nucleus

of a stable phase within a bath of the metastable phase. The free energy of forming a nucleus

passes through a maximum at the critical nucleus size. CNT predicts that the nucleation rate is

inversely proportional to the exponential of the free energy required to form the critical nucleus.

CNT assumes that the crystal nucleus has the same structure as the bulk crystal phase and that

there exists a perfectly sharp interface between the crystal nucleus and liquid bath. These two

assumptions comprise the capillarity approximation — that is, even infinitely small nuclei have bulk

properties — and that there is an equilibrium distribution of nuclei sizes up to the critical nucleus

size. The capillarity approximation is likely the source of a number of errors of CNT [16, 17].

CNT describes two contributions to the free energy of forming a nucleus with radius R: (1)

the difference in free energy between the bulk stable and bulk metastable phases, and (2) the free

energy associated with forming an interface between the stable and metastable phases. Since by

definition the stable phase has a lower free energy than the metastable phase, the bulk contribution

always favors the formation of larger nuclei. In contrast, the formation of an interface is energetically

unfavorable; the interfacial term always disfavors the formation of larger nuclei. However, the

volume and surface area of a sphere grow at different rates with increasing R. The difference in

proportionality between the nucleus size, R, and the contributions of the bulk (∝ R3) and interfacial
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of a stable phase within a metastable phase. Dashed line represents the zero of free energy.

(∝ R2) terms to the overall free energy gives rise to an energetic profile which passes through a

maximum at the critical nucleus size (Fig. 1.2). Here, growth of the nucleus becomes energetically

favorable. The essence of CNT is to capture this competition between the bulk and interfacial

contributions to the overall free energy of forming a nucleus. The free energy of forming of a nucleus

with radius R is written as:

∆G(R) = −4

3
πR3|∆µv|+ 4πR2γ (1.1)

where ∆G(R) is the free energy of forming a nucleus with size R, |∆µv| is the magnitude of the

per-volume chemical potential difference between the bulk stable and bulk metastable phases, and

γ is the interfacial tension between the two phases. The critical nucleus size, Rc, can be identified

by setting dG(R)/dR = 0 and solving for R. The nucleation rate is written in Arrhenius form,

K = A exp
[
− ∆G(Rc)

kBT

]
(1.2)

where K is the nucleation rate constant (expressed in events vol−1 time−1 in the homogeneous

case) and A is a kinetic prefactor that accounts for the density of nucleation sites, attachment rate

of particles to the growing nuclei, and curvature of the free energy barrier near Rc. The driving

force for nucleation is the magnitude of ∆µv, which equals zero at equilibrium and increases with

supercooling or supersaturation. The critical nucleus size decreases with increasing driving force,

approaching zero in the limit of an infinite driving force. At sufficiently large driving force, the
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metastable phase falls out of metastability and the transformation to the stable phase occurs via

spinodal decomposition rather than nucleation [16]. Note that the rate constant often goes through

a maximum before reaching spinodal decomposition. The maximum arises because the kinetic

prefactor, A, generally decreases with increasing supercooling, while the exponential term increases

with increasing supercooling [17].

Though Eqn. 1.1 only applies to homogeneous nucleation, it can be modified to describe

heterogeneous nucleation (i.e., nucleation at some external surface) by including the nucleus–surface

contact angle [23, 24]. Eqn. 1.1 can also be constructed as a function of the number of molecules in

the nucleus, n, rather than nuclei radius, R. The idea that the nucleus size, n, is reaction coordinate

for nucleation is inspired by CNT. This assumption is the motivation for calculating the free energy

barrier or tracking the progress of nucleation as a function of n when applying advanced sampling

techniques to study crystal nucleation (Sec. 1.4).

Overall, CNT has been extremely successful as a descriptive theory and is considered by

some [25] to be one of the great rate theories of all time. CNT is used to predict rates, trends

in rates, and to interpret experimental data. Nonetheless, there are a variety of situations where

the assumptions of CNT are not applicable. Non-classical nucleation mechanisms include two-

step nucleation mechanisms that have been proposed for nucleation from solutions [26]. In a two-

step nucleation mechanism there are two free energy barriers to nucleation. The first is ascribed

to densification of solutes while the second arises from the ordering required to form a crystal.

Clathrate hydrate nucleation [27], calcium carbonate nucleation from aqueous solution [28], and

protein crystallization [29] are examples that may exhibit such two-step mechanisms. Even in

the case of simple models of atomic fluids, evidence suggests that nucleation proceeds along both

densification and ordering parameters [30, 31]. These complications highlight the complexities of

crystallization.

1.2 Molecular simulations of crystallization

Molecular dynamics (MD) simulations are a valuable tool to supplement our understanding

of crystal nucleation [17]. In general, MD simulations are useful for interrogating the molecular

level behavior of systems and relating microscopic behavior to macroscopic observable properties

[32, 33]. MD simulations can thus, in principle, offer molecular level insights into nucleation. In MD
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simulations, particle interactions are described via some interatomic or intermolecular potentials.

The force felt by each particle is provided by the negative derivative of the potential. The time

behavior of the system can then be generated by numerically integrating the classical equations of

motion with a sufficiently small integration time step. Due to the rare-event problem described

earlier in this chapter, only nucleation in the simplest systems and/or at conditions of high driving

force is accessible in straightforward MD. Therefore, many of the results presented in Sec. 1.2.1 and

1.2.2 are generated from MD simulations combined with some advanced sampling method (see Sec.

1.4).

1.2.1 Model atomic fluids

Molecular simulations have been used to study crystallization for many years. Hard spheres

are perhaps the simplest model that exhibits a fluid to solid phase transition [34]. In fact, the first

molecular dynamics simulations investigated phase behavior in the hard sphere system [35]. For-

tuitously, hard sphere systems have experimental analogues in the form of colloidal systems, where

nucleation can be observed directly with confocal microscopy [36, 37, 38]. Simulations and exper-

iments of hard sphere systems have revealed the following observations: (1) despite the simplicity

of the systems there appears to be a large discrepancy between predicted nucleation rates from

simulations and measured rates from experiments at low driving force [39, 40]. This discrepancy has

persisted in spite of efforts to resolve it [41, 42]. (2) In both simulations [39, 41, 40] and experiments

[38] nuclei are observed to be aspherical and have surface roughness. The former point suggests that

our picture of crystal nucleation is incomplete in even the simplest systems, and the latter point is in

conflict with CNT. Crystallization in the Lennard-Jones (LJ) fluid is another simple model system

which has been studied extensively in molecular simulation. Results from nucleation of LJ systems

are consistent with hard-sphere results in finding aspherical nuclei with rough surfaces [39, 41, 40].

LJ nuclei also exhibit varying degrees of crystallinity and polymorphism; evidence of multiple crystal

phases appears in the nuclei, rather than only the most stable crystal phase [43, 44, 45]. Evidence

suggests a trade-off between nucleus size and structure [44]. Somewhat smaller and more crystalline

nuclei are similarly likely to be critical as somewhat larger and less crystalline nuclei. These results

from very simple systems quickly cloud the description of nucleation presented by CNT. As noted

in the prior section, many of these results are generated with MD in combination with advanced

sampling techniques. Fortunately, by modern standards, these simple models are not too computa-
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tionally costly. This enables some comparisons between the results generated with different advanced

sampling methods and results from straightforward MD. Under conditions where such comparisons

are possible, the observations presented above appear consistent across different methods [40, 46, 47].

1.2.2 Water

Moving towards increasing complexity but remaining in the realm of single-component sys-

tems, MD simulations have been used to study the liquid to solid transition in water. Understanding

ice nucleation is important for fields such as cloud physics [8, 9] and food preservation [48]. MD

simulations have been used to extensively study both homogeneous [49, 50, 51, 52, 53, 54] and

heterogeneous ice nucleation [55, 56, 57, 58, 59, 60, 61]. Nonetheless, ice nucleation has proven

challenging to study in simulations. The first straightforward MD simulation with homogeneous ice

nucleation was reported in 2002 by Matsumoto et al. [49]. In order to shorten the waiting time for

ice formation, the density of the liquid phase was lowered to 0.96 g cm−3. Assuming the accessible

simulation length doubles each year, it will still be ∼50 years until it is possible to simulate (via

straightforward MD) homogeneous ice nucleation at realistic conditions (235 K, 1 bar) with an all-

atom model. Even using advanced sampling techniques, calculating the ice nucleation rate with the

all-atom TIP4P/Ice model required 22 million CPU-hours [53]. Fortunately, the much higher rates

of heterogeneous nucleation make it possible to use straightforward MD to simulate ice nucleation

on strong ice nucleating surfaces. Studies have provided useful insights, such as how the orientations

of water molecules near a surface may act as a predictor of ice nucleation [55, 60], and that small

changes in surface structure can lead to large changes in surface ice nucleating ability [55]. However,

the range of supercooling and surface types that can be explored remains severely limited. As such,

despite substantial efforts, a comprehensive understanding of the surface properties which promote

or inhibit ice nucleation is still lacking.

1.2.3 The seeding method

One approach to circumvent the rare-event problem in molecular simulations of crystal

nucleation is seeding. Seeding [52, 62, 63, 64] widely expands the range of accessible nucleation

conditions for homogeneous nucleation. Recent efforts have also extended the method to hetero-

geneous nucleation [65, 66]. A crystalline ice embryo (seed) is carefully equilibrated in a bath of
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liquid. After equilibration, a straightforward MD simulation is performed. In sufficient time the

seed will either grow until the entire system becomes solid or dissociate. With this method, the seed

size that has a 50% chance of growing is identified as the critical nucleus size. The free energy of

forming the critical nucleus is then calculated by combining the critical nucleus size with the free

energy difference between the bulk liquid and solid phases. The remaining information required to

estimate the kinetic prefactor can be estimated from nuclei growth and dissociation rates near the

critical size.

Seeding has been used to evaluate nucleation rates spanning nearly 200 orders of magnitude,

[52] and is thus a powerful method for evaluating nucleation at a wide range of conditions. Unfor-

tunately, seeding is far from a perfect solution. The numerical estimate of the free energy barrier

is particularly sensitive to the precise definition of the nucleus [64]. Since the nucleation rate is

proportional to the exponential of the free energy barrier, the estimated rate is extremely sensitive

to the exact definition of the nucleus. In NaCl nucleation, modifications to the definition of the

nucleus changed estimated nucleation rates by 30 orders of magnitude [64]. Beyond this problem,

seeding also assumes that the crystalline seed is a perfect sphere of the bulk crystal phase. These

assumptions are not always true; results from HS/LJ systems show aspherical nuclei with polymor-

phism, and recent theoretical calculations argue that ice nuclei are a stacking-disordered structure

composed of alternating layers of the stable bulk polymorph (ice Ih), and a metastable polymorph

(ice Ic) [54].

1.3 Clathrate hydrates

Clathrate hydrates are a solid phase that forms from water and a guest species [13, 67, 68].

Water molecules hydrogen bond to form a space-filling crystal composed of polyhedral cages, some

or all of which are occupied by a guest molecule. A variety of small molecules (e.g., ethane, propane,

carbon dioxide, nitrogen, hydrogen, tetrahydrofuran, etc.) can form clathrate hydrates, but the

most common example is methane [68]. In general, these compounds form at low to moderate tem-

peratures (<300 K) and elevated pressures (>0.6 MPa). Guest molecules are an integral component

of clathrates. As observed in everyday experience, the stable solid phases of water in the absence

of guest molecules are ices [69]. In clathrate hydrates, the guest molecules act to stabilize the poly-

hedral cages that they occupy through steric repulsion with water molecules. Understanding the
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subtle interplay between water–water, guest–water and water-mediated guest–guest interactions is

thus paramount for understanding the formation of clathrate hydrates. The inherent multicompo-

nent nature of clathrate hydrates dramatically complicates their nucleation mechanism in comparison

with simple atomic fluids and pure water.

1.3.1 Background and applications

For over a century from the discovery of clathrate hydrates by Sir Humphrey Davy in 1811

[70], investigations of clathrate hydrates were largely driven by scientific curiosity [68]. However,

since the 1930s a large quantity of clathrate hydrate research has been motivated by oil and gas

industry [68]. This is because methane clathrates can form spontaneously in oil and gas flowlines

and represent a severe flow assurance hazard [14]. These flowlines can contain a mixture of water

and natural gas near hydrate forming conditions, and under the correct conditions, solid hydrate

plugs form rapidly. Estimated annual expenditures for hydrate inhibition are over $100 million

[71]. There exist thermodynamic and kinetic strategies for preventing hydrate formation [14]. The

simplest of the thermodynamic approaches is to adjust temperature and pressure conditions out

of the hydrate forming region of the phase diagram. This is often not feasible. More commonly,

thermodynamic inhibitors (e.g., methanol, monoethylene glycol) are added to the fluid mixture in

the pipeline. Large quantities of these inhibitors (e.g., ∼20–50 wt % in free water) are necessary

[72, 14]. These thermodynamic inhibitors are either recovered downstream or simply considered

part of the operating cost. Kinetic strategies for hydrate prevention include anti-agglomerants and

kinetic hydrate inhibitors [14, 72, 73]. Anti-agglomerants are surfactants which reduce capillary

adhesion between solid hydrate particles and thus act to prevent their agglomeration. In general, it

is believed that kinetic hydrate inhibitors bind to the surface of growing hydrate nuclei and prevent

the formation of post-critical nuclei [73]. These strategies appear promising, but the mechanism(s)

of action, particularly in the case of kinetic hydrate inhibitors, remain incompletely understood.

Methane clathrate hydrates also represent an enormous potential energy resource. Natural

deposits of methane clathrates exist in reserves in permafrost and beneath the sea floor [67]. Current

estimates suggest more methane trapped in hydrate form than traditional natural gas resources

[74, 75]. As such, there have been efforts to understand how to extract the methane from hydrate

reserves [76, 77, 78, 75, 79]. Some have even proposed extracting the methane from clathrates

and replacing it with carbon dioxide [75, 80]. These technologies would all benefit from a firmer
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understanding of hydrate formation mechanisms.

The unique molecular properties of hydrates may prove useful for technological applications.

Examples include long term natural gas storage in hydrates [81, 82], hydrogen gas storage in hydrates

[83, 84, 81], and gas separations [85, 86, 87, 88]. Considering the example of long-term natural gas

storage, 1 mole of methane can be stored in ∼130 cm3 of volume in clathrate form. At hydrate

forming conditions (273 K, 20 bar) the same 1 mole of methane has a volume of ∼1070 cm3 in gaseous

form at the same conditions and a volume of ∼24890 cm3 at standard temperature and pressure.1

Even though the equilibrium formation pressure is 2.6 MPa at 273 K, once formed, methane hydrate

pellets are remarkably stable at atmospheric pressure and ∼250 K [89]. Thus the conditions for

methane storage in hydrate form are quite reasonable. Additionally recent experimental efforts

have shown that tetrahydrofuran is an effective promoter of methane hydrate formation [81, 87,

82], enabling more moderate hydrate formation conditions. Unfortunately, the mechanism of this

promotion remains largely unknown, making it difficult to design or predict other hydrate promoters.

1.3.2 Proposed nucleation mechanisms

Several mechanisms of clathrate hydrate nucleation have been proposed. The primary hy-

pothesis include the labile cluster hypothesis [90], the local structuring hypothesis [91], the cage

adsorption hypothesis [92], and the blob hypothesis [27]. The labile cluster hypothesis envisions

that clusters of hydrogen-bonded water molecules form around dissolved guest molecules and then

these clusters aggregate into a hydrate nucleus. The local structuring hypothesis invokes less pre-

existing water structure around each dissolved guest – instead the guests first aggregate together

and water structuring occurs subsequent to a sufficiently large aggregation of guest molecules. The

blob hypothesis shares many similarities – amorphous ‘blobs’ of solvent separated guest molecules

form as precursors to hydrate formation. An amorphous collection of polyhedral hydrate cages are

born from within these regions. The cage adsorption hypothesis is based upon the observation that

polyhedral hydrate cages are stabilized by the adsorption of guest molecules to the cage faces. Under

this mechanism, hydrate cages that spontaneously form are stabilized by adsorbed guest molecules,

and eventually form a cluster of amorphous hydrate cages that can then anneal into the crystal

structure. These hypothesis all highlight the interplay of water and guest in hydrate nucleation and

1Hydrate volume estimated for structure I with full cage occupancy. Gas volumes estimated with the Peng-
Robinson equation of state.
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challenge the simple picture of crystal nucleation proposed by CNT.

1.3.3 Molecular simulations of hydrate nucleation

The first unbiased hydrate nucleation trajectories in molecular simulations were reported

just under a decade ago [93, 94]. Since then, there have been several efforts [27, 95, 96, 97, 98, 99,

100, 101, 62, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113] to use simulations to improve

our understanding of the homogeneous hydrate nucleation mechanism. Collectively, these simulation

studies provide strong evidence to suggest that the initial hydrate structures are amorphous rather

than crystalline solids. In most cases, the hydrate nucleus appears to emerge out of regions with

locally elevated guest concentration. There remains disagreement on the exact mechanism, but

some studies studies [93, 105] suggest that water order follows the formation of appropriate guest

structure. It is worth noting that with few exceptions [99, 112, 111] these studies focused on sparingly

soluble guest molecules (e.g., CH4 and CO2). It is unknown if the nucleation mechanism changes

with guest solubility. There have also been relatively fewer studies of heterogeneous nucleation

[114, 115, 102, 116, 117, 118] despite the prevalence of interfaces in hydrate-forming systems. Our

studies of hydrate nucleation attempt to address those two shortcomings in the current understanding

of hydrate nucleation.

1.4 Advanced sampling methods

The prior sections demonstrated the potential of molecular simulations to provide insights

into crystal nucleation and the challenges associated with studying nucleation in simulations, namely,

the rare-event problem. Next, we discuss advanced sampling techniques that can help overcome the

rare-event problem and supplement straightforward MD simulations. The rare-event problem is not

limited to molecular simulations of crystal nucleation. It appears in a variety of other contexts, from

complex processes such as protein folding [119] to apparently simpler processes such as ion-pair

dissociation [120, 121]. Imagine two well-defined stable states, A and B. The core feature of a rare

event is that the waiting time (τstable) between A → B or B → A transition events is orders-of-

magnitude longer than the duration of the transition itself (τtrans). That is, τtrans � τstable. If the

object of our research is a physical process that exhibits this behavior, we are interested in (1) the

mechanism by which the transition occurs and (2) the transition rate constant. The rate constant
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Figure 1.3: An example rare event. (a) 1D double well potential energy surface. (b) Position of a
particle during a simulation of a particle on the potential from (a).

for an A → B transition can be defined as the transition probability per unit time, inverse mean

residence time in A, or inverse mean first passage time to B [122]. These three definitions become

equivalent for any process where A and B are separated by a sufficiently large free energy barrier

[123].

A schematic of a simple example of a 1D double-well potential is shown in Fig. 1.3(a). The

system has two stable states, one at x < 0 (state A) and one at x > 0 (state B). If we simulate

a particle in this potential with Langevin dynamics at appropriate conditions the A→B transition

displays the primary attributes of a rare event. The system samples state A for >2,000,000 steps

before quickly (∼1000 steps) transitioning to state B. This demonstrates the separation of time scales

between τtrans and τstable. The challenge is thus to accurately simulate the process (i.e., explicitly

account for the shorter-timescale physics governing the transition) but run a simulation long enough

to observe the transition. A variety of methods have been developed to address this problem.

Umbrella sampling [124], metadynamics [125, 126], aimless shooting transition path sam-

pling (TPS) [127, 128], and forward flux sampling [129, 1] (FFS) are the primary advanced sampling

methods which have been applied to study crystal nucleation [40, 50, 130, 51, 53, 58, 131, 132, 133,

134, 54, 61, 46, 47]. Umbrella sampling and metadynamics are free energy methods which can be used

to estimate the free energy barrier to nucleation. These methods require a good order parameter,

i.e., one which closely approximates the true reaction coordinate [135], to (1) calculate a physically

meaningful free energy barrier and eliminate hystersis [136] , and (2) ensure an efficient rate calcu-

lation. Unfortunately, good order parameters are difficult to know a priori. Furthermore, most of

the free energy methods do not provide estimates of the nucleation rate nor dynamical nucleation

trajectories without additional simulations. One classic approach to calculate the rate constant from
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free energy methods is a two-step procedure [137, 138, 123] based upon dynamically corrected [139]

transition state theory [140, 141]. The first step is to calculate the free energy profile along some

order parameter, and the second step is to release trajectories from the dividing surface (i.e., the

maximum in the free energy profile) to estimate the transmission coefficient. The method is exact,

but becomes detrimentally inefficient in the case of a poorly chosen order parameter [136, 123, 142].

FFS [129, 1] and TPS [143, 120, 127, 128] are path sampling methods which generate an

ensemble of transition paths that can be used to investigate the transition mechanism and search

for the reaction coordinate [144, 127, 128] of crystal nucleation [54, 133, 134, 131]. The first path

sampling method was TPS [143, 120, 145]. Starting with an initial path connecting the two stable

states, TPS performs a Monte Carlo random walk in path space to generate an entire ensemble

of paths connecting these two states [145]. Imagine the ensemble of all possible paths of some

length (τtrans < τ < τstable) that start in A in the example from Fig. 1.3. An overwhelming

majority of paths would be A → A. The A → B paths would represent a tiny subensemble of

all paths. TPS provides an efficient means for sampling the A → B subensemble. A particular

benefit of TPS is that only the bounds of the two stable states (A and B) must be defined. Aimless

shooting TPS combined with maximum likelihood [127, 128] is an excellent tool for evaluating

nucleation mechanisms and identifying good order parameters, but it does not provide the nucleation

rate. The challenges associated with calculating the transition rate constant using TPS inspired the

development of transition interface sampling (TIS) [146], and FFS [129, 1]. Relevant to our work,

the TPS rate constant calculation is particularly difficult in the case of diffusive processes (e.g.,

nucleation) [146, 123].

1.4.1 Transition interface sampling and the effective positive flux

TIS introduced a simplified procedure for calculating the A → B rate constant. This

depends on defining history-dependent regions of phase space. Let us define phase space as {x} ⊂

R6N , where N is the number of particles, and there are 3N position coordinates and 3N momenta

coordinates. Previously, initial state A and final state B were defined with characteristic functions

as follows: for some phase point x, hA(x) = 1 if x ∈ A and 0 otherwise. Similarly, hB(x) = 1 if

x ∈ B and 0 otherwise. TIS defined overall states A and B. These states not only account for the

current state of the system, x, but also the path history. Overall state A comprises all phase points

in A and all phase points which belong to trajectories that were more recently in A than B. I.e.,
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upon tracing the path backwards from x one would reach A before B. This means excursions from

A that have not yet reached B nor returned from A still belong to overall state A. Overall state B

is defined likewise. The rate constant can then be written as

kAB =
〈hA(x0)ḣB(x0)〉
〈hA(x0)〉 (1.3)

where the overdot indicates a time derivative, 〈...〉 indicates an ensemble average, and x0 represents

the initial phase point of some path. The denominator counts the fraction of points in phase space

which belong to trajectories more recently in A than B. The numerator tabulates the fraction

of those points for which hB is changing from 0 to 1, i.e., phase points which are entering state

B from overall state A. This definition aligns with our prior definition of a rate constant, the

probability of transitioning to B per unit time in A. In the limiting case, where τtrans/τstable → 0,

the two definitions become identical. For any rare event the rate constant is effectively impossible

to calculate directly from Eqn. 1.3 as the value of the numerator is vanishingly small. Thus,

TIS introduced a factorization by defining a series of phase space regions between A and B. The

complete derivation can be found elsewhere [146]. First let us define the stable states A and B as

{x|λ(x) < λA} and {x|λ(x) > λB = λN}, respectively, where λ is some order parameter that is

a function of phase space. In practice, λ is often defined in configuration space rather than the

complete phase space. Then the phase space regions, Ω[0]+, Ω[1]+, ..., Ω[N ]+, are defined as follows:

x ∈ Ω[i]+ if {x|λ(x) > λi ∧ hbA,λi
(x) = 1}, where hbA,λi

(x) is 1 if, upon following the trajectory

backwards in time from x, we reach state A before λ(x) > λi, and 0 otherwise. Eqn. 1.3 can be

recast as kAB = 〈hΩ[N]+(x0)〉/〈hA(x0)〉, or the fraction of total phase points in overall state A which

belong to the Ω[N ]+ ensemble. Once again, hΩ[i]+(x) is a characteristic function with a value of 1 if

x ∈ Ω[i]+ and 0 otherwise. The rate expression can then be written in the apparently simple form:

kAB = ΦA0

N−1∏
i=1

P(λi+1|λi) (1.4)

where P(λi+1|λi) = 〈hΩ[i+1]+(x0)〉/〈hΩ[i]+(x0)〉 and ΦA0 = 〈h[0]+(x)〉/〈hA(x)〉. The flux, ΦA0, can

be evaluated directly from a long straightforward simulation in state A by counting the number of

first crossings of λ0, Nλ0
cross. By first crossing, we mean that crossings of λ0 are only counted the

trajectory must have more recently been in A than λ > λ0. Then, ΦA0 = Nλ0
cross/tA, where tA is

the total length time the simulation spends in overall state A. For the latter part of Eqn. 1.4,
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consider the ensemble of all paths that begin in A, end in A or B, and have at least a single crossing

of λi. P(λi+1|λi) is equal to the fraction of those paths which also cross λi+1 at least once. TIS

thus reduces the rate calculation to performing importance sampling in path space to generate a

path ensemble associated with each interface, λi. Presuming sufficient overlap between adjacent

path ensembles, the factorization in Eqn. 1.4 provides an accurate estimate of kAB . Details of

the algorithm can be found elsewhere [146]. Suffice it to say that the algorithm is non-trivial to

implement and parallelize in high-performance computing environments. In particular, molecular

simulations of complex systems generally require highly optimized softwares that include CPU and

GPU parallelization. As such, the source code modifications required to implement many advanced

sampling methods are becoming more and more difficult for researchers. It is worth noting that

two software packages [147, 148, 149] have very recently been released for TIS, which should help

increase the accessibility of the method.

1.4.2 Forward flux sampling

The primary reason for introducing the above formalism is to explain FFS. FFS extends

TIS to non-equilibrium systems. Whereas TIS requires time reversible dynamics and an a priori

knowledge of the equilibrium phase space distribution [146], FFS does not require either. Perhaps

more importantly as a practical matter, the FFS algorithm remains applicable to equilibrium systems

and is straightforward to understand, implement, and parallelize. FFS was originally developed to

study bistable biochemical switches in gene regulatory networks [129] and shares similarities with a

method [150, 151, 152] from telecommunications modeling [153]. However, it has since been applied

to biomolecular conformational changes [154, 155, 156], and homogeneous [40, 50, 51, 104, 53, 108,

46] and heterogeneous [157, 58, 61] crystal nucleation. FFS uses the same effective positive flux

expression as TIS to express the rate constant. However, the method of path generation is different.

Whereas TIS is based upon the shooting move and integrates paths forwards and backwards in time

from the shooting point, FFS uses a splitting move [158, 159] and only integrates the dynamics

forwards in time from the splitting point [129, 1]. FFS thus requires stochasticity to ensure path

divergence following the splitting move, although some have suggested that the Lyapunov instability

may provide sufficient stochasticity in otherwise deterministic systems [153].

There are several variants of FFS, described in complete detail elsewhere [1, 153]. The most

common, ‘direct FFS’ algorithm, is described below: (1) Select an order parameter, λ, that can
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differentiate between stable states A and B. (2) Run a long straightforward simulation in A. The

purpose of this simulation is to decide the locations of λA and λ0, calculate ΦA0, and collect a large

number of first-crossing phase points at λ0 (∼102–104). (3) Initiate a total of M simulations (∼103–

105) from the phase points at λ0. Velocity perturbation at the start of the simulations or stochasticity

in the dynamics will assure trajectory divergence. Each simulation is continued until it reaches λ1 or

returns to A. Save phase points at λ1 and discard the phase points that returned to A. Determine

the number of simulations which reached λ1, Nλ1 . Calculate the probability, P(λ1|λ0) = Nλ1/M.

(4) Replace λ0 with λi and λ1 with λi+1 and iterate on step (3) until P(λi+1|λi) = 1.0 or state B

is reached. The rate constant can then be calculated from Eqn. 1.4. Complete transition paths can

be generated by connecting the partial paths backwards from B to A.

Despite the apparent simplicity of the algorithm, note that FFS satisfies the requirements

of the expression presented in Eqn. 1.4. The initial points collected at λ0 are only first-crossing

phase points, i.e., hA,λ0(x) = 1 for all the phase points collected at λ0. Simulations initiated from

the phase points at λ0 (λi) are terminated when they reach λ1 (λi+1). Therefore, all points collected

at λ1 (λi+1) meet the criteria of hA,λ1
(x) = 1 (hA,λi+1

(x) = 1). Thus, the fraction of trajectories

that reach λi+1 from λi in FFS accounts for the complex conditional probability encoded in Eqn.

1.4. There have been efforts to develop methods to optimize the placement of λA and λ0 [155, 156],

optimize the intermediate interface placement [160], and select the locations of the interfaces λ1, λ2,

..., λN on the fly [161]. The details of our implementation of FFS is provided in later chapters.

The algorithm presented in the prior paragraphs highlight the relative simplicity and ease

of parallelization of FFS. Each interface is run sequentially, and all M simulations for an interface

can be run in parallel, rendering the algorithm embarrassingly parallel. Source code modifications

to the simulation software are not necessary, as simulations can be run for a set period of time

with trajectories written to disk and then analyzed with a separate code. If the simulation crosses

λi+1 the phase point at which it crossed is extracted from the saved trajectory. If the simulation

fails to reach λi+1 or λA in the set simulation time, the simulation is extended as required until

it reaches one of the terminating conditions. These aspects of the method are especially appealing

when viewed in light of the other strengths of FFS (direct evaluation of the nucleation rate, access

to dynamical transition paths). All these features combined to make FFS compelling and our initial

method of choice. Nonetheless, like most methods, FFS has downsides. Because of the use of the

splitting move, many paths in FFS can originate from a single point at λ0 [123, 131]. This can result
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in correlated transition paths. We encountered this challenge in the FFS calculations presented

in Chapter 3. Another challenge is that FFS is somewhat more sensitive to the choice of order

parameter than other methods (e.g., TIS). While the results of FFS are insensitive to the choice

of order parameter in the limit of infinite sampling, both the efficiency and accuracy of FFS can

be affected by the choice of order parameter in realistic situations [136, 162, 123]. Despite these

challenges, we believe FFS represents one of the best platforms for studying crystal nucleation in

molecular simulations.

1.5 Summary

The goal of this dissertation is to improve our ability to study crystal nucleation in molecular

simulations and increase our understanding of the nucleation mechanism(s) of clathrate hydrates.

We start by applying molecular simulations to study the heterogeneous and homogeneous nucleation

of clathrate hydrates and then proceed to address the challenges identified in these studies in the

following chapters. Since surfaces are ubiquitous in systems with hydrate nucleation, Chapter 2

explores the effects of model hydrophobic and hydrophilic surfaces on hydrate nucleation. We find

two surprising results – the primary surface effect is to alter the bulk guest concentration, and re-

gions of high guest concentration near the hydrophobic surface did not promote hydrate nucleation.

Following our findings in Chapter 2 and given that homogeneous hydrate nucleation remains insuf-

ficiently well-understood, we apply FFS to rigorously study the mechanism of homogeneous hydrate

nucleation in Chapter 3. We find that the hydrate nucleation mechanism appears to differ for hy-

drates formed from soluble guest molecules (e.g., tetrahydrofuran) compared with sparingly soluble

guests (e.g., methane). Chapters 4 and 5 are dedicated to addressing some of the challenges of FFS.

Chapter 4 presents software developed in collaboration with members of the School of Computing at

Clemson University to deploy FFS at large scale in high-performance computing environments. This

software enabled the FFS calculations that were performed in Chapter 3. In Chapter 5, we develop

a method (contour forward flux sampling) that allows FFS to be performed along multiple order

parameters simultaneously. The purpose of the method is help address the FFS dependence on the

choice of order parameter by enabling multiple order parameters to be used simultaneously. Since

good order parameters are extremely valuable for studies of nucleation, in Chapter 6 we develop

a method that uses deep learning to distinguish between different crystal phases. The method is
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generalizable and should provide a route to rapidly develop order parameters for crystal nucleation

in novel systems. Future research directions and closing remarks are provided in Chapter 7.
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Chapter 2

Surface chemistry effects on

heterogeneous clathrate hydrate

nucleation
1

2.1 Introduction

Interfaces are ubiquitous in applications of clathrate hydrates. Hydrate plugs form in gas

pipelines where there are several examples of fluid–fluid and fluid–solid interfaces [164]. Naturally

occurring gas hydrates form in arctic and oceanic sediments [77]. In fact, calculations suggest that all

methane hydrate nucleation must be heterogeneous because the estimated homogeneous nucleation

rate is extraordinarily low. One calculation even suggests that within a volume of water equivalent

to earth’s oceans one would have to wait orders of magnitude longer than the history of the known

universe to observe a single homogeneous nucleation event [62]! Manipulation of surface properties

therefore provides a route to control hydrate nucleation for various technological applications.

Clathrate hydrate nucleation is difficult to study in experiments due to the inherently small

length and short time scales of the process [165, 166]. Meanwhile, hydrate nucleation is a rare

event on time scales easily accessible to molecular simulations. Accordingly, studies of clathrate

hydrate nucleation in molecular simulations are a relatively recent development. The first unbiased

1Material for this chapter adapted from Ref. [163]
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homogeneous methane hydrate nucleation trajectories were reported under a decade ago [94], and

a plethora of simulation studies of homogeneous nucleation have since followed [27, 101, 104, 108].

