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Abstract 

Connected autonomous intelligent agents (AIA) with enhanced decision making 

through machine learning can improve intersection performance and resilience for the 

transportation infrastructure. An agent is an autonomous decision maker whose decision 

making is determined internally but may be altered by interactions with the environment 

or other agents. Implementing agent-based modeling techniques to advance 

communication for more appropriate decision making will provide great benefits to 

autonomous vehicle technology.  

A new algorithm is proposed to improve the decision-making process of 

autonomous vehicles and intelligent traffic signals, specifically at city like intersections. 

This is completed by understanding vehicle to vehicle (V2V), vehicle to infrastructure 

(V2I), and infrastructure to infrastructure (I2I) communication and using gathered data to 

ensure these agents make more appropriate decisions given the circumstances. These 

vehicles and signals are modeled to adapt to the common traffic flow of the intersection 

and ultimately find an optimum flow that will decrease average vehicle time to ultimately 

reduce inefficiency through each intersection. Considering each light and vehicle as an 

agent and utilizing communication between these agents will enable opportunity for data 

transmission. Improving agent-based I2I communication and decision making will 

provide performance benefits to traffic flow capacities.  
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Evaluations were completed comparing intersections with fixed, coordinated, and 

adaptive timing signals. A fixed timing signal is an intersection using a fixed maximum 

green light time with no opportunity for adjustment. The coordinated signals adapt and 

change light status based on the current light status of adjacent intersections. Adaptive 

signals add in a recognition of vehicle load in one direction and adjust their own status 

either based on the load at the individual intersection or a neighboring light status change 

with the intent to improve traffic flow. 

To compare these scenarios given a specific example of 160 total vehicles present 

on the road in a 2x2 intersection grid setup, inefficiency was reduced from 50% to 45% 

given the relationship between ideal average time compared to actual average time for 

vehicles proceeding through an intersection. Overall tests were run to compare the 

different light signal options based on the number of vehicles on the road and maximum 

green light time in one direction. The results were consistent and overall inefficiency was 

reduced using an adaptive traffic signal to recognize upcoming vehicles combined with 

the ability to adjust based on adjacent intersection light status changes.  
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1. Introduction

1.1 Introduction 

Connected autonomous intelligent agents (AIA) with enhanced decision making 

through machine learning can improve intersection performance and resilience for the 

transportation infrastructure. An agent is an autonomous decision maker whose decision 

making is determined internally but may be altered by interactions with the environment 

or other agents. Implementing agent-based modeling techniques to advance 

communication for more appropriate decision making will provide great benefits to 

autonomous vehicle technology.  

In general, swarm robotic decision making has been optimized using a central master 

controller that relays information to other slave robots. This technique may be difficult to 

utilize when many subsystems must be controlled. This is due to the main controller 

functioning as the only input to one robot; these robots do not consider the input of 

neighboring robots. This creates difficulty in synchronizing the control of all subsystems. 

Therefore, agent-based communication is a beneficial alternative to improve 

autonomous vehicle decision making. Advancing this form of technology will improve 

traffic flow as well as create a safer and more resilient environment for the transportation 

infrastructure.  

To improve overall communication within a group of agents, it is beneficial to allow 

the robots to communicate individually as opposed to having one centralized controller. 
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This will create a more resilient environment and allow each agent to communicate their 

own status to neighboring agents. Success of this method will ensure the system stays 

more up to date as time continues. Furthermore, rather than having a centralized 

controller gathering all information, each individual robot will gather data that can be 

interpreted and used for individual decision making. The ability for individual agents to 

gather data to provide information to nearby agents will allow the system to function 

more as a realistic intersection model.  

1.2 Research Problem and Motivation 

With the emerging autonomous vehicle technology, it is important to study the 

positive and negative effects that may occur throughout a realistic connected vehicle/city 

environment. Furthermore, how can the newer communication technology be used to 

improve performance through intersections? Enhanced safety, traffic flow, and resilience 

are all beneficial to vehicle transportation and an agent-based approach will ultimately 

create a more positive outcome. 

This technique can be applied to autonomous vehicle transportation aspects. The 

ability for each car to gather data through its own sensors as well as pull data from other 

local cars can be a huge technology improvement. If automobiles can relay information 

about current locations to nearby vehicles as well as traffic lights, the intersection can 

apply the received data to the immediate situation. For example, an individual 

intersection may be overcrowded from a high number of approaching vehicles. The 

improved communication between the status of intersections will allow traffic lights to 
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communicate to provide alternative light signal times. This is just one example that 

displays the benefits of improved vehicle communication and decision making. This 

knowledge will ultimately improve traffic flow, safety and overall agent behavior.  

Intelligence is a systems ability to act 

appropriately in an uncertain environment, 

where an appropriate action increases the 

probability of success, and success is the 

achievement of behavioral sub-goals that 

support the system’s main goal [Likhachev 

2009]. To improve autonomous vehicle 

intelligence, this Autonomous Intelligent Agent 

(AIA) technique can be applied to the automotive transportation system. Individual 

vehicles can recognize and communicate status to other nearby vehicles regarding 

position, velocity and upcoming desired direction. The ability for these agents to 

communicate will allow for more detailed traffic data and the interpretation of this data 

can result in an improvement of resilience for the transportation infrastructure.  

Furthermore, to ultimately improve roadway intersection performance, it is 

beneficial to consider traffic signal controllers as agents as well. Figure 1 displays this 

utilization of the connected agent technology. Automobiles can relay information about 

their current speed and location to the intelligent traffic signal controllers whom can then 

interpret this data and apply it appropriately. This ideally will allow the traffic signal 

Figure 1: Agent Based Modeling Approach. 
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controllers to make a status decision based on the abundance or lack of vehicles 

approaching from a specific direction. It will be demonstrated how relaying individual 

status can ultimately improve traffic flow at intersection scenarios. 

1.3 Thesis Statement 

A new algorithm is proposed to improve the decision-making process of 

autonomous vehicles and intelligent traffic signals, specifically at city like intersections. 

This is completed by understanding vehicle to vehicle (V2V), vehicle to infrastructure 

(V2I), and infrastructure to infrastructure (I2I) communication and using gathered data to 

ensure these agents make more appropriate decisions given the circumstances. Working 

with more complex and realistic situations for intersections is a new study and overall, 

the connection of the vehicles and traffic lights will ultimately allow for the ability to solve 

an ideal traffic signal optimization problem. This concept will be proven by modeling city 

intersections while considering vehicle distances from an intersection to determine light 

change probability. The performance will be evaluated, and the information gathered 

through the agent-based communication at each intersection will be used to improve the 

decision making of the traffic signals at individual intersections. 

With improved decision making, we can create more accurate models of common 

intersections. These vehicles and signals are modeled to adapt to the common traffic flow 

of the intersection and ultimately find an optimum flow that will decrease average vehicle 

time through each intersection. Considering each light and vehicle as an agent and 

utilizing communication between these agents will enable opportunity for data 
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transmission. As data is gathered, each agent can make safer, time dependent decisions 

to benefit the intersection in that city. Improving agent-based I2I communication and 

decision making will provide performance benefits to traffic flow capacities. 

Furthermore, advancing this form of communication to allow for self-configuring systems 

will improve traffic flow as well as create a safer environment for the transportation 

infrastructure.  

1.4 Research Outline 

This section will highlight the details of each chapter to provide insight on what can 

be expected. 

1.4.1 Chapter 2: Literature Review 

A literature review has been completed on different approaches to modeling 

autonomous vehicle behavior and on the potential to connect intersections in a smart city 

environment. The initial improvement of autonomous vehicles is a new technological 

advancement and studies to show potential upgrades using this technology for more 

advanced communication abilities are the main areas of focus for this literature review. 

Simulating a connected agent environment is a new study but literature reviews on many 

aspects of autonomous vehicles can demonstrate the need for agent-based behavior in 

this specific environment.  

