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Abstract

Topic modeling has been used widely to extract the structures (topics) in a collection (cor-

pus) of documents. One popular methods is Latent Dirichlet Allocation (LDA). LDA assumes a

Bayesian generative model with multinomial distributions of topics and vocabularies within the top-

ics. The LDA model result (i.e., the number and types of topics in the corpus) depends on tuning

parameters. Several methods, ad hoc or heuristic, have been proposed and analyzed for selecting

these parameters. But all these methods have been developed using one or more real corpora. Un-

fortunately, with real corpora, the true number and types of topics are unknown and it is difficult

to assess how well the data follow the assumptions of LDA. To address this issue, we developed

a factorial simulation design to create corpora with known structure that varied on the following

four factors: 1) number of topics, 2) proportions of topics in documents, 3) size of the vocabulary

in topics, and 4) proportion of vocabulary that is contained in documents. Results suggest that

the quality of LDA fitting depends on the document-topic distribution and the fitting performs the

best when the document lengths are at least four times the vocabulary size. We have also proposed

a pre-processing method that may be used to increase quality of the LDA result in some of the

worst-case scenarios from the factorial simulation study.
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Chapter 1

Introduction

1.1 Motivation

In linguistics, the concept of “topic” was originally described as the item that the sentence is

about. When extended to the whole document, the concept of “topic” evolved towards “abstract”,

which usually consists of a few sentences. In an abstract, information is concentrated and com-

municated while details are omitted. This allow readers to quickly decided if they have interest in

the document. Readers save valuable time and can focus on articles of interest. As the number of

documents has increased, keywords/labelling systems begin to be important because even reading

abstracts became too time consuming.

As far back as the of year 1800, around the time that Joseph Marie Jacquard invented the

Jacquard loom, human beings started to convert natural language to something that a machine

could record. In 1945, the earliest electronic general-purpose computer called Electronic Numerical

Integrator And Computer (ENIAC) was completed. It didn’t take too long before people realized

that computers were more efficient than human beings for recording and summarizing documents.

In 1950, Calvin Moores formally defined the term “Information Retrieval”[23] as the discovery and

location of stored-away information so that it can be used. He specifically pointed out the difference

between Information Retrieval and Information Warehousing. The later is more like the database

systems we are using today for cataloging and storage of information. The simplest method to do

information retrieval is to carefully describe the information wanted in terms of a natural language

description and then search the whole database to find documents that match the description. There

1



Figure 1.1: Topic illustration

are two main problems with this simple method of information retrieval:

• Human beings often can not accurately describe everything they want in terms of natural

language.

• The complexity of linguistics allow several possible descriptions that are essentially equivalent

to each other.

To solve these problems, researchers started to use sets of keywords instead of a natural language

description to conduct information retrieval. Hence, for each information retrieval inquiry, we can

just return the set of articles that contain the same set of keywords or a related set of keywords.

In 1955, James W. Perry introduced “precision” and “recall” as concepts to evaluate the quality

of an information retrieval task[24]. This was the start of systematic and objective evaluations of

information retrieval tasks.

Topic modeling is a specific method of information retrieval that uses statistical tools to

discover the ”Topics” that occur in a collection of articles. “Topic” is defined as a multinomial

distribution over the words in a vocabulary. Consider a simulated document with a vocabulary

consisting of six words: elephant, lion, tiger, logistic, sampling, stochastic. Human beings would

most likely recognize two potential sets within the vocabulary and we would probably name them

2



“animals” and “statistics”. Instead of giving a name to each set of words, topic modeling treats

these two sets as two probability distributions. Figure 1.1 shows an illustration of the two topic

distributions in a simulated document. Two interesting observations from Figure 1.1 are:

1. The probabilities for words like elephant are very small within topic 1, but are not zero. This

can be interpreted as it is very rare but possible that someone has document about a statistical

experiment related to elephants (or some combination like this)

2. The sets of words that have relatively high probabilities represent the original concept of

”Topic” as we discussed above. We will use topic-distribution or topic-word distribution for

clarity in the remainder of this dissertation.

With the help of computers, searching and discovering relevant pieces of information has

evolved from supervised methodologies to unsupervised methodologies. By saying unsupervised, it

means that the methods will produce results without the need of assistance from humans, but only

after the data has been properly processed and the parameter estimates have been selected. Topic

models are considered some unsupervised but do require participation of human beings during the

processing. Statistical topic modeling is a useful method for finding topics in large unstructured

document collections. Typical applications of topic modeling includes document clustering[31], ex-

ploratory data analysis and visualization[30], retrieving document translation pairs[21], and auto-

matic labelling[20].

One of the most widely used topic model methodologies is Latent Dirichlet Allocation (LDA)

[4]. It allows multiple topics which are represented by multinomial topic-word distributions for

one document and documents may possess different topic structures which are represented by the

document-topic distribution. A Bayesian estimation approach allows the LDA model the flexibility

of extension and makes the estimation steps easier. Documents may possess different topic structures

and topics may evolve as new data are observed. More details of LDA are going to be discussed in

Chapter 2.

While the LDA methodology is widely used to produce an estimated topic-word distribu-

tions, there is no guarantee that the resulting set of topics is correct. In fact, the concept of the

correct set of topics is not well understood in topic modeling. Some previous work has been done

on evaluating topic modeling results, but they do not directly address the issue of the correct set of

topics.
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document word n

Deathly Hallows 33 snape 113
Goblet Fire 36 dumbledore 95

Deathly Hallows 10 kreacher 87
Goblet Fire 21 dobby 77
Goblet Fire 30 dumbledore 76

Chamber Secrets 2 dobby 65
Deathly Hallows 35 dumbledore 63

Goblet Fire 24 hagrid 63
Deathly Hallows 23 greyback 61
Deathly Hallows 24 wand 61

Goblet Fire 27 sirius 61

Table 1.1: Sample Data from the Collection of the Selected Books

Developing techniques to determine if the topics produced by topic modeling are correct is

the primary objective of this research. In the next section the current methods of evaluating topic

modeling results will be discussed; but first an example illustrating the concept of correct topics will

be discussed. Suppose we are trying to find the topics for a collection of three randomly selected

Harry Potter books : Chamber of Secrets, Deathly Hallows, and Goblet of Fire. Since there are three

books, we set the number of topics to be detected as three and use the standard default R package

topicmodels. After removing the default stop-words (words that are considered meaningless, i.e.

“a”, “the”) in topicmodels and applying the proper pre-processing steps, the three books are then

converted to a data set that suitable for LDA analysis. Table 1.1 shows part of the data set.

The resulting of the three fitted topic-word distributions are shown in Figure 1.2. This is

clearly not the correct set of topics based on simple observation of the plots without the need of any

formal statistical analysis. Some of the issues that indicate that this particular LDA solution is not

the correct set of topics include:

• ”harry” is the highest frequency word within each topic distribution.

• Names in general appear too often as high frequency words in the distributions.

• Topic 1 and Topic 3 of the LDA solution have the same five words with the highest distributions.

A solution to finding the correct topic distributions in this specific example is straightforward. One

can simply eliminated all the formal names from the data set to remove them in the LDA solution.

But to figure out what names should be removed, one needs to read the text thoroughly and that is

out of the scope of an un-supervised method like LDA and requires even more assistance from human
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Figure 1.2: Topic-word distribution generated by Latent Dirichlet Allocation

beings. In this dissertation, we will present a method that systematically evaluates the performance

of LDA model under different scenarios.

It is worth noting that topic models are applied on data sets from unstructured texts.

However, topic model methods usually explicitly or implicitly assume a structure for the texts from

which the data sets are developed. In Chapter 3 we will discuss more about the structures implicitly

and explicitly proposed by LDA methodology.

1.2 Previous Research on Topic Model Evaluation

The evaluation methods can be divided into four categories. The categories are combinations

of two classification factors. The first classification factor is intrinsic vs extrinsic and the second

classification factor is efficient vs accurate.

1.2.1 Intrinsic vs. Extrinsic

The intrinsic vs extrinsic classification is based on whether or not extra tasks are required

to perform the evaluation. Intrinsic evaluations only consider the fitted result and the original data

set. On the other hand, extrinsic evaluations utilize extra tasks which take the topic model outputs

(i.e. topic-word distributions) and evaluate the quality of the topic model with based on the extra

tasks.
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1.2.2 Efficiency vs Accuracy

The efficient vs accurate classification is based on whether or not the metric used in the

evaluation depends on the situation. Efficiency measures the time and resources required for the

method to produce results and independent to the method itself. Accurate measures how well the

model performs based on the selected scenario. Efficiency has a clear definition and usually consists

of time complexity and memory usage which are discussed in detail below. Accuracy, on the other

hand, is still struggling in finding a good measure. Table 1.4 illustrates the categories for evaluation

methods. It is worth noting that the two types of evaluation methods are related to each other and

may be used as trade-off pairs.

In general, efficiency is easy to measure and accuracy is much more difficult to measure.

1.2.2.1 Efficiency

There are usually two methods of measuring efficiency. The first method is based on the

computational complexity to process the model, and this method is part of the intrinsic evalua-

tion. The second method is based on the time or resource consumed to process the model in real

applications and this method is part of extrinsic evaluation.

The computational complexity not only depends on the structure of the model itself, but

also depends on the procedures used for estimating the model parameters. For LDA, the original

paper [4] derived an estimation algorithm that uses variational inference but in [12], a bayesian

approach usingthe Gibbs Sampling procedure is developed for estimation. So there are usually

multiple estimation methods that can be selected for a given model. In addition to the multiple

estimation techniques, many topic models are designed to enhance the performance under specific

scenarios and use extra information besides the dataset. For these reasons (multiple estimation

techniques and specific scenarios), computational complexity is rarely used as a measure of efficiency.

However, if a standard data set and standard estimation algorithm were chosen for testing topic

models, this might change in the future.

Extrinsic measurement of efficiency is based on time and resource used to completely process

the model. For this method of efficiency, there are some widely used standard data sets. These data

sets are considered as the ”standard” data sets, and the time and resource consumed to perform the

same task may be used to compare topic model approaches. The sizes of data sets have increased
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rapidly due to internet searching and new tools had been developed to reduce the time and resources

required for these large data sets. For example, Gropp et al.[13] derived Clustered Latent Dirichlet

Allocation and showed that the model does well in terms of the wall-time when the number of

processors is increased. The quality of the result in terms of perplexity (to be discussed later) is

not degenerated. In the same paper, they also proved that the CLDA model conserves the ability

of expansion from simple LDA model.

Since standard data sets do exists, extrinsic efficiency evaluations are straight forward to

check, easy to compare, and have little ambiguity. But the measure of efficiency is partly determined

by the physical configuration of the platform which researcher is using. The same algorithm may

have different running time on different computers. Hence, comparing the efficiency measurements

across papers is hard, if not impossible. As a result, there does not exist a preferred system of

efficiency evaluation.

1.2.2.2 Accuracy

The accuracy evaluation approach is based on trying to determine how accurately the true

underlying topics are discovered by the topic model. The term “Accuracy” is commonly used within

the area of statistics and has several definitions. Table 1.2 lists the definitions of Accuracy and several

related measures based on a confusion matrix. These metrics are all designed to determine (in slightly

different ways) if the model is performing “accurately” for the given task. The problem with using

theses “accuracy” measures from a confusion matrix is the requirement of a “True Condition” which

is rarely known in topic modeling. Also, topics models require both the topic-word distribution and

the document-topic distribution to be estimated, so there are actually two levels of “True Condition”.

Hence, the definitions of “accuracy” from Table 1.2 can’t be directly applied.

1.2.2.3 Perplexity and Other Intrinsic Measurements

Perplexity is one of the most widely used intrinsic methods to evaluate topic models. It

was originally introduced in information theory as a measure of how well a probability distribution

predicts a sample. It is based on the log-likelihood of the language model, which tries to predict the

next word given the current word. For example, suppose there is a document D that is written under

topic T . Under topic model assumptions, the document D is equivalent with a list of frequencies of

the words which showed up, and the topic T is a probability distribution over the whole vocabulary.
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True Condition

Total popu-
lation

Condition positive Condition negative

Predicted
condition

condition
positive

True positive False positive

condition
negative

False negative True negative

∑
True positive∑

Condition positive , True positive

rate (TPR), Recall, Sensitivity,
probability of detection

∑
False positiv∑

Condition negative ,False positive

rate (FPR), Fall-out

∑
False negative∑

Condition positive ,False negative

rate (FNR), Miss rate

∑
True negative∑

Condition negativeSpecificity

(SPC), Selectivity, True negative
rate (TNR)

∑
Condition positive∑
Total populatio ,Prevalence

∑
True positive+

∑
True negative∑

Total population , Ac-

curacy (ACC)

∑
True positive∑

Predicted condition positive ,Positive

predictive value (PPV), Preci-
sion

∑
False positive∑

Predicted condition positive ,False

discovery rate (FDR)

∑
False negative∑

Predicted condition negative ,False

omission rate (FOR)

∑
True negative∑

Predicted condition negative , Neg-

ative predictive value (NPV)

TPR
FPR ,Positive likelihood ratio
(LR+)

LR+
LR− , Diagnostic odds ratio
(DOR)

FNR
TNR ,Negative likelihood ratio
(LR)

Table 1.2: Contingency table and Evaluation metrics generated from it
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Similarity Metric Algebraic Expression Min. Value Max. Value

Kullback-Liebler (KL)
∑n
i=1 p(xi)log

p(xi)
q(xi)

0 ∞
Jensen-Shannon (JS) 1

2KL(p, p+q2 ) + 1
2KL(q, p+q2 ) 0 1

Hellinger (He)
∑n
i=1(

√
p(xi)−

√
q(xi))

2 0 2
p and q are two discrete probability distributions

Table 1.3: Common similarity measurements used in measuring distance between probability distri-
butions

Efficient Accurate

Intrinsic Run time for one specific model Perplexity

Extrinsic Memory consumption for Accuracy in Retrieve
Parallelized computing documents under a specific topic

Table 1.4: Categories of Evaluation

The likelihood is the probability that the document D is presented as it is now under the probability

distribution T . The log-likelihood is the log transformation of the likelihood to avoid the extremely

small value.

Similarly, the ideas of information entropy (the expectation of the negative log likelihood) is

trying to quantify the uncertainty of texts, the Kullback-Leibler divergence (Table 1.3) measures the

distance between two probability distributions that is not symmetric, the Jensen-Shannon divergence

and Hellinger divergence measure the symmetric distance between two distributions. They are some

of the classical metrics inherited from information theory. Manning [5] showed how perplexity is

generated from entropy. Hanna Wallach in [28] showed in detail on how to estimate perplexity.

1.2.2.4 Human Interpretability

Topic models have the potential to provide a better understanding of large document col-

lections by discovering interpretable topics (or small sets of words). This process may be viewed as

a type of dimension reduction. One way to measure the quality of the model results is to ask human

experts to review the topics that been produced and comment the accuracy of how the model topics

reflect the true underlying topics in the documents. Unfortunately, it is often the case that the data

set based on the collection of documents is too large or too diverse for any human to accomplish

this task.
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1.2.2.5 Other Ad-hoc Measurements

For a specific task, often an ad-hoc measurement of accuracy is created. A specific example

comes from speech recognition tasks. Word-error rate and M-ref [8] has been shown to be better

than perplexity in measuring accuracy.

1.3 Problems with the Current Evaluation Methods

1.3.1 Lack of truth or “true condition”

The lack of knowledge of the actual true underlying topics is the major problem for current

evaluation methods. As an example, the two metrics precision and recall defined in Table 1.2 are

widely used but they both require the knowledge about “True Positive” which is not available in

general. In topic modeling, we may never know the true condition. Two experts may agree on the

top few words which reflect the topic for a given article, however, when extended to 50 words, they

most likely will diverge. It is also an unknown as to how many words from the word distribution

should be included to find the best representation of a topic.

1.3.2 Issues with Perplexity

Perplexity is designed to measure the log-likelihood of a held-out test set. This is usually

done by splitting the data set into two parts, one for training and the other for testing (the held-

out part). A training set is used to estimate the document-topic distribution and the topic-word

distribution. The held-out part, the test set, is then used to compute the perplexity value.

Suppose LDA model generates the document-topic distribution Θ and the topic-word dis-

tribution Φ. The log-likelihood of the test set is

L(Dtest) = logP (Dtest|Θ,Φ) =
∑
i

logP (Di|Θ,Φ)

The perplexity is then defined as

perplexity(Dtest) = exp{−L(Dtest)

N
}
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where N is the total number of words in the test set and Di is the i-th document in the test set of

documents.

Perplexity provides an intrinsic evaluation measure, but it has several drawbacks. The first

drawback was shown by Chen[8]. The issue was that, surprisingly, predictive likelihood (perplexity)

and human judgement are often not correlated, and even sometimes slightly negatively correlated.

They ran a large scale experiment on the Amazon Mechanical Turk platform. For each topic, they

took the top five words of that topic and added a random sixth word (de). Then, they presented

these lists of six words to participants asking them to identify the intruder word.

If every participant could identify the intruder, then we could conclude that the topic is

well defined and easy to recognize. If on the other hand, many people identified one of the top five

words from the topic as the intruder, it means that they could not easily identify the topic, and we

can conclude the topic was not well defined. The result suggests that, given a topic, the five words

that have the largest frequency within their topic are usually not enough to clearly describe a topic.

A second issue with perplexity occurs when using modern Bayesian topic models with a more

complicated structures of topics. These models often lead to an intractable posterior likelihood. For

a held-out collection of test set Dtest documents and a corpus wide vocabulary of V words, when

evaluating LDA model, perplexity is computed using the following formula:

perplexity(Dtest) = 2
{−

∑Dtest log(
∑Nd
n=1

∑T
t=1(θdtφtn))

d=1 ∑Dtest
d=1

Nd

}

where φtn is the inferred probability of word n in topic t and θdt is the probability of assigned

topic t to the held-out document d while Nd is the total number of words in that document. The

multiplication of θdtφtn is the part that is intractable. Since word n might be presented in multiple

topics, one needs to figure out which topic it belongs to at every time the word n is presented, which

is impossible.

Hence the perplexity has to be estimated through some sampling methods. In this situation,

the estimated perplexity is not a deterministic measurement, but rather a stochastic measurement.

This means that each time perplexity is estimated for the same corpus, the perplexity scores will be

different.

The final draw-back for perplexity is shown in another word intrusion experiment conduct

by Chang et al. [7]. In this paper, Chang et al. showed that the words in topics generated through
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the lowest perplexity criteria often do not have natural semantic relationship with each other.

1.3.3 Model Assumptions

One big problem for topic models is that the model assumptions are not able to be validated.

Some of the assumptions, like “Topics evolve in time so they are correlated to each other”, might be

validated through a thorough investigation of the corpus. For a given corpus, one may find human

experts to summarise the topics for each time period and compare the result. Methods to assess

other assumptions, like “Topics are multinomial distribution over the vocabulary”, have not been

developed.

1.3.4 Parameter Tuning

Simple models like the n-grams topic model which will be introduced in Chapter 2 do not

have a parameter to be tuned. More complicated models such as Bayesian methods require selection

of proper tuning parameters. Even the commonly used LDA model contains three parameters that

need to be tuned. The standard tuning parameter selection method is to run the topic modeling

approach several times over different setups of the parameter, and select the set of parameter values

that produces the lowest perplexity score. When no parameter values produce a topic modeling result

with a reasonable perplexity value, the topic modeling result does not make semantic sense, or the

perplexity score varies widely based on the parameter values, there is no recommended alternative

plan for parameter value selection.

The importance of the parameter tuning can not be over stated. In the LDA modeling

approach, there is a parameter α that defines the convergence rate and it plays an important role in

the LDA results as illustrated in Figure 1.3. This figure shows how the associated document-topic

multinomial distribution is going to change when the different value of the parameter α is used. A

small α value leads to a multinomial distribution that contains few high-probability topics and a

large α value leads to a more “flat” multinomial distribution. The number of topics to be fitted is

another important tuning parameter to be considered. Unlike α that can be interpreted as a prior

belief, and this prior might be overridden in Gibbs Sampling process, the number of topics is the

primary factor in evaluating the quality of modeling result.
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Figure 1.3: Example of multinomial distribution samples drawn from Dirichlet distributions with
different parameter α
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1.3.5 Dependency of evaluation on a Particular Corpus

Although there are many articles produced each year, only a few are used for evaluation

purpose. TREC (Text REtriveal Conference) publishes about 10 datasets a year, and approximately

1 human-annotated dataset for every 3 years. While these can be used as standards, the quality

of the annotation is actually unknown and the annotated data may not be similar to other data

sets used by researchers. The other reason that the evaluation method is corpus dependent is that

some models require more information about the dataset than others. Rosen-Zvi et al. in [26]

published a well-designed author-topic model for authors and documents. Without the certain type

of information, the model should be at most has a similar quality as LDA.

1.3.6 Pre-processing Steps Impact on Evaluations

This is best illustrated in Figure 1.2. It is hard for anyone to get enough information about

the topics from the graphs. There are all the names from the novel that take the higher probability.

Should we remove the names if we know it is not helping? It is still not clear. The books are definitely

talking about Harry Potter and his mates. Remove those names result in other “not-as-important”

names showing up. For this specific example, maybe more topics or a longer list of words will help.

But the pre-processing steps like stop-words recognition and tokenization do have influence on the

topic model fitting result, but this has rarely been evaluated.

1.4 Build the Underline Truth

The generative process used in Bayesian Topic modeling provides a useful tool for correctly

evaluating the model results. The main problem of not knowing the true condition is solved. Based

on a carefully designed simulation, one can construct a corpus with known topic-word distribution

as well as the document-topic distribution. In this case, We may also modify the assumptions from

the model to check the performance of the model under different conditions. Knowing the true

distributions also allow us to use the statistic measurements of agreement like correlation. It is also

an attempt to avoid corpus dependency and issues associated with pre-processing steps. Parameter

tuning might be studied in detail as well. We will talk about these in detail in Chapter 4.

In Chapter 1, we have discussed that proper evaluation of topic modeling results is unknown.
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We propose in this study to develop method to perform a proper evaluation.

In Chapter 2, we will develop the technical details in some classic topic models and evaluation

methods. In Chapter 3, we will decompose the structure of LDA model and detect important

characteristics. In Chapter 4, we will go through the detail of simulation study that can be used to

evaluate topic model results. In Chapter 5, we will discuss the findings and future work.

The objective of this study is to learn the impacts of different topic and document structures

to the performance of LDA model. The topic and document structures can be summarised with

certain characteristics that will be discussed in Chapter 3. We would like to identify the impacts of

different characteristics on topic modeling results.
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Chapter 2

Technical Background

2.1 Introduction

In chapter 1 we briefly discussed Latent Dirichlet Allocation. In general, topic models are

trying to extract article features, and use the features to represent articles for applications like

answering a query. For these applications, the human interpretability is not always the largest

concern. The techniques for extracting features are usually conducted within single articles first,

and then extended to multiple documents. This extension to multiple articles is not an easy or

simple extension and will be discussed later.

The simplest topic modeling approach is the unigram model. Word counts are used to

summarize the information in the articles. The idea is simple: if a word w occurs more times than

other words, then w should be able to capture more information compared with other words. A Topic,

also known as the Topic-word distribution, is a multinomial distribution that assigns probability to

each word in the vocabulary. Usually, a topic is illustrated by a few high-probability words. It

is a natural extension of the idea of word counts. A collection of articles may contain multiple

topics, denoted by K. Since a multinomial distribution can be represented by its parameter ~p, it is

sufficient to use the associated parameters to represent topics. Under this idea, multiple topics can

be represented in a matrix: let ϕk = (p1, ..., pV ), k = 1, ...,K be one set of parameters among K

topics, then Φ = {ϕk as row k, k = 1, ...,K} is the desired topic matrix.

The ultimate target of any Topic model is to find the proper Φ, topic-word distribution, for

any given collection of documents. We will discuss some basic definitions and terms first, then some
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important probability background, and finish the chapter with formal details about topic models

and evaluation methods.

2.1.1 Definitions and Terminology

In this section we will state clear definitions and terms for the discussion that follow. Some

of the definitions and terms are quite self-explanatory, but we will try to provide a strict concepts

instead of general ideas.

• Corpus: Corpus is a collection of documents or articles. It usually contains articles from the

same language. The documents or articles contained in the corpus may contain extra infor-

mation other than the text itself. i.e. title, author names, tags, keywords, date of publishing,

where it is published, table of contents, etc. This extra information may help in increasing

the quality of the model estimates. Given that there are M documents altogether within the

corpus, We have:

Corpus =

(
D1 D2 . . . DM

)
Where each Di indicates a single document.

• Tokens: The basic building blocks of the texts. A token is considered as the smallest element

to express a single meaning to the reader. Word-token is the most commonly used token in

topic modeling. More complicated token concepts might consist of semantic phrases or even

sentences. For a single document Di that has Ni tokens, document Di is denoted by:

Di =

(
wi1 wi2 . . . wiNi

)

• Vocabulary: An ordered set of tokens. It should contain all possible tokens based on the

method of tokenization. In real-world applications, this is usually impossible to construct.

There are new words and phrases that are invented everyday. Typically, when there is a

relatively large corpus, people will collect the tokens that have shown up in the corpus to build

the vocabulary. The size of the ordered set of vocabulary is denoted by V . Each token can be

expressed by a V dimensional vector with 1 at the associated entry and 0 elsewhere.

