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ABSTRACT 

In an ever-evolving energy market, it is vital that nuclear technology adapts to become 

more economically and environmentally feasible. The promising economics and flexibility 

of small modular reactors (SMRs) may make them the technology of the future for the 

nuclear industry, offering a simple solution to many of the problems that have plagued the 

industry in the last decade. Though the economics of SMRs is often a topic of discussion, 

it is also important to understand the environmental aspects of this technology when 

implemented in a U.S. market. A life cycle assessment (LCA) of small modular reactors 

using a U.S. nuclear fuel cycle has been performed to this end, taking care to use U.S. 

technologies and facilities in every stage of the assessment where possible. The resulting 

impacts per MWh of electricity produced were found to be  7.64 m3 for water depletion, 

0.88 kg oil-eq for fossil depletion, 2.03 kg Fe-eq for metal depletion, 4.55 kg CO2-eq for 

climate change, 18.02 1,4-DB-eq for human toxicity, and 441.07 kBq 235U-eq for ionizing 

radiation. In terms of climate change, the results were found to be comparable to the 8.4 

kg CO2-eq found by Carless et. al1 for the Westinghouse SMR and like the 3.89 kg CO2-

eq found by adjusting the findings of the National Energy Technology Laboratory.2 Most 

of the climate change impact was found to be in the fuel processing stages, due to high 

electricity and fossil fuel demands, as well as in construction because of concrete 

production. These assumptions were verified by performing a sensitivity analysis on 

electricity source, mine types, transportation, and material disposition during 

decommissioning. By comparison to other energy generators, nuclear energy, in general, 

performs similarly to renewable resources with respect to climate change, and small 
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modular reactors perform slightly better than their larger counterparts. These results aid in 

confirming the overall feasibility of small modular reactor technology in an energy market 

concerned with climate change impacts.  
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CHAPTER ONE 

INTRODUCTION 

Many questions about the future of the nuclear industry have arisen in the wake of the 

cancellation of two units under construction in Jenkinsville, South Carolina in 2018 after a 

decade of construction and $4.9 billion invested.3 Prior to their cancellation, Units 2 and 3 

at the Virgil C. Summer Nuclear Operating Station (VC Summer) were among the first 

nuclear generators in the U.S. to be fully constructed and brought online in the 21st Century, 

alongside Southern Company’s Plant Vogtle Units 3 and 4 near Waynesboro, GA.4 Initially 

proposed in 2008, the hurdles of licensing, equipment procurement, engineering design, 

and actual construction have caused the project to go beyond its initial schedule, as well as 

the initially projected costs. In 2017, Westinghouse Electric Company, the primary 

construction contractor for the project, filed for bankruptcy, leading project partner Santee 

Cooper to withdraw. With construction only 33.7% complete,5 the future for these units is 

grim. 

While the events at VC Summer were plagued with additional burdens, such as possible 

financial mismanagement, the fate of the new units at VC Summer are a hallmark of the 

nuclear industry - behind schedule and over budget. For a future energy market that is 

competitive, affordable, and largely composed of low-carbon technologies, it is necessary, 

at least with the current state of renewable energy technologies, that nuclear energy be a 

part of the picture. To remain competitive in the face of cheaper natural gas and subsidized 

renewable energy, the nuclear industry must find ways to reduce the cost of construction 

and overall investment burdens associated with the commissioning of a new facility. A 
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lesson in cost cutting is exemplified in the automobile industry, where mass manufacturing 

and standardization of products reduced the average price of an automobile from $825 in 

1908 to $575 in 1912.6 This trend has continued for the production of many products into 

the 21st century, and, notably, the same solution has been proposed for the nuclear industry 

in the form of small modular reactors. 

Small modular nuclear reactors (SMRs), defined by the Nuclear Regulatory 

Commission as any light-water reactor producing under 300 MWe,7 while a new actionable 

concept to the commercial nuclear power industry, are not a new technology. Designs for 

SMRs have been utilized in many places across the globe. In the United States, the most 

common use for a small reactor is in nuclear submarines and aircraft carriers for the Navy, 

but small reactors have also been used for various research applications.8 Despite the many 

historical applications of SMR technology, previous designs are not necessarily applicable 

in a commercial environment, particular due to the fact that naval small reactors operate 

using highly enriched uranium (HEU) fuel9—which is why many companies have taken 

on the task of developing SMR technology for use in a commercial fleet. In March of 2018, 

the U.S. Department of Energy (DOE) developed and sponsored the Small Modular 

Reactor Licensing Technical Support program to support various entities through cost-

shared funding for the development and maturation of SMR designs.10 Thus far, mPower, 

NuScale, Westinghouse, and Holtec have submitted design applications and site permits to 

the NRC. 7 

Some of the primary drivers for innovation in SMR technology are the reduced up-

front construction costs and attractive technological and safety features offered by the small 



3 

modular design. As is exemplified by the example of VC Summer, projects undertaking 

the task of constructing a large nuclear power plant face significant capital investments, 

long construction, and they are also limited in siting by their large generation capacity. The 

smaller capacity offered by an SMR is beneficial in places where there are incremental 

changes in the electricity demand, the demand itself is smaller than the capacity offered by 

conventional nuclear reactors, or there are siting issues based on the safety risk presented 

by a large facility. Additionally, one of the major advantages for SMR technology is the 

ability for many of the major components in the steam cycle to be manufactured in a factory 

as a single module.11 Carless et al. found that, while SMRs do not differ greatly in overall 

costs of operation from their traditional counterparts, the flexibility, modularity, and 

adaptability of SMRs offer both a technological and economical advantage.1 

If SMRs are to lead to a new generation of growth for the nuclear industry, then 

environmental implications, as well as the economic implications, of specific SMRs should 

be quantified. Part of the appeal of nuclear energy, beyond its ability to provide reliable 

energy, is its ability to deliver this energy with much lower carbon emissions compared to 

fossil fuel technologies. While there are obvious environmental footprints associated with 

the nuclear fuel cycle (i.e., mining) and power plant construction, the generation of nuclear 

energy is relatively free of carbon emissions.12 While traditional nuclear technology has 

been the subject of some previous life cycle assessments (LCAs)13,14, the environmental 

impacts of the SMR life cycle has rarely been explored using life cycle assessment. This 

is, in part, due to the lack of available data on SMR fuel cycle processes, despite their 

frequent use in places, such as the U.S. Navy. However, design information for various 
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SMRs are available for review, and assumptions could potentially be made by scaling down 

certain resources from that of a large nuclear reactor. Considering the possibility of mass 

production would be relevant to include given the modular nature of this technology, 

though this is difficult to quantify given current information.  

While the possibilities and implications of SMR technology may seem obvious to an 

expert in energy generation, many people do not know about the intricacies of energy 

generation. In general, the public does not fully grasp the cause of regional differences in 

how energy is produced or even know the expanse of energy generation technologies. For 

example, a layperson interested in sustainable energy options may believe that solar energy 

technology could be used to support the entire country, rather than as part of a much more 

diverse energy portfolio. However, solar energy is not economical for all regions and has 

a lower power density than most energy technologies. As such, solar energy is ideal as a 

component of a portfolio in certain areas of the world, but not as the sole provider of 

energy. 

Energy education is an important aspect of a growing economy, where the energy 

demand continues to grow and the urgency of reducing the impact to the planet increases. 

Energize! is an interactive, multi-player game funded by the Department of Energy with 

the goal of educating the technically oriented layperson about the impacts of various energy 

technologies and the importance of balancing the energy grid in the face of constant and 

growing demand. As a possible component of a future U.S. energy portfolio, SMRs will 

be implemented into this game alongside traditional light water reactors (LWRs) and other 

technologies such as coal, natural gas, hydro, wind, and solar. The work done in this thesis 
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contributes to the Energize! content, particularly regarding the environmental impacts of 

SMRs. 

The overall goal of this study is to quantify the environmental impacts of producing 

electricity using small modular nuclear reactor technology. Life cycle assessment 

facilitates foresight of potential environmental implications of future technologies, which 

enables companies and taxpayers to make informed decisions about energy technology 

investments. In this life cycle assessment, the functional unit is the production of 3.6 x 108 

MWh of electricity by small modular technology (i.e., one SMR facility containing twelve 

60 MWe modules operating at 95% capacity for 60 years). 

CHAPTER TWO 

BACKGROUND 

Life cycle Assessment 

Life cycle assessments (LCAs) are a type of environmental analysis meant to highlight 

the impacts a product, system, or service has on the environment throughout its lifetime. 

In general, LCAs begin at resource extraction (the “cradle”) and end at disposal or 

recycling of the final product (the “grave”). A diagram of the components typically 

included in an LCA is shown in Figure 2.1.15  

Typically, resource extraction is the initial stage considered in an LCA and accounts 

for sourcing all the resources needed for the product or process of interest.  For most 

products or processes, the resource extraction stage consists of mining operations. The 

processing of the extracted materials is considered, which could include refining or 

purifying a mined material. The manufacturing stage includes the process(es) that bring the 
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product/service to its final form 

before being delivered to the 

consumer or user. For example, in 

the case of a water bottle, this would 

be the stage in which the bottle itself 

was constructed from the processed 

plastic. Distribution is the 

transportation that occurs between 

different stages of the life cycle, most 

notably between the manufacturing 

and use stage. The use stage is the phase in which the product or service is utilized by the 

consumer for a specific purpose, such as the use of a washing machine to clean clothes. 

And, finally, the end of life stage considers the final disposal or storage of a product, 

including any recycling or reuse.16 

In an LCA, material flows to and from the environment, as well as the economy, are 

typically tracked. These flows, in the case of life cycle assessment, must be quantifiable in 

terms of a given product and incudes both “inputs” and “outputs” to a process relative to 

the environment (or the technosphere). For example, it will take a certain number of 

kilograms of concrete to produce a building; the concrete is a flow into this process, and 

the building is the product. Because the effects of producing a single product are vast and 

difficult to capture in their entirety, it is necessary in an LCA to define the scope (or 

boundary conditions) of the assessment. For example, in assessing the impacts of 

Figure 2.1. Diagram of the stages included in a typical 
life cycle assessment.15 
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producing a spiral notebook, it is probably irrelevant to consider the amount of coffee 

consumed by the employees of the wood pulping company. A clear goal definition is 

necessary to determine the appropriate project scope, which includes definition of key 

impact categories and the life cycle stages. These definitions of a goal and scope comprises 

the first of four phases in the LCA framework.16 

The second phase in the LCA framework is the compilation of a life cycle inventory 

(LCI). An LCI is effectively a list of types and quantities of different inputs and outputs 

for each process in a life cycle. Results from the LCI are used to inform the life cycle 

impact assessment (LCIA), the third phase, which quantifies the effects of the resource use 

and releases associated with producing a certain product/service. An impact assessment 

can be performed using one of several cultural perspectives dictated in the OpenLCA 

software. The “cultural perspective’ dictates the weighting scheme applied to the various 

impacts when summarizing into impact categories, and the available options are 

Hierarchical (H), Individualist (I), and Egalitarian (E). These weighting schemes are based 

on differing assumptions about time periods and whether technological advancements will 

be available to deal with the impacts. The Individualist perspective is a short-term 

optimistic viewpoint; the Hierarchical perspective is one which assumes a medium-length 

time period and makes no assumption as to the ability of future technology to handle or 

avoid impacts; and the Egalitarian perspective focuses on a long-term time period with a 

more pessimistic approach to potential results of impacts.17 The third and final phase of the 

LCA framework, an interpretation, can, and should, be performed on these results, 

speculating on the cause of discrepancies, suggesting improvements to future studies, 
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acknowledging limitations, etc. The first three phases, however, are the only phases 

required for the LCA to meet the standards outlined by the International Standards 

Organization for LCA analyses.16 

The Nuclear Fuel Cycle 

The nuclear fuel cycle, shown in Figure 2. 2, is composed of many stages, all of which 

contribute to the environmental footprint of a given nuclear energy technology. The U.S. 

currently utilizes the once-through nuclear fuel cycle, which will be modeled in the 

proposed LCA. A once-through (or open) nuclear fuel cycle does not include reprocessing 

and recycling of used nuclear fuel. That is, the fuel fabricated for use in the reactor is only 

used once, after which the used fuel is cooled and stored on site for eventual disposition in 

a deep geological disposal facility. The proposed LCA is focused on a comparison of a 

small modular LWR with a traditional LWR; therefore, the comparison of an open vs. 

closed fuel cycle is beyond the scope of this work. While the amount of fuel used in a SMR 

differs from that of a traditional nuclear power plant, the front end and back end fuel cycle 

 
Figure 2. 2. Illustration of SMR life-cycle phases (orange boxes) including fuel cycle steps (blue 

boxes), where SMR operations connects both the nuclear fuel cycle steps with the life-cycle 
phases. 