We direct the reader to recent reviews by English and MacElroy [167] and Barnes and Sum [168]

for a more complete summary of such studies. Despite significant progress in understanding the

mechanism of clathrate hydrate nucleation, many fundamental questions remain unanswered.

One such open question is how interfaces affect hydrate nucleation [166, 17]. Thus far,

most studies of heterogeneous hydrate nucleation have investigated the nucleation of methane or

carbon dioxide (CO2) hydrates near hydroxylated silica surfaces [114, 115, 117, 116] or ice [102]. In

simulations of CO2–water solution in contact with completely hydroxylated silica surfaces, an ice-

like layer first formed on the silica. An intermediate layer formed on the ice-like layer, and hydrate

nucleated on this intermediate layer [114]. Another study of similar systems found that as the

hydrophilicity of the silica surface was reduced by replacing hydroxyl groups with hydrogen atoms,

no ice-like layer formed. Instead, hydrate nucleated directly on an intermediate water layer which

formed on the silica surface [117]. In 3-phase silica-CO2-water systems, hydrate nucleation occurred

at the silica surface near the 3-phase contact line [115]. In this case, no ice-like layer was reported

and hydrate cages were hydrogen-bonded to the surface either directly or through one additional

water molecule.

A study of methane hydrate nucleation on silica surfaces found that nucleation occurred

near the hydroxylated silica surface and that half-cage structures formed on the surfaces to reduce

the mismatch between the surface and hydrate crystal structures [116]. Meanwhile, a study of

hydrate nucleation in front of a growing ice front found that methane accumulated at the ice–

solution interface, inducing hydrate-like defects in the ice structure which eventually resulted in

hydrate nucleation slightly further from the ice–solution interface [102]. Once hydrate nucleation

occurred, a liquid-like layer separated the ice and hydrate crystals.

These studies provide the first insights into the effects of surfaces on clathrate hydrate

nucleation. Despite similarities in the systems studied, a diversity of mechanisms are observed,

highlighting the complexity of the problem. Compared with heterogeneous ice nucleation, hetero-

geneous hydrate nucleation is more involved, in part due to the fact that clathrate hydrates are

multicomponent. The surface can thus play multiple roles, from reducing the crystal nucleus–liquid

surface area as in traditional heterogeneous crystal nucleation [23, 169], to affecting the local water

structure, local guest concentration, or water-mediated solute–solute interactions in the vicinity of
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the surface.

To begin elucidating the various factors that may affect heterogeneous hydrate nucleation,

we begin with a fundamental question: How do model hydrophilic and hydrophobic surfaces affect

hydrate nucleation? -OH and -CH3 terminated self-assembled monolayers (SAMs) are selected as

model hydrophilic and hydrophobic surfaces, respectively. SAMs are well-characterized in both

experiments and simulations, and their effects on interfacial water have been extensively studied

[170, 171, 172, 173]. Furthermore, though SAMs are semi-crystalline structures, the terminal groups

have some mobility, reducing the effects of lattice matching (or lack thereof) on our results.

We perform molecular dynamics (MD) simulations of clathrate hydrate nucleation from a

water–guest solution in contact with SAMs to study the effect of surface hydrophobicity on hydrate

nucleation. We do not observe heterogeneous nucleation on either hydrophilic or hydrophobic SAM

surfaces. Notably, nucleation occurs homogeneously in the bulk solution (>1.0 nm from the surface).

The primary surface effect on nucleation arises from its influence on the bulk guest concentration.

Interestingly, CH3SAM hinders nucleation despite significantly increased guest concentration near

the surface. We surmise that the CH3SAM surface prevents hydrate nucleation in the interfacial

region because guest–guest contact pairs are formed more easily near this surface.

2.2 Computational Methods

A coarse-grained model is employed for the SAM surfaces to be compatible with the coarse-

grained monatomic water model (mW) [174]. mW is computationally efficient and faithfully repro-

duces many properties of water [175]. Furthermore, mW has been extensively used to study ice and

hydrate nucleation [27, 95, 104, 105, 51, 108, 176, 177, 178, 179, 180, 181, 182]. XL guest [95], a

water-soluble guest molecule that occupies only the large cages of sII hydrate, is used. Though XL

has no directional (i.e. hydrogen-bonding) interactions with mW, it can be thought of as a loose

analogue of THF, in that THF is miscible with water, forms sII hydrate, and only occupies the large

51264 cages of the sII crystal. Since XL is a water-soluble guest molecule, our simulations do not

require high supersaturation or a multiphase system as commonly employed for studies of hydrate

nucleation of sparingly soluble guest molecules. The melting point of the sII crystal with XL guest

and all cages occupied was identified as 312 K through the direct coexistence method.
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Figure 2.1: (a) Schematic of two alkane chains extending from a single central sulfur atom that
comprise our SAM surfaces. (b) System setup for nucleation simulations. Alkane chain carbon
atoms (CC) are shown as gray bonds, central sulfur (CS) atoms are shown as cyan spheres, -OH/-
CH3 terminal groups (OT/CT) are shown as green spheres, XL guest molecules are shown as purple
spheres, and mW water is shown as blue points. The simulation cell is approximately 6.9× 6.0× 8.8
nm3.

2.2.1 Generation of SAM surfaces

The SAM surfaces were modeled as a bilayer consisting of two monolayers extending in

opposite directions from a layer of central sulfur atoms. Two 10 carbon alkane chains terminated

by an -OH or -CH3 terminal group were covalently attached to each central sulfur atom (see Figure

2.1(a)). 192 central sulfur atoms were placed in a hexagonal close packed arrangement in the x-y

plane and spaced 0.497 nm apart to mimic the adsorption of sulfur groups on an Au (111) surface

[170]. The resulting SAM bilayers were periodic in the x and y directions. Each monolayer had a

surface area of 6.9×6.0 nm2. The SAM surfaces were energy minimized and then equilibrated for 10

ns in the NVT ensemble at 300 K to allow the SAM chains to relax to their equilibrium tilt angle.

An example of the resulting surface can be seen in Figure 2.1(b).

2.2.2 Force field details

The coarse grained SAM surfaces consist of three atom types: central sulfur (CS), alkane

chain carbon (CC) and a -OH (OT) or -CH3 (CT) terminal group (see Figure 2.1(a)). OHSAM and

CH3SAM contain CS and CC atom types, but are differentiated by the presence of either OT or CT,

respectively. The CS–CS, CS–CC, CC–CC, CS–CT/OT, and CC–CT/OT non-bonded interactions

were described with a Lennard-Jones (LJ) potential using parameters from the OPLS-UA force field

[183, 184]. The CT–CT and OT–OT terminal group non-bonded interactions were described via the
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functional form of the Stillinger-Weber (SW) potential [185] as shown in Eqs. 2.1–2.3:

E =
∑
i

∑
j>i

φ2(rij) +
∑
i

∑
j 6=i

∑
k>j

φ3(rij , rik, θijk) (2.1)

φ2(rij) = Aε

[
B

(
σ

rij

)p
− 1

]
exp

(
σ

rij − aσ

)
(2.2)

φ3(rij , rik, θijk) = λε[cos θijk − cos θ0]2 exp

(
γσ

rij − aσ

)
exp

(
γσ

rik − aσ

)
(2.3)

where E is the total potential energy of the system, φ2 is a two-body term and φ3 is a three-body

term that allows a tetrahedral geometry to be enforced without explicit hydrogen-bonding. rij is the

distance between atoms i and j, σ is related to the atomic size, and ε scales the interaction strength.

θijk is the angle formed between atoms i, j, and k. A = 7.049556277, B = 0.6022245584, a = 1.8,

and γ = 1.2 are constants. λ = 23.15 for mW and λ = 0 for all other three-body interactions. The

CT terminal groups were type M [95]. The OT terminal groups were described as mW [174]. All

bonded interactions were taken from the OPLS-AA force field [186]. Additionally, each CS atom

was bonded to its six nearest CS neighbors with an equilibrium bond length of 0.497 nm and spring

constant of 300.0 kcal/mol to maintain their relative positions and emulate adsorption of the SAM

chains to a solid substrate.

Water and guest molecules were described by the coarse-grained mW [174] and XL guest

[95] models, respectively. All interactions involving water or guest molecules were described with

the functional form of the SW potential. The mW–mW, XL–XL, mW–XL, OT–mW, CT–mW, and

OT–XL interactions were used exactly as they have been parameterized elsewhere [174, 95]. The

CT–XL interaction parameters were calculated with Lorentz-Berthelot mixing rules between types

M and XL, yielding εCT−XL = 0.340 kcal/mol and σCT−XL = 0.429 nm.

The CC–mW and CC–XL interactions required further parameterization. The standard

potentials for mW and XL are softer than the traditional LJ potential as the repulsive term scales

by (1/rij)
4 (p = 4 in Eq. 2.2) compared with (1/rij)

12 for the LJ potential. This results in excessive

penetration of mW and XL molecules into the SAM surfaces. Such penetration of water or guest

molecules was not observed in all-atom simulations. Therefore, the CC–mW and CC-XL non-bonded

interaction parameters were modified to be more repulsive by changing the exponent on the repulsive
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term from p = 4 to p = 12. For CC-mW interactions, ε and σ values were selected to match the

distance to, and depth of, the potential minimum with the potential minimum of the original M–mW

interactions. The CC–XL interactions were weakened with values of εCC−XL = 0.1 kcal/mol and

σCC−XL = 0.45 nm. Note that the interactions between the terminal groups (CT/OT), and mW or

XL remain unaffected by these modifications.

2.2.3 Contact angle calculations

The water contact angles on OHSAM and CH3SAM surfaces were calculated to quantify

their hydrophobicity. The contact angle was calculated for droplet sizes of 1000, 2000, 4000, and

8000 water molecules. The larger droplets required SAM surfaces up to 15× 15 nm2. The profile of

the droplet was determined by identifying edge of the droplet as the point where the water density

fell below 1/2 of bulk water density. The interior angle between the tangent line to the droplet at

the surface and the plane of the surface determined the contact angle. The macroscopic contact

angle is calculated by extrapolating a linear fit of 1/r vs. θc to 1/r = 0, where r is the droplet

radius and θc is the microscopic contact angle [187]. We find that a droplet of water on OHSAM is

completely wetting (i.e. contact angle of ∼0◦). The contact angle of water on CH3SAM is 86◦. These

calculations confirm that the OHSAM and CH3SAM act as hydrophilic and hydrophobic surfaces,

respectively.

2.2.4 Nucleation simulations

MD simulations of clathrate hydrate nucleation were performed for systems with a mW–

XL solution in contact with either OHSAM or CH3SAM in the NpT ensemble at 5.6 mol% XL,

p = 1 atm, and T = 230 K and T = 233 K. 3.0 nm slabs of mW–XL solution, with randomly

generated coordinates for mW and XL molecules, were placed on each side of equilibrated SAM

surfaces. A snapshot of the SAM–solution system setup is shown in Figure 2.1(b). The SAM–

solution configurations were energy minimized and equilibrated for 5 ns at p = 1 atm and T = 300

K, and then simulated in production for an additional 25 ns at the same conditions. The coordinates

were stored every 1 ns from 16–25 ns to provide up to 10 independent initial configurations for the

nucleation simulations. Random velocities were drawn from a Gaussian distribution to start the

nucleation simulations at T = 230 K or 233 K. The nucleation simulations were performed until
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nucleation occurred or for 1 µs.

Simulations of homogeneous (bulk) nucleation of an XL–mW solution were performed in

the NpT ensemble at p = 1 atm, 4.0 mol% and 6.5 mol% XL, and T = 230 K and T = 233 K. The

initial configurations for the production nucleation simulations were generated in the same manner

as above; 5 ns equilibration at p = 1 atm and T = 300 K, and a 25 ns production simulation at

p = 1 atm and T = 300 K with configurations written every 1 ns from 16–20 ns to generate five

unique starting configurations for the production nucleation simulations.

2.2.5 Simulation details

All MD simulations were performed in LAMMPS (May 15, 2015 build) [188, 189] with a

time step of 5 fs. Periodic boundary conditions were employed in the x, y, and z directions. Non-

bonded interactions were cutoff at 1.0 nm. All equilibration simulations were performed with the

Berendsen thermostat and barostat with time constants of 0.5 ps and 1.0 ps, respectively. Production

simulations were performed with the Nosé–Hoover thermostat and barostat with time constants of

1.0 ps and 5.0 ps, respectively. The SAM and solution were thermostated separately and pressure

coupling was anisotropic. All snapshots were generated with Visual Molecular Dynamics [190].

2.3 Results and Discussion

2.3.1 Hydrate nucleation time

Since nucleation is a stochastic process we gathered five independent nucleation trajectories

of OHSAM and CH3SAM systems at 230 K. The induction time and nucleation time for each

trajectory were determined by fitting a stretched exponential to the potential energy (PE) trace.

Details of this procedure can be found in the supplemental material of Ref. 179. The induction

time is the time when the PE has decreased by half of the total decrease observed during the phase

transition. We additionally define the nucleation time (tnuc) as the time of maximum rate of change

of the curvature of the PE (i.e. the extremum, before the induction time, of the 3rd derivative of

the fit to the PE). Because the size of the critical nucleus (and even the proper reaction coordinate)

are unknown, the nucleation time serves as an estimate of the time at which a stable hydrate

nucleus first forms in each nucleation trajectory. By stable hydrate nucleus, we mean the nucleus
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Figure 2.2: Number of trajectories nucleated after a given time. OHSAM systems at 230 K and 233
K are shown in light green and dark green, respectively. CH3SAM systems at 230 K and 233 K are
shown in orange and red, respectively.

which eventually grows into hydrate, rather than one of the many nuclei that form and dissolve

rapidly prior to nucleation. It is useful to know the time at which the stable hydrate nucleus forms

when investigating the time evolution of system properties related to nucleation, because changes

in such properties can be classified as occurring before, during, or after the formation of the stable

hydrate nucleus. To ascertain the accuracy of the nucleation time, we repeated the procedure twice,

replacing the PE trace with traces of two local order parameters (the largest clusters as determined

by mutually coordinated guest [191] and the criteria of Báez and Clancy [192]) that quantify the

size of the largest hydrate nucleus. The nucleation times calculated with the three metrics were

generally within 1 ns of one another.

The induction time and nucleation time are related to the nucleation rate since the nucleation

rate is the number of nucleation events volume−1 time−1 (or events area−1 time−1 in heterogeneous

nucleation). All simulations reported in this work contain the same mW–XL solution volume and

SAM surface area, so we report nucleation times rather than explicitly calculating nucleation rates.

However, the terminology is interchangeable. On average, shorter nucleation times indicate a higher

nucleation rate while longer nucleation times indicate a lower nucleation rate.

The fraction of trajectories nucleated after a given time is reported for OHSAM and CH3SAM

systems in Figure 2.2. At 230 K, OHSAM systems nucleate faster than CH3SAM systems. All five
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OHSAM trajectories nucleated within 50 ns, and all five CH3SAM trajectories nucleated within 100

ns. Due to the stochastic nature of nucleation, the relatively small sample size (5 trajectories for

each surface), and the relatively small difference in the nucleation times (< 1 order of magnitude),

we wanted to ensure a statistical difference existed in the average nucleation time of OHSAM and

CH3SAM systems. To this end, we performed 10 simulations of OHSAM systems and 10 simula-

tions of CH3SAM systems at 233 K. These conditions of reduced supercooling (higher temperature)

increase the barrier to nucleation, lowering the nucleation rate and accentuating any differences be-

tween OHSAM and CH3SAM systems. At 233 K, all 10 OHSAM trajectories nucleated within 200

ns, but only 8/10 CH3SAM trajectories had nucleated after 1 µs of simulation time. Together, the

results at 230 K and 233 K suggest that OHSAM promotes hydrate nucleation relative to CH3SAM.

2.3.2 Location of hydrate nucleation

There have been several proposed mechanisms of heterogeneous hydrate nucleation. Some

studies have observed hydrate nucleation directly on silica surfaces, with full or half-cages hydrogen-

bonding to surface -OH groups [115, 116]. Other studies have observed hydrate nucleation on an

intermediate water layer which forms at silica surfaces [114, 117]. Other studies yet have found that

hydrate nucleation occurs slightly away from an interface [102]. To understand how OHSAM and

CH3SAM surfaces affect hydrate nucleation we first quantify the location of nucleation, i.e., the

physical location in the system where the stable hydrate nucleus initially forms and begins to grow.

Specifically, we are interested in the location of nucleation with respect to the SAM surfaces.

In order to accurately identify hydrate nuclei, water molecules which belong to the largest

hydrate nucleus were identified every 1 ps with a local order parameter. Local order parameters are

frequently used in simulation studies of crystal nucleation to identify and characterize the crystal

nucleus that forms during the phase transition [193, 17, 194, 191, 104]. We use the dihedral order

parameter (DHOP). DHOP is an order parameter that we created and have identified as the best

approximation of the reaction coordinate for homogeneous nucleation of the XL guest [131]. DHOP

calculates the dihedral angles formed from chains of neighboring water molecules. Water molecules

which belong to the central bond of 11–12 planar dihedrals are considered hydrate-like. The hydrate

nucleus is identified as the largest cluster of first neighbor hydrate-like water molecules.

Visualization of the trajectories suggests that the stable hydrate nuclei form at least 1 nm

away from the surfaces in OHSAM and CH3SAM systems. Snapshots of nucleation in representative
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Figure 2.3: Snapshots of nucleation from representative trajectories for (a)–(d) OHSAM, and (e)–(h)
CH3SAM systems at 233 K. SAM surfaces are shown as gray spheres with terminal groups shown as
dark green (OHSAM) or red (CH3SAM) spheres. Water molecules in the largest hydrate nucleus are
shown with dark blue bonds, and all other water molecules are shown as light blue points. XL guest
molecules are shown as purple spheres. Snapshots (a)–(d) are from OHSAM run 5 at t− tnuc/ns =
−1.2, −0.9, 0.0, and 1.2, respectively. Snapshots (e)–(h) are from CH3SAM run 6 at t− tnuc/ns =
0.8, 1.3, 1.5, and 2.1, respectively.
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trajectories from OHSAM and CH3SAM systems at 233 K are shown in Figure 2.3. The snapshots

are taken to show the bulk solution (light blue) between periodic images of the SAM surfaces (gray).

The stable hydrate nuclei (panels (a) and (e)) initially form >1.0 nm from the terminal groups of the

SAM surfaces (green and red spheres for OHSAM and CH3SAM, respectively). The early nuclei are

generally composed of face-sharing 512 or half 512 (56) type structures, similar to our observations of

homogeneous nucleation of XL hydrates [131]. The hydrate nuclei initially grow slowly, undergoing

structural rearrangements over the period of several hundred picoseconds (panels (a)–(b) and (e)–

(f)), before growing more rapidly (panels (b)–(d) and (f)–(h)). The hydrate nuclei appear to grow

in a roughly symmetric fashion until growth is slowed by crowding from the interface. The resulting

hydrate is amorphous, as observed in almost all simulation studies of hydrate nucleation. It has been

shown that simulations of nucleation at lower supercooling or in the microcanonical ensemble results

in more crystalline hydrate [103, 109]. We note that our studies are performed at large supercooling

as the melting temperature of XL hydrate is ∼307 K [95].

Though visualization provides insights into the location of hydrate nucleation, it is not

quantitative, and furthermore, it is difficult to condense results from multiple nucleation trajectories

with visualization alone. In order to quantify the location of nucleation, we calculated the local

hydrate density as a function of distance from the center of the SAM surfaces (zCS). The local

hydrate density is defined as the number density of water molecules which belong to the largest

hydrate nucleus. Heat maps can then be used to visualize the temporal and spatial evolution of the

hydrate nucleus. In Figure 2.4 a subset of these heat maps are shown for OHSAM and CH3SAM

at 233 K. The results are reported for 5 ns centered on the nucleation time of each trajectory. We

show the extent of the SAM surfaces with green and red crosshatched rectangles for OHSAM and

CH3SAM, respectively. In all cases the hydrate density is initially low and fluctuates from ∼0.5

nm to ∼3.0 nm from the SAM surfaces. Examples of this behavior can be seen in most of the

trajectories, but specifically from t − tnuc = −2.5 ns to t − tnuc = −1.5 ns in panel (c) and from

t− tnuc = −2.5 ns to t− tnuc = 0.5 ns in panel (i). During this period, the largest nucleus frequently

changes location in the system, indicating that a stable nucleus has not formed. Once the stable

hydrate nucleus forms, it remains in one location and begins to grow. This causes the density of

the hydrate to increase at a given z-location. Thus, the heat maps provide a quantitative picture of

where in the system the stable hydrate nucleus forms with respect to the SAM surfaces. The heat

maps highlight the uncertainty in our nucleation time estimates. In some trajectories the stable
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hydrate nucleus forms before tnuc, while in other trajectories it forms after tnuc. In almost all cases

the stable nucleus forms within 2 ns of tnuc.

For all nucleation trajectories in OHSAM and CH3SAM systems it is clear that hydrate

nuclei never form directly on the SAM surfaces. Even prior to the formation of a stable hydrate

nucleus, when the location of the largest nucleus is rapidly fluctuating throughout the system, water

molecules within 0.5 nm of the SAM surface rarely belong to hydrate nuclei. At the time that the

stable nucleus forms, the closest edge of the nucleus is most often further than 1.0 nm from the SAM

surface. Furthermore, the regions of highest hydrate density first appear several nanometers from

the SAM surface. These results support our observations in Figure 2.3. Similar behavior is also

observed for all trajectories at 230 K. We find that the stable hydrate nuclei do not form at OHSAM

or CH3SAM surfaces. Thus, hydrate nucleation is not directly templated by either hydrophilic or

hydrophobic SAM surfaces.

2.3.3 Spatial distribution of water and guest molecules

Next, we investigated how the presence of SAM surfaces affected the spatial distribution of

water and guest molecules. It is well-established that guest concentration has a large effect on hydrate

nucleation rates [68, 67, 195, 98]. The density of SAM, mW, and XL were calculated as a function of

distance from the center of the SAM surfaces during the pre-nucleation period. The pre-nucleation

period is defined as starting 5 ns into the production nucleation simulations and ending 5 ns before

the nucleation time. This definition ensures that averages over this period represent properties of

the metastable solution, and are unaffected by hydrate nucleation. We focus our analysis on the

pre-nucleation period to elucidate characteristics of the metastable solution responsible for hydrate

nucleation.

Figure 2.5 reports the density of SAM, mW, and XL in OHSAM and CH3SAM systems at

233 K. Water forms two distinct peaks near OHSAM indicating water layering near the hydrophilic

surface. Very little XL is found within 0.5 nm of OHSAM. The XL density reaches a maximum at

∼1.0 nm from the OHSAM surface before reaching a plateau at ∼2.0 nm from OHSAM. We refer to

the XL density and concentration in the plateau region as the bulk density and bulk concentration

of XL, respectively. The maximum XL density is ∼1.7 times the bulk XL density in the OHSAM

systems.

The distribution of water and XL is notably different in CH3SAM systems. The first peak
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sentative nucleation trajectories in OHSAM (panels (a)–(e)) and CH3SAM (panels (f)–(j)) systems
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Figure 2.5: Normalized density of SAM, mW (blue), and XL (purple) as a function of distance from
the center of the SAM surfaces for (a) OHSAM and (b) CH3SAM systems at 233 K. OHSAM is shown
in green and CH3SAM is shown in red. SAM and mW densities are reported on the primary y-axis,
and XL density is reported on the secondary y-axis. Densities were calculated prior to nucleation
and averaged across all runs. Error bars represent one standard deviation from the mean. Bulk
densities are averaged from 0.0 < |z − zcs|/nm < 1.0 for SAM and 3.0 < |z − zcs|/nm < 4.0 for mW
and XL. In OHSAM systems ρbulk,mW = 29.2 molecules/nm3 and ρbulk,XL = 1.96 molecules/nm3.
In CH3SAM systems ρbulk,mW = 30.4 molecules/nm3 and ρbulk,XL = 1.27 molecules/nm3.
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in the water density is further from the CH3SAM surface compared with OHSAM, a feature char-

acteristic of hydrophobic interfaces [173, 171, 172, 196, 197, 198, 199]. The water density in the

first peak is considerably lower for CH3SAM compared with OHSAM. The second peak in the water

density is almost nonexistent. The lower water density near the CH3SAM surface may be attributed

to the presence of XL, which aggregates at the CH3SAM surface. The maximum in the XL density

is located only 0.3 nm from CH3SAM and is ∼8 times the bulk XL density in the CH3SAM systems.

The error bars on mW and XL density are large near the CH3SAM surface because unequal amounts

of XL aggregated at the two CH3SAM interfaces (see Figure 2.3). It appears that once XL begins to

aggregate at one interface, more XL follows, causing a pseudo-phase separation. We note that the

average density profiles of water and guest were approximately constant during the pre-nucleation

period.

2.3.4 Time evolution of water structure

Though the stable hydrate nucleus clearly forms >1.0 nm from the SAM surfaces, the sur-

faces could be inducing interfacial water structure which leads to nucleation. During the nucleation

of CO2 hydrates in the presence of silica surfaces, researchers observed the formation of an ice-like

layer on the silica surfaces which preceded nucleation of clathrate hydrate [114]. Other studies have

additionally reported hydrate nucleation near surfaces with some intermediate water layer bridging

the surface and hydrate [117].

To investigate if similar phenomena occurred in our systems, the time evolution of water

structure was characterized in z-slabs at different distances from the surfaces. The bounds of the z-

slabs were chosen to coincide with the minima in the water density profiles shown in Figure 2.5. The

water structure was characterized with an angular order parameter, Fθ [192], which is approximately

zero for perfectly tetrahedral structure, and a dihedral order parameter, F4φ [200], which is often

used to distinguish liquid, ice, and hydrate structure in water. An average Fθ is used:

Fθ =
〈nang∑
i=1

(| cosxi| cosxi + 0.11)2
〉
z

(2.4)

where 〈· · · 〉z indicates an average over all water molecules in the z-slab of interest, nang is the number

of angles formed between a water molecule and its first neighbors and xi is the value of angle i. First

neighbors are defined as water molecules within 0.325 nm of each other. SAM terminal groups within
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0.325 nm of a water molecule are also included as a first neighbor. For reference, Fθ of liquid water

is ∼ 0.4 and Fθ of solid water (ice or hydrate) is ∼ 0.05. A modified version [105] of the F4φ [200]

order parameter is used:

F4φ =
1

nd

∑
i

∑
j 6=i

∑
k 6=i,j

∑
l 6=i,j,k

cos(3θi,j,k,l). (2.5)

θi,j,k,l is the dihedral angle between four neighboring water molecules (i.e. i and j, j and k, and k

and l must be first neighbors). nd is the total number of dihedrals in the z-slab. Once again, SAM

terminal groups are included as first neighbors of a water molecule if they meet the distance criteria.

F4φ of liquid water is ∼0.0, ice is < −0.4, hydrate is ∼0.9.

The time evolution of Fθ and F4φ are shown in Figure 2.6 for OHSAM and CH3SAM

systems at 233 K. The results are reported as an average of all trajectories that nucleated. The

water molecules located in z-slabs closest to the SAM surfaces (gray and orange) show no change in

structure, as characterized by Fθ (panels (a) and (c)) or F4φ (panels (b) and (d)), before, during, or

after nucleation. Furthermore, these water molecules are well within the region defined as liquid-like

for both Fθ and F4φ. Fθ of water closest to the CH3SAM surface (panel (c), gray), suggests increased

tetrahedriality. However, we believe this signal arises from the lower number of first neighbors for

water molecules near a hydrophobic surface. The lack of any difference between F4φ of water in the

z-slab closest to CH3SAM (panel (d), gray) and OHSAM (panel (b), gray) supports this hypothesis.

The first changes in water structure captured by Fθ and F4φ occur in the z-slabs furthest

from the SAM surfaces (blue and magenta lines). These changes generally occur around the nu-

cleation time and are attributed to the formation and growth of the stable hydrate nucleus. We

find no evidence of intermediate structure (ice-like or otherwise) forming on the SAM surfaces prior

to hydrate nucleation. In-plane mW–mW, XL–XL, and mW–XL radial distribution functions (not

reported) averaged over different time windows in the pre-nucleation period also showed no changes

in the water or guest structure vicinal to SAM surfaces prior to nucleation.

2.3.5 Nucleation in homogeneous systems

Since there is no evidence that hydrate nucleation occurred at or near the SAM surfaces,

and no evidence of any intermediate structure formation on the SAM surfaces, it is possible that

the only manner in which the SAM surfaces influenced hydrate nucleation is by affecting the guest
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Figure 2.6: Evolution of water structure as characterized by angular (Fθ) and dihedral (F4φ) parame-
ters in z-slabs of different distances from the (a)–(b) OHSAM and (c)–(d) CH3SAM surfaces near the
nucleation time. The bounds of the z-slabs were selected to match the minima of the water density
profiles shown in Fig. 2.5. Gray, orange, blue, and magenta lines represent slabs corresponding to
|z− zcs|/nm = 1.2–1.53, 1.53–1.93, 1.93–2.50, and 2.50–4.00, respectively, for OHSAM systems, and
|z − zcs|/nm = 1.31–1.69, 1.69–2.11, 2.11–2.50, and 2.50–4.00, respectively, for CH3SAM systems.
Results are averaged with a 10 ps rolling average for each run and then are averaged across all runs
that nucleated at 233 K. Error bars represent one standard deviation from the mean.
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Figure 2.7: Fraction of trajectories nucleated after a given time for bulk homogeneous solution of
mW and XL compared with the (a) OHSAM and (b) CH3SAM systems. Systems with SAM are
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distribution in the systems. Though the OHSAM and CH3SAM systems have the same number of

mW and XL molecules, the expulsion of XL near the OHSAM surface and the aggregation of XL

near the CH3SAM surface (see Figure 2.5) results in different bulk XL concentrations for OHSAM

(6.5 mol%) and CH3SAM (4.0 mol%) systems. If nucleation in the SAM systems is homogeneous

(i.e. not directly affected by the presence of the SAM surfaces), the nucleation rates in the SAM

systems should be similar to homogeneous systems of mW and XL. In order to compare nucleation

rates observed in the SAM systems with homogeneous nucleation rates at equivalent concentrations,

simulations of mW–XL solutions in the absence of any SAM surface at 4.0 mol% and 6.5 mol% XL

were performed.

Five nucleation simulations were performed for each of the homogeneous systems (4.0 mol%

XL and 6.5 mol% XL) at 230 K and 233 K. The nucleation times in the homogeneous systems are

compared with the nucleation times in the SAM systems in Figure 2.7. The results for OHSAM and

the equivalent homogeneous system (6.5 mol% XL) show that the nucleation times are similar (see

panel (a) and inset) at both 230 K and 233 K. This suggests that the presence of the OHSAM surface

does not influence nucleation except for how it affects the distribution of XL guest in the system.

CH3SAM and the equivalent homogeneous system (4.0 mol% XL) shows similar nucleation times at

230 K. However, at 233 K the nucleation times for the CH3SAM systems are notably longer than

homogeneous systems with an equivalent bulk XL concentration. This suggests that the presence of

the CH3SAM surface hinders hydrate nucleation.

2.3.6 Formation of XL contact pairs near CH3SAM surface

How does the presence of the CH3SAM surface hinder hydrate nucleation? It is surprising

that CH3SAM hinders hydrate nucleation given that there is a ∼8 times increase in the local XL

density near the CH3SAM surface. Even if the XL concentration in the z-slab next to the CH3SAM

surface is too high for hydrate formation, the high concentration of XL in this z-slab could act as a

reservoir of XL. Nucleation might then be promoted in a z-slab just outside of the high-concentration

region. However, we observe the opposite effect. CH3SAM appears to hinder nucleation rather than

promote it, even when compared to homogeneous systems of equivalent concentration. Furthermore,

Figure 2.4 shows no indication of nucleation occurring near the region of high XL concentration.

Therefore, the CH3SAM surface must be affecting the water–water, guest–guest or guest–water

interactions in a manner which hinders hydrate nucleation, despite the increased local guest concen-
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Figure 2.8: (a) Fraction of XL molecules participating in at least 1 (light purple), 2 (purple), or
3 (dark purple) contact pairs with other XL molecules in z-slabs at different distances from the
CH3SAM surface. Results are averaged across the pre-nucleation period of all trials. Error bars
represent one standard deviation on the mean. A snapshot of the sII crystal is shown as an inset. (b)
Snapshot of XL molecules near the CH3SAM surface illustrating XL aggregation and the formation
of XL contact pairs. SAM is shown in gray, XL molecules within 0.6 nm of the SAM surface are
shown as purple spheres, and mW molecules within 0.6 nm of the SAM surface are shown with blue
bonds.

tration.

Visualization of XL molecules near the CH3SAM surface revealed that the XL molecules

commonly adopted contact configurations with one another. Contact configurations are configura-

tions where guest molecules are “in contact” with one another with no water molecules between

them. A snapshot of XL near the CH3SAM (Figure 2.8(b)) surface shows many such configurations.

Figure 2.8(a) reports the fraction of XL molecules participating in at least 1, 2, or 3 contact pairs

with other XL molecules in different z-slabs in the CH3SAM system at 233 K. XL molecules belong

to an increased number of contact pairs near the CH3SAM surface. In particular, the fraction of

XL molecules in 3 or more contact pairs is significantly enhanced near CH3SAM. The formation of

contact pairs may prevent hydrate nucleation since all guest molecules in the hydrate structure exist

in solvent separated pairs for singly–occupied cages. For reference, a snapshot of guest molecules in

the sII crystal is shown as an inset in Figure 2.8(a). Previous work has shown that two methane

molecules near a hydrophobic surface display a shallower solvent separated minimum and lower de-

solvation barrier in the methane–methane potential of mean force [201]. Despite the fact that XL

is a water-soluble guest molecule, our results suggest that similar behavior is observed for XL near

CH3SAM.