Vocabulary =

(
w1 w2 . . . wV

)
17



Note that the subscript only has one index, instead of two indexes, in the notation of tokens

in documents.

• Topic: A topic is a distribution of words over the whole vocabulary. It is also referred as

”topic-word distribution”. Usually a multinomial distribution is used. The dimensionality of

the distribution is the same with the size of vocabulary, V . When there are multiple topics

associated with a corpus, we use a matrix called topic-word distribution matrix such that each

row represent one topic and each column is for a token. Hence, if we have K topics altogether,

the topic-word distribution matrix will be a K×V dimensional matrix. This is usually denoted

by ϕ:

ϕ =



w1 w2 w3 ... wV

topic1 ϕ11 ϕ12 ϕ13 . . . ϕ1V

topic2 ϕ21 ϕ22 ϕ23 . . . ϕ2V

...
...

...
...

. . .
...

topicK ϕK1 ϕK2 ϕK3 . . . ϕKV


• Document-topic distribution: The uni-gram model only allows one topic for each docu-

ment. If we relax the assumption and allow more than one topic within the same document

(which is a natural relaxation), then each topic might contribute to some proportion of the

documents. Of course, a single sentence, or maybe a single word, is possible to be contained

within more than one topic. A latent assumption for topic models is that each word is coming

from only one topic. Hence, suppose we know exactly where each word is coming from, then

the proportion of each topic’s contribution may be computed. Naturally, by definition, these

proportions build a multinomial distribution. Figure 2.1 illustrates the distribution of two

documents and five topics. Note that it is possible that the probability of some topics is zero

for some specific documents. Hence, the total number of topics associated with the corpus

might not be the same as the number of topics associated with each document. Similar to the

topic-word distribution matrix, we use the document-topic distribution matrix to record these

information. Suppose we have M documents within our corpus and K topics associated with

the corpus, the document-topic distribution matrix will be a K ×M dimensional matrix such

that each column indicates a document and each row indicates a topic. We usually use Θ to

denote this matrix.
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Figure 2.1: Example of Document-Topic distribution for 2 documents and 5 Topics

Θ =



Document1 Document2 Document3 ... DocumetM

topic1 θ11 θ12 θ13 . . . θ1M

topic2 θ21 θ22 θ23 . . . θ2M
...

...
...

...
. . .

...

topicK θK1 θK2 θK3 . . . θKM



2.1.2 Bayes’ Theorem and Beyes’ Estimation

Bayes’ Theorem is one of the most important probability rules used in language models and

topic models. Suppose we have two events A and B, then the event that both A and B happens at

the same time is denoted by A ∩ B. The probability associated with those events are P (A), P (B),

and P (A ∩B), respectively. We may use a Venn Diagram, Figure 2.2, to illustrate the situation:

The conditional probability is defined based on the the probability that both A and B

happened. The probability that event A occurs known event B already occurred is:

P (A|B) =
P (A ∩B)

P (B)
(2.1)
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Figure 2.2: A Venn Diagram illustrating the probability that both event happen. Areas represent
probabilities

Similarly, the probability that even B occurs known that even A already occurred is:

P (B|A) =
P (A ∩B)

P (A)
(2.2)

From equation 2.1 and 2.2, We have:

P (A ∩B) = P (A|B)P (B)

P (A ∩B) = P (B|A)P (A)

⇒ P (A|B)P (B) = P (B|A)P (A)

⇒ P (A|B) =
P (B|A)P (A)

P (B)

The Bayes’ Theorem relates the probability before getting the evidence P (A) to the probability

after getting the evidence P (A|B). For this reason, P (A) is called the prior probability and P (A|B)

is called the posterior probability. The fraction P (B|A)
P (B) is called the likelihood ratio. Using these

terms, Bayes’ theorem can be rephrased as ”the posterior probability equals the prior probability

times the likelihood ratio”.

For topic modeling, Bayes’ Theorem is used as follows. Given two discrete random variables

X == x1, x2, . . . , xn and Y = y1, y2, . . . , ym, Bayes’ Theorem is:

P (X = xi|Y = yj) =
P (Y = yj |X = xi)P (X = xi)

P (Y = yj)
(2.3)
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Based on the rule of total probability, P (Y = yj) =
∑n
i=1 P (Y = yj , X = xi) =

∑n
i=1 P (Y =

yj |X = xi)P (X = xi), equation 2.3 may be expressed as:

P (X = xi|Y = yj) =
P (Y = yj |X = xi)P (X = xi)∑n
i=1 P (Y = yj |X = xi)P (X = xi)

(2.4)

The idea of Bayesian generative process is constructed using Bayes’ Theorem as expressed

in Equation 2.4. In general, one assumes no prior information about an article in the beginning.

Hence, a distribution is selected as the standard distribution, and it is utilized to describe the topic

model. The multinomial distribution is the natural selection to describe the topics and we will

discuss it in the next section. After observing the article, one will update the standard distribution

with the information gathered from the article.

The process of Bayesian estimation relies upon the structure of the article. Or more precisely,

the way that we believe the article is constructed. Those beliefs are summarized into assumptions

and different models are very likely to have different assumptions. Are the words independent to

each other? Are there multiple topics within each article? How should one choose the standard dis-

tribution (or prior)? How should one choose the likelihood function? Is there any other information,

i.e. author name and affiliation, that might help in generating the posterior estimate?

One obvious conclusion is that there is no universal set of assumptions that fits for all

documents. Some of those assumptions are able to be tested, but most of them can not. Moreover,

similar with regression analysis, we need to understand that the model is almost always wrong (i.e.

not completely consistent with the actual data generating process). But some of the models might

produce a better estimate of the underlying truth than others. The only way to find it out is to

evaluate the result, especially when the assumptions are unable to be checked.

2.1.2.1 Important Assumptions for Bayesian Estimation in Topic Model

There are still some baseline assumptions that everyone uses. One is that the conceptual

population of all texts that might be constructed from the current language systems. One question

we are interested in is that what is the basic building block of these texts? Linguists have dived

deep into this topic. Chomsky [9] stated that the grammatical differences between human languages

can be explained on the basis of a small number of hierarchically organized discrete principles and

parameters. Mark C. Baker tried to construct principles and parameters theory in his book [1]. We
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would like to point out that languages are discrete and texts are countable. This property allows us

to select a proper discrete distribution while building our model. Figure 2.3 shows that all layers of

texts are discrete. This is a prior belief in all topic models that we should know.

2.1.3 Multinomial Distribution and Dirichlet Distribution

The multinomial distribution is a natural choice in topic modeling. Suppose there is an

random experiment that might generate a finite number of results, and the probability of those

results that have been generated is a known fixed number. We may use a vector of zeros and ones to

indicate which result is generated by the experiment. This vector is a random variable and we define

the distribution of this random variable to be multinomial. If multiple independent experiments

have been conducted, the multinomial random variable is defined with a vector that summarizes the

number of each result that is generated.

Formally, suppose there are n trials of an experiment. For each trial, there is a set of k

possible out comes {x1, x2, . . . , xk} from the random experiment with a set of probability values

{p1, p2, . . . , pk} such that the
∑k
i=1 pi = 1 and pi ≥ 0, the probability of xi happens is defined as

P (X = xi) = pi. Define ~c = (c1, c2, . . . , ck) such that

ci := {The number of instances of the out come xi being observed in the n trials}
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then ~c is said to have a multinomial distribution with parameters ~p = (p1, p2, . . . , pk) and n.

The probability mass function of a multinomial distribution is:

P (C = (c1, c2, . . . , ck)) =
n!

c1! . . . ck!
pc11 . . . pckk =

(
∑k
i=1 ci)!∏k
i=1 ci!

k∏
i=1

pcii

In the above equation, the fraction
(
∑k
i=1 ci)!∏k
i=1 ci!

is called the multinomial coefficient which

quantifies the number of ways that we could divide the set of observations n into subsets of size from

c1 to ck. We may also use the Gamma function to represent this coefficient:

(
∑k
i=1 ci)!∏k
i=1 ci!

=
Γ(
∑k
i=1 ci + 1)∏k

i=1 Γ(ci + 1)

The topic-word distribution matrix ϕ and the document-topic distribution Θ contains the

parameter of probabilities ~p for each multinomial distribution. Each element in vector ~p takes value

from zero to one and is restricted by
∑k
i=1 pi = 1. In a uni-gram model, maximum likelihood

estimates of these probabilities are found using a frequentist approach. The Bayesian estimation

method would assume that these probabilities follow some continuous distribution and try to update

this prior belief using the observed data. The Dirichlet distribution and the multinomial distribution

are two of the most commonly used prior distributions in the Bayesian approach.

The Dirichlet distribution, often denoted by Dir(α), is a family of continuous multivariate

probability distributions that take on positive real number values based on parameter α. The support

of the Dirichlet distribution is the vector ~x = (x1, x2, . . . , xk) where xi ∈ (0, 1) and
∑k
i=1 xi = 1. α

is often referred as the concentration parameter because it determines the spread of the realization

from the distribution. Figure 1.3 in chapter 1 illustrated the effect of α. Note that the support of

the Dirichlet distribution is exactly the restriction of the parameters of the multinomial distribution.

Hence, the α is also called the hyperparameter since it could be the parameter of the probability

distribution of the probability parameter of multinomial distribution.

The probability density function of the k dimensional Dirichlet distribution is:

f(~p = (p1, . . . , pk)|~α = (α1, . . . , αk)) =
Γ(
∑k
i=1 αi)∏k

i=1 Γ(αi)

k∏
i=1

pαi−1i

If αi are the same for all i, we call the Dirichlet distribution symmetric and often write
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the vector ~α as a product of a scalar and a k-dimensional vector so that all entries are 1s: ~α =

α~1. Sometimes the ~1 is ignored and the parameter of a Dirichlet distribution is simply stated as

α, which indicates a symmetric distribution. α is also known as the concentration parameter of

the Dirichlet distribution. In general, one may use a base vector ~u such that ~α = α~u. If ~u is

not a vector of ones, then the Dirichlet distribution is called asymmetric. Figure 1.3 shows five

multinomial distributions drawn from five different Dirichlet distributions with different symmetric

hyperparameters α ∈ [0.01, 100]. As the parameter value increases, the random variable is more

evenly spread over the possible outcomes and eventually almost uniformly distributed when the

parameter value is very high.

As we mentioned in Chapter 1, the values of the hyperparameters are typically set using

certain heuristics which are based on the document collection. Griffiths et al in [12] stated that for

Latent Dirichlet allocation, α = 50
T where T is the number of topics, and β = 0.01 for the document-

topic and the topic-word distributions often generate reasonable results. Hence, these values are

been considered the default for fitting Latent Dirichlet Allocation. The other way to estimate the

concentration parameter is discussed in Minka [22], which generated maximum likelihood estimates

of the parameters.

Asymmetric Dirichlet distributions also discussed by Wallach et al. [28]. She states that

the asymmetric Dirichlet priors for document-topic distributions offer modeling advantages over

symmetric priors in terms of evaluation based on perplexity. To find the best asymmetric base

measures vector estimate, she applied a hierarchical structure of Dirichlet priors in which another

symmetric Dirichlet distribution is considered as the prior of the base measures vector.

Based on equation 2.3, if we take X as the vector of probabilities from the underlying

multinomial distribution, that follows a Dirichlet distribution before we observed the data set, and

Y is the observation of the multinomial distribution, then the posterior distribution P (X|Y ) after

we observe the data Y is also a Dirichlet distribution. In general, if the posterior distribution is

from the same family of distributions as the prior these distributions are called a conjugate pair.

Across different generative models it is more convenient to use conjugate pairs as they simplify

the description of the generative process and provide mathematical convenience when deriving the

posterior estimates.

There are many well known conjugate pairs such as Gamma-Poisson, Beta-Binomial, Gamma-

Exponential, Normal-Normal, etc. The initial distribution is the prior and the latter one is the
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likelihood distribution. We have discussed the conjugate relationship above using the Dirichlet-

Multinomial conjugate pair which is also used in the Latent Dirichlet Allocation. Next, we use a

simple example to show how the concept of conjugate paires is utilized for topic modeling.

Suppose we have a topic t = (p1, p2, . . . , p5) that is built upon a vocabulary which has five

different tokens V ocabulary = {w1, w2, w3, w4, w5} and a document D1 that contains 100 words

which is built solely upon this topic. Hence, D1 = (w1,1, w1,2, . . . , w1,100) and each w1,j is selected

from the vocabulary based on probabilities within t. By definition, the number of times each token

is observed ~c = (c1, c2, . . . , c5) should follows a multinomial distribution with parameter ~p = t and

n = 100. Hence, we have:

~c ∼Multinomial(t, 100) (2.5)

Furthermore, we assume that t is a random variable that follows a symmetric Dirichlet distribution

with parameter α.

t ∼ Dir(α) (2.6)

This is called the prior distribution and α is the hyperparameter that can be interpreted as our prior

belief before observing data. We would like to estimate the true distribution of ~c which is equivalent

with estimating the parameter t. Since t is a random variable, we would like to find its posterior

distribution f(t|~c). Based on Bayes’ rule:

f(t|~c) =
f(~c|t)f(t)

f(~c)
(2.7)

Where

f(~c|t) = (p1, p2, . . . , p5)) =
Γ(
∑5
i=1 ci + 1)∏5

i=1 Γ(ci + 1)

5∏
i=1

pcii

f(t|α) =
Γ(
∑5
i=1 α)∏5

i=1 Γ(α)

5∏
i=1

pα−1i

and f(~c) is the true probability that ~c is observed, which is a constant fixed number. α is also a

constant. There fore we can express f(t|~c) proportional to the following functions. and may be
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ignored while computing the kernel of the distribution. Hence, we find the posterior distribution:

f(t|~c) ∝
Γ(
∑5
i=1 ci + 1)∏5

i=1 Γ(ci + 1)

Γ(
∑5
i=1 α)∏5

i=1 Γ(α)

5∏
i=1

pcii

5∏
i=1

pα−1i

∝
5∏
i=1

pcii

5∏
i=1

pα−1i

∝
5∏
i=1

pci+α−1i

(2.8)

Since they do not contribute to the kernel of the distribution, they should be able to re-generate

through normalization.

The kernel of the Dirichlet distribution may be found by dropping all constant terms. Sup-

pose θ ∼ Dir(αk), then

f(θ) =(α1, . . . , αk)) =
Γ(
∑k
i=1 αi)∏k

i=1 Γ(αi)

k∏
i=1

pαi−1i

∝
k∏
i=1

θαi−1i

(2.9)

Compare equations 2.8 and 2.9, we note the similarity of the kernel. More specifically, θ and t

are random variables, and αi and ci + α are the parameters. This demonstrates that the kernel

generated from equation 2.8 is from an asymmetric Dirichlet distribution with parameter ~c′ =

(c1 + α, c2 + α, . . . , c5 + alpha). Both the prior distribution and the posterior distribution are

Dirichlet and we shown a proof of conjugacy for our example.

The conjugacy of Dirichlet-Multinomial also presents another interpretation of the hyper-

parameter α. Note that if ci is the count of token wi contained in document D1, then α will be the

prior belief of the number of times token wi shows up in document D1. When α is small, then the

posterior distribution is more dependent on the observed document. When α is large relative to the

document length, then the posterior is more dependent on α.
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2.2 Topic Models

2.2.1 Unigram Model

The Unigram model is one of the earliest model developed for topic modeling. There are

three assumptions for the unigram model:

• Each word/token is independent of other words.

• Each document only contains one topic

• Topics are not related between different documents.

Those assumptions are not been able to meet with real data. Consider a document that only contains

a single sentence:

I have a ______ and I always love to play with him.

Semantically, a word like “boy”, “kid”, “dog”, “cat”, or “pet” make a lot more sense than

“house”, “car” in the blank. And there exist words like “girl” or “mom” that don’t make sense at all

because the word “him” points to male. This simple sentence shows that words are not independent

of each other within a semantically consistent document. Random generation can be used to create

research documents that satisfy this assumption, but that will be discussed later.

The second assumption could be true under a certain scenario. Suppose a writing test is

given which asks participants to write about a specific topic. This should generate articles with a

single topic. The problem here is that one can never verify if one article truly contains only a single

topic. For example, suppose that we have two documents which are written by the participants of

the writing test. Conceptually, these two documents should be both talking about the same topic.

But these two documents should not be, and never will be, exactly the same. Even for a same large

idea, people will write about it differently.

Mathematically, let V = (w1, w2, . . . , wn) be the vocabulary. D1 = (w1,1, w1,2, . . . , w1,n1
)

be the document that contains n1 tokens. Then for the Unigram model we have:

P (D1) = P (w1,1)P (w1,2) . . . P (w1,n1
) (2.10)
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where P (w1,i) = pi is the true probability of the underline topic generate this token w1,i. Hence,

the likelihood function of the document D1 is:

L =

n∏
i=1

pcii (2.11)

where ci is the number of times token wi is presented in Di.

The log-likelihood function is:

logL =

n∑
i=1

logpcii =

n∑
i=1

cilogpi

with the restriction
∑n
i=1 pi = 1. Hence, we may compute the maximum likelihood estimation of ~p:

~̂p = argmax~p(logL+ λ(1−
∑n
i=1 pi)) (2.12)

∂

∂pi
(logL+ λ(1−

n∑
i=1

pi)) = ∂
∂pi

logL+ ∂
∂pi

(λ(1−
∑n
i=1 pi)) = 0 (2.13)

∂
∂pi

∑n
i=1 cilogpi − λ

∂
∂pi

∑n
i=1 pi = 0 (2.14)

pi =
xi
λ

(2.15)

Using the property
∑n
i=1 pi = 1, we find that λ = n. Hence,

~̂pMLE = (
c1
n
,
c2
n
, . . . ,

cn
n

) (2.16)

In other words, the maximum likelihood estimation of the parameter for the topic is the vector of

frequency of each word/token in the document.

Other than the unrealistic assumptions, there are still many problems with the Unigram

model. For example, the maximum likelihood estimation only takes tokens that showed up in the

document. This means that the token that didn’t show in the document will be assigned a probability

zero. A smoothing algorithm might be used to solve this problem [6]. Bigram, Trigram, and N-gram

models are built based on the Unigram model which relax the independent token assumption. These

models do not use the Bayesian generative process and are considered as the traditional methods.
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2.2.2 Latent Dirichlet Allocation

We briefly introduced the LDA model in Chapter 1. Latent Dirichlet Allocation (LDA), was

originally introduced by Blei et al.[4] and it is one of the most important probabilistic topic model. It

allows each single document to have multiple topics, thus introduces a document-topic distribution

Θ, similarly with the topic-word distribution Φ. Imagine that each topic is a unique-colored urn

of water, then to write an article we would like to select some of the urns and mix the water from

different urns. In this way, if we have a total of K topics, Θ will be a K dimensional multinomial

distribution. Under this set up, while writing articles, it is natural to firstly pick up a topic using

Θ, then pick up a word from the selected topic using Φ.

The key idea of LDA is that Φ and Θ are conditionally independent to each other if we know

which word and topic the token has. Figure 2.4 shows the unrolled graph model of LDA. The top

part of the graph (above the m sign) is equivalent with the bottom part. Each circled node represents

a random variable. The shaded nodes are observed variables and others are latent variables. Arrows

represent the dependency between the random variables. The letter N , M , and T located in the

bottom part of the graph (below the m sign) represent the number of repeated arrows in the top

part of the graph.

2.2.2.1 Assumptions of LDA

• Documents contain multiple topics.

• The total number of topics of the corpus is a fixed number.

• Each document is assumed to be generated by a known process (to be describe next).

• Words are generated independently of other words (often called the bag-of-words assumption).

2.2.2.2 Generative process for LDA:

1. Choose K, the number of topics in the collection; Choose α and β, the hyperparameter.

2. Draw ϕk ∼ Dir(β), k = 1, ...,K, V dimensional multinomial topic-word distribution for K

topics.

3. Then for each document d in the corpus:
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Figure 2.4: Unrolled graphical model representation of LDA
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(a) Draw θd ∼ Dir(α) which is the parameter for the multinomial document-topic distribu-

tion. Thus θd determines how topics are mixed within any specific document.

(b) Then for each word wi in document d:

i. Draw a topic index zi ∼Multinomial(θd).

ii. Draw a word wi ∼Multinomial(ϕzi), which is the topic generated in the beginning

of the process.

2.2.2.3 Estimation in LDA:

There are three common method to do parameter estimation in LDA: Variational EM,

expectation propagation, and Gibbs Sampling. The most widely used approach among those three

is the Gibbs Sampling approach, followed by the Variational EM algorithm. In this section we

discuss both approaches and go through the Gibbs Sampling method in detail since we choose to

use Gibbs Sampling for the simulation discussed later. Heinrich[15] provides more details.

2.2.2.3.1 Gibbs Sampling

Gibbs Sampling is a variant of the Metropolis-Hasting method which constructs a Markov

chain whose states are parameter settings and whose stationary distribution is the true posterior

over those parameters. There are the original Gibbs Sampling method and the collapsed Gibbs

method. We will go through details of the original Gibbs method.

Using the notation from the generative process, suppose we know ~z, ~w, let zd be the vector of

topic assignment for words in document d 1, then from equation 2.9, we know that the posterior of the

d-th documents’ document-topic distribution is also a multinomial distribution that has parameter

θd:

1zd,i might be considered as a multinomial distributed random variable that has parameter n = 1, or a categorical
random variable that is equivalent with a discrete random variable that takes values from 1 to K
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p(θd|zd, α) =
p(zd|α, θd)
p(zd|α)

p(θd|α) (2.17)

∝
Nd∏
n=1

Multi(zd,n|θd)Dir(θd|α) (2.18)

∝
Nd∏
n=1

(θd,k)
I(zd,n=k)Dir(θd|α) (2.19)

∝
K∏
k=1

θ
n
(k)
d

d,k Dir(θd|α) (2.20)

∝ Dir(θd| ~nd + α), ~nd = {n(k)d }
K
k=1 (2.21)

Where n
(k)
d refers to the number of times that topic k has been observed with a word from document

d.

Similarly,

p(ϕk|~z, ~w, β) =
p(~w|~z, ϕk, β)

p(~w|~z, β)
p(ϕk|~z, β) (2.22)

∝
∏
i:zi=k

Multi(wi|ϕk)Dir(ϕk|β) (2.23)

∝
V∏
i=1

ϕ
n
(i)
k

k,i Dir(ϕk|β) (2.24)

∝ Dir(ϕk| ~nk + α), ~nk = {n(i)k }
V
i=1 (2.25)

Where n
(i)
k refers to the number of times that the word indexed by i in the vocabulary is initiated

under topic k.

Since for the Dirichlet distribution Dir(p) we have E[Xi] = pi∑
pi

, we will get the estimator:

ϕ̂k,t =
n
(t)
k + βt∑V

t=1(n
(t)
k + βt)

(2.26)

θ̂d,k =
n
(k)
d + αk∑K

k=1(n
(k)
d + αk)

(2.27)

Thus, the only problem left to solve is how to find an estimate of ~z? This is where Gibbs
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Sampling is useful. We need to find the full conditional distribution for each parameter zi:

p(zi = k| ~z¬i, ~w, α, β) =
p(~z, ~w|α, β)

p( ~z¬i, ~w|α, β)
=

p(~z, ~w|α, β)

p( ~w¬i| ~z¬i, α, β)p(wi| ~z¬i, α, β)p( ~z¬i|α, β)

Using the bag-of-word assumption, wi is independent with ~w¬i and also with ~z¬i. Then the

denominator turns out to be p( ~z¬i, ~w¬i|α, β). Thus, if we can find the joint distribution of ~z and ~w

given α and β, the Gibbs sampler will be completed.

Note that the joint distribution can be factored:

p(~w, ~z|α, β) = p(~w|~z, α, β)p(~z|α, β)

based on LDA’s assumption, w ⊥ α|~z and also ~z ⊥ β. Thus,

p(~w, ~z|α, β) = p(~w|~z, β)p(~z|α)

The first term can be find through an integral2:

p(~w|~z, β) =

∫
p(~w|~z, Φ)p(Φ|β)dΦ

=

∫ N∏
i=1

p(wi|zi)p(Φ|β)dΦ

=

∫ K∏
k=1

V∏
t=1

p(wi = t|zi = k)p(Φ|β)dΦ

=

∫ K∏
k=1

V∏
t=1

ϕ
n
(t)
k

k,t p(Φ|β)dΦ

=

∫ ( K∏
k=1

V∏
t=1

ϕ
n
(t)
k

k,t

)( K∏
k=1

1

∆(β)

V∏
t=1

ϕβt−1k,t

)
dΦ

=

∫ K∏
k=1

1

∆(β)

V∏
t=1

ϕ
n
(t)+βt−1
k

k,t dΦ

=

K∏
k=1

∆( ~nk + β)

∆(β)
, ~nk = {n(t)k }

V
t=1

2Here we use the notation that ∆(p) =
∏dim(p)
k=1

Γ(pk)

Γ(
∑dim(p)
k=1

pk)
, as in [15]
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Similarly, for the second term we have3:

p(~z|α) =

∫
p(~z|Θ)p(Θ|α)dΘ

=

∫ D∏
d=1

1

∆(α)

K∏
k=1

θ
n
(k)
d +αk−1
d,k dΘ

=

D∏
d=1

∆( ~nd + α)

∆(α)
, ~nd = {n(k)d }

K
k=1

Thus, we have the Joint Distribution:

p(~z, ~w|α, β) =

K∏
k=1

∆( ~nk + β)

∆(β)

D∏
d=1

∆( ~nd + α)

∆(α)

Now we have the Full Conditional Distribution4:

p(zi = k| ~z¬i, ~w, α, β) =

K∏
z=1

∆( ~nz + β)

∆(β)

D∏
d=1

∆( ~nd + α)

∆(α)
·
K∏
z=1

∆(β)

∆( ~nz,¬i + β)

D∏
d=1

∆(α)

∆( ~nd,¬i + α)

=
∆( ~nk + β)

∆( ~nk,¬i + β)
· ∆( ~nm + α)

∆( ~nm,¬i + α)

=
Γ(n

(t)
k + βt)

Γ(
∑V
t=1 n

(t)
k + βt)

·
Γ(
∑V
t=1 n

(t)
k,¬i + βt)

Γ(n
(t)
k,¬i + βt)

· Γ(n
(k)
m + αk)

Γ(
∑K
z=1 n

(z)
m + αz)

·
Γ(
∑K
z=1 n

(z)
m,¬i + αz)

Γ(n
(k)
m,¬i + αk)

=
n
(t)
k,¬i + βt∑V

t=1 n
(t)
k,¬i + βt

·
n
(k)
m,¬i + αk∑K

z=1 n
(z)
m,¬i + αz

∝
n
(t)
k,¬i + βt∑V

t=1 n
(t)
k,¬i + βt

(n
(k)
m,¬i + αk)

Thus we have the Gibbs Sampler completed.