 

SMR 
Operation

SMR 
Construction

SMR 
Decommissioning End of Life (Waste 

Management)
Mining and 

Milling

Conversion

Enrichment
Fuel 

Fabrication



9 

processes are the same. Differences are highlighted in construction, operation, and 

decommissioning, primarily related to reactor design in terms of the fuel needed per energy 

produced.  

Many life cycle assessments on nuclear technology utilize the EcoInvent inventory 

database, which is based on a European “closed” fuel cycle. In the EcoInvent inventory 

database, all entries for nuclear technology are derived from a closed fuel cycle and a Swiss 

reactor design.18 Though this method may be appropriate for rough estimates of nuclear 

impacts, it does not truly capture the impacts of an open fuel cycle utilizing domestic, U.S. 

facilities and U.S.-based technologies. Thus, in order to assess the environmental impacts 

of the small modular reactor technology, a life-cycle inventory was built for a closed, U.S. 

fuel cycle utilizing domestic facilities where possible. Transportation between the fuel 

cycle steps, including the often-vast distances traveled between the mine site and 

conversion facilities, is captured. These fuel cycle processes are detailed in the following 

sections.  

Mining 

One of the most environmentally impactful steps of any industry, mining presents 

significant ecological and human health risks. In the nuclear power industry, the primary 

element that is mined for use as fuel is uranium. Uranium ore is found in many locations 

across the globe and is procured in several fashions. The method by which the uranium is 

mined largely depends on the geology of the region, a factor which also helps determine 

the purity and accessibility of the uranium that is mined. The countries that produce the 

largest amounts of uranium are Kazakhstan, Niger, Namibia, Australia, and Canada.19 The 
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three primary modes by which uranium is extracted from the earth include underground, 

open-pit, and in situ leach mining. Worldwide, open-pit and underground mining efforts 

represent 42% of all uranium mined, in situ leach mining represents 51%, and the 

remaining 7% is mined as a by-product of other resources, such as gold or copper.19 

Open-pit mining can be employed for near-surface uranium deposits and entails 

removing the layer of earth from above the uranium deposit, resulting in large 

accumulation of waste rock. For a uranium deposit further below the surface, underground 

mining is traditionally used.19 Both open-pit and underground mining lead to 

environmental concerns due to oxidation of heavy elements and transition metals found in 

the waste rock and in the remaining exposed rock. Oxidation of the heavy elements and 

transition metals leads to acid mine drainage, which can greatly impact the pH conditions 

of local water bodies and devastate associated ecosystems. Further, the oxidation of 

uranium from a +4 to a +6 oxidation state mobilizes the metal, allowing for transport of 

uranium in surface or ground water.20 Enhanced mobility due to oxidation contributes to 

the environmental impact from other heavy metals found in mines (e.g., As, Hg) and 

presents a significant human health hazard. In addition to the production of heavy metals 

and acid mine drainage, uranium mines can also expose workers to radon and its alpha-

emitting progeny, which presents a human health hazard.  

In situ leach mining involves oxidizing and extracting uranium via the use of either an 

acid or alkaline solution, depending on what other minerals are present in the uranium 

deposit. The solution is pumped into a permeable geologic layer (e.g., sand) containing 

uranium and then extracted from the well after the uranium, along with the other metals in 
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the sand, are oxidized. Because uranium is mobilized underground in the in situ leach 

process, the use of this mining technology is limited to deposits encased by impermeable 

rock. Further, these types of deposits, which typically contain low-grade ore, become 

economical to mine using the in situ leach process.21 Despite the economic advantages of 

in situ leaching, as well as the reduced amount of waste rock generated compared to other 

methods, in situ leaching can be of environmental concern due to the fact that it mobilizes 

uranium and other heavy metals.  

Milling 

 Uranium ore extracted via 

underground or open pit mining requires 

a milling process to purify the uranium or 

remove other metals and materials from 

the ore. Conventional milling involves 

crushing the uranium ore, leaching the 

uranium from the ore using an acidic or 

alkaline solution, depending on the 

characteristics of the ore itself, and 

concentrating the U-bearing solution by 

stripping solvents with an ammonium 

sulfate solution and precipitating 

ammonium diuranate (ADU) with ammonium gas (Figure 2.3)21. Finally, the ADU is 

converted to U3O8 by drying/roasting, which yields the final product called “yellowcake”.  

 

Figure 2.3. Diagram of the traditional uranium 
milling process, which utilizes solvent 
extraction (SX) to separate uranium from the 
dissolved ore.21 
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 The hazards associated with milling come primarily from the production and storage 

of the associated wastes, which are called mill tailings. The exact percentage of uranium 

ore that contributes to mill tailings depends on the grade of the ore being mined, but can 

be as much as 99.9% for a 0.1% grade ore.21 The heavy metals associated with the uranium 

ore can be mobilized during the milling process and present a risk to the environment. It 

should also be noted that, because the percentage of the ore contributing to mill tailings is 

so large and because these tailings include daughters in the 238U decay chain, a large 

fraction of the total radioactivity of the ore is present in the mill tailings; an estimated 85% 

of the radioactivity in the uranium ore goes to mill tailings.21 

In general, mill tailings are stored in reinforced retention ponds on site. These ponds 

are typically exposed to the atmosphere and subject to erosion over time, which increases 

the risk of heavy metals and radionuclides spreading into the environment. Of interest is 

222Rn, a daughter in the 238U decay chain.  Because 222Rn is present as a gas, it presents an 

inhalation risk to workers or by persons nearby both uranium mining and milling 

operations. Further, the alpha-emitting radon daughters (particularly 218Po and 214Po) can 

cause significant damage to lung tissue and other respiratory organs.21 

Purification and Conversion 

Following milling, uranium in the form of yellow cake (i.e., either ammonium 

diuranate or U3O8) remains only 70-90% purified, and so milling is usually followed by 

the simultaneous purification and conversion of the yellow cake to UF6, which is the form 

of uranium used for enrichment.22 The most common methods for conversion are the dry 

hydrofluor and wet solvent extraction processes. The hydrofluor process first involves 
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grinding the impure-U3O8 into a very fine powder, feeding it into a fluidized bed reactor at 

high temperatures (between 1000-1200 °F), reducing by hydrogen, interacting with 

anhydrous fluorine, and then treating with fluorine gas to result in UF6. The wet solvent 

extraction process is very similar to the hydrofluor process, with the exception that the 

U3O8 is first treated via solvent extraction to remove impurities.22 In the U.S., only the 

hydrofluor, also called dry conversion, process is used.23 In fact, the U.S. conversion 

facility is the only facility that uses the hydrofluor process. Thus, a U.S.-specific inventory 

includes significantly different flows of material and energy associated with the conversion 

and purification processes. 

 Enrichment 

Although many methods of uranium enrichment have been explored throughout the 

history of the nuclear industry and still more have been proposed, there is only one method 

that is currently employed in U.S. production: gas centrifugation.24 The gas centrifugation 

utilizes a series of rotating drums that force the heavier 238UF6 gas to the outer walls, 

separating the heavy 238UF6 from the light (and fissile) 235UF6. The heavy and light 

molecules are evacuated, separately, as a depleted and enriched uranium hexafluoride gas. 

In practice, thousands of gas centrifuges operate in sequence for increased throughput. Gas 

centrifugation is much more energy efficient than its predecessors, such as magnetic 

separation (via the calutrons) and gaseous diffusion.22 

The only operating uranium enrichment plant in the United States is owned by Uranium 

Enrichment Corporation (URENCO) and located in Eunice, New Mexico. The URENCO 

plant is licensed to enrich uranium up to 5.5% U-235 and operates at 4.8 million SWU per 
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year, providing roughly 1/3 of the total enrichment demand for the United States nuclear 

reactor fleet, the remainder either being imported or a resulted of weapons-grade uranium 

down-blended. The down-blending of weapons uranium was not considered in this 

analysis. The energy requirements of gas centrifuge plants are, on average, 40 kWh per 

SWU.25 

Fuel Fabrication 

Once the uranium has been purified, converted, and enriched to the desired percentage, 

it is then shipped to one of three existing fuel fabrication facilities in the U.S.: Global 

Nuclear Fuel-Americas in Wilmington, North Carolina; Westinghouse Columbia Fuel 

Fabrication Facility in Columbia, SC; and AREVA, Inc. in Richland, Washington.26 The 

enriched UF6 is received from the enrichment plant as a solid and reheated to a gas. The 

UF6 gas is then chemically treated to produce UO2 powder, pressed into a pellet, and 

sintered. The sintered pellets are loaded into zircalloy fuel rods (also manufactured at the 

fuel fabrication facility), which are arranged into fuel-assemblies. The size of the fuel rods 

and fuel assemblies depends on the reactor design.26 There is little information about how 

this process might change with the introduction of SMR technology. One may presume 

that fuel fabrication facilities could also manufacture the modules, in addition to the fuel 

assemblies, for SMRs. 

Waste Management 

The waste management step in the nuclear fuel cycle pertains to the handling and 

storage of nuclear fuel after it has been irradiated, or “spent,” in the reactor. For traditional 

light water reactors, every 18 to 24 months, approximately 1/3 of the fuel is removed from 
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the reactor core and replaced with fresh assemblies.27 Following this removal, the fuel 

assemblies are still extremely hot, both in terms of thermal heat and the high amounts of 

radiation being released due to the short-lived fission and activation products in the fuel. 

Therefore, the assemblies must be cooled for a period after their removal from the reactor 

core prior to any further storage or reprocessing. Initial cooling occurs in wet pool storage. 

At a nuclear facility, there are pools filled with borated water and reinforced with several 

feet of concrete and steel, typically 40 feet deep, where the assemblies are mechanically 

placed.28 This cooling period is typically between five and ten years,28 although lack of 

options for post-cooling storage has led many nuclear facilities to leave spent fuel in the 

cooling pools for much longer.  

The current commercial fuel cycle in the U.S. is a 

once-through fuel cycle in which spent nuclear fuel 

(SNF) is eventually placed into a deep geological 

repository without any reprocessing or recycling.29 To 

date, no deep geological repository for spent nuclear fuel 

has been completed, requiring most nuclear facilities 

with SNF to move the spent fuel from wet to dry storage. 