1.4.2 Chapter 3: Simulation Method 

The MATLAB model demonstrating the improved traffic flow will be described. The 

logic and equations used to calculate the appropriate behavior for each vehicle and traffic 
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signal will be explained. The various techniques and methods used throughout the code 

are related to the kinematic performance of vehicles and the data gathered will be used 

to prove that this method is of use to the transportation infrastructure.  

1.4.3 Chapter 4: Simulation Results 

The results from the various simulations run will be displayed and discussed. 

Numerous tests were carried out based on overall car count in the simulation, maximum 

green signal light time per intersection, and car load at a specific intersection. Basic 

intersection models with fixed timing signals were initially evaluated and ultimately 

compared to the adaptive timing signal network. The average vehicle time through each 

intersection is evaluated to determine if overall traffic flow is improved. 

1.4.4 Chapter 5: Conclusions and Future Work 

Traffic flow improvement is an engineering problem that has been discussed for many 

years. With emerging autonomous vehicle technology, a new type of solution can be 

utilized. This autonomous agent technique can eventually be applied for all dynamic 

components that may be considered in a city environment.  
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2. Literature Review

The individual details of each component in the transportation infrastructure are

complex, therefore highlights of current, new, and potential improvements will be 

discussed. Overall, there is a need and potential for improved communication between 

vehicles and traffic signals given emerging autonomous vehicle technology.  

2.1 Current Infrastructure Technology 

General traffic lights operate on a fixed timing schedule typically only allowing 

adjustments to the sequence based on a sensor to detect vehicles at the intersection and 

through expected volumes of traffic based on daily traffic routines. These common 

approaches are solely based on the detection of nearby vehicles. A benefit of detection 

devices present in a fixed light sequence traffic signal is the option to alter traffic flow 

directions through nearby vehicle detection given the light has not reached its maximum 

green light time display. Another benefit is the option to skip certain cycles if no vehicle 

is present in a specific direction at that intersection. This will result in an improved flow 

of traffic in the opposite direction. Another common technique for traffic flow 

optimization is the use of the concept rolling horizon [Goodall 2013]. A traffic control 

algorithm will optimize an objective function over a short period of time to estimate the 

position of vehicles over future cycles. This approach again only allows for estimation of 

a vehicle location as opposed to a precise recognition. With emerging autonomous 

vehicle technology, intersection performance can greatly be enhanced. 



8 

Furthermore, a rolling horizon quadratic programming approach was used for signal 

control [Aboudolas 2010]. They investigated recently developed signal control and 

discovered new ways to improve real-time network control in large-scale networks. The 

traffic responsive urban control (TUC) method was used and is based on a linear quadratic 

multivariable regulator which considers minimum green time constraints and cycle time. 

Two different strategies of first and second class were created. First class considers 

undersaturated traffic conditions while second class considers oversaturated traffic 

conditions. Overall optimization for network wide signal control of traffic was proven 

effective through efficiency improvement.  

2.2 Recent Autonomous Vehicle Technology Advancements 

For over a decade, there have been several attempts to develop approaches for 

improving operations of self-driving vehicles through signalized intersections [Mladenovic 

2014]. One main concentration for improvement has been the cooperation of the vehicles 

to improve safety. About 96% of traffic engineers recognize the importance of safety at 

intersections, while identifying the concern for respect and morality. Crashes that occur 

generally are due to human error. Therefore, to implement autonomous vehicles and 

ensure citizens are content with this improvement, a safer environment throughout the 

automotive transportation must be proven successful.  

A wide range of approaches to improve decision making of autonomous vehicles have 

been carried out. Although certain problems may be anticipated, methods in the 

literature neglect uncertainty on the future states of other nearby vehicles [Petti 2005]. 
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Some approaches assume a dynamic model of a detected obstacle and propagate its state 

using standard filtering techniques such as the extended Kalman filter [Fulgenzi 2008]. 

However, these experiments have resulted in unrealistic models as these approaches 

have led to conservative and partially unrealistic data due to too many assumptions of 

current and future states of nearby vehicles.  

Autonomous vehicles have 

also seen instances of decision-

making approaches in traffic 

situations from the 2007 DARPA 

Urban Challenge [Darpa 2007]. 

Generally, decision making was 

performed for a variety of solutions that ranged from finite state machines [Montemerlo 

2008], to decision trees [Miller 2008], to several heuristics [Urmson 2008]. However, 

some approaches have attempted to solve the decision-making problem for autonomous 

driving through the lens of trajectory optimization [Ferguson 2008]. These approaches 

were beneficial in demonstrating the use of this technology. Newer studies have gathered 

information from these experiments to improve the ability of autonomous vehicles in 

different environments.  

Decision-making for autonomous driving can be challenging because of uncertainty 

and the continuous state of nearby vehicles [Galceran 2015]. Majority of autonomous 

vehicle decision making algorithms assume full knowledge of each dynamic component 

Figure 2: Vehicle Recognition Technology. 
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which can lead to incorrect perception of the road. Galceran et al [2015] discusses the 

development of a new algorithm with an improved method of tracking dynamic objects 

on the road by using model-based estimation. This algorithm is used to improve reasoning 

in occluded regions and in passing, merging, or intersection handling situations that 

autonomous vehicles may encounter. The overall method in tracking full dynamic 

behavior of certain components can be implemented in an appropriate agent-based 

model algorithm.  

Galceran et al [2015] also created a method to allow nearby autonomous vehicles to 

evaluate consequences of potential actions given possible decisions of that vehicle. The 

history of common dynamic states of a nearby vehicle is first evaluated to create a likely 

outcome policy for the nearby vehicle. The intentions of the initial vehicle are observed 

as well. Given the two behaviors of the vehicles, a closed loop interaction maximizes the 

reward given the direct scenario. These outcomes were then evaluated to prove this 

anticipated decision-making approach is beneficial. This decision-making approach can be 

used to improve the overall safety in an agent-based environment as nearby vehicles will 

be able to track and predict upcoming states of nearby vehicles 

Cunningham et al [2015] also created a multipolicy approach for improved decision 

making in uncertain environments. Considering the future states of other agents has 

resulted in an ability to scale the model to more complex traffic scenarios. A real-time 

policy from nearby vehicles as well as the selected vehicle is evaluated, and the algorithm 

ultimately selects the best outcome for the controlled vehicle. Furthermore, different 
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driving preferences are considered which creates opportunity for an improved human 

experience based on driver preference. The experiment for this approach was 

demonstrated using a real-world autonomous vehicle to justify the need for this 

algorithm. Overall, implementing these autonomous systems into our infrastructure 

requires a delicate balance of new technologies, but the improved performance in an 

agent-based environment is evident.  

2.3 Partially Observable Markov Decision Process (POMDP) 

A common method that has been used to solve decision optimization problems is the 

Partially Observable Markov Decision Process (POMDP). This model provides a 

mathematically rigorous formalization of the decision-making problem in uncertain 

dynamic scenarios [Galceran 2015]. In general, these problems have resulted in very 

complex computations which can take several hours to converge even while considering 

an extremely basic non-real-world scenario. Although solutions have been considered 

lengthy, POMDP methods have still been formulated to arrive at appropriate solutions for 

these decision-making scenarios.  

Bandyopadhyay et al [2013] performed a POMDP approach that considers motion 

planning through the possibilities of the human intention. The model uses a finite set of 

possible human intentions and an algorithm for an autonomous robot is developed to 

recognize these intentions. The method consists of an autonomous vehicle agent 

interacting with a human agent. Given the possibilities of the human intention, the 

autonomous vehicle agent will observe the behavior and establish a decision in advance 
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to act optimally in that specific scenario. Given the different scenarios in this type of 

environment, a safer decision can be determined to create a safer environment. Agent 

based modeling can be used to improve interactions between automobiles and humans.  

A point-based Markov decision process for single-lane driving and merging was 

performed by [Wei 2011] and [Ulbrich 2013] and was applied to a POMPD formulation 

that considered highway changes. [Brechtel 2014] also performed an experiment using 

continuous state space reasoning about objects that may potentially be hidden while 

considering observation uncertainty. Ideas using these methods have been performed 

but due to the complex nature of these problems, it is generally not extremely beneficial 

to include a POMDP problem in this research.  