2.2.2.3.2 Variational EM

The variational EM algorithm converted the approximation problem to an optimization

task. It is the method used by Blei[4]. Variational EM selects a family of probability distributions

with parameters (called variational parameters) that simplifies the complex dependence of the latent

variables θ, z, and ϕ in the latent Dirichlet allocation model.

Figure 2.5 illustrate the idea of variational EM algorithm. From [4], given a family of

3D is the number of documents within our corpus
4Suppose the word i is in document m and wi = t is known.
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Figure 2.5: The Graphical model representation of the variation EM algorithm

distributions q(θ, z, ϕ|γ, φ, λ), the log likelihood function of a document is:

logp(w|α, β) = log
∫ ∑

z p(θ, z, w, ϕ|α, β)dθ (2.28)

= log
∫ ∑

z
p(θ,z,w,ϕ)q(θ,z,ϕ)

q(θ,z,ϕ) dθ (2.29)

≥ Eq[logp(θ, z, w, ϕ|α, β)]− Eq[logq(θ, z, ϕ)] (2.30)

The difference between the left hand side and right hand side of 2.30 is due to the Kullback-

Leibler divergence between the true posterior and variational posterior probability. So the estimation

of the LDA is converted into a minimization of the KL divergence:

KL(q(θ, z, ϕ|γ, φ, λ)||p(θ, z, ϕ|w,α, β)

The EM algorithm may be applied over the three variational parameters. Based on Blei[4],

we have:

• (E-step) For each document, find the optimizing valus of the variational parameters {γ∗dt, φ∗dt, λ∗tw}

• (M-step) Maximize the resulting lower bound on the log likelihood with respect to the model

parameters α and β. This corresponds to find maximum likelihood estimates with expected

sufficient statistics for each document under the approximate posterior which is computed in

the E-step
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Krstovski[17] showed that the following formula may be used in the EM algorithm.

φdwt ∼ expEq[logθdt] + Eq[logϕtw] (2.31)

γdt = α+

W∑
w=1

φdwtn
d
w (2.32)

λtw = β +

M∑
d=1

ndwφ
d
wt (2.33)

2.3 Evaluation Methods

2.3.1 Perplexity

Perplexity is one of the most widely using intrinsic evaluation metrics for topic models.

Ideally, a good model should be able to assign higher probability to the observed real data set

(Documents). For example, if our corpus is only one sentence:

We have sufficient evidence to _____ that _____

Then a good model might assign higher probability to words like “conclude” or “say” for the blanks.

A bad model might assign higher probability to words like “cat” or “table” for the blanks.

Mathematically, perplexity is a measurement of how well a probability distribution or prob-

ability model predicts a sample. For a discrete distribution p, the perplexity is defined as:

Perp = 2H(p) = 2−
∑
x p(x)log2p(x) (2.34)

Notice that in equation 2.34, the base number of exponentiation and logarithm are both 2. From

the property of the logarithm we know that the base need not be 2 as long as the exponentiation

and the logarithm use the same base. The choice of 2 is simply for ease of interpretation because

H(p) is the entropy of the distribution.

Usually one does not know the true probability distribution for a topic model. Hence,

authors like Blei et al [4] selected to use a “uniformed weight” instead of the “true distribution”

when computing the perplexity. Their formula is:

Perp = 2
− 1∑M

d=1
nd

∑M
d=1 log2p(wd)

(2.35)
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Where M is the number of documents in the corpus and wd is the word set of the d-th document.

The denominator of the exponent is the total number of words in the data set.

The reason that we do not use the entire data set to compute perplexity is that the perplexity

is already been optimized after fitting the model. The standard practice is to compute the perplexity

on part of the dataset (denoted the training data set). Note that if we have multiple topic models

over the same set of document, it might be good to calculate the perplexity of the whole data set

over each model, and then use perplexity for model selection. Another reason to split corpus into

the training set (and the remainder which is the test set) is to test for prediction, especially with real

texts. But obviously, the specific way of splitting the corpus will change the computed perplexity

value. Specifically two important issues are:

1. For a different split, the models are fitted over different data sets and hence will generate

different results.

2. Different test sets also produce different perplexity.

These two issues make split-set perplexity very difficult to compare across different models. If a

model is chosen based on the lowest perplexity for a particular corpus, compare to other models, it

is difficult to tell whether the difference is coming from a better model or better luck in splitting the

corpus.

2.3.2 Perplexity in LDA

In regards to the Latent Dirichlet allocation, there is another issue in using perplexity: the

entropy, or more precisely, p(wd) is intractable. This is because LDA assumes multiple topics that

might overlap with each other. Hence, a word wi, will posses none-zero probability within more

than one topic. In the generative process, one would first pick a topic from the document-topic

distribution, and then pick a word token from the associated topic-world distribution. But we can

not find out which topic the word is coming from in the test set. Mathematically:

Perp(Dtest) = 2
− 1∑Mtest

d=1
nd

∑Mtest
d=1 log2(

∑nd
i=1

∑K
j=1(θjdϕji))

(2.36)

Where θjd is the probability of j-th topic for d-th document in the test set and ϕji is the probability

of the i-th word from the j-th topic.
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Another technical issue for computing the held-out perplexity is the unknown document-

topic distribution for the test set. Since we assumed that the testing set and the training set are

coming from the same population, then the hyperparameters of the document-topic distribution

should be the same. Hence, we may use the estimated hyperparameters α and β to generate the

document-topic distribution for each document in the test set. This is another source of randomness.

Overall, the perplexity depends on:

• Vocabulary

• Sample size: document-wise and corpus-wise

• Testing set and training set split

• Document-topic distribution generation

• Estimation of the intractable part

Wallach et al [29] summarized five different methods to estimate the intractable part p(wd).

2.3.3 Human Evaluation

Usually a human evaluation of topic modeling is based on extrinsic methods: people perform

a task like clustering based on the result of topic modeling, then evaluate the result of the cluster-

ing. Chang et al [7] conducted a experiment to analyse the topics generated by LDA. Although

there appears to be a longstanding assumption that the information discovered by topic models is

meaningful and useful, the experiment tells a different story.

There are two specific parts of the experiment that show that topic model results are not

always meaningful and useful: word intrusion and topic intrusion.

In the word intrusion component, participants were presented with six randomly ordered

words and asked to find the word which was out of place or does not belong with the others (intruder).

To construct the test cases, they randomly select a topic from the model and pull out the five most

probable words for that topic. The word that was considered to be intruder was then selected from

the set of low-probability words in that topic. To make sure that the intruder word was meaningful

somehow and not rejected outright due solely to rarity, they also restricted the intruder as a word

that possessed a high probability in some other topic.
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In the topic intrusion component, participants were shown the title and a snippet from a

document along with four topics that were represented by the eight highest-probability words within

those topics. Three out of four of those topics were high probability topics assigned to that document

and the remaining one was chosen randomly from the other low-probability topics in the model. And

participants were instructed to choose the topics which did not belong with the document.

For the above two components, if the topics were meaningful and related to the document,

then the word intruder and topic intruder should be easy to find.

Chang performed the experiment over three different models: LDA, CTM(Correlated Topic

Model [3]), and pLSI(probabilistic latent semantic indexing [16]). He found that the model that has

better perplexity does not have the better human interpretability.

In this chapter, we discussed the probability background of the LDA model, derived the

estimation procedure of the LDA model, and went through current evaluation systems of topic

modeling.
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Chapter 3

Decomposing the Structure of

Topic Models

3.1 Non-Structured Data and Structured Models

Text data usually doesn’t have an explicit structure. Some of the articles or books might

contain a certain form of structure, i.e. chapters or sections. But the text itself, a paragraph, a

sentence, or a word, only contains an implicit structure. Moreover, the messages contained within

the text can not be specified by the structure.

Although it is commonly mixed together, it is worth noting that topic models and language

models are different from each other. The difference between language models and topic models

is that language models assume the order of the current words preserve information to predict the

next word, and the topic models assume words are independent from each other and the order is

not important (the bag-of-words assumption). The language models are better in prediction tasks

and topic models are better in information retrieval tasks. Logically speaking, topic models are a

special type of language model from which the dependence assumption between words is minimized.

Figure 3.1 illustrates the relationship between language models and topic models.

The choice of using language models or topic models depends on both the task to preform

and one’s belief. The discussion about which one is better is out of the scope of this dissertation.

Wallach[27] discussed about this topic in detail.
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Language Model

Topic Model

Figure 3.1: Venn’s Diagram of the relationship between Language Models and Topic Models

With the bag-of-words assumption, documents can be completely represented by a word

frequency distribution. As mentioned in Chapter 2, a pre-processing step will usually be applied to

the documents and the following three tasks are performed:

1. Stemming: the process of reducing inflected (or sometimes derived) words to their word stem,

base or root formgenerally a written word form.[32]

2. Stop-word removing: stop words are words which are filtered out before or after processing of

natural language data (text).[25]

3. Frequency counting: Counting the number of times each word appears in the document.

This process is also called tokenization. Words and phrases are translated to tokens so that the

tense of words and plural words will not affect the result. After the tokenization, the original meaning

of the word is no longer important because only the frequencies of the tokens are used. Tokens are

often be treated as integers without losing generality.

As pointed out in the above, there is no structure in plain text data. But there are logics

behind each document. Let’s consider a simple sentence:

The monitor gets a heart attack.

Technically, this sentence is correct. But one can immediately realize that it is meaningless and

a false statement because a monitor doesn’t even have a heart. This is the logic component of a

document. One may argue that in some contexts (such as a fairy tale story) this sentence could
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be meaningful because a monitor can actually have a heart. While this assumption is made, one is

indeed using his/her logic to classify the sentence, as what the topic model is trying to do.

The topic can be considered a logical idea, and one method of defining the logic is the

co-occurrence of tokens in the document. In statistics, a multinomial distribution over the whole

vocabulary represents the structure of this co-occurrence. Topic models are trying to capture the

logical structure of the documents based on this definition. This is why the “True Condition” as

discussed before does not really exist in the topic modeling methodology.

In fact, since the set of all possible documents written in English is countable, the number

of topics is also countable infinite. If we apply a restriction on the document length, i.e. 5000

characters, then the number of possible documents and the number of topics is actually finite and can

be enumerated. One problem is that the number of multinomial distributions is uncountable. This

is because the parameters of multinomial distribution are real numbers. If we restricted the number

of characters in documents, then the associated topic distribution is restricted by the accuracy

supported by the number of characters. This can be easily illustrated in extreme cases, i.e. a

document only contains one word, then the parameters of the associated topics must be either 1 or

0. In realistic scenarios this allows us to treat the number of possible topics as countable.

Recall from earlier that corpus is a collection of documents. One critical assumption LDA

and other model makes is that there is a fixed number of topics in one corpus. These is usually

guaranteed by the way that the corpus is collected. It should be noted that the selection of documents

to form a corpus affects the performance of topic models because of the above assumption.

3.2 Characteristics of Data sets and Topic Models

One important objective of this research is to identify the impacts of different characteristics

on topic modeling results. There are actually two sets of characteristics necessary to consider to

when approaching this objective. The sets are: characteristics of the data set and characteristics of

the model.

Important characteristic of a data set to consider are:

1. Number of documents in corpus

2. Size of the Vocabulary
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3. Document length

4. Document length relative to the vocabulary size

5. Number of True Topics within the corpus

6. Number of Topics contained in each document

7. Type of distribution of Topics

Important characteristics of the Models to consider are:

1. Number of Fitted Topics

2. Number of True Topics related to number of Fitted Topics

3. Gibbs Sampler Parameters

4. Pre-set hyperparameters

We are going to focus on the characteristics of data set for two reasons:

1. Modification of characteristics of models is easier in real applications and has been considered

in many other research studies.

2. In a simulation study, the true values of the characteristics of models are known and hence

the performance of the model could be maximized using these values.

As we mentioned in Chapter 1, one of the biggest problem of evaluating topic models is

the lack of the “True Condition”. Without the “True Condition”, the following characteristics are

unknown variables:

• Number of True Topics.

• Numer of True Topics related to number of Fitted Topics

• Number of Topics contained in each Document.

• Type of Distribution of Topics.

Hence, if we could create a corpus such that the true values of the characteristics are known, the

above characteristics are no longer required to be estimated. This permits us to focus on the topic

and document structures instead of the model structure.
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3.3 Pilot Study to Examine the Structure

In real world applications, researchers never know the true underlying topic distribution for

a given corpus. LDA modeling attempts to provide a best guess on both the topic-word distribution

and the document-topic distribution, conditioned on some acceptable assumptions. Our pilot sim-

ulation study starts from these assumptions and generates corpora that follow these assumptions

exactly, and examines how well the modeling works under different scenarios based on varying these

assumptions.

This pilot study was designed to determine if the simulation strategy actually works and

also examine which evaluation method is the most suitable for the simulation.

3.3.1 Design

For this pilot study, there were only 2 topics and 10 documents containing 50 words. The

total size of the vocabulary (number of terms) was 5. The Φ matrix (topic-word distribution) was:


Term1 Term2 Term3 Term4 Term5

TrueTopic1 0.4 0.25 0.05 0.2 0.1

TrueTopic2 0.4 0.05 0.25 0.1 0.2


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Figure 3.2: Topic-word distribution of Pilot Study

and the Θ matrix (document-topic distribution) was:



TrueTopic1 TrueTopic2

Document1 1 0

Document2 0 1

Document3 1 0

Document4 0 1

Document5 1 0

Document6 0 1

Document7 1 0

Document8 0 1

Document9 1 0

Document10 0 1


Figure 3.2 illustrates Φ, the topic-word distribution we actually used in the pilot study.

Notice that we did not use the actual word or token. Instead, an integer index is used to represent

the tokens. Hence, in our pilot study, we have a total vocabulary of size 5 that contains 5 tokens:

{1,2,3,4,5}.
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Figure 3.3: Document-topic distribution of Pilot Study

We select the true topics such that the token ‘1’ has the highest probability in both topics,

and the second highest probability token is ‘2’ in topic 1 and ‘3’ in topic 2. Also, the token ‘2’ and

‘3’ has the lowest probability in topic 2 and 1, respectively. Hence, the topic model should be able

to detect the difference between topic 1 and 2 based on the token ‘2’ and ‘3’. The token ‘4’ and ‘5’

are between the second highest and the lowest probability and hence are considered potential tokens

that could “confuse” or “confound” the results.

Figure 3.3 illustrates Θ, the document-topic distribution we actually used in the pilot study.

We selected the 10 documents so that each document solely depends on only one of the topics. In

other words, document 1 is constructed based on true topic 1, which is illustrated in Figure 3.2 on

the left, and document 2 is constructed based on true topic 2, which is illustrated in Figure 3.2 on

the right.

We considered several document-topic distributions for the pilot study. The target of the

pilot study was to evaluate how the LDA model would perform under scenarios that were not quite

the best case. We chose this specific document-topic distribution since it was close to the best case

and avoided possible confounding of factors. More specifically, we designed the pilot study in this

way because the target was to examine how well the LDA model works under the circumstance

that the true topics basically differ on two tokens (token ‘2’ and ‘3’) and have two other tokens

that possibly confound the difference (token ‘4’ and ‘5’, sometimes denoted disturbances). In real

data sets, there are usually multiple main difference and disturbance sets of tokens. By the nature

of topics, usually researchers only care about the tokens that possess high probabilities and tend

to ignore tokens with small probabilities (the ‘tail’ of the distribution). Hence, we would hope the

model will identify token ‘2’ and ‘3’ properly in the correct topics.
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We also set the document length to be 50 for our 10 documents. There are two reasons for

this:

• Real documents’ lengths ae usually less than 10 times the vocabulary size. The vocabulary size

tend to increase as the number of documents increases, especially when the corpus contains

documents from different fields(i.e. politics, statistics, and cooking). English has at least

171476 distinct words [10] and a typical document contains far less words. A published peer-

viewed paper is “typically 3000 to 10000 words in length” [2]. Twitter and most social media

texts contains only a few hundred words maximum. Hence, ten times the size of the vocabulary

is a relatively large length of documents.

• When the sample size is small, the probability that in a random experiment, a specific event of

interest not occurring can be relatively high. In our case, the probability of at least one token

not being contained by a document is high if we have short documents. There are smoothing

methods that are designed to solve this type of problem in real world applications. But since

the target is to evaluate the performance of the topic model, we would like to exclude these

small sample size factors from the simulation.

3.3.2 Data Generation

In an LDA model, documents are assumed to be generated through the following steps as

mentioned in Chapter 2:

1. Choose K, the number of topics in the collection; Choose α and β, the hyperparameter. Choose

V , the size of the vocabulary

2. Draw ϕk ∼ Dir(β), k = 1, ...,K, for each k, ϕk is a V dimensional multinomial topic-word

distribution.

3. For each document d in the corpus:

(a) Draw θd ∼ Dir(α) which is the parameter for the multinomial document-topic distribu-

tion. This θd determines how topics are mixed within any specific document.

(b) For each word wi in document d:

i. Draw a topic index zi ∼Multinomial(θd).
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ii. Draw a word wi ∼Multinomial(ϕzi), which is the topic generated in the beginning

of the process.

In our pilot study, K = 2, Φ and Θ are known. Hence, we may discard some unnecessary

steps and use the generative process as below:

For the j − th word in the i− th document:

1. Draw a topic index z from the multinomial distribution that takes parameters from the i− th

row in the document-topic matrix Θ.

2. Draw a word-token from the multinomial distribution that takes parameters from thez − th

row in the topic-word matrix Φ.

Here are typical data that were generated in the pilot study:

[1] "1 2 4 2 2 3 1 3 1 4 5 1 1 1 1 4 3 4 4 1 1 1 1 3 4 2 4 2 1 1

3 1 1 5 1 1 2 1 2 4 1 1 2 2 2 1 2 5 1 4"

[2] "3 4 3 1 1 3 1 1 5 5 1 1 4 1 1 2 5 3 1 3 1 1 3 1 1 3 1 3 3 2 5

3 1 5 3 5 1 1 2 1 1 1 3 4 3 5 1 1 4 1"

[3] "2 4 1 2 4 4 4 1 2 1 2 1 4 2 4 4 1 4 4 1 1 4 4 2 1 1 5 2 2 2 3

5 4 1 2 4 1 2 3 4 1 3 1 1 1 4 1 1 1 4"

[4] "3 5 1 1 1 1 1 5 3 1 1 5 5 3 3 3 1 5 3 5 5 5 3 4 3 4 4 1 5 1 5

5 3 1 3 1 1 1 3 1 1 2 1 3 1 1 1 2 5 1"

[5] "2 5 1 2 1 2 1 1 4 3 2 2 5 1 1 1 1 4 2 1 3 2 1 1 2 4 2 2 1 2 1

5 2 1 1 1 4 2 1 1 2 1 2 4 1 4 1 1 2 1"

[6] "1 1 1 1 3 1 3 5 1 5 1 1 1 4 4 1 1 5 3 4 2 5 5 1 5 3 1 1 1 3 1

4 1 1 4 3 1 4 4 3 1 3 3 1 1 1 4 3 4 5"

[7] "1 2 2 5 1 1 1 2 1 2 1 5 1 2 3 4 2 1 5 2 3 2 5 1 1 4 2 2 4 1 2

4 4 2 2 4 4 1 1 4 1 1 4 1 1 1 2 1 1 1"

[8] "3 1 2 5 1 3 1 3 3 5 4 4 5 3 1 1 1 1 1 1 5 1 3 1 1 2 1 2 3 5 1

5 1 5 1 3 1 1 5 1 1 5 1 1 1 2 4 5 3 5"

[9] "4 2 2 4 4 1 1 5 1 5 4 4 1 3 1 1 1 4 1 5 4 1 1 3 4 1 1 2 2 4 2

4 1 4 5 4 2 2 4 2 1 4 5 5 1 1 4 1 2 4"

[10] "1 1 3 1 1 5 5 1 2 1 3 1 3 3 3 4 5 5 5 5 3 1 5 1 4 1 1 1 1 3
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1 1 2 5 1 1 1 1 1 2 4 1 1 1 1 3 1 3 1 2"

The code is provided in the Appendix.

3.3.3 Parameter selection

The R package topicmodel was used to fit the LDA model. The package provide two

methods to estimate the topics: variational inference and Gibbs sampling. As stated in Chapter 2,

we selected Gibbs sampling to fit the model. The default α and β values are used since those are

the most widely selected hyperparameter settings. The number of fitted topics is set equal to 2, the

number of true topics in the corpus.

For the Gibbs Sampler, the first 4000 iterations are discarded (burn-in period) and then

every 500 (thinner) iteration is returned for a total of 2000 iterations.

3.3.4 Analysis of the Results

3.3.4.1 Model Fitting Result

Table 3.1 and Figure 3.4 present the fitted topic-word distributions. Table 3.2 and Figure

3.5 present the fitted document-topic distributions.

The overall observation is that it is a really bad fit. Some specific observations are:

1. Fitted topic 1 successfully found token 1 as the highest probability token and the estimated

probability doesn’t differ much from the truth.

2. Fitted topic 1 found tokens 1, 3, and 5 as the top 3. This indicates the fitted topic 1 is

consistent with true topic 2 in term of the top tokens.

3. Fitted topic 2 picked tokens 1, 2, and 4 as the top 3. This indicates the fitted topic 2 is

consistent with true topic 1 in the term of the top tokens.

4. Although the top 3 tokens are correctly selected in the fitted topics, the order of those terms

is not in the correct order.

5. The estimated document-topic distributions successfully indicate the topics included in the

documents, although the probabilities are still not correct. For example, in Document 1, the

estimated topic distribution is 0.41 from fitted topic 1 and 0.59 from fitted topic 2. The actual
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Fitted Topic Term Probability

1 1 0.425

1 2 0.000354

1 3 0.266

1 4 0.000354

1 5 0.308

2 1 0.220

2 2 0.362

2 3 0.00961

2 4 0.408

2 5 0.000458

Table 3.1: Pilot Study Fitted Topic-word distributions

Figure 3.4: Pilot Study Fitted Topic-word distributions
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Document Fitted Topic 1 Fitted Topic 2

1 0.41 0.59

2 0.65 0.35

3 0.46 0.54

4 0.65 0.35

5 0.39 0.61

6 0.60 0.40

7 0.43 0.57

8 0.65 0.35

9 0.45 0.55

10 0.63 0.37

Table 3.2: Pilot Study Fitted Document-topic distributions

Figure 3.5: Pilot Study Fitted Document-topic distributions
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distribution is 0 for true topic 2 and 1 for true topic 1, so while the overall classification is

correct, the value of the probabilities are not correct.

6. The estimated document-topic distributions are also not correct. For example, in documents

1 and 3, the truth is that they both are constructed from only true topic 1. However, the

estimated distribution for document 1 is 0.41 from fitted topic 1 and 0.59 from fitted topic 2;

the estimated distribution for document 2 is 0.46 for fitted topic 1 and 0.54 for fitted topic 2.

It is difficult to define a proper overall metric that can quantify all of these various deviations

between the estimates and the true values. This is partly because the purpose of using the modeling

is not always exactly clear. Some of the possible purposes of using topic models include:

• Classification: In this example, the model works well for classifying the documents. But since

our document-topic distribution was selected as an almost best possible scenario (only two

topics, and one-half of the documents were 100 percent topic 1 and the other half was 100

percent topic 2). Classification as the evaluation metric works well in this scenario, but would

not be useful in many other real-life scenarios. For example, when we have document-topic

distribution that is uniform across all topics, classification is not even possible.

• Topic reproduction: In this example, the model does not work well for reproducing the true

topic-word distributions.

• Prediction: Perplexity is the classical metric to measure the prediction quality. Although we

do not have a training set and test set in this example, we can generate another 10 documents

using the same parameters and process. The perplexity computed in this way is about 4.2.

Compare this value with the uniform distribution (assigning 1/N as the probability to each

term in the vocabulary), and the expected perplexity is 5 if the vocabulary size is 5. As

we mentioned in Chapter 1, the perplexity value depends on the test set and the method of

estimation.