Dry cask storage enables the storage of several SNF 

assemblies in a steel container, which is typically 

surrounded by layers of concrete and steel for shielding 

(Figure 2.4)30. Dry cask containers come in a variety of 

 

Figure 2.4. Schematic of a dry cask for 
storage of SNF.30 
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designs and configurations, but they are typically found on concrete pads outside of the 

reactor building, yet within the facility perimeter. 

SMR Technology 

Small modular reactors (SMRs) utilize similar technology as a standard nuclear power 

reactor with the exceptions that the power produced is typically less than 300 MWe for 

LWR designs, and a large fraction of the equipment is modular by design.31 The modularity 

is typically captured in the reactor vessel components, such as with the pressurizer, steam 

generator, reactor core, etc. The advantage of the modular design is that many of these 

components could be manufactured, assembled into the reactor module, and fueled at a 

single facility, then shipped directly to the energy production site. This reduces the capital 

costs and construction time.32 

Oregon State University (OSU) began developing an SMR design for a U.S. 

Department of Energy funded program in 2000 to encourage the development and licensing 

of commercial SMR technology. The DOE funding for this project officially ended in 2003, 

but OSU scientists and engineers continued research on the SMR design, with specific aims 

to implement cooling via natural circulation as a safety feature. In 2007, OSU transferred 

its SMR designs, as well as use of the test facility it had created for the SMR, to the newly 

founded NuScale Power.33  Currently, Fluor Corp. is the primary investor in NuScale and 

is steadily working toward commercialization, with an NRC Design Certification 

Application underway.34 This SMR design is the furthest in the licensing process of all 

designs currently seeking licensing from the NRC and thus is the design referenced most 

often in this analysis.7 
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Construction 

The construction phase of an SMR is one of the ways that it differs the most from a 

standard LWR. The process of construction for a full-sized nuclear power plant requires a 

large capital investment and often requires long construction times. Thus, construction of 

a nuclear power plant often makes nuclear power production less competitive than other 

energy types. The United States, possibly due to high security standards, has the longest 

construction time for nuclear power plants than any other country in the world, with a 

median construction time of 100 months.35 SMRs, by contrast, have a much lower 

projected construction time. This is in part due to their reduced size as well as the fact that 

many of an SMR’s components are projected to be mass-producible and shipped to site for 

assembly. From the initial pouring of concrete to the final physical construction, the time 

to completion for an SMR is cited by NuScale as 28.5 months. From mobilization to 

completion, the time is projected to be 51 months.36  

Operation 

The operation of the NuScale SMR would not differ greatly from that of a LWR in the 

United States. Light water reactor technology uses water for cooling, moderation, and 

steam-generation. The NuScale SMR is a pressurized water reactor design, having a 

primary loop of pressurized water to absorb heat from the reactor core, which exchanges 

heat to a secondary loop of water in a steam generator.37 The steam generated in the 

secondary loop turns a turbine (located in the turbine buildings on site) to produce 

mechanical energy that will then become electricity. Unlike a large PWR, however, no 

pumps or additional valves are needed to direct the flow of the water in the primary or 
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secondary loop.  Instead, the NuScale SMR design utilizes natural circulation to direct 

cooled water back into the reactor core after going through the steam generator. In addition 

to eliminating pumps and valves, the NuScale SMR design also eliminates the need for 

coolant control via spray systems and implements digital instrumentation and control 

design. From the digitalized control room, as many as 12 units (modules) can be operated.38 

Decommissioning 

The decommissioning step in the life cycle of a nuclear reactor includes the steps taken 

to shut down, decontaminate and/or isolate the radioactive materials residual to former 

energy production. In the U.S., there are two decommissioning methods typically 

employed: Decontamination (DECON) and Safe Storage (SAFSTOR). The DECON 

process involves removing all the major radioactive components from the reactor site, 

either by disposing as low-level radioactive waste or decontaminating before ultimate 

disposal. The DECON process is estimated to take approximately 7 years. By contrast, 

SAFSTOR involves in situ containment of the facility for later decontamination, allowing 

for much of the radioactivity to decay away before final disposal. The SAFSTOR process 

is estimated to take about 60 years, 10 of which are for the decontamination activities 

themselves.39 Like the fuel fabrication step of the fuel cycle, it is uncertain how this process 

may change with the implementation of modularity. Since the primary system, which 

contains most of the contamination upon shutdown, is contained within a nuclear module, 

the impact of modularity on the decommissioning process may be profound. 

Decommissioning can be a resource intensive process due to the cutting, decontamination, 

and disposal of contaminated equipment. If there were storage methods for the modules, 
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such as enlarged dry cask storage, the reduction in resources for this step could greatly 

impact the life cycle assessment results. 

CHAPTER THREE 

METHODS 

The methods employed for this life cycle assessment include the development of the 

life cycle inventory, the life cycle impact assessment, a data quality assessment, and 

sensitivity analyses.  

Life cycle Inventory Assumptions 

As previously discussed, the life cycle inventory includes all of the energy requirements 

and material flows (i.e., inputs and outputs) associated with each life cycle stage. The 

OpenLCA platform was used to perform the life cycle assessment in this study. OpenLCA 

is a convenient, free, and therefore, widely utilized software program within the life cycle 

assessment community. In fact, many of the processes and material flows necessary to 

model different stages of an energy production life cycle are readily accessible within 

OpenLCA through the use of variatious databases. In this work, the EcoInvent database 

(Version 3.1) was used, which includes datasets on the production of concrete, mining of 

particular resources, and regionally-produced energy, among other things. Database 

processes were manually constructed for in-situ leach mining, conversion, enrichment, fuel 

fabrication, construction, operation, decommissioning, waste management, as well as 

transportation between each stage. A built-in EcoInvent database was used for underground 

and open pit (conventional) mining and milling. Assumptions made for each life cycle 
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stage are detailed in the sections below and summarized in the bill of materials (Table B.1) 

in Appendix B. 

Mining and Milling 

The mining and milling of uranium ore extracted via underground or open pit mining 

were assumed to co-exist at the same site (as is often the case). Therefore, emissions, water 

and energy use, as well as other parameters for the facility operations are representative of 

both mining and milling. The distribution of natural uranium used in this study is 

normalized based on the country of origin, as well as the method of mining. Since the 

United States uses only 10% of domestically-produced uranium41, the source of natural 

uranium in this life cycle study assumes a redistribution based on the country of origin of 

uranium imports.  Over 80% of uranium imported into the U.S. comes from only five 

different countries - Canada, Australia, Russia, Uzbekistan, and Kazakhstan.41 As such, the 

distribution of the uranium imports considered for this LCA were normalized to consider 

only uranium mined from these countries. Over 80% of uranium imported into the U.S. 

comes from only five different countries - Canada, Australia, Russia, Uzbekistan, and 

Kazakhstan.41 As such, the distribution of the uranium imports considered for this LCA 

were normalized to consider only uranium mined from these countries (Table 3.1).  In 

2017, 50% of the world’s uranium was mined via in situ leach mining.21 Of the countries 

that export uranium to the U.S., Uzbekistan and Kazakhstan have 100% in situ leach 

mining,42,43 while Australia has approximately 20% in situ leach mining.44 The remaining 

80% of major Australian mines are distributed between underground and open pit mining 

technologies. In Canada, mining occurs entirely through underground and open pit 
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mining,45 while Russian mines are distributed almost evenly between in situ leach mining 

and open-pit and underground mining.46 

Conveniently, the EcoInvent database includes a process that represents both 

underground and open-pit uranium mining processes called “uranium, in yellowcake.” The 

process includes some geographical specificity with options including Regional North 

America (RNA) and Rest of World (RoW). For countries whose primary production 

method was either open-pit or underground mining, the default uranium mining process 

available in the EcoInvent database was used. The EcoInvent database does not have a 

process for in situ leach mining, which is responsible for most uranium mined from 

Kazakhstan and Uzbekistan.42,43 For the ISL mining process, the relationships between ore 

Table 3.1. Distribution of uranium resources assumed in this analysis by country and mine type. 

Country % of U.S. 
Imports 

Underground/ 
Open-Pit (%) 

In Situ 
Leach (%) 

% Contribution of Mined 
Uranium 

Canada45 29.63 100 0 
29.63% uranium, in yellowcake 
– RNA (EcoInvent) 

Australia44 22.22% 79.34 20.66 

17.63% uranium in yellowcake 
– RoW (EcoInvent) 

4.59% uranium ore from ISL 
(this study) 

Kazakhstan43 24.69% 0 100 
24.69% uranium ore from ISL 
(this study) 

Russia46 16.05 55.93 44.07 

8.98 % uranium in yellowcake – 
RoW (EcoInvent) 

7.07 % uranium ore from ISL 
(this study) 

Uzbekistan42 7.41 0 100 
7.41 % uranium ore from ISL 
(this study) 
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grade, mine type, and associated emissions or resource usage were calculated to determine 

the flows for the ISL mining process (Equations 1-4 in Appendix A).47   

Conversion  

Conversion in the U.S. is accomplished through the dry hydrofluor process, as opposed 

to the wet solvent extraction method used at conversion facilities in other countries. The 

Conversion process built for this life cycle assessment used data from an Idaho National 

Laboratory study on the average environmental emissions and resources used by uranium 

conversion processes.47 While this data is not a direct correspondent to the dry hydrofluor 

process used by the U.S., the average includes information from the Honeywell Metropolis 

Works facility, where all U.S. uranium is converted to UF6.   The feed to product ratio used 

in the life cycle inventory is 1:1.25 (Table 3.2) according to the World-Nuclear 

Association, which states that 249 tons of uranium ore is required to produce 312 tons of 

uranium hexafluoride.48  

Table 3.2. Sources of uranium used in the conversion stage 

Source of uranium Contribution to conversion stage (%) 

uranium, in 
yellowcake – RNA 

29.63% 0.24 

uranium in yellowcake 
– RoW 

26.61% 0.21 

uranium ore from ISL 43.76% 0.35 

 

  



23 

 

Enrichment 

All uranium enrichment in the U.S. is performed using gas centrifugation at the 

URENCO facility in Eunice, New Mexico. The Environmental Impact Statement (EIS) for 

the construction and operation of the facility is readily available and contains information 

about chemicals used throughout the process, environmental emissions, and water usage.25 

The energy use of the facility was calculated based on the energy requirements of a typical 

gas centrifuge facility (40 kWh/SWU)25 and the capacity of the URENCO facility (4.7 

million SWU/yr).49 Furthermore, since EIS data is given on a per year basis, the mass of 

enriched product was converted to a per year basis using URENCO SWU calculator,50 

assuming a product assay of 4.95%51, a tails assay of 0.23%,50 and a feed assay of 0.711%.50 

The number of SWUs required per kg of product is approximately 8.1 SWUs.  

Fuel Fabrication 

The inventory data for the fuel fabrication stage, much like the conversion stage, is 

based on  an average of several facilities across the globe; however, the fabrication of 

uranium oxide fuel is  differentiated from the fabrication of mixed oxide fuel, which is only 

produced in countries that reprocess used nuclear fuel.47  In addition to some of the more 

typical environmental flows considered for a manufacturing-type process, the amount of 

zirconium used in the production of a NuScale SMR fuel assembly was also included in 

the assessment. The NuScale SMR fuel assembly resembles that of a typical 17x17 PWR 

fuel assembly,52 but half the height. Therefore, the inventory assessment was performed by 

adjusting the volume of assembly material from approximately 4 meters52 for a standard 
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assembly and approximately 2 meters for the NuScale assembly.37 While this is sufficient 

information for the characterization of a fuel assembly, the materials and processes 

required for the manufacture of a NuScale module were not quantifiable given current 

available estimates. For this reason, the fuel fabrication stage of the life cycle may be an 

underestimate when compared with the potential impacts of fabricating the module as well.   

