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Abstract

An integral domain D is atomic if every non-zero non-unit is a product of irreducibles. More

generally, D is quasi-atomic if every non-zero non-unit divides some product of atoms. Arbitrary

integral domains, however, cannot be assumed to be quasi-atomic in general; factorization in a

non-atomic D can be subtle. We outline a novel method of qualifying the quasi-atomicity of D by

studying ascending filtrations of localizations of D and the associated groups of divisibility. This

approach yields structure theorems, cochain complexes, and cohomological results. We take care

to present examples of integral domains exhibiting the spectrum of factorization behavior and we

relate the results of our new method to factorization in D.
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Chapter 1

Introduction

Factorization in an integral domain D loosely concerns decomposing elements or ideals into

products. We say a non-zero non-unit element d ∈ D is atomic if d is a product of irreducibles, and

we say that D is an atomic domain if every non-zero non-unit is atomic. On the other hand, if D

contains no irreducibles, then we say D is an antimatter domain (first described in [7]). An arbitrary

integral domain may be atomic, antimatter, or neither; interest in non-atomic domains has grown

recently, especially since [7] and [19]. The spectrum of factorization behaviors between the extremes

of atomic and antimatter domains is explored with some depth in [24]. We present background

information on integral domains in Appendix A. Our study presents some novel constructions that

are sensitive to factorization in integral domains. Our methods exploit the quasi-atomic elements

of an integral domain; first described in [4], quasi-atomic elements are non-zero non-unit divisors of

atomic elements.

The study of non-atomic domains is not new. In [34], Zaks provides the first discussion on

half factorial domains without assuming atomicity. In [22], Krull studies integral domains and avoids

the assumption of atomicity. In [25], Mott considers localizations of arbitrary integral domains, and

in [1], Anderson and Zafrullah characterize weakly factorial domains (which are not necessarily

atomic).

Many results in commutative algebra follow from studying objects by proxy. For example,

rather than study a ring R directly, we study R by proxy using some algebraic object A(R) related to

R such that properties of R are detectable in A(R). More generally, with a priori knowledge of some

category D, we can study a category C by studying functors of the form F : C→ D or G : D→ C
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and the natural transformations of those functors. Examples of this technique include construction

of pre-sheaves [31], group representations [15], and projective resolutions [17]. An exemplary use

of this method in commutative algebra is to study an integral domain D by studying its group of

divisibility G(D). For any integral domain D there exists a group of divisibility G(D) with operation

induced by multiplication in D and a naturally defined map η : D \ {0} → G(D). The map η can

be extended to a semi-valuation ν : F \ {0} → G(D). Valuations, first examined in detail in [22],

have several properties we use throughout this study. The domain D and its quotient field F is

commutative so G(D) is abelian. Moreover, the group operation on G(D) is compatible with a

partial order 6 induced by the divisibility relation in D. The group of divisibility G(D) is therefore

a partially ordered abelian group that encodes multiplicative relationships from D as the group

operation on G(D) and encodes divisibility relationships from D as a partial order on G(D) that is

compatible with the group operation. We assume all groups in the sequel are abelian, and we refer

to partially ordered gropus as po-groups. Irreducible elements from D (through η) are minimal and

positive in the partial order on G(D), which we denote 6. Hence, we refer to the minimal positive

elements of an arbitrary po-group G as atoms. Quasi-atomic elements in D are the non-unit proper

divisors of atomic elements; in G(D), these are elements that are strictly bounded above by atomic

elements. Thus for an arbitrary po-group G, we say an element g ∈ G+ is quasi-atomic if there exists

an atomic a ∈ G+ such that g 6 a. We denote the subgroup generated by the atoms of G as A(G)

and the subgroup generated by the quasi-atomic elements as Q(G). Just as we refer to an integral

domain with no irreducibles as antimatter, we define an antimatter po-group as a po-group with no

atoms. We summarize background information on po-groups in general and groups of divisibility in

particular in Appendix B.

Neatly summarized in [26] and expanded thoroughly in [27], groups of divisibility are help-

ful in solving ring-theoretic problems using the following general method: formulate a ring-theoretic

problem in the context of the group of divisibility, solve the problem using group-theoretic techniques,

then interpret the result back in the ring-theoretic context. The crown jewel of this approach char-

acterizes Bézout domains as precisely those domains that have lattice-ordered groups of divisibility.

Theorem 1.0.1 (Krull, Kaplansky, Jaffard, Ohm). Let G be an a po-group. Then G is lattice-

ordered if and only if there exists a Bézout domain D such that G = G(D).

We omit the proof, which constructs an integral domain using a group algebra over a field.
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Another example of studying objects by proxy is the study of filtrations, as in [3]: if an object M

admits chains M ⊃ · · · ⊃ Mn ⊃ Mn−1 ⊃ · · · or M ⊆ · · · ⊂ Mn ⊂ Mn+1 ⊆ · · · , we can glean

information about M by studying the sequence {Mn}n∈Z. Previous studies had a factorization

flavor, such as [22], [32], and [25], all of which studied filtrations or sequences of morphisms between

algebraic objects. In [22], Krull demonstrated a one-to-one correspondence between the prime ideals

of arbitrary valuation rings and the convex subgroups of the associated groups of divisibility. In [32],

Sheldon extended Krull’s work by demonstrating a one-to-one correspondence between the prime

ideals of a Bézout domain, D, and the prime filters of the positive cone of the group of divisibility

G(D). In [25], Mott was the first to establish that prime filters of a positive cone correspond to

subgroups that are both convex and directed, which generalizes the correspondences developed by

Krull and Sheldon: there exists a one-to-one correspondence between convex and directed subgroups

within G(D) and the saturated multiplicatively closed sets within D. Mott’s generalization seems

quite natural considering that a subgroup of a po-group H ⊆ G is convex if and only if G/H is

partially ordered as showed in [11].

The connection between saturated multiplicatively closed sets in D and convex directed

subgroups within G(D) suggests that localizations are vital in understanding factorization. To find

filtrations of an integral domain D that are sensitive to factorization behavior, we therefore turn our

attention to filtrations induced by localization at saturated multiplicatively closed sets. Localization

can have a dramatic effect on the factorization structure of the resulting integral domain. Indeed,

localizing at elements that are not atomic can often destroy factorization information, whereas

localizing at sets generated by irreducibles can create new irreducibles as demonstrated in Example

3.1.1.

We study sequences of saturated multiplicatively closed sets S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ D from

which we construct an ascending filtration of localizations D ⊆ DS0 ⊆ DS1 ⊆ DS2 ⊆ · · · ⊆ F.

We select the sets Si carefully such that this filtration is sensitive to factorization information. We

study this filtration by qualifying the resulting groups of divisibility using Mott’s correspondence.

We develop some homological tools to investigate chains of convex subgroups in arbitrary groups

of divisibility, allowing us to qualify the depth of non-atomicity in a po-group or domain. We use

Mott’s correspondence to construct a functor between domain localizations and po-group projections

of groups of divisibility. In this way, factorization questions about filtrations of localizations of D

reduce to questions about the sequences of the quotient po-groups of G(D). These sequences provide
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structure theorems, induce a menagerie of cochain complexes of order-preserving homomorphisms,

and yield homological information related to factorization. We summarize background information

on (co)chain complexes and (co)homology groups in Appendix C.

Examples of rings that are neither atomic nor antimatter are abundant. We begin our dis-

cussion in Chapter 2 where we present rings exemplifying a variety of different behaviors related to

factorization and relevant to our findings in the sequel. In Chapter 3, we construct the primary ob-

jects of study, the quasi-atomic sequences, and we elaborate upon the properties of those sequences.

In Chapter 4, we present a general method for extracting cochain complexes from arbitrary se-

quences of D-module epimorphisms, and we use this method to compute cohomological information

from the quasi-atomic sequences. In Chapter 5, we present several structure theorems for po-groups

in general and groups of divisibility in particular. Our approach depends upon commutative rings,

partially ordered groups, and homological algebra; we present the requisite background material and

previously known results in the appendices. Background on integral domains is presented in Ap-

pendix A, background material on po-groups and groups of divisibility is presented in Appendix B,

and background material on cochain complexes and cohomological algebra is presented in Appendix

C.

In the sequel, we denote the positive integers as N = {1, 2, . . .}, the non-negative integers

as N0 = N ∪ {0}, and the non-negative rationals as Q+ = {x ∈ Q | x > 0}.
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Chapter 2

Motivating Examples

In this chapter, we establish examples illustrating the range of factorization behaviors in

arbitrary integral domains. We adopt the relaxed notions of atomicity first described in [4].

Definition 2.0.1. Let D be an integral domain and d ∈ D an arbitrary non-zero non-unit.

(i) If d is a product of irreducibles we say d is atomic.

(ii) If there exists an atomic d′ such that dd′ is atomic in D, we say d is almost atomic.

(iii) If there exists any non-zero non-unit d′ such that dd′ is atomic in D, we say d is quasi-atomic.

If every non-zero non-unit of D is atomic (almost atomic, quasi-atomic), we say D is an atomic

(almost atomic, quasi-atomic, respectively) domain. If D has no irreducible elements, then we say

D is an antimatter domain.

We now present examples of almost atomic domains that are not atomic, quasi-atomic

domains that are not almost atomic, and antimatter domains. We also present an example of a

domain with mixed behaviors (some non-zero non-unit elements are quasi-atomic and some elements

are not). Perhaps surprisingly, the more mysterious of these examples, the antimatter domains, are

easiest to produce. Every field is antimatter. Example 2.0.2 is an antimatter domain that is not a

field.

Example 2.0.2. Let F be any field and X an indeterminate over F. From the algebraic closure of

the quotient field F(X) let X denote the subset X = {Xα | α ∈ Q+}. Let R′ = F[X ] and let m be

7



the maximal ideal in R′ generated by X . Let R = R′m. Then R is antimatter. Indeed, every non-zero

non-unit is associate to some monomial, say uXα, which is not reducible since uXα = uXα/2Xα/2.

Examples of quasi-atomic domains that are not almost atomic can be challenging to produce.

In Example 2.0.3, we present an example of a quasi-atomic domain that is not almost atomic. This

example was first discussed in the context of atomicity in [24].

Example 2.0.3. The ring R = Z[X] + X2R[X], first presented in [24], is quasi-atomic and not

almost atomic. Certainly R is a subring of R[X], which is a UFD. Any non-zero f ∈ Z[X] with

deg(f) 6 1 is therefore atomic or a unit; atomic elements are quasi-atomic. Inductively, assume that

any g ∈ R with deg(g) < n is quasi-atomic and let f ∈ R have deg(f) = n. Either f = f1f2 for

non-units f1, f2 ∈ R or not. If not, f is irreducible therefore f is quasi-atomic. If f = f1f2, then

deg(f) = deg(f1) + deg(f2). Thus, deg(fi) 6 deg(f). If this inequality is strict for both f1 and f2,

then both are quasi-atomic and therefore f is quasi-atomic.

The only remaining case is to check f ∈ R such that every factorization f = f1f2 has

deg(f1) = 0 or deg(f2) = 0. If ord(f) 6 1, we can always write f = mf̂ for some maximal m ∈ Z

and some f̂ ∈ R. Following the maximality of m, if there exists some n ∈ Z such that n | f̂ then

n ∈ U(Z). Here m is an atomic element of R. It is thus sufficient to show f̂ is quasi-atomic. Of

course, either f̂ factors as f̂ = f̂1f̂2 for some non-zero non-units f̂1, f̂2 ∈ R or not. If not, then f̂

is irreducible and therefore is atomic. If f̂ = f̂1f̂2, then deg(f̂i) > 0 for both i = 1, 2 (for otherwise

f̂i ∈ Z, and is therefore a unit, contradicting our choice of both f̂i as non-zero non-units). Then

f = mf̂ = mf̂1f̂2. This is a contradiction: we are in our final remaining case where f ∈ R and every

factorization f = f1f2 has deg(f1) = 0 or deg(f2) = 0. Hence, f̂ is irreducible and thus f is atomic.

Therefore, f is quasi-atomic.

This establishes that R is quasi-atomic. We still must establish that R is not almost atomic

by demonstrating the existence of an element that is not almost atomic. To this end, let r ∈ R \Q

and consider f = rx2 ∈ R. Certainly rx2 is not irreducible, for rx2 = 2 ·
(
r
2x

2
)

where 2 and r
2x

2 are

non-units. If f is almost atomic, there are some atoms g1, g2, . . . , gN ∈ R and h1, h2, . . . , hM ∈ R

such that rx2g1g2 · · · gN = h1 · · ·hM .

Substituting x 7→ 0 yields that both sides must be zero here, and so some irreducible hi

satisfies hi(0) = 0. Hence, ord(hi) = 1, for otherwise hi is not irreducible. For this hi, we can write

hi = aX + r2X
2 + r3X

3 + · · · + rQX
Q; if a is a non-unit, then hi = a(X + r2

a X
2 + · · · + rQ

a X
Q),
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contradicting the irreducibility of hi. Hence, we can write hi = ±X + r2X
2 + · · ·+ rQX

Q.

In the quotient field of R we have hi
X = ±1 + r2X + r3X

2 + · · ·+ rQX
Q−1, and we have the

relationship rXg1g2 · · · gN = h1 · · ·hi−1
hi
X hi+1 · · ·hM . But now the substitution x 7→ 0 reveals both

sides evaluate to 0, so some hj evaluates to zero. Applying the same argument as before, we obtain

a new index j with the same property; without loss of generality we can assume i < j and obtain

rg1g2 · · · gN = h1 · · ·hi−1 ·
hi
X
hi+1 · · ·hj−1

hj
X
hj+1 · · ·hM .

Note that each hk ∈ R for k 6= i, j, so each of their constant terms is an integer. Also, substituting

x 7→ 0 provides that hi
X and

hj
X evaluates to ±1 and each gk ∈ R has an integer constant term

also. Hence, since r ∈ R \ Q, we have that the left-hand side rg1(0) · · · gN (0) ∈ R \ Q. But

h1(0)h2(0) · · ·hM (0) ∈ Z. This is a contradiction; no such gk, hk can exist, and hence rX2 is not

almost atomic. 4

Example 2.0.4 presents a monoid that, on the surface, seems to have no business being

almost atomic, but every generator is almost atomic. We can investigate a generalized polynomial

ring based on this monoid.

Example 2.0.4. In this example, we construct an almost atomic (additive) monoid generated over

N that is not atomic. Let p ∈ Z be an odd prime and let M ⊆ Q+ be the additive sub-monoid

M = 〈1, 2/p, 2/p2, 2/p3, . . .〉. The monoid element 1 ∈ M is irreducible. To see this, decompose 1

into a sum with coefficients αi ∈ N0.

1 = α0 · 1 + α1
2

p
+ α2

2

p2
+ · · ·+ αn

2

pn

where αn 6= 0 (for otherwise we would not write this element) and, without loss of generality, each

αi satisfies 0 6 αi < p for otherwise we can write αi = p+α′i and we can write αi
2
pi = (p+α′i)

2
pi or

2
pi−1 +α′i

2
pi , and collect elements with common powers p together. Moreover, M ⊆ Q so M inherits

the usual ordering on Q. Hence, α0 = 0, for otherwise the right-hand side is too large. Now we have

1 = α1
2

p
+ α2

2

p2
+ · · ·+ αn

2

pn

9



where each 0 6 αi < p for each 1 6 i 6 n and αn 6= 0. Hence, we have

pn = 2α1p
n−1 + 2α2p

n−2 + · · ·+ 2αn.

Reducing both sides modulo p reveals 0 ≡ 2αn(mod p), which contradicts our choice of αn as

0 < αn < p. Hence, we cannot write 1 this way and therefore 1 is irreducible. Any element of the

form 2/pn is not irreducible since 2/pn = 2pm/pn+m = 2
pn+m + 2

pn+m + · · ·+ 2
pn+m for any m ∈ N.

Hence, in the ring R = F2[Xm : m ∈ M ]m where m is the maximal ideal generated by

all monomials Xm, X ∈ R is a uniquely irreducible monomial and each X2/pn is not irreducible.

It seems as if R ought to be quasi-atomic, but R is almost atomic. Indeed, we always have the

factorization

X2 +X2+2/pn =X2(1 +X2/pn)

=Xpn 2
pn

(
1 +X2/pn

)
=X2/pnX(pn−1) 2

pn

(
1 +X2/pn

)
=X2/pn

(
X(pn−1) 2

pn +X(pn−1) 2
pn+ 2

pn

)
=X2/pn

(
X2 +X(pn−1) 2

pn

)
=X2/pn

(
X +X

pn−1
2

2
pn

)2

Note pn − 1 is even so pn−1
2 ∈ Z and X2 +X2+2/pn = X2

(
1 +X2/pn

)
with

(
1 +X2/pn

)
∈ U(R).

uX2 =X2/pn
(
X +X

pn−1
2

2
pn

)2

X2/pn =u

(
X

X +X2a/pn

)2

in the quotient field of R where a = pn−1
2 . We claim that X +X2a/pn is also irreducible in R, and

hence X2/pn is a ratio of atomic elements, i.e. almost atomic. To see that X+X2a/pn is irreducible,

write X+X2a/pn = fg for some f, g ∈ R. Since f, g ∈ R, we can write f =
∑
iX

mi and g =
∑
j X

nj

for some mi, nj ∈ M (over F2, coefficients can all be taken to be 1). Since fg = X + X2a/pn , we

have some monoid elements from {mi} and {nj} that sum to 1 ∈ M (to account for the term X).

Hence, either mi = 1 for some i or nj = 1 for some j. If mi = 1 for some i, then there exists some
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nj = 0, in which case g is a unit. If nj = 1 for some j, then there exists some mi = 0, in which case

f is a unit. Hence, X +X2a/pn is irreducible. Since X +X2a/pn is irreducible and X is irreducible,

X2/pn = u X2

(X+X2a/pn )2
is a ratio of atomic elements that is not atomic. 4

A proof that all non-zero non-units of R from Example 2.0.4 are almost atomic may be

available by writing elements of R in a canonical form that is amenable to factorization. However,

this is a rather heavy-handed way to provide an example of an almost atomic ring. We have, instead,

Example 2.0.5.

Example 2.0.5. Let R = Z[X] +X2Q[X]. If f ∈ Z[X] is irreducible in Z[X] then f is irreducible

in R. To see this, assume f ∈ Z[X] is irreducible and assume f = gh for some g, h ∈ R. As elements

of Q[X], which is a UFD, we see that

In the quotient field of R, any non-zero non-unit f ∈ R may be written f̂
m where m is the

least common multiple of the denominators of the coefficients of f and f̂ ∈ Z[X]. Moreover, for any

prime integer p ∈ Z, p is irreducible in R. To see this, assume f, g ∈ R such that p = fg. Note that

deg(f) = deg(g) = 0. Hence, f, g ∈ Z where p is prime. Hence, p | f or p | g.

Here is an example of a ring with mixed quasi-atomic and antimatter behavior.

Example 2.0.6. Let X, Y be indeterminates over F2 and R′ = F2[X,Y ]. The quotient field of

R′ is F2(X,Y ) and has algebraic closure F2(X,Y ). Let Y = {Y α | α ∈ Q+} ⊆ F2(X,Y ). Set

R′′ = R′[Y] = F2[X,Y,Y]. In R′′, the ideal (X,Y,Y) = m is maximal. Set R = R′′m. Then R is

Bézout (each finitely generated ideal is principal), and so G(R) is lattice-ordered (by the Jaffard-

Kaplansky-Krull-Ohm Theorem). Note that elements of the form Xn are atomic, whereas elements

of the form Y α seem to be associated to antimatter behavior. We later make rigorous the notion of

an antimatter element to describe elements of the form Y α. 4

An overring of an antimatter domain may be antimatter or it may not be. Using examples

from [7], we present antimatter domains with atomic overrings in Example 2.0.7 , and in Example

2.0.8 we present an antimatter domain whose overrings are all antimatter.

Example 2.0.7. Let X,Y be indeterminate over F2. Let T = F2(X) be the algebraic closure of

the quotient field of F2[X] and define X = {Xr | r ∈ Q+} ⊆ T . Set R0 := F2[X , Y ] and denote the

11



quotient field for R0 as K. Define Y =
{
Y
Xn | n ∈ N

}
⊆ K. Define

R1 = R0[Y] = F2

[
Xr, Y,

Y

Xn
| r ∈ Q+, n ∈ N

]

and let m ⊆ R1 be the ideal generated by all monomials of the form XrY n where r ∈ Q+ and n ∈ N0

such that if n = 0 then r > 0. Since R1/m ∼= F2, m is maximal. Define R := (R1)m.

Note that in R, every non-zero non-unit element is associate to some Xr with 0 6= r ∈ Q+ or

is associate to some Y n

Xr with n ∈ N and r ∈ Q. We claim R is a valuation domain that is antimatter

with prime spectrum (0) ⊆ p ⊆ n where n is generated by {Xr | r ∈ Q+}. To demonstrate that R

is a valuation domain, we show that for any pair of non-zero non-units, one divides the other. Let

f, gnR; we can write f = uXr for some u ∈ U(R), 0 6= r ∈ Q+ or f = uY
n

Xr for some u ∈ U(R),

n ∈ N, r ∈ Q, and we can write g = vXs for some v ∈ U(R) and 0 6= s ∈ Q+, or g = v Y
m

Xs for some

v ∈ U(R), m ∈ N, s ∈ Q.

If f = uXr and g = vXs for some r, s ∈ Q+, then r 6 s or s 6 r since Q is totally ordered.

In the former case, f | g, and in the latter case, g | f . If f = uXr for some r ∈ Q+ and g = v Y
m

Xs

for some m ∈ N and s ∈ Q, we always have that Y m = Xr Ym

Xr so f | g. This is the same case as

when f = uY
n

Xr for some n ∈ N and r ∈ Q and g = vXs for some s ∈ Q+. Lastly, if f = uY
n

Xr

and g = v Y
m

Xs , we have either n 6 m or m 6 n since N is totally ordered. If n 6 m, we can write

Ym

Xs = Ym−n

Xs Xr Y n

Xr so f | g. The case where m 6 n proceeds similarly. Thus, R is a valuation

domain whose prime ideals are linearly ordered.

All monomials are divisible by any uXr for 0 6= r ∈ Q+, and so the maximal ideal in R

is n = ({Xr | 0 6= r ∈ Q+}). However, (Y ) 6= n is also a prime ideal. To see this, presume that

fg ∈ (Y ), say fg = h ·Y n for some h ∈ R and n ∈ N. As before, we can write f = uXr or f = uY
n

Xr ,

and we can write g as vXs or v Y
m

Xs . We may also write h = wXt for some w ∈ U(R) and 0 6= t ∈ Q+

or h = w Y `

Xt for some w ∈ U(R), ` ∈ N, and t ∈ Q. The degrees of each side (with respect to Y )

must match, so degY (f) + degY (g) = degY (h) + degY (Y n). In particular, we have that degY (f) > 1

(so f = uY
n

Xr ∈ (Y )) or degY (g) > 1 (so g = v Y
m

Xs ∈ (Y )). Hence, (Y ) is a prime ideal.

These are all the non-zero prime ideals in R. To see this, let (0) ⊂ I ⊂ p ⊆ m ⊆ R be

any ideal and let 0 6= f ∈ I. We cannot write f = uXr for some r ∈ Q+, for otherwise f ∈ m \ p,

contradicting our choice of f as a generator of I. So we write f = uY
n

Xr for some n ∈ N, r ∈ Q,

u ∈ U(R). If n > 1, then this element factors non-trivially, but f was chosen arbitrarily, so I cannot

12



be prime. If n = 1, then (f) = ( Y
Xr ) = (Y ). Now if p ⊂ I ⊂ m ⊆ R, any non-zero f ∈ I must take

the form Xr, in which case I can only be prime if I = m, violating our choice of I. Hence, we have

a 2-dimensional valuation domain with prime spectrum (0) ⊆ (Y ) ⊆
(
{Xr}06=r∈Q+

)
⊆ R.

The value group for this domain is Z ⊕ Q ordered lexicographically, which we see by the

canonical map sending Xr 7→ (0, r) and sending Y n

Xr 7→ (n, r). Note that elements like (1, 0),

while positive, are not minimally positive because any (0, r) 6 (1, 0) with r ∈ Q+. In fact, R has

no irreducibles. Moreover, if we localize R at p = (Y ), we obtain an atomic ring with a unique

irreducible, Y . 4

Example 2.0.8. Similar to the previous example, construct F2[Xr, Y s, Y
s

Xk
| r, s ∈ Q+, k ∈ N]m.

This time, R is an antimatter valuation domain with value group Q⊕Q ordered lexicographically;

every overring is antimatter. Every element is associate to some Xα or some XαY β . 4

We may be interested in whether overrings preserve atomic (or almost atomic or quasi-

atomic) domains. Certainly, an atomic domain can have an antimatter overring; we merely need

to consider the quotient field for a realization. However, fields are vacuously atomic, and so this

seems to be an unsatisfying angle. We later see that every integral domain has a minimal antimatter

overring, which may not be a proper overring. This seems to suggest that, as we climb overrings

toward the quotient field, we tend toward antimatter behavior.

The domain in Example 2.0.9 was first presented in [7, Example 2.7]; we revisit this example

in some detail later. This integral domain exhibits behavior that is mixed between atomic and

antimatter in a few different ways.

Example 2.0.9. Let F be any field and X, Y , indeterminates over F. Let R′ = F[X,Y ] have

algebraic closure of its quotient field F(X,Y ). Set W =
{
Y α, Y

α

Xj : j ∈ N, α ∈ Q+
}

and define the

ring R′′ = R′[W] = F[X,Y,W]. In R′′, the ideal (X,Y,W) = m is maximal. Set R = R′′m.

An arbitrary non-zero non-unit of R is associate to some Xn for n ∈ N or is associate to

some Y α

Xn for 0 6= α ∈ Q+, n ∈ Z. The ring R is a 2-dimensional valuation domain with value group

Q ⊕ Z ordered lexicographically with the natural semi-valuation defined by mapping Xn 7→ (0, n)

and mapping Y α

Xn 7→ (α, n). Note that (0, 1) is minimal positive: if (0, 0) 6 (α, n) 6 (0, 1) for some

α ∈ Q+ and n ∈ Z then since (0, 0) 6 (α, n), we have that 0 < α or 0 = α and 0 6 n. Since

(α, n) 6 (0, 1), we have α < 0 or α = 0 and n 6 1. Hence, α = 0 and 0 6 n 6 1.

The element X, which has minimally positive value (0, 1), is irreducible (and uniquely so,
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among monomials). Thus, the atomic elements are precisely the elements of the form Xn. Moreover,

for any n ∈ N0, α ∈ Q+, we have that Xn | Y α, so every non-unit element is atomic (of the form

Xn) or has a countably infinite set of atomic divisors (of the form XnY α). In this sense, R exhibits

behavior mixed between antimatter and atomic. 4

We provide some explanatory framework for these varied factorization properties and be-

haviors in the sequel.
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Chapter 3

Quasi-Atomic Sequences

In this dissertation, our primary objects of study are sequences of localizations of integral

domains and their associated groups of divisibility, constructed so as to discern factorization infor-

mation. In Section 3.1, we construct these sequences, and in Section 3.2, we discuss their properties.

3.1 Constructions

We study localizations of integral domains because factorization in a ring is very sensitive

to localization, as demonstrated in Example 3.1.1. Recall we say a valuation domain is discrete if

its value group is discrete.