• Finding the most important tokens in each topic: Sometimes the order of the top tokens are

not of the interest. For example, a topic that has the highest probability word “statistics” and

the second highest probability word “compute” is possibly not different from the topic that has

the highest probability word “compute” and the second highest probability word “statistics”.

Under this situation, one may treat the top probability words as a set instead of an ordered list.
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Topic Token True beta topic term rank LDA Fitted 1 LDA Fitted 2

1 True Topic 1 Term 1 0.4 1 1 1 1 3

2 True Topic 1 Term 2 0.25 1 2 2 4 2

3 True Topic 1 Term 4 0.2 1 4 3 5 1

4 True Topic 1 Term 5 0.1 1 5 4 2 5

5 True Topic 1 Term 3 0.05 1 3 5 3 4

6 True Topic 2 Term 1 0.4 2 1 1 1 3

7 True Topic 2 Term 3 0.25 2 3 2 3 4

8 True Topic 2 Term 5 0.2 2 5 3 2 5

9 True Topic 2 Term 4 0.1 2 4 4 5 1

10 True Topic 2 Term 2 0.05 2 2 5 4 2

Table 3.3: Pilot Study result Summary

Hence, the result depends on the numbers of important tokens of interest. The LDA model

works perfect if top-3 tokens for each topic are of interest. But for more tokens of interest, the

model preform poorly. Table 3.3 and Figure 3.6 illustrate this.

3.3.4.2 Matching Fitted Topics and True Topics

One problem that is identified in the pilot study is the method to match the fitted topics

and the true topics. Since the topics generated by the LDA model does not robustly relate to the

true model, a method to match the truth and the estimation is needed.

In our pilot study, from the estimated document-topic distributions, it is relatively easy to

match the fitted topics with the true topics. This is because the true document-topic distributions

provided a guideline for the topics. However, if the two topics are split 0.5 and 0.5 within each

document in the corpus, this guideline will disappear. Hence, the document-topic distribution is not

useful in matching topics in general.

One possible method for matching the topics is by comparing the top terms of topics.

Consider the Table 3.4:
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Figure 3.6: Rank plot of Pilot Study Fitted Topics

Token Rank Fitted Topic 1 Fitted Topic 2

1 1 1 3
2 2 4 2
4 3 5 1
5 4 2 5
3 5 3 4

Table 3.4: Matching Fitted topic with True topic by rank

The column denoted “Token” is the index of the 5 tokens in the vocabulary. The column

denoted “Rank” is the true rank of each term in probability. “Fitted Topic 1” is the rank of tokens

within the first fitted topic and the “Fitted Topic 2” is the rank of the tokens in the second fitted

topic. Note that the topic number is not important. One approach is to start by picking a number

of tokens of interest, or “level” that we want to use. Suppose level equals to 3 is chosen. Then

the table is truncated after the 3rd row, leaving only tokens that have true rank less than or equal

to 3. Next, we can compute how many ranks in the fitted columns are less than 3, and compute

this percentage. For Table 3.4, fitted topic 1 has a percentage of 33.33% and fitted topic 2 has a

percentage of 100%. The higher the percentage, the more that specific fitted topic is based on the

tokens of interest . Figure 3.7 illustrate this method when the top 3 tokens are selected. It is clear

that LDA2 matches true topic 1 and LDA1 matches true topic 2.

But the obvious question becomes how to pick the “level” to use.

For a simple case like this simulation, this might be easy. But in general, there is no universal

algorithm to pick the ”best” level. In fact, some levels are really misleading. For example, if we

pick level equals to 1 in this simulation for topic 1, the fitted topic 1 produce a 100% and the fitted

topic 2 produce a 0%, which leads to matching the fitted topic 1 with the true topic 1. Figure 3.8
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Figure 3.7: Match Topics by percentage of rank-matching

illustrate the level selection problem. From the right hand side of Figure 3.8, we can find that when

level is selected to be 1, the fitted topic 1 (denoted as “LDA1”) produces a 100% matching to the

true topic 1 and the fitted topic 2 produces a 0% matching, and we may match the fitted topic 1

with the true topic 1. When the level is selected to be 2, both the fitted topic 1 and the fitted topic

2 produce 50% matching and one can not figure out how to match the true topics with the fitted

topics.

3.3.5 Correlation

Correlation is widely used in measuring the linear relationship between two variables. With

the simulated date, the distribution is known, so it is possible to compute correlations between the

true and the fitted values as follows.

rxy =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(3.1)

The main advantage of correlation is the ease of interpretation. There is no need to derive

a new metric that maybe hard to interpret. On the other hand, the correlation coefficient may be

misleading in long-tailed topic distributions. Consider two vectors x and y; Let x = (0.2, 0.1, 0.5) and
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Figure 3.8: Match Topics by percentage of rank-matching - Level Selection

y = (0.05, 0.3, 0.1). Let these be the probabilities of the top three tokens for the actual and estimated

results of topic modeling. The correlation coefficient between x and y equals to −0.5447048. Now

consider another two vectors x′ and y′. For each vector we add fifteen small entries (a surrogate for

the tokens with small probabilities in topic model) after the original x and y.

Let x′ = (0.2, 0.1, 0.5, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01)

and y′ = (0.05, 0.3, 0.1, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01).

The correlation coefficient between x′ and y′ is now 0.4117698. In topic modeling, the long-tail dis-

tribution is frequently observed and must be taken into account.

In our experiment, correlation is applied in two steps:

1. Topic Matching

2. Quality Evaluation

For topic matching, to avoid the problem demonstrated above, we compare the correlation

coefficient between each true topic and fitted topic, instead of setting a threshold for matching.

Using the simulation data, the correlation coefficients are shown in Table 3.5.

Note that the Kullback-Laibler divergence as mentioned in Table 1.3 in Chapter 1 is a strong

candidate in searching for the best possible metrics. But the KL-divergence is not commutative: for
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LDA 1 LDA 2

True 1 0.1367830 0.5797202
True 2 0.9372166 -0.4834648

Table 3.5: Pilot Study Correlation Coefficient for topic matching

any two distributions P and Q, DKL(P ||Q) 6= DKL(Q||P ) and this is an issue in evaluating topic

modeling results because the results of LDA model are not guaranteed to possess the same order

as the true topics. There are modifications of KL-divergence but they are very hard to interpret.

Note that if a version of table 3.5 is created using LK-divergence with certain assumptions, the

overall conclusion would be the same. Hence, we decided to keep using correlation due to ease of

interpretation.

When the number of true topics and fitted topics are the same, we can find a one-to-one

match based on comparison of the correlation coefficients. Otherwise, there might be multiple

true/fitted topics that are matched to one fitted/true topic. The matching algorithm is described

in Algorithm 1

Data: C={Corr(i,j) for all i and j} ←
Corr(i,j)={Correlation coefficient between the i-th true topic and j-th fitted topic}

Result: Match Result← ()
while len(C) > 0 do

M ← Maximum in C;
i← Associated index of true topic for M;
j ← Associated index of fitted topic for M;
Match Result=Match Result ∪ (i, j);
C = C \ {Corr(i,m) and Corr(m,j) for all m};

end
Algorithm 1: Topic Matching

We examined this algorithm through repeatedly measuring correlation coefficient with dif-

ferent seeds in Gibbs Sampling. Results shown in Table 3.6 shows that the algorithm works well.

Results in Table 3.6 show that correlation is a reasonable good metric in finding proper

matches between the true topic and the fitted topic.

For the purpose of quality evaluation, the “long-tail” problem stated above suggest that a

large value of correlation coefficient might not always indicate good model fitting. However, a small

value of correlation coefficient always indicates a bad the model fitting.

In this chapter, we examined the structure and the assumptions of the LDA model in detail,
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LDA 1 LDA 2

True 1 0.1367830 0.5797202
True 2 0.9372166 -0.4834648

LDA 1 LDA 2
True 1 0.5932316 0.1238470
True 2 -0.4758891 0.9381834

LDA 1 LDA 2
True 1 -0.02451539 0.7453396
True 2 0.88443979 -0.2802809

LDA 1 LDA 2
True 1 0.4035011 0.2164524
True 2 0.9777141 -0.7449990

LDA 1 LDA 2
True 1 0.08862987 0.6338065
True 2 0.92626899 -0.4275508

LDA 1 LDA 2
True 1 -0.07991428 0.7857483
True 2 0.85956584 -0.2172482

LDA 1 LDA 2
True 1 -0.4531991 0.9289798
True 2 0.6087086 0.1013433

LDA 1 LDA 2
True 1 -0.001858171 0.7264248
True 2 0.893780349 -0.3077362

LDA 1 LDA 2
True 1 0.8466753 -0.1835992
True 2 -0.1109437 0.8065989

LDA 1 LDA 2
True 1 0.90153719 -0.3395190
True 2 0.02155069 0.7008019

Table 3.6: Pilot Study Correlation Coefficient Topic Matching Rep
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and conducted a pilot study to find the proper range of the parameters for the simulations in the

next chapter.
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Chapter 4

Simulation Study

A simulation study was conducted to determine the impact of four factors on the ability of

topic modeling to find the true underlying topics. The four factors considered in this study were: 1)

size of the vocabulary, 2) document length ratio, 3) topic-word distribution, and 4) document-topic

distribution. The first three factors all depend on the overall topic structure. To define the overall

topic structure we will first discuss the prior topic-word distribution, then the size of vocabulary,

and then the document length ratio. Both the real corpus data and the simulated data will be

used in these discussions. Finally, the document-topic distribution will be considered. More details

about the factors and the levels for the four factors will be discussed below. Figure 4.1 illustrate the

structure of the simulation in this section.

Prior to the complete simulation study, a pilot study was performed to determine appro-

priate levels of the factors. For a given document-topic distribution matrix and a given topic-word

distribution matrix, ten documents are generated. The most widely used default setting of Gibbs

Sampling for LDA estimation from the R package topicmodel was applied: burn-in period equals

to 4000 iterations, picking value for every 2000 iterations after the burn-in period, and picking 2000

values in all. The number of topics is selected as the true number of topics. The corpus size is

selected to be 10 documents so that the result better in interpreting. The number of true topics is

selected to be two.
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ment Structure

Selected type of
the prior topic-

word distribution

Selected Document
length ratio

Selected size
of vocabulary

Single Simulation

Figure 4.1: Structure of Simulations

4.1 Overall Topic Structure

In topic modeling, the assumed components of the topic structure are very important.

The models are developed based on those assumptions, and the results are dependent to those

assumptions. Three of the primary characteristics of the overall topic structure of the LDA model

are three of the factors in the simulation, namely:

1. Size of the vocabulary.

2. Document length ratio.

3. Type of the prior topic-word distribution.

For the target three characteristics listed above, we analyzed the four data sets below to

determine if the pilot study results were reasonable.

• Reuters21578[18]: Currently the most widely used test collection for text categorization

research. The data was originally collected and labelled by Carnegie Group, Inc. and Reuters,

Ltd. in the course of developing the CONSTRUE text categorization system.

• 20 Newsgroups[11]: The 20 Newsgroups data set is a collection of approximately 20,000

newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups. To the
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Data set Reuters21578 20 Newsgroups AP aclIMDB

Type Short News Mail-list discussion Full reports Peer-Review

Number of documents 19042 19791 2246 100000

Size of vocabulary 33255 96509 10473 171770

Number of words 1520283 1237217 435838 23645581

Avg. number of words per document 79.8 62.5 194 236

Table 4.1: Basic information about the selected Corpus

best of my knowledge, it was originally collected by Ken Lang, probably for his Newsweeder:

Learning to filter netnews paper, though he does not explicitly mention this collection. The

20 newsgroups collection has become a popular data set for experiments in text applications

of machine learning techniques, such as text classification and text clustering. There are three

versions of 20 Newsgroups data set and we are using the original 20news-19997 version.

• Associated Press-AP[14]: The AP data set is from the First Text Retrieval Conference

(TREC-1) 1992 and contains 2246 documents. This is the data set that is utilized in the

original LDA paper from Blei[4].

• aclIMDB[19]: This is a dataset that originally constructed for binary sentiment classification

containing substantially more data than previous benchmark datasets. It provide a set of

25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional

unlabeled data for use as well. Raw text and already processed bag of words formats are

provided.

Since the pilot and the real data showed some agreement, this allowed us to go forward and

develop levels for the formal simulation.

4.1.1 Topic-Word Distributions

In the pilot study, we chose the topic-word distribution so that it had the desired property.

In general, we would like to have a rule for choosing the topic-word distribution so that one can

generate topic-word distributions similar to the real corpus. Since the topics are represented by the
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probability of words being presented, a multinomial distribution is the natural choice for the topic-

word distribution. But how to generate the multinomial distribution is still in question. Zipf[33]

states that given a large sample of words, the frequency of any word is inversely proportional to

its rank in the frequency table. So word number n has a frequency proportional to 1/n. This is

usually referred as Zipf’s Law and widely accepted by researchers. However, Zipf’s law is only an

empirical law summarized over the whole corpus and does not consider multiple topics. Hence, we

should not fully rely on Zipf’s law when creating topic-word distributions.

The Bayesian topic models such as LDA assume a prior structure over the topic-word multi-

nomial distributions. Two most widely used priors are the Dirichlet prior and the Multi-normal prior.

These two distributions are used because both simplify the computations. The Dirichlet distribution

is the conjugate prior of multinomial distributions. This means that the posterior distribution is also

a Dirichlet distribution when we use it as a prior distribution. Multi-normal distribution is usually

used when researchers are considering the correlation between topics. The covariance matrix of the

multi-normal distribution provides a natural tool to analyze the correlation structure between the

topics.

Both the Dirichlet and the multi-normal distributions have drawbacks. For the Dirichlet

distribution, as illustrated in Chapter 1, the concentration parameter controls how the probabilities

are distributed among each categories (Figure 1.3). Griffiths[12] stated that the LDA model pre-

forms best in term of perplexity when the concentration parameter of topic-word distributions is

selected as 0.01. This criteria has been widely accepted and software packages use this as the default

value. However, when the concentration parameter is selected as 0.01, more than 90 percent of the

probability will be allocated to at most 5 words and other words share the rest of the probability.

Figure 4.2 illustrate this situation when the size of vocabulary is set to be 100. This violates Zipf’s

Law and hence is not a proper method to generate the corpus.

The multi-normal prior distribution often has results that are hard to interpret, and samples

from a multi-normal distribution are not guaranteed to have a sum of one. This is not a problem

during the fitting process of topic modeling since the Gibbs Sampling process only takes kernels into

consideration. A normalization step is required if we want to use the multi-normal prior distribution

to generate the corpus.

We compare the performance of the Dirichlet prior distribution and the multi-normal dis-

tribution in this study. For the Dirichlet distribution, we made the assumption that the top 20
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Figure 4.2: Five samples of Topic-word distributions generated from Dirichlet prior that has con-
centration paramter 0.01

words shares 70 percent of the probability, and the rest of words share the remaining 30 percent.

These values are generated from Zipf’s law. Suppose we have a document that has vocabulary size

of 100. Let [w1, w2, . . . , w100] be the list of words ordered by frequency. i.e., w1 is the word that

appears the most times in the document, w2 is the word that appears the second most times in

the document. Let [n1, n2, . . . , n100] be the number of appearance of each word. By Zipf’s Law,

n2 = 1
2n1, n3 = 1

3n1,. . . , n100 = 1
100n1. Hence, the total number of words N in this document is

N =

100∑
i=1

n1
i
≈ 5.187378n1

Hence, we can compute the proportion of the summation from w1 to w20:

Proportion =

∑20
i=1

n1

i

N
≈ 0.7

In general, for a Dirichlet prior, we first randomly select 20 words from the whole vocabulary. A

Dirichlet distribution with concentration parameter 1 is used to generate the probabilities associated

with each of these 20 words. Then these probabilities are normalized through multiplying 0.7. The

probabilities of the rest of words are then generated from the Dirichlet distribution with concentra-

tion parameter 1. These probabilities are normalized through multiplying 0.3. We are generating

documents that are mostly following Zipf’s empirical law with Dirichlet distributions.

For the multi-normal prior distribution, we assume no correlations between topics and the

covariance matrix is a diagonal with variances all equal to 1. A more disperse multi-normal distri-

bution is also possible to be considered in some of the simulations where the variance are equal to

10.
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Data set Min Q1 Median Mean Q3 Max

Reuters21578 0.1418 0.1797 0.1909 0.1919 0.2024 0.3194

20 Newsgroups 0.1045 0.1231 0.1297 0.1345 0.1392 0.4384

AP 0.1421 0.1710 0.1774 0.1776 0.1840 0.2186

aclIMDB 0.2015 0.2398 0.2517 0.2529 0.2650 0.3590

Table 4.2: Sample Corpus Basic Descriptive Statistics of the Document Length Ratio

4.1.2 Document length ratio

4.1.2.1 Analysis of Real Corpus

Since the simulated corpus contains 10 documents, we used the data sets listed in Table 4.1

to determine the reasonable document length ratio.

We randomly selected 10 documents from one real corpus and computed the document

length ratio between the average number of words per document and the size of vocabulary for the

selected 10 documents. The results are summarized in Table 4.2.

4.1.2.1.1 Reuters21578

10000 samples that contains 10 randomly selected documents were taken from the original

data set. Figure 4.3 presents the fitted density plot of the sampled data.

4.1.2.1.2 20 Newsgroups

10000 samples that contains 10 randomly selected documents were taken from the original

data set. Figure 4.4 presents the fitted density plot of the sampled data.

4.1.2.1.3 Associated Press

10000 samples that contains 10 randomly selected documents were taken from the original

data set. Figure 4.5 presents the fitted density plot of the sampled data.
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Figure 4.3: Document Length Ratio of Reuters21578 Data
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Figure 4.4: Document Length Ratio of 20 Newsgroups Data
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Figure 4.5: Document Length Ratio of Associated Press Data
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Figure 4.6: Document Length Ratio of aclIMDB Data

4.1.2.1.4 aclIMDB

10000 samples that contains 10 randomly selected documents were taken from the original

data set. Figure 4.6 presents the fitted density plot of the sampled data.

4.1.2.2 Analysis of Simulated Corpus

Besides examining the general truth about the document length ratio, we also examined

the quality of LDA results based on correlation between the true topics and the fitted topics for

different document length ratio. Based on the previous examination of the true corpus, we noticed

that the document length ratio is greater than 0.1 for the samples of 10 documents. To fully examine

the effect of the document length ratio, we selected 19 levels trying to cover most of the possible
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scenarios:

[
1

10
,

1

9
,

1

8
,

1

7
,

1

6
,

1

5
,

1

4
,

1

3
,

1

2
, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Ten documents are constructed for each level based on the following document-topic distributions:



TrueTopic1 TrueTopic2

Document1 1 0

Document2 0 1

Document3 1 0

Document4 0 1

Document5 1 0

Document6 0 1

Document7 1 0

Document8 0 1

Document9 1 0

Document10 0 1


Both the Dirichlet prior distribution and the multi-normal prior distribution are considered as dis-

cussed above. The vocabulary size is selected as 100 based on the analysis in the next section.

Figure 4.7 and Figure 4.8 show the result of the simulation. We observe that the quality

of LDA model in term of correlation is positively correlated with the document length ratio. The

Dirichlet prior results in a better correlation for all document length ratios.

We also find that the correlation is relatively stable after a ratio value of 8. Hence, when

analyzing the effect of size of the vocabulary, we will set the document length ratio to 10 in order

to exclude the affect from the document length ratio.

4.1.3 Size of the vocabulary

4.1.3.1 Analysis of Real Corpus

From the basic summary statistics listed in Table 4.1, we learned that the size of vocabulary

is positively correlated with the number of documents in the corpus. We first analysed the real

corpus to examine this effect. After that, we drew samples of 10 documents from the corpus to find

how many words should we have in the vocabulary for the simulation of documents.
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Figure 4.7: Simulated Analysis of Document length ratio for Dirichlet prior
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Figure 4.8: Simulated Analysis of Document length ratio for Multi-normal prior
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Figure 4.9: Vocabulary Size changes based on the Number of Documents for Four different Corpus

To analyse the positive correlation between the number of documents in the corpus and the

size of vocabulary, we randomly drew 100 samples of n documents from each corpus and computed

the mean of the size of the vocabulary. We considered n from 5 to 1000. A summary of the results

is shown in Table 4.3. The result is also plotted in Figure 4.9.

We found that for a corpus of 10 documents, the size of vocabulary is less than 1000. We

noticed that a higher order relationship might exist. After testing for logarithmic, exponential, and

quadratic relationships, the square root of the number of documents vs the vocabulary size produced

the best fit. The analysis results are shown in the following sections.

4.1.3.1.1 Reuters21578

The sampling result is illustrated in Figure 4.10. The transformed sampling result is illus-

trated in Figure 4.11.

The linear regression from an R basic package produced the following result:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -373.21016 1.41915 -263 <2e-16 ***
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Documents Reuters21578 20 Newsgroups AP aclIMDB

5 239 204 183 534
6 263 273 213 616
7 315 319 263 692
8 335 355 276 787
9 384 390 466 865
10 414 412 541 910
11 458 482 487 1010
12 469 488 531 1069
13 497 551 488 1126
14 528 554 574 1184
15 578 626 726 1287
16 597 707 576 1320
17 632 735 683 1362
18 650 827 625 1408
19 676 760 756 1549
20 702 779 689 1551
30 941 1239 1227 2107
40 1146 1673 1384 2563
50 1354 1939 2010 3035
60 1469 2256 1936 3473
70 1671 2488 2138 3807
80 1802 2886 2513 4141
90 1924 3245 2779 4518
100 2068 3435 3071 4797
200 3058 5618 5145 7439
300 3821 7683 7085 9582
400 4487 9263 8812 11327
500 5044 10938 10004 12919
600 5543 12206 10728 14370
700 6021 13445 12986 15620
800 6471 14718 13378 16867
900 6895 16000 15346 17920
1000 7283 16780 16565 19061

Table 4.3: Mean size of vocabulary of sample size 100
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Figure 4.10: Plot of Number of documents vs Vocabulary size for sample size 100, from 5 to 1000,
data set Reuters21578

Figure 4.11: Plot of Square root of Number of documents vs Vocabulary size for sample size 100,
from 5 to 1000, data set Reuters21578
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Figure 4.12: Residual Plot for Reuters21578 data

n_sqrt 242.01432 0.06331 3823 <2e-16 ***

The residual plot Figure 4.12 indicated a good fit.

Hence, the following equation can be used to estimate the size of vocabulary for Reuters21578

data. We can also examine the prediction line plot in Figure 4.13.

Size of Vocabulary = −373 + 242×
√

Number of Documents (4.1)

From Equation 4.1, we can estimate that for a sample from Reuters21578 data set of size

10, the size of vocabulary is approximately 392.
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Figure 4.13: Regression Line with Reuters 21578 Data Set
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Figure 4.14: Plot of Number of documents vs Vocabulary size for sample size 100, from 5 to 1000,
data set 20 Newsgroups

4.1.3.1.2 20 Newsgroups

The sampling result is illustrated in Figure 4.14. We observed that a linear model of a

square root and a cubic root of the number of documents generated the best fit. The regression

model is:

Size of Vocabulary = β0 + β1 ×
√

Number of Documents+

β2
3
√

Number of Documents (4.2)

The linear regression from an R basic package produced the following result:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

78



Figure 4.15: Residual Plot for 20 Newsgroups data

(Intercept) 432.322 73.935 5.847 6.77e-09 ***

n_sqrt 1003.229 8.876 113.024 < 2e-16 ***

n_cubic -1519.085 34.451 -44.094 < 2e-16 ***

The residual plot Figure 4.15 shows that there is possibly a heteroscedasticity problem. But

the regression line in Figure 4.16 shows a good fit when the number of documents is relatively large

(
√

Number of Documents ≥ 10⇔ Number of Documents ≥ 100).

Hence, the following equation can be used to estimate the size of vocabulary for 20 News-

groups data. We can also examine the prediction line plot in Figure 4.16.

Size of Vocabulary = −432.322+1003.229×
√

Number of Documents−1519.085× 3
√

Number of Documents

(4.3)

From Equation 4.3, we can estimate that for a sample from data set of size greater than
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Figure 4.16: Regression Line with 20 Newsgroups Data Set
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Figure 4.17: Plot of Number of documents vs Vocabulary size for sample size 100, from 5 to 1000,
data set Associated Press

100. The estimation is 332.0399. Since the number is smaller than the data from Table 4.3, which

is 412, we will use the larger number.

4.1.3.1.3 AssociatedPress

The sampling result is illustrated in Figure 4.17. We observed that a linear model of a

square root and a cubic root of the number of documents generated the best fit. The regression

model is:

Size of Vocabulary = β0 + β1 ×
√

Number of Documents+

β2
3
√

Number of Documents (4.4)

The linear regression from an R basic package produced the following result:
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Figure 4.18: Residual Plot for 20 Associated Press data

Coefficients:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1675.12 160.91 10.41 <2e-16 ***

n_sqrt 1188.00 19.32 61.50 <2e-16 ***

n_cubic -2262.96 74.98 -30.18 <2e-16 ***

The residual plot Figure 4.18 shows that there is possibly a heteroscedasticity problem. But

the regression line in Figure 4.19 shows a good fit when the number of documents is relatively large

(
√

Number of Documents ≥ 10⇔ Number of Documents ≥ 100).