Waste Management 

There is little information available on the environmental flows of handling and storing 

used nuclear fuel at a dry cask facility on site, and essentially no information on how this 

process may change with the implementation of small modular reactor technology. For this 

assessment, only the materials required to construct the dry storage cask for the fuel were 

considered. This means that flows other than steel, concrete, and nuclear waste were 

disregarded. Because this evaluation is for small modular reactor technology and no 

specialized cask design has been proposed for the NuScale SMR design, it was assumed 

that a vertical, canistered used fuel cask that is standard for LWRs would be used for the 

storage of used nuclear fuel. Even though the NuScale assemblies are approximately half 

the height of a standard PWR assembly, stacking used assemblies is not expected due to 

the difference in heat profile after burn-up for stacked versus unstacked used fuel 

assemblies. Therefore, the used fuel casks for the used SMR assemblies are assumed to be 

about half the height of traditional dry casks. Outside the scope of this LCA are the design, 

testing, and licensing efforts that would be necessary to utilize a new dry casks storage 

container for onsite storage of used SMR fuel. This study considers nth-of-a-kind (NOAK) 
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deployment rather than first-of-a-kind (FOAK) deployment, so additional processes 

necessary to onboard the new technology are not considered. 

The Nuclear Regulatory Commission has not, to date, specified any requirements for 

the storage of used nuclear fuel from a small modular reactor that would be different than 

that of a standard nuclear power plant.53 Furthermore, vendors of small modular reactor 

technology, such as NuScale Power, have also not specified a strategy for handling fuel 

discharged from the reactor specific to the modular nature of the technology. Therefore, it 

is assumed that the strategy will be the same as that of a standard nuclear power plant apart 

from perhaps a size difference in the storage cask. 

Construction of SMR 

Data for the construction of a small modular reactor facility was provided directly by 

NuScale Power, a U.S. company with a mature small modular reactor design. The numbers 

provided by NuScale Power were approximate estimates and are representative of a 720 

MWe facility, which contains twelve 60 MWe modules. This information was 

supplemented with that from an Environmental Impact Statement from Westinghouse for 

the construction of a small modular reactor facility along the Clinch River in Oak Ridge, 

TN.54 

Operation of SMR 

Because the operation of a nuclear power plant impacts the environment very little 

outside of water consumption, this as well as passenger transport (transportation of workers 

from their homes) to the site were some of the only flows considered for this stage of the 

life cycle. Other flows considered were nitrogen oxides, carbon monoxide, particulates, 
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and some other emissions. Information for water usage was taken from publicly available 

literature on the NuScale SMR design,51 and the information about emissions is from the 

Westinghouse Environmental Impact Statement for the Clinch River Site.54 For fuel 

consumption,  The NuScale design is cited to use approximately 1/20th the amount of fuel 

as that of a standard nuclear generator, where the initial loading of a standard, 1000MWe 

nuclear generator is 100 tonnes of UO2
55 making the initial loading of a NuScale SMR 

about 5 tonnes of UO2. For a refueling cycle of 24 months, where 1/3 of the reactor core is 

replenished with fresh fuel, and a lifetime of 60 years, the total amount of fuel used in a 

NuScale generator is 55 tonnes. For a facility of twelve modules, this totals to 660 total 

tonnes of UO2 fuel. 

Decommissioning of SMR 

As was mentioned in the discussion of waste management, the application of modular 

technology to nuclear energy production could make a definite difference in the way the 

fuel is handled at the end of life. Due to the modular nature of small modular reactors, it is 

possible that dry storage casks would evolve to accommodate this change in technology. 

The “plug and play” nature of small modular reactors may allow for the “unplugging” and 

storage of an entire module upon decommissioning, thus reducing much of the energy and 

material demands of the decommissioning process. Already, there are designs proposed for 

micro-reactors that include simplified decommissioning of an entire module.56 

Furthermore, were it to be the case that this could be accomplished in a factory setting for 

individual modules, it is possible that the facility infrastructure could be used beyond the 

estimated 60-year lifetime of the modules themselves, thus reducing the impact per kWh 
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of energy produced from construction of the facility. However, this strategy is purely 

speculative. In lieu of reliable information about the decommissioning processes of a small 

modular reactor facility, it must be assumed that the practices will be the same as that of a 

standard nuclear power plant.  

Over the last few decades, 32 nuclear facilities have undergone decommissioning in 

the U.S., with only a fraction of these facilities having completed their decommissioning.57 

Of these facilities, fewer still have publicly accessible documentation quantifying the 

material and energy flows employed during the decommissioning process. The most 

detailed account of material and energy flows for a U.S. facility is available for the Maine 

Yankee facility in Wiscasset, Maine; however, this account only provides details for the 

waste shipped from the site, as well as the economics of the decommissioning.58 No 

information regarding the energy, water, or diesel-use at the facility during the 

decommissioning process is provided. 

In the absence of detailed material and energy flows for decommissioning of a U.S. 

facility, data was used instead from a report on the decommissioning of a VVER facility 

in Lubmin, Germany.59 This report documents not only the wastes associated with the 

decommissioning of the facility but also the energy and material flows for each step in the 

decommissioning process, such as cutting and decontamination. The VVER design, while 

different than that of the standard LWR used in the U.S., differs primarily in the details of 

the reactor-specific equipment. The primary difference between a VVER design and 

standard LWR is in the orientation of the steam generators, shape of the fuel assemblies, 

design of the pressure vessel, and design of the pressurizers.60  
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While these differences in design can account for changes to the decommissioning 

strategy that must be employed, these differences would be minute compared to the entire 

facility. The difference that must be considered is not in the design of the facility, but in 

the decommissioning practices of the host country, Germany. Nuclear decommissioning 

practices in Germany differs from decommissioning in the U.S. in that much of the building 

materials (e.g., concrete and steel) are decontaminated and recycled for secondary use. 

Because the process of creating the cement for concrete is extremely energy intensive ,61 

the reuse of this material could have profound impacts on the result of the life cycle 

assessment depending on the boundary conditions of the assessment. Of note, the process 

of recycling is also very energy intensive, requiring the use of an LCA approach to gauge 

any underlying environmental impacts.62 In the United States, the question of 

decontamination and recycling of these materials is handled on a state-by-state basis and 

is largely not practiced. While the data from the German VVER reactor decommissioning 

was utilized for the decommissioning stage of this LCA, a sensitivity analysis was 

performed to consider additional impacts associated with recycling the decontaminated 

concrete and steel. 

Transportation 

Transportation was considered as a separate stage between all the other stages in this 

life cycle assessment (Figure 3.1). For example, transportation from mining and milling 

facilities to the conversion facility was considered as a separate LCA stage than 

transportation from the conversion facility to the enrichment facility. For simplicity, all the 

transportation stages are combined in this subsection. 



29 

It was mentioned in the discussion of the mining and milling stage that most uranium 

used in the U.S. nuclear fuel cycle is imported from other countries. For this reason, 

consideration of transportation following this stage is important. For countries on a 

different continent than the U.S., transoceanic transportation from the major ports of each 

country to major ports in the U.S. were considered. The U.S. ports used in this analysis, 

Norfolk, VA and San Diego, CA, were chosen based on proximity to the source country as 

well as likelihood of accepting nuclear material based on U.S. Naval presence. For the 

calculation of the distance traveled by the freight, an online sea routes calculator was 

used.63 For Canadian imports, transportation was assumed to occur by rail from Saskatoon 

to Metropolis, IL, the location of the conversion facility in the U.S. The remaining travel 

for the uranium ore from Kazakhstan, Uzbekistan, Russia, and Australia was also assumed 

 

Figure 3.1. Map showing approximate locations for the U.S. fuel cycle facilities as well as the 
line-of-sight transportation paths between all stages of the LCA. 
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to occur by rail. It was assumed that 0.34 tonnes of uranium ore would be shipped in 210-

literliter containers for each shipment.64  

From the conversion facility in Metropolis, IL, the remaining transport was assumed to 

occur by truck in Type 48Y packaging. Each package was assumed to weigh 2359 kg, and 

shipments were limited to one package per truck in accordance with Nuclear Regulatory 

Commission specifications for shipment of uranium hexafluoride.25 After arriving in 

Eunice, NM, the packaging for the uranium hexafluoride is re-used for storage and 

transportation of depleted uranium and so is not considered a waste stream of this 

transportation.25  

Because most of the data used in this analysis is for the NuScale Power SMR design, 

the fuel vendor for this design was chosen as the next transportation point for the now-

enriched uranium. NuScale has announced its partnership with AREVA for fabrication of 

the fuel for their SMR design,65 and so the fuel fabrication stage was assumed to occur in 

Richland, WA, the U.S. location for AREVA’s fuel fabrication operations. This shipment 

was assumed to occur via truck and in Type 30B packaging weighing 635kg each. The 

recommended number of packages per shipment is 3, as specified by the Nuclear 

Regulatory Commission, though a maximum of 5 can be shipped.25 In this case, the 

recommended was used.  

According to NuScale Power, following fabrication, the module will then be shipped 

to the site of operation in 3 components for assembly.37 The total weight of the module is 

700 tons,37 making each shipment approximately 233 tons each. This transportation, like 

most shipments in the fuel cycle, would also be done by truck. The distance traveled by 
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this shipment would, of course, depend on the chosen location for the SMR facility. 

Because of market infrastructure, the likeliest location for the first small modular reactor 

facility in the U.S. would be in the southeastern region. Already, a site permit is being 

sought by the Tennessee Valley Authority for a facility in TN.66 The hypothetical location 

for a small modular reactor facility was chosen to be Clemson, SC.  

No transportation of used nuclear fuel is considered, as it is assumed that all waste will 

be stored on site. Further, no permanent storage solution has been reached by the U.S. that 

would dictate any further transportation of the fuel following discharge from the reactor 

and subsequent cooling. The specific mileage and weight data used for transportation 

throughout the life cycle is reported in Table B.2 of Appendix B 

Impact Assessment 

The ReCiPe 2008 database was used to assess the impact associated with the life cycle 

inventory constructed for this study.67 A ReCiPe 2016 database has been published. As a 

newer database, ReCiPe 2016 is less extensively vetted. Future work should include a 

comparison of the ReCiPe 2008 and 2016 databases for the system detailed in this study. 

The LCA impacts were calculated in terms of 1 MWh of electricity produced using a 

Hierarchical viewpoint. The Hierarchical viewpoint is the most commonly used 

perspective for LCA studies because it is neither optimistic nor pessimistic with respect to 

the assessment of the impacts. For reference, ReCiPe considers an “optimistic” viewpoint 

as one in which all possible measures for limiting environmental impacts are taken.  Of the 

eighteen midpoint and three endpoint indicators, or impact categories, included in ReCiPe 
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2008, this study focused on six of the more commonly evaluated impact categories, 

including: 

1. Water depletion (m3) 
2. Fossil depletion (kg oil-eq) 
3. Metal depletion (kg Fe-eq) 
4. Climate change (kg CO2-eq) 
5. Human toxicity (kg 1,4-DB eq) 
6. Ionizing radiation (kBq 235U-eq) 

The impacts of discrete processes and material flows are measured in terms of 

equivalent characterization factors, which describe the relative impact a chemical or toxin 

has on the environment in a specific impact category. Characterization factors are 

calculated based on the fate, exposure, and effects of a particular chemical or toxin.68 For 

example, 1 kg methane produces equivalent climate change impacts as 28 kg CO2.69 The 

methodology governing the calculation of each impact category is detailed in the ReCiPe 

2008 manual.70  

Water depletion refers to the amount of water used for the different processes 

considered throughout the lifecycle, whether or not the water is consumed. Alternatively, 

metal and fossil depletion consider the metals and fossil resources extracted and consumed 

for the purpose of processes in the lifecycle. For example, the uranium ore mined for use 

in the nuclear fuel cycle contributes to metal depletion, as do the metal components (e.g., 

iron and chromium in steel) used in construction of the facility. An example of fossil 

depletion is the production and combustion of fuel for transportation. 