Collectively, our results indicate that the primary effect of surfaces on hydrate nucleation

arises from changes in the guest concentration in the bulk solution. In our systems, we observe that
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the XL guest molecules aggregate at the CH3SAM surface resulting in reduced XL concentration in

bulk, while OHSAM expels guests close to the surface, resulting in a slight increase in the bulk XL

concentration. Interestingly, the nucleation rate in OHSAM systems is similar to the homogeneous

nucleation rates at the enhanced bulk concentration. Therefore, one could argue that OHSAM

surfaces are “enhancing” hydrate nucleation, though not through the traditional mechanisms (e.g.

templating, etc). Various reasons for hindrance or enhancement of hydrate nucleation on silica

surfaces have centered around the structuring of water near the surfaces [114, 115, 116, 117]. Often

times, it has been argued that either the formation or not of ice-like layers affects hydrate nucleation.

In our studies, we find that neither CH3SAM nor OHSAM promote such ice-like features. We note

that recent studies have shown that surface flexibility often hinders ice nucleation [202, 181]. This

indicates that non-crystalline and flexible surfaces such as SAM surfaces will likely show different

mechanisms for hydrate (and more generally crystal) nucleation.

2.4 Conclusions

We studied the effect of model hydrophilic and hydrophobic surfaces on clathrate hydrate

nucleation with extensive MD simulations. Since hydrate nucleation is a stochastic process, 5–10

independent nucleation trajectories were generated for every system reported in this study. SAM

surfaces were selected as model surfaces because they afford a range of potential surface chemistries

with no rigid crystalline structure. We studied the nucleation of XL hydrates, where XL is a

water-soluble, structure II hydrate forming guest molecule. We observe that hydrate nucleation

always occurred in the bulk, >1.0 nm from the SAM surfaces, suggesting that neither surface

templates the growth of a hydrate crystal directly at the surface. Furthermore, the formation of

intermediate water structure (ice-like, or otherwise) is not observed on or near the SAM surfaces prior

to nucleation. Instead, we find that the presence of SAM surfaces affected the guest concentration

in bulk. CH3SAM promotes aggregation of XL molecules near the surface effectively reducing the

bulk XL concentration. In OHSAM systems the guest concentration in bulk is increased due to

guest exclusion near the surface. Therefore, the surface effects on hydrate nucleation primarily

come from their effects on the distribution of guest molecules in the system rather than structuring

of water near these surfaces. This highlights the interplay of various mechanisms that can affect

heterogeneous nucleation in multicomponent systems such as clathrate hydrates. Extrapolating
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our results to realistic systems, we speculate that in systems with constant chemical potential (i.e.

where an infinite bath of guest molecules is available from the bulk phase), guest will aggregate at

hydrophobic surfaces resulting in a “vapor-like” layer. Nucleation may then occur at the resulting

vapor–liquid interface as has been reported in the literature [97, 104].
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Chapter 3

Nucleation mechanism of clathrate

hydrates of water-soluble guest

molecules
1

3.1 Introduction

Current experiments lack the requisite spatial and temporal resolution to study the molecular-

level details of hydrate nucleation [165, 166]. Increasing computational power and advanced sampling

algorithms [123, 1, 127] have enabled molecular simulations of hydrate nucleation over the previous

decade [93, 94, 27, 95, 96, 100, 99, 101, 62, 115, 102, 104, 105, 106, 117, 108, 109, 113]. Most studies

have focused on sparingly soluble guest molecules (particularly CH4 [93, 94, 27, 96, 100, 101, 62,

102, 104, 105, 106, 109, 107, 203] and CO2 [115, 117, 113]) that form structure I (sI) hydrates. The

emerging consensus indicates that nucleation of hydrates from sparingly soluble guest molecules

begins with thermally-driven fluctuations that result in the formation and dissolution of pre-critical

amorphous hydrate nuclei [101, 108], often within ‘blobs’; aggregates of solvent-separated guest

molecules with lifetimes longer than pre-critical clusters of clathrate cages which form and dissolve

within them [27, 95]. The stability of these blobs may in fact arise from the presence of incomplete

cage structures which are composed of edge-sharing planar water faces [92, 204]. Regardless of the

1Material for this chapter adapted from Ref. [131]
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interplay of water and guest structuring which results in long-lived blobs, complete cages form from

within this region. The resulting hydrate nuclei are composed of complete (and incomplete) poly-

hedral cages but have no long-range crystalline order. When a hydrate nuclei reaches post-critical

size, it grows rapidly, exhibiting a combination of sI, structure II (sII), and other structural motifs.

It is not difficult to imagine that the early stages of nucleation of soluble and sparingly soluble guest

molecules might be different due to differences in their water-mediated interactions. Indeed, blobs

formed by soluble guest molecules are not as long-lasting as blobs formed by sparingly soluble guest

molecules [95].

A handful of recent studies have investigated the nucleation of clathrate hydrates of water-

soluble [112] and mixed guests [111, 205, 110]. The results suggest that water-soluble and mixed

guests also form amorphous hydrate structures, similar to the nucleation of hydrates of sparingly

soluble guests. However, the description of the nucleation mechanism of hydrates of soluble guests

remains incomplete. Though less studied in molecular simulations, water-soluble guest molecules

have important technological applications. For example, there have been recent advances utilizing

THF as a promoter molecule for long-term natural gas storage in sII hydrates [81, 87, 82]. Other

researchers have explored using THF as a promoter molecule for hydrogen storage in hydrate form

[84, 81, 87, 82]. Engineering these technological applications requires fine-tuning hydrate forming

conditions. This necessitates a complete understanding of the nucleation of mixed hydrate systems.

Rigorously investigating and quantifying the mechanism of nucleation of hydrates of water-soluble

guest molecules represents one of the important steps towards this goal.

In this work we study the mechanism of nucleation of clathrate hydrates of a water-soluble

guest molecule using a combined forward flux sampling [129, 1] (FFS)–committor probability anal-

ysis [144]. We identify order parameters (OPs) that provide the best approximation of the reaction

coordinate and characterize the transition state (TS). Our calculations represent the most compre-

hensive effort to date to compare various OPs which have been proposed to study hydrate nucleation

of both sparingly soluble and soluble guest molecules. We use insights gained from the reaction co-

ordinate and TS analysis to motivate further simulations which probe molecular level details of the

nucleation mechanism.
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3.2 Methods

We studied the nucleation of clathrate hydrates from a homogeneous solution of monatomic

water [174] (mW) and the XL guest molecule [95] in the NpT ensemble at 5.6 mol% XL, p = 500

atm, and T = 230 K. The XL guest is water-soluble, approximately the size of THF, and occupies

the 51264 cages of sII hydrate [95]. 5.6 mol% is the concentration of XL required to occupy all 51264

cages of sII hydrate. We note that since XL is a water-soluble guest molecule, our simulations are

not at artificially high concentration; experiments of mixed-THF hydrate formation are sometimes

performed at similar THF concentrations [87, 206].

3.2.1 Forward flux sampling

Direct forward flux sampling was performed to generate a large number of nucleation path-

ways. FFS is a technique used to sample rare event transitions by propagating a system from an

initial state, or basin, to a final state, through a series of successive interfaces (λ0, λ1...λn) defined by

increasing values of some OP, λ [129, 1]. Once FFS is complete, transition pathways are constructed

by connecting trajectories backwards from λn to λ0. The flux of trajectories from the initial basin

of attraction, λA, to λ0 is calculated from straightforward MD simulations in λA. These basin sim-

ulations are also used to collect system configurations at λ0. The rate constant for the process can

then be calculated as kFFS = Φ0

∏n−1
i=0 P (λi+1|λi), where Φ0 is the flux of trajectories from λA to λ0

and P (λi+1|λi) is the probability that a trajectory initiated from λi reaches λi+1 before returning to

λA. Further details of the direct FFS algorithm can be found in Ref. 1. The OP used for FFS was

BCplanar. BCplanar is a local OP which identifies the largest cluster of hydrate-like water molecules

based upon the rules of Báez and Clancy [192] (see Table 3.1 for a detailed description). We selected

BCplanar as the OP for FFS because previous work has shown that hydrate nuclei are amorphous and

the early stages of nucleation may involve partial cage structures. BCplanar identifies hydrate-like

structure regardless of crystal structure (sI/sII) and does not require that a water molecule be a

part of a complete cage.

One hundred independent 5 ns basin simulations were performed to calculate the flux of

trajectories from the λA to λ0, and to collect configurations at λ0. Initial configurations for the

basin simulations were generated in the following manner: coordinates for mW and XL molecules

were randomly generated at the appropriate density. This configuration was equilibrated at T = 300
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K and p = 1 atm for 1 ns. The pressure was increased to 500 atm and the system was simulated

in production for 25 ns. Configurations were saved every 1 ns from 16–25 ns. Ten independent

simulations were initiated from each of the ten configurations by initializing each simulation with

randomly assigned velocities consistent with the Maxwell-Boltzmann distribution at T = 230 K.

Each simulation was allowed to equilibrate for 1 ns at 500 atm and 230 K, followed by 5 ns of

data collection. The boundary of the liquid basin, λA, was selected as the mean cluster size in the

liquid basin. λ0 was selected as two standard deviations beyond λA. Details of the flux calculation

are reported in Appendix A. First crossings of λ0 separated by at least 500 ps were selected as

initial configurations for FFS to prevent correlation between successive configurations at λ0. This

procedure resulted in a total of 778 configurations at λ0.

FFS was performed with 10,000–40,000 total simulations per interface. The value of each

interface, λi was chosen on-the-fly based on the progress of trajectories initiated from the previous

interface, λi−1. The FFS simulations were performed using SAFFIRE. SAFFIRE is a software pack-

age under development in our group which uses the Hadoop platform [207, 208] and concepts from

SciFlow [209] to manage the submission and analysis of large numbers of individual MD simulations.

FFS details, including interface values, the number of configurations harvested at each interface, the

total number of trajectories initiated from each interface, the number of trajectories that successfully

crossed the next interface, and the probability of advancing to the next interface, are reported in

Appendix A. In total, FFS generated 1101 transition paths. Interestingly, we observed that 1021

transition paths originated from a single configuration at the first interface. We refer to this con-

figuration hereinafter as C753. Despite the success of pathways originating from C753, no single

characteristic difference between C753 and other configurations at the first interface was identified.

Further discussion is provided in Appendix A.

3.2.2 Committor analysis and model fitting

The committor probability, pB(x), is the probability that a nucleus will grow to form hydrate.

Though it contains no mechanistic or structural information, the committor probability is sometimes

considered the perfect reaction coordinate since it describes the progress of the transition [210, 211,

135]. Prospective reaction coordinate models can be compared by fitting each model to pB(x) for

a collection of configurations representative of the transition path ensemble (TPE), and evaluating

goodness-of-fit [144]. Better reaction coordinate models will have a better fit to the pB(x) data. In
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other words, a good reaction coordinate model should be able to accurately predict the committor

probability of any configuration which belongs to the TPE.

The committor probability of each configuration from FFS, pB,FFS(x), was initially esti-

mated from the connectivity of the trajectories [144]. The accuracy of pB,FFS(x) was tested by

randomly selecting 20 configurations and calculating their committor probability with 100 straight-

forward MD simulations (pB,MD(x)). The difference between pB,FFS(x) and pB,MD(x) was as large

as 0.55 for some configurations. The differences between pB,FFS(x) and pB,MD(x) arise from the

uncertainty in pB,FFS(x). Initiating even 30 trajectories from a single configuration can result in

one standard deviation on the estimate as large as 0.10. Furthermore, pB,FFS(x) values at earlier

interfaces are calculated by averaging over pB,FFS(x) from later interfaces, further propagating and

compounding any error in the estimates. Refer to Ref. 144 for a complete description of the method.

Since pB,FFS(x) values appeared inaccurate, accurate committor probabilities were calcu-

lated for 153 configurations sampled during FFS with straightforward MD simulations. The selection

of these configurations was motivated by two goals: (1) to evenly distribute the pB(x) values be-

tween pB(x) = 0.0 and pB(x) = 1.0 to prevent overfitting to one region of the transition, and (2) to

compare the transition mechanism for paths originating from C753 with the transition mechanism

for other paths. Within the framework of these two goals, the configurations were randomly selected.

For each selected configuration 100–200 MD simulations were initiated with randomly generated ve-

locities consistent with the Maxwell-Boltzmann distribution. The simulations were continued until

they committed to the liquid or solid basin to yield pB(x) with 2σ < ±0.07. Our final collection of

140 configurations with 0.0 < pB,MD(x) < 1.0 consisted of 76 configurations belonging to transition

paths originating at C753 and 64 configurations belonging to other transition paths.

Two sets of configurations were created from the 140 configurations with 0.0 < pB,MD(x) <

1.0. The first set, TP-TPE, was comprised of the 76 configurations belonging to transition paths

initiated at C753 and 6 configurations belonging to transition paths beginning from other configura-

tions at the first interface. The TP-TPE set of configurations is consistent with the TPE as sampled

by FFS [129, 1]. The second set, TP-NC753, was comprised of 64 configurations that belong to

transition paths not originating from C753. The fact that 93% of the transition paths originate from

C753 suggests that this configuration is extremely reactive compared with the other configurations

sampled at the first interface. Though many configurations at the first interface spawned trajecto-

ries that progressed through several interfaces of FFS, the majority of these trajectories eventually
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returned to the liquid basin. As such, successful transition pathways that do not originate from

C753 represent less traveled (and presumably higher energy) transition pathways. Fitting reaction

coordinate models to the two different sets of configurations enables comparison of the transition

pathways.

Prospective reaction coordinate models were created from single OPs and linear combina-

tions thereof. Each prospective model was fit to the two different sets of configurations, TP-TPE

and TP-NC753. Reaction coordinate models with up to five OPs were identified with a forward and

backward stepwise procedure. At each step, the Bayesian Information Criterion (BIC) was used to

determine whether a parameter should be added or removed from the model. BIC rewards improved

fit while penalizing additional model complexity [212]. Lower values of BIC indicate a better model.

Due to concerns about over fitting and difficulty in physically interpreting the results, our discus-

sion focuses on single parameter models. The most important predictors in the models identified

from the stepwise BIC procedure were used to create the two parameter models reported in Table

3.3. Prospective single parameter models were ranked with the model R2 and models with different

numbers of parameters were compared with BIC. A cross interaction term was initially included

in all two parameter models, but an ANOVA analysis determined that the cross term was nearly

always insignificant. We note that the cross interaction term was insignificant for the two-parameter

models reported in Table 3.3.

3.2.3 Order parameters

The primary classes of OPs tested were as follows: OPs based on the work of Báez and

Clancy [192] (BC), the mutually coordinated guest (MCG) OPs from Barnes et al. [191], the half

cage OP from Bi and Li [104] (HCOP), the largest solvent separated guest (LSSG) OP from Jacobson

et al. [194], complete cage-based OPs, OPs based upon the face-saturated incomplete cage analysis

(FSICA) from Guo et al. [204], and a novel OP based upon identifying planar dihedrals (DHOP).

Previous studies have used planar water structures as a signature of hydrates; examples include the

planar percentage of primitive rings [213] and CHILL+ [214]. Abbreviations and definitions for the

33 OPs evaluated are provided in Table 3.1.

Since DHOP is a novel OP, the algorithm is described in detail here. DHOP is defined as

the size of the largest cluster of hydrate-like water molecules, where hydrate-like water molecules

are identified with the following procedure:
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Table 3.1: List of OPs evaluated in this study

Abbreviation Description

BC Original Báez and Clancy identification [192]. A water molecule must be part of
4–6 5-membered rings (5MRs) and have tetrahedral order.

BCplanar BC with angle criteria (> 60◦) and dihedral criteria (< 30◦) to identify planar
5MRs.

BC56 BC modified to require a water to be part of 5–6 5MRs rather than the original
4–6 5MRs.

MCGx Original mutually coordinated guest (MCG) OP [191] where a guest molecule must
be part of >= x mutually coordinated pairs to be considered an MCG monomer.
A mutually coordinated pair of guests is defined as two guest molecules with >= 5
water molecules in a region defined by two overlapping cones emanating from the
guest molecules and oriented along the guest–guest vector. x =1,2, or 3.

MCG-6Rx MCG OP modified to require 6 water molecules in the region between the two
guests for them to be considered an MCG pair. A guest must be part of >= x
mutually coordinated pairs to be considered an MCG-6Rx monomer. x =1,2, or
3.

BC-MCGx Water molecule must satisfy BC criteria and be a first neighbor of a guest molecule
which is an MCGx monomer. x =1,2, or 3.

LSSGOP Solvent-separated guest OP of Jacobson et al. [194] Identifies guest molecules at
a certain distance as solvent-separated.

HCOP Half-cage OP of Bi et al. [104]. Identifies the largest cluster of water molecules in
face-sharing half (56, 5661, 5662) or full cages (512, 51262,51263,51264)

F4φ-y F4φ [200] averaged over the largest cluster identified by OP y, where y = BC,
BCplanar, or BC56

DHOPx◦ Novel OP that requires that a water molecule belong to 11-12 planar dihedrals
with its first neighbors to be considered hydrate-like, where a planar dihedral has
an angle <= x. Further details provided in the text.

RNGOP Novel OP that identifies hydrate based on the number of 5- and 6-membered rings
that each water molecule belongs to. Further details provided in Appendix A.

CG-y Total number of cages of type y in the system. Full 512, 51262, and 51264 cages are
identified. Half-cages of types 56 and 5661 are identified. y = 512, 51262, 51264, 56

and 5661, full (all full cages), half (all half cages).
FSICAx Total number of water molecules in the largest cluster of type x, as identified by

face-saturated incomplete cage analysis (FSICA). x = FS for face-saturated cages,
CC for complete cages, STD for standard cage types, sI, or sII.

The final value of all OPs is the size of the largest cluster (i.e. first neighbors) of hydrate-like
molecules, with exceptions of CG-y and F4φ-y.
F4φ = 1

nd

∑
i

∑
j 6=i
∑
k 6=i,j

∑
l 6=i,j,k cos(3θi,j,k,l) where nd is the number of dihedrals in the cluster.

1. Identify all unique dihedrals (i-j-k-l) that can be created from neighboring water molecules.

i, j, k, and l must all be unique water molecules. Water molecules i and j must be first

neighbors, j and k must be first neighbors, and k and l must be first neighbors. We define

first neighbors as all water molecules within rcut = 0.325 nm (distance of the first minima in

the sII crystal).

2. Calculate the dihedral angle for all unique dihedrals as the angle between the normal vectors
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Figure 3.1: Distribution of the number of planar dihedrals that a water molecule participates in for
liquid water, sI and sII hydrate, and Ic and Ih for mW at T = 230 K.

of the i-j-k and j-k-l planes.

3. Mark dihedrals with a dihedral angle below some cutoff (e.g., 30◦ or 35◦) as planar.

4. For each water molecule, increment a counter each time it is part of a central bond (i.e. j or

k) of a planar dihedral.

5. If a water molecule and at least three of its neighbors are part of 11 or 12 planar dihedrals:

(a) tag the water molecule as hydrate-like, and (b) tag all of its first neighbors as hydrate-like.

6. Identify the largest cluster of hydrate-like water molecules, where two water molecules must

be first neighbors to belong to the same cluster. No water molecule can belong to more than

one cluster.

The distributions of the number of planar dihedrals that a water molecule belongs to for

liquid water, structure I hydrate (sI), structure II hydrate (sII), hexagonal ice (Ih), and cubic ice (Ic)

are reported in Fig. 3.1. Ice-like, liquid-like, and hydrate-like water molecules can be distinguished

based on the number of planar dihedrals that a water molecule participates in.

3.2.4 Umbrella sampling

Umbrella sampling was performed to calculate the guest–guest potential of mean force

(PMF). Systems consisted of a total of 2000 molecules. The exact number of water and guest

molecules were dependent on the guest concentration. Windows were centered every 0.05 nm from
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0.2 to 1.5 nm. Spring constants were selected to ensure appropriate overlap between adjacent win-

dows [215]. Systems were equilibrated for 5 ns prior to data collection. Each window was simulated in

production for 100 ns with coordinates saved every 0.5 ps. The weighted histogram analysis method

as implemented in GROMACS version 4.6.5 was used to construct the final PMFs. Uncertainties

were estimated with bootstrapping [216].

3.2.5 Straightforward MD nucleation simulations

Twenty straightforward MD simulations were performed with the same system and at the

same conditions as the FFS calculations. All trajectories nucleated within 600 ns. Representative

snapshots from four trajectories are shown in Fig. 8 of Appendix A.

3.2.6 MD Simulation Details

All simulations were performed with the coarse-grained mW model [174]. Parameters for

the XL and M guest molecules were taken from Ref. 95. Simulations of hydrate nucleation (both

FFS and straightforward MD) were performed in the NpT ensemble at p = 500 atm, T = 230 K, and

5.6 mol% XL (7555 mW molecules and 445 XL molecules). The conditions of high concentration and

large supercooling were selected to allow for large-scale FFS and committor probability analysis, in

addition to comparison with nucleation events from straightforward MD simulations. Simulations

were performed using the 15 May 2015 version of LAMMPS [188, 189] with a time step of 5 fs. Equi-

libration simulations used Berendsen temperature [217] and pressure coupling with time constants of

0.5 ps and 1.0 ps, respectively. Nose-Hoover temperature [218] and pressure [219] coupling was used

for production simulations, with time constants of 1.0 ps and 5.0 ps for temperature and pressure

coupling, respectively. All snapshots were generated with Visual Molecular Dynamics [190].

3.3 Results and Discussion

3.3.1 Nucleation Rate

FFS calculations converged with a nucleation rate constant of kFFS = 1.3 × 1032 m−3 s−1

and resulted in 1101 successful solution–to–hydrate transition paths. The nucleation rate constant

was additionally estimated from 20 independent straightforward MD simulations using the tech-

49



nique described by Cox et al. [179]. The rate constant was estimated as kMD = 6.0 × 1031 m−3

s−1, in good agreement with kFFS. FFS and MD rates for hydrate nucleation have only been previ-

ously compared with an order-of-magnitude rate estimate derived from a single straightforward MD

nucleation trajectory[104].

3.3.2 Committor probability analysis

Accurate committor probabilities (2σ < ±0.07) were calculated for 153 configurations ob-

tained from FFS. Prospective reaction coordinate models created from 33 OPs and linear combina-

tions thereof were evaluated by fitting the models to two different sets of configurations, TP-TPE

and TP-NC753. All statistically significant single OP models are ranked in Table 3.2. We note that

the exact ordering of top models may change with nucleation conditions. Nonetheless, trends in the

rankings of single OP reaction coordinate models offer guidance into the most effective measures to

distinguish the hydrate nucleus from the liquid, thus providing insights into the essential features of

the nucleation mechanism. For reference, graphs of OP vs. pB,MD(x) and the linear fits are provided

for the top 18 OPs for TP-TPE in Fig. 7 of Appendix A.

The top single OP reaction coordinate models for TP-TPE and TP-NC753 are similar.

In both cases, the top models include OPs that are based primarily on water structure rather than

guest structure. For example, the DHOP class of OPs identify water molecules that belong to a large

number of planar dihedrals – the building blocks of planar 5- and 6-membered rings (5MRs/6MRs)

that characterize hydrate structure – as hydrate-like. Meanwhile, the BC class of OPs require

that a water molecule be a part of some number of 5MRs and have local tetrahedral order. The

appearance of such OPs in the top reaction coordinate models for both TP-TPE and TP-NC753

suggests that water ordering is important in all the transition pathways. Traditional guest-based

OPs, such as the original MCG or LSSG OPs, perform poorly as reaction coordinate models for

both TP-TPE and TP-NC753. Since MCG has been shown to be a good OP for the nucleation of

hydrates of sparingly soluble guest molecules [203], this result suggests the possibility of different

nucleation mechanisms for hydrates of soluble and sparingly soluble guests. It is also possible that the

differences in the nucleation mechanisms are related to cage occupancy or more subtle aspects of the

water–guest and water-mediated guest–guest interactions. Quantification and comparison of hydrate

nucleation mechanisms for these different cases remains an open and challenging problem since most

studies of clathrate hydrate nucleation are still based upon a limited number of straightforward
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Table 3.2: Ranking of single OP reaction coordinate mod-
els

TP-TPE TP-NC753

Rank Model R2 Model R2

1 DHOP35◦ 0.60 DHOP35◦ 0.57
2 BCplanar 0.55 BCplanar 0.55
3 DHOP30◦ 0.52 CG-56 0.55
4 BC-MCG1 0.50 BC56 0.54
5 BC-MCG2 0.50 DHOP30◦ 0.54
6 RNGOP 0.47 CG-half 0.48
7 FSICAFS 0.43 CG-512 0.40
8 BC-MCG3 0.42 BC-MCG1 0.39
9 BC 0.40 BC 0.39

10 HCOP 0.40 HCOP 0.39
11 MCG-6R3 0.38 RNGOP 0.38
12 BC56 0.38 CG-full 0.37
13 MCG-6R2 0.36 BC-MCG2 0.27
14 FSICACC 0.30 F4φ-BC 0.27
15 MCG3 0.28 FSICACC 0.26
16 MCG2 0.28 F4φ-BCplanar 0.24
17 CG-56 0.26 BC-MCG3 0.21
18 LSSGOP 0.26 FSICASTD 0.19
19 CG-full 0.24 FSICAsII 0.16
20 CG-half 0.23 FSICAsI 0.14
21 FSICASTD 0.14 CG-5661 0.14
22 FSICAsII 0.12 F4φ-BC56 0.14
23 CG-512 0.12 FSICAFS 0.12
24 – – CG-51262 0.10

Not significant at 99% confidence for TP-TPE: CG-
51264, MCG-6R1, CG-5661, F4φ-BC, CG-51262, F4φ-
BCplanar, MCG1, F4φ-BC56, CG-51263, FSICAsI.
Not significant at 99% confidence for TP-NC753:
LSSGOP, MCG-6R1, CG-51264, MCG-6R3, MCG2,
MCG1, CG-51263, MCG3, MCG-6R2.

Table 3.3: Top ranked two-OP reaction coordinate models

Data Model R2 ∆BIC

TP-TPE 0.011×DHOP35◦ − 0.018×CG-5661 + 0.06 0.64 −3.1
TP-NC753 0.0039×BCplanar + 0.030×CG-56 − 0.55 0.69 −16.4
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MD nucleation trajectories and offer no means for rigorous quantification of the transition state or

nucleation mechanism.

OPs based on the number of complete cages in the system perform poorly for TP-TPE.

Interestingly, we find that cage-based OPs perform better for TP-NC753. Though the half-cage

order parameter (HCOP) performs moderately well for both TP-TPE and TP-NC753, water-based

OPs which do not even require complete half-cages (i.e. DHOP, BC) perform better. We suspect

that this is because it only takes a single water molecule moving in or out of place to add or remove

a half or full cage. Furthermore, HCOP does not identify several less-common complete cage types

and incomplete cage-like structures which have been observed during the early stages of hydrate

nucleation [204]. DHOP and BC based OPs capture structural changes in water but rely on less

specific criteria than the cage-based OPs evaluated in this work. Thus, they likely are more adept

at capturing a broader range of cage-like entities and hence the amorphous hydrate structure that

commonly appears during hydrate nucleation. By amorphous hydrate structure, we mean a solid-like

structure composed of complete and incomplete polyhedral cages but lacking any distinct long-range

crystalline order. Though cage-based OPs may provide an accurate estimate of the transition state

at conditions of lower driving force, these OPs will struggle to reveal the microscopic details of the

earliest stages of hydrate nucleation, which ultimately involve the formation of the first few water

cages and consist of < 100 water molecules.

Due to the fact that the TP-NC753 configurations belong to transition pathways that are

much less sampled by successful solution–hydrate trajectories, TP-NC753 should be representative of

higher energy transition pathways. Though DHOP35◦ and BCplanar are the top two single OP models

for both sets of configurations, the predicted critical cluster size (i.e. the pB = 0.5 isocommittor

surface) is ∼1.5 times larger for TP-NC753 than for TP-TPE. Different critical cluster sizes for

TP-TPE and TP-NC753 indicates that TP-NC753 indeed represents a subset of the TPE. This

would support the hypothesis that hydrate nucleation occurs through a relatively broad reaction

tube, consisting of a variety of different transition pathways [108, 106]. Interestingly, recent work

by Kusalik has suggested that the free energy landscape for hydrate nucleation is funnel-shaped,

analogous to the free energy landscape for protein folding [220]. This model may help explain the

wide variety of amorphous hydrate structures observed in this work as well as most other simulation

studies of hydrate nucleation.

Two-OP models are reported for TP-NC753 and TP-TPE in Table 3.3. The improvement
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compared with the best single-OP model is reported with ∆BIC. ∆BIC of 2–6 is generally considered

a notable improvement, 6–10 is strong improvement, and > 10 is very strong improvement[221]. The

two-OP model only yields slight improvement over single-OP models for TP-TPE but much stronger

improvement for TP-NC753.

3.3.3 Transition state characterization

Why are water-based OPs generally better at approximating the reaction coordinate than

guest-based OPs? To answer this question we first investigated the nature of the TS. The two-

parameter reaction coordinate model reported in Table 3.3 for TP-TPE was used to estimate the

committor probabilities for the 1573 configurations from FFS which belong to successful transition

paths. Configurations with 0.05 < pB,est < 0.3, 0.45 < pB,est < 0.55, and 0.7 < pB,est < 0.95 are

considered before, at, and after the TS, respectively. Each group consists of approximately 250

configurations. We note that this approach does not require explicitly calculating the committor

probability of all 1573 configurations, but only the OP values, saving significant computational effort.

The configurations were visualized with a water-based OP, DHOP35◦ , and a guest-based OP, MCG-

6R2. We chose to visualize the trajectories with DHOP35◦ because it provides the best estimate of

the reaction coordinate of any single OP model for TP-TPE. Visualization of configurations with a

top-ranked OP ensures that the representations of the hydrate nucleus are close to the true hydrate

nucleus. In other words, the evolution of the hydrate nucleus defined by top-ranked OPs is likely

relevant to the mechanism of hydrate nucleation. Visualization of the largest DHOP35◦ cluster and

vicinal molecules suggested that the six-membered water rings and the associated guest pairs appear

to play an important role in the nucleation mechanism. Therefore, we also examined MCG-6R2,

which identifies the largest cluster of guest molecules in hydrate-like configurations. To be considered

hydrate-like by MCG-6R2, a guest molecule must belong to two solvent-separated guest pairs, where

the guest molecules in the solvent-separated pair must be separated by a six-membered water ring.

Representative snapshots before, at, and after the TS are shown in Fig. 3.2(a)-(c). Before

the TS (Fig. 3.2(a)), the largest cluster of water and guest molecules according to DHOP35◦ and

MCG-6R2, respectively, rarely overlap. The water molecules in the hydrate nuclei form small cup-

like structures consisting primarily of 5MRs. These structures are seemingly at the intersection of

two or three partially formed half 512 cages.

Configurations at the TS begin to contain structural motifs found in the sII crystal. Addi-
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(a) Before TS (b) At TS (c) After TS

(d) 512 cage (e) Face sharing 
512 cages

(g) sII crystal(f) sII motif

Figure 3.2: Snapshots of representative configurations (a) before the TS (0.05 < pB,est < 0.3), (b) at
the TS (0.45 < pB,est < 0.55), and (c) after the TS (0.7 < pB,est < 0.95). Water molecules belonging
to the largest cluster of hydrate-like water molecules as identified by DHOP35◦ are shown as red
spheres and connected by bonds. Guest molecules which belong to the largest cluster of MCG-6R2

guest molecules are shown as green spheres. Water molecules which are additionally part of a partial
or complete 6MR are highlighted with blue spheres and bonds in Panel (b). (d) Two different views
of a 512 cage. (e) Face-sharing 512 cages, and (f) a motif from the sII crystal. Motifs (e) and (f) are
observed near the TS. (g) sII crystal.
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tionally, the DHOP35◦ cluster of water molecules and MCG-6R2 cluster of guest molecules (green

spheres) spatially overlap. The nuclei appear to form at the junction of face-sharing 512 cages.

Snapshots of a complete 512 cage and two face-sharing 512 cages are provided in Fig. 3.2(d) and

(e), respectively. Two or more nearly complete face-sharing 512 cages are observed in many con-

figurations at the TS. Most configurations also contain at least one partially or completely formed

planar 6MR (blue). The 6MRs build from face-sharing 512 structures which anchor 3 to 4 water

molecules in the 6MR. Guest molecules are positioned on either side of the partial or complete 6MR.

The resulting structure forms a motif found in the sII crystal (Fig. 3.2(f)). After the TS, addi-

tional structural motifs of the sII crystal appear. Incomplete 5126n cages form around some guest

molecules, additional 6MRs form, and guest molecules near the initial 512 cages arrange themselves

in a tetrahedrally coordinated network.

We further investigate the transition state using FSICA [204] to identify the largest cluster

of complete cages in configurations before and at the transition state. FSICA is capable of identifying

all traditional and non-traditional clathrate cages composed of three to six membered water rings.

Approximately 60% of the configurations before the TS contained unoccupied, face-sharing 512 cages.