Example 3.1.1. Let D be a discrete valuation domain with Krull dimension 2 and prime spectrum

(0) ⊂ p ⊂ m. The maximal ideal, m, is principal, say m = (x). Any element of m \ p can be uniquely

factored into a power of x (up to associates). Since D is a valuation domain with an irreducible

element, all irreducibles are associate to x, and so all atomic elements are associate to some xn.

However, any 0 6= y ∈ p cannot be written as a pure power of x, so any such y is not atomic.

However, there are only two possible overrings of D (up to isomorphism), the quotient field of D

and a 1-dimensional discrete valuation domain with prime spectrum (0) ⊆ pp ⊆ Dp.

The set of non-unit, non-atomic elements (i.e. p \ {0}) is certainly multiplicatively closed,

but its saturation is D \ {0}. The saturation of p \ {0} in D is D \ {0}, because the set complement

of the saturation is a union of prime ideals. In D the only options are p, m, or R. The corresponding

localization, DD\{0} is precisely the quotient field of D; every element in the localization is a unit,
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D
ε0 //

��

DS1

ε1 //

��

DS2

ε2 //

��

· · ·

G(D) G(DS1) G(DS2)

Figure 3.1: The quasi-atomic localization sequence and the groups of divisibility in each degree.

so there are no irreducibles in the localization. 4

That is to say, the set of non-atomic elements is generally not multiplicatively closed, which

suggests we should localize at atomic elements. However, localizing at a set is equivalent to localizing

at the saturation of that set. Of course, if t is in the saturation of a set, S ⊆ R, then there exists

some s ∈ S such that t | s. In particular, if S consists of atomic elements, then the saturation of

S consists of the quasi-atomic elements. To select our localization sets as generated by atoms is

equivalent to localize at all quasi-atoms.

We sequentially localize at the set of all quasi-atomic elements, providing a chain of lo-

calizations D = DS0
⊆ DS1

⊆ DS2
⊆ DS3

⊆ · · · where we select S0 = U(D) and each Sn+1 to

be the saturation of the set of all atoms in DSn . In the sequel, we refer to this sequence as the

quasi-atomic localization sequence. More information on localization is presented in Appendix A.

Every integral domain has an associated quotient field F, unit group U(D), and po-group of divis-

ibility G(D) = F×/U(D), which we define and describe in some detail in Appendix B. We expand

the quasi-atomic localization sequence by considering the groups of divisibility in each degree as in

Figure 3.1.

The first natural question to arise is whether we can “fill in” the bottom edges of each

square to make the diagram in Figure 3.1 commute. We answer this in the affirmative in Theorem

3.1.4 establishing there exists a functor between integral domains and po-groups of the group of

divisibility. To describe the the group of divisibility as a functor we first must describe the category

of integral domains and the category of po-groups.

We take the morphisms in the category of integral domains to be ring monomorphisms. We

take the morphisms in the category of po-groups as the o-homomorphisms, described in Appendix

B. An o-homomorphism is a group homomorphism φ : G1 → G2 between po-groups that preserves

the partial order on G1: if x 6 y in G1 then φ(x) 6 φ(y) in G2. In Appendix B, we describe certain

distinguished o-homomorphisms called o-epimorphisms in detail, since they play a central role in the
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category of po-groups due to Mott’s correspondence connecting o-epimorphisms and localizations

of integral domains. An o-homomorphism φ : G1 → G2 is an o-epimorphism if φ is a surjective

o-homomorphism such that φ(G+
1 ) = G+

2 .

Definition 3.1.2. (a) Let Dom be the category whose objects are all integral domains and whose

morphisms are ring homomorphisms such that 1 7→ 1. Let Dom∗ be the subcategory with the

same objects as Dom but restricting the morphisms to include only ring monomorphisms.

(b) Let Pog be the category whose objects are all abelian po-groups and whose morphisms are po-

group o-homomorphisms. Let Pog∗ have the same objects as Pog but restricting the morphisms

to include only po-group o-epimorphisms.

For a category C, we denote the collection of all objects of C as Ob(C) and the morphisms

of C as Mor(C).

Definition 3.1.3. Define G on objects, by G(D) = G(D). Define G on a morphism ε : D1 → D2

by defining G(ε) as the o-homomorphism φε : G(D1)→ G(D2) defined by a
bU(D1)→ ε(a)

ε(b)U(D2).

Theorem 3.1.4. In Definition 3.1.3, G is a covariant functor G : Dom∗ → Pog.

Proof. Let ε : D1 → D2 be an arbitrary arrow from Dom∗. We construct G(ε) : G(D1) → G(D2)

explicitly. First observe that ε(U(D1)) ⊆ U(D2). To see this, if u ∈ U(D1) then uu′ = 1 for

some u′ ∈ U(D1); since ε is a homomorphism of rings, we conclude ε(u)ε(u′) = 1. An arbitrary

element from G(D1) is a co-set of the form a
bU(D1) where a, b ∈ D1 \ {0}, so ε(a), ε(b) ∈ D2 \ {0}.

Furthermore, if a
bU(D1) = a′

b′ U(D1) then there exists some u ∈ U(D1) so that ab′ = ua′b. Thus

ε(a)ε(b′) = ε(u)ε(a′)ε(b) where ε(u) ∈ U(D2), so ε(a)
ε(b)U(D2) = ε(a′)

ε(b′)U(D2). Hence the naturally

defined map φ : G(D1)→ G(D2) induced by ε given by a
bU(D1)→ ε(a)

ε(b)U(D2) is well-defined.

Moreover, this map is a morphism in Pog. We verify if x, y ∈ G(D) then φ(xy) = φ(x)φ(y).

We set x = a
bU(D), y = a′

b′ U(D). Then xy = aa′

bb′ U(D). Hence, φ(xy) = ε(aa′)
ε(bb′)U(D′). Since ε is a

ring homomorphism ε(aa′) = ε(a)ε(a′), ε(bb′) = ε(b)ε(b′), and φ(xy) = ε(a)
ε(b)

ε(a′)
ε(b′)U(D′) = φ(x)φ(y).

To establish φ is a morphism in Pog all that remains is to establish that φ is order-preserving.

If a
bU(D1) 6 a′

b′ U(D1) then U(D1) 6 a′b
ab′U(D1), so there exists some x ∈ D1 such that a′b

ab′ = x.

Hence a′b = xab′ and therefore ε(a′)ε(b) = ε(x)ε(a)ε(b′). Thus, ε(a′)ε(b)
ε(a)ε(b′) = ε(x) ∈ D2. In particular,

ε(a′)ε(b)
ε(a)ε(b′)U(D2) is non-negative so ε(a)

ε(b)U(D2) 6 ε(a′)
ε(b′)U(D2).
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D
ε0 //

G

��

DS1

ε1 //

G

��

DS2

ε2 //

G

��

· · ·

G(D)
G(ε0)

// G(DS1
)

G(ε1)
// G(DS2

)
G(ε2)

// · · ·

Figure 3.2: The diagram of quasi-atomic localization sequence and its image under G.

All that remains is to verify that G respects composition of morphisms and respects identity

morphisms. If ε : D1 → D2 is the identity ring monomorphism, then D1 = D2 and φ maps

a
bU(D1) 7→ ε(a)

ε(b)U(D2) = a
bU(D1). Thus, G(ε) is the identity morphism. Lastly, let ε1,2 : D1 → D2

and ε2,3 : D2 → D3 be a pair of composable morphisms from Dom∗. Then ε2,3 ◦ ε1,2 is precisely

the map ε1,3 : D1 → D3 is a ring monomorphism. Hence, G(ε1,3) : G(D1) → G(D3) is the map

a
bU(D1) 7→ ε2,3◦ε1,2(a)

ε2,3◦ε1,2(b)U(D3). This certainly factors into the composition of arrows G(ε2,3) ◦G(ε1,2).

G is covariant by construction.

All that remains is to establish that these squares are commutative. Indeed, let x ∈ DSn .

The map downward map DSn → G(DSn) is induced by the natural semi-valuation x 7→ xU(DSn).

The map G(εn) : G(DSn) → G(DSn+1) is the canonical projection xU(DSn) 7→ xU(DSn+1). Going

round the other direction, x 7→ x
1 by εn and then x

1 7→
x
1U(DSn+1

) = xU(DSn+1
). Thus, we answer

our first naturally arising question in the affirmative and construct the commutative diagram in

Figure 3.2. After establishing Theorem 3.1.4, we direct the reader to Sections 3.2 and B.2 for

extended remarks on the morphisms in Pog; these morphisms require some delicate treatment.

Another natural question concerning this sequence is whether we can exploit any properties

or structures of the po-groups G(DSi) to expand upon the diagram of Figure 3.2 further. Again,

the answer is yes, thanks to Theorem B.21 (first established in [25]), which allows us to write each

G(DSi) = G(D)/Hi for an o-ideal Hi. Choosing H0 = {eG}, the o-ideals may be written in a

linearly ordered ascending chain H0 ⊆ H1 ⊆ H2 ⊆ H3 ⊆ · · · ⊆ G(D) since the sequence {Si} is a

linearly ordered ascending chain. Furthermore, the maps G(εi) : G(D)
Hi
→ G(D)

Hi+1
map a

bHi 7→ a
bHi+1

so they are the canonical group epimorphisms. Hence, we denote G(εi) = πi. Following Theorem

B.21, each Hi = 〈ν(Si)〉 where the map ν : D → G(D) is defined by x 7→ xU(D).

We find the following notation helpful: for a po-group G, we denote the subgroup generated

by the atomic elements as A(G) and we denote the subgroup generated by the quasi-atomic elements

as Q(G).
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Theorem 3.1.5. Let D be an integral domain and G(D) the group of divisibility. Then any x ∈ D

is quasi-atomic if and only if xU(D) ∈ Q(G(D))+.

Proof. Let x, y ∈ D such that xy is atomic. Since x ∈ D, xU(D) ∈ G(D)+, and since xy is

atomic, xyU(D) ∈ A(G(D)). Hence, U(D) 6 xU(D) 6 xyU(D), so by definition xU(D) is quasi-

atomic in G(D) (similarly, yU(D) is also quasi-atomic). Now let a
bU(D) ∈ Q(G(D))+. Since this

is positive, we have some x ∈ D such that a
b = x ∈ D. Since a

bU(D) ∈ Q(G(D)) there exists

some element a ∈ A(G(D)) such that U(D) 6 xU(D) 6 a. Since a ∈ A(G(D)), we may write

a = (a1U(D)) (a2U(D))
−1

for some a1U(D), a2U(D) ∈ A(G(D))+. We obtain the chain of order

relations xU(D) 6 a2xU(D) 6 a1U(D) so x | a1 in D. We conclude x is quasi-atomic in D.

We later elaborate further upon the connection between these subgroups, especially with

respect to saturated subsets of integral domains (c.f. Theorem 3.1.6, Lemma B.5, and Theorem

B.21).

Mott’s correspondence demonstrates that 〈ν(Sn+1)〉 is an o-ideal of G(DSn). Since each

Sn+1 is the saturation of the atoms of DSn , Sn+1 is the collection of all quasi-atoms (and units).

Thus Hn = Q(G(DSn)). Due to this, we can more generally define the quasi-atomic quotient

sequence for directed po-groups G, even without an underlying integral domain D.

G = G0 → G1 =
G0

Q(G0)
→ G2 =

G1

Q(G1)
→ · · ·

However, although Mott’s correspondence ensures that each H = Q(G(D)) is an o-ideal, it is not

necessarily clear that Q(G) is an o-ideal for an arbitrary po-group G.

Theorem 3.1.6. For a directed po-group G, Q(G) is the smallest o-ideal in G containing A(G).

Proof. The subgroup Q(G) is generated by the elements g ∈ G+ that can be bounded above by

an atomic element, so its generators are by construction all positive. Hence, Q(G) is directed. To

establish convexity, let q ∈ Q(G)+ and x ∈ G+ such that e 6 x 6 q. Since q ∈ Q(G)+, there exists

an atomic a ∈ A(G) such that q 6 a. By transitivity, e 6 x 6 a so x ∈ Q(G). Now let O be the set

of all o-ideals in G containing A(G). Certainly Q(G) ∈ O, hence we obtain the obvious containment⋂
H∈OH ⊆ Q(G). To complete the argument it is sufficient to show Q(G)+ ⊆ H for each H ∈ O. If

x ∈ Q(G)+ then x 6 a for some a ∈ A(G)+ ⊆ H. By the convexity of H, we have that x ∈ H.
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D
ε0 //

G

��

DS1

ε1 //

G

��

DS2

ε2 //

G

��

· · ·

G(D)
π0

// G(D)/H1 π1

// G(D)/H2 π2

// · · ·

Figure 3.3: The commutative diagram of quasi-atomic localization sequence and its associated quasi-
atomic quotient sequence. The arrows εn denote set inclusion, the arrows πn denote po-group o-
epimorphisms, and the arrows G are the maps induced by the natural transformation id→ G.

Definition 3.1.7. Let G be a po-group. Define G0 = G and define Gn+1 = Gn/Q(Gn) for each

n > 0 and let πn : Gn → Gn+1 be the associated o-epimorphism. We call this the quasi-atomic

quotient sequence for G.

In this section, we began with an integral domain and we constructed the quasi-atomic

localization sequence by iteratively localizing at the set of all quasi-atomic elements. We used the

group of divisibility to establish a functor between the category of integral domains Dom∗ and the

category of po-groups Pog, and we began the study of the image of the quasi-atomic localization

sequence under this functor. The morphisms in the bottom row of Figure 3.2 can be rewritten as in

Figure 3.3.

3.2 Properties

In this section, we establish some properties of groups of divisibility and the quasi-atomic

sequences. In particular, the morphisms in Pog require some special care. As we shall see, not every

epic morphism in Pog needs to be a surjective function, but the o-epimorphisms we have defined,

following the definition by Fuchs in [11], play a keystone role in the category. We can exploit

properties of G to explore the difference between epic morphisms in Pog and our o-epimorphisms.

Definition 3.2.1. Let C be a category and f a morphism in C.

(a) If for any g, h ∈ Mor(C), gf = hf implies g = h, we say f is right-cancellable.

(b) If for any g, h ∈ Mor(C), fg = fh implies g = h, we say f is left-cancellable.

If f is right-cancellable, we say f is a epimorphism (or epic). If f is left-cancellable, we say f is a

monomorphism (or monic). If f is right- and left-cancellable, we say f is a bimorphism. If f has a

left and right inverse, we say f is an isomorphism.
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As defined in [12], every o-epimorphism π : G→ G/H is a group epimorphism and hence is

right-cancellable with all group epimorphisms. In particular, f cancels with all o-homomorphisms,

so f is epic as an o-homomorphism. However, it may be that f is epic in Pog but is not epic as a

group homomorphism.

Example 3.2.2. We examine the product order on Z ⊕ Z; declare (a, b) 6 (c, d) if and only if

a 6 c and b 6 d. Let f : Z ⊕ Z → Z be defined by mapping (a, b) 7→ 6a + 15b. Then f is clearly

not surjective as a function. We claim that f is epic in the category of po-groups. Indeed, f is

order-preserving: if (a, b) 6 (c, d) then a 6 c and b 6 d so 6a+ 15b 6 6c+ 15d. Hence, it is sufficient

to show that f cancels on the right with respect to all po-group homomorphisms.

Let g, h : Z → G be po-group homomorphisms. If gf = hf then g ◦ f(a, b) = h ◦ f(a, b)

so g(6a + 10b) = h(6a + 15b). Now since g, h : Z → G have Z as their domains, g and h are

determined by g(1) and h(1). For any x > 0, we have that g(x) = g(1 + 1 + · · ·+ 1︸ ︷︷ ︸
x times

) = xg(1) so

(6a + 10b)g(1) = (6a + 15b)h(1) (and for x < 0 we have −(6a + 10b)g(1) = −(6a + 15b)h(1)). We

conclude (6a + 15b)(g(1) − h(1)) = 0 in G or has order 6a + 10b in G. However, partially ordered

groups are torsion-free. To see this, assume xn = 1G for some x ∈ G and n > 1. Then xn 6 xn+1

so 1G 6 x and, moreover, 1G 6 x 6 x2 6 · · · 6 xn−1 6 1G. Since 6 is antisymmetric, we have that

x = 1G. Hence, we conclude g(1) = h(1) so g = h.

Note that f is not epic as an arrow in the category of abelian groups much less the category

of all groups Grp. For a concrete realization of this, set G = Z/3Z and g : Z → Z/3Z defined by

g(1) = 1 and h : Z→ Z/3Z by h(1) = 2. Certainly, g 6= h. However hf = gf = 0. 4

Any f we hope to be epic in Pog only needs to cancel on the right with respect to o-

homomorphisms, but to be epic in the category of all groups, f needs to cancel on the right with

respect to all group homomorphisms. In this regard, the hurdle is lower in subcategories to be

regarded as epic (or mono, or iso). Hence, the term o-epimorphism (ostensibly first used by Fuchs

in [12]) may be misleading: a priori not every epic morphism in Pog is an o-epimorphism. Example

3.2.2 demonstrates that not every epic morphism in Pog is surjective.

Of course, Mott’s Correspondence (Theorem B.21) connects o-ideals in G(D) to saturated

multiplicatively closed sets of D. Each o-ideal is the kernel for a naturally induced o-epimorphism,

but not every o-epimorphism has an o-ideal kernel (all we require is convexity, not that the kernel

is direct). On the other hand, every localization of D at a saturated multiplicatively closed set is
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an overring of D, but not every overring of D is a localization. We use Lemma 3.2.3 several times

to establish certain properties of the quasi-atomic sequences.

Lemma 3.2.3. Let D1 and D2 be integral domains. If G(D1) = G(D2) then D1 = D2.

Proof. If G(D1) = G(D2) then the identities of these groups coincide, so U(D1) = U(D2). Since

these groups coincide, their generating sets coincide. These are directed groups, so they are generated

by their positive elements. The set of positive elements is the set of associate classes of domain

elements. Hence, the associate classes coincide and the unit groups coincide, so D1 = D2.

Example 3.2.4. Let D be any integral domain with quotient field F and overring D′. Since D′ is

an overring, the quotient field of D′ is also F so G(D′) = F×/U(D′). Of course, G(D) = F×/U(D),

and so the canonical ring monomorphism ε : D → D′ induces a canonical group epimorphism

G(D)� G(D′) with kernel U(D′)/U(D) ⊆ F×/U(D). Thus this canonical group epimorphism is of

the form π : G � G/H for a subgroup H. It has been established that G/H is a po-group under

the inherited quotient order from G if and only if H is convex in the partial order from G. Thus,

we have that U(D′)/U(D) is a convex subgroup of G(D). Moreover, if U(D′)/U(D) is an o-ideal,

then we have G(D′) = F×/U(D′) = F×/U(D)
U(D′)/U(D) so by Mott’s Correspondence, G(D′) = G(DS).

Applying Lemma 3.2.3, we conclude D′ = DS for some saturated multiplicatively closed set S ⊆ D.

On the other hand, U(D′)/U(D) is not an o-ideal then D′ 6= DS for any saturated multiplicatively

closet set S. 4

The quasi-atomic sequences themselves reveal information about factorization in D. To this

end, we make use of the following definitions.

Definition 3.2.5. Let D be a domain with quasi-atomic localization sequence
{
εi : DSi → DSi+1

}
i
.

Let G be a po-group with quasi-atomic quotient sequence {πi : G(D)/Hi � G(D)/Hi+1}i.

(a) Define the quasi-atomic length of D as lenq(D) := inf {m ∈ N0 : Sm = Sm+1 = Sm+2 = · · · }.

(b) Define the quasi-atomic length of G as lenq(G) := inf {m ∈ N0 : Hm = Hm+1 = Hm+2 = · · · }.

Lemma 3.2.6. If D is antimatter then lenq(D) = 0. If D is quasi-atomic then lenq(D) = 1. If

lenq(D) = N > 1 and DSN = F then DSN−1
is quasi-atomic.

Proof. Note that if D is antimatter, then S1 = U(D), so DS1
∼= D. Thus, the localization sequence is

D = D = D = · · · with quotient sequence G(D) = G(D) = G(D) = · · · . On the other hand, if D is
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a quasi-atomic domain, then S1 = D\{0}, so DS1 = F. In this special case, the localization sequence

is then D ⊆ F = F = F = · · · and the quotient sequence is G(D) � {0} � {0} � {0} � · · · .

Lastly, If lenq(D) = N > 1 and DSN = F, then F = DSN = (DSN−1
)SN so SN , which consists of all

quasi-atoms, satisfies SN = DSN−1
\ {0}.

In this sense, antimatter domains have quasi-atomic sequences that stabilize, and quasi-

atomic domains have trivial quasi-atomic sequences. Clearly the quasi-atomic sequences only capture

non-quasi-atomic information.

Theorem 3.2.7. Let {Gλ | λ ∈ Λ} be a family of po-groups, G = ⊕λGλ in the product order, let

{nλ | λ ∈ Λ} be a net of natural numbers such that lenq(Gλ) = nλ for each λ and such that the

supremum N = sup {nλ | λ ∈ Λ} is finite. Then lenq(G) = N . Moreover, (i) if each Gλ is quasi-

atomic in the limit, then G is quasi-atomic in the limit and (ii) if each Gλ is antimatter in the limit,

then G is antimatter in the limit.

Proof. We index the following quotient groups:

G0 := ⊕λGλ

Gn := Gn−1/Q(Gn−1) for any n > 1

G
(0)
λ := Gλ

G
(n)
λ := G

(n−1)
λ /Q(G

(n−1)
λ ) for any n > 1

By Corollary B.9, Gn ' ⊕λG(n)
λ for any n > 0. Since each Gλ is nλ-atomic, each G

(nλ)
λ is trivial.

Hence, we obtain the sequence G0 → G1 → G2 → · · · , which is o-isomorphic to the sequence, in

direct sum notation

⊕λG(0)
λ → ⊕λG

(1)
λ → ⊕λG

(2)
λ → . . .

Since each nλ 6 N , we have that this sequence terminates by the N th step and no earlier. This

establishes the first statement of the corollary. The second statement is proved similarly with all

sequences stabilizing to a non-trivial group by the N th step, rather than terminating.

We can extend Definition 3.2.5 to elements rather than domains or po-groups. An arbitrary

non-zero element d ∈ D may be a unit in DS0 = D or not. If d is a non-unit, d may remain a
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non-unit in DS1 or not. If d remains a non-unit in DS1 , then d may remain a non-unit in DS2 or

not, and so on.

Definition 3.2.8. Let D be an integral domain, G a po-group, x ∈ D and g ∈ G.

(a) Define lenq(x) = inf {m ∈ N0 : x ∈ U(DSm)}.

(b) Define lenq(g) = inf {m ∈ N0 : g = 1 ∈ G/Hm}.

Theorem 3.2.9. lenq(D) = lenq(G(D)).

Proof. If D has quasi-atomic length n, then DSn = DSn+k
for each k ∈ N0. Their quotient fields

and unit groups thus coincide so G(DSn) = G(DSn+k
). On the other hand, if G(DSn) = G(DSn+k

)

then DSn = DSn+k
by Lemma 3.2.3.

Definition 3.2.10. Let D be an integral domain with the usual quasi-atomic localization sequence{
εn : DSn → DSn+1

}
. Let S∗ = lim

−→
Sn and D∗ = lim

−→
DSn .

(a) We say D∗ is the antimatter limit and that S∗ ⊆ D is the quasi-atomic limit of D.

(b) If D∗ = F, we say D is quasi-atomic in the limit, otherwise, we say D is antimatter in the limit.

Definition 3.2.11. Let G be a po-group with quasi-atomic quotient sequence {πn : Gn → Gn+1}

where Hn = Ker(πn). Let H∗ = lim
−→

Hn and G∗ = lim
−→

Gn.

(a) We say G∗ is the antimatter limit and that H∗ ⊆ G is the quasi-atomic limit of G.

(b) If G∗ is trivial then we say G∗ is quasi-atomic in the limit, otherwise we say G is antimatter in

the limit.

Lemma 3.2.12. D∗ is an antimatter overring of D, and D is quasi-atomic in the limit if and only

if lenq(x) < ∞ for any non-zero non-unit x ∈ D. G∗ is an antimatter quotient po-group of G, and

G is quasi-atomic in the limit if and only if lenq(x) <∞ for any x ∈ G.

Proof. Assume x ∈ D∗ is an irreducible. The direct limit is the union, so D∗ = lim
−→

DSi = ∪iDSi .

Hence, x ∈ DSi for some i (and DSi ⊆ DSj for every i 6 j). Moreover, if x is irreducible in

any DSj , then x ∈ U(DSj+1
), contradicting our choice of x as irreducible in D∗. Thus x is not

irreducible in any DSj with j > i. Thus, for each j > i, we have some factorization x = yjzj with

yj , zj ∈ DSj \ U(DSj ).
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To see that G∗ is antimatter, assume by contradiction that some x ∈ (G∗)+ is an atom. We

can write x = g +H∗ for some g ∈ G, and since x is non-negative we have some h ∈ H∗ such that

g + h > 0. But H∗ = lim
−→

Hi = ∪iHi, so there must exist some n ∈ N0 such that h ∈ Hn. Hence,

x = g +Hn = g +Hn+1 = · · · = g +H∗. But if x is an atom in G/Hn then x ∈ Hn+1 and hence x

is trivial in G∗, contradicting our choice of x as an atom.

Lastly, assume G∗ = {0}. Since G∗ = G/(H∗) and G/H∗ = {0}, we have G = H∗, i.e.

G = ∪iHi. Any g ∈ G has some corresponding minimal n such that g ∈ Hn, and hence lenq(g) = n.

On the other hand, if each g ∈ G has a corresponding n ∈ N0 such that lenq(g) = n, then each

G ⊆ ∪iHi = H∗.

This allows us to provide a rigorous definition of an antimatter element of a domain.

Definition 3.2.13. Let D be an integral domain and let G be a group. Any x ∈ D (or g ∈ G) with

infinite quasi-atomic length is called an antimatter element.

Corollary 3.2.14. Let D be an integral domain and G a directed po-group. D is antimatter in the

limit if and only if D has an antimatter element. G is antimatter in the limit if and only if G has

an antimatter element.

Proof. This follows directly from Lemma 3.2.12. We always have D∗ ⊆ F. If D∗ = F then each

element has finite quasi-atomic length and hence D∗ has no antimatter elements. If D∗ ⊂ F then

every non-zero non-unit x ∈ D∗ comes from some x ∈ D with infinite quasi-atomic length. Similarly,

if G∗ 6= {0} then there exists some g ∈ G such that for each n, g +Hn 6= Hn.

Example 3.2.15. Let D be an integral domain with group of divisibility G(D) = Q⊕Z⊕Z ordered

lexicographically by declaring (a, b, c) 6 (α, β, γ) if and only if any of the following conditions hold:

(i) a < α, (ii) a = α and b < β, or (iii) a = α and b = β and c 6 γ. Then D has quasi-atomic

quotient sequence

Q⊕ Z⊕ Z −→ Q⊕ Z −→ Q

Indeed, in Q⊕ Z⊕ Z, we have the (unique) minimal positive element (0, 0, 1), which generates the

quasi-atomic subgroup 0⊕0⊕Z. In Q⊕Z⊕Z
0⊕0⊕Z ' Q⊕Z, we have the (unique) minimal positive element

(0, 1), which generates the quasi-atomic subgroup 0⊕Z. Lastly, Q has no minimal positive elements.

Hence, Z⊕ Z⊕Q has quasi-atomic length 2, but G(D)∗ = Q 6= {1G}.
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We can realize this example constructively. Let F be any field and define R′ = F[X,Y, Z].