The climate change impact category considers the adverse effects to the climate 

resulting from the use of certain chemicals or resources. For example, the production of 

electricity via a coal-fired generator releases CO2 into the atmosphere impacting climate 



33 

change. The human toxicity impact category considers the adverse impacts to human 

health, which is caused by harmful chemicals or pollutants making their way into the 

human food chain. While the LCA midpoint does not directly quantify the fate of those 

toxins, the choice of the Hierarchical approach (as opposed to the Egalitarian or Individual 

approach) provides the baseline assumptions for the degree of countermeasures against 

toxin release into the environment and eventual impact on humans. 

Similarly, the ionizing radiation impact category considers the potential for human 

exposure to and health impacts from ionizing radiation from routine releases of 

radionuclides throughout the fuel cycle. For consistency with the other impact categories 

assessed, the midpoint ionizing radiation impact (i.e., potential exposure) is assessed in this 

study. The potential for human exposure to ionizing radiation depends on the amount of 

ionizing radiation determined in the life cycle inventory (in terms of Bq per functional 

unit), the environmental fate of the radionuclide(s), as well as the potential human exposure 

pathway (Figure 3.2). Effectively, the ionizing radiation midpoint impact category is an 

assessment of the potential dose given the amount and type of radiation released throughout 

the lifecycle.70 Within the ReCiPe/OpenLCA framework,71 the data used for calculating 

radionuclide release, fate, and potential exposure is based on models published in 1985 by 

the International Atomic Energy Agency (IAEA)72 and exposure factors defined by Dreicer 

et al. (1995)73 and UNSCEAR (1982),74 which consider atmospheric releases, liquid 

releases into rivers, and liquid releases into the ocean. The ionizing radiation impact 

category is reported in equivalents of exposure from an atmospheric release of 235U. As 

such, the units are reported as Bq 235U-eq, rather than man.Sv.  For example, the using a 
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Heirarchist perspective, the characterization factor for atmospheric exposure from 235U is 

1.40 x 10-8 man.Sv/kBq or 1.00 235U-eq, whereas atmospheric exposure from 129I, which is 

a greater risk factor for atmospheric exposure, is 6.20 x 10-6 man.Sv/kBq or 4.43 x 101 

235U-eq.  

Data Quality Analysis 

Data quality analysis is a means to semi-quantitatively assess the quality of data on 

which a lifecycle inventory is built. The pedigree of the data for each LCI flow was 

documented using the pedigree matrix housed within the EcoInvent database (Figure 3.3). 

A pedigree matrix consists of a series of indicators about which the data quality is ranked. 

For example, the EcoInvent pedigree matrix includes five indicators for data quality 

assessment: reliability, completeness, temporal correlation, geographical correlation, and 

 

Figure 3.2. Overview of the analyses implemented in the impact assessment as performed using 
the ReCiPe database. The flowchart is modified from Dreicer et al. 199573 and Frischknecht et 
al. 2000.71 
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further technological correlation.75 The portion of the EcoInvent pedigree matrix in Figure 

3.3 shows rankings one through three out of a total of five, where one is the best. 

Sensitivity Analysis 

Due to uncertainty in some of the parameters in various life cycle stages, several 

sensitivity analyses were performed. One such uncertainty is in the materials used for the 

construction stage of the life cycle, as all values available from current small modular 

reactor vendors are merely low-end estimates intended to sell the technology. In addition, 

a materials sensitivity can highlight why life cycle assessments seem to vary so broadly, 

even when considering the same technology. Further, the boundary conditions defined by 

the goal and scope of an assessment can significantly impact the outcome of the life cycle 

assessment. In order to determine whether an assumption about material or boundary 

conditions will have much impact on the results, a sensitivity analysis should be performed.  

 

Figure 3.3. EcoInvent pedigree matrix with descriptions of the quality ranks 1-3. All data used 
in this work ranked 3 or below.61 

 

 

  

               
       



36 

An additional area of interest when considering the sensitivity of the life cycle is the 

source of the uranium. As described in the background on the nuclear fuel cycle, there are 

primarily 3 extraction techniques for uranium: open-pit, underground, and in situ leach 

mining. While open-pit and underground mining are expected to have similar impacts to 

resources and environment, the process of in situ leach mining could yield significantly 

different results. For the processing stages of uranium (conversion, enrichment, etc.), the 

location of the processing facility could greatly impact the results of the assessment. This 

is because many stages in the nuclear fuel cycle are relatively energy intensive and thus are 

subject to the effect of the energy portfolio of that region. The regional energy portfolio for 

each processing facility was incorporated for the base-case. To demonstrate the effects of 

energy source on the assessment, several cases were considered in which the electricity 

source for the entire life cycle was changed to the same source. For example, in one case, 

all stages of the life cycle were assumed to source their energy from coal electricity. This 

was repeated for nuclear and hydroelectric sources. Additionally, because the U.S. imports 

much of its uranium resources from other countries, and processing facilities for uranium 

fuel are located at vast distances from one another, it is relevant to consider the impact of 

transportation on the results of the assessment. This was accomplished by considering a 

case where transportation is included and one where it is removed entirely. 

Lastly, because the data for decommissioning was sourced from a report on the 

decommissioning of a German facility, it is important to note the potential differences in 

strategy between the U.S. and Germany. In Germany, when the report was published, 

decommissioning entailed not only decontamination of the general area but also of the 
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concrete, steel, and various other materials for recycling.59 While there is no nation-wide 

regulation addressing the possible recycling of decommissioning materials in the U.S., 

there are few, if any, states that have adopted this strategy. Instead, contaminated concrete 

and steel are generally treated as low-level nuclear waste and stored as such. Thus, a 

sensitivity analysis on the decommissioning phase, where in one case the materials are 

mostly recycled, and in the other they are not. For the former assumption, the resources 

required to recycle the materials are considered as well as the reduction in low-level waste. 

For the latter, all materials resulting from the decommissioning stage are treated as low-

level nuclear waste. 

In summary, the sensitivity analyses considered for this assessment include: 

1. Electricity source 
2. Mine type 
3. Transportation 
4. Materials during construction and decommissioning 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

LCIA results 

Of the 18 midpoint impact categories available from the ReCiPe analysis,70 the six 

impact categories analyzed within the scope of this work include: water depletion, fossil 

depletion, metal depletion, climate change, human toxicity, and ionizing radiation. The 

“base-case” analysis (Table 4.1) is based on the fuel cycle inventory described in the 

methods, and includes the reactor 

building as well as the support 

structures. The electricity use for each 

stage modeled in the “base-case” is 

representative for the region in which 

that stage occurs. For example, 

enrichment in the U.S. occurs in Eunice, New Mexico, so the electricity use for the 

enrichment process is sourced from the Texas Reliability entity (TRE). The only stage in 

which the regional electricity grid is not modelled is in the mining and milling stage, 

because the EcoInvent process, in which all flows are already defined, for underground and 

open pit mining was used. Thus, the electricity source for open pit and underground mining 

are predetermined and could not be altered. 

The percent contribution of each fuel cycle stage to an impact category can further 

detail the underlying influences on the ultimate impacts. Figure 4.1 shows that the majority 

(>80%) of climate change impact is due to processes in the front-end of the fuel-cycle. The 

Table 4.1. Midpoint impacts based on the “base-
case” inventory assessment. 

Impact Category Base-case Analysis 
Water depletion 7.64 m3 
Fossil depletion 0.89 kg oil eq 
Metal depletion 2.03 kg Fe eq 
Climate change 4.55 kg CO2 eq 
Human toxicity 18.02 kg 1,4-DB eq 
Ionizing radiation 441.07 kBq 235U-eq 
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operation of front-end fuel cycle facilities, such as conversion, enrichment, and fuel 

fabrication facilities, have a high energy demand. For example, the enrichment required 

for the NuScale design (4.95% 235U), requires 8.15 SWU per kilogram of product, and each 

SWU is estimated to use 40 kWh, totaling 326 kWh/kg of product.25 Furthermore, 

enrichment occurs in Eunice, NM, where fossil fuels make up about 70% of the electricity 

portfolio76 and greatly contribute to the climate change impact category. Likewise, for 

conversion and fuel fabrication, electricity is the primary resource demand. For the mining 

and milling stage, the use of natural gas and diesel for processing uranium and operating 

large equipment is the primary contributor to the climate change impact. 
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The construction stage contributes ~7% to the total climate change impact due to the 

large volume of concrete and steel used in the facility. The manufacture of concrete is very 

energy intensive—more specifically, the manufacture of the cement that is used in 

concrete. First, rock must be quarried, followed by several iterations of crushing. It is then 

heated to approximately 2,700 °F, blasted with flame, forcibly cooled, and the mixture is 

then crushed again.61 These processes require the use of diesel, natural gas, coal, and other 

CO2-emitting resources. Finally, transportation throughout the fuel cycle contributes 1.5% 

to the total climate change impact. Most uranium resources are imported to the U.S. from 

overseas suppliers, requiring transoceanic transportation. Furthermore, U.S.-based 

 

Figure 4.1. Distribution of impacts among the life cycle stages for small-modular reactor 
technology. 
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uranium processing facilities (e.g., conversion, enrichment, fuel fabrication) are located at 

facilities across the country, requiring shipments either by train or by truck.  

Corresponding with the climate change impact distribution, the fossil depletion impacts 

too are found mostly in the front end of the fuel cycle. This correlation is because the 

combustion of fossil fuels is what contributes a majority of climate change impacts, 

alongside such processes as concrete production. The fuel processing stages are large 

consumers of natural gas, electricity, diesel, or a combination thereof. Mining and milling 

are responsible for the largest fraction of nearly all the impacts, due to how resource-

intensive the processes are, except for water use. Water use is the highest for the 

construction stage, due to the high quantities of steel and concrete required in this stage.  

Data Quality Analysis 

After ranking each flow (where information was available) in the inventory using the 

EcoInvent pedigree matrix, OpenLCA was used to determine the data quality for all 

possible midpoint impact categories.  Based on limitations in inventory data, the only 

impact category, of the 6 considered in this analysis, that could be evaluated for data quality 

was climate change. The summative data quality for the climate change impact was 3 for 

reliability, 2 for completeness, 3 for temporal correlation, 2 for geographical correlation, 

and 1 for further technological correlation. For reliability, the climate change impact comes 

from non-verified data based partly on qualified estimates.77 This was the case for much of 

the life cycle assessment, because data for stages such as construction and operation were 

based on speculative information from the small modular reactor vendor, where no physical 

facility is available for measurements to verify those estimates. The ranking of the data’s 
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completeness corresponds to a set that represents greater than 50% of all relevant facilities 

to the market.77 Because this was an assessment for U.S. facilities, information directly 

from U.S. facilities was sought. Where this was not available, averages in which these 

facilities were included was used instead.  