Hence, the following equation can be used to estimate the size of vocabulary for 20 News-
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Figure 4.19: Regression Line with Associated Press Data Set

groups data. We can also examine the prediction line plot in Figure 4.19.

Size of Vocabulary = 1675.12+1188×
√

Number of Documents−2262.96× 3
√

Number of Documents

(4.5)

From Equation 4.5, we can estimate that for a sample from data set of size greater than

100. The estimation is 556.5027 when the number of documents equals to 10 and approximately the

same with the data from Table 4.3, which is 541.

4.1.3.1.4 aclIMDB

The sampling result is illustrated in Figure 4.20. We observed that a linear model of a

square root of the number of documents, a cubic root of the number of documents, and the number
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Figure 4.20: Plot of Number of documents vs Vocabulary size for sample size 100, from 5 to 1000,
data set aclIMDB

of documents generated the best fit. The regression model is:

Size of Vocabulary = β0+β1×
√

Number of Documents+β2
3
√

Number of Documents+β3Number of Documents

The linear regression from an R basic package produced the following result:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.309e+02 3.252e+01 19.40 <2e-16 ***

n_sqrt 1.193e+03 9.344e+00 127.66 <2e-16 ***

n_cubic -1.598e+03 2.573e+01 -62.12 <2e-16 ***

n -3.361e+00 7.283e-02 -46.15 <2e-16 ***

The residual plot Figure 4.21 shows that there are some problems when the number of
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Figure 4.21: Residual Plot for 20 aclIMDB data

documents is small. But the regression line in Figure 4.22 shows a good fit when the number of

documents is relatively large (
√

Number of Documents ≥ 10⇔ Number of Documents ≥ 100).

Hence, the following equation can be used to estimate the size of vocabulary for 20 News-

groups data. We can also examine the prediction line plot in Figure 4.22.

Size of Vocabulary = 630.9 + 1193×
√

Number of Documents−

1598× 3
√

Number of Documents− 3.361×Number of Documents (4.6)

From Equation 4.6, we can estimate that for a sample from data set of size greater than

100. The estimation is 925.8767 when the number of documents equals to 10 and approximately the

same with the data from Table 4.3, which is 910.

From the analysis of the real corpora, we find that the size of vocabulary ranged from 300
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Figure 4.22: Regression Line with aclIMDB Data Set
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to 925 when there are 10 documents in the corpus.

4.1.3.2 Analysis of Simulated Corpus

Similar with the analysis of document length ratio, we constructed corpora such that the

vocabulary size is from 5 to 1000. The upper bound 1000 is selected based on the observation of

the real corpora. For these constructed corpora, we choose to construct 10 documents and 2 topics

with the document-topic distribution Θ as following:

Θ =



TrueTopic1 TrueTopic2

Document1 1 0

Document2 0 1

Document3 1 0

Document4 0 1

Document5 1 0

Document6 0 1

Document7 1 0

Document8 0 1

Document9 1 0

Document10 0 1


For each level of size of vocabulary, the document length ratios were selected to be 10, which means

that the number of words in each document is 10 times of the size of vocabulary for all the documents

we created. In the real corpora, the document length will not increase along with the vocabulary

size. But we are trying to exclude the effect of document length ratio as much as possible. Two

different priors of topic-word distributions are selected: the Dirichlet distribution and the multi-

normal distribution.

From Figure 4.23 and Figure 4.24, we find that the correlations are relatively stable when

the size of vocabulary is greater than 100.
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Figure 4.23: Simulated Analysis of Size of Vocabulary for Dirichlet prior

Figure 4.24: Simulated Analysis of Size of Vocabulary for Multi-normal prior
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4.2 Document Structure

4.2.1 Factor Levels

Based on the analysis of the real corpus and simulated corpus, it is reasonable to select the

factor levels of type of topic-word distribution, document length ratio, and size of vocabulary as

following:

1. Type of Topic-word distributions: the Dirichlet prior and multi-normal prior.

2. Document Length ratio: 19 levels as following:

[
1

10
,

1

9
,

1

8
,

1

7
,

1

6
,

1

5
,

1

4
,

1

3
,

1

2
, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

3. Size of vocabulary: From 5 to 100.

The only factor that does not depends on the overall topic structure is the document-topic

distribution. This factor is not observable and hence can not be observed in the real corpora. For

simplicity purposes, we selected the number of topics to be 2 as before. The number of topics can

be increased if needed, but that is not contained in this study. In the previous sections, we selected

the document-topic distribution Θ such that each document is solely constructed based on one of

the two topics. However, as stated in Chapter 2, this is usually not true in real data sets. We would

like to analyze the effect of the mixture of topics through changing the proportion that each topic

has in documents.

Different mixtures result in different document-topic distributions, and can be represented

through the document-topic matrices. The mixtures in this study can be categorized into three

groups.

1. Extreme cases

2. Mixture cases

3. Analytical Mixture cases

The extreme cases represent “complete” separation of topics between documents and “no” separation

of topics between the documents. Mixture cases are used to observe the quality of the LDA model
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under different levels of topic mixtures. The analytical mixture cases are used to answer even specific

questions about mixtures that will be discussed later. We denote the document-topic matrix by Θi

where i is the index of the case.

For each case in the following discussion, we will examine the quality of the LDA model

results based on correlation. Based on the observations from the previous section we set the number

of documents to be 10, vary the document length ratio from 0.1 to 10, and vary the size of vocabulary

from 5 to 100. Both the Dirichlet and the Multi-normal priors will be considered.

4.2.2 Extreme Cases

There are two extreme cases:

1. Case 1: Θ1 Five documents are constructed of one topic only, and the other five documents

are constructed of another topic.

2. Case 2: Θ2 Each document is constructed evenly of the two topics.

Θ1 is the case we used in some of the previous analyses:

Θ1 =



TrueTopic1 TrueTopic2

Document1 1 0

Document2 0 1

Document3 1 0

Document4 0 1

Document5 1 0

Document6 0 1

Document7 1 0

Document8 0 1

Document9 1 0

Document10 0 1


Figure 4.25 is the Case 1 simulation result with varying document length ratios. Figure 4.26

is the simulation result for Case 1 with varying size of vocabulary.

Case 1 is an ideal case in that the data follow the assumptions of the LDA model. The

results may be referred as the benchmark of a “good” fit. The left hand side of Figure 4.26 indicates
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Figure 4.25: Correlation between true and fitted topics with varying document length ratio for Case
1

that the fitted topics are highly correlated with the true topics using the Dirichlet prior, especially

when the document length ratio exceeds 1. The right hand side of Figure 4.26 shows that the

fitted topics are highly correlated with the true topics using the multi-normal prior only when the

document length ratio exceeds 4. Comparing the two sides of the figure indicates that the choice

of the prior distribution is important even under the most ideal scenario. We note that the type of

the prior distribution often results in a larger impact on the correlation than the document length

ratio. In fact, when the document length ratio is located within the interval [0.13, 0.25], which was

range of the mean document length ratios of the real corpora we analyzed in the previous section,

the multi-normal prior scenario results in correlations lower than 0.5. By comparing Figures 4.25

and 4.26, we also found that the topic distribution within the documents impacted the quality of

the LDA model results based on correlation, and the multi-normal prior distribution is not preferred

when the document length ratio is relatively small.
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Figure 4.26: Correlation between true and fitted topics with varying size of vocabulary for Case 1

Θ2 can be represented as:

Θ2 =



TrueTopic1 TrueTopic2

Document1 0.5 0.5

Document2 0.5 0.5

Document3 0.5 0.5

Document4 0.5 0.5

Document5 0.5 0.5

Document6 0.5 0.5

Document7 0.5 0.5

Document8 0.5 0.5

Document9 0.5 0.5

Document10 0.5 0.5


Figure 4.27 is the Case 2 simulation result with varying document length ratios. Figure 4.28

is the simulation result for Case 2 with varying size of vocabulary.

Case 2 is the “worst case” scenario since topics are evenly mixed in each document. There

is no surprise in the poor results shown in Figures 4.27 and 4.28. These results may be used
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Figure 4.27: Correlation between true and fitted topics with varying document length ratio for Case
2

as benchmark values of a “bad” fit. In both figures, the Dirichlet prior shows better correlation

than the Multi-normal prior. One interesting observation is that in Figure 4.28, the correlation is

decreasing as the size of vocabulary increasing. Also in Figure 4.27, we notice that the correlation is

increasing very slowly as the document length ratio increase compared with the Case 1 Figure 4.25.

This observation indicates that when topics are evenly distributed within documents, increasing the

document length ratio helps very little in LDA quality based on correlation.

4.2.3 Mixture Cases

There are two cases in which the documents are “simple” mixtures of the two topics:

3. Case 3: Θ3 Each document is constructed as 25% from one topic and 75% from the other

topic.

4. Case 4: Θ4 Within the corpus, four documents are constructed from one topic only, four

documents are 25% from one topic and 75% from the other topic, and the remaining two

documents are constructed 50% from one topic and 50% from the other topic.
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Figure 4.28: Correlation between true and fitted topics with varying size of vocabulary for Case 2

Θ3 can be represented as:

Θ3 =



TrueTopic1 TrueTopic2

Document1 0.75 0.25

Document2 0.25 0.75

Document3 0.75 0.25

Document4 0.25 0.75

Document5 0.75 0.25

Document6 0.25 0.75

Document7 0.75 0.25

Document8 0.25 0.75

Document9 0.75 0.25

Document10 0.25 0.75


Figure 4.29 is the Case 3 simulation result with varying document length ratios. Figure 4.30

is the simulation result for Case 3 with varying size of vocabulary.

Case 3 is a combination of the two previous cases. By comparing Case 3 with Case 1 and

Case 2 we can get some sense of the impact of mixtures of topics on the LDA results. Figure 4.29
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Figure 4.29: Correlation between true and fitted topics with varying document length ratio for Case
3

indicates that the multi-normal prior distribution is more affected by the mixture of topics in the

documents than the Dirichlet prior distribution. Specifically, the correlation on Dirichlet-prior-side

fo the figure drops about 20 percent compared with Figure 4.25 while the multi-normal-prior-side of

Figure 4.29 shows that the correlation is almost constant (around 0.25) when the document length

ratio is less than 0.5 and is very close to the benchmark of “bad” results in figure 4.27. This again

shows the multi-normal is not the preferable prior in LDA. The same observation happens in Figure

4.30. The left hand side of Figure 4.30 is almost identical with the left hand side of Figure 4.26, but

the right hand side of Figure 4.30 tends to converge to 0.85 instead of 1. Although Case 3 is designed

as a mixture somewhere near the middle of the two extreme cases, the results reasonably consistent

with Case 1. This shows that the impact of the document structure is not a simple “linear”. We

will discuss this later in the “Analytical mixture cases”.
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Figure 4.30: Correlation between true and fitted topics with varying size of vocabulary for Case 3

Θ4 can be represented as:

Θ4 =



TrueTopic1 TrueTopic2

Document1 0.5 0.5

Document2 0.5 0.5

Document3 1 0

Document4 0 1

Document5 1 0

Document6 0 1

Document7 0.75 0.25

Document8 0.25 0.75

Document9 0.75 0.25

Document10 0.25 0.75


Figure 4.31 is the Case 4 simulation result with varying document length ratios. Figure 4.32

is the simulation result for Case 4 with varying size of vocabulary.

Case 4 is a mixture of Case 1, Case 2, and Case 3. Case 4 can also be considered the first

attempt to simulate a collection of real documents. In general, comparing with the previous three
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Figure 4.31: Correlation between true and fitted topics with varying document length ratio for Case
4

cases, Case 4 results are most similar to Case 3.

4.2.4 Analytical Mixture Cases

There were eight analytical mixture cases considered to further understand the impact of

mixtures. There are two methods to modify the “mixture” structure of the documents: change the

proportion of topics in a single document, or change the proportion of extreme cases’ documents in

a corpus. There are categories of cases constructed based on the two methods and each category is

constructed to study one specific question.

The first category of cases is constructed through changing the proportion of topics in a

single document. The specific question for this category is: what is the impact of close to evenly

distributed topics within documents impact the fitted results? It consists of three cases:

5. Case 5: Θ5 Five documents are constructed as 42.5% from one topic and 57.5% from the other

topic and the five other documents are constructed as 57.5% from one topic and 42.5% from

the other topic.

6. Case 6: Θ6 Five documents are constructed as 45% from one topic and 55% from the other

topic and the five other documents are constructed as 55% from one topic and 45% from the

other topic.
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Figure 4.32: Correlation between true and fitted topics with varying size of vocabulary for Case 4

7. Case 7: Θ7 Five documents are constructed as 47.5% from one topic and 52.5% from the other

topic and the five other documents are constructed as 52.5% from one topic and 47.5% from

the other topic.

Θ5 can be represented as:

Θ5 =



TrueTopic1 TrueTopic2

Document1 0.425 0.575

Document2 0.575 0.425

Document3 0.425 0.575

Document4 0.575 0.425

Document5 0.425 0.575

Document6 0.575 0.425

Document7 0.425 0.575

Document8 0.575 0.425

Document9 0.425 0.575

Document10 0.575 0.425


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Θ6 can be represented as:

Θ6 =



TrueTopic1 TrueTopic2

Document1 0.45 0.55

Document2 0.55 0.45

Document3 0.45 0.55

Document4 0.55 0.45

Document5 0.45 0.55

Document6 0.55 0.45

Document7 0.45 0.55

Document8 0.55 0.45

Document9 0.45 0.55

Document10 0.55 0.45


Θ7 can be represented as:

Θ7 =



TrueTopic1 TrueTopic2

Document1 0.475 0.525

Document2 0.525 0.475

Document3 0.475 0.525

Document4 0.525 0.475

Document5 0.475 0.525

Document6 0.525 0.475

Document7 0.475 0.525

Document8 0.525 0.475

Document9 0.475 0.525

Document10 0.525 0.475


Figure 4.33 is the Case 5 simulation result with varying document length ratios. Figure

4.34 is the simulation result for Case 5 with varying size of vocabulary. Figure 4.35 is the Case 6

simulation result with varying document length ratios. Figure 4.36 is the simulation result for Case

6 with varying size of vocabulary. Figure 4.37 is the Case 7 simulation result with varying document

99



Figure 4.33: Correlation between true and fitted topics with varying document length ratio for Case
5

length ratios. Figure 4.38 is the simulation result for Case 7 with varying size of vocabulary.

Results from cases 5, 6, and 7 will be discussed together. Under the multi-normal prior

situation, the Case 6 and Case 7 results are similar to the Case 2 results. Figure 4.33 shows the

correlation increasing faster as the document length ratio increased compared to Figure 4.35 and

Figure 4.37. The results suggest that the difference between the two topic proportions need to be

more than 0.1 for the LDA model to provide fitted topics that correlate with the real topics under

the multi-normal prior distribution. When using the Dirichlet prior distribution, the correlation

decrease when the size of vocabulary increases for Case 7 (Figure 4.38). Both Figure 4.34 and

Figure 4.36 show that the correlations are usually close to 1 under the Dirichlet prior. Hence, the

difference between the proportions of the two topics needs to be more than 0.05 for the LDA model

to provide fitted topics that correlate with the true topics using the Dirichlet prior.

The second category of cases is constructed through changing the numbers of documents

that are extreme cases (all one topic or the other topic). The specific question for this category is:

how does the number of extreme case documents impact the fitted results? It consists of five cases:

8. Case 8: Θ8 Within the corpus, five of the documents are constructed from 100% of one topic

or the other topic, the other five documents are constructed as 50% from one topic and 50%

from the other topic.
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Figure 4.34: Correlation between true and fitted topics with varying size of vocabulary for Case 5

Figure 4.35: Correlation between true and fitted topics with varying document length ratio for Case
6
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Figure 4.36: Correlation between true and fitted topics with varying size of vocabulary for Case 6

Figure 4.37: Correlation between true and fitted topics with varying document length ratio for Case
7
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Figure 4.38: Correlation between true and fitted topics with varying size of vocabulary for Case 7

9. Case 9: Θ9 Within the corpus, three of the documents are constructed from 100% of one topic

or the other topic, the other seven documents are constructed as 50% from one topic and 50%

from the other topic.

10. Case 10: Θ10 Within the corpus, two of the documents are constructed from 100% of one topic

or the other topic, the other eight documents are constructed as 50% from one topic and 50%

from the other topic.

11. Case 11: Θ11 Within the corpus, one of the documents are constructed from 100% of one topic

or the other topic, the other nine documents are constructed as 50% from one topic and 50%

from the other topic.

12. Case 12: Θ12 Within the corpus, one of the documents are constructed from 75% of one topic

and 25% of the other topic, the other nine documents are constructed as 50% from one topic

and 50% from the other topic.
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Θ8 can be represented as:

Θ8 =



TrueTopic1 TrueTopic2

Document1 0.5 0.5

Document2 0.5 0.5

Document3 0.5 0.5

Document4 0.5 0.5

Document5 0.5 0.5

Document6 1.0 0.0

Document7 0.0 1.0

Document8 1.0 0.0

Document9 0.0 1.0

Document10 1.0 0.0


Θ9 can be represented as:

Θ9 =



TrueTopic1 TrueTopic2

Document1 0.5 0.5

Document2 0.5 0.5

Document3 0.5 0.5

Document4 0.5 0.5

Document5 0.5 0.5

Document6 0.5 0.5

Document7 0.5 0.5

Document8 1.0 0.0

Document9 0.0 1.0

Document10 1.0 0.0


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Θ10 can be represented as:

Θ10 =



TrueTopic1 TrueTopic2

Document1 0.5 0.5

Document2 0.5 0.5

Document3 0.5 0.5

Document4 0.5 0.5

Document5 0.5 0.5

Document6 0.5 0.5

Document7 0.5 0.5

Document8 0.5 0.5

Document9 1.0 0.0

Document10 0.0 1.0


Θ11 can be represented as:

Θ11 =



TrueTopic1 TrueTopic2

Document1 0.5 0.5

Document2 0.5 0.5

Document3 0.5 0.5

Document4 0.5 0.5

Document5 0.5 0.5

Document6 0.5 0.5

Document7 0.5 0.5

Document8 0.5 0.5

Document9 0.5 0.5

Document10 1.0 0.0


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Θ12 can be represented as:

Θ12 =



TrueTopic1 TrueTopic2

Document1 0.50 0.50

Document2 0.50 0.50

Document3 0.50 0.50

Document4 0.50 0.50

Document5 0.50 0.50

Document6 0.50 0.50

Document7 0.50 0.50

Document8 0.50 0.50

Document9 0.50 0.50

Document10 0.75 0.25


Figure 4.39 is the Case 8 simulation result with varying document length ratios. Figure

4.40 is the simulation result for Case 8 with varying size of vocabulary. Figure 4.41 is the Case 9

simulation result with varying document length ratios. Figure 4.42 is the simulation result for Case 9

with varying size of vocabulary. Figure 4.43 is the Case 10 simulation result with varying document

length ratios. Figure 4.44 is the simulation result for Case 10 with varying size of vocabulary.

Figure 4.45 is the Case 11 simulation result with varying document length ratios. Figure 4.46 is the

simulation result for Case 11 with varying size of vocabulary. Figure 4.47 is the Case 12 simulation

result with varying document length ratios. Figure 4.48 is the simulation result for Case 12 with

varying size of vocabulary.

Case 8 to Case 11 are mixtures of earlier cases. For Case 8, the quality of the LDA results

are not impacted as much as might be expected based on the earlier 50% mixture results, especially

when comparing Figure 4.40 and 4.26. The left hand side of Figure 4.40 has some low correlation

values when the size of vocabulary is less than 25, but the correlation is almost always close to 1 after

that. For Figure 4.39, the left hand side of the graph shows the correlation higher than 0.75 when

the document length ratio is greater than 0.14. This correlation value is very good compared with

the “good” benchmark in Figure 4.25. However, the right hand side shows the correlation is around

0.25 when the document length ratio is less than 0.25. This is a low correlation value compared
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with the “bad” benchmark in Figure 4.27. The above observation indicates that the LDA model is

sensitive to the prior distribution and the impact of the document length ratio appears greater than

the impact of the size of the vocabulary.

Also, we noted earlier that the difference between the left hand side of Figure 4.26, Figure

4.28, and Figure 4.40 are not “linear” indicating that the impact of the document structure is not

linear. To fully study the impact of the document structures, we constructed Case 9, 10, and 11.

Cases 9, 10, and 11 contains 30%, 20%, and 10% documents that solely depend on the one or the

other topic, respectively. For the analysis of how size of vocabulary impacts the correlation, in Figure

4.42, 4.44, and 4.46, the left hand sides (Dirichlet prior) still have correlations close to 1. However,

the right hand sides (Multi-normal prior) show clearly a lower correlation level. For the analysis

of the document length ratio, in Figure 4.41, 4.43, and 4.45, the right hand sides show correlation

higher than 0.75 when the document length ratio is higher than 0.5. But when the document length

ratio is lower than 0.5, Figure 4.45 show the correlation close to 0.5, which near the “bad” benchmark

in Figure 4.27. We observe that as the proportion of Case 1 documents decreases, the quality of

LDA results decrease. Moreover, the rate of the decrease is negatively correlated with the document

length ratio.

Since our corpus only contains 10 documents, Case 11 is closest to Case 2. Since we can not

lower the proportion of Case 1 documents any further, we need to change the proportion of topics

in the documents so that we can generate a simulation that is closer to Case 2. In Figures 4.47 and

4.48, we find that the right hand sides (Multi-normal prior) is very close to the “bad” benchmark

in Figure 4.27 and 4.28, but the left hand sides are still showing relatively good correlations.

In this chapter, we performed simulations that possessed different document and topic struc-

tures. The characteristics discussed in Chapter 3 are further explained and treated as factors in the

simulations. We also used some real world data sets to help us determine some of the reasonable

factor levels. We finally observed the results of the simulations of document structures and discussed

how they are related.
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Figure 4.39: Correlation between true and fitted topics with varying document length ratio for Case
8

Figure 4.40: Correlation between true and fitted topics with varying size of vocabulary for Case 8
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Figure 4.41: Correlation between true and fitted topics with varying document length ratio for Case
9

Figure 4.42: Correlation between true and fitted topics with varying size of vocabulary for Case 9
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Figure 4.43: Correlation between true and fitted topics with varying document length ratio for Case
10

Figure 4.44: Correlation between true and fitted topics with varying size of vocabulary for Case 10
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Figure 4.45: Correlation between true and fitted topics with varying document length ratio for Case
11

Figure 4.46: Correlation between true and fitted topics with varying size of vocabulary for Case 11
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Figure 4.47: Correlation between true and fitted topics with varying document length ratio for Case
12

Figure 4.48: Correlation between true and fitted topics with varying size of vocabulary for Case 12
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Chapter 5

Analysis of Results and Future

Work

5.1 Analysis of Result

5.1.1 Summary of the Analysis of Single Factors

We found that although the LDA model results are supposed to applicable for any type of

text documents, the selection of the prior distribution has an important impact on the quality of

LDA results. When switching from the Dirichlet prior to the Multi-normal prior, the quality of the

LDA results (as measured by correlation between actual and fitted topics) is decreased on average

from 0.845 to 0.281 (the average of the correlations using the Multi-normal prior are only 33.25%

of the average correlation using the Dirichlet prior). For the worst case scenarios (when considering

the minimum correlation values for each simulation setups), the quality of the LDA results measured

by correlation is decreased on average from 0.554 to 0.307 (the average of the correlations using the

Multi-normal prior are 55.42% of the average correlation using the Dirichlet prior). For the best

case scenarios (when considering the maximum correlation values for each simulation setups), the

quality of the LDA results measured by correlation is decreased on average from 0.963 to 0.138 (the

average of the correlation using the Multi-normal prior are only 14.33% of the average correlation

using the Dirichlet prior).
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We found that the quality of the LDA model appeared to have a logarithmic relationship

with the document length ratio. Numerically, the relationship between the document length ratio

and the quality of LDA model measured by correlation is computed based on sample of size 10

(documents). As the document length ratio changed from 1/8 to 1/4 (as measured in the real

corpora in Chapter 4) the quality of the LDA results increased by 15.5% (from 0.58 to 0.67) under

the Dirichlet prior situation and by 21.7% (from 0.23 to 0.28) under the Multi-normal prior situation.

We found that the quality of LDA result did not really change with the changes in the size

of vocabulary.

We found the quality of the LDA results did change as document structure changed. Nu-

merically, the quality decreased up to 55.2% from the best case scenario to the worst case scenario.

From the mixture cases, we found that the quality of LDA results are not linearly related to the doc-

ument structure. From the analytical mixture cases, we found that although the document structure

(as measured by the difference between the proportion of the two topics) are evenly spaced (from

(0.425,0.575) to (0.475,0.525)), the difference in quality of the LDA results is not evenly spaced.

Also, the correlation differences due to document structure change between the Dirichlet prior situa-

tion and the Multi-normal prior situation (suggesting an interaction). We found that a 10% increase

in the amount that a document is constructed based on one topic may increase the quality of the

LDA results by 34.6% (from 0.25 to 0.723).

5.1.2 Details of the Analysis of Single Factors

5.1.2.1 Topic-word Distribution

As stated in Chapter 4, the true type of prior distribution can not be identified in real

corpus. We note that the LDA model assumes the Dirichlet prior of the topic-word distribution and

the estimation methods are developed based on this prior distribution. Hence, we would anticipate

the LDA results get worse when using any prior distributions other than the Dirichlet distribution.