In the algebraic closure of the quotient field, F(X,Y, Z) let W =
{
Zα, YXj ,

Zα

Y j : α ∈ Q+, j ∈ N
}

. Set

D′ = R′[W] = F[X,Y, Z,W]. In D′ the ideal generated by monomials m = (X,Y, Z,W) is maximal.

Set D = D′m.

Every element of D is associate to some monomial, so every element of D is of the form

uXnY mZα for some u ∈ U(D), n ∈ N0, m ∈ N0, α ∈ Q+. However, there is a unique irreducible, X.

Localizing at quasi-atoms yields a new unique irreducible, Y . Localizing again yields an antimatter

domain in which every element is associate to some Zα. In particular, each element of the form

XnY mZα with α 6= 0 is an antimatter element. 4

Certainly this example also illustrates that quasi-atomic length does not determine whether

antimatter elements exist, only whether the quasi-atomic sequences stabilize. However, information

about the quasi-atomic length of elements does inform us on the quasi-atomic length of a domain

(or po-group).

Lemma 3.2.16. Let D be an integral domain such that each 0 6= x ∈ D has lenq(x) ∈ N0. Let G be

a directed po-group such that each 0 6= x ∈ G+ has lenq(x) ∈ N0. Then lenq(D) = supx∈D {lenq(x)}

and lenq(G) = supx∈G+ {lenq(x)}.

Proof. Let x ∈ D such that lenq(x) = N . Since x is a non-unit in the (N − 1)th stage and becomes

a unit in the N th stage of localization, SN 6= SN−1 so lenq(D) > N . On the other hand, if

lenq(D) = N , then SN = SN+k for each k > 0. In particular, any element of finite quasi-atomic

length has at most N stages of localization before they become a unit. Thus, for each x ∈ D,

lenq(x) 6 N , and so supx∈D {lenq(x)} 6 N . The proof is similar, mutatis mutandis, for G.

Note that we require the assumption that all elements in D or G+ to have finite quasi-atomic

length. Indeed, the po-group G = Z⊕Q ordered lexicographically has lenq(G) = 1 but any element

of the form x = (0, ab ) with a
b 6= 0 has lenq(x) = +∞.

We now see a few natural routes of inquiry. For one thing, we may ask whether an antimatter

overring for D contains D∗, or we may ask whether the intersection of all antimatter rings containing

D will also contain D∗. In fact, it seems this is reasonable, due to the universal properties of

localization and direct limits, which we used to construct D∗. Unfortunately, we have the following

counter-example to this idea.
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Example 3.2.17. From F2(X), we select the set X = {Xα | α > 1, α ∈ Q+}, and Y = {Xα | 0 6= α ∈ Q+}.

Define R1 = F2[X ]m where m is the ideal generated by X and R2 = F2[Y]n where n is the ideal

generated by Y. Certainly R1 ⊆ R2 and R2 is antimatter. Both have the same quotient field, in

which every non-zero element is of the form Xr for some r ∈ Q so R2 is an overring of R1. However,

R∗1 coincides with the quotient field, whereas R∗2 = R2 since R2 is antimatter.

In fact, it seems that attaining antimatter rings through the process of localization and the

process of integral extensions may yield two related but wholly different approaches to constructing

an antimatter ring containing some D.

Thinking about universality, since lim
−→

DSi = Dlim
−→

Si , we may wonder if the quasi-atomic limit

G(D)∗ coincide with the quasi-atomic limit G(D∗) = G(D∗)? This is, in fact, true. To establish this,

we look toward direct limits; the quasi-atomic sequences are direct systems indexed by N0. Denote

lim
−→

DSi as D∗ and denote lim
−→

G as G∗. In Example A.27, we demonstrate that for an ascending

chain of saturated multiplicatively closed sets, S0 ⊆ S1 ⊆ · · · , lim
−→

DSi = Dlim
−→

Si . We have a similar

result for quotient po-groups and ascending chains of o-ideals, H0 ⊆ H1 ⊆ · · · in Lemma 3.2.18.

Lemma 3.2.18. Let H0 ⊆ H1 ⊆ H2 ⊆ · · · be an ascending chain of o-ideals of a po-group G. Then

G/lim
−→

Hi ' lim
−→

G/Hi.

Proof. Note that lim
−→

G/Hi comes equipped with o-epimorphisms φn : G/Hn → lim
−→

G/Hi. In par-

ticular, for n = 0, we have an o-epimorphism φ : G → lim
−→

G/Hi. Hence, lim
−→

G/Hi ' G/Ker(φ).

Denote H ′ = lim
−→

Hi. It is sufficient to show that H ′ ' Ker(φ).

If x ∈ H ′ then x ∈ Hn for some n. We decompose φ : G→ lim
−→

G/Hi into the chain

G
πn−→ G/Hn

φn−→ G/Ker(φ).

Since x ∈ Hn, πn(x) is trivial so φ(x) = φn ◦ πn(x) is trivial. On the other hand, let x ∈ Ker(φ).

For each n, since Hn ⊆ H ′, we have the well-defined o-epimorphism ψn : G/Hn → G/H ′. Since

lim
−→

G/Hi is universal, the maps of the form ψn : G/Hn → G/H ′ can be written ψn = ψ ◦ φn

where ψ : G/Ker(φ) → G/H ′ and the maps φn : G/Hn → G/Ker(φ) are associated with the

direct limit lim
−→

G/Hi ' G/Ker(φ). If x ∈ Ker(φ), then φn(x + Hn) is trivial in G/Ker(φ), and so

x ∈ Ker(ψn) = H ′.

This yields Theorem 3.2.19.
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Theorem 3.2.19. G(D∗) = G(D)∗

Proof. Since D∗ is the direct limit of DSi , G(D∗) is the group of divisibility of this direct limit.

Elaborated upon in A.27, we have that D∗ = Dlim
−→

Si . This is a localization at a saturated set.

By Mott’s correspondence G(D∗) = G(D)/H for H = 〈ν(lim
−→

Si)〉, and according to Lemma 3.2.18,

G(D)∗ = lim
−→

G(D)/Hi ' G(D)/lim
−→

Hi.

It is sufficient to show that lim
−→

Hi = 〈ν(lim
−→

Si)〉. If g ∈ (lim
−→

Hi)
+ = ∪iH+

i , then g ∈ H+
n for

some n. Hence, g + Hn−1 is quasi-atomic in G(D)/Hn−1 = G(DSn−1). We may write g = aU(D)

for some a ∈ D since g is non-negative; here, a is a unit in DSn since g + Hn−1 is quasi-atomic in

G(D)/Hn−1. Hence, a ∈ Sn ⊆ lim
−→

Si, so g ∈ H = 〈ν(lim
−→

Si)〉.

On the other hand, if g ∈ 〈ν(lim
−→

Si)〉+, then g is a finite sum of non-negative elements,

say g = g1 + g2 + · · · + gn where each gj = ajU(D) for some aj ∈ lim
−→

Si = ∪iSi. In particular

each aj ∈ Snj for some nj ∈ N0; hence, gj = ajU(D) ∈ G(D) is in the kernel of the natural

o-epimorphism G(D) → G(D)/Hnj . Thus, g is a sum of elements from the subgroups {Hn}, so

g ∈ lim
−→

Hi = ∪iHi.

Example 3.2.20. Let R be any n-dimensional discrete valuation domain. Then R is quasi-atomic

in the limit and has quasi-atomic length n. On the other hand, let R be any n-dimensional valuation

domain with value group Q⊕
(
⊕n−1
i=1 Z

)
ordered lexicographically: declare (ai) 6 (bi) if and only if,

for some j with 1 6 j < n, if j 6= n then ai = bi for each 1 6 i < j and ai < bi for i = j and, if

j = n then ai = bi for each 1 6 i < n and an 6 bn. Then R also has quasi-atomic length n, but is

antimatter in the limit.

Theorem 3.2.21. Let D be an integral domain with at least one irreducible such that every proper

overring of D is quasi-atomic. Then lenq(D) 6 2 and D is quasi-atomic in the limit.

Proof. We have the quasi-atomic localization sequence

DS0
⊆ DS1

⊆ DS2
⊆ · · ·

where S0 = U(D). If D is quasi-atomic, then the localization sequence is stable at degree 1 and

D∗ = F, yielding the rather trivial sequence DS0
⊆ F. Since D is not quasi-atomic and has at least

one irreducible, DS1 is a proper overring. Moreover, since every proper overring of D is quasi-atomic,

then DS1
is quasi-atomic, and so DS2

= F.
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The Krull dimension of a ring imposes constraints on factorization behavior in that ring, and

consequently the Krull dimension of the ring is related to the stability of the quasi-atomic sequences.

Recall Example 3.2.20, which provides an n-dimensional valuation domain with quasi-atomic length

n. However, the relationship between Krull dimension and quasi-atomic length is not a direct one:

recall the ring in Example 2.0.9 R = F[X,Y α, Y
α

Xn : α ∈ Q+, n ∈ N]m. R has infinite Krull dimension,

but G(R) ' Q⊕Z, so lenq(G(R)) = 1. Valuation domains provide more control over the relationship

between Krull dimension and quasi-atomic length.

Theorem 3.2.22. Let V be a valuation domain. Then lenq(V ) 6 dim(V ).

Proof. If dim(V ) = +∞ then lenq(V ) < dim(V ) rather vacuously. If dim(V ) is finite, then for any

saturated multiplicatively closed set S ⊆ V such that U(V ) 6= S and 0 /∈ S, dim(VS) 6 dim(V )− 1.

Hence the localization sequence VS0
⊆ VS1

⊆ · · · must stabilize before the N th step.

Of course, for integral domains that are not valuation domains, the relationship between

Krull dimension and quasi-atomic length is not so neat. For an example, consider any infinite

dimensional UFD, such as R = F[X1, X2, X3, . . .]. Since R is a UFD, R is quasi-atomic. In particular,

lenq(R) = 1, but dim(R) = +∞. However, much can be said from the context of valuation domains.

Corollary 3.2.23. Let V be a valuation domain. If dim(V ) = 0 then lenq(V ) = 0 and V ∗ = V .

If dim(V ) = 1 and V has an irreducible element, then V is atomic, lenq(V ) = 1, and V ∗ coincides

with the quotient field of V . If dim(V ) > 2, then V is not quasi-atomic.

Proof. If dim(V ) = 0 then V is a field, its own quotient field, and hence V ∗ = V and lenq(V ) = 0.

On the other hand, if any ring R is quasi-atomic then lenq(R) 6 1 (with inequality in the case of

fields, which are antimatter and vacuously atomic).

All that remains is to consider the 1-dimensional case. If dim(V ) = 1 then V has prime

spectrum (0) ⊆ m. If V has an irreducible, then this irreducible is unique since V is a valuation

domain. Moreover, for any non-zero non-unit y ∈ V , we have that m =
√

(y), and so x ∈
√

(y).

In particular, there exists some n > 0 such that xn ∈ (y), so there exists some r ∈ V such that

xn = ry; we select n to be minimal with respect to this property. We claim that r is a unit. Indeed,

if r is a non-zero non-unit, then we have that m =
√

(r), and so x ∈
√

(r). Thus, there exists some

m > 0 such that xm ∈ (r), so there exists some s ∈ V such that xm = sr. In the quotient field of

V , we have that r = xm

s , so xn = xm

s y. Since V is an integral domain, elements cancel; we conclude
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that m = 0, for otherwise we contradict the minimality of n. Hence, we have that sr = 1 and so r

is a unit and y is therefore atomic.
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Chapter 4

Cohomology Groups

We introduce a general method of constructing a cochain complex of D-modules from a

sequence of D-module epimorphisms. We show that applying this process to sequences of po-

group o-epimorphisms results in a cochain complex of po-group o-epimorphisms, extracting cochain

complexes of po-group o-epimorphisms from the quasi-atomic quotient sequence.

4.1 Cochain complexes and D-module epimorphisms

Let G0, G1, G2, . . . be a sequence of D-modules together with D-module epimorphisms. For

each n > 0, define Qn := Ker(πn). Consider an arbitrary submodule An ⊆ Qn. Since each πn is

a D-module epimorphism, we have that the sets π−1
n (An+1) and π−1

n (Qn+1) are D-submodules of

Gn. Since An+1 ⊆ Qn+1, we have that π−1
n (An+1) ⊆ π−1

n (Qn+1). Define Q̂n = π−1
n (Qn+1) and

Ân = π−1
n (An+1). We have the chain of D-submodules An ⊆ Qn ⊆ Ân ⊆ Q̂n ⊆ Gn; see Figure 4.1.

Now for each n ∈ N0, define dQ̂n to be the map dQ̂n : Q̂n → Q̂n+1 obtained by restricting the

domain and codomain of πn. The resulting sequence · · ·
dQ̂n−2−→ Q̂n−1

dQ̂n−1−→ Q̂n
dQ̂n−→ Q̂n+1

dQ̂n+1−→ · · · is thus

a cochain complex; inspecting Figure 4.1, note that composing any two adjacent maps gives the zero

map. For any x ∈ Q̂n−1, dQ̂n ◦ d
Q̂
n−1(x) = dQ̂n

(
dQ̂n−1(x)

)
, but dQ̂n−1(x) ∈ Qn = Ker(πn) = Ker(dQ̂n ),

so dQ̂n ◦ d
Q̂
n−1(x) is trivial. We denote this cochain complex Q̂•. Observe that Q̂• is exact, since

Ker(dQ̂n ) = Im(dQ̂n−1).

Similarly, we define dÂn : Ân → Ân+1, dQn : Qn → Qn+1, and dAn : An → An+1 by restricting

πn appropriately. For each of these sequences of maps, inspecting Figure 4.1 reveals again that
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. . . // Gn−1

πn−1 // Gn
πn // Gn+1

πn+1 // . . .

. . .

��

Q̂n−1

OO

��

Q̂n

OO

��

Q̂n+1

��

OO

. . .

��

Ân−1

OO

��

Ân

OO

��

Ân+1

OO

��

. . .

��

Qn−1

OO

��

Qn

OO

��

Qn+1

OO

��

. . .

An−1

OO

An

OO

An+1

OO

. . .

0

OO

0

OO

0

OO

. . .

Figure 4.1: A detailed commutative diagram of an arbitrary sequence of D-module epimorphisms with
D-submodules An ⊆ Qn = Ker(πn) and their respective inverse images Ân, Q̂n.

composing any two adjacent maps results in the zero map. Hence, we obtain the cochain complexes

Â•, Q•, and A•.

Q̂• = · · · −→ Q̂n−1 −→ Q̂n −→ Q̂n+1 −→ · · · (4.1.1)

Â• = · · · −→ Ân−1 −→ Ân −→ Ân+1 −→ · · · (4.1.2)

Q• = · · · −→ Qn−1 −→ Qn −→ Qn+1 −→ · · · (4.1.3)

A• = · · · −→ An−1 −→ An −→ An+1 −→ · · · (4.1.4)

We use the differentials in these cochain complexes to induce differentials Q̂n
An
→ Q̂n+1

An+1
,

Q̂n
Qn
→ Q̂n+1

Qn+1
, and so on to form cochain complexes. This construction follows the following general

format: for each n ∈ N0, we always have have the canonical D-module epimorphism of the form

φn : Q̂n � Q̂n/An. Moreover, the composition φn+1 ◦ dQ̂n : Q̂n → Q̂n+1

An+1
is a D-module epimorphism.

Since An ⊆ Ker(φn+1◦dQ̂n ), the composition φn+1◦dQ̂n factors through φn, so there exists a D-module

epimorphism dn : Q̂nAn →
Q̂n+1

An+1
such that φn+1 ◦ dQ̂n = dn ◦ φn. We repeat the process to construct

differentials for the complexes Q̂•
A•

, Q̂•Q• , Q̂•
Â•

, Â•A• , Â•Q• , Q•A• . This yields the following nontrivial quotient
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cochain complexes of D-modules.

Q̂•/A• = · · · −→ Q̂n−1/An−1 −→ Q̂n/An −→ Q̂n+1/An+1 −→ · · · (4.1.5)

Q̂•/Q• = · · · −→ Q̂n−1/Qn−1 −→ Q̂n/Qn −→ Q̂n+1/Qn+1 −→ · · · (4.1.6)

Q̂•/Â• = · · · −→ Q̂n−1/Ân−1 −→ Q̂n/Ân −→ Q̂n+1/Ân+1 −→ · · · (4.1.7)

Â•/A• = · · · −→ Ân−1/An−1 −→ Ân/An −→ Ân+1/An+1 −→ · · · (4.1.8)

Â•/Q• = · · · −→ Ân−1/Qn−1 −→ Ân/Qn −→ Ân+1/Qn+1 −→ · · · (4.1.9)

Q•/A• = · · · −→ Qn−1/An−1 −→ Qn/An −→ Qn+1/An+1 −→ · · · (4.1.10)

Repeating the above process again yields quotients of quotients Q̂•/A•

Â•/A•
, Q̂•/A•Q•/A•

, Â•/A•Q•/A•
, Q̂•/Q•
Â•/Q•

,

but these are chain isomorphic in each degree to the cochain complexes Q̂•/Â•, Q̂•/Q•, Â•/Q•, and

Q̂•/Â•, respectively.

Observe that each Q̂n/Qn = πn(Q̂n) = Qn+1 and each Ân/Qn = δn(Ân) = An+1. Hence,

the complex Â•/Q• in the nth degree is precisely the complex A• in the (n + 1)th degree, which is

to say Â•/Q• is A• shifted to the left by one degree. Similarly, Q̂•/Q• is the complex Q• shifted to

the left by one, and Q̂•/Â• is the complex Q•/A• shifted to the left by one.

Lemma 4.1.1. The sequences Q̂• and Q̂•/A• are exact.

Proof. Since Q̂n = π−1(Ker(πn+1), we have that Ker(dQ̂n+1) = Im(dQ̂n ). Since An ⊆ Qn = Ker(πn),

we have that the quotient complex is also exact.

Lemma 4.1.2. The complexes A•, Q•, Q•/A•, Â•/Q•, Â•/A•, Q̂•/Q•, and Q̂•/Â• are trivial.

Proof. Each map is induced by πn with kernel Qn. The complexes A•, Q•, and Q•/A• are trivial.

Furthermore, since πn(Ân) = An+1 ⊆ Qn+1, we have that Â•/Q• and Â•/A• are trivial. Similarly,

Q̂•/Q• is also trivial. Since πn(Q̂n) = Qn+ 1 ⊆ Ân+1, we have that Q̂•/Â• is trivial.

Lemma 4.1.3. If the complex A• 6= Q• then Â• is not exact and is non-trivial.

Proof. If Â• is exact then An = Ker(πn) = Qn and A• = Q•.
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4.2 Quasi-Atomic Cohomology Groups

Consider the special case that each Gn is a po-group, each πn is an o-epimorphism with

Ker(πn) = Q(Gn) and each An = A(Gn). If we only wish to consider cochain complexes of po-groups,

then we must only consider the complexes above whose kernels are o-ideals. Quotient complexes

with kernels from A• or Â• are not partially ordered unless A• = Q•. Hence, although the quotient

cochain complexes Q̂•/A•, Q̂•/Â•, Â•/A•, and Q•/A• are cochain complexes of abelian groups, they

lack convexity in their kernels in general, so they are sequences of pre-ordered groups not po-groups.

This leaves us with A•, Q•, Â•, Q̂•, Â•/Q•, and Q̂•/Q•. Hence, we have the quotient

cochain complexes of po-groups Q̂•/Q•, which is the shift of Q•, and Â•/Q•, which is the shift of

A•. The cohomology groups relevant to po-groups, then, are the trivial cochain complexes A•, Q•

(together with their shifts), the exact cochain complex Q̂•, and the non-trivial non-exact Â•.

Definition 4.2.1. For a cochain complex X• of po-group o-epimorphisms obtained from a quasi-

atomic quotient sequence G = G0 � G1 � · · · , define the nth cohomology group for X• as

Hi(G,X•) = Ker(dXn+1)/Im(dXn ).

From the cochain complexes of po-groups obtained from the quasi-atomic quotient sequence,

we obtain the cohomology groups in Table 4.1; in general, these are not po-groups since each

Hi(G, Â•) = Qi/Ai and each Ai is not convex in Qi in general. We have the following two short

exact sequences of cochain complexes of po-group o-homomorphisms

Complex i = 0 i > 1

Q̂• H0(G, Q̂•) = Q0 Hi(G, Q̂•) = Qi/Qi ∼= 0

Â• H0(G, Â•) = Q0 Hi(G, Â•) = Qi/Ai
Q• H0(G,Q•) = Q0 Hi(G,Q•) = Qi/(1) ∼= Qi
A• H0(G,A•) = A0 Hi(G,A•) = Ai/(1) ∼= Ai

Q̂•/Q• H0(G, Q̂•/Q•) = Q1 Hi(G, Q̂•/Q•) = Qi+1/(1) ∼= Qi+1

Â•/Q• H0(G, Â•/Q•) = A1 Hi(G, Â•/Q•) = Ai+1/(1) ∼= Ai+1

Table 4.1: Cohomology groups from cochain complexes 4.1.3, 4.1.4, 4.1.6, 4.1.9, 4.1.2, and 4.1.1.

0 −→Q• −→ Â• −→ Â•/Q• −→ 0 (4.2.1)

0 −→Q• −→ Q̂• −→ Q̂•/Q• −→ 0 (4.2.2)
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Following Theorem C.6, short exact sequences 4.2.1 and 4.2.2 yield long exact sequences in coho-

mology 4.2.3 and 4.2.4, which are abelian groups in general but may not be partially ordered.

· · · −→Hi(G,Q•) −→ Hi(G, Â•) −→ Hi(G, Â•/Q•) −→ Hi+1(G,Q•) −→ · · · (4.2.3)

· · · −→Hi(G,Q•) −→ Hi(G, Q̂•) −→ Hi(G, Q̂•/Q•) −→ Hi+1(G,Q•) −→ · · · (4.2.4)

Following Table 4.1, and for each i > 1 defining εi : Ai ↪→ Qi as the canonical inclusion and

φi : Qi � Qi/Ai as the canonical surjection, the long exact sequence 4.2.3 is written as the long

exact sequence

Q0
=−→Q0

0−→ A1
ε1−→ Q1

φ1−→ Q1/A1
0−→ A2

ε2−→ · · · (4.2.5)

This long exact sequence splits into a countable set of short exact sequences of abelian groups, the

first of the form 0 → Q0 → Q0 → 0, and the rest of the form 0 → Ai
εi−→ Qi

φi−→ Qi/Ai → 0 for

i ∈ N. Similarly, following Table 4.1, the long exact sequence 4.2.4 is written as

Q0
=−→Q0

0−→ Q1
=−→ Q1

0−→ 0 −→ Q2
=−→ Q2

0−→ 0 −→ · · · (4.2.6)

This long exact sequence splits into a countable set of short exact sequences of abelian groups of

the form 0→ Qi → Qi → 0 for each i ∈ N0. In summary, the cochain complexes obtained from the

quasi-atomic quotient sequence leads naturally to the long exact sequences in cohomology, which

leads to the countable short exact sequences of abelian groups from 4.2.5

0→ An → Qn → Qn/An → 0

and exploring these short exact sequences reduces to exploring the atomic subgroup An and its

interrelation with the quasi-atomic subgroup Qn.

4.3 Interrelations Between Cohomology and Factorization

The sequences 0 → An → Qn → Qn/An → 0 are suggestively descriptive of the gap

between atomic po-groups and quasi-atomic po-groups; this gap seems to be related to peculiar
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factorization behavior. For the section, we violate our previous notational convention and write po-

groups multiplicatively with identity 1G, so as to exploit the multiplicative notation inherited from

D and its quotient field F. Consider, for example, torsion in Qn
An

= Hn(G, Â•) ⊆ Gn
An
' Gn−1/Qn−1

Ân/Qn−1
.

Let x′ ∈ G(D)+ such that x = πn−1◦πn−2◦· · ·◦π1◦π0(x′) ∈ Qn and such that xAn and is k-torsion.

Since x′ ∈ G(D)+, we can write x′ = yU(D) for some y ∈ D. We see that xAn = yAn.

Since x is k-torsion, (yU(D))kAn = An. Thus, there exists some α, β ∈ An such that

(yU(D))kα = β. Since a, b ∈ An ⊆ Gn ' Gn−1

Qn−1
, we can write a = α1

β1
Qn−1, b = γ1

δ1
Qn−1 for some

α1, β1, γ1, δ1 ∈ D such that α1

β1
Qn−1 ∈ An and γ1

δ1
∈ An. Hence (yU(D))k α1

β1
Qn−1 = γ1

δ1
Qn−1. Thus,

there exists some a′, b′ ∈ Qn−1 ⊆ Gn−2/Qn−2 so that ( g1g2U(D))k α1

β1
a′Qn−2 = γ1

δ1
b′Qn−2. We write

a′ = α2

β2
Qn−2 and b′ = γ2

δ2
Qn−2. Proceeding like this iteratively, we terminate in a finite number of

steps at G0 = G(D). That is to say, we have collected α1, β1, γ1, δ1 from An, and we have collected

each other αi, βi, γi, δi from Qn−i. We obtain that

yk
α1α2 · · ·αn
β1β2 · · ·βn

U(D) =
γ1γ2 · · · γn
δ1δ2 · · · δn

U(D)

where y, αi, βi, γi, δi ∈ D, where α1

β1
Qn−1,

γ1
δ1
Qn−1 ∈ An, and each αi

βi
Qn−i,

γi
δi
Qn−i ∈ Qn−i+1 for

each i > 2. In particular, we have some unit u such that

yk = u
β1 · · ·βn · γ1 · · · γn
α1 · · ·αn · γ1 · · · γn

That is to say, y is the kth root of the right hand side; in particular, if y k-torsion in Qn/An, then

y is the kth root of some ratio of elements, each with quasi-atomic length at most n.

Constructing examples of this phenomenon requires some care. We use the results of [29], [9],

and [8] to construct this example, where we iteratively adjoin indeterminates to a ring. This allos

us to strictly control the irreducible elements in each iteration.

Example 4.3.1. Similar to the ring from Example 2.0.6, but with a different choice of base field,

let R = (Q[X,Y,Y])m where Y = {Y α}α∈Q+ . There is nothing special about Q in this example; any

field F such that
√
−1 /∈ F will do the trick. Consider the quotient ring R/I where I = (X2 + Y 2).

Set R0 = R/I. I is a prime ideal, so R/I is an integral domain. To see this, we demonstrate

I is a prime ideal. Assume (X2 + Y 2) | fg in R. We write f =
∑N
n=1 cnX

αnY βn/γn where N ∈ N,

each αn, βn, γn are non-negative integers, each γn 6= 0, and each cn ∈ Q. Similarly, we can write
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g =
∑M
m=1 c

′
mX

α′mY β
′
m/γ

′
m where M ∈ N, each α′m, β

′
m, γ

′
m are non-negative integers, each γ′m 6= 0,

and each c′m ∈ Q. Recall that Q [X,Y ] is a UFD and that for a non-negative integer, L, the

substitution map φL : R0 → R0 defined by mapping y 7→ yL and fixing all other elements is a ring

endomorphism. Thus, there exists a sufficiently large choice of L such that φL(fg) = φL(f)φL(g)

has all integer exponents, say φL(fg) =
∑K
k=1 c

′′
kX

α′′kY δk , and so may be treated as an element of

Q[X,Y ]. Certainly, then, if (X2 + Y 2) | fg in R, then φL(X2 + Y 2) = (X2 + Y 2L) | φL(fg) as

elements of Q[X,Y ]. Clearly, then, since X2 +Y 2L is irreducible in Q[X,Y ], which is a UFD, it must

be prime; since (X2 + Y 2L) | φL(f)φL(g) as elements of Q[X,Y ], we have that (X2 + Y 2L) | φL(f)

or (X2 + Y 2L) | φL(g). Thus, (X2 + Y 2) | f or (X2 + Y 2) | g in R. Hence (X2 + Y 2) is prime.