The temporal correlation received a ranking of 3, which corresponds to less than 10 

years difference in time from the time period of the data set.77 The age of the sources used 

in this assessment varied greatly; while information from the vendor is less than 3 years 

old, some environmental impact statements used in the assessment are well over 10 years 

old. The geographical correlation is strongly related to the reliability indicator; it was ideal 

for information to come directly from the facility of interest, but inclusive averages were 

used in lieu of this. Great care was taken to source data from the correct geographical 

locations, although much of the data is averaged from a larger area, which includes the area 

of interest.77 The technological correlation, in terms of the flows used to calculate the 

climate change impact, was found to have a score of 1, because the inventory flows 

represented the technology being assessed, rather than a similar technology. Vendor-

reported data was used for the construction and operation stages, and well-documented 

reports were used for all other fuel cycle stages, which are not unique to the SMR 

technology of interest apart from fuel fabrication. The fuel fabrication stage was altered 

quantitatively to represent the fabrication of SMR fuel assemblies; however, accurate 

representation of SMR module fabrication could not be included due to lack of 

manufacturing precedence.  
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Sensitivity Analyses 

Sensitivity analyses were performed to better understand the parameters that most 

affect the results of the base-case life cycle assessment. The sensitivity of the assessment 

was evaluated based on the source of electricity, mining technology, transportation, facility 

infrastructure boundary condition, and recycling upon decommissioning.  

To evaluate the sensitivity of the LCA on electricity source, three comparison cases 

were constructed in which the electricity use for all life cycle stages (except for mining and 

milling) were sourced entirely from coal, run-of-the-river hydroelectricity, or nuclear 

(Figure 4.1). It should be noted that the case in which electricity is sourced from nuclear 

energy, this process was sourced from the available EcoInvent process for nuclear energy. 

While the nuclear energy process in EcoInvent is not entirely representative of U.S. nuclear 

electricity production, which is why the nuclear fuel cycle was also considered in this 

assessment, it does broadly represent the impact differences associated with using nuclear 

as an energy source throughout the lifecycle processes relative to other sources. The 

electricity source could not be adjusted for the underground/open-pit mining process since 

this was sourced directly from the EcoInvent database.  

As expected, when much of the fuel cycle electricity is sourced from coal, all the 

impacts evaluated are increased. In fact, fossil depletion and climate change are 

significantly increased (by 162% and 673%, respectively). Coal electricity is, by definition, 

a fossil fuel and requires a high flux of fuel input per electricity output. The increase in 

human toxicity (171%) is likely related to the increased coal mining activity and production 

of greenhouse gasses and heavy metals associated with coal electricity. The increase in 
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water depletion (57%) is likely the decrease in use of less water-intense electricity sources 

(e.g., natural gas). Though the increase in metal depletion (555%) is dramatic as expected, 

ionizing radiation (~1.7%) is lower than one might anticipate. The operation of a coal 

electricity plant is known to produce ionizing radiation due to the presence of uranium and 

thorium in coal. When coal is burned in the generator, the resulting fly ash concentrates 

thorium and uranium up to 10 times more than the original coal.78 The contribution of 

radionuclides released during operation of a coal electricity plant may not be fully included 

in the effluent flows within the EcoInvent database. Additionally, the magnitude of 

ionizing radiation due to the mining and milling stages of the life cycle is sufficiently high 

that even a large increase in the ionizing radiation of an operating coal plant would pale in 

comparison.  

Converting the majority of fuel cycle electricity to run-of-the-river hydroelectricity 

dramatically increases water depletion (by 21349%) due to the inherent nature of 

hydroelectricity. The increase in metal depletion by ~1.8% may be due to the metal demand 

of the technology used for such a generation facility, an element which would be captured 

in life cycle assessment. While materials such as concrete and steel contribute greenhouse 

gasses during their production, most electricity generators use these materials in high 

quantities. Therefore, while there is a reduction in climate change impacts when using only 

hydroelectricity associated with the lack of producing and/or combusting a fuel, this 

reduction is not a dramatic one because these infrastructure materials are still present. 

Using only nuclear electricity for most of the life cycle electricity results in a decrease 

in both fossil depletion (-18%) and climate change (-9%). Nuclear electricity is often cited 
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as a carbon-free (or carbon-neutral) energy source, particularly compared with coal 

electricity, which is supported by this sensitivity analysis. The reduction in fossil depletion 

and climate change is less for the nuclear electricity scenario as compared with the 

hydroelectricity scenario because, while nuclear energy does not require fossil fuels to 

produce electricity, fossil fuels (i.e. diesel) are used extensively throughout the fuel 

processing steps of the life cycle. Likewise, while metal depletion (+8%) is less than that 

from the all coal electricity scenario (+555%), it is still higher than that from the all 

hydroelectricity scenario (+1.8%), because the nuclear fuel, UO2, is mined as a metal 

resource. The ionizing radiation impact category for the mostly nuclear electricity scenario 

increases by 7% due to the radioactive nature of nuclear fuel, where the greatest 

contribution comes from the mining/milling process. This is due mostly to the radon 

released during the mining process in addition to mill tailings.  

Based on the distribution analysis for the base-case and some minor discrepancies in 

the impact assessment for different electricity sources, the technology for uranium mining 

was also evaluated, where the options for uranium mining technology depend on the ore 

grade and deposit geology. In recent decades, in situ leach mining has become more 

prevalent for uranium extraction, but underground and open-pit mines are still used widely. 

Australia and Russia use a combination of traditional mining (i.e., open pit and 

underground mining) and in situ leach mining (of the contributing countries used for this 

assessment). The other countries considered in this assessment use either traditional mining 

(i.e., Canada) or in situ leach mining (i.e., Kazakhstan and Uzbekistan).  
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When in situ leach mining (ISL) is the only mining method employed, there is an 

increase in the water depletion (+4%) and fossil depletion (+39%) impacts, but a reduction 

in metal depletion (-83%), climate change (-17%), human toxicity (-95%), and ionizing 

radiation (-100%). The slight increase in water depletion is a result of the extraction method 

employed with ISL mining: an acidic or alkaline solution is pumped into the earth via 

injection wells, oxidizes the uranium and other metals, and then is pumped back to the 

surface for processing. This method, naturally, has a higher water consumption than 

methods such as underground and open-pit mining. However, further milling is not 

necessary.  The increase in fossil depletion is likely a result of the resources necessary to 

operate the ISL mining process. As shown in Appendix B – Inventory Data, one of the 

input material flows for the ISL mining process is high pressure natural gas. The large 

reduction in metal depletion for all ISL mining is likely because the ISL method solubilizes 

uranium in situ so that the solubilized uranium can be extracted via pumping without 

requiring removal of large masses of rock, thus reducing the consumption (i.e., depletion) 

of metal. The reduction in ionizing radiation and human toxicity are inextricably linked. 

Because ISL mining does not require the additional step of milling, there are no resultant 

mill tailings. Mill tailings are a significant source of ionizing radiation released to the 

environment, and the heavy metals present in mill tailings are a human health risk. Further, 

occupational exposure to ionizing radiation is greatly reduced for ISL compared with 

underground mining. While there are potential environmental and human health risks 

associated with the use of the ISL leaching solution, potential risks are not included in the 
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LCA. That is, the scope of this LCA does not include impacts associated accidental 

releases to the environment. 

The sensitivity analysis of the LCA based on different boundary conditions enables 

better comparison between published studies (See Comparison to Other LCAs), which 

often set vastly different boundaries depending on the objectives of the study. For example, 

transportation is commonly excluded from LCA analyses if one assumes that the 

transportation impacts are the same between systems that are being compared. Even though 

transportation only contributes 1.5% to the climate change impact category of this LCA 

(Figure 4.1), the sensitivity analysis shows that the exclusion of transportation from this 

 

Figure 4.2. Percent change in life cycle impacts (legend) based on different scenarios (x-axis) as 
compared with the base-case fuel cycle analysis. 
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LCA leads to measurable changes in water depletion (-3%), fossil depletion (-9%), metal 

depletion (-1.5%), as well as climate change (-5%). The production, processing, and 

combustion of fuels in transportation vehicles of various types logically influences these 

impact categories, especially fossil depletion and climate change. 

Many life cycle assessments on energy generation technology look only at the 

construction of the generator (i.e., reactor building) itself, and not any of the support 

facilities; however, the additional infrastructure will increase the overall impact. Further, 

when comparing different types of electricity generation technology, the material and 

energy flows associated with the support structures are likely different. Inclusion of the 

support structures essentially probes the sensitivity of the LCA on the amount of 

construction materials (concrete and steel) on the life cycle in general.  Since small-

modular reactor vendors are providing low-end estimates for construction materials, it is 

worthwhile to assess the sensitivity of the overall life cycle impacts on the amount of 

construction materials. The difference in the effects of transportation on climate change in 

the impact distribution and the sensitivity analysis is due to the fact that the sensitivity 

accounts for all transportation in the lifecycle, including the transportation of employees to 

the facility during operation; for the impact distribution, only the transportation stages were 

considered. 

When the life cycle is considered for the reactor building only (i.e., without including 

the support structures of the small-modular reactor facility), there is a small reduction in 

both water depletion (-2%), climate change (-2%), and fossil depletion (-2%), while the 

other impact categories exhibit changes of < 1% (Figure 4.3). The reduction in water 
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depletion, climate change, and fossil depletion impact categories correlates to the reduced 

need for production of cement for concrete, which is a major material, along with steel, 

used in construction. 

Upon decommissioning, the concrete and steel used during construction can be 

decontaminated and recycled, driving down the need to produce new concrete and steel.  

While decontaminating and recycling these building materials reduces the need for 

producing new material, the process of recycling concrete and steel is very energy and 

resource intensive.62 When the boundary conditions of the LCA are modified to include 

impacts associated with recycling concrete and steel upon decommissioning, water 

depletion, fossil depletion, metal depletion, and climate change are increased by <1%. 

Naturally, combining the recycling of concrete and steel with elimination of support 

structures from the assessment further reduces the impact compared to the recycling case 

alone, but it is still more than the reactor building scenario by itself. Because these values 

are all so low, it is difficult to extricate much meaning from the numbers. The statistical 

uncertainty (which was not considered in this analysis)  in the values could be sufficient to 

render the change in impacts insignificant. For a more thorough examination of the 

sensitivity of impacts to materials use and disposition, a detailed uncertainty analysis 

should be carried out.  

The incentive to decontaminate and recycle concrete, however, is based on more than 

just the noted impacts. Recycling these materials would result in a decreased flux of 

material to landfills or to LLW facilities, which would potentially reduce costs for the 

company performing the decommissioning. Additionally, whether to recycle concrete and 
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steel for environmental reasons depends on the priorities of the assessing entity; for 

example, if reduction in solid waste or LLW is the priority in decommissioning, recycling 

these materials would be an excellent option to accomplish this task. 

Comparison with Other LCAs 

Comparison of this LCA with previously published studies further highlights the effect 

of different LCA boundary conditions and emphasizes the need to consider appropriate 

fuel cycle facilities and processes for the system of study. Several LCA analyses have been 

published on nuclear fuel cycles, many of which are summarized in the review by Manfred 

Lenzen.79 The climate change impact calculated by Carless et al.1 and the National Energy 

Technology Laboratory(NETL)2 are compared with this LCA. Carless et al. considered the 

 

Figure 4.3. Percent change in impacts based on materials usage during construction and 
disposition during decommissioning. 
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environmental competitiveness of a Westinghouse integral pressurized water reactor 

(iPWR; a small-modular reactor) and the Generation III+ Westinghouse AP1000 reactor.1,2 

The NETL report is a detailed life cycle assessment highlighting the environmental impacts 

of existing nuclear energy technology as well as that of Generation III+ technology.  