But in real world applications there is no guarantee that the topic-word distribution is actually the

Dirichlet distribution. Moreover, it is impossible to verify if the prior distribution is the Dirichlet,

as assumed.

To analyze the performance of the LDA model under different prior distributions, we com-

pared the correlation results between the simulations using Dirichlet prior and the simulations using
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the Multi-normal prior. Table 5.1 and Table 5.2 summarized the results of this comparison. The

“Diff” column in the tables indicates the difference in the correlation values (correlation of actual

and fitted topics) between the “Dirichlet” column and “Multi-normal” column. In the first column

named “Simulation”, each row represent a specific simulation setup. For the cases that ended with

letter “D”, the result is from a document length simulation; for the cases that ended with letter

“V”, the result is from a size of vocabulary simulation. i.e., the row of “Case 1 - D” is summarized

from the simulation of document length ratio for Case 1 (Figure 4.25).

We observed that the prior distribution of the topic-word distribution does matter to the

quality of the LDA results. From Table 5.1, we found that the mean correlations for the Dirichlet

prior situations are higher than the Multi-normal prior situation by about 0.25. Assuming that

the simulation cases represent a random sample of possible scenarios in which the priors could be

compared, a paired t-test was used to compring these means. The results is listed below:

t = 13.585, df = 25, p-value = 4.809e-13

95 percent confidence interval:

0.2381347 0.3232408

Based on the result of hypothesis testing, we found that we have sufficient evidence (using

α = 0.05) to conclude that the selection of the prior distribution of the topic-word distribution

does have significant impact to the mean of the correlation results of LDA model, and if the true

distribution is not actually Dirichlet the mean correlation is reduced. The lower bound of the 95%

confidence interval is about 0.24 and it is relatively large compared with the value of correlations.

The standard deviations of the correlation from Table 5.1 were also compared. We again

conducted a paired t-test and the results are below.

t = -2.1702, df = 25, p-value = 0.03969

95 percent confidence interval:

-0.06798479 -0.00177934

Based on the result of hypothesis testing, we again found that we have sufficient evidence

(using α = 0.05) to conclude that the selection of the prior distribution of the topic-word distri-

bution has an impact on the standard deviation of the correlation results of the LDA model. This

observation indicates that the selection of the prior distribution does affect the consistency of the

115



Figure 5.1: Approximate Density of the Difference between Means of Correlations

LDA correlation results, and that if the actual distribution is not actually Dirichlet, the correlations

are more variable (the consistency is reduced).

Figure 5.1 and Figure 5.2 are the density plots for the differences between the two situations.

The density plots support the conclusion that mean differences are greater than 0 and the standard

deviation differences are slightly less than 0.

In Table 5.2, we compared the minimums and maximums of the correlations for different

prior distribution selection for the different simulation setups. The minimums represent the “worst

case scenario” of the agreement between the actual and fitted topics and the maximums represent

the “best case scenario” of the agreement between the actual and fitted topics. We found that for

both minimums and maximums, the results of the Dirichlet prior situation and the Multi-normal

prior situation are significantly different. T-test results are shown in the following.

For the minimums:
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Simulation
Mean Standard Deviation

Dirichlet Multi-normal Diff Dirichlet Multi-normal Diff

Document Length Ratio 0.8630495 0.5928935 0.27015601 0.173282217 0.28601742 -0.11273521

Size of Vocabulary 0.9957998 0.9470680 0.04873178 0.003635918 0.03013319 -0.02649727

Case 1 - D 0.9233224 0.6393638 0.28395857 0.085413442 0.27851440 -0.19310096

Case 2 - D 0.4885453 0.2863155 0.20222980 0.058117816 0.04120124 0.01691658

Case 3 - D 0.8412524 0.5067247 0.33452762 0.165915310 0.24602359 -0.08010828

Case 4 - D 0.8895837 0.5644057 0.32517799 0.124914198 0.28018805 -0.15527385

Case 5 - D 0.6820944 0.3395806 0.34251382 0.209001697 0.09937437 0.10962733

Case 6 - D 0.6403566 0.3049266 0.33542998 0.179568575 0.05625423 0.12331435

Case 7 - D 0.5324785 0.2979629 0.23451566 0.080277692 0.04736699 0.03291070

Case 8 - D 0.8922837 0.5673559 0.32492777 0.125655189 0.28009770 -0.15444251

Case 9 - D 0.8455099 0.5291157 0.31639411 0.189984112 0.25381480 -0.06383069

Case 10 - D 0.8203782 0.4927432 0.32763502 0.197589036 0.23606903 -0.03847999

Case 11 - D 0.7772636 0.4296286 0.34763493 0.211782389 0.19203737 0.01974502

Case 12 - D 0.6983669 0.3299725 0.36839440 0.207920111 0.11060003 0.09732008

Case 1 - V 0.9909400 0.8949841 0.09595598 0.009959151 0.07169366 -0.06173451

Case 2 - V 0.7231141 0.4102916 0.31282249 0.162365088 0.11566064 0.04670445

Case 3 - V 0.9854407 0.7808597 0.20458095 0.011647888 0.10272567 -0.09107779

Case 4 - V 0.9855505 0.8428656 0.14268483 0.028662505 0.08788960 -0.05922709

Case 5 - V 0.9293559 0.4831696 0.44618635 0.079609538 0.12551777 -0.04590823

Case 6 - V 0.8648660 0.4281191 0.43674693 0.133973932 0.11055977 0.02341417

Case 7 - V 0.7386765 0.4096311 0.32904547 0.168970412 0.11181846 0.05715196

Case 8 - V 0.9863657 0.8585832 0.12778246 0.028664616 0.06540253 -0.03673791

Case 9 - V 0.9872396 0.8080241 0.17921554 0.008795234 0.08991501 -0.08111978

Case 10 - V 0.9846817 0.7793463 0.20533547 0.010832133 0.08238965 -0.07155752

Case 11 - V 0.9727901 0.6779856 0.29480446 0.031059964 0.12863121 -0.09757125

Case 12 - V 0.9320594 0.4715663 0.46049309 0.061744126 0.12637961 -0.06463548

Average 0.845 0.564 0.281 0.106 0.141 -0.0349

Table 5.1: Comparing the Mean and the Standard Deviation of the Correlations between Fitted and
True Topics for LDA using the Dirichlet Prior and LDA using the Multi-normal Prior
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Figure 5.2: Approximate Density of the Difference between Standard Deviations of Correlations
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t = 9.8112, df = 25, p-value = 4.704e-10

95 percent confidence interval:

0.2423131 0.3710734

For the maximums:

t = 5.2548, df = 25, p-value = 1.93e-05

95 percent confidence interval:

0.08403519 0.19236665

Based on the result of hypothesis testing, we found that under we have sufficient evidence

(using α = 0.05) to conclude that the selection of the prior distribution of the topic-word distribution

has an impact on both the “worst case scenario” and the ”best case scenario” of the correlation results

of the LDA model. This observation indicates that the selection of the prior distribution does affect

on every aspects of the LDA correlation results, and that if the actual distribution is not actually

Dirichlet, the correlations are decreasing.

Since the type of the prior distribution appears to have such a large impact on quality of

the LDA results, the details of the analysis of the other factors will be discussed separately for each

prior distribution.

5.1.2.2 Document Length Ratio

We summarized the document length ratio results in Table 5.3 (Dirichlet Prior) and Table

5.4 (Multi-normal Prior). For each table, the values are computed based on the observed correlations

from all the simulation setups for the given document length ratio. The means of the correlations

appears to have a logarithmic relationship with the document length ratio. The linear regression

results between the correlation and the logarithm of the document length ratio is shown below:

For the Dirichlet prior situation:

Call:

lm(formula = m ~ log(level), data = docl_d)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.761114 0.008442 90.16 < 2e-16 ***

log(level) 0.082810 0.005077 16.31 3.15e-12 ***
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Simulation
Min Max

Dirichlet Multi-normal Diff Dirichlet Multi-normal Diff

Document Length Ratio 0.4136946 0.1808482 0.2328464 0.9953444 0.9572978 0.038046576

Size of Vocabulary 0.8982850 0.4607374 0.4375476 0.9986916 0.9907327 0.007958923

Case 1 - D 0.7221651 0.18991219 0.53225296 0.9970085 0.9633320 0.033676481

Case 2 - D 0.3572045 0.19301718 0.16418727 0.6140260 0.3711413 0.242884687

Case 3 - D 0.5331328 0.19951180 0.33362104 0.9898852 0.8453508 0.144534361

Case 4 - D 0.5401770 0.20892958 0.33124738 0.9947616 0.9158051 0.078956573

Case 5 - D 0.3981657 0.20763680 0.19052892 0.9529343 0.5317158 0.421218512

Case 6 - D 0.3740322 0.21193152 0.16210072 0.9064544 0.4325858 0.473868620

Case 7 - D 0.3635195 0.22297562 0.14054384 0.7157354 0.4055980 0.310137425

Case 8 - D 0.5991129 0.17564703 0.42346591 0.9960429 0.9352530 0.060789883

Case 9 - D 0.3706171 0.18112562 0.18949151 0.9931609 0.8690341 0.124126781

Case 10 - D 0.4241140 0.20072349 0.22339047 0.9912712 0.8234239 0.167847289

Case 11 - D 0.4130986 0.17924078 0.23385787 0.9846282 0.7618011 0.222827143

Case 12 - D 0.3678986 0.18969382 0.17820478 0.9522259 0.5473254 0.404900533

Case 1 - V 0.8982850 0.46073739 0.43754756 0.9986916 0.9907327 0.007958923

Case 2 - V 0.4094030 0.12947832 0.27992466 0.9956687 0.8923595 0.103309188

Case 3 - V 0.8967249 0.26848390 0.62824103 0.9969378 0.9503589 0.046578914

Case 4 - V 0.6322713 0.46169570 0.17057562 0.9985751 0.9766019 0.021973187

Case 5 - V 0.3664223 0.22589241 0.14052992 0.9953750 0.8965963 0.098778767

Case 6 - V 0.3095097 0.22650972 0.08300001 0.9935278 0.8658685 0.127659340

Case 7 - V 0.4125841 0.09056111 0.32202298 0.9910559 0.8253392 0.165716715

Case 8 - V 0.6498209 0.52605254 0.12376840 0.9989129 0.9766573 0.022255619

Case 9 - V 0.9431696 0.34320869 0.59996096 0.9978920 0.9671153 0.030776727

Case 10 - V 0.9312748 0.43920921 0.49206559 0.9991755 0.9821331 0.017042405

Case 11 - V 0.6826331 0.25638958 0.42624352 0.9949328 0.9385297 0.056403117

Case 12 - V 0.4968585 0.00000000 0.49685852 0.9920525 0.8290552 0.162997255

Average 0.554 0.247 0.307 0.963 0.825 0.138

Table 5.2: Comparing the Min and the Max of the Correlations between Fitted and True Topics for
LDA using the Dirichlet Prior and LDA using the Multi-normal Prior
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Figure 5.3: The Regression Plot of the Mean Correlation vs logarithm of the Document Length
Ratio, Dirichlet prior

For the Multi-normal prior situation:

lm(formula = m ~ log(level), data = docl_n)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.452384 0.002460 183.90 <2e-16 ***

log(level) 0.106757 0.001479 72.17 <2e-16 ***

The regression plot for the Dirichlet prior situation is illustrated in Figure 5.3, and the

regression plot for the Multi-normal prior situation is illustrated in Figure 5.4. A 99% confidence

interval is also showed in the plots. The results showed that even though correlations increase for

both, the quality of the LDA model is much more predictable when the multi-normal prior is used.

The standard deviation of the correlations shows a similar logarithmic relationship with
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Figure 5.4: The Regression Plot of the Mean Correlation vs logarithm of the Document Length
Ratio, Multi-normal prior
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mean when the multi-normal prior is adopted. When the Dirichlet prior is adopted, the standard

deviation gets relatively stable after the document length ratio is greater than 1. The regression

results are shown below.

For the Dirichlet prior situation:

lm(formula = std ~ log(level), data = docl_d_std)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.156794 0.004611 34.003 <2e-16 ***

log(level) 0.003305 0.002773 1.192 0.249

For the Multi-normal prior situation:

lm(formula = m ~ log(level), data = docl_n_sd)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.138737 0.002651 52.33 <2e-16 ***

log(level) 0.050487 0.001594 31.67 <2e-16 ***

The regression plot for the Dirichlet prior situation is illustrated in Figure 5.5, and the

regression plot for the Multi-normal prior situation is illustrated in Figure 5.6. A 99% confidence

interval is also showed in the plots. We can see from the plots and Table 5.3 that the standard

deviation for the Dirichlet prior situation reached to its maximum when the document length ratio

is one third and then decreased and stabilized after 4. On the other hand, the

The minimum and maximum of the correlations are also tested through regression. The

regression results are shown below. Figure 5.7 and Figure 5.8 illustrate the regression lines for min-

imum of the correlation, and Figure 5.9 and Figure 5.10 illustrate the regression lines for maximum

of the correlation. We can see that although the regression coefficients for all the regression models

are significant (at α = 0.05), the regression plots show that the fitting is not ideal. Hence, even

though we have not reached the best possible model of the relationship, we still can conclude that

the “worst case scenario” and the “best case scenario” does have positive relationship with document

length ratio and the correlations increased as the document length ratio increased.

For the minimum of the correlation, Dirichlet prior situation:
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Figure 5.5: The Regression Plot of the Standard Deviation of Correlation vs logarithm of the
Document Length Ratio, Dirichlet prior
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Figure 5.6: The Regression Plot of the Standard Deviation of Correlation vs logarithm of the
Document Length Ratio, Multi-normal prior
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lm(formula = min ~ log(level), data = docl_d_min)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.448146 0.005439 82.388 < 2e-16 ***

log(level) 0.027317 0.003271 8.351 1.32e-07 ***

For the minimum of the correlation, Multi-normal prior situation:

lm(formula = m ~ log(level), data = docl_n_min)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.253965 0.003192 79.55 < 2e-16 ***

log(level) 0.030070 0.001920 15.66 6.24e-12 ***

For the maximum of the correlation, Dirichlet prior situation:

lm(formula = max ~ log(level), data = docl_d_max)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.929325 0.008150 114.033 < 2e-16 ***

log(level) 0.043067 0.004901 8.787 6.28e-08 ***

For the maximum of the correlation, Multi-normal prior situation:

lm(formula = m ~ log(level), data = docl_n_max)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.669265 0.009290 72.04 < 2e-16 ***

log(level) 0.148727 0.005587 26.62 6.58e-16 ***

5.1.2.3 Size of Vocabulary

We found that the size of vocabulary does not appear to have much of an impact on the

quality of the LDA results measured by correlation. The overall scatter plots of the size of vocabulary

vs correlation are shown in Figure 5.11 (Dirichlet prior situation) and Figure 5.12 (Multi-normal
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Figure 5.7: The Regression Plot of the Minimum of Correlation vs logarithm of the Document
Length Ratio, Dirichlet prior
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Figure 5.8: The Regression Plot of the Minimum of Correlation vs logarithm of the Document
Length Ratio, Multi-normal prior
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Figure 5.9: The Regression Plot of the Maximum of Correlation vs logarithm of the Document
Length Ratio, Dirichlet prior
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Figure 5.10: The Regression Plot of the Maximum of Correlation vs logarithm of the Document
Length Ratio, Multi-normal prior
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Level Document Length Ratio Mean Standard Deviation Min Max

1 1/10 0.498 0.101 0.374 0.742

2 1/9 0.515 0.124 0.371 0.800

3 1/8 0.580 0.137 0.357 0.808

4 1/7 0.578 0.155 0.396 0.859

5 1/6 0.623 0.153 0.414 0.835

6 1/5 0.646 0.146 0.395 0.872

7 1/4 0.668 0.169 0.435 0.901

8 1/3 0.704 0.190 0.426 0.939

9 1/2 0.748 0.180 0.445 0.935

10 1 0.811 0.184 0.474 0.975

11 2 0.855 0.171 0.452 0.987

12 3 0.871 0.169 0.470 0.991

13 4 0.887 0.152 0.533 0.993

14 5 0.894 0.158 0.518 0.993

15 6 0.899 0.153 0.480 0.996

16 7 0.902 0.150 0.521 0.996

17 8 0.902 0.155 0.511 0.997

18 9 0.909 0.157 0.484 0.997

19 10 0.914 0.153 0.459 0.997

Table 5.3: Summary Descriptive Statistics for Each Level of Document Length Ratio with Dirichlet
prior
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Level Document Length Ratio Mean Standard Deviation Min Max

1 1/10 0.228 0.0368 0.176 0.373

2 1/9 0.228 0.0277 0.181 0.292

3 1/8 0.232 0.0265 0.190 0.294

4 1/7 0.247 0.0384 0.190 0.360

5 1/6 0.262 0.0382 0.179 0.368

6 1/5 0.272 0.0412 0.220 0.398

7 1/4 0.279 0.0649 0.201 0.483

8 1/3 0.319 0.0781 0.240 0.528

9 1/2 0.365 0.104 0.236 0.619

10 1 0.454 0.143 0.277 0.721

11 2 0.541 0.192 0.290 0.849

12 3 0.573 0.210 0.304 0.863

13 4 0.602 0.218 0.284 0.881

14 5 0.623 0.224 0.312 0.913

15 6 0.641 0.230 0.305 0.917

16 7 0.655 0.242 0.284 0.948

17 8 0.674 0.233 0.319 0.952

18 9 0.692 0.230 0.318 0.957

19 10 0.696 0.238 0.311 0.963

Table 5.4: Summary Descriptive Statistics for Each Level of Document Length Ratio with Multi-
normal prior
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Estimated Coefficient P-value

Mean, Multi-normal 0.0004238 0
Mean, Dirichlet -0.0003801 0

Standard Deviation, Multi-normal 0.0001318 0.06
Standard Deviation, Dirichlet 0.0007077 0

Min, Multi-normal 0.0005447 0.002
Min, Dirichlet -0.0001886 0.0003

Max, Multi-normal -0.0000226 0.79
Max, Dirichlet -0.0000056 0.316

Table 5.5: Summary of the Estimated regression coefficients of the simple linear regression model
for Size of Vocabulary analysis

Size of Vocabulary Mean Standard Deviation Min Max

5 19 0.955593 0.085632 0.366422 0.999175
20 29 0.938193 0.099161 0.45196 0.998364
30 39 0.93041 0.119114 0.416111 0.998814
40 49 0.916357 0.14733 0.30951 0.997986
50 59 0.922785 0.122707 0.492362 0.997592
60 69 0.926149 0.11653 0.439073 0.997592
70 79 0.915361 0.137696 0.424562 0.997953
80 89 0.920834 0.132057 0.446152 0.996805
90 100 0.920839 0.135886 0.424928 0.997132

Table 5.6: Summary Descriptive Statistics for Categories of Size of Vocabulary with Dirichlet prior

prior situation). There is no observable trend in those plots. We categorized the levels of size of the

vocabularies and summarized the descriptive statistics in Table 5.6 and Table 5.7. The simple linear

regression analysis for the means, standard deviations, minimums, and maximums also showed that

the size of vocabulary has nearly no impact to the correlation (The value of the correlation coefficient

is close to zero or the p-value that testing if the coefficient is different with zero is higher than 0.05).

Table 5.5 summarized the results.

5.1.2.4 Document-topic Distribution

In the previous sections, we simply used correlation as the measure of quality of the LDA

model. We would like to keep using it in the document structure analysis, but there are some

problems about that. For each selected document-topic distribution, it is impossible to selected one

set of parameters (size of vocabulary, document length ratio, topic-word distributions, etc.) that

is the “representative” of all possible combinations of factors. Hence, instead of using one single

correlation to evaluate the quality of the LDA model for a specific document-topic distribution,

we conducted the analysis of the size of vocabulary and document length ratio for each selected
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Figure 5.11: Size of Vocabulary vs Correlations between the True topic and Fitted Topic, Dirichlet
Prior

Size of Vocabulary Mean Standard Deviation Min Max

5 19 0.66046 0.210222 0.090561 0.990733
20 29 0.670258 0.211709 0.22651 0.976657
30 39 0.659067 0.212596 0.243198 0.960194
40 49 0.665957 0.21917 0.245726 0.946145
50 59 0.674401 0.221061 0.237259 0.952297
60 69 0.674405 0.213673 0.228559 0.959229
70 79 0.677123 0.215745 0.281333 0.961233
80 89 0.683308 0.226531 0.26202 0.959477
90 100 0.701945 0.215614 0.269247 0.96488

Table 5.7: Summary Descriptive Statistics for Categories of Size of Vocabulary with Multi-normal
prior
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Figure 5.12: Size of Vocabulary vs Correlations between the True topic and Fitted Topic, Multi-
normal Prior
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Figure 5.13: Heatmap Summary of Document Length Ratio Simulation Results

Figure 5.14: Heatmap Summary of Size of Vocabulary Simulation Results

document-topic distribution so that we can learn a lot more in details about the impact of the

document structure. To avoid a large and complicated table, we use pictures so that it is easier

to compare between the results from different document-topic distributions. Figure 5.13 and 5.14

are the heat-maps of the simulation results for document-topic distribution from Chapter 4. The

strength of the color is related to the value of the correlation.

Table 5.8 shows the mean correlations for the two extreme cases, and the difference between

the two. The percentage is found by dividing the difference by the Case 1 value. The results suggest

that the document structure does affect the quality of the LDA results. Numerically, the quality

measured by correlations can decrease up to 55.2% from the best case scenario to the worst case

scenario.

Table 5.9 shows the mean correlations for the two mixture cases. “Diff 1-3” means the

difference between Case 1 and Case 3. Although the two mixture cases are designed to be in the

middle between the two extreme cases, we find that both Case 3 and Case 4 are closer to Case 1

than to Case 2. This suggests that the quality of LDA results are not changing in a linear fashion

with respect to the document length ratio.
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Document Length Ratio Size of Vocabulary
Prior Dirichlet Multi-normal Dirichlet Multi-normal

Case 1 0.923 0.639 0.991 0.895
Case 2 0.489 0.286 0.723 0.410

Diff 0.435 0.353 0.268 0.485
Percentage 47.1 55.2 27.0 51.2

Table 5.8: Average Correlation for Extreme Cases

Document Length Ratio Size of Vocabulary
Prior Dirichlet Multi-normal Dirichlet Multi-normal

Case 3 0.841 0.507 0.985 0.781
Case 4 0.890 0.564 0.986 0.843
Diff 1-3 0.082 0.132 0.006 0.114
Diff 1-4 0.033 0.075 0.005 0.052
Diff 3-2 0.352 0.221 0.262 0.371
Diff 4-2 0.401 0.278 0.263 0.433

Table 5.9: Average Correlation for Mixture Cases

Table 5.10 shows the mean correlations for the first group of the analytical mixture cases

combined with the Case 2. We add the Case 2 results here because the first group of the analytical

mixture cases is designed to evaluate the impact of the document-topic distribution when the dis-

tribution is close to the Case 2 situation. Table 5.11 shows the differences of the mean correlations.

We found that although the document structures measured by the difference between the proportion

of two topics are evenly spaced, the quality of LDA results measured by correlations are not. Also,

the pattern of the correlation differences are different between the Dirichlet prior situation and the

Multi-normal prior situation.

Table 5.12 shows the mean correlations for the second group of the analytical mixture cases

combined with the Case 2 again, for the same reason as above. We found that from Case 8 to Case

11, these four cases are mixtures of documents from the two extreme cases. Case 8 contains 50%

documents that solely depends on one topic and the other 50% documents are evenly distributed

Document Length Ratio Size of Vocabulary
Prior Dirichlet Multi-normal Dirichlet Multi-normal

Case 5 0.682 0.340 0.929 0.483
Case 6 0.640 0.305 0.865 0.428
Case 7 0.532 0.298 0.739 0.410
Case 2 0.489 0.286 0.723 0.410

Table 5.10: Average Correlation for Analytical Mixture Cases, First group
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Document Length Ratio Size of Vocabulary
Prior Dirichlet Multi-normal Dirichlet Multi-normal

Diff 5-6 0.042 0.035 0.064 0.055
Diff 6-7 0.108 0.007 0.126 0.018
Diff 7-2 0.043 0.012 0.016 0

Table 5.11: Average Correlation Differences for Analytical Mixture Cases, First group

Document Length Ratio Size of Vocabulary
Prior Dirichlet Multi-normal Dirichlet Multi-normal

Case 8 0.892 0.567 0.986 0.859
Case 9 0.856 0.529 0.987 0.808
Case 10 0.820 0.493 0.985 0.779
Case 11 0.777 0.430 0.973 0.678
Case 12 0.698 0.330 0.932 0.472
Case 2 0.489 0.286 0.723 0.410

Table 5.12: Average Correlation for Analytical Mixture Cases, Second group

mixtures of two topics. Surprisingly, the quality of the LDA results are not changed as much as

what the 50% of mixture might suggest, especially when comparing Figure 4.40 and 4.26. In the

left hand side of Figure 4.40, the correlation is almost always close to 1 after a vocabulary size of

25. For Figure 4.39 which presents the document length ratio analysis, the left hand side of the

graph shows the correlation higher than 0.75 when the document length ratio is greater than 0.14.