We now construct a ring from R0 in which X is the only irreducible monomial. Let A0 ⊆ R0

be the set of all irreducibles in R/I that are not associate to X (we denote associates with the

symbol ∼). For each associate class of irreducibles in A0, select a representative irreducible α

and an indeterminate over R0, say Zα. In the quotient field of R0[Zα], select the element α
Zα

.

Collect these together into the set Z0 =
{
Zα,

α
Zα
| α ∈ Irr(R0), α 6∼ X

}
and define R1 = R0[Z0].

Following [9, Lemma 2.5], we have that U(R2) = U(R1) so these new divisibility relationship are,

indeed, nontrivial. Further, also from [9, Lemma 2.6], since X is non-associate to any α ∈ A0 by

construction, X remains irreducible in the domain R1. We iteratively construct the sets

Zi =

{
Zα,

α

Zα
| α ∈ Irr(Ri), α 6∼ X

}

and define Ri+1 = Ri[Zi]. This provides the direct system R0 ⊆ R1 ⊆ R2 ⊆ · · · .

The direct limit of this system lim
−→

Ri is an integral domain in which X is uniquely irreducible,

so almost atomic elements must be associate to some value of Moreover, X2 + Y 2 = 0 remains a

valid expression in the direct limit. Thus, each Y α is not almost atomic for any 0 < α < 2, for

otherwise Y α can be written as an integer power of X. However, since Y 2 = −X2, Y 2 is atomic so

each Y α for 0 < α < 2 is quasi-atomic but not almost atomic. For example, elements such as Y 1/3

are not almost atomic, but (Y 1/3)6 is atomic. In Q(G(D))/A(G(D)), Y 1/3A(G(D)) has finite order.

4
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Chapter 5

Structure Within Partially

Ordered Abelian Groups

In this section, we exploit split exactness in short exact sequences of o-homomorphisms to

develop structure theorems. The basic idea behind this section is to apply ordinary group-theoretic

structure theorems to the po-group setting, with an eye toward groups of divisibility. Recall the

maps in the category of po-groups are handled differently than in the category of groups, to study

the splitting of exact sequences of po-groups we must pay careful attention to the maps.

5.1 Factoring a po-group

Perhaps we wish to write every po-group as the group of divisibility of an integral domain.

This is not always possible, as every group of divisibility is directed, and it is easy to construct

po-groups that are not directed:

Example 5.1.1. Let G = Q with partial ordering a 6 b ⇔ b − a ∈ N. The positive elements of G

are precisely N. Hence A(G) = Q(G) = Z. Note that no direct sum decomposition is possible, since

Z is not a direct summand of Q. However, this po-group under the given order is not generated by

its positive elements and hence is not a group of divisibility for any domain. 4

In [26], Mott and Hill independently proved the following example of a directed po-group

that is not a group of divisibility, first put forth by Jaffard in [20].
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Example 5.1.2. Let G = Z⊕Z under the product order and let J be the subgroup of G such that

(a, b) ∈ J if and only if a + b ∈ 2Z. Let J inherit the product order. Then J is not a group of

divisibility. To see this, we use the property of semi-valuations that if x, y ∈ D then ν(x+ y) is an

upper bound on all lower bounds of ν(x) and ν(y).

Note that (3, 1) and (2, 2) are both elements of J that are mutually incomparable under the

inherited order. However, if J = G(D) for some D, then there must exist some x, y ∈ D such that

ν(x) = (3, 1) and ν(y) = (2, 2). Of course, ν(x + y) must be an upper bound for all mutual lower

bounds of ν(x) and ν(y) in the group of divisibility. Hence, if ν(x+y) = (a, b), then a > 2 and b > 1.

Moreover, if a = 2 then b > 1, and if b = 1 then a > 3. In each and every case, ν(x + y) > ν(x)

or ν(x + y) > ν(y), and hence (x + y)D ⊆ xD or (x + y)D ⊆ yD. If (x + y)D ⊆ (x)D, then

x+ y ∈ (x)D so x+ y = rx for some r ∈ D. Thus, y = (r− 1)x ∈ (x)D and therefore (y)D ⊆ (x)D.

If (x + y)D ⊆ (y)D then we similarly conclude (x)D ⊆ (y)D. In either case, ν(x) and ν(y) are

comparable, contradicting our choice of x and y. 4

When we are provided the luxury that our po-group is a group of divisibility, we may wish

to decompose G(D) into a product (sum, coproduct, etc.) of other po-groups or other groups of

divisibility. Unfortunately, groups of divisibility may not be written as a sum of an atomic part and

an antimatter part. For an example, consider the ring constructed in Example 4.3.1. We cannot

write the set of non-atomic elements of G(R) as a summand of G(R) since the quasi-atoms “run

into” the atoms.

The hypothesis that every group of divisibility splits into a direct sum of po-groups, then, is

demonstrated to be false by Example 4.3.1. Now the question reduces to assessing when the group

of divisibility splits. Recall a short exact sequence of groups splits when the associated surjection

has a right inverse. We expand our inquiry to ask when groups of divisibility (or perhaps more

generally partially ordered abelian groups) split. Of course, to determine structure of groups it is

enough to determine splitting homomorphisms; in po-groups, we also require a splitting order.

Definition 5.1.3. Let G be a po-group and H ⊆ G be an o-ideal, and let π : G → G/H be the

natural o-epimorphism. If there exists a right-inverse π−1 : GH → G, then H⊕ G
H admits the induced

splitting order defined by (h1, g1+H) 6 (h2, g2+H) if and only if h1+π−1(g1+H) 6 h2+π−1(g2+H)

where π is the natural o-epimorphism π : G→ G/H.

The existence of right-inverses for an o-epimorphism plays a central role in this splitting
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order, clearly.

Lemma 5.1.4. Let G be a po-group and H ⊆ G be an o-ideal, and let π : G→ G/H be the natural

o-epimorphism. If there exists a right-inverse π−1 : G
H → G, the induced splitting order on H ⊕ G

H

is a partial order.

Proof. For reflexivity, it is clear that h+π−1(g+H) = h+π−1(g+H) so (h, g+H) 6 (h, g+H). For

transitivity, assume (h1, g1 +H) 6 (h2, g2 +H) 6 (h3, g3 +H). Since (h1, g1 +H) 6 (h2, g2 +H), we

have that h1 +π−1(g1 +H) 6 h2 +π−1(g2 +H) in G. Since (h2, g2 +H) 6 (h3, g3 +H), we have that

h2+π−1(g2+H) 6 h3+π−1(g3+H). But 6 is transitive in G so h1+π−1(g1+H) 6 h3+π−1(g3+H)

in G and so (h1, g1 +H) 6 (h3, g3 +H) in H ⊕ G
H .

We verify the induced splitting order is antisymmetric. To see this, assume that we have

(h2, g1 +H) 6 (h2, g2 +H) in H⊕ G
H and vice versa. Then h1 +π−1(g1 +H) 6G h2 +π−1(g2 +H) and

vice versa. By antisymmetry in 6G, we have that h1+π−1(g1+H) = h2+π−1(g2+H). In particular,

since π−1 is an o-homomorphism, h2 − h1 = π−1(g1 − g2 +H) ∈ H. Hence, π−1(g1 − g2 +H) ∈ H.

But then π ◦ π−1 (g1 − g2 +H) = H. Since π−1 : G
H → G is the right inverse of π : G → G/H, we

have that π ◦ π−1 = idG/H , so we have that g1 − g2 +H = H and therefore g1 +H = g2 +H. Now

π−1(g1 +H) = π−1(g2 +H) so we obtain the following.

h1 + π−1(g1 +H) =h2 + π−1(g2 +H)

h1 + π−1(g1 +H) =h2 + π−1(g1 +H)

h1 =h2

Hence, (h1, g1 +H) = (h2, g2 +H), demonstrating antisymmetry.

Theorem 5.1.5. Let H be a convex subgroup of a po-group G. Consider the natural short exact

sequence of po-group o-homomorphisms:

0 // H
ι // G

π // G/H // 0

If there exists a right-inverse o-homomorphism π ◦π−1 = idG/H then H⊕ G
H is a po-group under the

partial order defined by (h1, g1 +H) 6 (h2, g2 +H) if and only if h1 +π−1(g1 +H) 6 h2 +π−1(g2 +H)

in G. Furthermore, under this partial order, there exists a po-group o-isomorphism φ : G→ H ⊕ G
H
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commutative in the diagram

0 // H
ι //

=

��

G

φ

��

π // G/H //

=

��

0

0 // H

OO

ι′ // H ⊕ G
H

π′ // G/H

OO

// 0

Proof. If π has a right inverse group homomorphism then G splits as an abelian group. In particular,

we have a pair of group isomorphisms, φ : G → H ⊕ G
H given by g 7→ (g − π−1 ◦ π(g), π(g)) and

ψ : H ⊕ G
H → G given by (h, g +H) 7→ h+ π−1(g +H).

These are simply the well-defined group isomorphisms we obtain from usual abelian group

theory, before considering that our underlying groups are partially ordered. We verify that H ⊕ G
H

is a po-group under the induced splitting order (i.e. the group operation is compatible). For any

(h3, g3 +H) ∈ H ⊕ G
H , if (h1, g1 +H) 6 (h2, g2 +H) then we obtain the following.

h1 + π−1(g1 +H) 6 h2 + π−1(g2 +H)

(h1 + π−1(g1 +H)) + (h3 + π−1(g3 +H)) 6 h2 + π−1(g2 +H) + (h3 + π−1(g3 +H))

(h1 + h3) + π−1(g1 + g3 +H) 6 (h2 + h3) + π−1(g2 + g3 +H)

(h1 + h3, g1 + g3 +H) 6H⊕GH (h2 + h3, g2 + g3 +H)

(h1, g1 +H) + (h3, g3 +H) 6 (h2, g2 +H) + (h3, g3 +H)

Hence, H ⊕ G
H is a po-group under the induced order. All that remains is to verify that φ is an

o-isomorphism, which is to say that φ−1 exists and φ is an o-epimorphism. We already have that φ

is an isomorphism so φ−1 exists; it is sufficient to verify φ is an o-epimorphism.

In the induced splitting order, (g1 − π−1 ◦ π(g1), π(g1)) 6 (g2 − π−1 ◦ π(g2), π(g2)) if and

only if g1 − π−1 ◦ π(g1) + π−1 ◦ π(g1) 6 g2 − π−1 ◦ π(g2) + π−1 ◦ π(g2), which reduces to g1 6 g2.

Thus, φ is order-preserving; all that remains is to verify that φ(G+) = (H ⊕ G
H )+ to establish that

φ is an o-epimorphism (and therefore an o-isomorphism). For any positive x ∈ (H ⊕ G
H )+ under

the induced splitting order, we have that x = (h, g + H) for some g ∈ G and h ∈ H such that

0 6 h + π−1(g + H). Also, if x = φ(g) for some g, then x = (g − π−1 ◦ π(g), g + H). Since φ is

a group isomorphism, the map is surjective so x = (h, g + H) = (g0 − π−1 ◦ π(g0), π(g0)) for some

g0 ∈ G. By the partial order induced on H ⊕ G
H by G, 0 6 (g0 − π−1 ◦ π(g0), π(g0)) if and only
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if 0 6 g0 − π−1 ◦ π(g0) + π−1 ◦ π(g0) = g0. Hence, x is the image of the positive element g0, so

φ(G+) = (H ⊕ G
H )+. Thus φ : G→ H ⊕ G

H is an o-isomorphism, where this direct sum is under the

induced splitting order.

Lemma 5.1.6. If G splits as in Theorem 5.1.5, the product order on H⊕ G
H is finer than the induced

splitting order.

Proof. If (h1, g1 + H) 6 (h2, g2 + H) in the product order, then g1 + H 6 g2 + H and h1 6 h2.

Hence we have that h1 + π−1(g1 +H) 6 h2 + π−1(g2 +H).

Assuming G splits as described in Theorem 5.1.5, it is natural to ask when the induced

partial order on H ⊕ G
H coincides with the product or the (co)lexicographic order. Močkoř answered

the colexicographic component of this question in [27], and here we extend that answer to the product

component:

Theorem 5.1.7. Let H ⊆ G be a convex subgroup, let π : G→ G/H the canonical o-epimorphism,

and let π−1 be an o-homomorphism that is the right inverse of π. Then G ' H⊕ G
H under the induced

splitting partial order. (i) If G+ = {g ∈ G | π(g) > H or g ∈ H+}, then the induced splitting partial

order coincides with the colexicographic partial order. (ii) If G+ =
{
g ∈ G | g − π−1 ◦ π(g) ∈ H+

}
then the induced splitting partial order coincides with the product partial order.

Proof. We first recapitulate the proof by Močkoř of the colexicographic component, part (i). To

show the colexicographic order is equivalent to the splitting order, we first show the colexicographic

order is finer than the induced splitting order, and then we show the induced splitting order is finer

than the colexicographic order.

Let (h1, g1+H) 6 (h2, g2+H) in H⊕ G
H under the colexicographic order. We have two cases:

first, g1 +H < g2 +H or second, g1 +H = g2 +H and h1 6 h2. In the first case, g1 +H < g2 +H so

H < g2−g1+H. By our assumption on G, g2−g1 ∈ G+. Also, h2−h1+π−1(g2−g1+H) ∈ g2−g1+H

so (h1, g1 + H) 6 (h2, g2 + H). In the second case, if g1 + H = g2 + H and h1 6 h2, then

π−1(g2 − g1 + H) = π−1(H) = 0, and h2 − h1 + π−1(g2 − g1 + H) = h2 − h1 > 0. Hence,

(h1, g1 + H) 6 (h2, g2 + H) under the splitting order. This demonstrates that, under assumption

(i), the colexicographic order is finer than the induced splitting order.

Now we show the induced splitting order is finer than colexicographic under assumption (i).

Let (h1, g1 +H), (h2, g2 +H) ∈ H ⊕ G
H in the induced order such that (h1, g1 +H) 6 (h2, g2 +H).
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Then h1 + π−1(g1 + H) 6G h2 + π−1(g2 + H) by definition of our induced order. Since π−1 is an

o-homomorphism, π−1(g2 +H)−π−1(g1 +H) = π1(g2−g1 +H) and π−1(g2−g1 +H)+(h2−h1) > 0.

Denote g := π−1(g2−g1 +H)+(h2−h1). Note g > 0. By assumption G, since g ∈ G+, we have that

g+H > H or g ∈ H+. If g+H > H, then applying π to both sides of π−1(g2− g1 +H) + (h2−h1)

yields that g2 − g1 + H > H, i.e. g2 + H > g1 + H. Hence, (h1, g1 + H) 6 (h2, g2 + H) under the

colexicographic order. On the other hand, if g ∈ H+, then π−1(g2 − g1 +H) + (h2 − h1) > 0 in H.

Applying π to both sides reveals that g2 − g1 + H = H, so g1 + H = g2 + H. Thus, we have that

g = h2 − h1 + π−1(g2 − g1 + H) = h2 − h1 > 0, so h1 6 h2, and so (h1, g1 + H) 6 (h2, g2 + H) in

the lexicographic order. This establishes that the induced order is finer than the lexicographic order

under assumption (i), and hence this establishes that under assumption (i) the colexicographic and

induced splitting orders coincide.

We now demonstrate that, under assumption (ii), that the induced product order and in-

duced splitting order coincide. Assume G+ =
{
g ∈ G | g − π−1 ◦ π(g) ∈ H+

}
. We show that if

G+ =
{
g ∈ G | g − π−1 ◦ π(g) ∈ H+

}
then the product order is finer than the induced splitting or-

der. Say that (h1, g1 +H) 6 (h2, g2 +H) in H⊕ G
H under the product order so that g1 +H 6 g2 +H

and h1 6 h2. We have g2 − g1 +H > H so π−1(g2 − g1 +H) > 0. Of course, since h2 − h1 > 0 we

have (h2 − h1) + π−1(g2 − g1 +H) > 0. Thus, (h1, g1 +H) 6 (h1, g2 +H) in the induced splitting

order on G.

All that remains is to show the induced splitting order is finer than the product order. Let

(h1, g1 +H) 6 (h2, g2 +H) in the induced splitting order so h1 + π−1(g1 +H) 6 h2 + π−1(g2 +H).

In particular, we have the non-negativity of x := h2 − h1 + π−1(g2 − g1 +H) > 0. Since π is order

preserving, we have π(x) > H, and by our assumption on G, we have x − π−1 ◦ π(x) > 0. Of

course, π(x) = π(h2 − h1 + π−1(g2 − g1 +H)) = g2 − g1 +H, and x− π−1 ◦ π(x) = h2 − h1, and so

(h1, g1 +H) 6 (h2, g2 +H) under the product order.

Theorem 5.1.7 provides the required conditions to determine when the induced splitting

order coincides with the product order or the colexicographic order. We can immediately obtain

structure theorems governing the antimatter limit of groups. For a po-group G with quasi-atomic

quotient sequence {πn : Gn → Gn+1}, denote lim
−→

Hi = H∗, lim
−→

G/Hi ' G/H∗ = G∗ and recall the

canonical o-epimorphism π∗ : G→ G∗ has Ker(π∗) ' H∗.

Corollary 5.1.8. If π∗ has a right-inverse, then G ' H∗ ⊕ G∗ under the splitting partial order.
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(i) If G+ = {g ∈ G | π∗(g) > H∗ or g ∈ (H∗)+}, then the induced splitting partial order coincides

with the colexicographic partial order. (ii) If G+ =
{
g ∈ G | g − (π∗)−1 ◦ π∗(g) ∈ (H∗)+

}
then the

induced splitting partial order coincides with the product partial order.

Proof. This corollary follows directly from Theorem 5.1.5 and Theorem 5.1.7.

Hence, when the o-epimorphism π∗ : G→ G∗ has a right inverse, G splits into an antimatter

part and a quasi-atomic part in the sense that elements uniquely factor into a product of a quasi-

atomic element h ∈ H∗ with an antimatter element g ∈ G∗.

Example 5.1.9. Recall the ring from Example 2.0.6 denoted R = (F2[X,Y,Y])m with the set

Y = {Y α | α ∈ Q+} ⊆ F2(X,Y ). The group of divisibility is G(R) = Z ⊕ Q in the product order

with G(R)∗ = Q. Certainly G(R) splits. Each non-zero non-unit can be written as uXnY α where

n ∈ N0 and α ∈ Q+ are not both zero; in the group of divisibility, this element can be written

(n, 0) + (0, α) uniquely. Y α is the antimatter factor and Xn is the quasi-atomic factor.

Iteratively applying Theorem 5.1.7 to the degrees of the quasi-atomic quotient sequence

splits the quasi-atomic component of the decomposition from Corollary 5.1.8, yielding a more com-

plete decomposition theorem for quasi-atomic quotient sequences.

Theorem 5.1.10. Let G be a po-group with quasi-atomic quotient sequence such that each non-

zero differential, πn : Gn → Gn+1 = Gn/Q(Gn), has a right inverse o-homomorphism. Then each

Gn ' Q(Gn)⊕Gn+1 under the induced splitting order. For a po-group G with lenq(G) = N ∈ N0,

(i) if G is quasi-atomic in the limit, then G ' ⊕Nn=0Q(Gn) and

(ii) if G is antimatter in the limit, then G '
(
⊕Nn=0Q(Gn)

)
⊕G∗.

Moreover, if for each n 6 N , G+
n = {g ∈ Gn | πn(g) > Q(Gn) or g ∈ Q(Gn)+}, then the induced

splitting partial order on Hn ⊕ Gn
Hn

coincides with the colexicographic partial order. Likewise, for

each n, if we have G+
n =

{
g ∈ Gn | g − π−1

n ◦ πn(g) ∈ Q(Gn)+
}

, then the induced splitting partial

order coincides with the product partial order.

Proof. We proceed by induction on N . For N = 0, then G is antimatter, and hence is antimatter in

the limit, and hence G ' {0} ⊕G∗. This may be dissatisfying as a base case due to the degeneracy

of antimatter groups; using Theorems 5.1.5 and 5.1.7, we have the base case N = 1.
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Now assume that if lenq(G) < N and each map in the quasi-atomic quotient sequence has a

right-inverse o-epimorphism, then the theorem is true. Let lenq(G) = N such that each map in the

quasi-atomic quotient sequence has a right-inverse. In the sequence G = G0 → G1 → · · · → GN , we

have that G1 has lenq(G) = N−1. Moreover, the inverse maps from G provide that the quasi-atomic

quotient sequence G1 → G2 → · · · → GN has right-inverses. From Theorems 5.1.5 and 5.1.7, we

may write G0 ' Q(G0)⊕G1, and by our hypothesis on G1, we may write each Gn ' Q(Gn)⊕Gn+1

for 0 6 n.

If G is quasi-atomic in the limit, then G1 is quasi-atomic in the limit and G1 ' ⊕Nn=1Q(Gn).

Hence, G0 ' ⊕Nn=0Q(Gn). On the other hand, if G is antimatter in the limit, then G1 is antimatter

in the limit, G∗1 = G∗, and G1 ' (⊕Nn=1Q(Gn))⊕ (G1)∗. Hence, G ' (⊕Nn=0Q(Gn))⊕G∗.

We must lastly verify when the partial orders coincide with the colexicographic or product

ordering. We only check the colexicographic case since the product case proceeds similarly, mutatis

mutandis. If for each n, G+
n = {g ∈ Gn | πn(g) > Q(Gn) or g ∈ Q(Gn)+}, then the induced splitting

order on each Hn ⊕ Gn
Hn

for n > 1 coincides with the colexicographic order due to our inductive

assumption on G1. Thus, we need only verify that the induced splitting order on H0⊕ G0

H0
coincides

with the colexicographic order. Of course, since G+
0 = {g ∈ Gn | πn(g) > Q(Gn) or g ∈ Q(Gn)+},

Theorem 5.1.5 implies that the order on H0 ⊕ G0

H0
is colexicographic.

We intuitively think Theorem 5.1.10 as stating: if the G is quasi-atomic in the limit and

has finite quasi-atomic length and splits at every degree, then every element of G may be uniquely

written as a sum of terms, one from each quasi-atomic part of the sequence. This provides a weak

version of a universal factorization property. Similarly, if G is antimatter in the limit and has finite

quasi-atomic length and splits at every degree, we also have a sort of universal property: every

element of G may be uniquely written as a sum of terms, one from each quasi-atomic part of the

sequence and one term from antimatter limit G∗.

5.2 Structure Theorems Exemplified

In Example 5.2.1 we present integral domains whose groups of divisibility constructed to

satisfy these structure theorems. In particular, we present a domain with finite quasi-atomic length

and quasi-atomic in the limit, a domain with finite quasi-atomic length and antimatter in the limit,

a domain with infinite quasi-atomic length and quasi-atomic in the limit, and a domain with infinite
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quasi-atomic length and antimatter in the limit.

Example 5.2.1. (i) In this example, we present a domain that has finite quasi-atomic length and

is quasi-atomic in the limit. Let F be any field with indeterminates X, Y . Let R′ = F[X,Y ]

have quotient field K. Set W =
{
Y
Xj : j ∈ N

}
⊆ K and define R′′ = R′[W] = F[X,Y,W]. In

R′′, the ideal (X,Y,W) = m is maximal. Set R = R′′m. Then R is a 2-dimensional discrete val-

uation domain with value group Z⊕Z ordered lexicographically. The quasi-atomic localization

sequence for R proceeds as follows: R0 = RS0
= R has precisely one irreducible X, R1 = RS1

sees X become a unit and obtain a new ring in which Y is the only irreducible (with group of

divisibility o-isomorphic to Z), R2 sees Y become a unit and yields the quotient field. Hence,

lengthq(R) = 2. For the map π0 : Z ⊕ Z → Z, we have the right-inverse π−1
0 : Z → Z ⊕ Z

defined by x 7→ (0, x). These are both order-preserving. 4

(ii) In this example, first presented in [7, Example 2.7], we present two domains that with finite

quasi-atomic length and yet antimatter in the limit. First, let F be any field with indeterminate

X. Set X = {Xα | α ∈ Q+} ⊆ F(X) and define R = F[X ]m where m = (X ) is the maximal ideal

generated by all monomials. Then G(R) = Q, which is antimatter and therefore antimatter in

the limit with lenq(G(R)) = 0.

If this is too short to be satisfying, consider a different ring R; let F be any field with in-

determinates X, Y , let R′ = F[X,Y ] have algebraic closure of its quotient field F(X,Y ).

Set W =
{
Y α

Xj : j ∈ N, α ∈ Q+
}

and define R′′ = R′[W] = F[X,Y,W]. In R′′, the ideal

(X,Y,W) = m is maximal. Set R = R′′m. Then R is a 2-dimensional valuation domain with

value group Q⊕Z ordered lexicographically with unique atom (0, 1) (corresponding to X ∈ R.

The quasi-atomic localization sequence for R proceeds as follows: R0 = RS0 = R has pre-

cisely one irreducible X and by localizing at X, we obtain R1 = RS1
, an antimatter ring

where every element is associate to some Y α. Now RSk = RS1
for every k > 1, so R∗ = RS1

and lengthq(R) = 1. The map π0 : Q ⊕ Z → Q with kernel 0 ⊕ Z has the order-preserving

right-inverse π−1
0 : Q→ Q⊕ Z defined by x 7→ (x, 0). 4

(iii) In this example, we present a domain that has infinite quasi-atomic length and is quasi-atomic

in the limit. Let F be any field with indeterminates {Xn}n∈N. Let R′ = F[{Xn}] have quotient

field K. Set Y =
{
Xn+1

Xjn
: j ∈ N

}
⊆ K and define R′′ = R′[Y] = F[{Xn}n ,Y]. In R′′, the

ideal ({Xn}n ,Y) = m is maximal. Set R = R′′m. Then R is a discrete valuation domain with
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dimKrull(R) = +∞, and we write the value group as ⊕n∈NZ ordered lexicographically (not to

be confused with our previous approaches with the colexicographic order). The quasi-atomic

localization sequence for R proceeds as follows. R0 = RS0
= R has precisely one irreducible

X1 (up to units). By localizing at X1, we obtain R1 = RS1 , a valuation domain with unique

irreducible X2 (up to units). In the group of divisibility, this localization corresponds to the

o-epimorphism ⊕i>1Z → ⊕i>2Z with kernel Z ⊕ 0 ⊕ 0 ⊕ · · · . For each n > 2, by localizing

at Xn, we obtain Rn = RSn , a valuation domain with unique irreducible Xn+1 (up to units).

This corresponds to the o-epimorphism ⊕i>nZ→ ⊕i>nZ with kernel Z⊕ 0⊕ 0⊕ · · · .

Note RSn 6= RSn+1
for any n ∈ N0, and so lenq(R) = +∞. However, an arbitrary non-zero non-

unit element x ∈ R is associate to some monomial f = u
∏m
i=1X

ki
ni , and for any N > maxi {ni},

we see f is a unit. Hence, lim
−→

Si = R \ {0} so R∗ = F. Thus, R is quasi-atomic in the limit.

Each o-epimorphism of the form πn : ⊕i>nZ→ ⊕i>nZ has right-inverse π−1
n : ⊕i>nZ→ ⊕i>nZ

defined by (xn+1, xn+2, . . .) 7→ (0, xn+1, xn+2, . . .). 4

(iv) Lastly, we present a domain that has infinite quasi-atomic length and is antimatter in the limit.