2.4 Connected Vehicle Technology 

Although quality decision making is important in the improvement of safety, 

connectivity between vehicles adds an extra component to improve the traffic flow and 

overall safety of the vehicle. Talebpour and Mahmassani [2016] performed a study 

demonstrating the influence of connected autonomous vehicles and the impact on traffic 

flow. It was proven that connected vehicle technology can provide real-time information 

about nearby traffic and ultimately can increase efficiency and reliability.  

In the same article published by Talebpour and Mahmassani [2016], the type of 

communication that can occur in an autonomous environment was discussed. Active 

Vehicle-to-Vehicle (V2V) communication is the ability for one vehicle to maintain an 

appropriate distance behind another. This is typically based on desired spacing, 
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comfortable acceleration or deceleration, and the relative velocity between the vehicles. 

This specific type of communication is like adaptive cruise control (ACC) which allows a 

user to specify a top speed which may be reduced based on the distance behind and 

speed of a vehicle in front. Vehicle to Infrastructure (V2I) is also an important level of 

communication. Active V2I communications allow real-time data to be transmitted 

regarding speeds of multiple vehicles. The signal can then update an appropriate speed 

limit to allow the connected autonomous vehicles to work in harmony. It is concluded 

that the general autonomous vehicle will calculate the appropriate acceleration based on 

all inputs to the system from nearby vehicles and infrastructure signals. This calculation 

is important as the basic behavior of a vehicle begins with the ability to accelerate and 

decelerate appropriately.  

Smith et al [2010] created a decentralized innovative traffic signal algorithm that 

utilizes IntelliDrive technologies to improve the efficacy of traffic signals. This traffic 

control algorithm determined the optimal point to terminate the green phase in one 

direction based on the present traffic pattern. Furthermore, data gathering strategies for 

changes in acceleration, network connectivity, and road conditions were implemented. 

This knowledge allowed traffic control algorithms to be created that would determine the 

strength in the connectivity of connected vehicles. Eventually, an interface between 

MATLAB and VISSIM was used to implement the algorithm and real-world performance 

was evaluated in the Washington DC metro area. Dedicated short range communication 

technology (DSRC) was used to implement this communication. The proportion of 
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vehicles passing through the intersection was compared with real world data and 

demonstrates that a decentralized adaptive traffic signal was beneficial.  

More recent research relating to the topic of connecting autonomous vehicles and 

traffic signals is through [Feng 2015] paper titled “A real-time adaptive signal control in a 

connected vehicle environment.” Common traffic signals have been optimized to improve 

traffic flow based on real-real time traffic conditions. Adaptive signal controls design 

signal time and phasing on-the-fly based on real-time traffic demand as well as predicted 

traffic demand. Furthermore, they can use sensors embedded in the pavement or non-

intrusive sensors, like video detectors. However, this traffic flow can be improved with 

advances in wireless communication technology as vehicles can communicate with each 

other and with the infrastructure in the emerging connected vehicle system [Feng 2015]. 

There have been many advances in Vehicle to Vehicle (V2V) communication as well as 

Vehicle to Infrastructure (V2I) communication. These technologies use dedicated short-

range communication (DSRC) and this technology can be used to gather data for these 

specific communication scenarios.  

This study considered both autonomous and non-autonomous vehicles. Applications 

utilizing V2I communication enable the intersection to acquire a more complete picture 

of the nearby vehicle states. Data from connected vehicles provide real-time vehicle 

location, speed, acceleration, and other status-based vehicle data. From this new source 

of data, traffic controllers should be able to make “smarter” decisions [Feng 2015]. This 

author has presented a real-time adaptive traffic control algorithm by utilizing data from 
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connected vehicles. Algorithms for this study utilize arrival time, estimation for traffic 

signal timing, and phasing decision at the traffic controller.  

To improve light signal timing, Goodall et al [2013] created an algorithm to control 

traffic signals with connected vehicles. Instead of relying on point detectors to recognize 

vehicles at a fixed location, traffic signals can use data transmitted from a vehicle through 

DSRC to gain access to previously estimated measures such as vehicle speed, position, 

arrival time, acceleration rates, and queue lengths [Goodall 2013]. The predictive 

microscopic simulation algorithm (PMSA) was then created to improve state of the 

practice performance by responding to real time demands while eliminating the ability to 

reidentify records of an individual vehicle to protect driver privacy.  The algorithm initially 

receives data regarding the position and speed within a 300-meter distance of the light. 

Assuming a minimum green light signal time of 5 seconds and a maximum of 15 seconds, 

the most appropriate green light signal timing is determined by the time required to clear 

vehicles in that direction.  

Similar connected vehicle and infrastructure research was also completed for 

situational awareness for a connected autonomous vehicle (CAV) making a left turn at a 

signalized intersection [Khan 2019]. Video cameras as well as lidar and radar sensors are 

placed at the intersection to recognize upcoming vehicles traveling in the opposite 

direction of the vehicle intending to make a yielding left turn. The intersection will predict 

the arrival time to the intersection of the opposite direction vehicles. If the maneuver can 

be completed safely, the intersection sensors will notify the CAV (I2V) that it may proceed 
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through the intersection. Furthermore, given a two-lane road, the autonomous vehicle 

control system can recognize behind vehicles to determine if a safe maneuver to the left 

turn lane can be completed [Khan 2019]. This study was completed given an aggressive 

non-CAV driver which is important to consider because not all vehicles on the road today 

are autonomous. Overall, the ability for the traffic signal to recognize upcoming vehicles 

from a distance was proven effective.  

2.5 Multi-Intersection and Adaptive Signal Control for Traffic Optimization 

SCOOT and SCAT traffic signal techniques have been used widely throughout traffic 

control for many decades. SCOOT is an optimization technique that incorporates a 

centralized system that measure traffic loads continuously [Luk 1984]. These 

measurements of traffic volumes adjust signal timings to minimize the average vehicle 

queue in specific areas per intersections [Stevanovic 2009]. Multiple details of the overall 

optimization include split timing, offset, and cycle length which provide smaller individual 

details for queue minimization. SCAT is an automated real time traffic responsive signal 

control strategy that incorporates local and regional computers [Stevanovic 2009]. 

Information from vehicle detectors regarding location is used to adjust signal timing 

based on the variation in traffic demand. Software program VISSIM is often used with this 

method and overall, signal timing is adjusted based on change in traffic flow which is 

monitored from the heuristic feedback system.   

A connected vehicle research study based on an adaptive traffic signal in a mixed 

traffic stream was also completed [Khan 2019]. Connected vehicles (CV) are considered 
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mobile nodes that communicate with nearby vehicles (connected road users) and 

infrastructure traffic signals. The intersection signals use an algorithm to optimize the 

traffic flow and adapt the timing based on vehicle load through the intersection. Initially, 

traffic signal timing is estimated based on the number of connected vehicles at the 

intersection. As vehicles travel through the intersection, dynamic offsets based on the 

initial signal timing can be implemented from the vehicle data load [Khan 2019]. Finally, 

the green time interval can be adjusted from the queue load of vehicles in the red 

direction. Overall, the time a vehicle is stopped at the intersection (stopped delay) can be 

reduced through adaptive signal timing.  

Reinforcement learning (RL) for adaptive traffic signal control was also an important 

addition to traffic signal technology. Reinforcement learning involves an agent that finds 

new ways to achieve a goal by interacting dynamically with the environment [Abdulhai 

2003]. The agent will consider different situations and evaluate performance to 

determine the overall best sequence of actions to achieve the ideal goal in the most 

appropriate manner. Feedback signals aid the agent in determining the level of 

contribution for each situation. The research uses a Q-learning technique [Watkins 1989] 

to determine appropriate relationships between states, actions, and rewards given the 

interaction with the environment.  