This is a very good value when compared with our “good” benchmark in Figure 4.25. However, the

right hand side shows the correlation is around 0.25 when the document length ratio is less than

0.25. This is a bad value when compared with our “bad” benchmark in Figure 4.27. The above

observation indicates that the LDA model is sensitive to the prior distribution, and the impact of

the document length ratio is greater than the size of vocabulary.

We found that a 10% of document that is constructed based on one topic may increase the

quality of LDA results measured by correlation for at least 34.6% (0.25 out of 0.723).

5.1.3 Summary of the Interactions between Factors

We mentioned the interaction related to the type of prior distributions and topic-word

distribution in the previous sections. In this section, we will also discuss the interactions between

the other factors. We primarily focus on the interaction between the document structures and the

other two factors.
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5.1.4 Details of the Interactions between Factors

5.1.4.1 Document Structure and Document Length Ratio Interaction

The data for comparing Case 1 in Figure 4.25 with Case 2 in Figure 4.25 have been sum-

marized in Table 5.13. We note the following observations:

1. When the document length ratio is less than 1/10, the difference between correlations of Case

1 and Case 2 is 0.3058689 under the Dirichlet prior situation, and only 0.0134565 under the

Multi-normal prior situation.

2. The correlation values start to vary after a certain level for each case and each prior distribution.

The above observations suggest that the quality of the LDA model is impacted by the

interactions between the document length ratio and the type of the topic-word distribution.

From Case 5, Case 6, and Case 7, we found that the quality of the LDA results measured by

correlation does not change much when document length ratio changes, when the ratio is less than

1 and topics are evenly (or close to evenly) distributed within each document. These conditions are

true for many real applications.

From Cases 8 to 12, we found that the upper bound of the quality of LDA results measured

by correlation changed very little as long as there exists at least one document that is constructed

based on only one topic. This leads to the proposal (discussed later) of using pre-processing steps

to increase the quality of LDA results.

5.1.4.2 Document Structure and Size of Vocabulary Interaction

As discussed previously, the size of vocabulary itself does not show a strong impact on the

quality of LDA results. But it is interesting to find that the quality of LDA results measured in

correlation has a decreasing trend as the size of vocabulary increasing under certain configurations.

Figure 4.28, 4.34, 4.36, 4.38, and 4.48 all show this result.

5.1.5 Pre-processing Step

Based on the analyses above, we present a pre-processing step which is designed to increase

the quality of LDA results measured by correlation.
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Document Length Ratio
Dirichlet Multi-normal

Case 1 Case 2 Case 1 Case 2

1/10 0.7320681 0.4261992 0.2233117 0.2098552
1/9 0.7819046 0.463527 0.2580075 0.2229907
1/8 0.7934823 0.4613425 0.2688533 0.2331432
1/7 0.8467171 0.4170367 0.2169964 0.2304878
1/6 0.8317429 0.4433219 0.3203692 0.2753751
1/5 0.8702315 0.4804467 0.3851157 0.2600644
1/4 0.8997272 0.4765887 0.4682863 0.2646225
1/3 0.8927128 0.4511822 0.5159336 0.2655088
1/2 0.9337654 0.5059134 0.6002811 0.2906777
1 0.9732089 0.4804519 0.6976041 0.3089962
2 0.9849651 0.4947157 0.7889799 0.3064896
3 0.9906245 0.4847387 0.8475498 0.3124412
4 0.9922135 0.5350713 0.8792623 0.284833
5 0.9932106 0.5199544 0.9062114 0.3199099
6 0.9952437 0.4819796 0.9168948 0.3138405
7 0.9950622 0.5674986 0.9437485 0.3157109
8 0.9963636 0.5666718 0.9454442 0.3450971
9 0.9964893 0.5188933 0.9459267 0.3282402
10 0.9963287 0.4938605 0.9604776 0.33167

Table 5.13: Compare Case 1 and Case 2 Mean Correlations for different Document Length Ratio

We have observed that when there exists a document that is constructed only from one

topic, the quality of the LDA results measured by correlation was increased significantly. Hence, a

possible pre-processing step is described as following: For a given corpus, if there exists one topic-

word distribution that is believed to contained only of the topics, we can then generate a document

based on this topic-word distribution, and then add this document to the corpus to increase the

quality of the LDA results.

This pre-processing step is similar with adding an informative prior. But there is one

difficulty with using informative priors we could not resolve, namely the informative prior affects

all topic-word distributions at the same time. The pre-processing step was designed to impact only

selected topic-word distributions. Also, it turned out to be difficult (if not impossible) to determine

how to adjust the prior based on our belief of the existing of the one specific topic. We did not

pursue this approach any further in this research since the pre-processing step as stated is relatively

easy to adapt, and works well in increasing the quality of LDA.

The following simulation verified that the pre-processing step does increase the quality of

LDA results.
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Factor Value

Prior Distribution Multi-normal
Size of Vocabulary 1000

Document Length Ratio 0.2
Number of Documents 300

Number of Topics 2

Table 5.14: Parameter Selection for Pre-processing Corpus Construction

LDA Topic 1 LDA Topic 2
True Topic 1 0.2817226 0.3097747
True Topic 2 0.2819809 0.3186270

Table 5.15: Correlations between the True Topics and Fitted LDA Topics for the Original Corpus

5.1.5.1 Simulation to Verify the Effectiveness of the Pre-processing Step

The pre-processing step as described above turns the unsupervised method to a semi-

supervised method. We considered comparing our method with other semi-supervised methods

in the quality increasing. However it is difficult to make a valid comparison because it is difficult

to evaluate the amount of supervision a method requires. For now, we present a simulation study

to learn if the pre-processing step actually increase the quality. An important extension of this

research would be to determine exactly how the improvement found for the pre-processing step

compares to the improvement for other semi-supervised methods. We will create a corpus such that

each document in this corpus is constructed only from one topic. Hence, the document structure is

a generalization of the Case 1. Table 5.14 shows the value we take for other necessary parameters.

We take the document length ratio to be 0.2 based on the observations of the real corpus in Chapter

4. It is worth noting that it is very rare for a real corpus to contain only two topics. Hence, those

corpus that contain only two topics usually does not have many documents. We choose the number

of documents to be 300 so that it is large enough to mimic many real world documents applications.

Next, we perform the LDA model to find the estimated topics. Figure 5.15 shows the

correlation structure of the fitted topics and the true topics. Table 5.15 illustrates the correlations

between the topics. Based on the same analyses used in Chapter 4, we find the mean correlation for

this result is 0.2958778.

Then we construct a single document that is only from one topic that has the same length

with others and add this document to the corpus, fit LDA model again and computed the correlations

141



Figure 5.15: Correlation Structure of the True and Fitted Topic-word Distributions without the
pre-processing step
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LDA Topic 1 LDA Topic 2
True Topic 1 0.2335280 0.3601863
True Topic 2 0.3202903 0.2802510

Table 5.16: Correlations between the True Topics and Fitted LDA Topics for the Corpus with
Additional Document

for the new corpus. Table 5.16 shows the correlations. The mean correlation equals to 0.3402383

under this situation. Hence, we observed a 15.0% increase in the quality of the LDA results measured

by correlation.

For the added document that is constructed from only one topic, the only characteristic

one may change is the document length. Hence, we conducted an additional simulation to analyze

the impact of the document length. We constructed documents from length 200 to 2000 increased

by 10, and computed the correlations of the LDA results for the original corpus combined with

each of the documents. Figure 5.16 shows the results. We observed that the document length

does not have impact on the correlation. We fitted a linear regression model of Correlation =

β0 + β1Document Length and the results are shown below.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.169e-01 2.383e-03 132.988 <2e-16 ***

‘Document Length‘ -9.409e-08 1.957e-06 -0.048 0.962

5.2 Future Work

There are three directions to further study the performance of LDA with different topic and

document structures.

1. Add more factors to the simulation to allow combinations that are very similar to real world

situations.

2. Study more detail of the interactions.

3. Create more advanced document structures that are again, very similar to real world situations.

Other characteristics discussed in Chapter 3 can also be examined through simulation stud-

ies. The number of true topics and the number of fitted topics both take on more levels to construct
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Figure 5.16: Correlation Results for Different Document Length of the Added Document
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more complicated simulation configurations. The interactions between factors are the other possible

direction. A more carefully designed simulations experiment should allow a more effective measure

of the impact of the interactions. We may generate comparisons between the document length ratio

and the vocabulary size. More advanced document structures is very helpful in learning the quality

of LDA model results under real world applications. The document structure may vary even more

when the number of true topics and the number of fitted topics are introduced into the simulation,

the document structure may vary significantly.

In this chapter, we completed analysis on the simulation results from Chapter 4. We found

that the type of the topic-word distributions significantly impact the quality of LDA model. Also, the

document length ratio is positively related with the quality of the LDA model and the relationship

is close to logarithmic and the size of vocabulary does not have a significant impact on the quality

of the LDA model. The document structure represented by the document-topic distribution has

impact on the quality of the LDA model in a complex way and there exist interactions between

these factors that suggested a pre-processing step that increases the quality of the LDA results.
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Appendix A R code in this dissertation

We used the following packages:

library(topicmodels)

library(tidytext)

library(ggplot2)

library(tidyr)

library(dplyr)

library(stringr) #common string functions

library(tidyverse)

library(tm)

library(MCMCpack)

library(reshape2)

A.1 Checking Impact of the Size of Vocabulary

cbind(reu_voc,news_sov,ap_sov,imdb_sov)->sov

sov<-sov%>%as.tibble()%>%

dplyr::select(Reuters21578=reu_voc,Newsgroups=news_sov,AP=ap_sov,aclIMDB=imdb_sov)%>%

mutate(Documents=row_number()+4)

sov%>%filter(Documents<20|(Documents%%10==0 & Documents<100)|Documents%%100==0)%>%

dplyr::select(Documents,Reuters21578,Newsgroups,AP,aclIMDB)->sov

print(sov,n=40)

cbind(reu_voc,news_sov,ap_sov,imdb_sov)->sov_full

sov_full<-sov_full%>%as.tibble()%>%

dplyr::select(Reuters21578=reu_voc,Newsgroups=news_sov,AP=ap_sov,aclIMDB=imdb_sov)%>%

mutate(Documents=row_number()+4)
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sov_full%>%melt(id=c("Documents"),varnames=c("Reuters21578","Newsgroups","AP","aclIMDB"),

value.name = "Vocabulary")%>%

mutate(Corpus=variable)->sov_full

sov_full%>%

ggplot(aes(x=Documents,y=Vocabulary,group=Corpus,color=Corpus))+

geom_path()+

theme(legend.position = "top")+

xlab("Number of Documents")+

ylab("Vocabulary Size")

A.2 Generate Corpus

The following functions are used to generate corpus.

## Function to generate corpus

simulateCorpus <- function(

M, # number of documents

docLengths, # vector of doc lengths

K, # Number of Topics

Theta, # Document*Topic distribution matrix M*K-Dimension

Phi # Topic*term distribution matrix K*nTerms-Dimension

)

{

## Create corpus as a vector of strings

corp <- sapply(1:M,generateDoc,docLengths,Theta,Phi)

return(corp)

}
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## generate observed document from Theta, Phi, and docLengths

generateDoc <- function(index,docLengths,Theta, Phi){

# docLengths is the length of documents in the corpus

# Theta is document-topic distribution for this document

# Phi is the topic-terms distribution matrix over all topics (term by topic)

#testing the above function

# topic_dist <- c(0.3,0.3,0.4)

# terms_topics_dist <- matrix(c(1,0,0,0,1,0,0,0,1),ncol=3)

# t<-generateWord(topic_dist,terms_topics_dist)

# t

doclengths <- docLengths[index] # specific doc length

topic_dist <- Theta[index,] # specific topic distribution for this doc

terms_topics_dist <- Phi

## create a vector of possible terms

doc_v<-sapply(1:doclengths, generateWord,topic_dist,terms_topics_dist)

## return a string format with " " as separator.

return(paste(doc_v,collapse = " "))

}

## Function to generate individual word from given Theta and Phi

generateWord <- function(index,topic_dist, terms_topics_dist){

# index is for lapply

# topic_dist is specific topic distribution for this document

# terms_topics_dist is the terms distribution matrix over all topics (term by topic)

## Choose topic for this word

topic <- rmultinom(1,1, topic_dist)
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### topic is now a vector of 0s and 1. Pick the row index of 1

topic_n <- which(topic == 1)

### to test:print(topic_n)

## Choos a term from that topic’s term distribution

term <- rmultinom(1,1,terms_topics_dist[topic_n,])

### term is now a vector of 0s and 1. return the term index (integer)

return(which(term == 1))

}

A.3 Checking the impact of Document length ratio

burnin <- 4000

iter <- 2000

thin <- 500

set.seed(2345)

M=10

K=2

#constuct theta

Theta_10<-Construct_doc_topic(M, K, random=0, singleton=1, alpha=1/K, Alpha=FALSE)

Topics <- paste0("True_Topic_", seq(K))

Documents <- paste("Document", seq(M))

colnames(Theta_10) <- Topics

rownames(Theta_10) <- Documents

nTerms=100

docLengths_50=c(rep(50,M))

docLengths_100=c(rep(100,M))

Terms <- paste("Term",seq(nTerms))
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corr_docLength("one_topic", min=1,max=10, nTerms=100, verbose = T,std=1

,Theta=Theta_10)->docl_sim

docl_nsim<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=100, verbose=T,std=1)

docl_sim%>%melt(value.name = "corr", varnames=c("Doclengths","True"))%>%

mutate(Doclengths=as.factor(round(rep(c(1/c(10:1),1:10),K),2)))%>%

ggplot(aes(factor(Doclengths), corr, group=True,color=factor(True)))+

geom_path()+

geom_point()+

ylim(0,1)+

xlab("Document Length Ratio")+

ylab("Correlation")+

labs(color=’True Topics’) +

theme(legend.position = c(0.8, 0.2))

docl_nsim%>%melt(value.name = "corr", varnames=c("Doclengths","True"))%>%

mutate(Doclengths=as.factor(round(rep(c(1/c(10:1),1:10),K),2)))%>%

ggplot(aes(factor(Doclengths), corr, group=True,color=factor(True)))+

geom_path()+

geom_point()+

ylim(0,1)+

xlab("Document Length Ratio")+

ylab("Correlation")+

labs(color=’True Topics’) +

theme(legend.position = c(0.8, 0.2))

A.4 Checking the Impact of the Document structure

# construct Thetas
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byrow=T)),times=5),]

burnin <- 4000

iter <- 2000

thin <- 500

set.seed(2345)

M=10

K=2

Topics <- paste0("True_Topic_", seq(K))

Documents <- paste("Document", seq(M))

Theta_twist_1<-rbind(matrix(0.5,ncol=2,nrow=2),matrix(c(1,0,0,1,1,0,0,1), ncol=2, byrow = T), 

matrix(c(0.75,0.25,0.25,0.75, 0.75,0.25,0.25,0.75), ncol=2, byrow=T))

Theta_10<-Construct_doc_topic(M, K, random=0, singleton=1, alpha=1/K, Alpha=FALSE) 

Theta_half<-matrix(0.5,ncol=2,nrow=10)

Theta_7525<-matrix(c(0.75,0.25,0.25,0.75),nrow=2, byrow=T)

[rep(1:nrow(matrix(c(0.75,0.25,0.25,0.75),nrow=2, byrow=T)),times=5),] Theta_twist_2<-

rbind(matrix(0.5,ncol=2,nrow=5),

matrix(c(1,0,0,1,1,0,0,1,1,0), ncol=2, byrow = T)

)

Theta_twist_3<-rbind(matrix(0.5,ncol=2,nrow=7),

matrix(c(1,0,0,1,1,0), ncol=2, byrow = T)

)

Theta_twist_4<-rbind(matrix(0.5,ncol=2,nrow=8),

matrix(c(1,0,0,1), ncol=2, byrow = T)

)

Theta_twist_5<-rbind(matrix(0.5,ncol=2,nrow=9),

matrix(c(1,0), ncol=2, byrow = T)

)

Theta_twist_6<-rbind(matrix(.5, ncol=2, nrow=9),

matrix(c(.75,.25), ncol=2, byrow = T))

Theta_twist_7<-rbind(matrix(c(.425,.575,.575,.425,

.425,.575,.575,.425,
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.425,.575,.575,.425,

.425,.575,.575,.425,

.425,.575,.575,.425),

ncol=2)) Theta_twist_8<-

rbind(matrix(c(.45,.55,.55,.45,.45,.55,.55,.45,.45,.55,.55,.45,.45,.55,.55,.45,.45,.55,

.55,.45), ncol=2))

Theta_twist_8_1<-rbind(matrix(c(.475,.525,.525,.475,

.475,.525,.525,.475,

.475,.525,.525,.475,

.475,.525,.525,.475,

.475,.525,.525,.475),

ncol=2))

burnin <- 4000

iter <- 2000

thin <- 500

set.seed(2345)

M=10

K=3

Theta_twist_9<-Construct_doc_topic(M, K, random=0, singleton=1, alpha=1/K, Alpha=FALSE)

Theta_twist_10<-matrix(0.5,ncol=3,nrow=10)

Theta_twist_11<-rdirichlet(10,c(1,1,1))

t1nn<-corr_nTerms(functionname = "one_topic_norm", min=5,max=100,verbose=T, Theta=Theta_twist_1,

save.single=F,std=1)

t1dn<-corr_nTerms(functionname = "one_topic", min=5,max=100,verbose=T, Theta=Theta_twist_1,

save.single=F,std=1)

t1nl<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=1000, verbose=T,save.single=F,
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std=1, Theta=Theta_twist_1)

t1dl<-corr_docLength("one_topic", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_1)

t1nn1<-corr_nTerms(functionname = "one_topic_norm", min=5,max=100,verbose=T, Theta=Theta_10,

save.single=F,std=1)

t1dn1<-corr_nTerms(functionname = "one_topic", min=5,max=100,verbose=T, Theta=Theta_10,

save.single=F,std=1)

t1nl1<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_10)

t1dl1<-corr_docLength("one_topic", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_10)

t1nn2<-corr_nTerms(functionname = "one_topic_norm", min=5,max=100,verbose=T, Theta=Theta_half,

save.single=F,std=1)

t1dn2<-corr_nTerms(functionname = "one_topic", min=5,max=100,verbose=T, Theta=Theta_half,

save.single=F,std=1)

t1nl2<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_half)

t1dl2<-corr_docLength("one_topic", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_half)

t1nn3<-corr_nTerms(functionname = "one_topic_norm", min=5,max=100,verbose=T, Theta=Theta_7525,

save.single=F,std=1)

t1dn3<-corr_nTerms(functionname = "one_topic", min=5,max=100,verbose=T, Theta=Theta_7525,

save.single=F,std=1)

t1nl3<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_7525)

t1dl3<-corr_docLength("one_topic", min=1,max=10, nTerms=1000, verbose=T,save.single=F,
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std=1, Theta=Theta_7525)

t2nn<-corr_nTerms(functionname = "one_topic_norm", min=5,max=100,verbose=T, Theta=Theta_twist_2,

save.single=F,std=1)

t2dn<-corr_nTerms(functionname = "one_topic", min=5,max=100,verbose=T, Theta=Theta_twist_2,

save.single=F,std=1)

t2nl<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_2)

t2dl<-corr_docLength("one_topic", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_2)

t3nn<-corr_nTerms(functionname = "one_topic_norm", min=5,max=100,verbose=T, Theta=Theta_twist_3,

save.single=F,std=1)

t3dn<-corr_nTerms(functionname = "one_topic", min=5,max=100,verbose=T, Theta=Theta_twist_3,

save.single=F,std=1)

t3nl<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_3)

t3dl<-corr_docLength("one_topic", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_3)

t4nn<-corr_nTerms(functionname = "one_topic_norm", min=5,max=100,verbose=T, Theta=Theta_twist_4,

save.single=F,std=1)

t4dn<-corr_nTerms(functionname = "one_topic", min=5,max=100,verbose=T, Theta=Theta_twist_4,

save.single=F,std=1)

t4nl<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_4)

t4dl<-corr_docLength("one_topic", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_4)

t5nn<-corr_nTerms(functionname = "one_topic_norm", min=5,max=100,verbose=T, Theta=Theta_twist_5,
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save.single=F,std=1)

t5dn<-corr_nTerms(functionname = "one_topic", min=5,max=100,verbose=T, Theta=Theta_twist_5,

save.single=F,std=1)

t5nl<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_5)

t5dl<-corr_docLength("one_topic", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_5)

t6nn<-corr_nTerms(functionname = "one_topic_norm", min=6,max=100,verbose=T, Theta=Theta_twist_6,

save.single=F,std=1)

t6dn<-corr_nTerms(functionname = "one_topic", min=6,max=100,verbose=T, Theta=Theta_twist_6,

save.single=F,std=1)

t6nl<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_6)

t6dl<-corr_docLength("one_topic", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_6)

t7nn<-corr_nTerms(functionname = "one_topic_norm", min=6,max=100,verbose=T, Theta=Theta_twist_7,

save.single=F,std=1)

t7dn<-corr_nTerms(functionname = "one_topic", min=6,max=100,verbose=T, Theta=Theta_twist_7,

save.single=F,std=1)

t7nl<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_7)

t7dl<-corr_docLength("one_topic", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_7)

t8nn<-corr_nTerms(functionname = "one_topic_norm", min=6,max=100,verbose=T, Theta=Theta_twist_8,

save.single=F,std=1)

t8dn<-corr_nTerms(functionname = "one_topic", min=6,max=100,verbose=T, Theta=Theta_twist_8,
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save.single=F,std=1)

t8nl<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_8)

t8dl<-corr_docLength("one_topic", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_8)

t9nn<-corr_nTerms(functionname = "one_topic_norm", min=6,max=100,verbose=T, Theta=Theta_twist_8_1,

save.single=F,std=1)

t9dn<-corr_nTerms(functionname = "one_topic", min=6,max=100,verbose=T, Theta=Theta_twist_8_1,

save.single=F,std=1)

t9nl<-corr_docLength("one_topic_norm", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_8_1)

t9dl<-corr_docLength("one_topic", min=1,max=10, nTerms=1000, verbose=T,save.single=F,

std=1, Theta=Theta_twist_8_1)

list_of_corr_nn<-c("t1nn1","t1nn2","t1nn3","t1nn","t7nn",

"t8nn","t9nn","t2nn","t3nn","t4nn","t5nn","t6nn")

list_of_corr_dn<-c("t1dn1","t1dn2","t1dn3","t1dn","t7dn",

"t8dn","t9dn","t2dn","t3dn","t4dn","t5dn","t6dn")

list_of_corr_nl<-c("t1nl1","t1nl2","t1nl3","t1nl","t7nl",

"t8nl","t9nl","t2nl","t3nl","t4nl","t5nl","t6nl")

list_of_corr_dl<-c("t1dl1","t1dl2","t1dl3","t1dl","t7dl",

"t8dl","t9dl","t2dl","t3dl","t4dl","t5dl","t6dl")

list_of_names<-paste("Case ",seq(1,length(list_of_corr_nn),1))

key1<-cbind(list_of_corr_nn,list_of_names)%>%as.tibble()%>%set_names(c("From","Cases"))

key2<-cbind(list_of_corr_dn,list_of_names)%>%as.tibble()%>%set_names(c("From","Cases"))
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key3<-cbind(list_of_corr_nl,list_of_names)%>%as.tibble()%>%set_names(c("From","Cases"))

key4<-cbind(list_of_corr_dl,list_of_names)%>%as.tibble()%>%set_names(c("From","Cases"))

single_wrap_n<-function(name){

return(name%>%get()%>%as.data.frame()%>%

gather(Topic,Correlation)%>%

mutate(Topic=recode(Topic,V1=1,V2=2))%>%

group_by(Topic)%>%

mutate(nTerms=row_number())%>%

ungroup()%>%

mutate(From=name))

}

single_wrap_l<-function(name){

return(name%>%get()%>%as.data.frame()%>%

gather(Topic,Correlation)%>%

mutate(Topic=recode(Topic,V1=1,V2=2))%>%

group_by(Topic)%>%

mutate(DocLength=c(1/c(10:1),c(1:10)))%>%

ungroup()%>%

mutate(From=name))

}

# single_wrap_l("t1nl")

# t1nn%>%as.data.frame()%>%

# gather(Topic,Correlation)%>%

# mutate(Topic=recode(Topic,V1=1,V2=2))%>%

# group_by(Topic)%>%

# mutate(nTerms=row_number())%>%

# ungroup()

wrap_nn<-lapply(list_of_corr_nn,single_wrap_n)%>%bind_rows()
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wrap_dn<-lapply(list_of_corr_dn,single_wrap_n)%>%bind_rows()

wrap_nl<-lapply(list_of_corr_nl,single_wrap_l)%>%bind_rows()

wrap_dl<-lapply(list_of_corr_dl,single_wrap_l)%>%bind_rows()

wrap_nn%>%bind_rows(wrap_dn)%>%

mutate(Dist=recode(substr(From,3,3),n="Normal",d="Dirichlet"))%>%

left_join(bind_rows(key1,key2))->data_n

wrap_nl%>%bind_rows(wrap_dl)%>%

mutate(Dist=recode(substr(From,3,3),n="Normal",d="Dirichlet"))%>%

left_join(bind_rows(key3,key4))->data_l

label_rev<-function(labels,multi_line=TRUE, sep=":"){

label_both(rev(labels),multi_line = multi_line, sep=sep)