To this end, let F be any field with indeterminates Y and {Xn}n∈N. Let R′ = F[Y, {Xn}] have

algebraic closure of its quotient field F(Y, {Xn}). Define

W =

{
Y α,

Y α

Xj
n

,
Xn+1

Xj
n

: n ∈ N0, j ∈ N, α ∈ Q, α > 0

}
⊆ F(Y, {Xn}).

Define R′′ = R′[W] = F[Y, {Xn}n ,W]. In R′′, the ideal (Y, {Xn}n ,W) = m is maximal. Set

R = R′′m. Then R is a valuation domain with dimKrull(R) = +∞. Writing the value group for

this ring is a little unusual: write G1 = Q and write G2 = ⊕n∈NZ under the colexicographic

order. The value group is then G1 ⊕ G2 in the lexicographic order, which we will write as

Q⊕ (⊕n∈NZ) with this order in mind.

The quasi-atomic localization sequence for R proceeds similarly to the previous example, and,

just as in that example, RSn 6= RSn+1
for any n ∈ N0. This is associated to an o-epimorphism of

the form Q⊕(⊕i>nZ)→ Q⊕(⊕i>nZ) with kernel 0⊕(Z⊕ 0⊕ 0⊕ · · · ), which has right-inverse

π−1
n : Q⊕ (⊕i>nZ)→ Q⊕ (⊕i>nZ) defined by (q, (xn+1, xn+2, . . .)) 7→ (q, (0, xn+1, xn+2, . . .)).

Note that, just as in the previous example, lenq(R) = +∞. However, Y α is an antimatter

element. 4
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One might regard Example 5.2.1 as somewhat trivial; after all, we construct integral domains

with groups of divisibility that have already split, and then we apply our splitting theorem. However,

these examples provide concrete and simple models of integral domains that satisfy the splitting

properties described and inform our intuition about factorization in rings whose groups of divisibility

split.

Examples 5.2.1(iii) and (iv) may be considered worse than (i) and (ii) because the quasi-

atomic quotient sequence is o-isomorphic in each degree to G(R). For Example 5.2.1(iii), we see by

writing Z ' Z/0, the quasi-atomic quotient sequence

⊕n∈NZ→
(
Z
Z
⊕ Z

0
⊕ Z

0
⊕ · · ·

)
→
(
Z
Z
⊕ Z

Z
⊕ Z

0
⊕ · · ·

)
→ · · ·

This sequence is o-isomorphic in each degree to the stable sequence ⊕n∈NZ→ ⊕n∈NZ→ · · · , which

is precisely G(R). However, the o-epimorphisms in the quasi-atomic quotient sequence are not

o-isomorphisms. Hence, although this is a sequence of po-group o-epimorphisms that are not o-

isomorphisms (and therefore lenq(G) = +∞), this may be a dissatisfying example of a quasi-atomic

quotient sequence that neither stabilizes or terminates.

In Example 5.2.3, we present an example of a domain B that is quasi-atomic in the limit,

has infinite quasi-atomic length, and yet does not have a quasi-atomic quotient sequence that is

o-isomorphic in each degree to G(B). To construct this example, we require a Lemma from [11].

Lemma 5.2.2. Let Λ be a well-ordered index set and let {Gλ}λ∈Λ be a net of directed po-groups such

that each Gλ is linearly ordered. Then G = ⊕λ∈ΛGλ ordered lexicographically is a lattice-ordered

group.

Proof. Since each Gλ is directed and linearly ordered, the direct sum is certainly directed and

partially ordered; it suffices to check that two arbitrary elements a, b ∈ G+ have a join, or a least

upper bound. Write a = (aλ) and b = (bλ). Define (cλ) ∈ G so that, for each λ, cλ = aλ ∨ bλ. Since

each Gλ is totally ordered, we have that cλ = aλ or cλ = bλ. Let (dλ) be any other upper bound on

a and b.

Since a 6 (dλ), we have some critical index λ0 such that aλ = dλ for each λ < λ0 and such

that aλ0
< dλ0

. Similarly, we have a critical index λ1 such that bλ = dλ for each λ < λ1 and such

that bλ1 < dλ1 . We can assume without loss of generality that λ0 6 λ1. Certainly aλ = bλ = cλ = dλ

for λ < λ0. Again note we have cλ0
= aλ0

∨ bλ0
so cλ0

= aλ0
or cλ0

= bλ0
. But aλ0

< dλ0
and
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bλ0 < dλ0 so cλ0 < dλ0 , and hence (cλ) < (dλ). Hence, (cλ) is a least upper bound on (aλ) and

(bλ).

Note Lemma 5.2.2 can be relaxed slightly when Λ is finite: for the greatest index λ′ we only

need Gλ′ to be lattice ordered, not necessarily linearly ordered.

Example 5.2.3. Let {Vn}n∈N be any sequence of integral domains such that each Vn is a discrete

n-dimensional valuation domain with group of divisibility G(Vn) = ⊕ni=1Z ordered lexicographically.

Each G(Vn) is totally ordered, so by Lemma 5.2.2, the po-group G = ⊕n∈NG(Vn) under the lex-

icographic order is lattice ordered. By Theorem 1.0.1, there exists a Bézout domain B such that

G = G(B). Since G(B) is a direct sum of quasi-atomic groups of divisibility ordered lexicographi-

cally, the quasi-atomic quotient sequence is

G(B) = ⊕n>1G(Vn)→ ⊕n>2G(Vn)→ ⊕n>3G(Vn)→ · · ·

where each map is a non-trivial o-epimorphism and this sequence never stabilizes. 4

Example 5.2.3 is, in some senses, as good an example as we can hope, for we can construct

a very large family of groups of divisibility with quasi-atomic sequences that do not stabilize.

5.3 Complementing Quasi-Atoms

We complete this chapter by using some group theoretic ideas to relax the notion of the

“antimatter part” of a ring. Recalling for a domain D, we defined D∗ = lim
−→

DSn as the antimatter

limit of D.

Definition 5.3.1. Let G be a po-group with o-ideal H ⊆ G. We define the o-ideal complement of

H to be any subgroup H ′ ⊆ G such that H ∩H ′ = {0} and such that, for any g ∈ G, there exists

some n ∈ N such that ng ∈ H⊕H ′. We define a maximal o-ideal complement of H to be any o-ideal

complement maximal with respect to inclusion of subgroups.

Lemma 5.3.2. Let G be a po-group with o-ideal H. Then a maximal quasi-atomic complement of

H exists.

Proof. Let J denote the set of all subgroups of G with a trivial intersection with H; that is to say,

set J = {J ⊆ G | J ∩H = {0}}. Since {0} ⊆ J, we have that J is nonempty. Any chain in J, say

49



{Jλ}λ∈Λ, certainly has an upper bound, namely ∪λJλ. Applying Zorn’s Lemma yields a maximal

element of J, which we denote H ′. We claim that H ′ is an o-ideal complement, i.e. for all g ∈ G,

there is a strictly positive n ∈ N such that ng ∈ H ⊕H ′.

Notice that if g ∈ H ′ ⊆ H ⊕H ′, then our claim is established. If not, then the maximality

of H ′ implies 〈g,H ′〉 has nontrivial intersection with H. In particular, for some n > 0, h ∈ H ′, and

α ∈ H, we have that ng + h = α. Clearly then ng ∈ H ⊕H ′. This establishes that H ′ is an o-ideal

complement of H.

A maximal o-ideal complement of H, which we have called H ′, is not unique, even with

respect to order considerations. If we consider Z ⊕ Z under the lexicographic ordering, H = Q(G)

is uniquely determined (it is the subgroup Z⊕ 0) but we have many choices for H ′. The subgroups

generated by (0, 1) and (1, 1) are two distinct choices, for example.

Notice that partially ordered abelian groups with nontrivial elements are necessarily torsion

free. For an element x of finite order, we have e 6 x 6 x2 6 x3 6 · · · 6 xn = e. Antisymmetry in

the partial order, 6, insists that x = e. This leads us to the following theorem.

Lemma 5.3.3. Let G be a directed po-group with o-ideal H ⊆ G. If there exists some o-ideal

complement of H that is divisible, say H ′ ⊆ G, then G = H ⊕H ′ as sets.

Proof. Assume that H ′ ⊆ G is an o-ideal complement of H that is divisible. Then H ′∩H = {0} and

for any g ∈ G there exists some n ∈ N such that ng ∈ H ⊕H ′, say ng = h+ h′ for h ∈ H,h′ ∈ H ′.

Moreover, since H ′ is divisible, we can write h′ = nh′′ for some h′′ ∈ H ′ and hence n(g−h′′) = h ∈ H.

Applying the natural o-epimorphism π : G → G/H yields n(g − h′′) + H = H. However, G/H is

a po-group since H is an o-ideal, so G/H is torsion-free and we conclude g − h′′ + H = H. In

particular, g ∈ H ⊕H ′. Hence, G ⊆ H ⊕H ′ (as abelian groups). But H and H ′ are subgroups so

G = H ⊕H ′.

Corollary 5.3.4. If H ⊆ G is an o-ideal and H ′ is an o-ideal complement such that G = H ⊕H ′,

the order on G coincides with the induced splitting order on H ⊕H ′ from Definition 5.1.3.

Observe that if any po-group G is divisible, it is necessarily antimatter. Example 5.3.5

shows this theorem is immediately applicable to domains with pathological factorization behaviors

since the quasi-atomic complement is divisible when certain domain elements admit nth roots for

any n ∈ N.
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Example 5.3.5. Consider the ring R = F[X ]m where X = {Xα | α ∈ Q+} and m = (X ) from

Example 5.2.1(ii). This ring has no irreducible elements, and so has no quasi-atomic elements.

Thus we can trivially write G = H ′ ⊕ {1G}. Furthermore, H ′ is divisible. To demonstrate that

H ′ is divisible, notice that multiplication in the ring is equivalent to the group operation on G.

We may write any g ∈ G as g = XαU(R) and ng = XnαU(R). Hence, for any g ∈ G, we have

g = XαU(R) = (Xα/n)nU(R) = ng0 where g0 = Xα/nU(R). 4

Rather than considering the o-ideal complement of Q(G), we could consider the o-ideal

complement of H = H∗ = lim
−→

Q(Gi) in a variant of Definition 5.3.1. Indeed, we say that H ′ is an

o-ideal complement of H∗ if H ′ ∩H∗ = {0} and for any g ∈ G, there exists some n > 1 such that

ng ∈ H∗ ⊕H ′. Since H∗ consists of all group elements with finite quasi-atomic length, H ′ must be

generated by some antimatter elements. Moreover, if G = G(D) for an integral domain D and H ′

is an o-ideal complement of H∗, then every non-zero non-unit element x ∈ D is the root of some

product xn = yz for some y, z ∈ D with lenq(y) <∞ and such that zU(D) ∈ H ′ is antimatter or a

unit.

As in previous chapters, many notions in this section are rather vacuous in the case of

quasi-atomic domains (including almost atomic and atomic domains). For example, if lenq(D) <∞

and D is quasi-atomic in the limit, then H∗ = G(D) and so an o-ideal complement of H∗ can only

be trivial H = {1G}, providing the vacuous factorization G(D) = G(D)⊕{1G}. This includes cases

of quasi-atomic domains such as UFDs.
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Appendix A Integral Domains

Integral domains are unital commutative rings lacking non-zero zero divisors. In Section A.1

we review the cancellativity property of integral domains and the pre-order on an integral domain

induced by divisibility. In Section A.2 we discuss polynomial extensions, in Section A.3 we describe

quotient rings and their associated canonical ring epimorphisms, in Section A.4 we describe integral

domain localizations, in Section A.5 we describe direct limits.

A.1 Basic Facts and Notation for Integral Domains

The rings Z, Z[X], and Q are all three examples of integral domains. Q is also a field (all

fields are integral domains). If D is an integral domain and X is indeterminate over D then D[X]

is an integral domain. Similarly, if S ⊆ D is a multiplicatively closed set with 0 /∈ S, then DS is an

integral domain. If D is an integral domain and I ⊆ D then D/I is an integral domain if and only

if I is a prime ideal. We refer to integral domains as simply domains.

Domains are cancellative: for any non-zero x, y, z, if xy = xz then y = z. Invertible elements

of D are known as units, and the set of units in D form a multiplicative group, which we denote

U(D); for example, if D is an integral domain with indeterminate X, then U(D) = U(D[X]). Every

integral domain has a field of fractions or quotient field F. This field may be formally constructed by

defining an equivalence relation on D× (D \ {0}) by setting (a, b) ∼ (c, d) if and only if ad− bc = 0;

we denote the equivalence class of (a, b) as a
b . For example, the field of fractions for Z is precisely

Q. Further, the map ε : D → F defined by ε(x) = x
1 is a ring monomorphism. Since D ∼= ε(D) ⊆ F,

we can assume without loss of generality that D ⊆ F.

We say a non-zero non-unit x ∈ D \ {0} is an irreducible element when any factorization,

say x = yz, is trivial in the sense that y ∈ U(D) or z ∈ U(D). We sometimes refer to irreducible

elements merely as irreducibles or atoms. If x is an element such that x | yz implies x | y or x | z,

then we say x is prime. Any prime element of any integral domain is irreducible but not conversely.

We say that x, y ∈ D are associated by units or simply associates when x = uy for some u ∈ U(D).

We denote the set of irreducibles in D as Irr(D). If an element x ∈ D can be written as a finite

product of atoms, we say x is atomic or an atomic element. If every non-zero non-unit element of

D is atomic, we refer to D as an atomic domain. On the other hand, an arbitrary integral domain

need not contain any atoms (and hence no atomic elements). For example, as we saw above, Q is
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an integral domain, but it is also a field. Each non-zero x ∈ Q is a unit, so Q has no irreducibles.

Following [7], whenever D contains no irreducible elements we say D is an antimatter domain.

If every non-zero non-unit element of D can be written uniquely as a product of irreducibles

(up to a permutation of the order of those irreducibles and up to associates), then we say that D is

a unique factorization domain (or a UFD). If D is a UFD then D[X] is also a UFD. Hence, since Z

is a UFD, we can inductively obtain that any Z[X1, . . . , XN ] is a UFD. In a UFD, every irreducible

element is prime. Note any field F is not only antimatter, it is also a UFD: since F contains no

non-zero non-units, F vacuously satisfies the condition that every non-zero non-unit factors into

irreducibles.

Following [4], we use two relaxations of the notion of atomicity that are critical to our

treatment of integral domains. Recall that every integral domain D has a quotient field F. If D′ is

any integral domain such that D ⊆ D′ ⊆ F, then the quotient field of D′ is F and we say D′ is an

overring. A non-zero non-unit x ∈ D is said to be almost atomic if there exists some atomic a ∈ D

such that ax is atomic. We also say that x is quasi-atomic when there exists any y ∈ D such that

yx is atomic. Note that if x ∈ D is atomic then x is almost atomic. If x is almost atomic then x is

quasi-atomic. Examples of almost atomic domains and quasi-atomic domains appear in Chapter 2.

Integral domains admit an additional structure induced by divisibility; this additional struc-

ture is a relation that is compatible with multiplication. We say reflexive and transitive relations are

pre-orders as in [11], although some authors refer to these as quasi-orders, as in [33], [10], and [16].

We denote a pre-order with the symbol �. We say antisymmetric pre-orders are partial orders as

in [11], and to distinguish that these pre-orders are antisymmetric we denote a parital order with

the symbol 6. Define the divisibility pre-order for any x, y ∈ F \ {0} by declaring x � y if and only

if y
x ∈ D. The divisibility pre-order on an integral domain D is compatible with multiplication in

the sense that for any x, y, z ∈ D if x � y then xz � yz. However, the divisibility pre-order is not

antisymmetric: for any non-zero non-unit x ∈ D and for any unit u ∈ D, x � ux and ux � x but

ux 6= x.

Example A.1. Consider the divisibility pre-order � on the multiplicative subgroup of Q induced

by divisibility in Z: say a
b �

c
d if and only if c/d

a/b ∈ Z. Now 2
15 � −

4
3 since − 4/3

2/15 = −10 ∈ Z but

− 2
15 6�

3
2 since − 3/2

2/15 = − 45
4 /∈ Z.

By sacrificing antisymmetry up to units, then the order � on F× can be completed to a
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partial order by considering only associate classes with the canonical map η : F× 7→ F×/U(D) as

in [11].

Example A.2. Although � on Q induced by divisibility in Z induced a pre-order �, we have

that a
b � −

a
b and −ab �

a
b for any a, b ∈ Z with b 6= 0. Yet a

b 6= −
a
b . However, we have that

a
bU(Z) =

{
±ab
}

= −abU(Z). Hence the relation on Q×/U(Z) induced by � is a partial order. We

denote this induced order as 6. 4

A partial order 6 such that any two elements are comparable (in the sense that x 6 y or

y 6 x) is known as a total order (some authors refer to these as linear orders, simple orders, full

orders, or simply orders [11]). If a total ordering 6 on a set X satisfies the additional property

that ∅ 6= X ′ ⊆ X implies X ′ has a least element, then we say 6 is a well-ordering. In any partially

ordered set X we define the meet or greatest lower bound for two elements x, y ∈ X as any element

z ∈ X such that z 6 x and z 6 y and if z′ 6 x and z′ 6 y then z′ 6 z. The meet of an arbitrary x

and y is not guaranteed to exist. If the meet of x and y exists, we denote it as z = x∧ y. We dually

define the join as the least upper bound, denoted x ∨ y.

A partial order on a set X such that the meet (join, respectively) for arbitrary pairs always

exists is called a meet semi-lattice order (join semi-lattice order, respectively) and we say X is a

meet semi-lattice (join semi-lattice, respectively). A partial order that is both a meet semi-lattice

order and a join semi-lattice order is called a lattice order. If an order on X is a lattice order, we

say X is a lattice.

A.2 Polynomial Extensions of Integral Domains

We follow [18] to define polynomial rings and [23] to generalize these slightly. We denote

commutative rings with identity as R and integral domains D.

Define addition in R[X] := ⊕i∈N0
R by (a0, a1, . . .) + (b0, b1, . . .) = (a0 + b0, a1 + b1, . . .) and

with multiplication defined by (a0, a1, . . .)(b0, b1, . . .) = (c0, c1, . . .) where each cn =
∑n
i=0 an−ibi.

These are well-defined because each sequence (an) and (bn) have a finite number of non-zero co-

ordinates. Note X here is merely a formal symbol we call an indeterminate. On the other hand,

if R is a subring of some algebraic object R ⊆ T and t ∈ T , we denote the set of formal sums{∑N
n=0 rnt

n | N ∈ N0, rn ∈ R
}

as R[t]. Note that R[t] is not necessarily freely generated as an

R-module, depending upon our selection of t; for example, if R = Z and t =
√
−1 ∈ C, we have
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that t2 ∈ R. To see the connection between these constructions beyond mere notation, we have the

following Lemma.

Lemma A.3. Let R ⊆ T be any extension of commutative rings and let t ∈ T be transcendental

over R. Then R[X] ∼= R[t].

Proof. The isomorphism φ : R[X]→ R[t] is defined by mapping (a0, a1, . . .) 7→
∑
n>0 ant

n.

Lemma A.3 allows us to think of polynomial rings as constructed by adjoining transcendental

elements. We define the degree of a polynomial f ∈ R[X], denoted deg(f), as the largest choice of

index, n, such that an 6= 0. Note that if R = D is an integral domain then given two polynomials,

f, g ∈ D[X], we have that deg(fg) = deg(f) + deg(g). We similarly define the order or co-degree of

f ∈ R[X], denoted ord(f), as the smallest choice of index n such that an 6= 0.

Lemma A.4. Let D ⊆ T be a containment of integral domains. For any non-zero t ∈ T , D[t] is an

integral domain.

Proof. D[t] is a subring of T , which is an integral domain, and so contains no non-zero zero divisors.

We refer to elements of R[X] as polynomials. For any polynomial, f = (a0, a1, . . .), we abuse

notation by writing f = f(X) = a0 + a1X + · · · . Since f is in the direct sum, there exists some

an 6= 0 such that an+k = 0 for each k ∈ N. So we can write f(X) = a0 + a1X + · · · + anX
n.

Note here X is merely a formal symbol we call an indeterminate but, again, we can think of X as

a transcendental element over R. We define a polynomial ring over a finite set of indeterminates

R[X1, X2, . . . , Xn] inductively as R[X1, . . . , Xn−1][Xn], which is isomorphic to R[t1, . . . , tn−1][tn]

for some set of R-algebraically independent elements {t1, t2, . . . , tn}. The polynomials of the form∏N
i=1X

ni
i ∈ R[X1, . . . , XN ] where each ni ∈ N are known as monomials.

We define the degree of a polynomial in multiple variables in the case that R is an integral

domain, i.e. R = D. For any f ∈ D[X1, X2, . . . , Xn], selecting Xi ∈ {X1, . . . , Xn}, we have that

f =a0 + a1

N1∏
j=1

X
k1,j
j

+ · · ·+ am

Nm∏
j=1

X
km,j
j


where each ki,j ∈ N. We can select some Xi and determine the degree of f with respect to Xi by
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writing the above as

f =a0 + a1

 N1∏
j=1,j 6=i

X
k1,j
j

Xi + · · ·+ am

 Nm∏
j=1,j 6=i

X
km,j
j

X
km,i
i

=α0 + α1Xi + · · ·+ αmX
km,i
i

where each αi ∈ D[X1, . . . Xi−1, Xi+1, . . . , Xn]. Now we may define degXi(f) = km,i. On the other

hand, for a monomial f ∈ D[X1, . . . , Xn], say f = a
∏N
j=1X

kj
j , we may define the total degree as

degtot(f) =
∑
j kj . Since these degrees are elements of N, they are linearly orderable and any finite

subset has a maximum. We may define the total degree of a polynomial as the greatest total degree

among the monomials of f . For example, for f ∈ Z[X,Y ] given by f(X,Y ) = 2X2 +XY 3, we have

degY (f) = 3 and degX(f) = 2, and degtot(f) = 4.

We retain the property that degXi(fg) = degXi(f) + degXi(g) when we specify an indeter-

minate in this way. In fact, defining D′ = D[X1, X2, . . . , XN ], we see that D′ is a free D-module; if

M is the set of all distinct monomials in D′, then the set {1} ∪M is an D-module basis for D′.

In many examples in the sequel, we adjoin non-transcendental elements to R (or D). If D

is a subring of some integral domain T and X ⊆ T is a set of non-zero elements, we define

D[X ] =

{
N∑
n=0

rn
∏
i

x
mn,i
n,i | rn ∈ D,xn,i ∈ X ,mn,i ∈ N0

}

where we interpret x0 = 1 ∈ D for any x ∈ X . Note X may be an infinite set, but each element

f ∈ D[X ] consists only of at most a finite number of monomials, each of which is built from at most

a finite subset of X . If D has quotient field F and T = F then elements of X are rational functions,

so we abuse terminology and refer to D[X ]. These definitions formalize the idea of polynomial

rings of rational functions, but since we did not specify T , this definition allows for a rather general

treatment of polynomial-like constructions. We define the set of monomials as the set of all finite

products of the form
∏
i x

mi
i such that each xi ∈ X .

Example A.5. Let D be a domain and X, Y indeterminates. Define R′ = D[X,Y ] = (D[X])[Y ].

Since D is an integral domain, D[X] is an integral domain and likewise D[X,Y ] is an integral domain.

Then R′ has a quotient field, R′ ⊆ F. We have elements of the form Y
Xn ∈ F for each n ∈ N; let

X =
{
Y
Xn | n ∈ N

}
. Let R = R′[X ]. Then Y is irreducible in R′ but Y is not irreducible in R since
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Y = Xn Y
Xn for any choice of n > 1. 4

By selecting T as the algebraic closure of the quotient field for R we obtain a polynomial

ring of “algebraic” functions (to be precise, functions of algebraic elements).

Example A.6. Let D be as in the previous example and let F be the quotient field for D[X,Y ].

Select T = F. Then we can select X =
{
X2n , Y

X2n | n ∈ Z
}

. Note these exponents can be positive

or negative, so the ring D[X,Y ][X ] has elements like X4 and X1/4 and note that Y is divisible by

any allowable power of X: Y = X4(Y/X4) = X1/8(Y/X1/8), and so on. 4

Polynomial rings over indeterminates are ubiquitous, so we establish some properties.

Theorem A.7. Let D be an integral domain and X indeterminate over D. Then U (D[X]) = U(D).

Proof. If u ∈ U(D), then there exists some v ∈ U(D) such that uv = 1. This relationship still holds

in D[X]. On the other hand, if f ∈ U(D[X]), then there exists some g ∈ D[X] such that fg = 1.

If fg = 1 then certainly deg(1) = 0, and so we have that deg(fg) = n + m = 0, so n = m = 0 and

thus f, g ∈ D. That is to say, units in D[X] are elements of D.

Lemma A.8. Let f ∈ D[X] be associate to a monomial over D and let g be a proper divisor of f .

Then g is also a monomial over D.

Proof. We induct on the degree of f . For deg(f) = 1, we have that f = uX. If g is a proper divisor

with deg(g) = 1, say g = g0 + g1X for some g0, g1 ∈ D, then there exists some 0 6= h ∈ D[X] such

that g0h + g1hX = uX. Thus, g0h = 0 and u = g1h. Since h 6= 0 we see that g0 = 0 and g1 is a

unit, say g1 = v ∈ U(D), so g takes the form g = vX. Hence, g is a monomial.

On the other hand, assume that for monomials of sufficiently low degree, say deg(f) < n, if

g is a proper divisor of f then g is also a monomial. Now consider f = uXn and let g be a proper

divisor. Set ` = ord(g). Note ` 6 deg(f) = n. Hence, f = gh may be written f
X`

= g
X`
h. where

f
X`
, g
X`
∈ D[X]. Now f

X`
is a monomial of strictly lower degree than f so our inductive hypothesis

implies g
X`

is a monomial, so g is a monomial.

Theorem A.9. Let D be an integral domain and X a set of indeterminates over D. The set of

monomials in D[X ] is a saturated multiplicatively closed set.

Proof. That monomials are multiplicatively closed is clear; it is sufficient to check saturation. Let

f ∈ D[X ] be associate to a monomial, say f = u
∏N
i=1X

ni
i where each Xi ∈ X . We induct on N
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by considering f ∈ D[X1, . . . , XN ]. For N = 1, we simply cite Lemma A.8: the proper divisors of a

monomial in D[X] are all monomials.

Now assume that if f ∈ D[X1, . . . , XN ] is a monomial then any proper divisor of f is also a

monomial. Let f ∈ D[X1, . . . , XN+1] be a monomial. We can regard f ∈ D[X1, X2, . . . , XN ][XN+1].

Since f is a monomial (over D) in D[X1, . . . , XN+1], f is also a monomial (over D[X1, X2, . . . , XN ])

in D[X1, X2, . . . , XN ][XN+1]. By Lemma A.8, we see that any proper divisor of g must be a

monomial (over D[X1, X2, . . . , XN ]) in D[X1, X2, . . . , XN ][XN+1]. We write g = X
nN+1

N+1 ĝ where

ĝ ∈ D[X1, X2, . . . , XN ], nN+1 ∈ N.

Now, ĝ is either a unit or a proper divisor of a monomial (and is hence a monomial). Induc-

tively, we determine ĝ is a monomial in D[X1, . . . , XN ] and so g is a monomial in D[X1, . . . , XN+1].