The climate change impact computed in this study appears much lower than that 

reported by Carless et al. and NETL (Table 4.2). Closer inspection of the NETL assessment 

reveals some details that could account for this disparity: in the fuel cycle being considered 

in the NETL assessment, 52% of the uranium hexafluoride is assumed to be enriched by 

using gaseous diffusion technology (and 48% by centrifugation).2 Because this assessment 

was published in 2012, and the Paducah Gaseous Diffusion Plant did not cease operation 

until 2013,80 enrichment for U.S. commercial reactors was accomplished using both 

gaseous diffusion and centrifugation. Since 2013, the National Enrichment Facility in 

Eunice, New Mexico has become the only operating enrichment facility in the U.S. The 

gaseous diffusion enrichment process is much more energy intensive than centrifugation, 

resulting in a greater climate change impact. In the NETL assessment, the contribution of 

diffusion enrichment to the climate change impact of the Gen III LWR was 27.7 kg CO2-

eq/MWh, while the impact of centrifuge enrichment was only 0.2 kg CO2-eq/MWh—

despite that each method is used in approximately equal amounts.2 Thus, the impact of the 

enrichment process using 100% centrifugation would be about 0.4 kg CO2/MWh. Based 

on the contribution graph shown in Figure 4.1, the enrichment process contributes 1.1 kg 

CO2-eq/MWh to climate change impact, which is far more comparable.  
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The NETL assessment also considered the contribution of the transmission and 

distribution of electricity. A post-process adjustment of the NETL LCA to remove gaseous 

diffusion enrichment and transmission and distribution of electricity results in a climate 

change impact of 8.50 kg CO2-eq/MWh and 6.30 kg CO2-eq/MWh for the Gen III and 

Gen III+ LWR, respectively. Of note, the NETL impact assessment for the Gen III+ LWR 

goes from nearly double that of the Carless assessment of the AP1000 to less than half that 

of the Carless assessment (6.30 for Gen III+ LWR) when adjusted, which emphasizes the 

sensitivity of the LCA on the LCA boundary conditions, as well as the methodology 

employed for the LCA. There are generally two methods employed for life cycle 

assessment: process chain analysis (PCA) and economic input-output (EIO) method. 

Process chain analysis requires quantified knowledge about the material and energy flows 

required for all the life cycle processes considered. When information about these flows is 

not readily available, researchers often employ the EIO method. The EIO method attributes 

environmental impacts based on the cost associated with the life cycle processes 

considered. However, the environmental impacts are not always driven by the economics 

of the life cycle processes, resulting in an over- or under-estimation of the impacts 

compared with those quantified using the PCA method.81 The higher fuel cycle impacts 

determined by Carless et al. may be due to the use of the EIO methodology. 

In fact, the NETL assessment for the Gen III+ LWR can be further adjusted for 

comparison with the NuScale SMR reactor LCA presented here considering the reduction 

of impacts associated with the AP1000 and the Westinghouse iPWR SMR as determine by 

Carless et al. With the 38% reduction in impacts between the full-scale reactor and the 
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SMR, the NETL adjusted assessment for an SMR is 3.89 kg CO2/MWh – similar in 

magnitude to the 4.55 kg CO2/MWh calculated in this study. 

Comparison to Other Energy Generators 

The climate change impact of nuclear energy generation technologies is further 

compared with other energy generators (Figure 4.4). OpenEI provides a comprehensive 

comparison of several LCAs on different energy generators, showing a wide spread 

between the minimum and maximum value for the calculated climate change impact.82 The 

importance of the LCA boundaries and assumptions is emphasized by the large range of 

climate change impacts for the technologies considered in Figure 4.4. Because the range 

represents several different LCAs, the boundaries and assumptions for each assessment 

will vary at least slightly—possibly dramatically in some cases. For this reason, it is vastly 

important to be transparent about boundaries and assumptions in life cycle assessment and 

to understand these limitations in other assessments when making a comparison. 

The spread in the data for the SMR nuclear technology is representative of the 

difference between the nuclear LCAs previously discussed. As expected, nuclear 

technology outperforms energy technologies based on fossil fuel resources, such as coal 

Table 4.2. Comparison of climate change impacts between Carless et. al,2 the National Energy 
Technology Laboratory,3 and this assessment for nuclear energy technology. 

Reference Reactor Type Climate Change  
(kg CO2-eq/MWh) 

This study NuScale (SMR) 4.55 
Carless et al.2 iPWR SMR 8.40 
Carless et al.2 AP1000 13.60 

NETL3 Gen III LWR 39.50 (8.50)a 

NETL3 Gen III+ LWR 25.80 (6.30)a 
aAdjusted LCA impact considering gaseous centrifugation as the only enrichment 
process and discounting impacts from distribution and transmission of electricity. 
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and natural gas. Further, nuclear technologies, both traditional full scale and SMR, have a 

similar climate change impact as PV solar and reservoir hydropower generators, supporting 

the argument made by the nuclear industry that nuclear technology is a “clean” energy like 

that of renewables. However, it should be noted that certain characteristics of nuclear 

energy, specifically the generation of nuclear waste, impacts the definition of nuclear 

technology as “clean.” 

Considerations for New Technology 

In the discussion of a new technology, it is important to acknowledge the difference 

between the first deployment, or first-of-a-kind (FOAK), versus the nth deployment, or nth- 

of-a-kind (NOAK). New technologies often require unique component manufacturing, 

which in turn may require non-existent facilities. At the very least, retrofitting of existing 

manufacturing facilities requires investment in engineering design and development 

 

Figure 4.4. Bar graph marking the maximum and minimum LCA climate change impacts of 
various electricity generators (kg CO2-eq/MWh). The nuclear SMR minimum is from this study 
and the maximum is from Carless et al.2 All other maximum and minimum values are from 
OpenEI.82 
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beyond that required to develop the ultimate new technology. In the example of small 

modular reactor technology, a major advantage often cited is the ability to factory-build 

the entire reactor module (e.g., the NuScale Power Module or NPM), requiring assembly, 

but far less construction, on-site.83 Fabrication of initial SMR modules will likely occur 

using existing infrastructure. However, a specially-designed facility would enable more 

efficient and cost-effective manufacture of SMR modules. While the cost saving advantage 

of a factory-built reactor is often expressed in support of SMR technology, no plans for 

said factory could be found at this time. The lack of appropriate production methods can 

lead to an increase both in expense and in environmental impacts of a technology. The 

assessment presented in this work considered a mature SMR technology (i.e., NOAK 

approach) in that efficient production methods were assumed to exist for the fabrication of 

necessary components, including the modules, fuel assemblies, and dry storage casks. A 

FOAK assessment of small modular reactor technology would likely yield significantly 

different results, specifically with respect to the fuel fabrication, construction, waste 

management, and decommissioning stages. 

CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 

The U.S. electricity grid is facing much change in light of concerns over flexibility, 

economics, and climate change impacts. For the nuclear industry to stay competitive in a 

changing market, it is important to adopt new and innovative technologies to meet the 

demands of a future generation. However, technological advances should occur with 

consideration of both the economic and environmental impacts of deployment. Life cycle 
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assessment allows for a technology to be described in terms of its environmental impacts 

across the entire life cycle, from the extraction of materials for use to the disposal of the 

technology at the end of its life. The available inventory data for life cycle assessments on 

nuclear technology is based on European fuel cycle, and many assessments use outdated 

technology for some processes (i.e. the NETL assessment using gaseous diffusion for 

enrichment). To evaluate the impact of a SMR in the U.S., there is a need to evaluate the 

nuclear fuel cycle processes specific to the U.S.  

The LCA presented in this work evaluated the environmental feasibility of small 

modular reactor technology using the U.S. nuclear fuel cycle and found that most of the 

impacts evaluated are associated with front end fuel cycle processes (e.g., > 80% for 

climate change impacts). The SMR technology evaluated (NuScale design) was shown to 

have lower environmental impact than traditional nuclear reactors, as well as other energy 

technologies (i.e., coal and natural gas), based on comparison with other LCA studies.  

Sensitivity analyses and comparison with existing LCA showed that the LCA outcome 

can strongly depend on the boundary conditions of the system, as well as the availability 

and accuracy of the data used in the life cycle inventory. Throughout this work, 

approximations for inventory data were supported with literature, however, many of those 

“gaps” in data warrant further investigation. Impacts related to FOAK versus NOAK with 

consideration of impacts associated with construction of necessary fuel cycle facilities 

(e.g., module fabrication facility).  Extend into risk assessment and influence of even newer 

tech (extended refueling such that entire modules last similar to Navy reactors). 
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Also emphasized in this work is the lack of on the back-end of the fuel cycle for SMR 

technologies, specifically strategies outlined for waste management and decommissioning. 

With increasing public interest in the collide of climate and environmental issues, detailed 

evaluation of waste management and decommissioning of SMR technology should be 

completed prior to commercial deployment and could even serve as an additional selling 

point for SMR technology. Combined with the economic favorability,84 the lower 

environmental impact of small modular reactors can help to incentivize the deployment of 

this new technology and to predict its success in an evolving energy market. 
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APPENDIX A 

Equations Used for In Situ Mining Process 

For the calculation of resource use and emissions for the in situ leach mining process 

(within the mining and milling stage), relationships from an Idaho National Laboratory 

study47 were used. These relationships are summarized Equations 1-3, which quantify 

uranium yield (Y) as a function of ore grade (G), water consumption (w), and energy 

intensity in GJ (e), respectively.  

YISL = 0.686 – 0.0506(log(G))2 

Equation 147 

w = 100
G∗YISL

wISL + wU 

Equation 247 

Where wISL is 9.88 x 10-3 ML/t (mega-liters per tonne) ore is the amount of water 

consumed prior to refining and wU is the amount of water required for the refining step.47 

e =
100
YISL

eISL + eU 

Equation 247 

Where eISL is the energy required to pump the solution to the ore body, and eu is the 

energy required to convert the ore to material desired.47  
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APPENDIX B 

Life Cycle Inventory Data 

 
Table B.1. Bill of Materials for the base case LCA, including the name, EcoInvent category (if applicable), designation of process 
(P) or flow (F), and the quantity for all inputs and outputs in the LCA stages. Output materials are denoted with light grey 
shading versus input materials without shading. Where applicable, the data quality assessment is also included for reliability 
(Rel.), completeness (Com.), temporal correlation (Tem.), geographical correlation (Geo.), and technological correlation (Tec.). 