∼20% of configurations had no complete cages, and the remaining ∼20% had an occupied cage with

no face-sharing 512 motifs. At the TS, ∼80% of configurations contain two or more unoccupied, face-

sharing 512 cages. Sometimes, there is additionally an occupied cage (with 1 or more six-membered

rings) that is anchored by the face-sharing 512 cages. Furthermore, the ∼20% of configurations at the

TS without the face-sharing 512 motifs are larger clusters of cages, suggesting that the face-sharing

512 motif creates a more stable nuclei. FSICA also confirms that the face-sharing 512 motifs first

observed with the top single OP, DHOP35◦ , generally form before other complete cages (traditional

or non-traditional) and are indeed a key feature of the TS. We are performing ongoing work to

further analyze the stability of various hydrate nuclei.

The 20 nucleation trajectories from straightforward MD support the nucleation mechanism

observed from FFS. The sII motif shown in Fig. 3.2(f) was frequently observed, and once two

or more face-sharing 512 cages formed, hydrate often grew. Snapshots from MD trajectories are

shown in Fig. 8 of Appendix A. Other nucleation pathways were observed in a few trajectories. In

instances where partial cages with 6MRs formed first, the resulting nuclei either dissolved, or took

longer to cross the transition region, appeared frustrated in their growth, and resulted in visually

more amorphous hydrates. FSICA on straightforward MD nucleation trajectories also commonly
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revealed the presence of empty, face-sharing 512 cages and sII motifs just prior to rapid growth of

the hydrate nucleus. Some guest molecules occupied non-traditional cages during the early stages

of nucleation, but these occupied cages were most often transient and dissolved quickly.

We hypothesize that partial or complete face-sharing 512 cages at the TS provide structural

anchoring that enables the formation of planar 6MRs and leads to nucleation. Since the XL guest

molecules only occupy 51264 cages of the sII hydrate, they are unable to be incorporated into the

hydrate structure until 6MRs form. It thus seems logical that the formation of planar 6MRs is a

key step in the nucleation of sI and sII hydrate where the guest molecules only occupy large cages

(51262 or 51264). The appearance of the first 6MRs in the hydrate structure at the TS and the rapid

development of additional such structures after the TS, is consistent with this hypothesis.

3.3.4 Water and guest structure around transition state motifs

To evaluate our hypothesis we studied water structure around rigid cages. Inspired by motifs

(Fig. 3.2(e) and (f)) commonly observed in straightforward MD and FFS, we performed simulations

of one, two, and three empty, face-sharing 512 cages surrounded by a 5.6 mol% XL–water solution

at 500 atm and 270 K. The cages were treated as rigid bodies, and the simulations were performed

at higher temperature to prevent hydrate growth.

The structure of water around the rigid cages was analyzed by identifying all primitive 4–7

MRs present in water. A subset of these rings was identified as planar if the maximum dihedral

angle of any four consecutive water molecules in the ring was less than 35◦. We selected 35◦ as

the cut-off for planar dihedrals because 35◦ was found to be the most effective definition of planar

dihedrals for the DHOP class of order parameters. 〈Rw〉 is the number of rings that a water molecule

participates in, averaged over the water molecules at a given distance from the rigid cages. Since the

rigid cage structures are not spherically symmetric, the distance to the rigid cages was calculated as

the distance to the closest vertex of a rigid cage. Fig. 3.3 reports the results, normalized by 〈Rw〉

of bulk XL solution at the same conditions. The rigid cage structures have a limited effect on 〈Rw〉

for primitive rings. Water molecules near the rigid cage structures belong to fewer primitive 6MRs

and 7MRs compared with bulk XL solution (Fig. 3.3(c)-(d)). There is also a slight increase in the

number of primitive 5MRs that each water molecule participates in at distances which correspond to

the first and second solvation shells of water around the rigid cage structures (Fig. 3.3(b)). However,

these changes are less than 20% change from bulk XL solution and are largely independent of the
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Figure 3.3: Average number of rings, 〈Rw〉 that a water molecule participates in at a given distance
from rigid cages. 〈Rw〉 is reported for primitive 4–7 MRs in panels (a)–(d) and planar primitive 4–7
MRs in panels (e)–(h). Results are normalized by 〈Rw〉bulk.
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Figure 3.4: Probability that a water molecule within some distance of 1, 2, or 3 rigid 512 cages is
part of n primitive 5MRs (a,b) or 6MRs (c,d). Panels (a) and (c) are calculated for water molecules
that are at a distance from the closest vertex of the fixed cages corresponding to the first peak in
the mW–mW RDF in the sII crystal (0.245–0.295 nm). Panels (b) and (d) are calculated for water
molecules that are at a distance from the closest vertex of the fixed cages corresponding to the
second peak in the mW–mW RDF in the sII crystal (0.394–0.482 nm)

number of rigid, face-sharing 512 cages.

The rigid cages have a more pronounced effect on the presence of planar primitive (PP)

rings. Water molecules near rigid cages participate in 2–10 times more PP 5–7 MRs compared with

bulk XL solution. Water molecules participate in an increased number of PP-5MRs near increasing

numbers of face-sharing 512 cages. There is a greater increase in 〈Rw〉 when comparing 2 rigid

cages to 1 rigid cage than 3 rigid cages to 2 rigid cages, suggesting that while face-sharing 512 cages

promote PP-5MRs, the sII motif composed of 3 face-sharing 512 cages (Fig. 3.2(f)) and observed at

the TS does not further promote the formation of PP-5MRs. The presence of rigid cages has the

largest impact on PP-6MRs. Water molecules near 1 rigid cage show an enhancement in PP-6MRs

that is similar to the enhancement in PP-5MRs, participating in ∼3 times more PP-6MRs than in

bulk XL solution. However, water molecules near 2 and 3 rigid cages participate in ∼7 and ∼10

times more PP-6MRs, respectively (Fig. 3.3(g)). Not only does this show that unoccupied 512 cages

promote the formation of PP-6MRs, but it also suggests that face-sharing 512 cages (such as the sII

motif observed at the TS) promote the formation of PP-6MRs even more strongly than single cages.

〈Rw〉 also shows a notable increase for PP-7MRs near rigid cages. There is no difference in 〈Rw〉 for

PP-7MRs between 2 and 3 rigid cages.

To further investigate the water structure near the rigid cages, the probability that a water

molecule was part of some number of primitive 4–7MRs was calculated as a function of distance from
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the closest vertex of the rigid cages. The largest differences between systems with one, two, and

three rigid cages were at distances that correspond to the first and second peaks of the mW–mW

radial distribution function (RDF) in the sII crystal. Fig. 3.4 reports the probability of observing

a water molecule that belongs to some number, n, of primitive 5MRs and 6MRs at those distances.

As the number of rigid cages increases, the probability that a water molecule belongs to 0–2 5MRs

decreases and the probability that a water molecule belongs to 3–5 5MRs increases. The probability

that a water molecule belongs to 1–2 6MRs increases and the probability that a water molecule

participates in 3–6 6MRs decreases with an increasing number of face-sharing 512 cages. These

changes are consistent with the structure of the sI and sII hydrate crystal. The sI crystal contains

water molecules that are part of four 5MRs and two 6MRs, five 5MRs and one 6MR, and six 5MRs

and zero 6MRs. The sII crystal contains water molecules that are part of five 5MRs and one 6MR,

and six 5MRs and zero 6MRs. The changes in the numbers of primitive 5MRs/6MRs that each

water molecule participates in occur in addition to the increase in planar primitive water rings near

the 1–3 face-sharing 512 cages. This suggests a cooperative effect in the development of the correct

topological network and the correct spatial arrangements of water molecules to initiate the formation

of hydrate structure from the supercooled liquid.

Since guest molecules across 6MRs were observed in the TS structures, we examined their

behavior near the rigid, face-sharing 512 cages. Previous studies have investigated the effect of

cages on surrounding guests. Results indicate that there is an attractive force between the faces

of polyhedral cages and guest molecules, resulting in the adsorption of guests to the faces of cages

[92, 222]. The attractive force exists whether the polyhedral cage is occupied or not, and distance

to the minima in the free energy is different from the distance of the solvent-separated minima of

two guests in a liquid solution [92], indicating that the cage face–guest attraction is different from

solute–solute interactions in a supercooled liquid solution. We probe this phenomenon further by

studying guest structure around not just single cages, but also two and three face-sharing cages,

which resemble structures commonly observed at the transition state.

Fig. 3.5 shows the normalized probability of observing a guest molecule that belongs to at

least 1, 2, 3, or 4 MCG-6R pairs. The reported probability is normalized by the bulk probability of

observing such a structure. Relative to bulk, there is always an increased probability of observing

guest molecules in MCG-6R pairs at 0.3–0.5 nm from the rigid cages. Two and three face-sharing 512

cages dramatically increase the probability that a guest molecule belongs to at least 2, 3, or 4 MCG-
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Figure 3.5: Probability that a guest molecule is part of (a) >= 1, (b) >= 2, (c) >= 3, or (d) >= 4
MCG-6R pairs as a function of distance from the nearest vertex of the 1, 2, or 3 fixed cages (green,
blue, orange, respectively), normalized by the bulk probability. A MCG-6R pair represents a pair
of guest molecules across a 6MR. See Table 3.1 for details.
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6R pairs (Fig. 3.5(b)-(d)). Guest molecules near three face-sharing cages are ∼600 times more likely

to belong to >= 4 MCG-6R pairs than in bulk solution! A guest molecule that belongs to 4 MCG-6R

pairs is tetrahedrally coordinated. Matsumoto has shown that tetrahedrally coordinated methane

molecules are significantly more stable than solvent-separated methane pairs [223]. In our work,

multiple face sharing 512 cages appear to promote tetrahedrally coordinated guest configurations

by positioning adsorbed guest molecules in the correct configurations. Furthermore, when guest

molecules only occupy the 51264 cages of the sII crystal, they form a tetrahedral network where all

guest molecules belong to 4 MCG-6R pairs. Face-sharing 512 cages thus promote the guest ordering

favorable for sII crystal formation. Our results highlight the symbiotic relationship between water

and guest molecules in hydrate nucleation. While guest molecules adsorb to and stabilize water

cages [213], the existing water cages facilitate guest molecules to form MCG-6R pairs.

3.3.5 Guest–guest interactions in supercooled liquid

Though face-sharing 512 cages clearly promote the guest structure requisite for hydrate nu-

cleation, it remains unclear why nucleation requires the formation of this initial water structure. To

explain this, we studied the water-mediated XL–XL interactions in bulk solution. We calculated

the XL–XL potential of mean force (PMF) with umbrella sampling. For comparison, we also cal-

culated the guest–guest PMF for the M guest molecule. M is a sparingly soluble guest molecule

similar to methane or CO2 [95], and has been used in several previous studies of hydrate nucleation

[95, 105, 104, 62, 107]. Figure 3.6(a) shows a comparison of the PMFs for the XL and M guest

molecules at 500 atm and 240 K. 240 K represents similar supercooling for the thermodynamically

preferred crystal structures of XL and M hydrates [95].

The guest–guest PMFs highlight significant differences in the behavior of XL and M in su-

percooled liquid solution. Solvent-separated configurations of guest molecules are uncommon in XL

solution compared with M solution. Furthermore, there is a larger barrier for XL molecules to switch

from contact to solvent-separated configurations. The second desolvation barrier is smaller for XL,

implying that guest molecules can easily enter and exit solvent-separated configurations. These re-

sults likely explain previous observations [95] that amorphous blobs of XL were extremely short-lived

compared to amorphous blobs of M. The PMFs suggest that solvent-separated XL configurations

are not prevalent or long-lasting enough to promote water structuring. In contrast, M–M PMFs

show relatively more stable solvent-separated pairs in the supercooled liquid which could assemble
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into amorphous blobs.

To further characterize the nature of XL–XL interactions in supercooled liquid solution,

PMFs were calculated at multiple XL concentrations and temperatures. Figs. 3.6 (b) and (c) show

the concentration dependence of the XL–XL PMF at 240 K and 300 K, respectively. 240 K is close

to the conditions of nucleation in this study, and 300 K is approximately 10 K below the melting

point of the hydrate. In both cases, the XL–XL PMF shows a concentration dependence. With

increasing guest concentration, the contact and solvent-separated minima become shallower and

the desolvation barrier height decreases. The effect is so strong that at 5.7 mol% XL there is no

recognizable solvent-separated minimum or desolvation barrier. XL guest molecules thus show no

preference whatsoever for solvent-separated configurations at these concentrations. For comparison,

the concentration dependence of the M–M PMF was calculated at 300 K (Fig. 3.6(d)). M–M

interactions have no concentration dependence. The solvent-separated minimum is well-defined and

the desolvation barrier remains the same height at all concentrations.

The lack of a distinct solvent-separated minimum at the XL concentration employed in this

work emphasizes that stable solvent-separated blobs do not form in the supercooled liquid solution

without initial water ordering. In sum, our results indicate that water ordering, rather than guest

ordering into amorphous blobs, plays an important role in the early stages of hydrate nucleation for

water-soluble guest molecules such as XL. The initial water ordering requisite for hydrate nucleation

is analogous to recent findings on the structure of supercooled water, which showed structural

heterogeneity on nanometer lengthscales and ice nucleation initiating in pre-ordered regions [224, 31].

Furthermore, we surmise that amorphous blobs of guest molecules observed during the nucleation

of sparingly soluble guests are stabilized by water structuring similar to what we observe here.

Fig. 3.6 also emphasizes the generality of our results to conditions beyond those explored in

this study. The XL–XL PMFs show similar behavior and concentration dependence at much lower

supercoolings, suggesting that our results are applicable at experimentally relevant supercoolings

and concentrations. We note that some prospective applications of soluble guests such as THF

employ concentrations as high as 5.6 mol% [82].
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Figure 3.6: Guest–guest PMFs in a supercooled liquid solution at p = 500 atm. (a) Comparison
of M–M and XL–XL PMFs at T = 240 K and infinite dilution. (b) Concentration dependence of
XL–XL PMFs at T = 240 K. (c) Concentration dependence of XL–XL PMFs at T = 300 K. (d)
Concentration dependence of M–M PMFs at T = 300 K. Error bars are approximately the point
size.
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3.4 Conclusions

Despite the relevance of water-soluble guest molecules to applications of hydrates there have

been relatively few studies of their nucleation mechanism. To overcome the challenges of sampling

nucleation trajectories in simulations, we employ FFS to generate sufficient trajectories for rigorous

quantitative analysis of the nucleation mechanism and transition state. We perform an extensive

comparison of order parameters for hydrate nucleation and find that order parameters based upon

water structure are consistently better approximations of the reaction coordinate compared with

order parameters based upon guest structure. In contrast, guest-based order parameters have been

successfully employed for hydrates of sparingly soluble guest molecules [105, 203], highlighting po-

tential differences in the nucleation mechanisms for clathrate hydrates with different guest molecules.

TS analysis reveals that the empty, face-sharing, partially complete 512 cages that characterize the

TS dramatically affect the surrounding guest structuring, emphasizing the cooperative relationship

between water and guest structure requisite for hydrate nucleation. More generally, water struc-

turing may be important in the nucleation of hydrates of guest molecules that do not fit into 512

cages. The comparison of order parameters presented here will facilitate future studies of hydrate

nucleation, since order parameters which closely approximate the true reaction coordinate improve

the efficiency [225, 144] and correctness of advanced sampling methods [123, 156].
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Chapter 4

SAFFIRE: A scalable forward flux

sampling framework
1

4.1 Introduction

The kinetics relevant to several processes in condensed matter physics such as protein folding,

transport through membranes, bubble formation, and crystallization are difficult to study through

straightforward molecular dynamics (MD) or Monte Carlo (MC) simulations. This is because the

time between occurrences of these rare events can be much longer than the practically accessible

timescales of the simulations. At typical MD simulation lengthscales of a few nanometers, observing

rare events such as crystallization often requires microseconds-long simulations. These simulations

can take several months of computational time for molecular systems like all-atom water models.

Given that several hundred rare events are necessary to obtain statistically relevant rate estimates,

it is computationally prohibitive to study rare event transitions through straightforward MD (or

MC) simulations.

One such process of interest in our research is crystal (e.g., ice) nucleation. Homogeneous

and heterogeneous ice nucleation are relevant to atmospheric chemistry and have a significant impact

on the climate and weather [227]. The kinetic details such as nucleation rates and mechanisms of ice

nucleation, especially in case of heterogeneous ice nucleation, have remained elusive due to several

1Material for this chapter adapted from Ref. [226]
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difficulties. For example, in experimental studies the nucleation rates calculated are very sensitive to

the technique used [228]. Further, the lengthscales (involving few hundreds of water molecules) and

the timescales at which nucleation proceeds are hard to probe in experiments. On the other hand,

molecular simulations are designed for these length- and time-scales, making them ideally suited for

studying ice nucleation. However, since ice nucleation is a rare event, sampling sufficient nucleation

events is challenging.

Several techniques [145, 229, 230, 153] have been developed to sample rare events in simu-

lations and are collectively referred to as rare event methods. One such technique is forward flux

sampling (FFS) [129, 1]. In FFS, simulations from initial state A to final state B are propagated

through non-overlapping interfaces between A and B (see Fig. 4.1). This approach breaks down the

low probability A-to-B transition into multiple relatively more probable transitions between inter-

mediate interfaces. Compared with other advanced sampling methods, FFS has several advantages,

including applicability to equilibrium and non-equilibrium systems and a comparatively simple and

embarrassingly parallel algorithm. The challenge in implementing FFS is that as the difficulty of

the problem increases, that is, the probability of the A-to-B transition decreases, FFS becomes ex-

tremely computationally demanding. Correspondingly, the amount of data and the number of tasks

become difficult to handle with traditional scripting tools. We have experienced this in our studies

of heterogeneous ice nucleation.

Motivated by this, we have developed a software framework called Scalable Automated FFS

for Illuminating Rare Events (SAFFIRE). Our framework utilizes Cascading [231] and Hadoop [208]

to handle the large number of tasks and amount of data required for large scale FFS simulations.2

In this paper we describe the details of the framework and its scalability, compare our approach to

other FFS software, and discuss scientific research enabled by SAFFIRE.

4.2 FFS Workflow

The goal of FFS is to divide the extremely low probability A-to-B transition into higher

probability transitions between interfaces along the A-to-B pathway (Fig. 4.1). Interfaces are defined

by specific values of an order parameter (λ) that can distinguish between state A and state B. For

example, in ice nucleation the number of ice-like water molecules can be used as the order parameter

2FFS simulation refers to a complete execution of the FFS algorithm, whereas simulation refers to a molecular
simulation (i.e. MD or MC simulation) which is part of the FFS algorithm.
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State A State B 

λ0 λA λ1 λ2 λn-1 λn λB 
….. 

Figure 4.1: Conceptual overview of FFS [1]. The basin simulation is shown as the blue path.
Circles represent configurations that are stored at each interface. Trajectories are shown as arrows:
trajectories that cross the next interface are colored based on the interface from which they originate;
trajectories that return to the basin are shown in gray. λi represents the ith interface between the
A and B basins.

– this value grows as the system transitions from liquid to solid.

FFS starts at the first interface, λ0. Configurations for this interface are obtained from

simulations in the initial state A (λ<λA), also known as the “basin”. For each configuration at λ0

(λi), several trial simulations are executed using a standard computational code. These simulations

are analyzed to identify the next interface, λ1 (λi+1). Each simulation is then examined to determine

whether the simulation trajectory crossed λ1 (λi+1) or returned to the basin. If the simulation

crossed λ1 (λi+1), the configuration of the system at the instant when the simulation reaches the

next interface is added to the set of configurations for λ1 (λi+1). This set of configurations is used

to generate trial simulations from λ1 (λi+1). This process is continued until the final interface, λn,

is reached.

The flow diagram for our implementation of FFS is shown in Figure 4.2. There are three

possible outcomes for any trial simulation: (i) the simulation returns to the basin (λ < λA) before

crossing the next interface (λ > λi+1), (ii) the simulation crosses the next interface before returning

to the basin or (iii) neither (i) or (ii) outcome is obtained. These are referred to as Fallback,

Complete, and Incomplete, respectively. As the system moves away from the basin, the simulation

time required for simulations to either cross λi+1 or enter the basin (λ < λA) becomes longer and

longer. As a result, two categories of simulations are used. First, “short simulations” are performed,

which enable the identification of λi+1 and the status of the majority of the trajectories. In the
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Figure 4.2: Flow diagram for FFS as implemented in SAFFIRE.

case of Incomplete simulations, the simulation neither crosses λi+1 nor λA in the allotted simulation

time. This indicates that the simulation has not run long enough. Incomplete simulations are then

extended with “long simulations” until they finish running (become Complete or Fallback). All

Complete simulations are then analyzed to generate new configurations for the next interface. The

final counts of Fallback and Complete simulations provides the probability of reaching λi+1 from λi,

P (λi+1|λi). Once all N interfaces are complete, the product of these probabilities
∏N−1
i=0 P (λi+1|λi)

is used to estimate the rate of occurrence of the rare event – the transition from initial state A to

final state B.

4.3 User Requirements

Prior to this work, a framework guiding the FFS workflow was implemented with Bash

scripts. It was executed on the campus supercomputer using standard file system support and no

additional data infrastructure. Due to I/O bottlenecks, this prototype executed for weeks to complete

a small FFS simulation. From this implementation, we learned that for our scientific problems the

majority of the simulations require very short execution times (e.g, <5 minutes). However, perhaps

millions of simulations are required to successfully complete the FFS simulation. Therefore, it is

68



important to have an infrastructure that can support high throughput computing. Secondly, each

simulation produces a modest sized file. The result is that the overall application produces a massive

amount of intermediate data from each interface of the FFS simulation. These files are written to

the file system and there can be millions of files at any given time. On our campus supercomputing

cluster consisting of separate compute and storage nodes, moving, storing, and analyzing this data

is a bottleneck for the FFS simulation. In addition, the heavy load leads to instability of the parallel

file system. Therefore, we needed to address both the issues of high task throughput and a large

number of files.

We identified the following user requirements necessary in a software framework designed

to support large scale FFS simulations:

• Tolerance to single node failure: The scope and scale of the target application demand

substantial computing resources, and the execution times are typically measured in hours or

days. Therefore, the framework should be resilient and fault-tolerant to single node and single

task failures.

• Massive data transfer: FFS requires analysis of aggregated simulation output to determine

the status of each simulation and to calculate the probability of advancing to the next interface.

The size of the aggregated output requires support for massive data transfer and management

capability.

• Flexible user configuration: The user needs freedom to choose among different simulation

software and analysis tools, depending on the science problem. The framework should also

offer flexibility in defining parameters for FFS, such as the number of short simulations, the

minimum number of configurations necessary at each interface, etc.

• Dynamic resource allocation: Given that the application is being executed in a shared

computing environment, it is beneficial for the framework to take advantage of additional

resources, or fewer resources, at any time during the execution process in an automated,

dynamic, and transparent manner.

• Usability by a broad community: The necessary steps for installing, configuring, run-

ning, and fine-tuning the framework should be as simple as possible. While not a technical

requirement, it is very important in promoting the adoption of the framework by a broad
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community.

4.4 FFS Framework Implementation

SAFFIRE is a comprehensive software framework designed to address the high throughput

and data intensive computing challenges presented by FFS. SAFFIRE utilizes the Hadoop infras-

tructure to control the massive number of individual simulation instances and subsequent output,

with the Cascading libraries [231] to manage the overall workflow.

4.4.1 Hadoop and Cascading

Hadoop is an open source large scale computing infrastructure that can support the man-

agement and processing of a large amount of data based on the principle of data locality [208]. The

core Hadoop components include the Hadoop Distributed File System (HDFS) [232] and Hadoop

MapReduce (MR) [233]. HDFS is composed of a single centralized management node called the

NameNode, which maintains all the metadata for the Hadoop infrastructure, along with multiple

storage nodes called DataNodes, which contain all the data in large block sizes. The MR computation

model includes a single central management node called the ResourceManager, which is responsible

for delegating the specific map and reduce tasks for a submitted MR job to a subset of the Node-

Managers located on multiple computation nodes. The DataNodes and NodeManagers exist on the

same physical computing system and are connected via communication between the NameNode and

the ResourceManager to provide the computation and data locality integration. This is critical to

the performance of large-scale data processing. The working mechanisms and performance charac-

teristics of HDFS and MR are well studied [234]. The Hadoop infrastructure comes with features

such as scalability, high fault-tolerance, and automated error recovery.

Cascading is a platform that supports the development of complex data-driven applications

on the Hadoop infrastructure. Cascading accomplishes this goal by abstracting away the interaction

between the developers and the data stored in HDFS. Data dependencies among the different modules

or functions of a complex multi-stage application are viewed as data flows, or “pipes”. These data

pipes can be manipulated through operations such as filter, merge, split, and redirect. This level

of abstraction allows the developer to focus more on the architectural flow of the applications in a

plug-and-play manner, rather than the minute interactions with the underlying data.
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Figure 4.3: Architectural diagram of SAFFIRE.

4.4.2 Implementation Details and Features of SAFFIRE

Key components of SAFFIRE are matched to workflow steps in Figure 4.3. Streaming

MR is shown in three components. The first streaming MapReduce (MR) job drives an external

program to run the short simulations (box 2). A second streaming MR job drives an external

program to run simulations to complete the Incompletes (box 5). A third streaming MR job drives

conversion software to generate the set of configurations at the next interface from the simulation

trajectories (box 7). Using streaming MR to control external executables enables use of a wide range

of simulation engines. We have successfully tested simulation platforms such as GROMACS [235]

and LAMMPS [188]. Other software packages for any type of simulation and analysis can easily be

integrated with SAFFIRE with no code modifications.

Cascading acts as a flow manager and allows these steps to be executed as a single logical unit

while maintaining workload dependencies among the steps. Cascading’s ability to manipulate both

MR modules and flows of data between these modules enables the addition of data-centric tools into

SAFFIRE for the purpose of analyzing intermediate data without impacting the main FFS process.

The Cascading workflow implementation is based on previous work in data flow management [209].
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The combination of Hadoop and Cascading provides SAFFIRE a number of features that

address the application and user requirements outlined in Section 4.2. Through Hadoop, SAFFIRE

has the ability to manage the allocated computing resources from user space via the JobTracker’s

customized scheduler. Hadoop Distributed File System (HDFS) provides large scale data manage-

ment infrastructure with data locality and data redundancy. The Hadoop platform has mechanisms

to automatically support fault-tolerance and error recovery through data replication and job/task

re-execution. This renders SAFFIRE a framework that has a high level of fault-tolerance and error

recovery capability. We have additionally incorporated a simple user interface into SAFFIRE. Users

can modify FFS parameters such as the number of interfaces, the number of simulations per inter-

face, a threshold value used for interface selection, and more. The availability of dynamic Hadoop

clusters similar to [236] allows SAFFIRE to be run on any traditional HPC environments. These

capabilities improve the usability of SAFFIRE.

The Cascading/Hadoop-based implementation requires only user privileges. No administra-

tive privileges are required to install and run SAFFIRE for the default deployment. This capability

has been demonstrated in research and education projects using Hadoop-based environment at scale

on the Clemson Palmetto computing cluster [237, 238]. This provides SAFFIRE a high degree of

interoperability on different institutional and community platforms such as XSEDE.

4.5 Scalability Evaluation

The performance of SAFFIRE is evaluated and discussed in this section, as follows. First,

we focus on the scalability of the application with respect to the number of cores and size of the

problem using both strong and weak scaling. Second, the behavior of the application (e.g., computa-

tion and data transfer) is profiled and characterized under different execution scenarios. Finally, the

effects of phases of application performance are characterized under different execution scenarios.

Our testbed is part of Clemson University’s Palmetto Supercomputer, from which we can provision

isolated dynamic clusters to deploy the Cascading/Hadoop environment. Throughout the perfor-

mance evaluation, the individual compute nodes provisioned for the different experimental clusters

are consistently configured with 16-core Intel Xeon E5-2665 CPUs, 64GB of memory, 900GB local

HDD, and 300GB local SSD. The system used for the performance analysis was the early stages of

homogeneous ice nucleation in the mW water model [174] at 230 K and 1 atm. The system com-
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prised of 4096 water molecules and each simulation was executed for 3 ps (time step = 0.002 ps) of

molecular dynamics in LAMMPS (https://lammps.sandia.gov) [188]. The order parameter used

to quantify the progress of each simulation, λ, was the size of the largest cluster of ice-like water

molecules defined with the procedure from Ref. 50

4.5.1 Scalability Analysis

Both strong and weak scaling are considered in the scalability analysis of SAFFIRE. For

strong scaling analysis, the problem size (number of simulations per interface3) is held constant and

the number of cores in the Hadoop cluster used to run SAFFIRE is increased. For weak scaling

analysis, the problem size is increased in equal proportion to the increase in the number of cores,

so that the amount of work per core remains constant. For both strong and weak scaling analysis,

we consider the performance of SAFFIRE for four interfaces of FFS with 10,000 simulations per

interface on a 128 core Hadoop cluster as the baseline performance. Strong scaling efficiency, Estrong

is calculated as:

Estrong =
t128

Ntn
(4.1)

where t128 is the execution time for SAFFIRE on 128 cores (8 nodes), tn is the execution

time for the application on n cores, and N is number of cores in the Hadoop cluster divided by the

baseline 128 cores (n/128). Weak scaling efficiency, Eweak is calculated as:

Eweak =
t128

t′n
(4.2)

where, t128 is the execution time for the application on 128 cores, and t′n is the execution

time for a problem size N times larger than the baseline problem, executed on n cores, where

n = 128×N .

The scaling performance of SAFFIRE is shown in Figure 4.4 where each test consisted of

running four FFS interfaces. Since each FFS interface comprises a similar operation, our results are

not expected to change with a larger number of interfaces. The application displays excellent strong

scaling performance to more than 600 cores (40 nodes). The execution time drops from nearly 10

3For the remainder of the text we use ’number of simulations’ in place of ’number of simulations per interface’ for
brevity (i.e. a 128 core cluster with 10,000 simulations, has 10,000 simulations per interface).
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Figure 4.4: Strong and weak scaling of SAFFIRE. Execution time (red, filled markers) is read from
the left axis, and scaling efficiency (blue, open markers) from right axis. Strong scaling is shown
with circles and solid lines, and weak scaling is shown with squares and dashed lines. The 95%
confidence interval is smaller than the symbol size.

hours when running on a Hadoop cluster with 128 cores to just over 2 hours on a 640 core Hadoop

cluster. The strong scaling efficiency remains over 90% for all systems tested, however the strong

scaling efficiency generally decreases as more cores are added. This may be due to the increased

overhead of a larger Hadoop cluster, and increased data transfer times to copy simulation data from

HDFS to local scratch and simulation results from local scratch to HDFS. These data transfers are

initiated from within the Hadoop Streaming map tasks, and therefore are unable to take advantage

of the built-in data-locality offered by Hadoop. As such, when the Hadoop cluster increases in size,

the data must be transferred further across the network. Additionally, since HDFS is spread across

an increased number of nodes, the likelihood of finding the necessary simulation data already on the

node performing the map task decreases. More discussion of data transfer overhead follows later in

this section. Larger Hadoop clusters also have the possibility of an increased number of idle nodes if

the number of tasks is not divisible by the number of cores available to execute the tasks. We term

these “remainder effects” and explore them in detail later in this section.

SAFFIRE weak scaling performance is also shown in Figure 4.4. The overall execution time

of the application decreases as the problem size is increased in proportion to the number of cores

in the Hadoop cluster. The weak scaling efficiency increases over the range of Hadoop cluster sizes

studied, resulting in a weak scaling efficiency that is always greater than or equal to 1. One source

for the increase in efficiency is related to how we chose to scale the size of the job in the weak

scaling analysis. In our implementation, the head node of the Hadoop cluster does not perform any
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computation. Therefore, when the number of total cores in the cluster increases, only the number

of slave node cores increases – meaning the computational resources available for task execution

grows faster than the problem size. While it is possible to take advantage of unused cores on the

head node for computational purposes, the amount of memory held by the NameNode and the

ResourceManager processes to maintain metadata for the massive amount of data, file counts, and

map/reduce tasks makes it impractical to do so. It is also possible to use the number of slave

node cores rather than total cores when calculating efficiency. However, we use total cores in the

calculation because the head node resources are required to manage the Hadoop cluster, even if they

are not being used for scientific computation. The cluster (and therefore application) management

overhead decreases in terms of the percentage of total cores with increasing cluster size, and this

manifests itself by contributing to the weak scaling performance of the application. Together the

strong and weak scaling results highlight the scalability of SAFFIRE.

4.5.2 Application Profiling

An analysis of application behavior was performed. The primary goal of SAFFIRE is to

efficiently enable the execution of a large number of simulations for FFS. A core is performing useful

work when it is running a simulation, analyzing simulation output, or performing a necessary file

conversion. All other time is considered application overhead. Realistically speaking, SAFFIRE

also manages the simulation output and automates the FFS algorithm. Though these tasks save the

end-user time and effort, they are not computation-intensive tasks as compared with the execution

and analysis of the simulations. Therefore, as a starting point to evaluate application behavior

and framework overhead, we focus on profiling the Hadoop Streaming tasks that are responsible for

running the simulations and analysis.

Each Hadoop Streaming map task is executed on one core. Logging capabilities were added

to the Hadoop Streaming tasks to record the start and stop times for each simulation, analysis, file

conversion, and data transfer. The events were aggregated to create a representation of the number

of cores active with each task type across the entire Hadoop cluster at any given instance in time.

Logging the start and stop times did not significantly change the overall execution time of SAFFIRE

within the 95% confidence interval.

The different types of core activity were grouped into computation (e.g., simulation, analysis,

and file conversion), and data transfers (e.g., file transfers between local scratch and HDFS, which
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Figure 4.5: Snapshot of application profiling over a 15 minute interval. Percent of cores in the cluster
which are (a) performing a computation (simulation or analysis), (b) performing a data transfer, or
(c) either performing a computation or data transfer at a given time.

are initiated from within the Hadoop Streaming map tasks). Figure 4.5(a) shows the percentage of

all cores performing a computation activity within the 15 minute snapshot. Initially, no cores are

active with computation until the ∼1 minute mark, when the first Hadoop Streaming tasks begin.