Overrings of polynomial extensions, as subsets of the quotient field, consist of rational

functions. We look more closely at this idea.

Example A.10. Let D = Z[X,Y ] have quotient field F. Then X
Y ∈ F. Define D as all overrings D′

such that X
Y ∈ D

′. Then ∩D′∈DD′ is an integral domain we denote Z[X,Y, XY ]. 4

Also note that polynomial extensions D[X ] could be alternatively defined with a universal

mapping property by considering all D-algebras freely generated over D by sets with the same

cardinality as X :

Theorem A.11. Let D be an integral domain, X a set of indeterminates over D, ε : X → D[X ]

the canonical inclusion map. For any commutative D-algebra A and set function f : X → A, there

exists a unique D-algebra homomorphism φ : D[X ]→ A such that f = φ ◦ ε.

A.3 Quotient Rings and Integral Domains

Since we only consider commutative rings, right- and left-ideals coincide so all ideals are

two-sided. We say a subset I ⊆ R is an ideal of R when I is additively and subtractively closed and

for any x, r ∈ R, if x ∈ I then rx ∈ I. We say an ideal I is prime when, for any a, b ∈ R, if ab ∈ I

then a ∈ I or b ∈ I. We define Spec(R) to be the set of all prime ideals of R and, given any fixed

ideal I ⊆ R. Following the standard notation from algebraic geometry, define V (I) to be the set of

all prime ideals p satisfying I ⊆ p. Since all ideals are two-sided, for any ring R with ideal I ⊆ R

we have a natural ring epimorphism of the form R� R/I defined by r 7→ r + I.
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Theorem A.12. Let D be an integral domain and I ⊆ D an ideal. There exists a one-to-one

correspondence V (I) ∼= Spec(D/I).

Lemma A.13. If R is commutative with identity and ideal I ⊆ R, then R/I is a domain if and

only if I is a prime ideal, and R/I is a field if and only if I is a maximal ideal.

Proof. Assume I is prime. If a+ I, b+ I ∈ R/I are chosen such that (a+ I)(b+ I) = I, then ab ∈ I,

and since I is prime, a ∈ I or b ∈ I. Hence, a + I = I or b + I = I. On the other hand, if R/I

has no zero divisors, then (a + I)(b + I) = I implies a + I = I or b + I. Hence, if ab ∈ I, then

ab+ I = (a+ I)(b+ I) = I, and so we conclude a ∈ I or b ∈ I, so I is prime.

Assume R/I is a field. Then R has no ideals properly containing I according to Theorem

A.12 so I is maximal. Now assume I is maximal. Then any nontrivial element a + I ∈ R/I

corresponds to some a /∈ I. By the maximality of I, the ideal (a, I) = R, so 1 ∈ (a, I). Thus, there

exists some r ∈ R and i ∈ I such that 1 = ra+i. For this r, we have that 1+I = ra+I = (r+I)(a+I),

so a+ I is invertible.

Example A.14. The map π : Z[X]� Z defined by mapping f(X) 7→ f(0) is a ring epimorphism.

The kernel of π is (X), and so we have Z[X]/(X) ∼= Z by the natural map f(X) + (X) 7→ f(0).

Hence, if p is a prime in Z[X] such that (X) ⊆ p, then there exists some q ⊆ Z such that p = (q, X).

Hence, the prime ideals of Z[X] that contain X are of the form (q,X) where q is a prime of Z. 4

Example A.15. Let D = Z. Since Z is a PID, it is also a UFD, so all irreducible elements are

prime. Furthermore, all prime ideals are of the form p = (p) for some prime element, p ∈ Z, or

p = 0 ∈ Z. Thus, for each prime p ∈ Z, the ring Z/(p)Z is an integral domain. Furthermore, each

(0) 6= (p) is also maximal, and thus Z/(p)Z is a field. 4

Example A.16. Let D = C[X,Y ]. Then Y 2 = X3 + X + 1 defines a non-singular elliptic curve,

thus the ideal I = (X3 +X + 1− Y 2) is a prime ideal. We conclude D/I is an integral domain. 4

Ring epimorphisms and polynomial extensions lead to some interesting constructions. Some-

times these are isomorphic to rings of rational functions described in Section A.2. For example, a

ring with rational functions like D[X,Y, XY ] may be obtained through the natural ring isomorphism

D[X,Y, XY ] ∼= D[X,Y,Z]
(Y Z−X) induced by the ring epimorphism D[X,Y, Z] � D[X,Y,Z]

(Y Z−X) . However, this ex-

ample betrays us: a ring epimorphism with prime ideal kernels is not always equivalent to a ring of

rational functions.
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Example A.17. For an algebraic α over Q with minimal polynomial f ∈ Q[x], we have that

Q[α] ∼= Q[x]/(f(x)). For example Q[i] ∼= Q[X]/(X2 + 1). This is not isomorphic to any subring of

the quotient field of Q[X]. To see why, note that U(Q[X]) = U(Q) = Q \ 0. The unit group of Q

is all of Q \ 0, and the only elements of finite order are ±1. On the other hand, i ∈ U(Q[i]) and

i4 = 1. No element of U(Q[X]) has fourth order. Hence, Q[i] is not isomorphic to any subring of the

quotient field of any polynomial ring Q[X ] Moreover, this is not isomorphic to any subring of Q(X).

To see this, note that if ( fg )4 = 1 for any f, g ∈ Q[X], then f4 = g4 in Q[X], which is a UFD. 4

For a domain D and indeterminates X , Spec (D[X ]/(X )) ∼= V ((X )) ando D[X ]/(X ) ∼= D.

In particular, (X ) is always prime since D is an integral domain. Of course, by Lemma A.9,

proper divisors of monomials are monomials so perhaps the primality of (X ) is not surprising. But

furthermore, (X ) is maximal in D[X ] if and only if (0) is maximal in D. This proves Theorem A.18.

Theorem A.18. The ideal (X ) ⊆ D[X ] generated by all monomials is maximal if and only if D is

a field.

Our primary concern is with integral domains, which leads us to the following universal

mapping property for quotient domains.

Theorem A.19. Let D be an integral domain, I ⊆ D be an ideal, and π : D � D/I the canonical

epimorphism. Let φ : D → D′ be a ring homomorphism with I ⊆ Ker(φ). Then there exists a

unique ring homomorphism φ : D/I → D′ such that φ = φ ◦ π.

A.4 Localizations of Integral Domains

We say a set is multiplicatively closed when 0 /∈ S, 1D ∈ S and when s, t ∈ S implies

st ∈ S. Since we investigate integral domains, which lack zero divisors, we assume 0 /∈ S for any

multiplicatively closed set S. We say a multiplicatively closed set in D, say S, is saturated when,

for any s ∈ S and t ∈ D, if t | s then t ∈ S. Since 1D ∈ S any saturated S has U(D) ⊆ S. Indeed,

if u ∈ U(D), since u | 1D and S is saturated, we have that u ∈ S. Recall Theorem A.9, in D[X ] the

set of monomials is saturated and multiplicatively closed. Hence, the set of monomials, say M , is

not saturated, but it is “nearly” saturated in the sense that M contains all of its non-unit divisors.

For any integral domain, D, and any multiplicatively closed set, S, the localization of D at

S, denoted DS , is a subset of the field of fractions F wherein all denominators are from S. That is to
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say, DS =
{
r
s | r ∈ D, s ∈ S

}
. The natural monomorphism ε : D → F induces a ring monomorphism

ε : D → DS defined by mapping x 7→ x
1 . Note the field of fractions for DS is precisely the field

of fractions for D, namely F and we have the containment D ⊆ DS ⊆ F. We could alternatively

characterize DS as the intersection of all subrings of F containing D in which each element of S is a

unit. Following unfortunate historical notation in the mathematics community, we follow [18]: when

S is the set complement of a prime ideal, SC = p, we denote DS = Dp.

For saturated sets S1, S2 ⊆ D, S1 ∩ S2 is also saturated. For any x ∈ S1 ∩ S2, if y | x then

y ∈ S1 and y ∈ S2 since both are saturated. Hence, y ∈ S1 ∩ S2. Given any subset of S ⊆ D we

may saturate that set by intersecting all saturated subsets of D containing S, which we say is the

saturation of S. Note that if S is multiplicatively closed and its saturation is Ŝ then DS = DŜ .

Indeed, for any s ∈ S and s′ | s with s′ /∈ S, we can write s = s′t for some t. We see that td
s ∈ DS .

But td
s = td

s′t = d
s′ . Thus, DŜ ⊆ DS . But also since S ⊆ Ŝ, we have DS ⊆ DŜ , so we conclude

DS = DŜ .

One might suspect localizing at non-atomic elements could create integral domains with

interesting factorization behaviors. In fact, problems arise from localizing at (subsets of) the non-

atomic elements of D. In Example A.21, we see that the set of non-atomic elements is not multi-

plicatively closed in general.

Example A.20. Let Q+ = {x ∈ Q | x > 0} be the additive sub-semigroup of Q. Let M ⊆ Q+ be

any additive sub-semigroup of Q+ such that M is monoid-isomorphic to a numerical semigroup (a

cofinitely generated sub-semigroup of N). We extend our ring-theoretic concept of factorization to

monoids. We say m ∈ M is an atom or an irreducible when m = m1 + m2 for some m1,m2 ∈ M

implies m1 = 0 or m2 = 0, we say m is atomic if m is a finite sum of atoms, and we say M is atomic

if each non-zero m ∈M is atomic.

Let F be any field and X an indeterminate over F. Define X = {Xm | m ∈M}. Let

R′ = F[X ]. Let m ⊆ R′ be the ideal generated by X . Then m is maximal and every non-zero non-

unit in the ring R = R′m is a sum of elements that are associate to some monomial in X . Moreover,

the multiplicative behavior in R is governed by the additive behavior in M . In [13], it is shown that

since M is monoid isomorphic to a numerical semigroup, if 0 is not a limit point in M then M is

atomic, which forces R to be atomic. 4.

Example A.21. Let X be an indeterminate over F2. Let D′ = F2[X,X2/3, X2/9, . . .]; D′ is an
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integral domain since F2 is a field. Let m ⊆ D′ be the maximal ideal generated by the set of all

non-unit monomials. Define D = D′m. Note X is the only irreducible monomial. In particular

X2/3n is a non-unit and satisfies the relationships X2/3n = (X2/3n+1

)3, and so is not irreducible.

Moreover, X2/3n is not atomic. The monomials are saturated and multiplicatively closed; if X2/3n

can be written as a product of atoms, then those atoms are necessarily associates of monomials,

and X is uniquely irreducible among all monomials. It is impossible to write X2/3n = Xm with an

m,n ∈ N. Thus, X2/3n is not atomic and yet (X2/3n)3n = X2 is atomic. 4

Example A.21 suggests we need to compute the multiplicative closure of non-atomic elements

if we want to invert non-atomic elements. Even if the set of non-atomic elements of D is multiplica-

tively closed, Example 3.1.1 shows we may lose too much information when we invert non-atomic

elements. This example is particularly instructive, because localizing at the set of all non-atomic

elements yields the quotient field, in which all elements are units, forcing all factorizations to be

trivial.

Examples A.21 and 3.1.1 suggest localization at non-atomic elements cannot be expected

to reveal helpful factorization information. On the other hand, we could localize at the atoms of D.

Indeed, localizing at a (saturated) multiplicatively closed set generated by irreducibles can lead to

new units and new irreducibles. All localizations create new units, but Example A.22 demonstrates

how a single localization can also create new irreducibles. Example A.23 demonstrates how a cochain

of localizations can create new irreducibles at every degree.

Example A.22. Let D be a UFD with independent indeterminates X and Y and consider the ring

D0 = D[X,Y, XY ,
X
Y 2 , . . .]. The monomial Y is irreducible, but X is not irreducible. Let S be the sat-

urated multiplicatively closed subset of D0 generated by Y , namely S = {uY n | u ∈ U(D0), n > 0}.

Arbitrary elements of (D0)S take the form r
s where r ∈ D0 and s ∈ S. Y ∈ (D0)S is a unit and X

1D0

is thus now irreducible in (D0)S . 4

Example A.23. Example A.22 extends easily. Let F be any field with indeterminates {Xn | n ∈ N}.

Construct the polynomial extension D′ = F[X1, X2, . . . ,
X2

Xn1
, X3

Xn2
, . . . | n ∈ N]. Define m ⊆ D′

to be the maximal ideal generated by all non-unit monomials, and set D = D′m. Note X1 is

uniquely irreducible among monomials. We thus pick S to be the saturation of the atomic elements{
1, X1, X

2
1 , X

3
1 , . . .

}
. In DS , the element X1 is now a unit and X2 is now uniquely irreducible among

monomials. Indeed, X2 divides every other monomial and the monomials of the form X2

Xj1
are now
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associate since X1 is a unit. Repeating the process iteratively yields a sequence of integral domains,

D1 ⊆ D2 ⊆ D3 ⊆ · · · in which Xi is a uniquely irreducible monomial in Di. 4

We often localize polynomial rings at a saturated multiplicatively closed set generated by

monomials. Recall by Lemma A.9 that a set X of independent indeterminates over D is saturated

and multiplicatively closed. Moreover, f ∈ D[X ] \ (X ) if and only if f(0) 6= 0; hence, an arbitrary

f ∈ D[X ] is a unit in D[X ](X ) if and only if f(0) 6= 0. Recall Theorem A.18, wherein we demonstrate

the ideal (X ) is maximal if and only if D is a field. Hence, setting m ⊆ F[X ] as the ideal generated

by all monomials (which is maximal), in F[X ]m every non-zero non-unit is associate to a monomial.

A.5 Direct Limits of Integral Domains

We occasionally investigate direct systems and their direct limits, so we provide some details

behind these constructions. We say a set Λ is directed if there exists a pre-order on Λ, say �, such

that if, for any λ, µ ∈ Λ, there exists some γ ∈ Λ such that λ � γ and µ � γ. Let {Rλ | λ ∈ Λ} be

a family of algebraic objects (semigroups, monoids, groups, ideals, rings, modules, fields, algebras,

etc.) indexed by a directed set, Λ. Let {φλ,µ : Rλ → Rµ | λ � µ} be a family of homomorphisms

such that φλ,λ = idRλ and for any λ, µ, γ ∈ Λ such that λ � µ � γ, then φλ,γ = φµ,γ ◦ φλ,µ. We say

the collection
{
Rλ, {φλ,µ}µ∈Λ

}
λ∈Λ

is a direct system over Λ.

For the direct system {Rλ} and morphisms {φλ,µ}, we construct the direct limit with the

disjoint union ∪̇λRλ as the underlying set by applying an equivalence relation: for any rλ, sγ ∈ Rγ ,

we declare rλ ∼ sγ if and only if there exists some µ ∈ Λ such that φλ,µ(rλ) = φγ,µ(sγ). The

result, R/ ∼, is called the direct limit of the direct system
{
Rλ, {φλ,µ}µ∈Λ

}
λ∈Λ

. We denote the

direct limit as lim
−→

Rλ = (qλRλ)/ ∼.

More generally, direct limits can be constructed in categories that admit coproducts by

simply replacing the notion of the disjoint union with the construction of the coproduct and by

formalizing the above construction in terms of a universal mapping property. The direct limit

comes equipped with a sequence of morphisms {φλ}λ where each φλ is a morphism of the form

φλ : Rλ → lim
−→

Rλ such that φµ ◦ φλ,µ = φλ for each λ � µ. The direct limit is an object,

lim
−→

Rλ, together with morphisms
{
φλ : Rλ → lim

−→
Rλ

}
such that for any object S together with

morphisms {θλ : Rλ → S} satisfying θµ ◦ φλ,µ = θλ for each λ � µ, there exists a unique morphism
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Θ : lim
−→

Rλ → S such that each θλ = Θ ◦ φλ.

Rλ
φλ

""
θλ

��

φλ,µ // Rµ
φµ

||
θµ

��

lim
−→

Rλ

Θ

��
Q

Example A.24. Let D be an integral domain and consider the ascending chain of D-module

monomorphisms:

M0
ε0
↪→M1

ε1
↪→M2

ε2
↪→ · · ·

Without loss of generality, we may assume each Mn ⊆ Mn+1 by considering εn to be the canonical

inclusion map, εn : Mn → Mn+1 given by mapping x 7→ x/1. Let Λ = {0, 1, 2, . . .} under the usual

total order. The family of homomorphisms {φn,m} may be taken to be the composition of inclusion

monomorphisms where φn,m = εm−1 ◦ εm−2 ◦ · · · ◦ εn and where φn,n = idMn
. Thus, we have a direct

system.

For an element of the disjoint union x ∈ ∪̇nMn there exists some N such that x ∈MN . For

any xn ∈ Mn and ym ∈ Mm, we define the equivalence relation xn ∼ ym if and only if there exists

some k ∈ Λ such that φn,k(xn) = φm,k(ym). Certainly φn,k(xn) = xn/1 and φm,k(ym) = ym/1.

Thus, we declare xn ∼ ym if and only if xn = ym (thus we can select n = m). Under the equality

relation we have that lim
−→

Mn = ∪̇nMn.

Equivalently, to demonstrate ∪̇nMn is the direct limit, we can show ∪̇nMn satisfies an

appropriate universal mapping property. For each Mi, let φi : Mi → ∪̇nMn denote the canonical

injection. Let Q be a D-module and consider a family of D-module homomorphisms θn : Mn → Q.

For any m ∈ ∪̇nMn, there exists some i and some m′ ∈ Mi such that m = φi(m
′). We map

m 7→ θi(m
′) to define Θ : ∪̇nMn → Q. Since each φi is well-defined, Θ is well-defined and moreover

θi = Θ ◦ φi by construction.

This result does not use that each Mn is D-module. In fact, we have a similar result if we

have a chain of sets connected with monomorphisms. We have a similar result with chains of ideals

in a ring connected with ideal containment or a chain of rings (fields, groups, modules, algebras)

connected with ring monomorphisms (field, group, module, algebra monomorphisms, respectively).
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In these cases we may regard these as ascending chains of objects connected by canonical inclusion

morphisms where the direct limit is the union of the chain. 4

Example A.25. Let D be an integral domain with an irreducible element and quotient field F.

Set S0 = U(D) and D0 := DS0 , let S1 ⊆ D0 be the saturation of some nonempty subset of

the irreducibles in D0. For each s ∈ S1, select an indeterminate over D0, say x0(s), and set

X0 := {x0(s) | s ∈ S1} and Y0 :=
{

s
x0(s) | s ∈ S1

}
. Define D1 = D0 [X0] [Y]. Then D0 ⊆ D1.

From [9, Lemma 2.5] we have that U(D1) = U(D0). From [9, Lemma 2.6], we also have if

π ∈ Irr(D0) and π not associate to any s ∈ S1 then π ∈ Irr(D1). Iteratively, for i > 0, let Si+1 ⊆ Di

be a nonempty subset of irreducibles in Di. For each s ∈ Si+1, select an indeterminate over Di,

say xi(s), and set Xi := {xi(s) | s ∈ Si+1} and Yi :=
{
xi(s)
s | s ∈ Si+1

}
. Define Di+1 = Di [Xi] [Yi].

This yields the chain of monomorphisms

D0 ⊆ D1 ⊆ D2 ⊆ D3 ⊆ · · ·

where each degree “removes the irreducibility” of a specified subset of irreducibles. In this case, any

x ∈ D that associate to some s ∈ S ends up as a unit in the direct limit. 4

Example A.26. Consider now the case of a sequence of integral domain localizations; let D be

an integral domain and Σ ⊆ D a saturated multiplicatively closed subset of D. Note Σ is partially

ordered by the divisibility relation and is directed since, if s, t ∈ Σ, then s | st and t | st. We take

the index set to be Λ = Σ.

For any s ∈ Σ, denote the multiplicatively closed set generated by s as ŝ =
{

1, s, s2, . . .
}

.

For any s, t ∈ Σ, if s | t, then there exists a map φs,t : Dŝ → Dt̂. To define this map, notice an

arbitrary α ∈ Dŝ is of the form x
sn for some n. Since s | t, we may write t = τs and notice that

element τnx
tn ∈ Dt̂. We obtain the ring homomorphism φs,t : Dŝ → Dt̂ defined by x

sn 7→
τnx
tn or

equivalently, x
sn 7→

( ts )nx

tn . Certainly, if s | t and t | v, then φs,t ◦ φt,v = φs,v. Thus {Dŝ}s∈Σ is a

direct system indexed by Σ according to the divisibility pre-order.

Note that each φs,t is a ring monomorphism and so this example may be regarded as a

special case of Example A.24. In fact, lim
−→

Dŝ is naturally isomorphic to DΣ. Certainly lim
−→

Dŝ ⊆ DΣ,

because if x ∈ lim
−→

Dŝ then x is represented by an element in the disjoint union, so x ∈ Dŝ for some

s. Thus, we can write x = d
s for some d ∈ D. But also if x ∈ DΣ then x = d

s for some d ∈ D and

s ∈ Σ and consequently x ∈ Dŝ. Thus, x is in the disjoint union. That is to say, this example may
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be regarded as an alternative definition of DΣ as DΣ = lim
−→

Dŝ.

Equivalently, we can merely demonstrate DΣ satisfies the appropriate universal mapping

property. For each s ∈ S, we always have the canonical inclusion maps φs : Dŝ → DΣ. If we have a

system of ring monomorphisms fs : Dŝ → Q for any integral domain Q, we can define f : DΣ → Q

in the following way. For each d
s ∈ DΣ, we have d

s ∈ Dŝ so d
s = φs

(
d
s

)
. This allows us to simply

define f(ds ) = fs(
d
s ). Moreover, fi = f ◦ φi by construction. 4

Localization can be characterized in terms of universal properties. If D is an integral domain

and S is a multiplicatively closed set, we have the canonical inclusion ε : D → DS . We may

characterize DS as the integral domain such that if φ : D → T is any ring monomorphism and

φ(S) ⊆ U(T ), then there exists a unique φ : DS → T such that φ = φ ◦ ε. The universality of

localization and the universality of direct limits are compatible in the sense that direct limits and

localization commute.

Example A.27. Consider the localizations DS0
⊆ DS1

⊆ · · · . These must sharea common quotient

field, F. We claim Dlim
−→

Si = lim
−→

DSi . To see this, let D be an integral domain and S0 ⊆ S1 ⊆ · · ·

be an ascending chain of saturated multiplicatively closed subsets of D with 0 /∈ Si for each i.

Then the direct system {{Si} , {ιi : Si → Si+1}} (where each ι is a canonical monomorphism) has

direct limit lim
−→

Si = ∪iSi. Also,
{
{DSi} ,

{
εi : DSi → DSi+1

}}
is a direct system with direct limit

lim
−→

DSi = ∪iDSi ⊆ F. If x ∈ Dlim
−→

Si then x = d
s for some d ∈ D and s ∈ lim

−→
Si = ∪iSi. Hence, s ∈ Si

for some particular i, so d
s ∈ DSi ⊆ ∪iDSi . On the other hand, if x ∈ lim

−→
DSi = ∪iDSi then x ∈ DSi

for some i. So x = d
s for s ∈ Si ⊆ ∪iSi so x ∈ Dlim

−→
Si . This establishes our claim.

We may equivalently establish our claim by showing that ∪iDSi = D∪iSi with double

containment; although this is an equivalent condition, this proof method is not as illustrative of the

definition of direct limits. 4

Speaking of universality, polynomial extensions and quotient rings are universal, also. Hence,

for a direct system {Xλ} of indeterminates over D such that if λ 6 µ then Xλ ⊆ Xµ, then we expect

that lim
−→

D[Xλ] = D[lim
−→
Xλ]. Similarly, for a direct system of prime ideals in D, say {pλ} so that if

λ 6 µ then pλ ⊆ pµ. In Example A.28, we show lim
−→

D/pi = D/lim
−→

pi.

Example A.28. Consider now a sequence of integral domains together with canonical ring epimor-

phisms, say

D0

π0

� D1

π1

� D2

π2

� · · ·
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wherein each Dn+1
∼= Dn/pn where pn ⊆ Dn is a prime ideal. The index set here is Λ = {0, 1, 2, . . .}

under the usual total order. The family of homomorphisms {φn,m} may be taken to be compositions

of the canonical epimorphisms: if n < m, define φn,m = πm−1 ◦πm−2 ◦· · ·πn and define φn,n = idDn .

Note that

φj,m ◦ φn,j = (πm−1 ◦ πm−2 ◦ · · · ◦ πj) ◦ (πj−1 ◦ πj−2 ◦ · · · ◦ πn)

=πm−1 ◦ πm−2 ◦ · · · ◦ πn = φm,n

Thus, this is a direct system. Recall that prime ideals of a quotient ring, say R/I, are in one-to-one

correspondence with the ideals of R containing I. For each n ∈ Λ, the inverse image of each kernel,

π−1
n (pn+1), is a prime ideal in Dn. Applying this fact iteratively leads to an ascending chain of prime

ideals in D0

q0 ⊆ q1 ⊆ q2 ⊆ · · ·

where qn = π−1
0 ◦ π−1

1 ◦ · · ·π−1
n−1(pn). This, too, is a direct system, with direct limit lim

−→
qn = ∪nqn.

Define q := ∪nqn. Note that the union of a chain of prime ideals is a prime ideal, and thus q is a

prime ideal. Thus, D0/lim−→
qn = D0/ ∪n qn = D0/q is an integral domain.

Now, for each n, we have the canonical epimorphism ψn : D0/qn � D0/lim−→
qn. But we also

have, by construction of lim
−→

D0/qn, maps of the form θn : D0/qn � lim
−→

D0/qn. By the universality

mapping property for quotients, each map ψn factors as ψn = ψn ◦ θn. By the universality of

lim
−→

qn, since Ker(ψn) ⊆ Ker(θn), θn factors as θn = θn ◦ ψn. In particular, we conclude that

ψn ◦ θn : D0/lim−→
qn → lim

−→
D0/qn is an isomorphism. 4
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Appendix B Partially Ordered Abelian Groups

In this section, we discuss partially ordered abelian groups (po-groups) and define the group

of divisibility of an integral domain. Construction and use of po-groups is somewhat delicate and

require more elaboration than usual group theoretic considerations. The properties and facts in this

section are not exhaustive but are foundational to our treatment of po-groups; we direct the eager

reader to [27] for an in-depth presentation.

In this appendix, we write the group operation multiplicatively unless otherwise stated (in

contrast with our notation in Chapters 3 through 5, where we write po-groups additively). In

B.1, we review the notion of the inherited quotient order on a quotient po-group, order-preserving

group homomorphisms, and o-ideals. In Section B.2, we discuss morphisms between po-groups,

and illustrate the connection between these morphisms and convex subgroups. In Section B.3, we

construct po-groups using direct sums and we discuss the possible orderings on those constructions.

In Section B.5, we define the group of divisibility for an integral domain, and review some of the

properties associated with this group. In Theorem B.21, we make explicit the connection between

o-ideals and saturated multiplicatively closed subsets of a domain.

B.1 Basics

We assume all groups are abelian.

Definition B.1. Let G be a po-group and H ⊆ G be a subgroup. The group G/H inherits a

relation from the partial order G, called the inherited quotient relation: say aH ∼ bH if and only if

there exists some h ∈ H such that a 6 bh.

In general, the inherited quotient relation is not a partial order, but a pre-order. We establish

exactly when G/H is a po-group in Lemma B.2, but we also establish equivalent conditions in Lemma

B.5.

Lemma B.2. For a po-group G and subgroup H ⊆ G, the inherited quotient relation on G/H is

always a pre-order. The inherited quotient relation is a partial order if and only if H is convex.