Reinforcement learning was also applied in a multi-agent system [Arel 2010]. In this 

research, two types of agents were considered. Outbound agents adjust traffic signals by 

considering the length of the queue at individual intersections. This is determined using 
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the longest queue first algorithm (LQF). Central agents are also considered which use a 

value function to alter status which is driven by local neighboring traffic conditions. 

Overall, a machine learning technique is implemented to approximate and determine the 

optimal decision [Arel 2010] through interactions between the different agents.  

Finally, multi intersection autonomous vehicle interactions have been simulated 

based on distributed mixed integer linear programming (MILP) to enhance traffic flow at 

signalized intersections [Ashtiani 2018]. Using connected autonomous vehicles (CAV), 

intersections solve their own optimizations given vehicle information and communicate 

decisions to other autonomous vehicles. Using time for a vehicle to proceed through an 

intersection and distance to the intersection, the controller can create a list of subscribed 

vehicles to neighboring intersection to find the desired access time. Overall traffic flow is 

optimized given these calculations.  

This research was also incorporated using optimal schedule of autonomous vehicle 

arrivals at intelligent intersections [Fayazi 2017]. Using the mixed integer linear 

programming technique (MILP), a live picture of traffic conditions can be created. 

Notifications per vehicle can be communicated to the upcoming intersections to 

determine arrival time of that vehicle. Considering all subscribed vehicles to the upcoming 

intersection, an optimal schedule for light time can be determined to minimize 

intersection delay while ensuring safety. The access distance of the vehicle to the 

intersection allows for further calculations of the desired arrival time to ensure vehicles 
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do not face extreme delays. Furthermore, safety is more improved through ensuring 

vehicles travel safely behind vehicles ahead given autonomous vehicle reaction time.  

2.6 Potential for Communication Improvement 

In general, studies have been completed through connecting vehicles to determine 

common traffic flow. This data is used to ultimately improve the traffic signal patterns. 

However, there is not a significant amount of research considering the communication 

between both vehicles and 

traffic signals and treating each 

as an individual intelligent 

agent. This further includes a 

lack in research of 

communication between adjacent intersections (I2I). Including this newer form of 

communication can create improved traffic flow across a wider range of roads. 

Connecting vehicle flow through multiple intersections allows for more accurate status 

updates that can be used to improve both vehicle and intersection status decisions. 

Considering previous research regarding connected vehicle behavior and implementing 

optimization algorithms for the addition of connected traffic signals will allow for further 

improvement of intersection performance. A full network of agent-based communication 

between autonomous vehicles and intelligent traffic signals is a new study that will be 

discussed and proven to be advantageous to the transportation infrastructure. 

Eventually, this communication can be improved to full dynamic component connectivity 

Figure 3: Full City Intersection Connectivity. 
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in a city intersection as shown in Figure 3 however, this research will only consider 

communication between autonomous vehicles and intelligent traffic signals. 
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3. Simulation Method 

3.1 Research Campaign 

The following tasks have been completed to demonstrate improved intersection 

performance from agent-based communication between autonomous vehicles and 

intelligent traffic signals: 

• Introduce Autonomous Vehicles and Intelligent Traffic Signals as Agents; 

• Create a MATLAB model of a realistic single fixed timing signal intersection; 

• Create a grid of intersection situations with fixed timing signals and gather data of 

vehicle behavior to establish a baseline for improvement; 

• Implement coordinated traffic signals to alter light status due to the status of 

neighboring intersections; and 

• Improve overall intelligence through adaptive light signal timing based on nearby 

intersection light status and upcoming vehicle load to individual intersections. 

Individual details about the tasks will be explained throughout the following chapter. 

Methods using AIA (Autonomous Intelligent Agents) are introduced and evaluations are 

completed to demonstrate improvement of intersection efficiency and safety. 

3.2 Introduction of Autonomous Vehicle and Intelligent Traffic Signal Agents 

3.2.1 Defining an Agent Based Autonomous Vehicle 

The initial task consists of ultimately defining what is an agent based autonomous 

vehicle. The look, behavior, and interaction are qualities that must be addressed and 
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defined as these autonomous agents can interact with other vehicle agents, nearby 

intelligent traffic signal agents, as well as the environment. Each autonomous agent will 

have its own set of rules and the goal is to model the behavior of these agents to simulate 

potential interaction between autonomous vehicles to ultimately determine if these 

connected vehicles do improve safety and timing of traffic in a city.  

Inputs, outputs, and individual behaviors for autonomous agents will be discussed. 

These qualities are important for determining a desired goal of an agent through an 

intersection and to provide output details to communicate these goals and current status. 

Environmental inputs to an agent are the heading direction to an intersection (d) and the 

desired exit direction (O). Upcoming vehicle locations (xF) will also be considered for 

proper yielding. The uncertainty variables that are calculated per autonomous agent 

iteration are based on the vehicle instantaneous velocity (vi) and distance from the 

intersection (xi). This data will be used to predict the amount of time (tid) a vehicle will 

take to proceed through the entirety of the intersection. Previous research emphasizes 

the importance of reaction time when considering braking times per distance to an 

intersection [McGehee 2000]. However, for this simulation, reaction time will be 

neglected as the autonomous agent velocity will be calculated in real time to simulate a 

connected vehicle environment. Technology with instantaneous feedback is more 

efficient in recognizing upcoming vehicle updates than the common human reaction time. 

Finally, an initial calculation of time to an upcoming intersection will be used as an input 

to the intelligent agent traffic signal.  
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3.2.2 Defining an Agent Based Intelligent Traffic Signal 

The intelligent traffic signal agent is beneficial for gathering status data from 

nearby autonomous vehicles and neighboring light agents. An intelligent agent is also 

designed to communicate individual status to other nearby agents. The signal agents are 

designed to work together to improve traffic flow through individual intersections. With 

these goals in mind, qualities of traffic signal agents can be determined to ultimately lead 

to the creation of a world model for intersection improvement. 

The initial control input parameter for the intelligent lights will be a fixed timing 

per light signal status. These timing values in seconds consist of the common green (tG), 

yellow (tY), and red (tR) light signals that are present today. The initial timing per green 

light will be adjusted for different simulations to evaluate traffic flow of a common 

intersection. For all simulations, the individual intersection setup consists of a one lane 

input and output per direction. Directions are limited to north, south, east, and west. The 

nearby light status (n) depending on which intersection it is receiving data from, will 

change with time based on the status of these adjacent intersections. This variable will 

only be used when multiple intersections are considered. The current light status (c) is a 

dependent output from an individual light that will be considered an input to both nearby 

vehicles and traffic signals. By considering the status of adjacent intersections, the status 

of a current traffic signal may be adjusted for improved traffic flow.  
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3.2.3 Coupled System of Autonomous Vehicles and Intelligent Traffic Signals 

The main goal is to model an intersection that connects both autonomous vehicle 

and intelligent traffic signal agents. Figure 4 displays the ideal coupled system at an 

individual intersection when considering both an autonomous vehicle and an intelligent 

traffic signal each as an agent. Realistically, numerous nearby vehicles and traffic signals 

will be in simultaneous communication. However, for simplicity, initially only the 

interaction between one vehicle and light are considered.  

The importance of this experiment is to ensure the autonomous vehicle agents and 

intelligent traffic signal agents are working in harmony. As displayed in Figure 4, 

autonomous agents can communicate approach time to an intersection when necessary. 

The intelligent light can then put that autonomous car in queue and determine if a 

potential light status change is necessary based on the load of vehicles currently waiting 

Figure 4: Coupled Agent-Based Behavior. 
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at the light. The traffic signal will continuously gather nearby vehicle data to determine if 

a light status change is necessary. Furthermore, to allow two-way communication, 

intelligent traffic signals can relay light status to upcoming vehicles to ensure common 

traffic laws are obeyed.  

3.3 The MATLAB Model 

The following section will describe the process for constructing the MATLAB model 

and provide detailed explanations regarding individual code sections. 