Nearly simultaneously, all the cores on slave nodes are consumed with computation. Note that the

percentage of active cores reaches a maximum of about 85% because we report the percentage of

active cores with reference to the total size of the Hadoop cluster, not just the number of slave node

cores. The 128 core Hadoop cluster shown in Figure 4.5 has up to 112 active cores at one time with

the remaining non-active 16 cores of the head node. Evidence of the small time gap between the

simulation and analysis appears as a brief decrease in the percentage of active cores between the

one and two minute marks. Just past two minutes, none of the cores are involved in computation.

In Figure 4.5(b) the percentage of cores involved in data transfers is shown. The cores are involved

in a data transfer just before the first computation (Figure 4.5(a)), because the Hadoop Streaming

task must copy a configuration file from HDFS to local scratch to initiate the simulation. After the

first batch of computation, another batch of data transfers appears as the Hadoop Streaming tasks

copy simulation output from local scratch to HDFS. A brief decrease in the data transfer appears

(e.g. 2.5 minutes), marking the distinction between the data upload to HDFS from the first batch of

simulations, and the data download to local scratch for the second batch of simulations. In Figure

4.5(c), the computation and data activity are combined to report an overall percent of active cores

over time.
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Figure 4.6: Application profiling: Percent of cores in the 128 core cluster with 10,000 simulations
which are (a) performing a computation (e.g., simulation, analysis and file conversion), and (b)
either performing a computation or data transfer at a given time. Percent of cores in the 640 core
cluster with 10,000 simulations which are (c) performing a computation, and (d) either performing
a computation or data transfer at a given time.

Several interesting features of SAFFIRE behavior are apparent from Figure 4.5. The sim-

ulations are executed across the entire cluster in a batch manner, with all slave node cores actively

performing computations and data transfers at nearly the same time. This job submission pattern

holds through several batches of Hadoop Streaming map tasks. From the small dips in overall core

activity in Figure 4.5(c) there is limited aggregate core downtime between each batch of Hadoop

Streaming tasks. The data transfers between local scratch and HDFS also contribute noticeable

overhead to SAFFIRE. If a SAFFIRE user had a system that required large file transfers to run

a short (in wall clock time) simulation, the data transfer overhead would detrimentally impact the

performance of SAFFIRE.

Figure 4.6(a)-(b) shows application profiling across four complete interfaces (i.e. λi to λi+4)

of a FFS simulation for the same system profiled in Figure 4.5. For comparison, data is also shown

for the case with 640 cores and 10,000 simulations in Figure 4.6(c)-(d). The computation for each

FFS interface can be identified as the groupings of core activity (the first of which is from 0 to 2.5

hours and 0 to 0.5 hours for Figure 4.6(a)-(b) and 4.6(c)-(d), respectively), and they are separated

by the time interval where the cores are performing neither computation nor data transfers. In

these regions, the Cascading code is parsing though the results of the analysis and picking the

next interface. Some amount of computation is also performed to generate the new configurations,
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however it is too short to appear in the plots. The data transfer required for the file conversion

appears as the short vertical line in advance of the larger batch of core activity for interfaces 2, 3,

and 4 in Figure 4.6(d). The same feature exists in Figure 4.6(b), but is not visible due to the scale

of the figure. In Figure 4.6(c)-(d), the batch-like Hadoop Streaming task execution is maintained

across each interface. Near the end of the first and last interfaces, the task execution appears to be

less synchronized as evidenced by the lines in Figure 4.6(c) not quite reaching zero activity at that

part of the execution.

From Figure 4.6(a), it can be seen that the Hadoop Streaming job submission has a “syn-

chronized” nature for the first∼30 minutes for each interface for the system with 128 cores and 10,000

simulations. After about 30 minutes, the Hadoop Streaming jobs do not appear to be synchronized.

Some cores are performing computation, while others are performing a data transfer. Neither the

white space that appears below the red lines in Figure 4.6(a) as each interface progresses nor above

the red lines as interface 3 progresses indicate that the cores are less active overall – just that the

Hadoop Streaming task execution does not follow a synchronized pattern after about 30 minutes.

4.5.3 Remainder Effects

The appearance of synchronization of the Hadoop Streaming task execution led us to inves-

tigate whether making the number of simulations a multiple of the number of slave node cores would

decrease the execution time by eliminating “remainder effects”, where some cores in the Hadoop

cluster are idle while the last partial batch of Hadoop Streaming tasks are completed. Based on the

application profiling, we expect that the remainder effects will be most prominent for the system

with 640 cores and 10,000 simulations. We also tested the system with 128 cores and 10,000 simula-

tions for comparison. The remainder effects are tested using FFS simulations in which the number

of simulations is a multiple of the number of slave node cores (9984 simulations for 624 slave cores,

10080 simulations for 112 slave cores) and then tested using another run in which one additional

simulation is added (9985 simulations for 624 slave cores, 10081 simulations for 112 slave cores).

This setup tests a worst-case scenario. If the Hadoop Streaming jobs display perfect batch behavior

then in the worst case scenario all except one slave node core will be idle when the last simulation

is completing. Each test was performed in triplicates to calculate the 95% confidence interval of our

results.

Visual inspection of the application profiles (not shown) does not reveal any clear differences
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between the perfect match and worst case scenario application runs. However, as reported in Table

4.1, there are differences in the execution times. As expected, the remainder effects are the most

prominent for the simulation that has the most synchronized-like Hadoop Streaming task execution.

For a Hadoop cluster size of 128 cores (112 slave cores), the remainder effects have no significant

effect on the execution time. Based on the application profiling seen above (Figure 4.6), this is

not surprising because for this setup the synchronous Hadoop Streaming task submission pattern is

not present at the end of an interface. For a Hadoop cluster with 640 cores (624 slave cores), the

execution time for the system with no remainder simulations is about 200 seconds faster than the

worst case scenario. Although this demonstrates that remainder effects can impact the execution

time, they represent a small fraction of the overall execution time.

Table 4.1: Execution time and percent of time that the cores were active for systems with possible
remainder effects.

Cores 128 128
Simulations 10080 10081

Execution Time (s) 36390 ± 68 36453 ± 140
Computation (%) 62.0 ± 0.2 61.9 ± 0.2
Any Activity (%) 81.8 ± 0.2 81.7 ± 0.1

Cores 640 640
Simulations 9984 9985

Execution Time (s) 7570 ± 73 7758 ± 30
Computation (%) 59.2 ± 0.6 57.7 ± 0.3
Any Activity (%) 78.2 ± 0.8 76.3 ± 0.3

4.6 Related Work

To our knowledge, there are only two other significant efforts in implementing FFS-based

simulation techniques, the Flexible Rare Event Sampling Harness System (FRESHS) [239] and

Parallel Forward Flux Sampling (PFFS) [240]. The FRESHS architecture includes a FRESHS

server and multiple FRESHS clients, all implemented in Python. The server is responsible for

accepting parameters for the rare-event simulation, asynchronous communications from clients, and

an SQLite database to store data for intermediate interfaces. The server tracks the progress of FFS,

while clients are responsible for the simulations and analysis (order parameter calculation).

Similar to SAFFIRE, the goal of FRESHS is to provide a parallelized FFS implementa-

tion that allows users to insert various simulation softwares. Beyond the architectural differences,
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SAFFIRE and FRESHS also differ in the implementation of the FFS algorithm. FRESHS uses the

exploring scouts technique [239]. This technique works well when the analysis is run from within

the simulation program – however this often requires modification of the simulation software source

code. Though FRESHS can be used with separate simulation and analysis codes, it requires ex-

tremely short simulations that incur large startup and shutdown overhead. SAFFIRE is specifically

designed for separate simulation and analysis codes for maximum user flexibility. The SAFFIRE and

FRESHS implementations both have advantages and disadvantages depending on the system and

simulation software. Unfortunately their differences make a meaningful performance comparison

difficult.

PFFS implements FFS using the C programming language and MPI to support parallelism

[240]. In the original design, PFFS is implemented as a single large-scale FFS simulation program.

PFFS requires researchers to recompile from source to include custom simulation engines. It also

uses individual files on the shared file system to store simulation results which can become difficult

to scale as the number of simulations in FFS reaches millions or even billions. The nature of MPI

is also a disadvantage of the PFFS implementation as compared to the Hadoop implementation of

SAFFIRE. MPI is not typically tolerant to single node or task failures in the parallel computing

environment, whereas Hadoop provides fault-tolerance in the case of single node failures. PFFS

never matures out of the testing stages, and no software package is available for testing purposes.

4.7 SAFFIRE Enabled Science

Our research group is actively using SAFFIRE to study several scientific problems. In

addition to the case of heterogeneous ice nucleation described in the introduction, we have also

used SAFFIRE to study the nucleation of clathrate hydrates [131] and Lennard–Jones particles.

Clathrate hydrates are a crystal composed of water and guest (e.g., methane) molecules. Their

formation presents substantial safety hazards in oil and gas transportation. In addition, researchers

are exploring hydrates for technological applications in natural gas storage and gas separations.

To investigate the mechanism of hydrate nucleation, we used molecular dynamics simulations with

FFS comprising 10 interfaces and 10,000–40,000 short simulations per interface. Including the long

simulations, SAFFIRE managed over 500,000 individual simulations. The entire calculation required

33 days on a 30-node Hadoop cluster with the same per-node specifications as listed in the scalability
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evaluation. From the ∼1000 nucleation pathways generated by SAFFIRE, we performed one of the

most comprehensive evaluations of the hydrate nucleation mechanism to date [131]. We are currently

using SAFFIRE to study the effects of guest solubility on the hydrate nucleation mechanism.

Our group also actively develops new methods to study rare events, and recently published

a method called contour FFS (cFFS) [241]. cFFS allows FFS to be performed along multiple order

parameters simultaneously. This improves the effectiveness FFS in cases where there are multiple

transition tubes and/or the optimal order parameter is not known a priori. We are planning to

implement cFFS in SAFFIRE.
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Chapter 5

Contour forward flux sampling:

Sampling rare events along

multiple collective variables
1

5.1 Introduction

Rare events remain uniquely challenging to study in molecular simulations [242]. These

infrequent transitions between long-lived (meta)stable states are characterized by large differences

between the timescales of the relevant physics (e.g., molecular vibrations, hydrogen bond lifetimes,

etc.) and the time between events (often µs to s). Exemplars include crystal nucleation [104, 51, 53,

131], ion-pair dissociation in solution [243, 244], conformational changes in biomolecules [119, 156],

and chemical reactions [245]. Due to the prevalence and importance of rare events, several advanced

sampling methods have been developed [137, 143, 246, 146, 129, 1, 247, 248, 249, 250, 142] to

estimate transition rate constants and sample unbiased trajectories connecting the stable states.

However, even with increasing computational power some phenomena remain challenging to study

and continued method development is required.

We present contour forward flux sampling (cFFS), a novel method to sample rare events

1Material for this chapter adapted from Ref. [241]
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with multiple collective variables2 (CVs) simultaneously. Building on forward flux sampling (FFS),

cFFS leverages overall trajectory behavior to on the fly determine nonlinear interface placement in

multiple CVs. FFS is a rare event sampling method that uses a series of non-overlapping interfaces

to drive a system from an initial state A to final state B [129, 1, 153, 251]. Each interface is defined

by some value of an order parameter, λ, which changes monotonically from A to B. Straightforward

simulation in A is used to estimate the flux, ΦA0, from A to the first interface, λ0, and to collect

a large number of first-crossing phase points at λ0. The designation of a phase point as a first-

crossing point indicates that upon following the trajectory backwards in time from the point, one

would reach λA before λ > λ0. Several trajectories are initiated from each phase point collected at

λ0 (λi). Stochasticity from the dynamics or velocity perturbation at the start of each simulation

ensures trajectory divergence. Trajectories returning to A are discarded, while those reaching the

next interface, λ1 (λi+1), are stored for the next iteration. This procedure is repeated for each

interface until the boundary of B is reached, or the probability of advancing to the next interface,

P (λi+1|λi), plateaus to 1. The transition rate constant is calculated as kAB = ΦA0

∏n−1
i=0 P (λi+1|λi)

and transition paths from A to B are generated by connecting the partial paths backward from B to

A. FFS has emerged as a popular choice for studying rare events in simulation because it is applicable

to equilibrium and nonequilibrium systems, and implementation is algorithmically straightforward

and embarrassingly parallel.

Despite its advantages, FFS has shortcomings. Assuming reasonable definitions for the

boundaries of A and B, the rate constant and transition path ensemble (TPE) computed with FFS

are, in principle, independent of the order parameter used for the calculation [1]. In practice, a poor

choice of order parameter is detrimental to the efficiency of FFS [136, 123] and can even lead to

incorrect results [154, 123]. This arises when portions of λi which are important to the transition are

sparingly sampled. More formally, imagine some coordinate (λ⊥) orthogonal to λ. Challenges arise

for FFS when there is poor overlap between the distribution of first-crossing phase points captured

at λi, ρ(λ⊥|λi), and the probability of reaching λB from some point on λi, P (λB |λi;λ⊥).[123] There

are two approaches to overcome this issue: (1) increase sampling to collect more phase points at

problematic interface(s), or (2) improve the choice of order parameter to increase overlap between

the two distributions. The first approach yields more phase points everywhere along an interface,

2In this work, a collective variable is a quantity that can be calculated from the configuration space coordinates of
the system. An order parameter is a collective variable that can distinguish between states A and B.
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but with sufficient sampling the paths spawned from phase points with a higher P (λB |λi;λ⊥) will

come to dominate the eventual path ensemble, resulting in the correct rate constant and TPE.

Unfortunately, the efficiency of FFS will still be poor. In contrast, the second approach increases

the efficiency of FFS, meaning that FFS will converge to the correct rate constant and TPE with less

sampling. Unfortunately, optimal order parameters are rarely known a priori. More often, one of the

reasons for generating a path ensemble with a method such as FFS is to identify order parameters

which best describe the transition.

Since sampling of all interfaces i > 0 in FFS depends on the phase points collected at

λ0, methods have been proposed to optimize placement of, and ensure adequate sampling of λ0

[155, 104, 58]. If the situation is not too dire, increasing the length of the basin simulation and

collecting more phase points at λ0 may provide a sufficient remedy. However, if overlap between

ρ(λ⊥|λ0) and P (λB |λ0;λ⊥) is extremely small, this may be insufficient. Furthermore, the problem

is not limited to λ0; in principle the distribution of phase points sampled at any λi could suffer from

this problem. Poor overlap between ρ(λ⊥|λi) and P (λB |λi;λ⊥) becomes particularly problematic

for systems with multiple transition tubes. There, a poor choice of order parameter may result in

some transition tubes becoming (artificially) favored over others. In the extreme, entire transition

tubes can be missed by FFS.

A related situation worth mentioning is when ρ(λ⊥|λ0) converges extremely slowly [104, 58].

If this is the problem, extending the basin simulations until convergence is achieved will remedy the

situation [104]. A greater number of phase points at λ0 are not required; just phase points correctly

sampled from the converged distribution.

The choice of order parameter strongly affects the overlap between ρ(λ⊥|λi) and P (λB |λi;λ⊥).

If the order parameter is the committor function, P (λB |λi;λ⊥) is constant with λ⊥, thereby assur-

ing good overlap between ρ(λ⊥|λi) and P (λB |λi;λ⊥) [123]. Borrero and Escobedo thus devised

a method to optimize the order parameter with a series of FFS simulations [144]. Though the

approach yields improvements [156], it is challenging for systems which require extraordinary com-

putational resources for even a single FFS run [53, 131]. Furthermore, some processes are inherently

multidimensional [31, 230, 252, 243], and driving the transition along a single CV may not be ideal.

cFFS takes a different approach. We extend FFS to use multiple CVs on the fly. This allows

researchers to test multiple CVs simultaneously and improves the chances of capturing important

orthogonal coordinates within the set of CVs used to drive the transition. At each interface, cFFS
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identifies the next interface as a nonlinear combination of specified CVs computed on the fly from

the behavior of simulations initiated from the previous interface. In doing so, cFFS also reveals the

role of each CV through the entire transition. Only the combination of CVs must separate A and

B and so each CV need not monotonically change from A to B. If some CV is unimportant, this

will be reflected by, but not impede cFFS. These features offer substantial flexibility in CVs that

can be used with cFFS. cFFS generates an estimate of the transition rate constant and a collection

of A→ B trajectories belonging to the TPE. We demonstrate cFFS with two CVs, but in principle

it can be extended to three or more CVs.

In Sec. 5.2 we explain cFFS. We proceed to demonstrate cFFS on several two-dimensional

potential energy surfaces in Sec. 5.3. In Sec. 5.4, we demonstrate cFFS with one position coordinate

and one momentum coordinate, and in Sec. 5.5 we test cFFS on a standard higher dimensional test

case, a conformational transition in alanine dipeptide. Discussion and closing remarks are provided

in Sec. 5.6 and Sec. 5.7, respectively.

5.2 Contour forward flux sampling

The central idea of cFFS is to allow the system to naturally evolve along multiple CVs to

reveal how different CVs participate in the transition. This is achieved by placing the subsequent

interface based on sampling initiated from the current interface. The FFS formalism can still be used

to calculate the rate constant and TPE. Interface placement is designed such that the distribution

of first-crossing points is uniform along the interface, ensuring that each interface is well-sampled

everywhere within the chosen CVs.

The first step of cFFS is to run straightforward basin simulations in A to identify the bounds

of A (λA) and the first interface (λ0), and to collect phase points at λ0. The value of each CV in

time, λ(t), is calculated, where λ ≡ {λI , λII , . . . , λN} is the set of CVs. CV space is discretized

to create an N -D grid. The discretization size is selected such that the system rarely travels more

than a single grid site in one time step. The discrete probability distribution, P (λ), is calculated

from the basin simulations. Grid sites exceeding a threshold probability are added to the set of sites

describing A, sA. Regions of CV space which are not in sA but completely surrounded by sA are

added to sA. λA is defined as the boundary between sites in sA and those that are not. Trajectories

exit A when they cross from a grid site in sA to a grid site not in sA.
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Several criteria are used to identify s0, the set defining λ0. s0 should: (a) completely contain

sA so that λ0 does not overlap with or cross λA, (b) not create regions of CV space completely

surrounded by s0, but not included in it, (c) not include sites in sB , the set of sites describing B,

(d) be selected such that some desired number of phase points can be collected at λ0, and (e) be

selected such that there is equal flux of trajectories exiting s0 along the entire λ0 interface. Criteria

(e) is crucial as it ensures that cFFS does not bias the system to sample any one direction more

readily than another. Further discussion is provided later. Once λA and λ0 are defined the basin

simulations are re-analyzed to calculate ΦA0 and collect phase points at λ0.

The remainder of cFFS proceeds as follows. Several trajectories are initiated from each

phase point at λi (λi = λ0 for the first iteration). Trajectories are terminated when they return to

λA, or reach a maximum number of steps. The set of sites defining λi+1, si+1, is determined from the

behavior of trajectories initiated at λi using analogous criteria to those described for determining λ0.

Note that si+1 must completely contain si to satisfy the effective positive flux formalism [146, 229].

Once si+1 is identified, trajectories are re-analyzed to determine if they cross λi+1 (i.e., exit si+1)

before returning to A. For each trajectory that crosses λi+1, the phase point at the time step which

the trajectory crosses λi+1 is saved. Trajectories which fail to reach λi+1 or return to A before

the maximum number of steps are extended until they reach λi+1 or return to A. The probability,

P (λi+1|λi), is calculated from the number of trajectories that reach λi+1 before returning to A.

Eventually, sites in si+1 will be adjacent to sites in sB . Trajectories initiated from λi can

then reach λi+1, return to A, or proceed directly to B. This indicates the kinetic barrier has been

surmounted and thus cFFS is nearly complete. Two probabilities are now calculated; P (λi+1|λi)

and P (λB |λi). Our approach is to continue cFFS until si+1 surrounds sB . At this point, i becomes

the final interface, n. Trajectories initiated from λn are continued until they reach λB or return to

λA to close the probabilities for the rate calculation. As with multi-state FFS [253], the transition

rate constant is calculated as

kAB = ΦA0

n∑
j=0

P (λB |λj)
j−1∏
i=0

P (λi+1|λi). (5.1)

The collection of trajectories comprising the TPE is constructed by connecting the partial

paths backwards from B to A. Note that all trajectories do not have equal weight in the TPE.

The relative weight of each trajectory is w = 1/
∏j
i=0 ki, where j is the final interface crossed by a
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trajectory before reaching B and ki is the number of trajectories initiated from each configuration

at interface i.

5.3 Demonstration on 2D potential energy surfaces

Figure 5.1: Top panels: PESs used to test cFFS: (a) PES-1, (b) PES-2, (c) PES-3, and (d) PES-4.
Color represents the potential energy. Contour lines are separated by 0.5 units. The region between
the dashed lines was used to quantitatively compare ρ(q|TP) between different methods. Bottom
panels: TPE sampling from SLD at β = 2.5 on (e) PES-1, (f) PES-2, (g) PES-3, and (h) PES-4.

We demonstrate cFFS with Langevin dynamics of a single particle on four 2D potential

energy surfaces (PESs) with different topographical features (see Fig. 5.1(a)–(d)). PES-1 has a

single transition tube which follows two monotonically increasing CVs. PES-2 has a single transition

tube with hysteresis in the x coordinate. PES-3 and PES-4 both contain two transition tubes; the

potential energy barriers are the same for the two tubes on PES-3, and different for the two tubes on

PES-4. For each PES, we study A→ B transitions with straightforward Langevin dynamics (SLD),

FFSopt, FFSx, and cFFS. FFSopt denotes FFS performed with the optimal linear combination of x

and y (i.e., the order parameter orthogonal to the dividing surface of the PES), and FFSx indicates

FFS performed with x as the (suboptimal) order parameter. We stress that optimal order parameters

are not known a priori for most realistic systems, and therefore FFS is generally performed with

suboptimal order parameters. Further details of the PESs, Langevin dynamics, and FFS/cFFS

parameters are provided in Appendix B.
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Table 5.1: A → B transition rate constants for four 2D
PESs. One standard deviation of the mean is reported in
parenthesis.

kAB × 105 at β = 2.5

PES SLD FFSopt FFSx cFFS

PES-1 2.9 (0.2) 2.8 (0.3) 3.1 (0.9) 2.8 (0.2)
PES-2 9.1 (0.1) 7.9 (0.9) 10.2 (2.5) 8.8 (0.7)
PES-3 2.6 (0.3) 2.4 (0.4) 2.3 (0.6) 2.4 (0.1)
PES-4 1.1 (0.1) 1.0 (0.1) 1.1 (0.1) 1.0 (0.1)

kAB × 109 at β = 5.0

PES-1 5.4 (1.2) 4.4 (0.2) 3.1 (0.2) 4.5 (0.6)
PES-2 23.2 (2.0) 18.0 (3.5) 18.3 (1.0) 21.9 (2.3)
PES-3 6.4 (1.3) 2.9 (0.2) 2.5 (0.2) 5.4 (0.5)
PES-4 2.8 (0.9) 1.9 (0.4) 0.42 (0.02) 2.6 (0.1)

5.3.1 Rate constants

A → B transition rate constants are reported in Table 5.1. Transitions were studied at

β = 2.5 and β = 5.0 (β = 1/kBT ). The higher temperature (β = 2.5) enables rigorous comparison

of TPE sampling with SLD, whereas the lower temperature (β = 5.0) provides a test at more

challenging conditions. SLD rate constants are unbiased estimates. FFSx provides accurate estimates

of the rate constants at β = 2.5, but at β = 5.0 FFSx underestimates the rate constants. This

suggests that suboptimal order parameters perform worse as the barrier becomes larger relative to

kBT . We explain the breakdown of FFSx by examining the TPE sampling below. FFSopt and cFFS

perform better. Rate constants from FFSopt and cFFS both agree nicely with SLD at β = 2.5. At

β = 5.0, FFSopt underestimates rate constants for PES-2 and PES-3. In contrast, cFFS provides

correct estimates of the rate constants for all four PESs at β = 5.0.

5.3.2 Transition path ensemble sampling

Though attaining the correct A→ B rate constant is a crucial test of cFFS, it is also impor-

tant that cFFS correctly samples the TPE. TPE sampling is calculated as 〈ρ〉TP = 〈nvisits/l
2〉TP,

where 〈...〉TP indicates an ensemble average over all transition paths, and nvisits is the number of

times a transition path visited each l× l region of space. For reference, TPE sampling from SLD at

β = 2.5 is shown in the bottom panels of Fig. 5.1.

Fig. 5.2 summarizes the behavior of FFSopt, FFSx, and cFFS on PES-1–PES-4 at β = 5.0.

All methods result in qualitatively similar sampling for PES-1. The other surfaces proved more
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Figure 5.2: Comparison of interface placement and TPE sampling generated with FFSopt, FFSx,
and cFFS on PES-1 – PES-4 at β = 5.0. PES contours are shown as gray lines. Configurations
collected at each interface are shown with black points. TPE sampling represented by the heat map.

challenging for FFSx and FFSopt. In contrast, cFFS results in the qualitatively correct sampling for

all four PESs. On PES-2, the hysteresis provides a challenge for FFSx. Unlike FFSopt and cFFS,

FFSx undersamples the x < 0 portion of the transition tube. On PES-3 and PES-4, the failure of

FFSx is even more stark; FFSx only samples one of the two transition tubes. Even FFSopt fails to

sample both transition tubes equally on PES-3. PES-3 and PES-4 have two distinct transition tubes,

and the minimum energy paths change direction from A to B. On PES-3, both transition tubes have

the same potential energy barrier. However, one transition tube approaches the transition state from

A with a gentler slope. Results from SLD at β = 2.5 in Fig. 5.1(g) indicate that both transitions

should be equally traveled. cFFS reproduces this behavior at both β = 2.5 (Fig. 1 of Appendix B)

and the more challenging β = 5.0 (Fig. 5.2(i)). At β = 5.0, FFSx only samples a single transition

tube (Fig. 5.2(h)). Even FFSopt struggles to sample both transition tubes equally on PES-3 (Fig.

5.2(g)). The behavior of FFSopt and FFSx on PES-3 can be explained by the framework put forth in

the introduction. In both cases, it is apparent that ρ(λ⊥|λ0) sampled during the basin simulations

only has good overlap with P (λB |λ0;λ⊥) for one of the two transition tubes. The result is that

FFS oversamples the tube with greater overlap, at the expense of the other transition tube. FFS

sensitivity to the choice of order parameter on PES-3 is further demonstrated in Fig. 2 of Appendix

B. Though FFS will converge to the correct TPE in the limit of infinite sampling, as a practical
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Figure 5.3: Jensen-Shannon divergence between ρ(q|TP) calculated with SLD and FFSopt, FFSx,
and cFFS at β = 2.5. A value of zero indicates identical probability distributions, while a value
of 1.0 indicates completely non-overlapping distributions. Inset focuses on 0.0–0.03 y-axis bounds.
Error bars represent one standard deviation on the mean of three independent trials.

matter FFS can lead to incorrect results. cFFS again performs well on PES-4, illustrating that cFFS

is able to navigate a tortuous transition landscape with two transition tubes and unequal potential

energy barriers.

Near the dividing surface (see Fig. 5.1) we quantitatively compare the TPE density of states,

ρ(q|TP), from SLD with that from FFSopt, FFSx, and cFFS using the Jensen-Shannon divergence

[254]. We restrict our comparison to β = 2.5, where a large number of transitions can be generated

with SLD, hence providing a robust reference. The results shown in Fig. 5.3 confirm qualitative

conclusions from Fig. 5.2 (β = 5.0) and Fig. 1 of Appendix B (β = 2.5). At β = 2.5, FFSopt and

cFFS perform similarly. For the simplest case (PES-1), FFSx performs nearly as well as FFSopt and

cFFS. However, for the more complex surfaces, including the surface with hysteresis (PES-2), and

surfaces with two transition tubes (PES-3, PES-4), FFSx performs notably worse.

5.3.3 cFFS interface placement

Fig. 5.2 also demonstrates cFFS interface placement. Interfaces are spaced further apart in

directions that trajectories more readily advance and closer together in directions that trajectories

struggle to advance. For these low-dimensional systems, interface locations adhere closely to the

contours of the PESs. We strongly emphasize that no knowledge of the PES is employed; cFFS

places interface λi+1 from the progress of trajectories initiated from λi alone.

If not done properly, performing FFS with multiple CVs simultaneously can bias the system

to over-sample or under-sample regions of CV space. The amount of work performed by FFS is
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related to interface spacing (i.e., λi+1−λi), slope of the free energy landscape between λi and λi+1,

and the number of trajectories initiated from λi. If the slope of the free energy landscape between

two interfaces becomes steeper, λi+1 is moved closer to λi or the number of trajectories initiated

from λi is increased. Multiple CVs introduces a new prospect; that unequal amounts of work are

inserted along different CVs, biasing the system to over-sample in the direction that more work is

inserted.

We introduced a condition of constant flux along an interface in cFFS interface placement

to address this problem. The force exerted by the underlying free energy surface is proportional to

−dncross/dλ, where ncross is the number of trajectories crossing an interface placed at some value

of λ. If ncross changes more quickly with changing λ, then the underlying surface must have a

steeper slope. Applying the differential definition of work, dW = Fdλ, and thus dW ∝ dncross

and W ∝ ncross. Constant flux along the interface requires that all small sections of λi+1 have

approximately the same number of trajectories crossing them. This condition ensures that equal

work is inserted everywhere along the interface (i.e., in all directions) and results in λi+1 closer to

λi in directions trajectories struggle to advance and further from λi in directions trajectories readily

advance. The fact that cFFS is able to reproduce the correct TPE symmetry for PES-3 and PES-4

provides strong evidence that the constant flux along the interface condition is correct.

In complex systems, the optimal order parameter is often expected to be a combination

(linear or nonlinear) of multiple (suboptimal) order parameters. This combination is generally

nonintuitive and difficult to predict. As such, most applications of FFS use a suboptimal order

parameter (e.g., FFSx). On the four PESs, cFFS successfully produces correct TPE sampling

without knowing how x and y should be combined. Though x and y are part of the optimal

order parameter, independently, x and y are suboptimal order parameters. This suggests that

cFFS can outperform FFS when multiple suboptimal order parameters are known, but the optimal

order parameter remains unknown. In addition, nonlinear combinations of CVs have increased

degeneracy compared with linear combinations of CVs in creating reaction coordinates (i.e., optimal

order parameters) [255]. Since cFFS interfaces are arbitrarily complex combinations of the specified

CVs, there may be substantial flexibility in selecting good CVs for cFFS. A variety of approaches

have been proposed for identifying important CVs for rare event transitions [256, 210, 127, 257, 258,

144, 211, 135]. For example, recent work suggests that important CVs can be identified from local

fluctuations in the (meta)stable basins [259]. We envision using such approaches to identify key CVs
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for cFFS.

5.4 cFFS with a momentum coordinate

FFS is most often applied in the diffusive limit and the CVs used as FFS order parameters

are generally only functions of the atomic coordinates. In this section, we demonstrate cFFS on a

simple analytical potential where momentum plays a key role during the transition. A previous study

shows that FFS fails and under-predicts the transition rate constant when using a position-based

order parameter alone [123].

Ref. 123 tested several path sampling methods for a transition on a simple 1D analyt-

ical potential described by V (r) = r4 − 2r2. Of the tested methods, replica exchange transi-

tion interface sampling (RETIS) and partial path transition interface sampling (PPTIS) provided

the best estimates to the reference effective positive flux (EPF) rate (kEPF
AB = 2.4 ± 0.1 × 10−7,

kRETIS
AB = 2.8± 0.7× 10−7, kPPTIS

AB = 2.7± 0.6× 10−7). FFS performed worst, underestimating the

rate constant by 1–2 orders of magnitude depending on the length of the basin simulation. With a

basin simulation of 4 million steps, FFS produced a rate constant of kFFS-short
AB = 2.2 ± 0.2 × 10−9.

When the basin simulation was extended to 10 million steps, kFFS-long
AB = 1.2 ± 0.1 × 10−8. As

explained in Ref. 123, the source of systematic error in the rate constant was the lack of overlap be-

tween ρ(λ⊥|λ0) and P (λB |λ0;λ⊥). Successful transitions require large momentum when exiting the

initial basin, and few to none of the trajectories captured at λ0 had the requisite momentum. Even

successful transition paths from FFS exited the initial state with lower momenta compared with

other methods, resulting in a low estimate of the rate constant. This also resulted in the unphysical

result that the momenta of transition paths from FFS were not symmetric about the barrier.

We perform cFFS with the above potential at identical conditions as Ref. 123. The two

variables for cFFS are the position (r) and momenta (p). The basin simulation is performed with

4 million steps. We place interfaces adaptively, collecting ∼2,000 configurations per interface. As

in Ref. 123, we initiate 20,000 trajectories from each interface. cFFS resulted in shooting from 8

interfaces, compared with the 7 interfaces used in Ref. 123. The average rate constant from three

cFFS trials was kcFFS
AB = 2.0 ± 0.1 × 10−7, slightly underestimating the EPF rate constant from

Ref. 123. The TPE and configurations collected at each interface from cFFS are shown in Fig. 5.4.

Paths exit the initial state orbiting the basin and acquiring more kinetic energy until they are able
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Figure 5.4: cFFS on 1D potential with one position coordinate (r) and one momentum coordinate
(p). Initial basin A is r < 0 minima and final basin B is r > 0 minima. Configurations collected at
each interface are shown as black points. Color map shows the TPE sampling.

to escape. Their momenta then approaches zero as they cross through the transition state, before

accelerating towards and orbiting into the final state. Consistent with theoretical expectations, the

TPE generated by cFFS is symmetric about the barrier. We also tested cFFS with less sampling.