Stage: Mining (Open Pit and Underground) 
Name EcoInvent Category P/F Value Unit Rel Com Tem Geo Tec 
uranium, in yellowcake - RNA B.0721:Mining of uranium and thorium 

ores 
P Input for 

Conversion Stage 
1 2 1 2 1 

uranium, in yellowcake - RoW B.0721:Mining of uranium and thorium 
ores 

P Input for 
Conversion Stage 

1 2 1 2 1 

Stage: Mining (ISL) 
Name EcoInvent Category P/F Value Unit Rel Com Tem Geo Tec 
electricity, high voltage - RU D:Electricity, gas, steam and air 

conditioning supply 
P 7.42 × 104  MJ 5 2 1 1 1 

electricity, high voltage - AU D:Electricity, gas, steam and air 
conditioning supply 

P 5.30 × 104 MJ 5 2 1 1 1 

natural gas, high pressure - RoW B.0610:Extraction of crude petroleum P 14.48 m3 5 2 1 1 1 
Water Elementary flows/Resource/in water F 5.21 × 106 l 5 2 1 1 1 
Uranium ore   F 1 t 5 2 1 1 1 

Stage: Conversion 
Name EcoInvent Category P/F Value Unit Rel Com Tem Geo Tec 
electricity, high voltage - SERC D:Electricity, gas, steam and air 

conditioning supply 
P 54 GJ 3 2 3 2 1 
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Land use III-IV Elementary flows/Resource/land F 0.57 m2*a 3 2 3 2 1 
natural gas, high pressure - US B.0610:Extraction of crude petroleum P 582.29 m3 3 2 3 2 1 
transport, freight train - US H.4912:Freight rail transport P 722.51 t*km 5 4 1 1 1 
transport, freight, sea, transoceanic 
ship - GLO 

H.5012:Sea and coastal freight water 
transport 

P 3.13 ×103 t*km 5 4 1 1 1 

Uranium ore   F 0.35 t 1 2 1 2 1 
uranium, in yellowcake - RNA B.0721:Mining of uranium and thorium 

ores 
P 0.24 t 1 2 1 2 1 

uranium, in yellowcake - RoW B.0721:Mining of uranium and thorium 
ores 

P 0.21 t 1 2 1 2 1 

Water Elementary flows/Resource/in water F 1.00 ×105 kg 3 2 3 2 1 
Carbon dioxide Elementary flows/Emission to air/low 

population density 
F 7.00 ×104 kg 3 2 3 2 1 

UF6   F 1 t 3 2 3 2 1 
Stage: Transportation from Conversion to Enrichment 

Name EcoInvent Category P/F Value Unit Rel Com Tem Geo Tec 
transport, freight, lorry 7.5-16 
metric ton, EURO5 - GLO 

H.4923:Freight transport by road P 2.10 ×104 t*km 2 1 1 2 3 

UF6   F 12.5 t 2 1 1 2 3 
UF6    F 12.5 t 2 1 1 2 3 

Stage: Enrichment 
Name EcoInvent Category P/F Value Unit Rel Com Tem Geo Tec 
aluminium oxide - GLO C.2420:Manufacture of basic precious 

and other non-ferrous metals 
P 2.28 ×10-3 kg 2 1 4 1 1 

diesel - Europe without 
Switzerland 

C.1920:Manufacture of refined 
petroleum products 

P 0.34 kg 2 1 4 1 1 

electricity, high voltage - TRE D:Electricity, gas, steam and air 
conditioning supply 

P 326.20 kWh 3 1 1 1 1 

natural gas, high pressure - US B.0610:Extraction of crude petroleum P 5.38 m3 2 1 4 1 1 
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nitrogen, liquid - CA-QC C.2011:Manufacture of basic chemicals P 7.07 ×10-5 kg 2 1 4 1 1 
UF6   F 9.81 kg 3 1 1 1 1 
Water Elementary flows/Resource/in water F 152.00 kg 2 1 4 1 1 
4.95% Enriched UF6 

 
F 1 kg 3 1 1 1 1 

1 Elementary flows/Emission to air/low 
population density 

F 8.68 ×10-4 kg 2 1 4 1 1 

hazardous waste, for incineration - 
GLO 

E.3822:Treatment and disposal of 
hazardous waste 

P 0.30 kg 2 1 4 1 1 

low level radioactive waste - GLO E.3822:Treatment and disposal of 
hazardous waste 

P 0.15 kg 2 1 4 1 1 

Nitrogen dioxide Elementary flows/Emission to air/low 
population density 

F 8.68 ×10-3 kg 2 1 4 1 1 

VOC, volatile organic compounds Elementary flows/Emission to air/low 
population density 

F 1.39 ×10-3 kg 2 1 4 1 1 

Stage: Transportation from Enrichment to Fuel Fabrication 
Name EcoInvent Category P/F Value Unit Rel Com Tem Geo Tec 
4.95% Enriched uranium   F 2.28 ×103 kg 2 1 1 2 3 
transport, freight, lorry 16-32 
metric ton, EURO5 - GLO 

H.4923:Freight transport by road P 7.25 ×103 t*km 2 1 1 2 3 

4.95% Enriched uranium   F 2.28 ×103 kg 2 1 1 2 3 
Stage: Fuel Fabrication 

Name EcoInvent Category P/F Value Unit Rel Com Tem.  Geo Tec. 
4.95% Enriched Uranium   F 1.78 t 2 1 1 1 4 
electricity, high voltage - WECC, 
US only 

D:Electricity, gas, steam and air 
conditioning supply 

P 286.20 GJ 3 2 3 2 4 

Land use III-IV Elementary flows/Resource/land F 7.16 m2*a 3 2 3 2 4 
natural gas, high pressure - US B.0610:Extraction of crude petroleum P 47.82 m3 3 2 3 2 4 
Water Elementary flows/Resource/in water F 1.90 ×105 kg 3 2 3 2 4 
Zirconium Elementary flows/Resource/in ground F 6.71 kg 4 2 1 2 4 
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Carbon dioxide Elementary flows/Emission to air/low 
population density 

F 4.89 ×104 kg 3 2 3 2 4 

Fuel   F 1.35 t 4 2 1 2 4 
Stage: Transportation from Fuel Fabrication to Operation 

Name EcoInvent Category P/F Value Unit Rel Com Tem Geo Tec 
Fuel   F 0.45 t 2 1 1 2 3 
transport, freight, lorry 16-32 
metric ton, EURO5 - GLO 

H.4923:Freight transport by road P 8.76 ×104 t*km 2 1 1 2 3 

Fuel   F 0.45 t 2 1 1 2 3 
Stage: Construction 

Name EcoInvent Category P/F Value Unit Rel Com Tem  Geo Tec 
concrete, normal - GLO C.2395:Manufacture of articles of 

concrete, cement and plaster 
P 1.45 ×104 m3 3 1 1 1 1 

diesel - Europe without 
Switzerland 

C.1920:Manufacture of refined 
petroleum products 

P 6.61 ×106 kg 3 1 1 1 1 

steel, chromium steel 18/8 - GLO C.2410:Manufacture of basic iron and 
steel 

P 8.00 ×103 t 3 1 1 1 1 

Water Elementary flows/Resource/in water F 9.81 ×108 kg 3 1 1 1 1 
Carbon dioxide Elementary flows/Emission to air/low 

population density 
F 1.65 ×104 t 3 1 1 1 1 

Nuclear facility   F 1 item 3 1 1 1 1 
Stage: Operation 

Name EcoInvent Category P/F Value Unit Rel Com Tem  Geo Tec 
Fuel   F 660 t 4 1 1 1 1 
Nuclear facility   F 1 item 4 1 1 1 1 
transport, passenger car, EURO 5 - 
RER 

H.4922:Other passenger land transport P 1.08 ×108 mi 4 3 1 1 2 

Water Elementary flows/Resource/in water F 1.979 ×1012 kg 4 1 1 1 1 
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Carbon monoxide Elementary flows/Emission to air/low 
population density 

F 259.20 t 3 3 1 3 2 

Electricity F 3.60 ×108 MWh 
Nitrogen oxides Elementary flows/Emission to air/low 

population density 
F 2.03 ×103 t 3 3 1 3 2 

Nuclear facility F 1 item 4 1 1 1 1 
Particulates, < 10 um Elementary flows/Emission to air/low 

population density 
F 399.60 t 3 3 1 3 2 

Sulfur oxides Elementary flows/Emission to air/low 
population density 

F 1.12 ×103 t 3 3 1 3 2 

UNF F 13.50 t 3 3 1 3 2 
VOC, volatile organic compounds Elementary flows/Emission to air/low 

population density 
F 32.40 t 3 3 1 3 2 

Stage: Waste Management 
Name EcoInvent Category P/F Value Unit Rel Com Tem Geo Tec 
concrete, normal - GLO C.2395:Manufacture of articles of

concrete, cement and plaster
P 8.55 m3 4 3 1 2 4 

steel, chromium steel 18/8 - GLO C.2410:Manufacture of basic iron and 
steel

P 6.75 t 4 3 1 2 4 

UNF F 12.50 t 4 3 1 2 4 
Dry Cask F 1 item 4 3 1 2 4 

Stage: Decommissioning 
Name EcoInvent Category P/F Value Unit Rel Com Tem Geo Tec 
acetylene - GLO C.2011:Manufacture of basic chemicals P 5.90 kg 1 4 2 4 5 
argon, liquid - GLO C.2011:Manufacture of basic chemicals P 23.92 kg 1 4 2 4 5 
concrete, normal - GLO C.2395:Manufacture of articles of

concrete, cement and plaster
P 184.20 m3 1 4 2 4 5 

diesel - Europe without 
Switzerland 

C.1920:Manufacture of refined 
petroleum products

P 3.27 ×103 kg 1 4 2 4 5 
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electricity, high voltage - US D:Electricity, gas, steam and air 
conditioning supply 

P 552.27 MWh 1 4 2 4 5 

heat, district or industrial, natural 
gas - Europe without Switzerland 

D.3530:Steam and air conditioning 
supply

P 8.72 ×103 MJ 1 4 2 4 5 

heat, district or industrial, natural 
gas - Europe without Switzerland 

D.3530:Steam and air conditioning 
supply

P 1.03 ×103 MWh 1 4 2 4 5 

hydrogen, liquid - RER C.1920:Manufacture of refined 
petroleum products

P 949.43 kg 1 4 2 4 5 

lead - GLO C.2420:Manufacture of basic precious
and other non-ferrous metals

P 0.96 t 1 4 2 4 5 

Nuclear facility F 1 item 1 4 2 4 5 
oxygen, liquid - RER C.2011:Manufacture of basic chemicals P 2.18 ×105 kg 1 4 2 4 5 
phosphoric acid, industrial grade, 
without water, in 85% solution 
state - GLO 

C.2011:Manufacture of basic chemicals P 0.88 t 1 4 2 4 5 

steel, chromium steel 18/8 - GLO C.2410:Manufacture of basic iron and 
steel

P 4.97 t 1 4 2 4 5 

Water Elementary flows/Resource/in water F 8.52 m3 1 4 2 4 5 
Waste, nuclear, low and medium 
active/m3 

Waste/ecopoints 97, CH P 819.50 t 2 4 2 4 5 
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Table B.2. Data used to determine impacts associated with transportation throughout the fuel cycle based on total distance traveled, mode 
of transporation, and weight per shipment. 

Source Destination Travel Type Packaging Distance (km) Weight per 
shipment (t) 

Adelaide, Australia San Diego, CA Sea Freight 210 liter containers 13738.14 0.35 
Novorossiysk, RUNVS Port Charleston, SC Sea Freight 210 liter containers 10878.65 0.35 

Port Charleston Metropolis, IL Train 210 liter containers 938.25 0.35 
San Diego, CA Metropolis, IL Train 211 liter containers 3069.01 0.35 

Saskatoon, Canada Metropolis, IL Train 210 liter containers 2638.00 0.35 
Metropolis, IL Eunice, NM Truck Type 48Y 1657.30 12.50 

Eunice, NM Richland, WA Truck Type 30 B 2490.94 2.28 
Richland, WA Clemson, SC Truck Type A 375.51 233.33 
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