}

fn = factor(list_of_names, levels=unique(list_of_names[order(1:12)]), ordered=TRUE)

data_n%>%

mutate(Cases2=factor(Cases, levels=unique(list_of_names[order(1:12)]),

ordered=TRUE))%>%

mutate(nTerms=nTerms+4)%>%

mutate(Correlation=ifelse(Correlation>.2,Correlation,.2))%>%

ggplot(aes(x=nTerms,y=Cases2,fill=Correlation))+

geom_tile()+

scale_fill_gradient(low="white", high="steelblue")+

facet_wrap(~Topic+Dist, strip.position = "top", labeller=label_rev, nrow=1)+

labs(x="Size of Vocabulary")

data_l%>%

mutate(Cases2=factor(Cases, levels=unique(list_of_names[order(1:12)]),

ordered=TRUE))%>%
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mutate_at(3, funs(round(.,2)))%>%

ggplot(aes(x=factor(DocLength),y=Cases2,fill=Correlation))+

geom_tile()+

scale_fill_gradient(low="white", high="darkorange1")+

facet_wrap(~Topic+Dist, strip.position = "top", labeller=label_rev, nrow=1)+

labs(x="Document Length Ratio")+

theme(axis.text.x = element_text(angle = -45, hjust = 0))

Theta_10%>%as_tibble()%>%

mutate(ind=row_number())%>%

melt(id.var="ind")%>%

mutate(variable=recode(variable,"True_Topic_1"=’1’,"True_Topic_2"=’2’))%>%

mutate(ind=factor(ind))%>%

ggplot(aes(ind,variable, fill=as.factor(value)))+

geom_tile()+

scale_fill_grey(start=.8,end = .3)+

labs(x="Document",y="Topics",fill="Proportion")+

theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),

panel.background = element_rect(fill="transparent",colour=NA),

plot.background = element_rect(fill="transparent",colour=NA)

)

A.5 Code for Pilot study

set.seed(2345)

M=10

K=2

nTerms=5

top_word_number=500 # useless
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even=1 # useless

cluster=0 # useless

top_share=.8 # useless

docLengths<-c(rep(50,M))

# Gibbs parameters

burnin <- 4000

iter <- 2000

thin <- 500

seed <-list(2003,5,63,100001,765)

nstart <- 5

best <- TRUE

## construct Phi

Phi_5<-matrix(c(0.4,0.4,0.25,0.05,0.05,0.25,0.2,0.1,0.1,0.2), ncol=2, byrow = T)%>% 

as_tibble()%>%t() Terms <- paste("Term",seq(nTerms))

Topics <- paste0("True_Topic_", seq(K))

Documents <- paste("Document", seq(M))

colnames(Phi_5) <- Terms

rownames(Phi_5) <- Topics

#see the true topic graph

t(Phi_5)%>%as_tibble()%>%

ggplot(aes(1:length(True_Topic_1),True_Topic_1))+

geom_bar(stat = "identity")

rowSums(Phi_5)

#constuct theta

Theta_5<-Construct_doc_topic(M, K, random=0, singleton=1, alpha=1/K, Alpha=FALSE)

colnames(Theta_5) <- Topics
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rownames(Theta_5) <- Documents

# Create corpus

corpus_5<-simulateCorpus(M,docLengths,K,Theta_5,Phi_5)

corpus_5[1]

# Generate dtm

corpus_5_dtm <-Doc2DTM(corpus_5)

# Fit LDA with Gibbs

# Number of topics to be fitted (k) and hyperparameter (alpha) are

# the only stuff that can be changed. People usually only change k.

# I still don’t know how to adjust beta.

LDAresult_5<-LDA(corpus_5_dtm,k=K, method="Gibbs", control=list(

nstart=1, seed = 1234, best=best, burnin = burnin, iter = iter, thin=thin, verbose=0))

# Generate the comparision table

rank_table_5<-TruethCompare(LDAresult_5,Phi_5, Theta_5)

# Generate graph. Number ’5’ can be customized

Graphics_LDA_TopicTerm(rank_table_5,5)

# Pecentage graph and table. Number ’10’ can be customized

True_percentage(rank_table_5,3,graph=TRUE)

# find all true_percentage based on rank

trend_5<-rank2trend(rank_table_5)

# Generate graph

trend2graph(trend_5)
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# fetching maximum for each color

rankmax(trend_5)

rankmax(trend_5[which(trend_5$level<=4),])

trend_5[which(trend_5$True_topic=="True 1"),]

# get beta

LDAresult_5%>%tidy(matrix="beta")%>%arrange(topic)

# get gamma

LDAresult_5%>%tidy(matrix="gamma")%>%dcast(document~topic)

# graphics

pilot_names<-list(’1’="Fitted Topic 1",

’2’="Fitted Topic 2"

)

pilot_labeller<-function(variable,value){

return(pilot_names[value])

}

LDAresult_5%>%tidy(matrix="beta")%>%arrange(topic)%>%

ggplot(aes(factor(term),beta))+

geom_col()+

facet_wrap(~topic,scales = "free_y", labeller=pilot_labeller,ncol=1)+

labs(x="Terms",y="Probability")

LDAresult_5%>%tidy(matrix="gamma")%>%

mutate(document=factor(document, levels = c(1,2,3,4,5,6,7,8,9,10)))%>%

ggplot(aes(document,factor(topic), fill=gamma))+

geom_tile()+

scale_fill_gradient(low="#CCCCCC",high = "#666666")+

labs(x="Document",y="Topics",fill="Proportion")+

theme(panel.grid.major = element_blank(),
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panel.grid.minor = element_blank(),

panel.background = element_rect(fill="transparent",colour=NA),

plot.background = element_rect(fill="transparent",colour=NA)

)

#change seed

LDAresult_5_1<-LDA(corpus_5_dtm,k=K, method="Gibbs", control=list(

nstart=1, seed = 12345, best=best, burnin = burnin, iter = iter, thin=thin, verbose=0))

# get beta

LDAresult_5_1%>%tidy(matrix="beta")%>%arrange(topic)

# get gamma

LDAresult_5_1%>%tidy(matrix="gamma")%>%dcast(document~topic)

# prediction job

corpus_5_1<-simulateCorpus(M,docLengths,K,Theta_5,Phi_5)

corpus_5_1_dtm <-Doc2DTM(corpus_5_1)

perplexity(LDAresult_5,corpus_5_1_dtm)

A.6 Real Corpus Analysis

####################################################

##

## Reuters21578

##

####################################################

library(tm.corpus.Reuters21578)

data(Reuters21578)

data(Reuters21578_DTM)

Reuters21578_DTM

tidy(Reuters21578_DTM)->reu
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reu%>%distinct(document)%>%

summarise(n())

# number of doc 19042

reu%>%distinct(term)%>%

summarise(n())

# size of vocabulary 33255

reu%>%group_by(document)%>%

summarise(wordcounts=sum(count))%>%

summarise(avg_wc=mean(wordcounts))

# avg_wc=79.8

reu%>%summarise(sum(count))

# number of words 1520283

re_ind<-reu%>%distinct(document)%>%

mutate(id=row_number())

reu_id<-reu%>%left_join(re_ind)

doc_ratio<-function(ind=1,C=reu_id,N=19042){

#sample 10 from N

s=sample.int(N,10)

C%>%filter(id %in% s)->d

voc<-d%>%distinct(term)%>%summarise(voc=n())%>%pull(voc)

avg<-d%>%group_by(id)%>%summarise(n=sum(count))%>%

summarise(avg=mean(n))%>%pull(avg)

return(avg/voc)
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}

voca_n<-function(ind=1,C=reu_id,N=19042,n=10){

s=sample.int(N,n)

C%>%filter(id %in% s)->d

voc<-d%>%distinct(term)%>%summarise(voc=n())%>%pull(voc)

return(voc)

}

voca_rep<-function(n=10,C=reu_id,N=19042){

return(mean(sapply(1:100, voca_n, C=C, N=N, n=n)))

}

doc_ratio()

set.seed(2345)

sapply(1:10000, doc_ratio)->reu_docl

reu_docl%>%tibble::enframe(name=NULL)%>%

ggplot(aes(value,fill=1))+

geom_density(alpha=.2)+

xlab("Document Length Ratio")+

ylab("Density")+ theme(legend.position="none")

mean(reu_docl)

# mean 1918609

summary(reu_docl)

#Min. 1st Qu. Median Mean 3rd Qu. Max.

#0.1418 0.1797 0.1909 0.1919 0.2024 0.3194
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set.seed(2345)

sapply(5:1000, voca_rep)->reu_voc

reu_voc%>%as.tibble()%>%

mutate(n=row_number()+4)%>%

ggplot(aes(n,value))+

geom_line()+

xlab("Number of Documents")+

ylab("Vocabulary Size")

reu_voc%>%as.tibble()%>%

mutate(n=row_number()+4)%>%

ggplot(aes(sqrt(n),value))+

geom_line()+

xlab("Square root of Number of Documents")+

ylab("Vocabulary Size")+

geom_abline(slope = 242.01432, intercept = -373.21016,size=1,color="blue")

reu_voc%>%as.tibble()%>%

mutate(n=row_number()+4)%>%

mutate(value_sq=value^2)%>%

mutate(n_sqrt=sqrt(n))->tar_reu

fit<-lm(value~n_sqrt,tar_reu)

fit$fitted.values

summary(fit)

plot(fit)

ggplot(fit,aes(fit$fitted.values,fit$residuals))+

geom_point()+
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geom_abline(slope = 0,intercept = 0, color="red")+

xlab("Fitted Values")+

ylab("Residuals")

predict(fit, n_sqrt=10)

###################################################

##

## 20 News

##

###################################################

News20 <- read.csv("http://ssc.wisc.edu/~ahanna/20_newsgroups.csv", stringsAsFactors = FALSE)

News20<-News20[-1]

## make tbl_df for nicer behavior on output

News20 <- tbl_df(News20)

## peak at the data

names(News20)

head(News20$text, 2)

nrow(News20)

sample_n(News20,size=10)

unique(News20$target)

News20%>%

filter(cumsum(text=="")>0, cumsum(str_detect(text, "^--"))==0)

train_folder<-"20_newsgroup/"

read_folder <- function(infolder) {

tibble(file = dir(infolder, full.names = TRUE)) %>%
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mutate(text = map(file, read_lines)) %>%

transmute(id = basename(file), text) %>%

unnest(text)

}

raw_text <- tibble(folder = dir(train_folder, full.names = TRUE)) %>%

unnest(map(folder, read_folder)) %>%

transmute(newsgroup = basename(folder), id, text)

glimpse(raw_text)

cleaned_text <- raw_text %>%

group_by(newsgroup, id) %>%

filter(cumsum(text == "") > 0,

cumsum(str_detect(text, "^--")) == 0) %>%

ungroup()

cleaned_text <- cleaned_text %>%

filter(str_detect(text, "^[^>]+[A-Za-z\\d]") | text == "",

!str_detect(text, "writes(:|\\.\\.\\.)$"),

!str_detect(text, "^In article <"),

!id %in% c(9704, 9985))

usenet_words <- cleaned_text %>%

unnest_tokens(word, text) %>%

filter(str_detect(word, "[a-z’]$"),

!word %in% stop_words$word)

usenet_words %>%

count(word, sort = TRUE)
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head(usenet_words)

usenet_words%>%group_by(newsgroup,id)%>%

mutate(len=n())%>%

ungroup()%>%

mutate(index=paste(newsgroup,id))%>%

distinct(index, .keep_all = T)->twenty_news

twenty_news%>%summarise(n=n())

# number of doc 19791

twenty_news%>%summarise(avg_wc=mean(len))

# avg number of words per doc 62.5

twenty_news%>%summarise(voc=sum(len))

# number of words 1237217

usenet_words%>%distinct(word)%>%

summarise(voc=n())

# size of vocabulary 96509

news_tidy<-usenet_words%>%

mutate(term=word)%>%

mutate(index=paste(newsgroup,id))%>%

left_join(

twenty_news%>%mutate(id=row_number()),

by="index"
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)%>%

dplyr::select(id=id.y,term)%>%

group_by(id)%>%

count(term)%>%

ungroup()%>%

mutate(count=n)

set.seed(2345)

sapply(1:10000, doc_ratio,news_tidy,19791)->news_docl

news_docl%>%tibble::enframe(name=NULL)%>%

ggplot(aes(value,fill=1))+

geom_density(alpha=.2)+

xlab("Document Length Ratio")+

ylab("Density")+ theme(legend.position="none")

mean(news_docl)

# mean 0.1345293

summary(news_docl)

#Min. 1st Qu. Median Mean 3rd Qu. Max.

#0.1045 0.1231 0.1297 0.1345 0.1392 0.4384

set.seed(2345)

sapply(5:1000, voca_rep,news_tidy,19791)->news_sov

news_sov%>%as.tibble()%>%

mutate(n=row_number()+4)%>%

ggplot(aes(n,value))+
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geom_line()+

xlab("Number of Documents")+

ylab("Vocabulary Size")

news_sov%>%as.tibble()%>%

mutate(n=row_number()+4)%>%

mutate(x=sqrt(n)+n^(1/3))%>%

ggplot(aes(x,value))+

geom_line()+

xlab("Square root of Number of Documents")+

ylab("Vocabulary Size")

#geom_abline(slope = 613.183, intercept = -2746.087,size=2,color="blue")

news_sov%>%as.tibble()%>%

mutate(n=row_number()+4)%>%

mutate(value_sq=value^2)%>%

mutate(n_sqrt=sqrt(n))%>%

mutate(n_log=log(n))%>%

mutate(n_cubic=n^(1/3))->tar_news

fit<-lm(value~n_sqrt+n_cubic,tar_news)

fit1<-nlme::gls(value~n_sqrt+n_cubic,data=tar_news)

fit$fitted.values

summary(fit)

plot(fit1)

ggplot(fit,aes(fit$fitted,fit$residuals))+

geom_point()+

geom_abline(slope = 0,intercept = 0, color="red")+

xlab("Fitted Values")+
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ylab("Residuals")

ggplot(tar_news, aes(n,value))+

geom_point(size=1, alpha=.2)+

geom_smooth(method=lm, formula = y ~ sqrt(x)+I(x**(1/3)))+

xlab("Number of Documents")+

ylab("Vocabulary Size")

predict(fit, data.frame(n_sqrt=sqrt(10),n_cubic=10**(1/3)))

#############################################

##

## AP

##

#############################################

data("AssociatedPress",package = "topicmodels")

ap_td <- tidy(AssociatedPress)

ap_td%>%

group_by(document)%>%

summarise(doclen=sum(count))%>%

summarise(avg_wc=mean(doclen))

ap_td%>%distinct(term)%>%

summarise(n=n())

# size of vocabulary 10473

ap_td%>%distinct(document)%>%

summarise(n=n())

# number of documents 2246
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ap_td%>%group_by(document)%>%

summarise(voca=sum(count))%>%

summarise(avg_len=mean(voca))

# avg number of words per doc 194

ap_td%>%summarise(n=sum(count))

# number of words 435838

ap_td%>%left_join(

ap_td%>%distinct(document)%>%

mutate(id=row_number())

)->ap_tidy

set.seed(2345)

sapply(1:10000, doc_ratio,ap_tidy,2246)->ap_docl

ap_docl%>%tibble::enframe(name=NULL)%>%

ggplot(aes(value,fill=1))+

geom_density(alpha=.2)+

xlab("Document Length Ratio")+

ylab("Density")+ theme(legend.position="none")

mean(ap_docl)

# mean 0.1775743

summary(ap_docl)

#Min. 1st Qu. Median Mean 3rd Qu. Max.

#0.1421 0.1710 0.1774 0.1776 0.1840 0.2186

set.seed(2345)

sapply(5:1000, voca_rep,news_tidy,2246)->ap_sov
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ap_sov%>%as.tibble()%>%

mutate(n=row_number()+4)%>%

ggplot(aes(n,value))+

geom_line()+

xlab("Number of Documents")+

ylab("Vocabulary Size")

ap_sov%>%as.tibble()%>%

mutate(n=row_number()+4)%>%

ggplot(aes(sqrt(n),value))+

geom_line()+

xlab("Square root of Number of Documents")+

ylab("Vocabulary Size")+

geom_abline(slope = 606.95, intercept = -3059.71,size=2,color="blue")

ap_sov%>%as.tibble()%>%

mutate(n=row_number()+4)%>%

mutate(value_sq=value^2)%>%

mutate(n_sqrt=sqrt(n))%>%

mutate(n_cubic=n^(1/3))->tar_ap

fit<-lm(value~n_sqrt+n_cubic,tar_ap)

summary(fit)

ggplot(fit,aes(fit$fitted.values,fit$residuals))+

geom_point()+

geom_abline(slope = 0,intercept = 0, color="red")+

xlab("Fitted Values")+

ylab("Residuals")
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ggplot(tar_ap, aes(n,value))+

geom_point(size=1, alpha=.2)+

geom_smooth(method=lm, formula = y ~ sqrt(x)+I(x**(1/3)))+

xlab("Number of Documents")+

ylab("Vocabulary Size")

predict(fit, data.frame(n_sqrt=sqrt(10),n_cubic=10**(1/3)))

############################################

##

## IMDB

##

############################################

train_folder<-"imdb/"

read_folder <- function(infolder) {

tibble(file = dir(infolder, full.names = TRUE)) %>%

mutate(text = map(file, read_lines)) %>%

transmute(id = basename(file), text) %>%

unnest(text)

}

raw_text <- tibble(folder = dir(train_folder, full.names = TRUE)) %>%

unnest(map(folder, read_folder)) %>%

transmute(newsgroup = basename(folder), id, text)

folder<-tibble(folder = dir(train_folder, full.names = TRUE))

read_folder(train_folder)->raw_text

raw_text%>%unnest_tokens(word,text)%>%

group_by(id)%>%
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count(word)->word_count

word_count%>%distinct(id)%>%ungroup()%>%

summarise(n=n())

# number of doc 100000

word_count%>%ungroup()%>%distinct(word)%>%

summarise(voca=n())

# size of vocabulary 171770

word_count%>%ungroup()%>%

summarise(voca=sum(n))

# number of words 23645581

word_count%>%

summarise(voca=sum(n))%>%

summarise(avg_len=mean(voca))

# avg number of words per doc 236

head(word_count)

word_count%>%

ungroup()%>%

mutate(term=word,count=n)%>%

left_join(

word_count%>%

ungroup()%>%

distinct(id)%>%

177



mutate(index=row_number())

)%>%

dplyr::select(id=index,term,count)->imdb_tidy

imdb_tidy%>%distinct(id)%>%

summarise(n())

set.seed(2345)

sapply(1:10000, doc_ratio,imdb_tidy,100000)->imdb_docl

imdb_docl%>%tibble::enframe(name=NULL)%>%

ggplot(aes(value,fill=1))+

geom_density(alpha=.2)+

xlab("Document Length Ratio")+

ylab("Density")+ theme(legend.position="none")

mean(imdb_docl)

# mean 0.2528772

summary(imdb_docl)

#Min. 1st Qu. Median Mean 3rd Qu. Max.

#0.2015 0.2398 0.2517 0.2529 0.2650 0.3590

set.seed(2345)

sapply(5:1000, voca_rep,imdb_tidy,100000)->imdb_sov

imdb_sov%>%as.tibble()%>%

mutate(n=row_number()+4)%>%

ggplot(aes(n,value))+
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geom_line()+

xlab("Number of Documents")+

ylab("Vocabulary Size")

imdb_sov%>%as.tibble()%>%

mutate(n=row_number()+4)%>%

ggplot(aes(sqrt(n),value))+

geom_line()+

xlab("Square root of Number of Documents")+

ylab("Vocabulary Size")+

geom_abline(slope = 653.4839, intercept = -1671.4089,size=1,color="blue")

imdb_sov%>%as.tibble()%>%

mutate(n=row_number()+4)%>%

mutate(value_sq=value^2)%>%

mutate(n_sqrt=sqrt(n))%>%

mutate(n_cubic=n**(1/3))->tar_imdb

fit<-lm(value~n_sqrt+n_cubic+n,tar_imdb)

summary(fit)

ggplot(fit,aes(fit$fitted,fit$residuals))+

geom_point()+

geom_abline(slope = 0,intercept = 0, color="red")+

xlab("Fitted Values")+

ylab("Residuals")

ggplot(tar_imdb, aes(n,value))+

geom_point(size=1, alpha=.2)+

geom_smooth(method=lm, formula = y ~ sqrt(x)+I(x**(1/3))+I(x))+
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xlab("Number of Documents")+

ylab("Vocabulary Size")

predict(fit, data.frame(n_sqrt=sqrt(10),n_cubic=10**(1/3),n=10))
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[6] Stefan Büttcher, Charles LA Clarke, and Gordon V Cormack. Information retrieval: Imple-
menting and evaluating search engines. Mit Press, 2016.

[7] Jonathan Chang, Jordan L Boyd-Graber, Sean Gerrish, Chong Wang, and David M Blei. Read-
ing tea leaves: How humans interpret topic models. In Nips, volume 31, pages 1–9, 2009.

[8] Stanley F Chen, Douglas Beeferman, and Roni Rosenfeld. Evaluation metrics for language
models. 1998.

[9] Noam Chomsky. Lectures on government and binding, foris, dordrecht. ChomskyLectures on
Government and Binding1981, 1981.

[10] Shorter Oxford English Dictionary. Shorter oxford english dictionary, 2007.

[11] empty. 20 newsgroups dataset, empty.

[12] Tom Griffiths. Gibbs sampling in the generative model of latent dirichlet allocation. 2002.

[13] Chris Gropp, Alexander Herzog, Ilya Safro, Paul W Wilson, and Amy W Apon. Scal-
able dynamic topic modeling with clustered latent dirichlet allocation (clda). arXiv preprint
arXiv:1610.07703, 2016.

[14] Bettina Grün and Kurt Hornik. topicmodels: An R package for fitting topic models. Journal
of Statistical Software, 40(13):1–30, 2011.

[15] Gregor Heinrich. Parameter estimation for text analysis. University of Leipzig, Tech. Rep, 2008.

[16] Thomas Hofmann. Probabilistic latent semantic analysis. In Proceedings of the Fifteenth con-
ference on Uncertainty in artificial intelligence, pages 289–296. Morgan Kaufmann Publishers
Inc., 1999.

181



[17] Kriste Krstovski. Efficient inference, search and evaluation for latent variable models of text
with applications to information retrieval and machine translation. 2016.

[18] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. Rcv1: A new benchmark collection
for text categorization research. J. Mach. Learn. Res., 5:361–397, December 2004.

[19] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christo-
pher Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies, pages
142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

[20] Qiaozhu Mei, Xuehua Shen, and ChengXiang Zhai. Automatic labeling of multinomial topic
models. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 490–499. ACM, 2007.

[21] David Mimno, Hanna M Wallach, Jason Naradowsky, David A Smith, and Andrew McCallum.
Polylingual topic models. In Proceedings of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing: Volume 2-Volume 2, pages 880–889. Association for Computational
Linguistics, 2009.

[22] Thomas Minka. Estimating a dirichlet distribution, 2000.

[23] Calvin S. Mooers. Editor’s corner: ”coding, information retrieval, and the rapid selector”.
American Documentation, 1(4):225, Oct 01 1950. Last updated - 2013-02-24.

[24] James W. Perry, Allen Kent, and Madeline M. Berry. Machine literature searching x. machine
language; factors underlying its design and development. American Documentation, 6(4):242–
254, 1955.

[25] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. Cambridge University
Press, 2011.

[26] Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth. The author-topic
model for authors and documents. In Proceedings of the 20th conference on Uncertainty in
artificial intelligence, pages 487–494. AUAI Press, 2004.

[27] Hanna M Wallach. Topic modeling: beyond bag-of-words. In Proceedings of the 23rd interna-
tional conference on Machine learning, pages 977–984. ACM, 2006.

[28] Hanna M Wallach, David M Mimno, and Andrew McCallum. Rethinking lda: Why priors
matter. In Advances in neural information processing systems, pages 1973–1981, 2009.

[29] Hanna M Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. Evaluation meth-
ods for topic models. In Proceedings of the 26th annual international conference on machine
learning, pages 1105–1112. ACM, 2009.

[30] Furu Wei, Shixia Liu, Yangqiu Song, Shimei Pan, Michelle X Zhou, Weihong Qian, Lei Shi,
Li Tan, and Qiang Zhang. Tiara: a visual exploratory text analytic system. In Proceedings
of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 153–162. ACM, 2010.

[31] Xing Wei and W Bruce Croft. Lda-based document models for ad-hoc retrieval. In Proceed-
ings of the 29th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 178–185. ACM, 2006.

[32] Wikipedia contributors. Stemming — Wikipedia, the free encyclopedia, 2019. [Online; accessed
13-June-2019].

182



[33] George Kingsley Zipf. The psychology of language. In Encyclopedia of psychology, pages 332–
341. Philosophical Library, 1946.

183


	Performance of Latent Dirichlet Allocation with Different Topic and Document Structures
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	Previous Research on Topic Model Evaluation
	Problems with the Current Evaluation Methods
	Build the Underline Truth

	Technical Background
	Introduction
	Topic Models
	Evaluation Methods

	Decomposing the Structure of Topic Models
	Non-Structured Data and Structured Models
	Characteristics of Data sets and Topic Models
	Pilot Study to Examine the Structure

	Simulation Study
	Overall Topic Structure
	Document Structure

	Analysis of Results and Future Work
	Analysis of Result
	Future Work

	Appendices
	R code in this dissertation

	Bibliography