Even with a twenty-fold reduction in sampling (1000 trajectories, 100 configurations per interface),

the rate constant calculated with cFFS is kcFFS
AB = 2.6± 0.7× 10−7 and the TPE remains symmetric

about the barrier.

These results demonstrate the potential for using cFFS to study transitions with important

momenta variables. Though the above test case represents an extremely simple analytical model,

it demonstrates the advantages of cFFS in such scenarios. If an important momenta variable is

known for a transition, cFFS allows the basins to be separated with a position coordinate and the

momentum coordinate can be used to help drive the transition.

5.5 Demonstration on alanine dipeptide

In keeping with tradition, we close by demonstrating cFFS on the C7ax-to-C7eq conforma-

tional change in alanine dipeptide in vacuum. Details of the simulations and cFFS are reported in

the SI. φ and ψ backbone dihedral angles were used as CVs for cFFS. The progression of cFFS is

shown in Fig. 5.5(a). Starting from the C7ax basin centered near φ = 60◦ and ψ = −30◦, cFFS

drives the system to the C7eq basin defined by −94◦ < φ < −60◦ and 12◦ < ψ < 90◦. The shape

of the interfaces shows that φ plays the larger role in the transition and reveals the location of the

primary transition tube. The transition rate constant predicted by cFFS (kcFFS
AB = 5.0 × 106 s−1)

compares favorably with straightforward simulation (kSLD
AB = 4.8× 106 s−1). In Fig. 5.5(b) we show
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Figure 5.5: cFFS for alanine dipeptide in vacuum. (a) Initial and final states are shown as red and
black regions, respectively. Configurations collected at λ0, λ1, λ2, and λ3 are reported as red, pink,
salmon, gold, and green points, respectively. Color map represents the TPE sampling. φ and ψ
angles are reported in degrees. (b) Correlation between φ and θ in the TPE. Color map represents
the TPE density of states.
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the relationship between φ and another dihedral angle, θ, in the TPE. It has been shown that θ is

part of the reaction coordinate [260, 247]. cFFS captures the proper relationship between φ and θ

even though θ is not one of the CVs used during cFFS [247, 249].

5.6 Discussion

cFFS helps overcome a few challenges posed by FFS. cFFS allows one to try multiple CVs

simultaneously. This is beneficial for systems where investigators have some a priori insight into the

CVs that are expected to play a role in the transition, but a detailed analysis of the mechanism

is missing and the best order parameter remains unknown. By using multiple CVs simultaneously

and enforcing constant flux along an interface, the method can alleviate issues associated with poor

overlap between ρ(λ⊥|λi) and P (λB |λi;λ⊥). Of course, it is possible that there are additional

important orthogonal coordinates beyond the chosen CVs. This situation could pose sampling

challenges for cFFS. Finally, we demonstrated cFFS with a combination of momenta and position

based coordinates. This may extend the practical applicability of FFS to more ballistic systems.

FFS depends on stochasticity for trajectory divergence between subsequent interfaces, so it will still

not be applicable in the limit of fully deterministic dynamics.

cFFS can in principle be extended to a large number of CVs. However, we surmise the

method will not scale well to more than three or four CVs. In high dimensional space, the area

through which trajectories can cross an interface will become exceedingly large. From a practical

standpoint, this will make it difficult to maintain the constant flux condition. From an efficiency

standpoint, most of each interface will drive the system towards regions of phase space which are

irrelevant to the transition of interest. Even if successful transitions are generated, they will prob-

ably originate from a tiny subset of the phase points collected at λ0 and thus be highly correlated.

Challenges associated with scaling to large numbers of CVs are hardly limited to cFFS. A variety

of advanced sampling methods, including nonequilibrium umbrella sampling [261, 262] and metady-

namics [125] have come across similar problems. One solution is to collapse the reaction coordinate

to a single dimension using a string-type approach [247, 262, 258]. The string-type approach will

prove difficult to implement in FFS without resorting to an iterative scheme requiring multiple FFS

runs, because each path ensemble in FFS is generated sequentially and there is no opportunity to

relax the string. Moreover, the string-type approach could defeat one of the benefits of cFFS, which
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is that it enables exploration of transitions with multiple tubes.

Extending cFFS to large numbers of CVs will thus require alternative approaches. Di-

mensionality reduction techniques such as isomaps [263, 264] or diffusion maps [265, 266] could be

employed to reduce a large number of CVs to two or three reduced coordinates which capture the

largest spread in the data. In this manner, multiple transition tubes would hopefully be preserved

[264, 252] within the reduced coordinates. Furthermore, several groups are actively working to

combine machine learning and advanced sampling methods to identify important CVs on the fly

[267, 268, 269, 270, 271]. We are exploring if such methods or variations thereof can be incorpo-

rated with cFFS. One challenge to incorporating on the fly identification of reduced coordinates

with FFS-type methods is again related to the sequential generation of ensembles. Sampling from

the initial basin alone is unlikely to reveal reduced coordinates ideal for studying the transition. As

FFS progresses, sampling from each interface ensemble will result in reduced coordinates which in-

creasingly describe the transition. However, FFS requires that each ensemble be visited sequentially,

and changing the definition of the reduced coordinates after each ensemble may cause substantial

difficulty in maintaining this condition.

Studying rare events in simulations is an important and challenging problem that has

spawned the development of many methods in the past decades. Here we restrict our comparison

to two methods which use multiple CVs to sample, and calculate rate constants for rare transitions

with unbiased dynamics in equilibrium or nonequilibrium systems. Vanden-Eijnden and Venturoli

developed a method [272] that calculates the transition rate constants and transition paths from the

steady state distribution under the boundary conditions that state A is a source and state B is a

sink. The space between the stable states is tiled into enclosed Voronoi cells and parallel simulations

are performed in each cell. The steady state flux and probability distribution can be estimated from

the time spent in each cell and exchange between cells. Like cFFS, the method is applicable to

equilibrium as well as nonequilibrium systems and does not require that A and B be well separated

in both variables. Since each parallel path is restricted to a single cell, the method may prove ad-

vantageous compared with cFFS for systems with metastable intermediates. The method does not

provide direct access to dynamical transition paths, although, in principle, transition paths could

probably be reconstructed with an extensive bookkeeping scheme. It is not immediately apparent

which method would be better for systems with slowly decorrelating transition paths.

As mentioned in the introduction, Borrero and Escobedo [144] developed a method to op-
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timize the FFS order parameter through a series of FFS runs. The approach uses committor infor-

mation obtained from the prior FFS run to identify the best order parameter from a set of specified

CVs. The procedure can be repeated until TPE sampling or the optimal order parameter converges.

Like cFFS, the procedure in Ref. 144 allows FFS to be used in situations where there are a number

of possible CVs. Since the FFS runs themselves are performed along a single order parameter (which

may be a linear or nonlinear combination of multiple CVs), there is no limitation to the number

of CVs which can be tested. For certain systems this may represent a substantial advantage over

cFFS, which in current form is practically limited to three or four CVs. Unfortunately, the method

presented in Ref. 144 requires multiple (often expensive) FFS runs. Additionally, given the sensi-

tivity of FFS sampling to the choice of order parameter in the presence of multiple transition tubes,

we suspect cFFS will perform better for such systems.

Lastly, we would like to comment on the possibility of combining a cFFS-type approach with

other path sampling methods. At the most basic level, cFFS divides CV space into a fine grid to help

define regions of phase space and interfaces between those regions with arbitrary shape. In cFFS,

criteria for boundary identification were selected to meet the needs of FFS – a minimum number

of total first crossings and constant average flux along the interface to avoid biasing the system to

proceed in one direction over another. It is easy to imagine modifying the boundary identification

criteria for other applications. Within the family of FFS approaches, it may prove fruitful to combine

the approach of Borrero and Escobedo [144] with a cFFS-type approach for interface definitions.

This could allow interfaces with any arbitrary shape which could better reproduce the committor

function. Transition interface sampling is less sensitive to the definition of order parameter [136, 123].

However, a procedure has been proposed to optimize interface placement given the order parameter

[273]. This criterion for optimal interface placement could be combined with a cFFS-type approach

for dividing the CV space for transition interface sampling.

5.7 Concluding remarks

We described cFFS, a method to sample rare event transitions along multiple CVs simul-

taneously. cFFS uses automated nonlinear interface placement and reveals on the fly the evolution

of CVs during a transition. cFFS was tested with two CVs, but in principle, it can be extended to

three or more. In practice, extending cFFS in current form to more than three or four CVs may
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prove challenging. The stable states only need to be separated in a combination of CVs, which may

change nonmonotonically between the stable states. We introduced a criterion of constant flux along

each interface to prevent biasing TPE. cFFS results in correct estimates of the transition rate con-

stants and TPE sampling on several 2D PESs and the C7ax-to-C7eq transition in alanine dipeptide

in vacuum. We additionally demonstrated cFFS on 1D analytical potential using one position co-

ordinate and one momenta coordinate. cFFS substantially improved upon FFS results on the same

potential, where only the position coordinate was used an the order parameter. On the 2D PESs,

cFFS performed particularly well for systems with hysteresis or multiple transition tubes. cFFS

with multiple suboptimal order parameters consistently outperformed FFS with a single suboptimal

order parameter. Since optimal order parameters are not known in most applications of FFS, cFFS

with two or more suboptimal order parameters will be beneficial for studies of complex systems such

as macromolecular conformational transitions and crystal nucleation.
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Chapter 6

A generalized deep learning

approach for local structure

identification in molecular

simulations
1

6.1 Introduction

Molecular simulations have become an indispensable tool in investigations of wide-ranging

phenomena in physics, chemistry, biology, and engineering. One of the primary goals of molecular

simulations is to relate microscopic behavior to macroscopic observable properties of a system. As

such, local structure (i.e., spatially local arrangements) of atoms and molecules is often of interest.

In principle, the raw output from molecular simulations—the position coordinates of each atom in

the system for the duration of the simulation—includes all the necessary information to quantify

local structure. However, this immense quantity of data inevitably requires further analysis to

extract meaningful insights into system behavior. Quantitative measures of local structure are thus

imperative in analysis of molecular simulations.

1Material for this chapter adapted from Ref. [274]
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The current approach is to calculate some mathematical quantity that is a function of the

atomic positions. These functions are referred to as ‘order parameters’ since they often track struc-

tural order present in a system. In some cases, order parameters can be trivial to implement and

intuitive to understand (e.g., distance between an ion pair [243]). However, many types of local

structure have more subtlety (e.g., solvation environments, crystal polymorphs) and require sub-

stantially more complex order parameters. Though there are some general approaches that have

proven successful for certain types of systems [275, 276, 277, 278], order parameter development is a

highly challenging and non-trivial endeavor. This difficulty is evidenced by the fact that demonstrat-

ing new order parameter(s) is often itself worthy of a full paper [279, 280, 194, 191, 281]. Given the

difficulty of order parameter development, it is unfortunate that most order parameters only distin-

guish a small set (i.e., <3) of physical structures. Development and/or implementation of multiple

order parameters is often required if it is necessary to distinguish between additional structures.

These challenges hinder progress in applying molecular simulations to study novel structures and

systems.

The widespread success of machine learning has prompted researchers to apply techniques

from this field in capacities that span nearly every aspect of molecular simulations. Several groups

are actively working to directly combine machine learning with advanced sampling methods [269,

282, 283]. Others have used machine learning to develop force fields [284, 285], for coarse-graining

[286, 287], to identify reaction coordinates [210], and to extract trends in results by clustering similar

structures [288, 289, 290]. There are a few previous efforts to use machine learning for structure

identification in molecular simulations [291, 288, 292, 293, 294, 295]. In general, such approaches

seem promising given the widespread success of machine learning in tasks such as computer vision

(e.g., image recognition, segmentation, etc.) [296, 297, 298]. Structure identification in simulations

is in many ways similar to computer vision tasks, where simple units of patterns or structures (e.g.,

distances and angles between atoms) combine in specific larger patterns to form some structure (e.g.,

crystal type, macromolecular secondary structure).

The primary challenge in applying machine learning to structure identification in molecu-

lar simulations is determining the appropriate input features. Several interesting approaches have

relied on preprocessing the output from molecular simulations. Geiger and Dellago [291] trained a

neural network to identify crystal structures in Lennard-Jones (LJ) and water systems by process-

ing the raw output from molecular simulations through system-specific symmetry functions [284].
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Other approaches for structure identification in molecular simulation have first processed the simu-

lation output with spherical harmonics [293, 295] or other carefully engineered features [294, 295].

Panagiotopoulos and co-workers took a different approach, using neighborhood graphs and diffu-

sion maps [265, 266] to discover, cluster, and classify crystal structures and identify relationships

between crystal types without explicit training of each structure [288, 292]. In general, the previ-

ous attempts to apply machine learning for structure identification in molecular simulation require

extensive preprocessing [291, 294] or complex and computationally expensive methods [288, 292].

In particular, preprocessing data can require extensive system-specific parameterization and risks

limiting the methods to specific types of local structure.

Our goal is to develop a simple and straightforward machine learning approach to distinguish

between any number of distinct local structures that appear in molecular simulations. These local

structures could be representative of a local crystalline environment, biomolecular conformation,

relative arrangement of ligand and binding site, or, in principle, any other structure. The key

feature is that the structures must be distinct. In the context of machine learning, this represents

a classification problem. Neural networks, a cornerstone of deep learning, have been increasingly

used for classification and segmentation tasks in a plethora of diverse applications. Deep learning

offers a suitable approach for classifying structure in a molecular simulation because of its ability

to extract high level representations from raw features of large datasets [299]. However, there are

challenges to directly applying neural networks to molecular systems. Molecular systems contain

physical symmetries that should be preserved: symmetry with respect to global translation, global

rotation, and exchange of chemically identical atoms. In other words, the classification should

remain identical upon applying any of those operations to a structure. One approach to handling

these symmetries is through preprocessing (e.g., symmetry functions) [284]. However, this can

require system-specific tuning and/or a priori knowledge [279]. We aim to create a procedure that

requires minimal preprocessing or tuning by training a neural network on data that is as close as

possible to the raw output from molecular simulations. The approach should be easy to apply, able

to distinguish between multiple different structures, and applicable to a range of systems studied in

molecular simulations.

Using ideas from computer vision [300], we implement a network that is designed to operate

directly on sets of points—i.e., the output of molecular simulations. We apply our approach to

differentiate between the liquid phase and various crystal structures. This choice is motivated by
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several factors. (1) Molecular simulations are widely used to study phase equilibrium and phase

transitions in a myriad of substances. Crystal structure identification is required in studies of

crystal nucleation [17, 131], crystal growth/dissociation [301, 302], crystal defects, and crystal grain

boundaries [303]. (2) It is important to have a local (rather than global) measure of the crystal type

for all of the previously listed problems, (3) there are many types of crystal structures, providing

a rich test bed for our approach, (4) more recent studies have focused on heterogeneous nucleation

(i.e., in the presence of an external interface), where existing order parameters are often unable

to identify the crystal type of atoms nearest to the external interface [214], and (5) successfully

demonstrating the method for crystal structure identification in multiple types of systems suggests

it should be broadly applicable to any assembly process (e.g., crystallization, protein folding, etc.)

that involves the formation of multiple distinct structure types that must be identified.

The methodology is described in Sec. 6.2. Results from three different types of systems (LJ,

water, and mesophase) are presented in Sec. 6.3. The method is extended to identify hydrophobicity

on surfaces in Sec. 6.4. Concluding remarks and future directions are provided in Sec. 6.5. For

brevity, all simulation details are provided in Appendix C.

6.2 Methods

In machine learning, point clouds are a data structure that consist of a set of points in

3D space. Each point is represented as (x, y, z) coordinates, and a single point cloud consists of a

collection of individual points. Point clouds are notoriously challenging to work with because of their

irregular data structure. One common way to handle point clouds is to convert the data structure

into a regular 3D voxel or a collection of images so it can be processed using existing methodologies

that handle regular, lattice-like data, such as 2D or 3D convolutional neural networks [304, 305].

However, when dealing with a large number of data points, these transformations create needlessly

voluminous data. Computation times for model training and evaluation can quickly exceed practical

limits and these data preprocessing transformations can also obscure natural invariances within the

data [300]. We elect to use a recently developed deep learning model known as PointNet, which

directly processes point clouds without preprocessing [300]. The input to PointNet is a single point

cloud (i.e., set of points) while the output is a class label for classification or a per point label for

segmentation.
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Figure 6.1: PointNet Architecture The PointNet takes n points of 3 + N dimensions (i.e., a
single point cloud) and passes them through feature extraction layers, a max pooling layer, and
finally classification layers. The feature extraction is comprised of five dense layers that share
weights across each point. The max pooling layer applies a symmetric function with a n × 1 filter,
reducing the features to just 1024 × 1 dimensions. Two dense layers and a softmax layer are used
to determine the final classification of the point cloud.

Our goal is to classify local structure in simulations. Since the raw output from molecular

simulations is a point cloud, we use a PointNet to classify structures found in point clouds composed

of spatially local atoms. The classification can describe a collective property of all the atoms in the

point cloud (e.g., the conformation of a small molecule could be classified from the coordinates of

its atoms) or the classification can be projected back onto the central atom to provide a descriptor

of the local environment that the central atom is embedded within (e.g., local crystal structure).

6.2.1 PointNet structure

We choose to use the basic setting of the PointNet architecture, which consists of a section

of shared dense feature extraction layers, a max pooling operation, followed by a section of densely

connected layers. A schematic of the network structure is shown in Fig. 6.1. The PointNet takes

a point cloud comprised of n points as input. Each point i is composed of xi, yi, and zi, to which

0–N additional features can be appended (k1
i , . . . , k

N
i ). Before entering the feature extraction layers,

the point cloud is randomly rotated around the x, y, and z axis. This transformation is required

to train the network to be invariant to global rotation. Each point is identically and independently

passed through the feature extraction layers. The feature extraction is a multilayer perceptron
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(MLP) network composed of five dense layers with 64, 64, 64, 128, and 1024 neurons, respectively.

It is important to note that the weights of the feature extraction networks are shared across each

point, similar to a convolution operation. Following the feature extraction, each point has been

transformed from being described by 3 + N features to 1024 features. Furthermore, each point has

undergone the same mathematical transformations, regardless of the input ordering of the points.

It is necessary to combine features from the different points in order to reach an overall

classification, but a strategy must be applied to make the model permutation invariant of the input

order. The PointNet implementation we use employs a symmetric function that aggregates informa-

tion from each point, irrespective of initial point order. The idea is to approximate a general function

(i.e., classification) by combining feature transformations and a symmetry function as follows:

f({p1, ..., pn}) ≈ g(h(p1), ..., h(pn)) (6.1)

where p1, . . . , pn are the points in the point cloud, h is the feature extraction MLP and g,

the symmetry function, is the max pooling function. The max pooling function uses a filter of size

[n, 1], where n is the number of points. Thus, the max pooling function selects, for each feature, the

value that is most highly activated, regardless of the point that it comes from. The output from this

operation is symmetric with respect to changing the order of the input points. The combination of

the shared feature extraction MLPs and this max pooling layer allows us to input a set of spatial

coordinates describing a molecular structure, and maintain the invariance to exchange of atoms.

The output of the max pooling layer is fed to two fully connected layers with 512 and 256 neurons,

respectively, which is fed to a dropout layer (keep probability 0.7) and finally a softmax layer for

classification.

All fully connected layers, including the layers in the feature transformation, use batch

normalization [306] and the rectified linear unit (ReLU) nonlinear activation function. We employ

the cross entropy loss function and use the Adam Optimizer [307] with learning rate 0.001 and

default parameters. The network was implemented using the Tensorflow [308] Python API.

Results should be invariant to global translations and global rotations of the point cloud,

as well as the exchange of atoms (i.e., the order of points in the point cloud). Invariance to global

translation is handled by shifting the point cloud such that some selected central atom is always

located at (0, 0, 0). The invariance to exchange of atoms is handled by the structure of the PointNet.
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Invariance to global rotations is handled by the random rotation that is applied to each point cloud

before it enters the network.

6.2.2 Local crystal structure identification

One common approach in crystal structure identification is to determine the crystal structure

of each atom from its local environment. We apply the PointNet in a similar manner to determine

the crystal environment of every atom in the system. Each point cloud is created by the positions

of atoms within some cutoff distance, rcut, of a central atom, a, and used to classify the crystalline

environment of a. Standard periodic boundary conditions are applied when calculating the neighbors

of a. Each point cloud is translated such that the central atom, a, is located at (0, 0, 0). This step

preserves the symmetry of the network output with respect to global translations of the point cloud.

The coordinates of the atoms in the point cloud are scaled such that the closest atom is always

at distance of 1.0. The PointNet requires a fixed number of points, n, in the input point clouds.

However, the number of atoms within a given cutoff distance of a central atom varies from sample

to sample. To handle this problem we pre-selected a set point cloud size for a given cutoff distance.

If a sample contained more than n points, the furthest points from the central atom were removed

from the point cloud until only n points remained. If the sample contained fewer than n points,

the point cloud was padded with (0, 0, 0) points. The number of points in the point cloud, n was

selected as two standard deviations above the mean number of points within the cutoff distance.

6.2.3 Training and testing methodology

The PointNet is trained on samples generated from simulations of pure crystal phases. This

approach provides easy ground truth labels for the samples. 104–105 samples were collected from

simulations of each pure phase. We ensured that there were an equal number of samples from each

phase. Samples were randomly divided into a training and testing portion, with 80% of samples

in the training set and the remaining 20% of samples belonging in the test set. Each time a point

cloud is processed through the network, it is given a different random rotation around its x, y, z

axes. Thus, the network is forced to learn the invariance to global rotations of the point clouds. The

network was trained for 100 epochs with each batch containing 64 point clouds.

The test set is sampled from the original data distribution. To more rigorously check for
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model generalization, we devise a ‘hold-out’ set in addition to the test set for some systems. The

hold-out set contains the same crystal phases as the training and test data, but the samples are taken

from simulations performed at temperature and pressure conditions that are interpolated between

the conditions used for training and testing. The hold-out set is designed to ensure that the network

has indeed learned the emergent features of the crystal structure and generalizes to conditions not

explicitly seen by the network during training.

6.3 Results and Discussion

6.3.1 Lennard-Jonesium

We first tested the ability of the PointNet to classify phases formed from Lennard-Jones (LJ)

particles. The network was exposed to four classes of structures during training, namely, liquid, fcc,

hcp, and bcc. To provide a robust test of the PointNet, the trained network was tested on point

clouds that were taken from (T, P ) conditions that the network was never exposed to during the

training phase. The (T, P ) conditions were selected such that they interpolated between the (T, P )

conditions of the training data. Details of training conditions are specified in Appendix C. Each

point in the point clouds was comprised only of (xi, yi, zi)—no additional features were appended

(i.e., N = 0 in Fig. 6.1).

Results are reported in Fig. 6.2. Fig. 6.2 shows both the classwise accuracy of the network

and which class the network tends to (incorrectly) select when it misclassifies a sample. The abscissa

of each panel in Fig. 6.2 lists the true class of each sample. The bar reports the classification selected

by the PointNet. Note the use of broken ordinate axes to highlight both low and high percentage

regions. The cutoff radius (rcut) for the point cloud was increased from rcut = 1.5 for Fig. 6.2(a) to

rcut = 2.0 for Fig. 6.2(b) and rcut = 2.6 for Fig. 6.2(c). With increasing rcut, the number of points in

the point cloud increases. The point clouds for rcut = 1.5, rcut = 2.0, and rcut = 2.6 were 16, 43, and

83 points, respectively. Not surprisingly, the accuracy of the PointNet increases with increasing cutoff

radius, from 95.2% for rcut = 1.5 to 99.2% for rcut = 2.6. A previous effort [291], which used machine

learning to classify LJ phases, performed slightly better than 95% accuracy with a cutoff of 2.6. The

method employed a substantially smaller network (∼3,000 trainable parameters vs. ∼800,000 in our

network), but preprocessed the raw input data through user-defined and parameterized symmetry

functions. Larger cutoff radii increase the number of points in the point clouds and enable PointNet
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Figure 6.2: Classification choices of a PointNet trained on four phases of a LJ system with (a)
rcut = 1.5, (b) rcut = 2.0 and (c) rcut = 2.6 distance units. Note the ordinate axis of panel (c) differs
from (a) and (b). Overall accuracy is 95.2%, 97.7%, and 99.2% for rcut = 1.5, rcut = 2.0, rcut = 2.6,
respectively.
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to identify longer range repeating patterns in the crystal structures. These patterns presumably

become more distinct and easier to differentiate with larger point clouds. Furthermore, increasing

the cutoff reduces the probability that a sample from one phase will spontaneously adopt, through

thermal fluctuations, a configuration that appears identical to a different phase.

6.3.1.1 Structure identification in crystal seeds

To further test our method, we focused on the crystallization aspect. We generated LJ

systems comprised of crystalline nuclei surrounded by a liquid bath. Simulations were performed

for systems with three different sizes of the initial crystalline seed. The dynamics were propagated

with molecular dynamics (MD) at a temperature below the melting point. If the initial nucleus size

is above the critical size, the crystalline seed grows to encompass the entire system; if it is below the

critical size, the crystalline seed melts. These types of simulations are used as part of the seeding

method [63, 64], which is used to predict crystal nucleation rates. The definition of the exact size

of the crystal seed is one of the largest sources of uncertainty in the method [64]. The test case

enabled us to explore several questions regarding the behavior of the PointNet. How would the

network perform outside of pure phases? Would the network provide reasonable classifications for

atoms near the boundary of solid and liquid phases? Would the network be able to identify defects

within the solid phase? How would classifications be affected by changing the cutoff radius?

We tested PointNet trained with the three different cutoff radii (rcut = 1.5, rcut = 2.0,

rcut = 2.6). The identity of each atom in the system was calculated every 0.1 time units. The

crystalline nucleus was identified at every step as the largest cluster of connected solid atoms (all

fcc, hcp, and bcc atoms are considered solid) in the system. Two atoms are connected if their

distance is within the distance to the first minimum in the liquid radial distribution function.

The evolution of seed sizes is reported for the three different seeds (initial sizes 140, 211,

372 in Fig. 6.3(a). Following an equilibration where the seed is held rigid, the calculated seed size

is reported with time for each value of rcut. Larger cutoff radii result in smaller predicted seed

sizes. This result is not particularly surprising; from Fig. 6.2, it would be expected that more liquid

atoms surrounding the seed will be incorrectly classified as solid for the smaller values of rcut. These

atoms, incorrectly classified as solid, are added to the surface of the largest solid cluster, resulting in

a larger overall cluster size. This effect is in many respects similar to the results found from using a

stricter classifier with traditional order parameters [309]. Effectively the PointNet acts as a stricter
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Figure 6.3: Growth and dissociation of crystalline seeds identified by a PointNet in LJ systems. The
behavior of the overall seed size with time is shown in panel (a). Snapshots of a seed at one time
point are shown in panel (b) to show the variation in classification with changing cutoff distance.
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classifier when there is a larger cutoff radius.

One important question to consider is how the classifications of the solid atoms in the cluster

change with increasing cutoff radius. Ideally, the overall structure and composition of the crystalline

nucleus identified by the PointNet would be relatively insensitive to the choice of rcut. Snapshots

for one crystalline nucleus at a single time are reported in Fig. 6.3(b). The first three columns show

the fcc, hcp, and bcc atoms that belong to the largest cluster of solid atoms. The fourth column

overlays all the classes to show the complete crystalline nucleus. From the rightmost column it is

apparent that the overall nucleus size decreases with increasing cutoff. However, the atoms that

are removed from the crystalline cluster are surface atoms that do not appear to display substantial

crystallinity. Encouragingly, the first two columns show that classifications of atoms in the core of

the cluster is insensitive to changing the cutoff radius of the PointNet. In particular, the network

consistently identifies a single layer of hcp atoms stacked between layers of fcc atoms as well as clear

hcp layers growing along several edges of the nucleus. It is not particularly surprising to find that

the size of the crystalline cluster decreases as the PointNet becomes a stricter classifier (i.e., with

increasing cutoff). However, it is encouraging to find that the identities of atoms with the core of

the crystal remain relatively consistent with different cutoff values.

6.3.2 Water systems

Ice and hydrate nucleation are particularly active areas of research [53, 54, 132, 131]. One

of the largest challenges in this field is structure identification. Thus, we next tested the ability of

the PointNet to classify the phases of water molecules. The PointNet was trained on eight different

phases, including liquid, five ice phases, and two hydrate phases. Unlike the LJ systems, water is

comprised of two different atom types. Historically, most methods for classifying ice structures rely

only on the positions of the oxygen atoms. However, there may be additional information to be

gained by including the positions of the hydrogen atoms. We explore both options.

6.3.2.1 Classification of water phases using only oxygen atoms

At first, only the positions of the oxygen atoms were used in the point clouds. In this case,

all points in the point cloud are identical (with respect to atomic identity), therefore the points

are completely described by (xi, yi, zi) and no additional features are appended. Results are shown

in Fig. 6.4 using a cutoff radius of 0.6 nm. The point clouds contain 43 points. The PointNet
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does exceedingly well at distinguishing the liquid, ice phases, and hydrate phases. Once again, the

liquid is sometimes (<1.5%) identified as one of the solid phases. Our results for the LJ systems

suggest that misclassification could be reduced by further increasing the cutoff radius. In particular,

it is worth noting that the PointNet performs better on water systems compared with LJ systems

with the same number of points in the point cloud (for LJ systems, rcut = 2.0 has 43 points). We

conjecture that this observation is related to the open network structure of water [310]; a water

molecule only has an average of four first neighbors whereas LJ systems have closer to 12. Thus,

for the same 43 points the PointNet can evaluate further neighbor shells for water relative to the LJ

systems.

The network has the greatest difficulty distinguishing between the two hydrate phases.

Though the network is able to clearly distinguish these phases from the liquid and ice phases, ∼2%

of sII samples are classified as sI and ∼3% of sI samples are classified as sII. The hydrate phases

have, on average, fewer points within the cutoff distance; it seems quite plausible that this difference

is the source of greater error in classifying the hydrate phases. Despite minor difficulties with the

hydrate phases, the overall accuracy is still superior to previous attempts to classify multiple ice

structures with neural networks [291]. An approach that was published during the writing of this

paper achieved higher classification accuracy but only distinguished between the ice Ih and liquid

phases [295].

6.3.2.2 Classification of water phases using oxygen and hydrogen atoms

Next, we investigate the effect of including positions of the hydrogen atoms in the point

cloud. Each water molecule is still classified as a certain phase. It does not seem sensible to classify

the hydrogen of a water molecule as belonging to ice-Ih and the oxygen of the same water molecule

as belonging to ice-Ic. Therefore, we generate a point cloud centered around each oxygen atom.

However, instead of the previous approach where the points in the point cloud were only comprised

of the oxygen atoms, we now also include the positions of the hydrogen atoms. Given the distinct

hydrogen-bonding patterns in water, we hypothesize that including the hydrogen atom positions in

the point cloud will improve classification. The network structure presented in Fig. 6.1 indicates

that additional features (kI
i , . . . , k

N
i ) can be appended to (xi, yi, zi) for point i. We use this ability

to include the atomic identity of each point. Two features, kIi and kIIi are added to each point. The

atomic identity is one-hot encoded. Oxygen atoms are encoded as (xi, yi, zi, 1, 0) and hydrogen
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Figure 6.4: Classification choices of a PointNet trained on eight water phases with a cutoff of 0.6
nm. (a) Using only oxygen atom positions in the point cloud (overall accuracy is 99.1%), and (b)
using both oxygen and hydrogen atom positions in the point cloud (overall accuracy 99.6%).
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atoms are encoded as (xi, yi, zi, 0, 1). This distinction should enable the network to recognize the

difference between oxygen and hydrogen atoms during feature extraction (see Fig. 6.1).

The addition of the hydrogen atoms with atomic identity improved the overall accuracy

from 99.1% to 99.6%. Though this seems like a relatively minor improvement in the accuracy

statistic, it dramatically improved the classification of the sI and sII hydrate phases (Fig. 6.4(b))

and in fact reduced the total misclassification rate by over 50%. In certain cases it can be extremely

important to minimize particle misclassifications. In particular, it can be important to minimize

liquid particles that are misclassified as solid [63, 64]. The results for the PointNet when hydrogen

atoms are included have nearly as low misclassifications (0.4% vs. 0.25%)[63] as the strictest order

parameter for identifying ice structures [279]. This result is despite the fact that the strictest order

parameter was used to distinguish between only two phases while the PointNet is distinguishing

between 8 phases. Furthermore, the accuracy of the PointNet could no doubt be increased further

by increasing the cutoff radius.

6.3.2.3 Nucleation at solid interfaces

Significant effort has recently focused on heterogeneous ice nucleation [132, 132, 55, 60, 157,

181], that is, ice formation that occurs in the presence of an external interface. We thus decided to

test the ability of our PointNet to classify the types of ice that form on surfaces. In initial tests (data

not reported), the PointNet was unable to correctly identify the identities of the water molecules

in the layer of water nearest to the interface, even though the second layer of water and above

were correctly classified. The reason the PointNet was unable to correctly identify the identity of

interfacial water molecules is that the point clouds for these samples were effectively cut in half,

from a sphere to a dome shape. No water molecules penetrate into the surface, and thus, the point

clouds for water molecules nearest to the surface only have points from the water molecules in the

direction opposite from the surface.

Classification of interfacial molecules with the PointNet thus presents a unique challenge.