3.3.1 Modeling a Single Fixed Timing Signal Intersection  

The MATLAB model has been created to run specific simulation scenarios on the 

behavior of autonomous vehicles in a smart city environment. The initial model was 

created to demonstrate traffic 

flow at one individual 

intersection. Figure 5 displays 

the individual intersection model 

labeled with specific directional 

values for facilitated reference 

throughout this section. The 

direction number is based on the 

input or output location relative to the center of the intersection and it is assumed that 

all cars will travel on the right side of the road. The overall model is a fixed time step 

iteration-based code which calculates the desired acceleration of each individual vehicle 

Figure 5: Individual MATLAB Simulation Intersection. 
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for appropriate movement throughout the simulation. This model is based on the 

behavior of a realistic vehicle. As time passes, drivers change positions relative to the 

traveled road in the desired direction. Vehicles will continue to move throughout the 

simulation until their desired destination is reached. 

3.3.1.1 Important Intersection Inputs for Desired Behavior 

The basic intersection was developed to allow for different input values into the 

simulation. The important inputs are displayed in Table 1 which include the MATLAB 

model variable name for reference, a range of potential values that can be chosen for 

common intersection performance, and the units of that value.  

The number of vehicles in the simulation refers to the fixed number of vehicles that 

will always be active in the simulation. With a fixed number of vehicles per intersection, 

the departure of one vehicle will automatically place a new vehicle at an entrance point 

in the simulation. That new vehicle will have a different driver behavior compared to the 

exiting vehicle. The timestep is critical as the iteration for the movement of each vehicle 

is based on that specific time. Based on the given time in the table, each vehicle update 

will be completed 88 times to simulate 1 second in real time. The time to run the 

simulation is based on the desired length of running time in seconds. This number can be 

compared with the maximum number of cars to run through the simulation. The length 

of the simulation can either be based on the total number of vehicles that pass through 

the intersection or the desired length of time depending on which value is reached first.  
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Table 1: Important Simulation Inputs. 

Input Variable MATLAB Name Common Value Units 

Overall Simulation Inputs 

Number of Vehicles in 
Simulation  

CarsPerInt 5 – 60 - 

Time of Simulation 
 

TotalTime 30 - 300 seconds 

Maximum Cars 
Through Simulation 

MaxCars 500 - 

Timestep for Vehicle 
Iterations 

timestep 1/88 seconds 

Individual Intersection Properties 

Speed Limit 
 

SpeedLimit 20 – 60 mph 

Lane Length to 
Intersection 

LaneLength 400 – 1200 feet 

Display Window 
 

Window 250 feet 

Light Timing Sequences 

Red Light Cycle  
Time 

Red 0.5 – 2 seconds 

Yellow Light Cycle 
Time 

Yellow 2 – 5 seconds 

Green Light Cycle  
Time 

Green 10 – 60 seconds 

 

The individual intersection properties are based on situations that may occur in 

everyday life. The lane length refers to the number of feet a vehicle must travel to an 

intersection center after indicating that it will be soon be arriving at that center. The lane 

length value (L) is also the location where new vehicles will be placed. Figure 6 displays a 

sample lane length value. The speed limit value can be chosen based on the desired 

simulation. In real world scenarios, the speed limit is determined from safe traffic 
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conditions. Typically, a shorter lane length will be paired with a slower speed limit due to 

cars having less distance to accelerate to higher speeds.  

The light timing sequences are 

important for overall intersection 

performance evaluation. Based on this 

simulation, the red, yellow, and green 

light times make up the time in seconds 

given to a specific direction per 

intersection. Referring to Figure 5, 

directions 1 and 3 will have 

simultaneous green lights for the 

given input time with 2 and 4 being held to red. The intersection behavior will then switch 

allowing vehicles from directions 2 and 4 to travel through for the duration of that 

common green light time. The yellow light time is generally determined by the speed 

limit. A common method for evaluating the appropriate yellow light duration is by dividing 

the speed limit in mph by 10. This will allow for a general approximation in seconds. 

Furthermore, the appropriate red-light time can be adjusted to account for vehicles that 

may arrive at the intersection slightly after their individual light changes from yellow to 

red (running a red light). This will ensure vehicles in the direction perpendicular to a 

previous yellow light will not proceed immediately through the intersection as some 

vehicles in the opposite direction may be clearing the intersection at higher speeds. 

Figure 6: Lane Length Reference. 
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Finally, the red-light time can be adjusted to lengthier times to account for scenarios 

where all traffic is stopped to allow pedestrians to proceed through safely. Overall, these 

scenarios are not considered in this research.  

3.3.1.2 Creating Vehicles with Random Behavior and Location Placement 

To ensure few prior assumptions are made that could improve data outcome, 

individual vehicle behavior and initial placement in the simulation are randomized. This 

section is evaluated for the number of vehicles in the intersection. The process provides 

a random initial input and output direction combined with a random intensity rating per 

vehicle.  

To compare a realistic example of a vehicle scenario that may occur, the directions 

from Figure 5 will be considered. Given directions 1 – 4, a random input direction is 

initially determined with the output direction being a random value in that same range 

but neglecting the previously determined input. U turns are not considered in this 

scenario. From the input and output direction, it can be determined the type of turn that 

will be made by the individual vehicle (ex. 1 to 4 is a right turn, 3 to 1 is straight, etc.). 

Further calculations can be completed from knowing the upcoming direction desired.  

The random intensity rating is important as it determines the type of individual 

driver behavior. Throughout the entire driving population, there is a wide range of various 

driving behaviors that are present on roads today. For simplicity, only 10 potential but 

common options are considered. The intensity rating parameter determines the driver 

desired speed of travel relative to the speed limit, the desired acceleration or deceleration 



30 
 

given more intense drivers tend to change velocities at a more rapid rate, and the desired 

headway a vehicle traveling directly in front. Less headway time accounts for a driver 

whom is more likely to tailgate. The potential intensity ratings that can be implemented 

on a scale from 1 to 10 are displayed in Table 2. An intensity rating of 5 is a driver whom 

is considered neither too cautious nor aggressive.  

Table 2: Intensity Rating Behavior. 

Intensity Rating Desired Speed (mph) Acceleration (ft/s) Headway (s) 

1 Speed Limit – 4  6 3.0 

2 Speed Limit – 3 7 2.8 

3 Speed Limit – 2 8 2.6 

4 Speed Limit – 1  9 2.4 

5 Speed Limit 10 2.2 

6 Speed Limit + 1 12 2.0 

7 Speed Limit + 3 14 1.9 

8 Speed Limit + 5 16 1.6 

9 Speed Limit + 7 18 1.3 

10 Speed Limit + 10 20 1.0 

 

Individual drivers will travel at their own desired speed which may be altered due 

to vehicles in front traveling at a lower speed. In this scenario, the vehicle will react to the 

slower speed and adjust to the desired time behind given the intensity rating. A simple 

kinematics equation is used to determine the headway of a vehicle in seconds (t) given 

the distance from the upcoming vehicle (d) and the velocity of the current vehicle (v).  

𝑡 =
𝑑

𝑣
 

(3.1) 

After receiving data regarding the initial input direction of the vehicle to the 

intersection and the intensity rating, a random placement in that direction is determined. 
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If no vehicles have been placed in a specific direction, a vehicle can be placed randomly 

throughout a range of 200 feet from the center of the intersection to the lane length. 

Finally, to ensure vehicles are not placed in similar locations, a random location placement 

is found in that overall range neglecting a smaller range of ± 20 feet from an originally 

placed vehicle.  

3.3.1.3 Vehicle Acceleration Calculation 

Updated behavior parameters calculated from the previous iteration to be used for 

the current iteration include the current position (xi) and velocity (vi) of an individual 

vehicle. The main objective of each iteration per car is to calculate the appropriate 

acceleration given the situation. Four main types of accelerations are calculated per 

iteration and the most appropriate acceleration is implemented in the final car movement 

calculation. The accelerations are highlighted in Table 3 and explained in detail 

throughout this section.  

Table 3: Individual Iteration Acceleration Options 

Distance Acceleration Maintaining an appropriate following distance behind 
a car given the desired headway time.  