Proof. The relation ∼ is reflexive. Since 6 is reflexive and e ∈ H, we have that g 6 ge = g for each

g ∈ G, providing that gH ∼ gH. The relation is also transitive: if aH ∼ bH and bH ∼ cH then we
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have some h1, h2 ∈ H such that a 6 bh1 and b 6 ch2. Hence, we have bh1 6 ch2h1, so a 6 ch2h1,

wherein h2h1 ∈ H. Thus, aH ∼ cH.

Lastly, assume ∼ is antisymmetric and let h1 6 g 6 h2. Since h1 6 g, we have H ∼ gH,

and since g 6 h2, we have gH ∼ H. Hence, gH = H, so g ∈ H, providing that 6 is convex. On

the other hand, if 6 is convex and aH, bH ∈ G/H such that aH ∼ bH and bH ∼ aH, then we have

some h1, h2 ∈ H such that a 6 bh1 and b 6 ah2. Thus, we have that ab−1 6 h1 and h−1
2 6 ab−1.

Since H is convex, we conclude ab−1 ∈ H, i.e. aH = bH.

Denote ∼ as � when ∼ is a pre-order (H is not convex) and denote ∼ as 6 when ∼ is a

partial order (H is convex). A po-group homomorphism is a group homomorphism φ : G → G′

that is order-preserving in the sense that if x 6G y then φ(x) 6G′ φ(y). Certain order-preserving

functions are order-reflecting in the sense that f(x) 6G′ f(y) implies x 6G y. Other order-preserving

functions order-embedding : x 6G y if and only if f(x) 6G′ f(y).

Lemma B.3. Let G be a po-group and H ⊆ G be a subgroup. The canonical group epimorphism

π : G� G/H is order-preserving. H is convex if and only if π is an o-epimorphism.

Proof. Let x 6G y. Then x 6G y1G and 1G ∈ H, so xH � yH. If H is convex, let y ∈ (G/H)+.

Since π is surjective, y = π(x) = xH for some x ∈ G, and since y is positive in G/H, there exists

some x′ ∈ xH and h ∈ H such that x′ > h. Hence, x′h−1 > e, and x′h−1 ∈ xH by construction.

Hence, xH ∈ π(G+), namely xH = π(x′h−1). On the other hand, if π is an o-epimorphism and

h1 6 g 6 h2 in G, then π(h1) 6 π(g) 6 π(h2), where π(hi) = H = 1G/H . By antisymmetry,

π(g) = 1G/H so g ∈ Ker(π).

Lemma B.3 leans in the direction of isomorphism theorems; we reserve a discussion of these

until Section B.2. Following the terminology of [11], we refer to an element g ∈ G as non-negative

if eG 6G g, or positive if eG <G g, and we refer to the subset of all non-negative elements of G as

the positive cone of G, denoted as G+. The positive cone is a partially ordered monoid worthy of

its own study since the properties of G+ can determine properties of G. For example, G is directed

if and only if G is generated by G+, i.e. G = (G+) · (G+)−1. G is linearly ordered under 6 if and

only if G = (G+) ∪ (G+)−1.

We refer to an irreducible element in an integral domain as an atom; similarly, if an element

g in a po-group G is minimal and positive in the partial order 6G, we say g is an atom. The subgroup
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of G generated by all atoms is the atomic subgroup, which we denote A(G). Just as we say products

of irreducibles in an integral domain are atomic ring elements, we say that g is an atomic po-group

element if g is in the atomic subgroup. Note that a subgroup, H ⊆ G may be directed even if G

is not directed; indeed, let G be any subgroup that is not directed with at least one non-negative

element, say e 6 g. Then 〈g〉 ⊆ G is clearly directed as it is generated by a positive element.

Following Fuchs in [11] and Močkoř in [27], we refer to any subgroup that is both directed

and convex as an o-ideal. As we shall see, these subgroups share an important connection with

integral domains and play a central role in this study.

Example B.4. Not all directed subgroups are convex. For an example of such a subgroup, consider

the additive subgroup 2Z ⊆ Z under the usual total ordering. Also, not all convex subgroups

are directed. For an example of such a subgroup, consider again the integers and their group of

divisibility, G(Z) = Q×/U(Z) under the partial order induced by divisibility. We claim the subgroup

〈2/3〉 is convex. Indeed, assume (2
3 )n 6 x 6 ( 2

3 )m for some n,m ∈ Z. In particular, ( 2
3 )n 6 ( 2

3 )m.

Since the ordering here is the divisibility partial order, we have (2/3)m

(2/3)n ∈ Z so n = m. Antisymmetry

provides x = ( 2
3 )n and so H is (vacuously) convex. 4

B.2 Morphisms of Po-Groups and Isomorphism Theorems

We follow [11] and [27] to define homomorphisms of po-groups as group homomorphisms that

are order-preserving (known as o-homomorphisms). We denote the category whose objects are po-

groups and whose arrows are po-group homomorphisms as Pog, the category of po-groups. Following

the notation in [11] and [12], we say an order-preserving po-group homomorphism f : G → H is a

o-epimorphism when f is an order-preserving group epimorphism such that f(G+) = H+. As we

saw in Example 3.2.2, not every epic morphism in Pog is an o-epimorphism (or is even surjective).

Despite that o-epimorphisms in the sense of Fuchs are not a complete representation of all epic

morphisms in Pog, they play a central role in that category.

Lemma B.5. Let G be a po-group with subgroup H ⊆ G. The following are equivalent:

(i) H is a convex subgroup of G,

(ii) G/H is a po-group under the inherited quotient order 6G/H ,

(iii) H is the kernel of some o-epimorphism, and
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(iv) For any g1, g2 ∈ G+, if g1g2 ∈ H, then g1 ∈ H and g2 ∈ H.

Proof. In Lemmata B.2 and B.3, we establish the equivalency of (i) and (ii), and that (i) implies

(iii). We also established the o-epimorphism in (iii) is precisely the canonical group epimorphism

π : G→ G/H. Moreover, if H = Ker(π) for some o-epimorphism π : G→ G′, a similar argument to

Lemma B.3 demonstrates H is convex.

It remains to prove the equivalency of (i) with (iv). Assume H is convex and let g1, g2 ∈ G+

so therefore eG 6 g1 6 g1g2 and eG 6 g2 6 g1g2. Certainly g1g2 ∈ G+. Convexity in H implies (iv).

On the other hand, assume H satisfies (iv) and h1 6 g 6 h2 for some h1, h2 ∈ H. Then h−1
1 g and

g−1h2 are both non-negative elements whose product is in H which satisfies (iv) so we obtain that

both h−1
1 g and g−1h2 are in H, yielding that g ∈ H, establishing convexity.

At this point, it is worth noting that isomorphisms in the category of po-groups are distinct

from the isomorphisms in the category of posets. Indeed, order isomorphisms in the theory of

ordered sets are defined as bijective order-embeddings between partially ordered sets [6], which are

precisely the isomorphisms in the category posets and their monotonic functions Pos. The category

of po-groups Pog is a subcategory of Pos, so just as the hurdle was lower in Pog compared to the

category of all groups in order to be an epimorphisms (monomorphism, isomorphism, respectively),

the notion of an order isomorphism from ordered set theory is perhaps impoverished in the po-group

setting. At the least, we require morphisms to be o-homomorphisms, not simply order-preserving

functions.

To emphasize the difference between order isomorphisms from Pos and po-group isomor-

phisms from Pog, we follow the definition of Fuchs (from [11], and [12]): if f : G → H is a group

isomorphism and an o-epimorphism such that f−1 : H → G is also o-epimorphism, then both f

and f−1 are known as o-isomorphisms. If there exists an o-isomorphism f : G→ H, we denote this

as G ' H (to distinguish between group or ring isomorphisms, which we denote with ∼=). We are

generally only concerned with partially ordered groups up to o-isomorphism; if two po-groups are

o-isomorphic, we will consider them to be the “same.”

We do not have the luxury of all three group isomorphism theorems, as we now see. The first

and third group isomorphism theorems from the category of groups have o-isomorphism analogues

in the category of abelian po-groups: we simply replace the notion of “normal subgroups” with the

notion of “convex subgroups.” Since our groups are abelian, normality is automatic for all subgroups.
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Theorem B.6 (First o-isomorphism theorem). Let G and H be abelian po-groups, and φ : G→ H

be an o-homomorphism. Then:

(i) the kernel of φ is a convex subgroup of G,

(ii) the image of φ is a subgroup of H, and

(iii) the image of φ is o-isomorphic to the quotient group G/Ker(φ).

In particular, if φ is an o-epimorphism then H is o-isomorphic to G/Ker(φ).

Proof. For (i), let g1, g2 ∈ Ker(φ) ⊆ G and x ∈ G such that g1 6 x 6 g2. Then φ(g1) = φ(g2) = eH ,

and since φ is an o-homomorphism, we then have that eH 6 φ(x) 6 eH . Since H is partially ordered,

the order on H is antisymmetric so φ(x) = eH . For (ii), let h1, h2 ∈ φ(G). Then there exists some

g1, g2 ∈ G such that h1 = φ(g1), h2 = φ(g2). Then h1h
−1
2 = φ(g1g

−1
2 ) ∈ Im(φ). Furthermore,

since φ is an o-homomorphism, the partial order on Im(φ) is compatible with the partial order on

H. For (iii), we define the map ψ : G/Ker(φ) → Im(φ) by mapping gKer(φ) 7→ φ(g). This is

certainly a well-defined map: if g1 Ker(φ) = g2 Ker(φ), then g1g
−1
2 ∈ Ker(φ), so φ(g1g

−1
2 ) = eH

and, in particular, φ(g1) = φ(g2). Furthermore, each φ(g) ∈ Im(φ) by definition. This map is

surjective, as any h ∈ Im(φ), by definition, may be written as h = φ(g) for some g, and furthermore,

h = ψ(gKer(φ)). This map is also injective, because gKer(φ) ∈ Ker(ψ) implies φ(g) = eH , i.e.

g ∈ Ker(φ). The map ψ is a group homomorphism, because for any g1 Ker(φ), g2 Ker(φ), we have

ψ ((g1 Ker(φ)) (g2 Ker(φ))) =ψ (g1g2 Ker(φ))

=φ(g1g2)

=φ(g1)φ(g2)

=ψ(g1 Ker(φ))ψ(g2 Ker(φ)).

Also ψ is order-preserving. Indeed, say g1 Ker(φ) 6 g2 Ker(φ). Then there exists some x ∈ Ker(φ)

such that g1 6 g2x. Hence φ is an o-homomorphism so φ(g1) 6 φ(g2x) and since x ∈ Ker(φ), we

have φ(g2)φ(x) = φ(g2). Since φ(g1) 6 φ(g2), ψ(g1 Ker(φ)) = φ(g1) and ψ(g2 Ker(φ)) = φ(g2) satisfy

ψ(g1 Ker(φ)) 6 ψ(g2 Ker(φ)). Lastly, ψ is an o-epimorphism: by Theorem B.5, since ψ is injective,

the kernel is trivial which is, by definition, convex. This establishes ψ as an o-isomorphism.
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Although we have established the po-group analogue to the first group isomorphism theorem,

the second group isomorphism theorem does not have an o-isomorphism analogue.

Example B.7. To see that replacing “normal subgroups” with “convex subgroups” does not lead

to a po-group analogue of the second isomorphism theorem, let G = C be the additive group of

complex numbers. Order G with the partial order a + bi 6G c + di if and only if (c − a) >R 0 and

(d−b) >R 0 or a+bi = c+di. Define H1 = R ⊆ G and define H2 = iR ⊆ G. Note that 〈H1, H2〉 = G

Note that H1 inherits the order from G. If a+ bi, c+ di ∈ H1 then 0 = b = d, so d− b 6> 0.

Hence, a + bi 6 c + di in H1 if and only if a + bi = c + di. Thus the partial order from G on H1

is the equality relation. Also H2 inherits the order from G. If a + bi, c + di ∈ H2 then a = c = 0,

so c − a > 0. Thus, a + bi 6 c + di in H2 if and only if d − b > 0, i.e. d > b. Hence, we have that

H1/(H1∩H2) = H1/0 = H1 = R under the equality relation, and we have that 〈H1, H2〉/H2 = G/H2

and G/H2 = C/(iR) which is isomorphic as a group to R. However, we claim that the inherited

relation on G/H2 is a total ordering so G/H2 cannot be o-isomorphic to H1/(H1 ∩H2).

Indeed, let x, y ∈ G/H2, then x = (a + bi) + H2 and y = (c + di) + H2. Either a 6 c or

c 6 a in R. Without loss of generality, select a 6 c. Define αi = (b − d)i. Then a + bi 6 c + bi in

G since a 6 c, so (a+ bi) 6 (c+ di) + αi, and so (a+ bi) +H2 6 (c+ di) +H2. That is to say, any

two po-group elements are comparable so the inherited quotient order on G/H2 is a total ordering,

completing the example. 4

Theorem B.8 (Third o-isomorphism theorem). Let G be a po-group, and H ⊆ G a convex subgroup.

Then:

(i) If H ′ is a subgroup of G such that H ⊆ H ′ ⊆ G, then H ′/H is a subgroup of G/H.

(ii) Every subgroup of G/H is of the form H ′/H, for some subgroup H ′ ⊆ G such that H ⊆ H ′ ⊆ G.

(iii) If H ′ is a convex subgroup of G such that H ⊆ H ′ ⊆ G, then H ′/H is a convex subgroup of

G/H.

(iv) Every convex subgroup of G/H is of the form H ′/H, for some convex subgroup H ′ of G such

that H ⊆ H ′ ⊆ G.

(v) If H ′ is a convex subgroup of G such that H ⊆ H ′ ⊆ G, then the quotient group G/H
H′/H is

o-isomorphic to G/H ′.
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Proof. The proofs of (i) and (ii) are identical to the proofs of their analogues in the group-theoretic

context, so we omit those proofs. For (iii), let H ′ be convex in G with H ⊆ H ′ ⊆ G. Consider

a chain aH 6 bH 6 cH in G/H with aH, cH ∈ H ′/H. Then a, c ∈ H ′. By the definition of the

induced quotient partial order on G/H, since aH 6 bH, there exists some h1 ∈ H such that a 6 bh1,

and since bH 6 cH, there exists some h2 ∈ H such that b 6 ch2. Thus, ah−1
1 6 b 6 ch2 in G. But

H ⊆ H ′ so h−1
1 , h2 ∈ H ′, and a, c ∈ H ′, so we have bounded b with elements from H ′, which is

convex in G. Thus, b ∈ H ′, so bH ∈ H ′/H.

For (iv), let A ⊆ G/H be a convex subgroup. By (ii), we can write A = H ′/H for some

subgroup such that H ⊆ H ′ ⊆ G. We claim that if A is convex in G/H, then H ′ is convex in G.

If A is convex in G/H and if a 6 b 6 c for some a, b, c ∈ G such that a, c ∈ H ′, then note that

the canonical projection π : G 7→ G/H is an o-epimorphism since H is convex. In particular, it is

order-preserving, and so aH 6 bH 6 cH. Since a, c ∈ H ′, we have that aH, cH ∈ A = H ′/H, which

is convex, and so we conclude bH ∈ A = H ′/H. Hence, b ∈ H ′.

For (iv), if H ′ is a convex subgroup of G such that H ⊆ H ′ ⊆ G, then H ′/H is a convex

subgroup of G/H by (iii). Thus, the canonical projection, π : G/H 7→ G/H
H′/H , is an o-epimorphism.

By Theorem B.6 Im(π) ' G/H
Ker(π) . Of course, Ker(π) is precisely H ′/H.

B.3 Ordering Direct Sums of Po-Groups

For any po-groups, G1, G2, the direct sum, G = G1⊕G2, is an abelian group under the usual

binary operation. It also admits at least three partial orders, the product order, the lexicographic

order, and the reverse lexicographic order. The product order on G1 ⊕ G2 is defined by saying

(a, b) 6 (c, d) if and only if a 6 c and b 6 d. This extends naturally to direct sums of sequences

of po-groups: if Λ is any index set and {Gλ}λ∈Λ is a collection of po-groups indexed by Λ, we may

define the product order on ⊕λ∈ΛGλ by declaring (gλ)λ∈Λ 6 (hλ)λ∈Λ if and only if gλ 6 hλ for

every λ ∈ Λ. Note this definition does not use the property of the direct sum that an element of

⊕λ∈ΛGλ is a sequence of po-group elements such that all but a finite number of gλ = eGλ . Hence,

the product order as defined here holds for the direct product

q

λGλ as well.

We define the lexicographic order on G1 ⊕G2 or G1

q

G2 by declaring (a, b) 6 (c, d) if and

only if a < c or a = c and b 6 d. By this definition, if G1 and G2 are totally ordered then G1 ⊕G2

(or G1

q

G2) is totally ordered. The minimal positive elements of G1⊕G2 are precisely the elements

of the form (0, g) for some minimal positive g ∈ G2. For any countable collection of po-groups
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indexed by some poset, we can iteratively apply the definition of the lexicographic order on G1⊕G2

to obtain a lexicographic order on a direct sum of those po-groups. In particular, the direct sum of

any countable collection of totally ordered po-groups is totally ordered. We can reverse the order

of this comparison to obtain the colexicographic order: (a, b) 6 (c, d) if and only if b < d or b = d

and a 6 c. In this case, the minimal positive elements of G1⊕G2 are from G1. If G1, G2 are totally

ordered then both lexicographic orders on G1 ⊕G2 are total orders.

We more generally define the lexicographic order for uncountable collections in the following

way. Let Λ be a partially ordered set with ordering 6Λ and let {Gλ}λ∈Λ be a collection of po-groups.

Define the lexicographic order on ⊕λGλ by declaring (aλ) 6 (bλ) if and only if (i) (aλ) = (bλ) or (ii)

there exists some λ0 ∈ Λ such that aλ0 <Gλ0 bλ0 and if λ 6 λ0 then aλ = bλ. Just as before, the same

definition applies to the product

q

λGλ without harm. If Λ is infinite, then the lexicographic ordering

on ⊕λGλ never provides any minimal positive elements (because we need a “last” coordinate).

Just as before, we can proceed backward through the index set to obtain the colexicographic

ordering. If we further have that the partial order on Λ is a well-ordering, the minimal positive

elements of ⊕λGλ are precisely the minimal positive elements of Gλ′ where λ′ is the minimal among

all λ ∈ Λ.

These generalizations of the (co)lexicographic orders come equipped with a caveat. For an

arbitrary collection of totally ordered groups {Gλ} indexed by a partially-ordered index set Λ, then

⊕λGλ ordered either lexicographically or colexicographically may not be totally ordered under this

alternative definition of the (co)lexicographic ordering. Nor is it enough to assume that Λ is totally

ordered to conclude that ⊕λGλ is totally ordered. However, if Λ is well-ordered, then ⊕λGλ will be

totally-ordered.

We now apply the notion of ordering direct sums to demonstrate that quotient po-groups

and direct sums are compatible.

Corollary B.9. Let Λ be an index set ordered by � and let {Gi}i∈Λ be a set of po-groups indexed by Λ

with corresponding o-ideals {Hi}i∈Λ. Define G := ⊕i∈ΛGi and H := ⊕i∈ΛHi both under the product

order (lexicographic order, colexicographic order, respectively). Then there is an o-isomorphism

G/H ' ⊕i∈Λ(Gi/Hi)

where the order on ⊕i∈Λ(Gi/Hi) is the product order (lexicographic order, colexicographic order,
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respectively).

Proof. Consider first the case of the product ordered direct sum. Consider first the naturally defined

map φ : ⊕i∈ΛGi −→ ⊕i∈Λ(Gi/Hi). Certainly φ is a surjective homomorphism. To see that φ is

an o-epimorphism, let {giHi}i∈Λ ∈ ⊕i∈ΛGi/Hi that is non-negative in the order on ⊕i∈ΛGi/Hi.

Non-negativity in the product order demands that, for each i ∈ Λ, there exists some hi ∈ Hi such

that gihi >Gi eGi . Of course, as an element of the direct sum, almost every (all but finitely many)

gi ∈ Hi. Further, {giHi}i is the image of {gihi}i ∈ G+. Hence, φ is an o-epimorphism and we may

feel free to apply Theorem B.6 to complete the proof.

Now consider the lexicographic case and the map φ : ⊕i∈ΛGi −→ ⊕i∈Λ(Gi/Hi). We claim

φ is an o-epimorphism. Let {giHi}i∈Λ ∈ (⊕i∈ΛGi/Hi)
+

. Certainly φ is a surjective group homo-

morphism. We find some {xi}i ∈ (⊕i∈ΛGi)
+

such that φ({xi}i) = {giHi}i. As an element of the

direct sum, almost every (all but finitely many) giHi = Hi; for these indices, we can select the

representative gi = eG. Positivity in the lexicographic order demands that there exists some λ ∈ Λ

such that Hi = giHi for each i ≺ λ and Hλ < gλHλ. In particular, if i ≺ λ then gi ∈ Hi and if i = λ

there exists some hλ ∈ Hλ such that eGλ < gλhλ. Thus, given {giHi}, define xi = gi for each i 6= λ

and define xλ = gλhλ. Then {giHi} = φ({xi}).

Note {xi} ∈ G+ under the lexicographic order by construction. Hence, φ is an o-epimorphism

and we apply Theorem B.6 to complete the proof. Mutatis mutandis, this argument applies to the

colexicographic order.

Note the product order and the lexicographic orders are related in the following sense: the

underlying sets are equal, and if (gλ) 6 (hλ) under the product order then (gλ) 6 (hλ) under the

(co)lexicographic order. Following the terminology from [30], for two relations on a set, say ∼ and

≈ on X, for any a, b ∈ X, if a ∼ b implies a ≈ b, then we say ≈ is a coarser relation than ∼

(equivalently, ∼ is a finer relation than ≈). In this sense, the product order is a finer order than the

lexicographic order (or the lexicographic order is coarser). The equality partial order is finer than

all other partial orders.

B.4 Valuation Domains and Partially Ordered Groups

We introduce valuation domains, which are integral domains that are intricately connected

to totally ordered groups, and which play a central role in many of our examples.
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Definition B.10. Let F be any field and D and G a po-group under binary operation ∗ and partial

order 6. We say ν : F \ {0} → G, such that, for any a, b ∈ G,

(i) ν(ab) = ν(a) ∗ ν(b) and

(ii) ν(t) 6 ν(a− b) for every t ∈ F \ 0 such that ν(t) 6 ν(a) and ν(t) 6 ν(b).

is a semi-valuation. If G is lattice-ordered, we say ν is a demi-valuation. If G is totally ordered, we

say ν is a valuation.

Theorem B.11. Let ν : F\0→ G be a semi-valuation. If ν(1) > eG then {x ∈ F \ 0 | ν(x) > 0}∪{0}

is a subring of F.

Proof. Let T = {x ∈ F \ 0 | ν(x) > 0}∪{0}. We can restrict the binary operations from F to T , and

we claim T is closed under both of these operations. We claim T is additively and multiplicatively

closed. Let x, y, z ∈ T . Then ν(x + y) > ν(x) and since ν(x) > eG, we have ν(x + y) > eG, so

x+ y ∈ T . On the other hand, if x, y ∈ T , then ν(xy) = ν(x) + ν(y). Since x, y ∈ T , ν(x) > eG and

ν(y) > eG so ν(x)∗ν(y) > eG. Hence, xy ∈ T . Of course, since F is commutative, T is commutative,

and since ν(1) > eG, we have 1 ∈ T , so T is a commutative ring with identity.

Definition B.12. Let D be an integral domain with quotient field F. If there exists a valuation

ν : F \ 0→ G such that D = {x ∈ F \ {0} | ν(x) > 0}, we say D is a valuation domain.

Lemma B.13. Let D be an integral domain with quotient field F. The following are equivalent:

(i) D is a valuation domain

(ii) if x ∈ F \ {0} then x ∈ D or x−1 ∈ D

(iii) if x, y ∈ D \ 0 then x | y or y | x.

Proof. We write G additively so that eG = 0 and the operation ∗ is written as addition. For (i)

⇒ (ii), assume D is a valuation domain and let x ∈ F. Since D is a valuation domain there exists

some valuation ν : F \ 0 → G where G is a totally ordered group. Since G is totally ordered, for

any x1, x2 ∈ F \ {0}, we have either that ν(x1) 6 ν(x2) or ν(x2) 6 ν(x1). If ν(x1) 6 ν(x2) then

0 6 ν(x2) − ν(x1) = ν(x2x
−1
1 ). Hence, x2x

−1
1 ∈ D or x1x

−1
2 ∈ D. In this case, let x1 = x and

x2 = 1D. Then either x ∈ D or x−1 ∈ D. For (ii) ⇒ (iii), let x, y ∈ D \ {0} and assume that if

z ∈ F \ {0} then z ∈ D or z−1 ∈ D. Note x
y or y

x ∈ D, and hence either y | x or x | y.
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For (iii) ⇒ (i), let D have quotient field F, unit group U(D), and assume any x, y ∈ D \ 0

satisfy x | y or y | x. Let G = G(D) = F×/U(D) be the group of divisibility (which we will see in

greater detail in Section B.5). The partial order on G is a total order: if a
bU(D), cdU(D) ∈ G(D),

then from (iii) we have c/d
a/b ∈ D or a/b

c/d ∈ D. The map ν : F \ 0 → G(D) given by mapping

a
b 7→

a
bU(D) is a valuation. We have

ν
(a
b

c

d

)
=
a

b

c

d
U(D)

=
(a
b
U(D)

)( c
d
U(D)

)
=ν
(a
b

)
ν
( c
d

)

Let t ∈ F \ 0 such that ν(t) 6 ν(a) and ν(t) 6 ν(b). Then a
t ∈ D and b

t ∈ D, and so a
t −

b
t ∈ D. In

particular, a−b
t ∈ D, so ν(t) 6 ν(a − b). The order on G(D) is a total order since D is a valuation

domain since, for any x
yU(D), w

z U(D) either w/z
x/y = wy

zx ∈ D or zx
wy ∈ D. Thus ν is a valuation.

Lastly, we show D = {x ∈ F | ν(x) > eG}. If ν(ab ) ∈ G(D)+ then U(D) 6 a
bU(D), and

so a
b ∈ D. On the other hand, if a ∈ D then ν(a) = aU(D) > U(D). Hence, D is a valuation

domain.

Theorem B.14. Let V be a valuation domain. The set Spec(V ) is linearly ordered by set inclusion.

Proof. Set inclusion is always a partial order. It is therefore sufficient to show that any two elements

are comparable.

To this end, let p, q be two distinct primes from V . If p \ q = ∅ then p ⊆ q and we are done.

If p \ q 6= ∅, let p ∈ p \ q. Then for any q ∈ q, we have that p | q or q | p from above. If q | p, then

p ∈ (q) ⊆ q, which contradicts our choice of p. Hence, p | q; however, we selected q arbitrarily from

q. That is to say: if p ∈ p \ q, then p | q for every q ∈ q. Hence, for any p ∈ p \ q, we have that

q ⊆ (p) so q ⊆ p.

Example B.15. Let F be any field, X an indeterminate over F, and let m be the maximal ideal

in F[X] generated by X. Every element of the domain D = F[X]m may be written uXm for some

m ∈ N and u ∈ U(D). Hence, any two elements are of the form vXn and uXm with n 6 m or

m 6 n. Either way, one divides the other so R is a valuation domain. 4

Example B.16. Let X,Y be indeterminate over F and define T = F[X,Y ]. In the quotient field
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of T , we have the set Z =
{
X
Y ,

X
Y 2 ,

X
Y 3 , . . .