There are a few potential approaches to solve this problem. One could generate interfacial training

data for each phase. These data could be generated by simulating each phase in contact with a

solid surface or at an interface with a vacuum. Unfortunately, both of these options present a range

of further complications. In the first case, since the structure of water near the surface may be

affected by the chemical composition and structure of the surface, it would be necessary to simulate
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near several different surfaces to achieve any substantial model generalizability. In case of a vacuum

interface, the layer nearest the vacuum would likely melt [311], or at least deform, thus requiring

position restraints (or some similar approach) to maintain the crystal structure. In both cases,

there is the question of which crystal plane to simulate as the exposed surface. In most cases where

researchers are actively studying heterogeneous crystal nucleation, the crystal plane that nucleates

on a surface is unknown a priori. In all likelihood, it would be necessary to simulate multiple

crystal faces for each phase. Any of these complications add substantial complexity to the structure

identification process because they require significant additional simulations.

The ideal scenario is to train the PointNet to correctly identify interfacial molecules without

requiring additional training data or making any assumptions about which crystal faces are most

likely to form at some surface. To this end, we developed and tested the following approach. For

each bulk training sample (i.e., a single point cloud with a label) we (1) randomly rotate the point

cloud, (2) remove all points with z < 0.0 by replacing (xi, yi, zi) with (0.0, 0.0, 0.0), and (3) randomly

rotate the point cloud. The label for the sample, l, is changed from l-bulk to l-interfacial. The first

rotation removes any memory of the crystal orientation in the simulation box from the simulation

of the bulk crystal. Replacing points below the z = 0 plane with (0.0, 0.0.0.0) effectively removes

those points from the point cloud. This replacement causes no issues during training as we already

pad the point clouds with (0.0, 0.0, 0.0) points if there are insufficient atoms within rcut. The final

rotation removes the memory of removing all atoms below the z = 0 plane. This procedure thus

uses the original bulk training data to generate point clouds with a dome geometry. No assumptions

are made about the exposed crystal plane or the orientation of the external surface in the simulation

box, and all crystal planes are sampled in the procedure without any additional simulations.

The accuracy of the PointNet trained on both bulk and interfacial water phases is reported

in Fig. 6.5(a). Only oxygen atoms are included in the point clouds. The first eight phases are

the bulk phases and the next eight are the respective interfacial counterparts. The overall accuracy

decreased from 99.1% to 92.5%. The decrease in overall classification accuracy is not surprising given

that half of the samples (i.e., the interfacial samples) have 50% fewer points in each point cloud.

Despite the decrease in overall accuracy, there are several positive features worth noting. Firstly,

bulk classification remains extremely accurate. For example, bulk ice phases all remain above 99.5%

correctly classified. Secondly, there is no mixing between the interfacial phases and the bulk phases;

i.e., an interfacial atom is never classified as bulk and vice-versa. In essence, this means that the

114



 0
 0.5

 1
 1.5

liq
u
id

ic
e
−

Ih

ic
e
−

Ic

ic
e
−

II
I

ic
e
−

V

ic
e
−

V
I

h
yd

−
sI

h
yd

−
sI

I

liq
u
id

in
t

ic
e
−

Ih
in

t

ic
e
−

Ic
in

t

ic
e
−

II
I in

t

ic
e
−

V
in

t

ic
e
−

V
I in

t

h
yd

−
sI

in
t

h
yd

−
sI

I in
t

P
e
rc

e
n
t 
cl

a
ss

ifi
e
d

Actual Phase

 20

 40

 60

 80

 100
(a)

(b) (c)

 0
 0.5

 1
 1.5

 2
 2.5

liq
ui

d
ic

e−
Ih

ic
e−

Ic
ic

e−
III

ic
e−

V
ic

e−
V

I
hy

d−
sI

hy
d−

sI
I

P
e

rc
e

n
t 

cl
a

ss
ifi

e
d

Actual Phase

 97

 98.5

 100

liquid
ice−Ih
ice−Ic

ice−III
ice−V
ice−VI

hyd−sI
hyd−sII

 0
 0.5

 1
 1.5

 2
 2.5

liq
ui

d
ic

e−
Ih

ic
e−

Ic
ic

e−
III

ic
e−

V
ic

e−
V

I
hy

d−
sI

hy
d−

sI
I

P
e

rc
e

n
t 

cl
a

ss
ifi

e
d

Actual Phase

 97

 98.5

 100

liquid
ice−Ih
ice−Ic

ice−III
ice−V

ice−VI

hyd−sI
hyd−sII

 0
 0.5

 1
 1.5

 2
 2.5

liq
ui

d
ic

e−
Ih

ic
e−

Ic
ic

e−
III

ic
e−

V
ic

e−
V

I
hy

d−
sI

hy
d−

sI
I

P
e

rc
e

n
t 

cl
a

ss
ifi

e
d

Actual Phase

 97

 98.5

 100

liquid
ice−Ih
ice−Ic

ice−III
ice−V

ice−VI

hyd−sI
hyd−sII

(d) (e) (f)

Figure 6.5: (a) Classification choices and (b)–(f) snapshots of classified atoms for a PointNet trained
on sixteen water classes (eight bulk and eight interfacial). Panel (b) shows the network identifying
a single layer of ice-Ih within ice-Ic. Panel (c) shows atoms that belong to an interfacial class as
spheres. Panels (d)–(f) show a top view of the classifications of the first two layers of atoms for a
growing ice seed. The color scheme in (b)–(f) corresponds to (a). The external surface is shown in
gray. Water oxygens within 0.35 nm of each other are connected by light gray bonds.

PointNet simply struggles to correctly classify the identity of interfacial atoms. It still performs

acceptably for interfacial liquid and ice phases. Only the performance of interfacial hydrate phases

is particularly poor. One final observation is that the PointNet was trained and tested on all possible

crystal planes at the exposed surface. As described previously, this is beneficial in that it makes the

extension of the PointNet approach to interfacial systems trivial. There currently exist few methods

[288] to identify local crystal structures at interfaces.

Panels (b)–(f) of Fig. 6.5 show snapshots from simulations of the formation of ice at an

external surface (gray). Panel (b) shows the classification of each atom in the system. The ice

that forms is primarily ice Ic (red spheres) with a single stacking-disordered layer of ice Ih (blue

spheres). Consistent with expectations [312], a layer of liquid (yellow spheres) exists at the ice–

vacuum interface. Panel (c) only shows atoms classified as interfacial types as spheres. The snapshot

confirms the results from panel (a)—no bulk atoms are misclassified as interfacial. Panels (d)–(f)

show the growth of an ice nucleus on the surface from a top-down perspective. To highlight the

interfacial classifications, only water molecules belonging to the first two layers on the surface are

shown. Despite lower accuracy, the interfacial classification appears to perform quite well. The ice

nucleus, composed of ice Ic, clearly develops. Very few atoms within the center of the ice seed are
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classified as any other type. There does appear to be a somewhat greater number of misclassifications

in the interfacial liquid, although it is difficult to say with certainty that none of those water molecules

are in a locally ice-like environment. We note that the liquid/ice-Ih region in panel (f) is indeed

correctly classified. The ice in that region contained a grain boundary between the periodic images

of the growing ice crystal that was not fully resolved by the end of the simulation.

6.3.3 Mesophases

Mesophase systems have attracted interest in recent years [313, 314, 134, 315, 281, 316]

because they can be used to study the behavior of self-assembling materials and block co-polymers.

The key feature of such systems is that some molecules remain locally amorphous, even following

the transition from a disordered state to an ordered state. The systems are generally composed of

two different types of molecules (for simplicity, just consider two particle types, A and B). A rich

variety of structures can be formed by tuning the relative size and strength of A–A, B–B, and A–B

interactions.

There have been very recent efforts [281] to develop order parameters that distinguish be-

tween the different mesophases in order to better understand the behavior (e.g. nucleation) of such

systems. Developing order parameters for mesophase systems is particularly challenging because

there are a large number of possible phases that can form and, by definition, part of the system

is non-crystalline. Previous efforts have resorted to developing different order parameters to dis-

tinguish each phase [281]. Here we test the extensibility of the PointNet approach by using these

mesophase systems as test cases.

Six phases were simulated (see Appendix C for details): liquid (liq), lamellar (lam), lxs,

hexagonal (hex), gyroid (gyr), and body-centered cubic (bcc). Snapshots of the lam, lxs, hex, and

gyr phase are provided in Fig. 6.6. Three different approaches to classification are attempted. In all

cases, we only attempt to classify the structure of the minor component. Even in non-liquid phases,

the major component tends to belong to largely disordered amorphous regions. In the first attempt,

both A atom types and B atom types are used as points in the point cloud. However, A types and

B types are not distinguished (i.e., no additional features are appended to (xi,yi,zi)). We test cutoff

values of 2.0 and 3.0. The results for rcut = 2.0 are reported in Fig. 6.7(a). The overall accuracy is

∼96%. Increasing the cutoff to 3.0 increases the accuracy slightly, to 97.6%. As can be seen from

Fig. 6.7(a), the PointNet is particularly challenged to distinguish the hexagonal and gyroid phases.
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Figure 6.6: Snapshots of four mesophase systems (a) lamellar, (b) lxs, (c) hexagonal, and (d) gyroid.
Minor component atoms are shown in blue and major component in red. Example point clouds with
a cutoffs of 2.0 and 3.0 are shown for the hexagonal and gyroid phases.

 0

 3

 6

 9

liq

la
m lx
s

he
x

gy
r

bc
c

P
e
rc

e
n
t 
cl

a
ss

ifi
e
d

Actual Phase

 88
 92
 96

 100

liq
lam

lxs
hex

gyr
bcc

 0

 2

 4

 6

liq

la
m lx
s

he
x

gy
r

bc
c

P
e
rc

e
n
t 
cl

a
ss

ifi
e
d

Actual Phase

 91
 94
 97

 100

liq
lam

lxs
hex

gyr
bcc

 0

 2

 4

 6

liq

la
m lx
s

he
x

gy
r

bc
c

P
e
rc

e
n
t 
cl

a
ss

ifi
e
d

Actual Phase

 91
 94
 97

 100

liq
lam

lxs
hex

gyr
bcc

(a) (b) (c)

Figure 6.7: Classification choices of a PointNet trained on six phases of a mesophase forming system
with a cutoff distance of 2.0. The point cloud included (a) all points, (b) all points with identifying
labels, and (c) only points belonging to the crystalline component. Note the ordinate axis of (b)
and (c) differ from (a).

This difficulty is explained by the snapshots in Fig. 6.6(c) and (d). With a cutoff of 2.0, the point

clouds of the hex and gyr phases appear very similar. The point clouds would look particularly

similar in this case, where the type A and B particles are not distinguished.

Next, the atomic identity was added to each point. Similar to the water systems, the atom

types were one-hot encoded using two additional features. Results for rcut = 2.0 are reported in

Fig. 6.7(b). The addition of atomic identity improved the overall classification accuracy to 97.7%.

However, the network still has difficulty distinguishing the hexagonal and gyroid phases.

Given the amorphous nature of the major component in most of phases, it seemed reasonable

that the inclusion of the major component might represent unnecessary and confusing information,

and that performing classification based only on the positions of the minor component might be a

better approach. This method yielded by far the best results (see Fig. 6.7(c)). The overall accuracy
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was 99.6% with rcut = 2.0. The issues distinguishing between the hexagonal and gyroid phases are

largely resolved. If rcut is increased to 3.0, the accuracy improves to >99.9%. Using only the minor

component to classify the structure of the mesophase system mirrors the approach taken with recent

conventional order parameters [281].

6.4 Beyond crystal structure identification

To showcase the utility of our method beyond applications in crystal structure identification,

we use the PointNet to quantify the hydrophobicity of extended surfaces and proteins. Previous

work characterizing surface hydrophobicity used local water density fluctuations or solute affinity

over different portions of surfaces to create a spatially resolved measure of hydrophobicity [317, 318,

319, 320]. Recent work found that water orientations near an interface may also be able to predict

local surface hydrophobicity [4]. In principle, the PointNet should be able to learn the differences in

interfacial water structures near hydrophobic and hydrophilic interfaces. The network is trained to

predict if an individual water molecule is in a hydrophobic or hydrophilic environment based upon

the point cloud created by neighboring water molecules. Training examples are generated from water

in contact with known hydrophobic and hydrophilic surfaces. Once the network is trained, it can be

used to create a spatial map of surface hydrophobicity from the fraction of nearby water molecules

that are identified as being in hydrophobic vs. hydrophilic environments.

6.4.1 Training methodology

The PointNet is trained from simulations of TIP3P water on hydrophobic and hydrophilic

self-assembled monolayer (SAM) surfaces—CH3SAM and OHSAM, respectively. Complete descrip-

tions of the SAM surfaces and system setup are provided in the Appendix C. Example point clouds

for training are taken from water molecules wetting the surface. The oxygen atom of a water molecule

must be within 0.5 nm of a surface terminal group heavy atom (C or O) to be considered surface-

wetting. For each example, the point cloud itself consists of all hydrogen and oxygen atoms within

a cutoff distance of 0.6 nm of the central water oxygen. The point clouds include one-hot encoded

atomic identity for each atom in the point cloud. Ground truth labels are assigned based upon

the surface in the system; point clouds for water molecules on CH3SAM are labeled as examples of

hydrophobic environments and point clouds for water molecules on OHSAM are labeled as examples
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of hydrophilic environments. The point cloud size (i.e., n in Fig. 6.1) was selected in the same

manner used for crystal structure identification—two standard deviations above the mean number

of points within the cutoff distance (0.6 nm)—and resulted in 82 points per cloud. The training

(test) set consisted of a total of 800,000 (200,000) samples split equally between hydrophobic and

hydrophilic environments.

6.4.2 SAM surfaces

After 50 epochs of training, the cost plateaued and the accuracy on the test set was 84%.

The PointNet was trained three times and the reported accuracy is an average of the three trials. It

is not particularly surprising that the classification accuracies are much lower than our results for

crystal structure identification. Water molecules above both hydrophobic and hydrophilic surfaces

are in liquid environments and it seems quite plausible that there is a fair amount of overlap between

the distributions of structures sampled in each case. Interestingly, classwise accuracies varied across

training trials. The network would achieve ∼90% accuracy on one class but only ∼78% accuracy

on the other class. Sometimes the higher-accuracy class was hydrophilic environments while other

times the higher accuracy class was hydrophobic environments.

Despite relatively poor accuracy on individual point clouds, we can still extract an average

measure of surface hydrophobicity. The bounds of the hydrophobicity scale are determined by

the water environments observed near CH3SAM (hydrophobic bound) and OHSAM (hydrophilic

bound). To identify numerical bounds for the scale, each surface-wetting water molecule is classified

as hydrophobic or hydrophilic with the a pre-trained network. The classification is ‘projected’ back

onto the surface by calculating, for each surface terminal heavy atom, the fraction of surface-wetting

water molecules that are classified hydrophobic. This fraction is averaged across terminal groups

from the OHSAM and CH3SAM surfaces to generate the bounds for hydrophobic regions (0.95) and

hydrophilic regions (0.25).

As a first test of the hydrophobicity scale, we calculate the hydrophobicity map for a SAM

surface with alternating stripes of hydrophobic (-CH3) and hydrophilic (-OH) terminal groups. Re-

sults are shown in Fig. 6.8(a). The regions identified as hydrophilic (blue surface representation)

correspond to OH head groups (blue spheres) and the regions identified as hydrophobic correspond

to the locations of -CH3 head groups (red spheres). Intermediate hydrophobicity (white) is found

near the boundary between the -OH and -CH3 regions of the surface.
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Figure 6.8: Application of PointNet to characterize surface hydrophobicity. (a) SAM surface with
alternating -CH3 (red spheres) and -OH (blue spheres) terminal groups. The colored ‘surface’
representation shows the identification of hydrophobic (red) and hydrophilic (blue) regions by the
PointNet. White regions are intermediate hydrophobicity. Predicted surface hydrophobicity of hy-
drophobin II and CheY is shown in (b) and (c), respectively. Leftmost image shows the protein
colored by atom types (red = oxygen, blue = nitrogen, green = carbon) while the rightmost image
shows the predicted hydrophobicity. Panel (d) shows a comparison of surface hydrophobicity pre-
dictions for a different surface of CheY for our method (far right), Kyte and Doolittle [2] (second
from left), Kapcha and Rossky [3] (center), and Shin and Willard [4] (second from right).

6.4.3 Protein hydrophobicity

Encouraged by the results on SAM surfaces we tested our method on the surface of two pro-

teins: hydrophobin II (PDB: 2B97) and Escherichia Coli CheY (PDB: 3CHY). Complete simulation

details are provided in the Appendix C. The same procedure is used to create a spatially resolved

surface hydrophobicity map: (1) Water molecules whose oxygen atom is within 0.5 nm of a protein

heavy atom are considered surface-wetting. (2) For each surface-wetting water molecule, the point

cloud consists of all water atoms within 0.6 nm of the central oxygen. (3) Each point cloud is sent

to the trained PointNet to classify the central water molecule as hydrophobic or hydrophilic. (4)

The classification is ‘projected’ back onto the surface by calculating, for each surface terminal heavy

atom, the fraction of surface-wetting water molecules that are classified hydrophobic. The bounds

of the scale remain the same as used for the striped SAM surface.

The surface hydrophobicities of hydrophobin II and CheY are shown in the rightmost snap-
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shots in Fig. 6.8(b) and Fig. 6.8(c), respectively. The method tends to classify solvent exposed

regions as more hydrophilic and buried regions as more hydrophobic. This trend is in agreement

with calculations showing that non-polar concave surfaces are more hydrophobic than non-polar

convex surfaces [319]. However, the snapshots show that our method does not classify hydrophobic-

ity from geometric considerations alone. Some solvent exposed regions are identified as hydrophobic

(e.g., arrow (i)) whereas some are identified as intermediate or hydrophilic (e.g., arrow (ii)). A

second view of CheY is shown in Fig. 6.8(d); our method is once again the rightmost snapshot. In

panel (d), our results are compared with other methods of quantifying protein surface hydropho-

bicity. In all cases the more hydrophobic regions are colored darker red and the more hydrophilic

regions colored darker blue. Starting second from the left and moving right, the snapshots are the

Kyte and Doolittle hydrophobicity scale [2], Kapcha and Rossky atomic hydrophobicity scale [3],

and the method of Shin and Willard [4]. For the method of Shin and Willard, the hydrophilic and

hydrophobic bounds of the scale are set by the average hydrophobicity of OHSAM and CH3SAM,

respectively. There are both similarities and differences across the different methods of quantifying

surface hydrophobicity. For example, in panel (d) there is a small region (arrow (iii)) that the Kyte–

Doolittle scale (second from left) quantifies as a patch with intermediate to hydrophobic character.

All other methods agree that this region is at least intermediate between hydrophilic and hydropho-

bic, if not showing some hydrophobic character. In contrast, there is another small region (arrow

(iv)) that the Kyte–Doolittle scale (second from left) quantifies as a patch with hydrophobic charac-

ter. The Kapcha–Rossky scale and our method agree with Kyte–Doolitte, but the method of Shin

and Willard considers this region hydrophilic. In general, the method of Shin and Willard identifies

most of the surface as more hydrophilic than the PointNet—no portion of CheY is determined to be

as hydrophobic as CH3SAM. In contrast the PointNet identifies regions that have hydrophobicity

roughly equal to CH3SAM.

Multiple methods using water orientations [4] to water density fluctuations [320, 321] have

been used to quantify protein surface hydrophobicity. It is difficult to know which method is most

correct. Moreover, the precise meaning of surface hydrophobicity may become difficult to quantify

within sufficiently buried pockets due to the observer context [318], which found that the surface hy-

drophobicity map depended on the probe shape. It nonetheless appears that the PointNet method of

quantifying surface hydrophobicity provides reasonable results that are in at least partial agreement

with other techniques of quantifying surface hydrophobicity on proteins. We view this success as a
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robust demonstration of the generalizability of the PointNet method for quantifying local structure

in molecular simulations.

6.5 Conclusions

We introduced a new method to identify local structures in molecular simulations. Point-

Net, a type of neural network developed for processing point clouds for applications in computer

vision, was applied to identify local structure in molecular simulations. Local structure is identified

by analyzing point clouds created by the local atomic environment. We tested the method on the

problem of crystal structure identification in Lennard-Jonesium, water, and mesophase systems. In

all cases, the PointNet approach results in highly accurate classification of crystal structures. The

method was demonstrated under realistic use-cases: identifying crystalline seeds in bulk liquid and

identifying heterogeneous crystal formation. We also demonstrated that the method generalizes be-

yond crystal structure identification—the same PointNet approach was shown capable of quantifying

local surface hydrophobicity. As a further simple test of the extensibility of the PointNet approach

to different types of systems, we trained the network to classify conformations of alanine dipeptide.

This small peptide takes two primary configurations in vacuum, which are well separated in the

space of backbone φ, ψ dihedral angles. Using point clouds created from the positions of the back-

bone atoms relative to the α-carbon, the PointNet was able to achieve effectively 100% classification

accuracy.

Our work applied the PointNet under novel conditions. As originally developed [300], the

PointNet was designed to process large point clouds and extract global features for classification

and segmentation. The point clouds consisted of >1000 points. We demonstrated that the same

network architecture can be used on smaller point clouds and successfully extract subtle differences.

We utilized the ability to append features to the coordinates of each point to add the atomic identity

of each point while maintaining the invariance to input point order.

The primary strengths of the method are as follows: (1) highly accurate classification of

local structures. (2) No system-specific parameterization: only the distance cutoff and maximum

number of points in the point cloud must be selected. Our results suggest that, at least for crystal

structure identification, 40–80 points results in highly accurate classification. (3) Simple addition

of new structures: if at any point it becomes necessary to distinguish between additional structures
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the network can be retrained.

The PointNet approach should be highly generalizable to a variety of local structures that

form in molecular simulations. Possible examples include arrangements of molecular crystals, differ-

ent polymer configurations, structure in biomolecules, ligand–binding site arrangements, and more.

The method will enable rapid structure identification in novel systems that lack order parameters.

The PointNet architecture may also prove useful for other examples of machine learning in molec-

ular simulation, e.g., neural network force fields or dimensionality reduction, reaction coordinate

identification, and enhanced sampling.
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Chapter 7

Conclusions and future work

The myriad challenges to studying crystal nucleation in molecular simulations originate

with a common cause: the rare event problem. The challenges are thus interdependent. The view

advocated by this dissertation is that the solutions will require an equally integrated approach. We

address challenges of scale with a big-data-based software framework, challenges of sampling with

method development, and challenges of structure identification with machine learning. These specific

solutions were motivated by experiences studying crystallization in an exemplar of complex systems

rather than a simple model system. However, this dissertation only represents the first iteration of

development. The solutions presented here must be applied to complex systems for further iteration

and improvement. In addition to extensions and improvements to the individual components, there

also remains substantial space for continued integration of the solutions – software with methods,

machine learning with methods, and machine learning with software. Continued extension and

integration of these solutions will advance the boundaries of simulation studies of crystal nucleation.

Below we propose continued avenues of investigation both for improving simulation studies of crystal

nucleation and our specific investigations into the nucleation mechanisms of clathrate hydrates.
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Figure 7.1: (a) Guest–guest and (b) guest–water interaction potentials. OPLS-UA methane (ME)
is plotted for reference. εgw = 0.25, 0.28, 0.31, 0.34, 0.37 kcal mol−1 for parm1–parm5, respectively.

7.1 Effect of guest solubility on clathrate hydrate nucleation

mechanisms and application of contour forward flux sam-

pling to hydrate nucleation

The results presented in Chapter 3 prompt the possibility of different nucleation mechanisms

for hydrates formed from guest molecules with different solubility in water. We showed that water

structuring played a key role in the nucleation mechanism for the water-soluble ‘XL’ guest molecule.

Specifically, order parameters which capture guest ordering (e.g., mutually coordinated guest (MCG)

[191]), were poor approximations of the reaction coordinate in comparison to order parameters that

more explicitly capture water structure (e.g., dihedral order parameter (DHOP) [131], Baez and

Clancy order parameter [192]). In contrast, a study of the sparingly soluble ‘M’ guest molecule

found that the MCG order parameter was a good approximation of the reaction coordinate [203].

These findings present a discrepancy and warrant further investigation.

There are explanations beyond water solubility for the apparent discrepancy. The M guest

is smaller in size than XL guest. It also forms structure I (sI) hydrate whereas XL forms structure II

(sII) hydrate. Due to it’s larger size, the XL guest is unable to occupy the 512 cages of sII hydrate.

Several studies [94, 27, 204, 101, 104] report the formation of 512 cages in the early stages of hydrate

nucleation. Since the XL guest is unable to occupy and stabilize this cage type, it is possible that

water structuring appears as a key step for XL hydrate because of the necessity of forming empty

512 cages.
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To disentangle these conflicting possibilities we developed a series of guest molecules (parm1–

parm5) that are the same size but have varying water solubility. We use the coarse-grained mW

water model [174] as this allows us to isolate the effects of guest solubility. The mW model also has

faster hydrate growth and dissociation dynamics compared with all atom models (e.g., TIP4P/Ice).

The latter point substantially decreases the computational cost of the calculations. Guest molecules

interact with each other and mW water through the two-body term of the Stillinger-Weber (SW)

potential [185] via a parameter that controls the size (σ) and a parameter that controls the interaction

energy (ε) [95]. The guest–guest interaction parameters (σgg = 3.8 Å,εgg = 0.3 kcal mol−1) are held

constant for all five guest molecules. The effective size of guest–water interactions is also held

constant (σgw = 3.8 Å). The guest–water interaction energy (εgw) is systematically varied from

parm1–parm5. Guest–guest and guest–water potentials are plotted for parm1–parm5 in Fig. 7.1(a)

and Fig. 7.1(b), respectively. All parameters were selected to fall within the sI forming region of

the phase diagram [95]. The solubility of the parm1–parm5 guest molecules in water and melting

temperatures of clathrates formed from parm1–parm5 are reported in Fig. 7.2. Solubilities were

calculated from simulations of a guest-rich fluid phase in coexistence with a water-rich liquid phase

at 100 bar and temperatures from 280 to 380 K. The hydrate melting temperatures at 100 bar

were estimated with the direct coexistence method [322]. For each parameter set it was confirmed

that sI with all cages occupied was the most stable hydrate crystal (i.e., had the highest melting

temperature). Other crystals tested were sI with 512 cages occupied, sI with 51262 cages occupied,

sII with 512 cages occupied, sII with 51264 cages occupied, and sII with all cages occupied.

In Chapter 5 we demonstrated the benefits of contour forward flux sampling (cFFS) when

the optimal order parameter (i.e., reaction coordinate) is not known a priori. The hydrate systems

described above offer an ideal opportunity to apply cFFS to study crystallization in a system where

the optimal order parameter is unknown. Based upon our findings in Chapter 3 as well as the work

of others [203], we hypothesize that the reaction coordinate for hydrate nucleation will shift from an

emphasis on guest ordering to water structuring with increasing guest solubility. However, we do not

know if this change will be sharp or continuous with guest solubility, or the level of guest solubility

required to observe the crossover. It is also possible that no such crossover will occur. As discussed

previously, there are other differences between the soluble XL guest and sparingly soluble M guest

which could explain the relative importance of water structuring in XL nucleation. Furthermore,

the effectiveness of our water structuring order parameter, DHOP, has never been tested for hydrate
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Figure 7.2: Guest solubility (filled squares) as a function of temperature at 100 bar. The melting
temperature of sI hydrate with all cages occupied at 100 bar is reported as filled circles. Lines are
to guide the eye.

nucleation of sparingly soluble guest molecules. It is possible that DHOP is a good order parameter

for hydrates formed from both soluble and sparingly soluble guests – i.e., there may be degeneracy of

good order parameters at low guest solubility. Given the uncertainties regarding the optimal order

parameter, we will perform cFFS with two order parameters, DHOP and MCG.

The conditions for our studies are selected to maintain constant supercooling across the

different guest molecules in order to isolate solubility effects. It is also necessary to strike a bal-

ance between supercooling, critical nucleus size, and nucleation rate. Ideally our studies would be

performed at relatively small supercooling. However, the nucleation rate decreases and the critical

nucleus size increases with decreasing supercooling (i.e., higher temperature). As the critical nucleus

size becomes larger, the system sizes required to prevent system size effects increase. Likewise, as

the nucleation rate becomes smaller, the rarity of nucleation increases and the studies will require

longer simulations/more computational effort. During our solubility studies, we observed nucleation

in straightforward MD simulation in <100 ns for parm4 at 280 K and parm5 at 300 K. These

temperatures represent 0.81Tm and 0.84Tm, respectively. The results provide order-of-magnitude

estimates of the nucleation rate as 1032 events m−3s−1 and the critical nucleus size ∼100 water

molecules. Previous FFS studies of soluble [104] (at 0.72Tm) and sparingly soluble [108] (at 0.83Tm)

guests resulted in critical nuclei of ∼180 and ∼350 water molecules, respectively. A seeding study

of the M guest at 0.92Tm found a critical nucleus size of ∼2000 water molecules [62]. These results

provide rough bounds on expected critical nucleus sizes and nucleation rates. We select the initial

conditions of our studies as 0.88Tm.
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7.2 SAFFIRE: Release code, add cFFS, and extend to other

methods

SAFFIRE enabled the FFS calculations reported in Chapter 3, which comprised over 500,000

individual MD simulations and required 33 days on a cluster of 30 × 16-core Intel Xeon E5-2665

CPUs. The code should be documented and released so that it can be used by other groups. The

SAFFIRE framework – using Hadoop streaming [208] to manage the execution of simulation/analysis

tasks and then parsing the results and making decisions with Cascading [231] or Spark [323] can also

be applied to other advanced sampling techniques. As a starting point, adding cFFS to SAFFIRE

will increase the accessibility of the method and make it easier to apply for studies of complex systems

(e.g., hydrate nucleation). If the constrained forward shooting TIS method is efficient for studies of

crystal nucleation (see Sec. 7.4) then it should be implemented in SAFFIRE as well. Python-based

softwares have recently been released for transition path sampling and transition interface sampling

methods [147, 148, 149]. Integrating SAFFIRE (for resource management) with these packages

(for algorithm management) may prove valuable, but likely represents a challenging and substantial

undertaking.

7.3 Developing FFS methods that are capable of screening

larger numbers of order parameters simultaneously

cFFS represents one approach to perform FFS with multiple order parameters. Unfortu-

nately, cFFS is currently limited to 2–3 order parameters. One possibility is to combine cFFS with

machine learning and/or dimensionality reduction techniques to screen through a larger number of

order parameters but reduce those to 2 or 3 collective coordinates. This would restrain cFFS to a

manageable number of dimensions. A discussion of the challenges to incorporating these types of

approaches with cFFS is provided in Chapter 5.

An entirely different approach to performing FFS with multiple order parameters would be

to develop a method whereby several FFS simulations with different order parameters were performed

as parallel replicas. With the proper acceptance/rejection scheme, trajectories could be swapped be-

tween different replicas in order to enhance sampling along different order parameters, allowing the

system to relax in orthogonal directions and navigate around orthogonal barriers. Compared with
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cFFS this type of approach would scale much better to larger numbers of order parameters because it

would not suffer from the curse of dimensionality. The challenge is designing the appropriate swap-

ping rules to maintain the applicability of FFS to nonequilibrium systems. Swapping trajectories

between multiple parallel replicas would be easier to implement with a transition interface sampling

(TIS) approach where acceptance/rejection criteria can be developed from knowledge of the correct

phase space distribution. However, this would require sacrificing applicability to nonequilibrium

systems. Furthermore, TIS is already much less sensitive than FFS to the choice of order parameter,

reducing if not eliminating the benefits of such an approach.

7.4 Testing the efficiency of constrained forward shooting

transition interface sampling for crystal nucleation

cFFS attempts to address one challenge of FFS – selecting a good order parameter a priori.

However, even with a good order parameter, FFS/cFFS will remain computationally costly for stud-

ies of crystal nucleation in complex systems. In ice and hydrate systems, the most computationally

expensive portion of the FFS calculations is waiting for trajectories near the critical nucleus size

to either grow, and reach the next interface, or dissociate, and return to state A. This portion of

the computational cost is unrelated to the rarity of the event but rather the slow diffusivity in the

nucleus size coordinate. In an FFS calculation that required 22 million CPU-hours, Haji-Akbari and

Debenedetti reported that the average time for a trajectory to return to A was nearly an order of

magnitude longer than the time required to reach the next interface [53]. Worse yet, the trajectories

returning to A are discarded in FFS. Therefore, the large majority of computational effort is ‘wasted’

on trajectories which ultimately do not enhance the sampling of the transition path ensemble.

One possibility is to make use of trajectories returning to A through a time reversal move.

This requires sacrificing applicability to nonequilibrium systems and requires stochastic dynamics.

However, the benefits are potentially substantial for equilibrium systems with slow diffusivity along

the order parameter. Bolhuis described just such an idea with a constrained forward shooting

replica exchange transition interface sampling (TIS) method [324]. To keep the algorithm easier

to parallelize, I propose using constrained forward shooting TIS without replica exchange between

interface ensembles. Imagine a trajectory initiated from some λi that eventually returns to A. If a

time reversal move were applied to that trajectory, the time reversed trajectory would be guaranteed
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to contain a (different) first crossing of λi. Shooting from this new first crossing point would enhance

sampling at λi and prevent the backwards portion of the trajectory from going to waste.

I will use Figure 7.3 to further illustrate the idea. The combination of the time reversal

move, constraining the shooting points to the interface, and only shooting in the forward direction

results in no rejected shooting moves. Imagine some valid first crossing phase point at λi, shown

as the red open circle. The path history is shown as the red dashed line. Borrowing notation

from Chapter 1, a valid first crossing phase point is one that satisfies the criteria hΩ[i]+(x) = 1.