Light Status Acceleration Determining the appropriate acceleration given no 
cars ahead, the current light status, and an intent to 
proceed straight through the intersection 

Right Turn Acceleration Calculated instantaneous acceleration given no cars 
to impede upcoming progress and a desire to make a 
right turn at the upcoming intersection  

Left Turn Acceleration Calculated instantaneous acceleration given no cars 
to impede upcoming progress and a desire to make a 
left turn at the upcoming intersection 
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Distance Acceleration 

It is critical for a vehicle to have the ability to accelerate and decelerate when a 

vehicle in front is present. Maintaining a safe distance is extremely important to ensure 

the following vehicle can slow down appropriately to avoid contact with the vehicle in 

front in an emergency stop situation. Therefore, based on the intensity rating assigned to 

an individual vehicle, the headway of a car in front will be maintained based on the actions 

of the preceding vehicle.  

Today, many vehicles are equipped with adaptive cruise control. This technological 

improvement allows the following car to maintain a safe distance from the lead vehicle 

given a selected following distance. The 2018 Honda Accord has the option to select four 

following distances when using this feature [Honda 2018]. This is like the intensity rating 

headway feature as more aggressive drivers will tend to choose a following distance that 

is closer compared to a cautious driver. Figure 7 displays the different distance/headway 

selection options from the 2018 Honda Accord owner’s manual [Honda 2018]. The Accord 

options are consistent with the headway values from the intensity rating. 



33 
 

 

Figure 7: Honda Accord Adaptive Cruise Control Options. 

Headway time is used to evaluate the appropriate following distance due to 

consistency given different velocities of a vehicle. From the figure, it is evident that the 

following distance in meters is greater for higher speeds but the time behind remains the 

same. This is due to a fixed ratio from equation 3.1. Rearranging the equation to solve for 

distance (d = vt) gives the product of the instantaneous velocity and the desired headway 

time to determine the appropriate following distance. The radar sensor on the vehicle can 

then detect the instantaneous distance from the vehicle in front and adjust the velocity 

of the vehicle to minimize the error between the ideal and actual distance.  
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This research uses the series of steps 

displayed in Figure 8  to ultimately arrive at the 

appropriate distance acceleration. Eventually, 

if statements in the time domain are used to 

calculate the appropriate acceleration per 

iteration given the instantaneous headway. 

The current and initial slowing down time are 

first evaluated. The current time (tc) behind is 

measured as described in equation 3.1 relating the distance and velocity. The initial time 

(ti) is calculated as the appropriate headway time (current time) to begin slowing down 

at the desired acceleration to reach the desired time behind at a similar velocity of the 

preceding vehicle. For consistent units, all velocities are calculated in ft/s and 

accelerations in ft/s2. The real time (teq) it takes for the behind vehicle to reach the same 

speed as the front vehicle given the front vehicle velocity (vFi), the initial ideal speed of 

the behind vehicle (vBideal), and the ideal acceleration of the behind vehicle (aBid) is 

calculated as follows: 

𝑡𝑒𝑞 =
𝑣𝐹𝑖 − 𝑣𝐵𝑖𝑑𝑒𝑎𝑙

−𝑎𝐵𝑖𝑑
 (3.2) 

 

The final position of the front car (xFf) is then found using the front vehicle initial 

position (xFi) and the time (teq) value previously calculated: 

Figure 8: Distance Acceleration Process. 
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𝑥𝐹𝑓 = 𝑥𝐹𝑖 + 𝑣𝐹𝑖 ∗ 𝑡𝑒𝑞 (3.3) 

The final position of the rear vehicle (xBf) is then found relative to the front vehicle 

position xFf using the desired final time behind (tf) and the desired final speed which is 

equivalent to the front vehicle assuming no velocity change. 

𝑥𝐵𝑓 = 𝑥𝐹𝑓 − 𝑣𝐹𝑖 ∗ 𝑡𝑓 (3.4) 

The real vehicle initial position for slowing down (xBi) is finally calculated.  

𝑥𝐵𝑖 = 𝑥𝐵𝑓 − 𝑣𝐵𝑖𝑑𝑒𝑎𝑙 ∗ 𝑡𝑒𝑞 +
1

2
∗ 𝑎𝐵𝑖𝑑 ∗ 𝑡𝑒𝑞

2  (3.5) 

The initial time behind (ti) to begin slowing down is then found by using the 

quadratic formula by relating the positions between both vehicles, the initial velocity of 

the rear vehicle, and the ideal acceleration. 

0 = 𝑥𝐵𝑖 − 𝑥𝐹𝑖 + 𝑣𝐵𝑖𝑑𝑒𝑎𝑙 ∗ 𝑡𝑖 +
1

2
∗ 𝑎𝐵𝑖𝑑 ∗ 𝑡𝑖

2 (3.6) 

Two solutions for ti will be presented after using this formula but the most 

appropriate answer is selected. The error between the desired time (tf) and current time 

(tci) is evaluated as well as the error between the velocity of the rear (vBi) and front car. 

The equations are used in the if statement logic to determine the most appropriate 

acceleration.  

𝑡𝑒𝑟𝑟𝑜𝑟 = 𝑡𝑐𝑖 −  𝑡𝑓 (3.7) 

𝑣𝑒𝑟𝑟𝑜𝑟 = 𝑣𝐵𝑖 − 𝑣𝐹𝑖  (3.8) 

A potential acceleration (ap) value is calculated to arrive at the appropriate tf 

based on relative positions between the two cars and the current velocity. This 

acceleration is generally used when tci ≈ tf or tci – tci – 1 ≈ 0 but relative velocities are still 
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different. The answer will be accurate based on the final sign (acceleration > 0, 

deceleration < 0), 

𝑎𝑝 =
2 ∗ (𝑥𝐹𝑖 − 𝑥𝐵𝑖) − 𝑣𝐵𝑖 ∗ 𝑡𝑓

𝑡𝑓
2  

(3.9) 

Finally, the appropriate distance acceleration is determined. The logic to 

determine the correct decision is displayed in Table 4. Previous calculations of tci are used 

to understand how the relative headway time is changing between iterations. One g is 

equal to gravitational acceleration (32.2 ft/s2). 

Table 4: Distance Acceleration Decision Logic. 

Current  
< Initial 

Current 
> Final 

Back Vel > 
Front Vel 

Back Vel < 
Ideal Vel 

Gaining 
Time 

Acceleration 
Choice 

ti – tc tci – tf vBi – vFi vBideal – vBi tci – 1 – tci Acceleration 

+ + + + ± 0.0001 ap 

+ + - + ± 0.0001 -ap 

+ + + + + -aBid 

+ + + + - -ap 

+ + - + - aBid 

+ ± 0.01 + + ± 0.0001 ap 

+ ± 0.01 - + ± 0.0001 -ap 

+ ± 0.01 + + + -aBid 

+ ± 0.01 + + - -aBid 

+ ± 0.01 - + - aBid 

-∞ ∞  +  aBid 

- +  +  aBid 

+ -  +  -2*aBid 

+ ≈ < -0.5  + + -1g 

- +  ± 0.01  0 

 



37 
 

This acceleration is considered the distance acceleration throughout the code. It 

is solely based on a vehicle in front of the currently evaluated vehicle. This acceleration is 

used frequently throughout the simulation.  

Light Status Acceleration 

The light acceleration calculation is directly formed from the status of the 

upcoming traffic signal. This light only has the option of being green, yellow, or red. 

Therefore, calculations regarding the light acceleration are based on these three status. 

Variables discussed in the distance acceleration section used B and F to refer to the 

behind and front vehicle. New variables will neglect the capitalized letters as only 

individual vehicles will be considered.  

The green light acceleration calculation is extremely simple. Considering a goal to 

arrive at the light without traffic conditions impeding progress, the vehicle will move at 

its desired speed until it is in a certain range from the upcoming intersection. Details 

regarding this range will be explained in upcoming paragraphs. Overall, for a green light 

scenario, the light acceleration will only be the ideal acceleration (aid) given the vehicle is 

traveling slower than its desired speed. A vehicle can travel through the light at its desired 

speed without having to consider a slower pace for an upcoming turn.  