}
. Let T [Z] = F[X,Y,Z] have maximal monomial ideal

m and define D = T [Z]m. Each non-zero non-unit element of D is associate to some monomial.

Moreover, Y | X and Y is irreducible and T is a valuation domain. 4

Lemma B.17. Let V be a valuation domain. If V has any irreducible π ∈ V , then every irreducible

in V is associate to π and π is prime.

Proof. Say π, π′ ∈ V are irreducibles. If π | π′, we can write π′ = aπ for some a ∈ V . But π′ is

irreducible, so a ∈ U(V ). On the other hand, if π′ | π, we can write π = aπ′. Again, π is irreducible,

so a ∈ U(V ). Hence, all irreducibles are associate to π. It remains to be shown that π is prime.

Let x, y ∈ V such that π | xy. Since V is a valuation domain we may compare π and x and

we see π | x or x | π. Similarly, we have that π | y or y | π. If π | x or π | y, we are done, so we may

assume without loss of generality that x | π and y | π. If x | π, by the irreducibility of π, x is a unit

or x is associate to π. Similarly, y is a unit or y is associate to π. Certainly since π | xy, both x and

y cannot be units, and so we conclude that x or y is associate to π.

B.5 The Group of Divisibility for an Integral Domain

Recall that for an integral domain D with quotient field F, a fractional ideal is a D-

submodule I ⊆ F and a non-zero element a ∈ D \ {0} such that aI ⊆ D is an ideal in D. We

say I is principal if it is generated by a single element from F. The group of divisibility is formally

defined, as in [25], [27], and [21], as the group of non-zero principal fractional ideals, which we denote

G(D). This group is, of course, abelian (since F is commutative), and this group is a po-group under

reverse inclusion.

We use an equivalent definition that is somewhat more tractable. Every integral domain D

comes equipped with a group of units U(D) and field of fractions, F =
{
r
s | r ∈ D,S ∈ D \ 0

}
, whose

multiplicative group we denote F× = F \ 0. The group F×/U(D) is abelian since F is commutative

and we may extend the divisibility pre-order on D to F×/U(D) by declaring aU(D) 6 bU(D) if

and only if b
a ∈ D. This relation is a partial order in F×/U(D), since antisymmetry is resolved

by only considering elements up to associates. This relation is also compatible with the group

operation, and so F×/U(D) is a po-group under this partial order. Furthermore, there exists an

o-isomorphism between F×/U(D) and the po-group of non-zero principal fractional ideals (map

a
bU(D) to the principal fractional ideal generated by a

b ). Writing proofs using the field of fractions

80



is often nominally simpler than writing proofs using the notion of non-zero principal fractional ideals,

so following [25], we redefine the group of divisibility as G(D) := F×/U(D).

Example B.18. Let D = Z. The quotient field is F = Q, and the unit group is {±1}. Thus,

G(D) = Q×/ {±1}. Of course, Q× = Q \ 0, and so we have G(D) ' Q+ = {q ∈ Q | q > 0}. 4

Example B.19. Consider an additive sub-monoid of the non-negative rationals M ⊆ Q+ and let x

be any indeterminate over F2. Set X = {xm | m ∈M} and consider R = F2 [X]. Let m ⊆ R be the

ideal generated by X and consider D = Rm.

When M = Q+, we can write an arbitrary non-zero non-unit f ∈ R as f = uxq for some unit

u and q ∈ Q+. Thus, G(D) =
{
xq

xpU(D) | q, p ∈ Q+
}

. Now consider the map φ : G(D)→ Q defined

by mapping, for each r ∈ Q, xrU(D) 7→ r. The map φ is obviously well-defined by construction, but

it is also an invertible group homomorphism. To see this, consider the following.

φ ((xrU(D)) (xsU(D))) =φ
(
xr+sU(D)

)
=r + s

=φ(xrU(D)) + φ(xsU(D))

Under the usual total ordering on G′ = Q φ is also order-preserving: if xsU(D) 6 xrU(D), then

xr−sU(D) is non-negative, i.e. xr−s ∈ D, so r− s ∈ Q+, so s 6 r. Lastly, φ(G(D)+) = Q+: if 0 < r

for some r ∈ Q+, then xrU(D) is positive in G(D) and r = φ(xrU(D)), and if xrU(D) ∈ G(D)+

then r > 0 in Q+. Thus G(D) is o-isomorphic to the additive po-group Q. 4

There exists a map from ν : D \ 0 −→ G(D) defined by x 7→ xU(D). This may be naturally

extended to a semi-valuation on F by mapping x
y 7→

x
yU(D) (in [28], Ohm demonstrates ν is a

well-defined semi-valuation). This semi-valuation connects the above ring-theoretic factorization

definitions to the above po-group-theoretic definitions.

Lemma B.20. Let D be an integral domain with quotient field F. For any g ∈ G(D), g ∈ G(D)+

if and only if g = xU(D) for some x ∈ D. For any g ∈ G(D)+, g is minimal in the partial order on

G(D) if and only if g = pU(D) for some irreducible p ∈ Irr(D).

Proof. An arbitrary g ∈ G(D) can be written g = a
bU(D). Note that U(D) 6 a

bU(D) if and only if

u(a/b)
1 ∈ D, which is to say b | a. Hence, any positive element g ∈ G(D) can be written g = xU(D)
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for some x ∈ D. If g is minimal positive and 1G 6 h 6 g then 1G = h or h = g. Hence, if xU(D) is

minimal positive, and x1 | x in D, then x1U(D) 6 xU(D). Thus, either x1U(D) = U(D), in which

case x1 is a unit, or x1U(D) = xU(D), in which case x1 = ux for some unit u. Thus if xU(D) is

minimal positive in G(D), then x is irreducible in D.

On the other hand, if xU(D) = (yU(D)) (zU(D)) in G(D)+, then x, y, z ∈ D and there

exists some unit, u ∈ U(D), such that x = uyz. Hence, if x is irreducible, then y or z is a unit, in

which case yU(D) = U(D) or zU(D) = U(D).

Recall we introduced o-ideals by observing they play a central role in the study of po-

groups and their connection with integral domains. We now explore a theorem from [25] to draw

connections between saturated multiplicatively closed sets in a domain and the o-ideals (convex and

directed subgroups) of the associated group of divisibility. In order to prove this theorem, we exploit

Lemma B.5. In that lemma, we connected convexity with property (iv), which is inspired by the

saturation of a multiplicatively closed subset in a domain.

Theorem B.21 (Mott’s correspondence theorem). Let D be an integral domain with quotient field

F, unit group U(D), and group of divisibility G(D) = F×/U(D). Let ν : F× → G(D) be the natural

semi-valuation defined by x 7→ xU(D). Let S be the set of all saturated multiplicatively closed subsets

of D and let O be the set of all o-ideals of G(D). Then the map Θ : S → O given by Θ(S) = 〈ν(S)〉

is a one-to-one correspondence. Further, G(D)/〈ν(S)〉 = G(DS).

Proof. The map Θ is well-defined: for any S ∈ S, 〈ν(S)〉 is convex (following from the saturation

of S) and directed (following from the fact that the generators are from S ⊆ D). We also have

surjectivity: let H ⊆ G(D) be any o-ideal. The subgroup H is directed, i.e. generated by its positive

elements, H = 〈H+〉, and for any h ∈ H+, we may write h = xhU(D) for some xh ∈ D. The

set S = {xh | h = xhU(D) ∈ H+} is certainly multiplicatively closed since H+ is multiplicatively

closed, and since H is convex, then by Lemma B.5, we see that S is a saturated multiplicatively

closed subset of D. Furthermore, H = Θ(S) by construction.

We also have injectivity: letH1 6= H2. SinceH1 = 〈H+
1 〉 andH2 = 〈H+

2 〉, and sinceH1 6= H2

we have that H+
1 6= H+

2 . Without loss of generality, we may select some xU(D) ∈ H+
2 \ H

+
1 for

some x ∈ D. Thus, if H1 = Θ(S1) and H2 = Θ(S2), then x ∈ S2 \ S1, and so S1 6= S2. Hence, Θ is

a one-to-one correspondence.

All that remains is to show that if S ∈ S then G(DS) = G(D)/Θ(S). Let x ∈ G(DS). Then
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x = x1

x2
U(DS) for some non-zero x1, x2 ∈ DS . Since x1, x2 ∈ DS , we may write x1 = a

s and x2 = b
t

for some a, b ∈ D, s, t ∈ S. Then x1

x2
U(DS) = a

b
t
sU(DS). Since s, t ∈ S ⊆ U(DS), we have that

x = a
bU(DS) ∈ G(D)/U(DS). On the other hand, if xU(DS) ∈ G(D)/U(DS) for some x ∈ G(D),

then x = a
bU(D) for some a, b ∈ D \ {0}. Thus, we may write xU(DS) = a

bU(DS) ∈ G(DS).

Theorem B.21 provides a critical tool used in our treatment of integral domains and their

groups of divisiblity. The slogan is now “localizations of D correspond to o-epimorphisms of G(D)

and vice versa.”
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Appendix C Facts and Notation for Cochain Complexes

We follow [2], [14], and [5] to define chain complexes of abelian groups and the dual notion of

a cochain complex, and we define trivial and exact complexes. We define the sequence of cohomology

groups associated to a cochain complex. We consider the edge cases when the cochain complexes

are trivial and exact, we interpret cohomology groups as a group-theoretic measurement of “how

exact” a given cochain complex is.

C.1 Cochain Complexes

(Co)chain complexes are appealing because they allow for a richer algebraic environment,

leading to algebraic properties for chain complexes such as localization, quotient complexes, and

tensor products, as well as leading to homological-topological properties like homotopy. In this

section, we develop the notion of (co)chain complexes, their chain maps, and quotient (co)chain

complexes.

Definition C.1. A chain complex G• of abelian groups is a diagram in the category of abelian

groups of the form

G• = · · · ∂n+2→ Gn+1
∂n+1→ Gn

∂n→ Gn−1
∂n−1→ · · ·

such that, for each n, ∂n ◦ ∂n+1 is the trivial group homomorphism sending all group elements to

the identity. Equivalently, we require Im(∂n) ⊆ Ker(∂n−1).

We refer to the maps ∂n as differentials. We can, without loss of generality, regard any

finite or infinite sequence of maps satisfying ∂n ◦ ∂n+1 = 0 as a bi-infinite sequence by padding the

diagram on either side with infinite sequences of trivial groups. As usual, we can obtain the dual

notion by simply reversing the direction of all arrows in the diagram (or, equivalently, reversing the

index notation) to obtain a cochain complex :

G• = · · · ∂n−2→ Gn−1
∂n−1→ Gn

∂n→ Gn+1
∂n+1→ · · ·

where, again, we require that ∂n−1 ◦ ∂n is trivial, i.e. Im(∂n−1) ⊆ Ker(∂n). Relaxations of the above

concepts are available to categories other than the category of groups.

Example C.2. Let H be any additive abelian group and G = H ⊕ H ⊕ H. Consider the group
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homomorphisms π1 : G → G defined by mapping (x, y, z) 7→ (x, 0, 0) and π3 : G → G defined by

mapping (x, y, z) 7→ (0, y, 0). Note that π1◦π2 and π2◦π1 are both the trivial group homomorphisms

sending every element to the identity. Thus, defining Gn = G for each n and defining

∂n =


π1 if n ≡ 0(mod 2)

π2 if n ≡ 1(mod 2)

we obtain a chain complex and a cochain complex.

G• = · · · ∂n+2→ Gn+1
∂n+1→ Gn

∂n→ Gn−1
∂n−1→ · · ·

G• = · · · ∂n−2→ Gn−1
∂n−1→ Gn

∂n→ Gn+1
∂n+1→ · · ·

The key here, again, is that composing any two adjacent arrows yields the trivial map. 4

In Example C.2, we see proper containment Im(∂n) ( Ker(∂n−1). On the other hand, if we

use G = H ⊕H in a similar example to Example C.2, we obtain equality, Im(∂n) = Ker(∂n−1) or

Im(∂n−1) = Ker(∂n). This leads us to consider two edge cases.

Definition C.3. Given a (co)chain complex, if each ∂n = 0 then we say the complex is a trivial

complex. On the other hand, if the differentials in a chain complex satisfy Im(∂n) = Ker(∂n−1) for

every n (or, dually, if the differentials in a cochain complex satisfy Im(∂n−1) = Ker(∂n)), then we

say the complex is an exact complex. A complex A• (or A•) is the zero complex if Ai = 0 for each

i. Certainly if A• (or A•) is the zero complex, then it is both trivial and exact.

Given a pair of cochain complexes of abelian groups, say A• with differentials {∂i}, and B•

with differentials {di}, such that for each i we have the subgroup containment Ai ⊆ Bi and such

that the differentials are restrictions, ∂i = di|Ai , then we may define the quotient cochain complex

B•

A•
= · · · ηi−1−→ Bi

Ai

ηi−→ Bi+1

Ai+1

ηi+1−→ · · ·

where each ηi : Bi/Ai → Bi+1/Ai+1 is defined by the natural map b+Ai 7→ di(b) +Ai+1. Of course,

we obtain all required maps because in each degree we have the well-defined natural quotient map
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πi : Bi � Bi/Ai, leading to the following exact sequence.

A• = · · ·
∂i−1 // Ai

∂i //

πi

��

Ai+1

∂i+1 //

πi+1

��

· · ·

B• = · · ·
di−1 // Bi

di //

πi

��

Bi+1

di+1 //

πi+1

��

· · ·

B•/A• = · · ·
ηi−1 // Bi/Ai

ηi // Bi+1/Ai+1

ηi+1 // · · ·

This idea leads us to investigate (co)chain maps. Given a pair of cochain complexes, say A• with

differentials {∂i}, and B• with differentials {di}, a cochain map, say f• : A• → B•, is a sequence of

abelian group homomorphisms, {fn : An → Bn}n∈Z which forms the following commutative diagram.

A•

f•

��

= · · ·
∂i−1 // Ai

∂i //

fi

��

Ai+1

∂i+1 //

fi+1

��

· · ·

B• = · · ·
di−1 // Bi

di // Bi+1

di+1 // · · ·

If some f• : A• → B• is a cochain map such that each fi is an isomorphism, we say A• and B• are

isomorphic as cochain complexes.

C.2 Cohomology Groups and Long Exact Sequences

From any cochain complex, say A•, we may compute a sequence of cohomology groups:

Definition C.4. Let A• = · · · ∂i−1−→ Ai
∂i−→ Ai+1

∂i+1−→ · · · be a cochain complex of abelian groups.

We define the ith cohomology group to be Hi(A•) := Ker(∂i)/Im(∂i−1).

These are well-defined since A• is a cochain complex, so Im(∂i) ⊆ Ker(∂i+1) for each i. Note

that an exact cochain complex has Im(∂i) = Ker(∂i+1). Thus, A• is exact if and only if Hi(A•) = 0

for each i. If A• is trivial then Im(∂i) = 0 and so Hi(A•) ∼= Ker(∂i+1).

(Co)homology groups often detect information embedded in short exact sequences of (co)chain

complexes. For any cochain complexes A•, B•, and C•, and for cochain maps f• : A• → B• and

g• : B• → C•, then the sequence of cochain maps

0• // A•
f• // B•

g• // C• // 0•
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corresponds to the following commutative diagram.

...

di−2

��

...

∂i−2

��

...

ηi−2

��
0 // Ai−1

//

di−1

��

Bi−1
//

∂i−1

��

Ci−1
//

ηi−1

��

0

0 // Ai //

di

��

Bi //

∂i

��

Ci //

ηi

��

0

0 // Ai+1
//

di+1

��

Bi+1
//

∂i+1

��

Ci+1
//

ηi+1

��

0

...
...

...

Such a sequence of cochain maps is short exact if each row 0→ Ai → Bi → Ci → 0 is exact.

Lemma C.5 (Snake Lemma). Let the following diagram be commutative with each row exact:

0 // Ai
fi //

di

��

Bi
gi //

∂i

��

Ci //

ηi

��

0

0 // Ai+1

fi+1 // Bi+1

gi+1 // Ci+1
// 0.

Then there exists a long exact sequence of the form

0→ Ker(di)→ Ker(∂i)→ Ker(ηi)
∂−→ Coker(di)→ Coker(δ)→ Coker(ηi)→ 0.

Proof. The crux of the proof lies in constructing the group homomorphism δ : Ker(ηi)→ Coker(di)

from the group homomorphisms gi, ∂i, and fi+1. For each x ∈ Ker(ηi), we can naturally define δi(x)

in the following steps: (i) since the group homomorphism gi is a surjection, we can write x = gi(b)

for some b ∈ Bi, (ii) then ∂i(b) ∈ Ker(gi+1) = Im(fi+1), so we have some a ∈ Ai+1 such that the

image under the group homomorphism fi+1(a) = ∂i(b), and (iii) setting δi(x) = a.

This map is well-defined: assume b1, b2 ∈ Bi are such that gi(b1) = gi(b2) = x. Then

b1 − b2 ∈ Ker(gi) = Im(fi). Thus, b1 − b2 = fi(c) for some c ∈ Ai. By the commutativity of the

lefthand square, ∂i(b1 − b2) = ∂i ◦ fi(c) = fi+1 ◦ di(c). Hence, ∂i(b1) = ∂i(b2) + fi+1 ◦ di(c). In

particular, ∂i(b1) + Im(fi+1) = ∂i(b2) + Im(fi+1).
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Notice though that since gi(b1) = x ∈ Ker(ηi) and since the righthand square is commuta-

tive, 0 = ηi ◦ gi(b1) = gi+1 ◦ ∂i(b1). Thus, ∂i(b1) ∈ Ker(gi+1) = Im(fi+1), so ∂i(b1) = fi+1(a1) for

some a1 ∈ Ai+1. But we just proved that ∂i(b1 − b2) = ∂i ◦ fi(a) = fi+1 ◦ di(a), so we have

∂i(b1 − b2) = fi+1 ◦ di(a1 − a2) = fi+1 ◦ di(a)

Since the bottom row is exact, fi+1 is an injection, and so we conclude a1−a2 = di(a). In particular,

a1 + Im(di) = a2 + Im(di), establishing well-definedness in δi.

We can use fi to induce a map f̂i of the form f̂i : Ker(di) → Ker(∂i) by restricting fi

to Ker(di), i.e. mapping x 7→ fi(x). If a ∈ Ker(di), then di(a) = 0 so fi+1 ◦ di(a) = 0. By the

commutativity of the lefthand square, we have that ∂i ◦ fi(a) = fi+1 ◦ di(a). Thus, ∂i ◦ fi(a) = 0, so

fi(a) ∈ Ker(∂i).

Similarly, we can use gi to induce a map ĝi of the form ĝi : Ker(∂i)→ Ker(ηi) by restricting

gi to Ker(∂i), i.e. mapping x 7→ gi(x). If b ∈ Ker(∂i), by the commutativity of the righthand square,

we have that ηi ◦ gi(b) = gi+1 ◦ ∂i(b) = gi+1(0) = 0. Thus, gi(b) ∈ Ker(ηi).

We use fi+1 to induce a map f̂i+1 : Coker(di)→ Coker(∂i): for any a+ Im(di) ∈ Coker(di),

consider fi+1(a) + Im(∂i). Certainly fi+1(a) ∈ Bi+1 so fi+1(a) + Im(∂i) ∈ Coker(∂i). Furthermore,

if a1 + Im(di) = a2 + Im(di), then a1 − a2 ∈ Im(di) so a1 − a2 = di(α) for some α ∈ Ai. Thus,

fi+1(a1)−fi+1(a2) = fi+1 ◦di(α) and by the commutativity of the left square, fi+1(a1)−fi+1(a2) =

∂i◦fi(α) ∈ Im(∂i). Thus, fi+1(a1)+Im(∂i) = fi+1(a2)+Im(∂i), establishing this map is well-defined.

We induce a map ĝi+1 : Coker(∂i) → Coker(ηi) by defining b + Im(∂i) 7→ gi+1(b) + Im(ηi).

Certainly gi+1(b) ∈ Ci+1 so gi+1(b) + Im(ηi) ∈ Coker ηi. Furthermore, if b1 + Im(∂i) = b2 + Im(∂i),

then b1 − b2 = ∂i(β) for some β ∈ Bi. Thus, gi+1(b1 − b2) = gi+1 ◦ ∂i(β) = ηi ◦ gi(β). Thus,

gi+1(b1)− gi+1(b2) ∈ Im(ηi), establishing well-definedness.

That the resulting sequence is exact at Ker(di), Ker(∂i), Coker(∂i), and Coker(ηi) follows

from the fact that we induced the maps on the top and bottom rows, which are assumed to be exact.

All that remains is to establish exactness at Ker(ηi) and Coker(di). Consider first

Ker(∂i)
ĝi−→ Ker(ηi)

δi−→ Coker(di)

The image of ĝi is, by construction, gi(Ker(∂i)); we claim this is exactly Ker(δi). Recall that
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∂ : Ker(ηi) 7→ Coker(di) is defined by ∂(x) = a + Im(di) for a ∈ Ai+1 such that fi+1(a) = ∂i(b)

where gi(b) = x.

If x ∈ gi(Ker(∂i)) then for some b ∈ Ker(∂i) ⊆ Bi such that x = gi(b). We then have that

∂(x) = a + Im(di) for some a ∈ Ai+1 such that fi+1(a) = ∂i(b). For this choice, ∂i(b) = 0, and so

we have that fi+1(a) = 0, i.e. a ∈ Ker(fi+1). Of course, the bottom row is exact so a = 0. Thus,

gi(Ker(∂i)) ⊆ ker(δi).

On the other hand, if x ∈ Ker(δi) ⊆ Ker(ηi), then since gi is surjective, there exists some

b ∈ Bi such that gi(b) = x. Furthermore, ηi ◦gi(b) = ηi(x) = 0. But commutativity of the righthand

square provides that gi+1 ◦ ∂i(b) = ηi ◦ gi(b) = 0. Thus, ∂i(b) ∈ Ker(gi+1) = Im(fi+1). So we

have some a ∈ Ai+1 such that ∂i(b) = fi+1(a) and ∂(x) = a + Im(di). Since x ∈ Ker(∂), we

have that ∂(x) = Im(di), so we have that a ∈ Im(di), say a = di(α) for some α ∈ Ai. Thus,

∂i(b) = fi+1(a) = fi+1 ◦di(α) = ∂i ◦fi(α). Thus, b−fi(α) ∈ Ker(∂i). But we selected b ∈ Bi so that

gi(b) = x, and gi(b−fi(α)) ∈ gi(Ker(∂i)). Of course, gi ◦fi = 0, so we have that gi(b) ∈ gi(Ker(∂i)).

This establishes exactness at Ker(ηi).

To establish exactness at Coker(di), note that

Im(∂) = {a+ Im(di) ∈ Ai+1/Im(di) | ∃x ∈ Ker(ηi), b ∈ Bi such that gi(b) = x and fi+1(a) = ∂i(b)}

If a+ Im(di) ∈ Im(∂), then consider f̂i+1(a+ Im(di)). Indeed, f̂i+1(a+ Im(di)) = fi+1(a) + Im(∂i),

but since fi+1(a) = ∂i(b), we have that f+1(a) + Im(∂i) = Im(∂i). Thus, a+ Im(di) ∈ Ker(f̂i+1).

On the other hand, if a+ Im(di) ∈ Ker(f̂i+1), then fi+1(a) ∈ Im(∂i), so fi+1(a) = ∂i(b) for

some b ∈ B. Then gi(b) ∈ Ker(ηi) since the righthand square commutes and gi+1 ◦ fi+1(a) = 0. In

particular, we may write a+ Im(di) = ∂(gi(b)), i.e. a+ Im(di) ∈ Im(∂).

Corollary C.6 (Long Exact Sequences). Given a short exact sequence of cochain maps

0• → A•
f•−→ B•

f•−→ C• → 0•

There is a long exact sequence in cohomology:

· · ·
ĝn−1 // Hn−1(C•)

δn−1 // Hn(A•)
f̂n // Hn(B•)

ĝn // Hn(C•)
δn // Hn+1(A•)

f̂n+1 // · · ·

89



Proof. We construct the maps ∂n similarly to before. We have the diagram

...

dn−2

��

...

∂n−2

��

...

ηn−2

��
0 // An−1

fn−1 //

dn−1

��

Bn−1

gn−1 //

∂n−1

��

Cn−1
//

ηn−1

��

0

0 // An
fn //

dn

��

Bn
gn //

∂n

��

Cn //

ηn

��

0

0 // An+1

fn+1 //

dn+1

��

Bn+1

gn+1 //

∂n+1

��

Cn+1
//

ηn+1

��

0

...
...

...

We construct the map f̂n : Hn(A•) → Hn(B•). First, write Hn(A•) = Ker(dn)/Im(dn−1)

and Hn(B•) = Ker(∂n)/Im(∂n−1). The map fn : An → Bn can be used to induce a map f̂n

by mapping x + Im(dn−1) 7→ fn(x) + Im(∂n−1). Similarly, we obtain ĝn : Ker(∂n)/Im(∂n−1) →

Ker(ηn)/Im(ηn−1) defined by mapping x + Im(∂n−1) 7→ gn(x) + Im(ηn−1) which is a well-defined

group homomorphism as described in the Snake Lemma.

We define ∂n : Ker(ηn)/Im(ηn−1) → Ker(dn+1)/Im(dn) in the following way: for each

x + Im(ηn−1) ∈ Ker(ηn)/Im(ηn−1), since gn : Bn → Cn is surjective, we may write x = gn(b) for

some b ∈ Bn. Since x ∈ Ker(ηn), we have that 0 = ηn(x) = ηn ◦ gn(b) = gn+1 ◦ ∂n(b). Thus,

∂n(b) ∈ Ker(gn+1) = Im(fn+1), so we have some a ∈ An+1 such that ∂n(b) = fn+1(a).

We claim a ∈ Ker(dn+1); indeed, we have ∂n(b) = fn+1(a) so ∂n+1 ◦ fn+1(a) = ∂n+1 ◦∂n(b).

But B• is a cochain complex so ∂n+1◦∂n(b) = 0. In particular, ∂n+1◦fn+1(a) = 0, but commutativity

of the lefthand square implies fn+2 ◦ dn+1(a) = 0, and so dn+1(a) ∈ Ker(fn+2). Recall each fi

is an injection, so Ker(fn+2) = 0, so dn+1(a) = 0. Thus, the map ∂n indeed has its image in

Ker(dn+1)/Im(dn). That ∂n is a well-defined group homomorphism is established similarly to our

construction of ∂ in the proof of the snake lemma, and exactness of each sequence is obvious.

Let 0• → A• → B• → C• → 0• be a short exact sequence. If X• is one of these cochain

complexes and is exact, then each Hn(X•) = 0, simplifying the long exact sequence in cohomology.
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For example, if A• is exact, then Hn(A•) = 0, so we have the following long exact sequence.

· · ·
ĝn−1 // Hn−1(C•)

δn−1 // 0
f̂n // Hn(B•)

ĝn // Hn(C•)
δn // 0

f̂n+1 // · · ·

That is to say, we obtain that 0→ Hn(B•)→ Hn(C•)→ 0 is an exact sequence; we conclude that

Hn(B•) ∼= Hn(C•). Similarly, if B• is exact, then the long exact sequence in cohomology provides

that Hn(C•) ∼= Hn+1(A•), providing a shift in degree. If C• is exact, then the long exact sequence

in cohomology provides that Hn(A•) ∼= Hn(B•).
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