Forward shooting is used to generate a new trajectory (solid red line) from the red open circle. The

trajectory is terminated when it reaches A or B. In this example, the trajectory returns to A. A

time reversal move would create the blue trajectory. The acceptance probability for this move is

unity so long as the original (red) trajectory terminates in A rather than B. The first crossing

phase point at λi for the time reversed trajectory is shown by the blue open circle. A forward

shooting move then generates a new trajectory from the blue phase point (dark green path). Note

that stochastic dynamics is required to ensure trajectory divergence. The green trajectory crosses

λi+1 before returning to A. A time reversal move applied to the green trajectory would create the

light yellow trajectory. This move has provided two new first crossing phase points; one at λi and

one at λi+1. The point at λi can be used to continue sampling the Ω[i]+ ensemble. The point at

λi+1 can be saved and used at a later stage to initiate sampling of the Ω[i+1]+ ensemble. A possible

algorithm follows:

1. Run basin simulations. Place λA and λ0. Calculate the flux from λA to λ0.

2. For i=0:i<N:i++:

(a) Harvest initial paths for the Ω[i]+ ensemble. These are paths that begin in A, cross λi at

least once, and terminate in A or B.

(b) Randomly select a path in the Ω[i]+ ensemble.

(c) Attempt a shooting move or a time reversal move with 50% probability assigned to each.

• Shooting move: Initiate a single trajectory from the first crossing phase point at λi.

Continue the trajectory until it reaches λA or λB. The move is always accepted.

• Time reversal move: Reverse the ordering of the time slices for the selected trajectory

– Accept if new trajectory originates in A.
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Figure 7.3: Schematic of constrained forward shooting TIS. Open circles represent first crossing phase
points. Solid red and green lines represent trajectories are generated through shooting. Transparent
blue and yellow lines represent trajectories are generated with a time reversal move.

– Reject otherwise. Recount original trajectory in the Ω[i]+ ensemble.

(d) Return to Step 2b. Repeat until P(λ|λi) converges. The convergence of distributions in

orthogonal coordinates, P(λ⊥|λ), can also be used to confirm convergence of the Ω[i]+

path ensemble.

(e) Continue to i+1

The final rate constant can be calculated from the same expression used for TIS and FFS:

kAB = ΦA0

∏N−1
i=0 P(λi+1|λi). Alternatively, the weighted histogram analysis method can also

be used to tie together P(λ|λi) calculated for each path ensemble [324]. The algorithm can be

parallelized by performing Step 2b for many paths at once.

Strictly speaking, stochastic dynamics are required in order for the acceptance probability of

the shooting move to be unity. In the absence of stochastic dynamics, perturbation of the shooting

point is required for trajectory divergence. If the shooting point is perturbed, backwards integration

is required to confirm that the modified shooting point indeed satisfies the hΩ[i]+(x) = 1 criteria. If

the criteria is not met, the shooting move must be rejected. In other words, deterministic dynamics

would largely defeat the primary benefit of the constrained forward shooting method — guaranteed

acceptance of all shooting moves. In the case of crystal nucleation there are a few possibilities (1)

use weak coupling to a stochastic (e.g., Langevin) thermostat, (2) Lyapunov instability may provide
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sufficient stochasticity for trajectory divergence or (3) stochasticity along the nucleus size coordinate

may be sufficiently large that drawing new momenta at the shooting point is acceptable.

Compared to conventional TIS/replica exchange TIS, the benefits are (1) no rejected shoot-

ing moves, and (2) a somewhat simplified algorithm that is easy to parallelize. Compared to FFS,

the benefits are (1) backward paths can contribute to sampling with the time reversal move, and

(2) each Ω[i]+ path ensemble is allowed to relax in directions orthogonal to the order parameter, λ.

This latter point should result in less dependence on the choice of order parameter compared with

FFS.

I propose to test this method on ice nucleation of mW water. Ice nucleation of mW water is

computationally approachable compared with clathrate hydrate nucleation or all-atom ice nucleation.

Nonetheless, the system is sufficiently complex that crystal nucleation of mW water displays some

similar characteristics to crystal nucleation in those more complex systems. This test case will allow

comparison between the computational cost of constrained forward shooting TIS and FFS. It also

provides a system to test the above listed possibilities for handling stochasticity.

7.5 Adding segmentation capabilities to the PointNet ap-

proach to local structure identification

The PointNet approach to local structure identification presented in Chapter 6 appears

promising. However, improvements could reduce the computational cost of the method and bring

the method closer to our vision – using machine learning models to directly process raw output of

molecular simulations. These two aspects are related. For the purposes of explanation, imagine

we are using the PointNet to classify the crystal structure of each atom in an atomic system with

N atoms of a single atom type. In the current approach, N point clouds would be generated for

a single frame of the simulation. Each point cloud would describe the relative positions (xi,yi,zi)

of all atoms within some cutoff distance of a central atom. All N point clouds are sent through a

trained PointNet, which returns a label (i.e., crystal type) for each point cloud. The label predicted

by the PointNet is then applied to the central atom of each point cloud. Thus, N samples must be

sent through the network for each frame of the simulation. Furthermore, the point clouds must be

preprocessed. From the raw simulation output, we identify neighbors (i.e. atoms within the cutoff

distance) for each atom, and then translate the positions of the central atom and all neighbors such
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that the central atom is located at (0,0,0).

There are good reasons for the current strategy: (1) symmetry with respect to global trans-

lation is addressed because the central atom for each point cloud is always at (0,0,0), (2) symmetry

with respect to rotation is easily achieved by applying a random rotation to each point cloud prior

to sending it through the PointNet, (3) any periodic boundary conditions can be applied when pre-

processing the point clouds; the PointNet doesn’t need to understand or account for PBCs, and (4)

the system sizes (i.e., number of atoms) do not need to be the same in the systems used for train-

ing/testing/production since each sample sent through the PointNet describes only the environment

surrounding some central atom and has a fixed number of points.

One option to process all N atoms in the system at once is to use segmentation rather

than classification. In segmentation, a single frame with all N atoms would be treated as a single

point cloud. The PointNet would return a prediction of the crystal structure for each atom in

the point cloud. In this way, the point cloud is ‘segmented’ rather than ‘classified’. However,

traditional segmentation may be challenging to apply in molecular systems. This arises from the

way segmentation works. Segmentation first calculates an overall feature vector for the entire point

cloud. Then, point-specific features are appended and a point-specific classification is determined

from the combination of the overall feature vector and point-specific information.

In molecular systems, the environment of a specific atom is determined by local rather

than global factors. In other words, the structural environment of atom ai is unaffected by some

atom aj if aj is sufficiently spatially removed from ai. Imagine a situation where a large portion of

the system is one phase (e.g., liquid), and a small portion is another phase (e.g., crystal embryo).

The global feature vector for such a system would probably be very similar to the global feature

vector of a pure liquid system. It is far from certain that the point-specific features of atoms in the

crystal embryo would be sufficiently strong to affect the final segmentation outcome. This problem

would be exacerbated by challenges training such a network. In the current approach, training

examples are generated from simulations of pure phases. A ground-truth label is thus easy to apply

for a point cloud extracted from a simulation of a given phase. Unfortunately, pure phases would

probably be insufficient to train the PointNet for segmentation. If every atom in a training example

belongs to the same phase, the global feature vector encodes all the information required to predict

the phase of each individual atom (i.e., they are all the same phase). The network thus never

learns to combine information from the global feature vector with point-wise information to create a
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point-wise classification. Thus, training the PointNet for segmentation will require simulations with

phase coexistence, in which case it is unclear how the ground truth labels for atoms near the phase

boundary will be determined, or, it will require a creative method of generating artificial training

examples with multiple phases present. A few other challenges to using segmentation will include:

• How to handle PBCs. One option is to append box dimensions to the input data. A more

promising strategy is padding. Points near the edges of the simulation box would be duplicated

in their periodic location just outside the simulation box. Unfortunately this requires some

preprocessing and increases the size of the point cloud.

• How to handle systems with different numbers of atoms. The zero-padding approach used in

our existing work may work in the case of segmentation as well.

• How to handle sensitivity to the position and orientation of crystal phases in the simulation

box. This is currently handled by translating each point cloud to (0,0,0) and applying a random

rotation to each training example.

There are clearly a range of challenges to using segmentation with the PointNet in molecular

systems. Nonetheless, it would substantially improve the method by reducing the computational

cost and completely eliminating trajectory preprocessing.
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Appendix A Supporting Information for Chapter 3

A.1 Order parameters

A.1.1 RNGOP

RNGOP is entirely based on the types of rings that each water molecule participates in.

The procedure is as follows:

1. Identify all the unique 5-membered rings and 6-membered rings of water molecules in the

system where all 5- and 6- membered rings must be simple cycles [325].

2. For each water molecule, count the number of 5-membered rings and 6-membered rings that

it participates in.

3. Tag a water molecule as hydrate-like if it meets any of the following criteria:

• Belongs to four 5-membered rings and two 6-membered rings

• Belongs to five 5-membered rings and one 6-membered ring

• Belongs to six 5-membered rings and zero 6-membered rings

4. Identify the largest cluster of hydrate-like water molecules, where two water molecules must

be first neighbors to belong to the same cluster.
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A.2 Forward flux sampling

Table A.1: Summary of basin simulations

Temperature, K λA λ0 Ncross V , nm3 Total Time, ns Φ0, m−3s−1

230 19 41 31960 252.0 487.7 2.60× 1035

Details of the basin simulations are reported in Tab. A.1. Details of the FFS, including

interface values, λi, the number of configurations harvested at each interface, Nconf , the total num-

ber of trajectories initiated from each interface, Ntraj , the number of trajectories that successfully

crossed the next interface, Ncross, the number of trajectories that returned to basin, Nbasin, and the

probability of advancing to the next interface, P (λi+1|λi), are reported in Table A.2.

Table A.2: Forward flux sampling details

i λi Nconf Ntraj Ncross Nbasin P (λi+1|λi)
0 41 778 40000 2860 37140 0.071500
1 47 377 40000 7207 32793 0.180175
2 60 1112 40000 12052 27948 0.301300
3 76 1775 40000 20564 19436 0.514088
4 91 3015 20000 10386 9614 0.519300
5 116 1421 20000 13590 6410 0.679500
6 137 1838 20000 14969 5031 0.748450
7 179 1807 10000 9577 423 0.957700
8 236 1064 10000 9985 15 0.998500
9 286 1101 10000 9998 2 0.999800
10 339 N/A N/A N/A N/A N/A
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Figure A.1: Value of several order parameters for all 778 configurations at λ0. C753 is indicated
with a red triangle. The 7 other configurations which spawned at least one transition path are shown
as blue triangles. All other configurations at λ0 are shown with black points.

A.3 C753

We found that 93% of all successful transition pathways from FFS originated from a single

configuration at λ0 (C753). The remaining transition pathways originated from 7 other configu-

rations at λ0. To show that C753 is not an outlier, the values of several order parameters for all

configurations at λ0 are reported in Fig. A.1. Though C753 has a higher than average value for

many order parameters, C753 does not fall outside the space sampled by many other configurations

at λ0. Even in the case of FSICACC (bottom right panel), there are 23 other configurations with

similarly-sized or larger complete cage clusters. Of these 23 other configurations with complete

cage clusters, only 1 other configuration (C322) spawned any transition paths. Furthermore, C753

does not have a particularly high value of most order parameters when compared with the 7 other

configurations which spawned the remaining 7% of successful transition pathways.

Snapshots of the FSICA complete cage clusters for C322 and C753 (the two configurations

at λ0 with a non-zero FSICACC cluster with spawn successful transition paths) are shown in Fig.

A.2(a)-(b). Two other representative configurations from λ0 with non-zero FSICACC clusters that

do not spawn any successful transition paths are shown in Fig. A.2(c)-(d).
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(a) C322 (b) C753

(c) C209 (d) C50

Figure A.2: Snapshots of the FSICA complete cage cluster for four configurations from λ0. Water
molecules are shown as blue bonds and guest molecules which occupy a cage are shown as green
spheres. (a) and (b) are the two configurations at λ0 which spawned transition pathways and have
non-zero FSICACC cluster sizes. (c) and (d) are two representative configurations from λ0 which
did not spawn any successful transition pathways, but have a non-zero FSICACC cluster size. (a)
consists of a 4258 cage face-sharing through a 5-membered ring (5MR) with a 4358 cage. (b) consists
of a 512 cage face-sharing through a 5MR to a 4258 cage. (c) consists of a 4151264 cage face-sharing
through a 6MR to a 4151065 cage. (d) consists of a 512 cage face-sharing through a 5MR to a 4356

cage.
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Figure A.3: Histogram of pB,MD(x) values for configurations in TP-TPE and TP-NC753.

A.4 Histogram of committor probabilities

A histogram of the pB,MD(x) values for TP-TPE and TP-NC753 is provided in Fig. A.3.

Despite attempting to select configurations with an evenly distributed pB,MD(x), both TP-TPE and

TP-NC753 have more configurations with pB,MD(x) < 0.5 than pB,MD(x) > 0.5. Because pB is

non-linear near pB = 0.0 and pB = 1.0 we further evaluated the sensitivity of our analysis by fitting

single OP models with only configurations with 0.1 < pB,MD(x) < 0.9. We find that our key results

and the general rankings for TP-TPE and TP-NC753 are unchanged.

A.5 Fits of single OP models to TP-TPE

Graphs of the fits of single OP models to pB,MD(x) are provided in Fig. A.4.
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Figure A.4: Linear fits of the top 18 OPs vs. pB,MD(x) for TP-TPE.
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(a) (b)

(c) (d)

Figure A.5: Snapshots from four independent nucleation trajectories generated with straightforward
MD simulations. Water molecules belonging to the largest cluster of DHOP35◦ are shown with cyan
bonds. The snapshots are overlaid frames from ∼100-300 ps as the trajectory crosses through the
transition state as characterized by the size of DHOP35◦ .

A.6 Straightforward MD nucleation simulations

Twenty straightforward MD simulations were performed with the same system and at the

same conditions as the FFS calculations. All trajectories nucleated within 600 ns. Representative

snapshots from four trajectories are shown in Fig. A.5.
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Appendix B Supporting Information for Chapter 5

B.1 Details of Langevin dynamics and FFS/cFFS parameters

The behavior of a particle on the four potential energy surfaces (PESs) was described by

the Langevin equation, q̈ = −∇U(q) − γq̇ +
√

2γkBTR(t), where q represents the coordinates of

the particle, U(q) is the PES, γ is the friction coefficient, kB is the Boltzmann constant, T is the

reduced temperature, and R(t) is delta-correlated Gaussian random noise with zero mean and unit

variance. The dynamics were generated with the velocity Verlet integrator with a time step of 0.01.

Simulations were performed at γ = 5.0. We confirmed that γ = 5.0 provides sufficient stochasticity

for FFS by comparing rates estimated from straightforward Langevin dynamics (SLD) with rates

estimated from FFS for a range of γ from 0.01 to 100 at β = 2.5 (data not reported). FFS rates

agreed with SLD for all surfaces at γ ≥ 1.0. At γ < 1.0 FFS underestimated the rate constant. It

is possible that γ = 5.0 does not provide sufficient stochasticity at β = 5.0. This may explain why

FFSopt and cFFS rates at β = 5.0 agree more closely with SLD for surfaces with a more flatter and

thus more diffusive transition region (PES-1 and PES-4).

SLD results were averaged over 50 and 400-600 independent simulations of length 107 time

units at β = 2.5 and β = 5.0, respectively. FFS/cFFS results were averaged from three independent

trials. At β = 2.5, FFS/cFFS was performed with 10,000 trajectories per interface at 1,000 config-

urations per interface. At β = 5.0, FFS/cFFS was performed with 40,000 trajectories per interface

and 4,000 configurations per interface.

B.2 Potential energy surfaces

Equations for the PESs used in this work are reported in Eqns. 1–4. Barrier heights are

provided in Table B.1. For each surface, the negative-x minimum is considered state A and the

positive-x minimum state B. The potential energy difference from the minimum of A to the lowest

potential energy transition state is 3.4 for all surfaces. PES-1 and PES-2 have a single transition

tube, while PES-3 and PES-4 have two transition tubes.

VPES-1(x, y) =0.02(x4 + y4)− 4 exp(−((x+ 2)2 + (y + 2)2))

− 4 exp(−((x− 2)2 + (y − 2)2)) + 0.3(x− y)2 + 0.0026

(1)
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Table B.1: Barrier heights for PESs. TS1 and TS2 are the positive-y and negative-y transition
states, respectively.

A
TS1−−→B A

TS2−−→B

PES-1 3.402 N/A
PES-2 3.403 N/A
PES-3 3.403 3.403
PES-4 3.405 4.143

VPES-2(x, y) =0.02(x2 + y2)2 − 5.196 exp(−0.08(x+ 3.5)2 − 1.5(y + 1.3)2)

− 5.196 exp(−0.08(x− 3.5)2 − 1.5(y − 1.3)2) + 0.30914

(2)

VPES-3(x, y) =0.02(x4 + y4)− 3.73 exp(−((x+ 2)2/8 + (y + 2)2/8))

− 3.73 exp(−((x− 2)2/8 + (y − 2)2/8))

+ 3 exp(−(x2/2 + y2/15)) + 2 exp(−(x2/2 + y2/2))− 0.5085

(3)

VPES-4(x, y) =− 2.93 exp(−((x− 3)2/2 + (y − 2.5)2/2))

− 2.93 exp(−((x+ 2)2/2 + (y + 2)2/2))

+ 3 exp(−0.32((x+ 1)2 + (y − 2)2 + 12(x+ y − 2.7)2 − 1))

+ 6 exp(−0.15((x− 2)2 + (y − 1)2 + 10(x+ y)2 − 1))

+ 0.005(x4 + y4)− 0.627

(4)

B.3 TPE sampling at β = 2.5

Transition path ensemble (TPE) sampling at β = 2.5 is reported in Fig. B.1. All methods

result in similar sampling to the SLD results reported in Fig. 1 of the main text. All methods

successfully sample both transition tubes for PES-3 and PES-4 at this higher temperature.
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Figure B.1: Comparison of interface placement and TPE sampling generated with FFSopt, FFSx,
and cFFS on PES-1 – PES-4 at β = 2.5. PES contours are shown as gray lines. Configurations at
each interface are shown with black points. TPE sampling is represented by the heat map.

B.4 FFS sampling on PES-3 at β = 5.0

FFS struggles to sample both transition tubes at β = 5.0 on PES-3. TPE sampling for all

three runs of FFS with three different order parameters and cFFS are reported in Fig. B.2. Even

with the optimal order parameter (5x+ y), FFS fails to equally sample both transition tubes. With

one suboptimal order parameter (x + y) FFS always samples the positive-y transition tube, while

with a different suboptimal order parameter (x), FFS always samples the negative-y transition tube.

cFFS consistently samples both transition tubes.
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Figure B.2: Comparison of interface placement and TPE sampling generated with FFSopt, FFSx+y,
FFSx, and cFFS on PES-3 at β = 5.0. Results are shown for all three independent FFS runs for
each method. PES contours are shown as gray lines. Configurations at each interface are shown
with black points. TPE sampling is represented by the heat map.
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B.5 Details of alanine dipeptide simulations

Alanine dipeptide was simulated in vacuum with Langevin dynamics at 300 K with the leap-

frog stochastic dynamics integrator implemented in GROMACS 2018 [326]. The integration time

step was 0.002 ps and γ = 100 ps−1. Linear and angular center of mass motion was removed every

step. Alanine dipeptide was represented with the AMBER99SB force field [327]. Bonds between

heavy atoms and a hydrogen were constrained with LINCS [328, 329].

cFFS was tested by investigating the C7ax-to-C7eq conformational transition, which requires

surmounting an ∼10 kBT barrier [259]. The SLD rate constant was estimated from 25 independent

simulations. Each simulation was initiated from the C7ax basin located near φ = 60◦ and ψ = −30◦.

Following an energy minimization, the systems were equilibrated for 1 ns prior to the start of the

production runs. Each production run was continued until the system committed to the C7eq basin

or for a maximum of 500 ns. 23 of the 25 simulations underwent the conformational transition within

500 ns. The rate constant was estimated as kAB = nAB/tA where nAB is the number of C7ax-to-C7eq

transitions and tA is the total simulation time spent in the C7ax basin, and thus kSLD
AB = 4.8 × 106

s−1.

cFFS was performed for the same system. Simulation in basin A was initiated from an

energy minimized configuration in the C7ax basin. The system was equilibrated for 1 ns prior to

the start of a 10 ns production simulation. φ and ψ were selected as the CVs for cFFS. The grid

extended from −180◦ to 180◦ in both φ and ψ with periodic boundaries. A grid size of 2◦ was

used in both φ and ψ. The bounds of basin B were defined by examining the free energy landscape

reported in the Supporting Information of Ref. 259. The bounds of basin A were identified with a

threshold probability density of 4.0 × 10−4. This results in the system spending ∼60% of the time

within the bounds of A during the basin simulation. The flux from A to λ0 was calculated to be

6.15 × 1010 s−1. Atomic velocities were not regenerated at the shooting points as the stochastic

dynamics allowed individual trajectories to diverge. Complete details of the cFFS run are reported

in Table B.2. The total probability of reaching B from λ0 is
∑4
i=0 P (λB |λi)P (λi|λ0) = 8.15× 10−5

and thus kcFFS
AB = 5.0× 106 s−1.
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Table B.2: Alanine dipeptide cFFS details

i Nconf Nbasin Ncross Nsucc Ntotal P (λi+1|λi) P (λi|λ0) P (λB |λi)
0 615 9347 653 0 10000 0.0653 1.0 0.0
1 653 9394 606 0 10000 0.0606 6.53× 10−2 0.0
2 606 9397 586 17 10000 0.0586 3.96× 10−3 0.0017
3 582 6471 466 3063 10000 0.0466 2.32× 10−4 0.3063
4 466 3258 0 1742 5000 0.0 1.08× 10−5 0.3484
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Appendix C Supporting Information for Chapter 6

C.1 Simulations for crystal structure identification

Simulations of pure phases were performed to generate training data for the PointNet. The

pure phases were simulated in a range of temperature and pressure conditions to expose the network

to conditions with varied density and magnitude of thermal fluctuations. Though temperature

and pressure conditions sometimes exceeded the thermodynamic stability of the simulated phases,

we confirmed that all phases remained mechanically stable for the duration of the simulations.

Simulation details specific to the different systems are provided in the following sections.

C.1.1 Lennard–Jonesium

Simulations of bulk liquid, face-centered cubic (fcc), hexagonal close-packed (hcp), and

body-centered cubic (bcc) phases were performed in a range of conditions both above and below

the melting point. Initial configurations for the solid phases were generated by replicating the unit

cell and resulted in 16384, 14976, and 17496 atoms for the fcc, hcp, and bcc phases, respectively.

The initial configuration for the liquid phase consisted of 16384 atoms randomly placed in a cubic

simulation box of length 25σ, where σ is the size parameter in the LJ potential. All values for the

LJ system are reported in reduced units.

Simulations of the liquid, fcc, and hcp phases were performed in the NpT ensemble at a

range of temperatures between 0.5 and 1.7ε/kB and pressures between 0 and 15ε/σ3. Simulations

of the bcc phase were performed in the NV T ensemble with a range of temperatures between 0.6

and 1.6 ε/kB and densities between 0.95 and 1.2σ−3. Each NpT system was first equilibrated

for 500τ to the target conditions, followed by a 2000τ simulation with the Bussi thermostat [330]

and Parrinello-Rahman barostat [219], each with coupling constant 0.5τ . Since the bcc phase is

unstable with respect to transformation to the close-packed phases, a slab of frozen particles in bcc

arrangement was used to stabilize the crystal. Analysis was only performed on particles several

layers from the frozen slab. Simulations were performed in GROMACS 2018 [326]. A time step of

0.001τ was used. Group cutoff scheme was used with neighbor list updates every 10 steps and cutoff

radius of 4.0σ. The LJ potential was force-switched from a distance of 3.0σ to the cutoff at 3.5σ.
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C.1.2 Water

All-atom simulations of water were performed for the liquid phase, five ice phases, and two

guest-free hydrate phases. Liquid and ice phases were simulated at temperatures spaced between

200 K and 300 K and at pressures between 1 bar and 12000 bar. Hydrate phases were sampled at

temperatures 230–270 K, with pressures -2000–1000 bar. Initial configurations for the solid phases

were generated by replicating the unit cell, and resulted in the following numbers of water molecules

in each system: ice Ih: 768, ice Ic: 512, ice III: 768, ice V: 1792, ice VI: 640, hydrate sI: 1242,

hydrate sII: 1088. The initial liquid configuration consisted of 909 water molecules. Following an

energy minimization step, systems were simulated for 25 ns in the NpT ensemble at the target

temperature and pressure. Temperature was maintained with the thermostat of Bussi et al. [330]

with a coupling constant of 0.5 ps. Anisotropic (isotropic) pressure coupling was applied for the

solid(liquid) phase(s) with the Berendsen barostat [217] with a coupling time constant of 5 ps. The

first 5 ns of the simulation was treated as equilibration and not used for data collection.

Water was described by the TIP4P/Ice [331] model. Simulations were performed in GRO-

MACS 2018 [326]. Dynamics were propagated by the leap-frog integrator with an integration time

step of 2 fs. Linear center-of-mass motion was removed every 10 integration steps. Cutoffs for LJ

and Coloumbic interactions were set to 1.0 nm. The Verlet cutoff scheme was employed with the

Verlet buffer tolerance set to 0.005 [332]. Long-range electrostatics were treated with particle mesh

Ewald [333]. Geometry of water molecules was maintained with SETTLE [334].

C.1.3 Mesophases

Simulations of six mesophases were performed: liquid, lamellar, lxs, hexagonal, gyroid, and

body-centered cubic. The systems were described by the model presented in Ref. 134, which is

comprised of pairwise interactions using the two-body term of the Stillinger–Weber potential [185].

The systems comprise of two particle types, denoted A and B. Different mesophases form from

tuning the A–B interactions and the fraction of type A, χA. All simulations were performed with

εAA = εBB = 1.0 kcal mol−1, σAA = σBB = 1.0 and σAB = 1.15. Values other than temperature

and energy are reported as dimensionless quantities. All simulations are performed at T = 300 K

and p = 0. Simulations are performed in the χA > 0.5 portion of the phase diagram so type B is

the minor component.
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Guided by the phase diagram presented in Fig. 6 of Ref. 134, we select the following

conditions for each phase. Liquid: χA = 0.5, εAB = 0.85 kcal mol−1, lamellar: χA = 0.5, εAB = 1.4

kcal mol−1, shifted layered crystal (lxs): χA = 0.5, εAB = 1.9 kcal mol−1, hexagonal: χA = 0.77,

εAB = 1.8 kcal mol−1, gyroid: χA = 0.67, εAB = 1.8 kcal mol−1, body-centered cubic (bcc):

χA = 0.86, εAB = 3.8 kcal mol−1. Except for the body-centered cubic phase, all phases were

generated through nucleation from the isotropic liquid. All systems except bcc contained 16384

atoms. The bcc systems contained 14000 atoms.

Simulations were performed in GROMACS 2018 [326] using tabulated potentials. The cut-

off was set to the theoretical maximum for the Stillinger–Weber potential. Equations of motion

were integrated with the leap-frog integrator with a time step of 0.005. Systems were equilibrated

for 500,000 steps in the NpT ensemble with temperature and pressure coupling maintained by

the Bussi thermostat [330] (τT = 2.0) and Berendsen barostat [217] (τp = 4.1), respectively. For

the production simulations, temperature and pressure were maintained with the Bussi thermostat

[330] and Parrinello–Rahman barostat [219] with damping constants of τT = 2.0 and τp = 10.2,

respectively. Production simulations were performed for 2.5 × 108 steps. Only the portion of the

simulations after the crystal phase had grown to occupy the entire simulation box were used for

analysis.

C.2 Simulations for hydrophobicity identification

C.2.1 Self-assembled monolayer systems

Self-assembled monolayer (SAM) surfaces are flexible organic surfaces composed of alkane

chains attached to a metal surface. All SAM surfaces were constructed to be approximately 6×7

nm with 192 alkane chains total. Each chain contains a sulfur atom attached to one end of a

10-carbon alkane chain and a terminal group at the other end, in this case CH3 and OH. Sulfur

atoms were restrained to positions corresponding to their hypothetical spacing when adsorbed to

a Au (111) surface. The in-plane structure of the sulfur atoms was
√

3 ×
√

3 R30 ith a 0.497 nm

distance between neighboring sulfur atoms [170]. The surfaces are periodic in x and y directions.

Partial charges were taken from the OPLS-AA force field [186]. All other bonded and nonbonded

parameters were taken from the General Amber force field [335]. The surface with vacuum space on

either side in the z direction was equilibrated in the NV T ensemble for 5 ns at 300 K. A slab of 6000
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TIP3P water molecules was placed in contact with the surface terminal groups. The vacuum space

above the water acts as a natural barostat, maintaining the pressure at 0 bar. The surface–water

system was equilibrated in the NV T ensemble (300 K) for 5 ns. Training and testing samples were

collected from a subsequent production run of 25 ns in the NV T ensemble (300 K). Simulations were

performed in GROMACS [326] with a time step of 0.002 ps. The Bussi thermostat [330] maintained

temperature with time constant τT = 0.5 ps. Hydrogen bonds were constrained with LINCS [328].

LJ and Coulombic cutoffs were set to 1.0 nm. Particle mesh Ewald was used to calculate long-range

electrostatics [336].

C.2.2 Protein systems

Structures of hydrophobin II (PDB: 2B97) and CheY (PDB: 3CHY) were taken from the

Protein Data Bank (PDB). Hydrophobin and CheY were solvated with TIP3P water in 5×5×5 nm3

and 8×8×8 nm3 simulation boxes, respectively. Four sodium counter ions were added to the CheY

system. The proteins were described by the AMBER99SB-ILDN force field [337]. Heavy atoms of

the proteins were position restrained and the systems were energy minimized. Following the energy

minimization, the systems were equilibrated for 5 ns in the NpT ensemble (300 K, 1 bar) with

the protein heavy atoms position restrained. Temperature coupling was only applied to the solvent

(Bussi thermostat [330], τT = 0.5 ps). The Berendsen barostat [217] was used during equilibration

with τp = 1.0 ps. Systems were simulated in production for 25 ns in the NpT ensemble (300 K, 1

bar) with no position restraints. Temperature coupling was applied with the Bussi thermostat [330]

(τT = 1.0 ps) and the Parrinello-Rahman barostat [219] (τp = 5.0 ps). Temperature coupling was

only applied to the solvent. All simulations were performed in GROMACS 2018 [326]. Equations of

motion were integrated with the leap frog algorithm with a time step of 0.002 ps. LJ and Coulombic

cutoffs were set to 1.0 nm. Particle mesh Ewald was used to calculate long-range electrostatics [336].

Hydrogen bonds were constrained with the LINCS algorithm [328].
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learning of accurate energy-conserving molecular force fields. Sci. Adv., 3(5):e1603015, 2017.

[287] H Chan, M J Cherukara, B Narayanan, T D Loeffler, C Benmore, S K Gray, and S K R S
Sankaranarayanan. Machine learning coarse grained models for water. Nature communications,
10(1):379, 2019.

[288] W. F. Reinhart, A. W. Long, M. P. Howard, A. L. Ferguson, and A. Z. Panagiotopoulos.
Machine learning for autonomous crystal structure identification. Soft Matter, 13(27):4733–
4745, 2017.

[289] Pablo M Piaggi and Michele Parrinello. Predicting polymorphism in molecular crystals using
orientational entropy. Proc. Natl. Acad. Sci. USA, 115(41):10251–10256, 2018.

[290] Siva Dasetty, John K Barrows, and Sapna Sarupria. Adsorption of amino acids on graphene:
assessment of current force fields. Soft Matter, 15(11):2359–2372, 2019.

[291] P. Geiger and C. Dellago. Neural networks for local structure detection in polymorphic systems.
J. Chem. Phys., 139(16):164105, 2013.

[292] W. F. Reinhart and A. Z. Panagiotopoulos. Automated crystal characterization with a fast
neighborhood graph analysis method. Soft matter, 14(29):6083–6089, 2018.

[293] M. Spellings and S. C. Glotzer. Machine learning for crystal identification and discovery.
AIChE J., 64(6):2198–2206, 2018.

[294] C Dietz, T Kretz, and MH Thoma. Machine-learning approach for local classification of
crystalline structures in multiphase systems. Phys. Rev. E, 96(1):011301, 2017.

[295] Maxwell Fulford, Matteo Salvalaglio, and Carla Molteni. DeepIce: a Deep Neural Network
Approach to Identify Ice and Water Molecules. J. Chem. Inf. Model., 0(ja):null, 0.

[296] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[297] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

[298] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for se-
mantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3431–3440, 2015.

[299] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436,
2015.

169



[300] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 652–660, 2017.

[301] MA Carignano, PB Shepson, and I Szleifer*. Molecular dynamics simulations of ice growth
from supercooled water. Mol. Phys., 103(21-23):2957–2967, 2005.

[302] S Sarupria and P G Debenedetti. Molecular dynamics study of carbon dioxide hydrate disso-
ciation. J. Phys. Chem. A, 115(23):6102–6111, 2011.

[303] V Yamakov, D Wolf, SR Phillpot, AK Mukherjee, and H Gleiter. Deformation-mechanism
map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater., 3(1):43, 2004.

[304] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[305] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shape modeling. In
CVPR, volume 1, page 3, 2015.

[306] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[307] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[308] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
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