The main calculation for this type of acceleration is finding the appropriate distance 

from the intersection that a vehicle should begin to slow down if necessary. This 

calculation is based on the number of cars between a specific vehicle and the intersection 
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(CI), the current velocity (vi), and the ideal acceleration rate (aid). A vehicle is considered 

through the intersection if the front of the vehicle has entered the intersection.  

The following equation is used to determine the ideal straight slow down point for 

a vehicle (xS) heading towards an intersection. In this given equation, the vehicle is 

traveling in the positive direction 2 (west to east) therefore, the slow down point value 

will be numerically less than the center coordinate of the intersection (0,0). The fixed car 

length throughout the simulation is 16 feet therefore, the constant 25 is used to 

approximate a 9-foot distance between stopped vehicles waiting for a green light. The 

exact coordinate point of the vehicle in direction 2 is measured from the back of the 

vehicle and the limit line for the intersection entrance is at x = -12. Given the fixed ending 

point of -35 ft from the back of the vehicle, the vehicle front coordinate will be -7 ft from 

the entrance of the intersection. Given these initial values, the ideal deceleration point 

can be calculated. Vehicles will only consider the light acceleration option if the current 

position of the car (xi) is greater than point xS. 

𝑥𝑆 = −35 − 25 ∗ 𝐶𝐼 −
𝑣𝑖

2

2 ∗ 𝑎𝑖𝑑
 

(3.10) 

Situations may occur where a vehicle is determined to decide if it can proceed 

through an intersection from a changed yellow light. Those scenarios will be discussed in 

the following section. Only two scenarios may occur regarding a yellow light status 

assuming the vehicle has not decided to proceed rapidly through the intersection. First, if 

the vehicle position is of a lower value compared to location xS, it will continue to travel 
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with its current behavior until xi ≥ xS. At this point, the light acceleration will equal aid until 

the vehicle has come to a complete stop. This same equation can be applied to a red light 

at the upcoming intersection. The second scenario is if a vehicle has decided not to 

proceed through the intersection but, has a position greater than xS. A new equation is 

used to determine the appropriate acceleration regarding the straight light status (aS) 

given previously discussed parameters. 

𝑎𝑆 =
−𝑣𝑖

2

2(−35 − 25 ∗ 𝐶𝐼 − 𝑥𝑖)
 

(3.11) 

Right Turn Acceleration 

The right turn acceleration option is calculated assuming a vehicle wants to turn 

right at the upcoming intersection. To simplify the scenario, no right turns on a red light 

are allowed throughout the simulation. A vehicle may only proceed right on a green or 

yellow light. A red-light scenario for this acceleration is like the previously discussed light 

status acceleration. 

Given a green light at the upcoming intersection with the desire to make a right 

turn, the vehicle must decelerate to an appropriate velocity to avoid vehicle roll during 

the turn. This turning velocity (vT) has a fixed value of 10 mph throughout the simulation 

regardless of the vehicle intensity rating. For consistency, the same direction 2 will be 

considered. Using similar values from the light status acceleration combined with the 

turning velocity of 10 mph (14.667 ft/s) being reached at the limit line of the intersection, 

the ideal right turn slowing point (xR) is calculated using equation 3.12.  
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𝑥𝑅 = −28 −
𝑣𝑖

2 − 𝑣𝑇
2

2 ∗ 𝑎𝑖𝑑
 

(3.12) 

The same equation can also be used for a yellow light given the car can proceed 

through the light with normal behavior due to no interactions with other vehicles. If this 

basic scenario arises, the acceleration due to a right turn will be aR = aid. 

Left Turn Acceleration 

The left turn acceleration is like the right turn acceleration. The main differences 

are the position where vT begins and the potential to yield to vehicles traveling in the 

opposite direction. The calculation for the left turn initial starting point given ideal 

acceleration (xL) is based on the front of the vehicle having traveled 8 ft into the 

intersection (x = -4). To consider the exact location of the vehicle measured from the back, 

the ideal arrival coordinate with the velocity reaching vT is at -20. The calculation for xL 

uses the following equation: 

𝑥𝐿 = −20 −
𝑣𝑖

2 − 𝑣𝑇
2

2 ∗ 𝑎𝑖𝑑
 

(3.13) 

The same equation can also be used for a yellow light given the car is able to 

proceed through the light with normal behavior due to no interactions with other vehicles 

or having to rush through the intersection to beat the red light. If this basic scenario arises, 

the acceleration due to a left turn will be aL = aid. 

Furthermore, vehicles that intend to turn left are required to yield to oncoming 

traffic traveling in the opposite direction. The criteria for a vehicle to proceed across the 

oncoming traffic lane is based on the opposite vehicle ability to proceed through the 
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intersection given an immediate green to yellow light change. The calculations to 

determine if a vehicle can proceed through the intersection without altering the behavior 

given a sudden yellow light will be discussed in the next section.  

 As previously discussed, the ideal turn speed vT of 10 mph and front of the vehicle 

at x = -4 ft from the center of the intersection is the goal of a vehicle with intentions to 

turn left. However, in some cases, the vehicle may need to completely stop due to 

oncoming traffic in the opposite direction. The x coordinate where the vehicle will 

officially begin the left turn is when the front of the vehicle reaches x = 6. This allows the 

vehicle about 10 ft to perform a velocity change of -10 mph. In the event of a more rapid 

stop due to a last second decision to not proceed through the oncoming traffic lane, an 

acceleration is calculated for a vehicle to reduce its speed to 0 mph at a location slightly 

before the front of the vehicle reaches the turning point of x = 6 (ex. x = 5) or through 

measuring from the rear of the vehicle at x = -11. This equation will ensure the vehicle 

reaches 0 velocity to safely wait for oncoming traffic to pass through the intersection 

before completing the turn.  

𝑎𝐿 =
𝑣𝑖

2

2(𝑥𝑖 + 11)
 

(3.14) 

3.3.1.4 Through Intersection Calculations 

Calculations in the previous section were based on direct positions of the vehicles 

relative to the intersection and the desired final velocities. The following equations based 

on the desired turn are calculated to determine if the vehicle at the current speed will 
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make it through the intersection if the light were to change immediately from green to 

yellow. Considering the same direction 2, if the current xi position is greater than the 

through intersection calculation position, it is highly likely the vehicle will make it through 

given an immediate yellow light change. The equations are evaluated only with a green 

light at the upcoming intersection. An additional value used is the yellow light time (tY). 

The following equations calculate the passing position (through point) based on ideal 

behavior for a straight (xPS), right (xPR), and left (xPL) turns.  

𝑥𝑃𝑆 = −28 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 (3.15) 

𝑥𝑃𝑅 = −22 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.16) 

𝑥𝑃𝐿 = −16 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.17) 

 These equations are used to determine if a vehicle will pass through the 

intersection and to provide opposite direction vehicle status to confirm if a vehicle can 

proceed through an unprotected left turn. If no cars in that opposite direction have 

reached the through point, the yielding vehicle can proceed safely across the lanes of 

traffic. Figure 9 displays a comparison between the straight (xPS), right (xPR), and left (xPL) 

turns values for a vehicle with an intensity rating of 5. It is clear from the graph that a 

vehicle traveling straight can be the furthest distance away from the center of the 

intersection but still make the light given a potential yellow light change. This is because 

no deceleration is required for a vehicle proceeding straight assuming no nearby vehicles 

are impeding the progress. Vehicles turning left and right are required to slow down to 

complete the turn safely.  
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Figure 9: Distance from Intersection to Likely Proceed Through Based on Desired Turn. 

3.3.1.5 Yellow Light Decision Logic 

In realistic scenarios, drivers are required to make split second decisions when a 

nearby upcoming light immediately becomes yellow. To improve the decision making of 

an individual vehicle, calculations are performed using the instantaneous vehicle position, 

velocity, desired acceleration, and the fixed yellow light time. There are three main 

decision options for a vehicle. These options are briefly displayed in Table 5 and will be 

explained in detail throughout this section.  

Table 5: Yellow Light Decision Options. 

Vehicle Options Options Description 

Sustained 
Behavior 

The vehicle will maintain its original behavior as if there was no 
yellow light update. 

Boosted Behavior Based on the upcoming turn, the vehicle will accelerate or 
decelerate more rapidly than normal to avoid running the red 
light.  

Missed Light The vehicle will slow down behind the limit line due to no 
possibility of proceeding through safely and legally.  
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Sustained Behavior 

A vehicle will sustain its initial plan upon making this decision. This decision is 

based on the vehicle being close enough to the upcoming intersection that it can travel 

through with ease. The following calculations detail the logic for this decision based on 

post intersection behavior.  

For a vehicle proceeding straight, a common kinematics equation is used to 

determine if the vehicle will clear the intersection based on the current velocity and 

distance from the limit line. All calculations assume the car is traveling from direction 2 

west to east and the absolute position of the vehicle is measured from the rear. If the 

vehicle position is greater than this calculated value, the vehicle can proceed through by 

maintaining this current speed. The equation to determine the minimum position relative 

to the intersection for proceeding straight at normal behavior (xSS) is as follows: 

𝑥𝑆𝑆 = −28 − 𝑣𝑖 ∗ 𝑡𝑌 (3.18) 

The calculations considering a vehicle making a right or left turn at an intersection 

are different for the necessity of slowing down. The decision logic is similar when turning 

with the only exception being the numerical target line approach for the appropriate 

turning velocity therefore, only the right turn scenario will be discussed in detail.  

The main criteria to determine if a vehicle can maintain its current path upon 

encountering a yellow light is its ability to reduce speed to make a safe turn in the time it 

takes for the light to turn red. Therefore, a timing calculation (t1) is required based on the 
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initial velocity, the desired turning speed (10 mph), and the desired deceleration rate 

from the initial intensity rating.  

𝑡1 =
𝑣𝑖 − 𝑣𝑇

𝑎𝑖𝑑
 (3.19) 

This time is then evaluated against the fixed yellow light time at that intersection. 

This time value is required to be less than the yellow light time or the vehicle cannot 

realistically complete the maneuver. This evaluation will determine how much extra time 

is available (t1e) when relating the yellow light time. A positive answer is required to 

continue with the procedure.  

𝑡1𝑒 = 𝑡𝑌 − 𝑡1, 𝑡1𝑒 ≥ 0 (3.20) 

With a positive evaluation of variable t1e, the minimum position of the vehicle 

relative to the intersection can now be calculated. The current velocity, desired 

acceleration, and yellow light time are used. With direction 2 being the input, the current 

position of the vehicle must be greater than the calculated position to maintain the 

current vehicle behavior through the intersection. The calculated position to sustain 

behavior (xSR) for a right turn is as follows: 

𝑥𝑆𝑅 = −28 − 𝑣𝑖 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡1

2 (3.21) 

In this equation, the velocity term uses the light time as a timing reference while 

the acceleration term uses the t1 term calculated previously. This is to allow a further 

maximum distance from the intersection due to the shorter amount of time it will take to 

slow down. If a vehicle required more overall time to slow down to the turning speed vT, 
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the allowable minimum distance to the intersection would be smaller as the vehicle would 

be traveling at a slower speed throughout a longer duration of the deceleration process. 

This equation indicates that if the current position of the vehicle was perfectly at the 

minimum position to proceed through the light (xi = xSR), the vehicle would decelerate 

throughout the total length of the yellow light barely proceeding through to avoid running 

the red light. If the yellow light time is greater than the time taken to slow down to the 

turn speed t1e > 0, the vehicle could travel at its initial velocity for the length of time t1e 

and begin the deceleration at a specific position related to the distance required to 

change velocities based on the desired deceleration rate. This specific decision point (xSD) 

for the sustained behavior is calculated using the following equation. 

𝑥𝑆𝐷 = −28 −
𝑣𝑖

2 − 𝑣𝑇
2

2 ∗ 𝑎𝑖𝑑
 

(3.22) 

For a vehicle making a right turn, this position is directly related to variable xR which 

also determines the point at which the vehicle begins to decelerate given the desired 

deceleration rate. The initial time evaluation t1e ≥ 0 simply checks that this maneuver can 

be completed in an appropriate amount of time. The distance equations and process for 

a left turn are like the right with an adjustment solely based on the final position relative 

to the intersections. The equations are shown below. 

𝑥𝑆𝐿 = −16 − 𝑣𝑖 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡1

2 (3.23) 

𝑥𝑆𝐷 = −16 −
𝑣𝑖

2 − 𝑣𝑇
2

2 ∗ 𝑎𝑖𝑑
 

(3.24) 
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Boosted Behavior 

If the yellow light time is shorter than the required time for the vehicle to 

decelerate to the turning speed t1e < 0 or if the current location of the vehicle is less than 

the minimum distance to the intersection assuming direction 2 and a right turn scenario 

(xi < xSR), the boosted acceleration/deceleration option is considered. A common driver 

determined to proceed through the intersection upon encountering a yellow light 

generally will perform a more rapid maneuver. To simulate this scenario, a boosted 

behavior for a vehicle proceeding straight will be explained first.  

The minimum position for a vehicle proceeding straight is based on the initial 

velocity of a vehicle and the ideal acceleration. Generally, a vehicles acceleration ability 

is lower at higher speeds due to a decreased amount of torque. To account for this 

mechanical disadvantage, half of the ideal acceleration will be applied. The equation to 

determine the minimum position value for a vehicle to proceed straight through the 

intersection with a boosted acceleration is as follows: 

𝑥𝐵𝑆 = −28 − 𝑣𝑖 ∗ 𝑡𝑌 −
1

4
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.25) 

 If the vehicle position is greater than this boosted value calculation but less than 

the maintained position value, (xBS ≤ xi ≤ xSS), an acceleration half of the ideal value will be 

applied to the vehicle until it clears the intersection.  

 Furthermore, the boosted behavior for a turning vehicle must be considered. 

Similar to the maintained vehicle behavior, the right and left turning values have a similar 

process therefore, only the right turn process will be described. The main addition to the 
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upgraded driving intensity is the ability to decelerate at a more rapid rate than normal. 

Given a typical driver deceleration rate based on the intensity rating, the improved rate 

is 3 ft/s2 faster than the initial. This allows for more time at higher speeds and for a quicker 

velocity change reducing to the appropriate turn speed.  

Similar to the maintained behavior, a timing calculation (t2) is required to 

determine how long it takes for a vehicle to reduce its current speed to the desired turning 

speed (10 mph). The equation is as follows:  

𝑡2 =
𝑣𝑖 − 𝑣𝑇

𝑎𝑖𝑑 + 3
 (3.26) 

In the boosted calculation, the velocity difference is the same however, the 

deceleration is numerically 3 more ft/s2 than the ideal. This new time value can be 

compared to the yellow light signal time. 

𝑡2𝑒 = 𝑡𝑌 − 𝑡2, 𝑡2𝑒 ≥ 0 (3.27) 

The numerical value t2e must also be smaller than tY to avoid proceeding through 

the intersection on a red light. With a positive evaluation of variable t2e, the minimum 

position of the vehicle relative to the intersection to make the light can now be calculated. 

Referencing direction 2, the current position must be greater than the calculated decision 

position to allow opportunity for the improved deceleration through the intersection. The 

calculation to determine the minimum location (xBR) for a boosted right turn is as follows: 

𝑥𝐵𝑅 = −28 − 𝑣𝑖 ∗ 𝑡𝑌 +
1

2
∗ (𝑎𝑖𝑑 + 3) ∗ 𝑡2

2 (3.28) 
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If xSR ≥ xi ≥ xBR, and t2e ≥ 0, the vehicle will perform the boosted deceleration 

maneuver. Due to a quicker deceleration process that requires less time to complete, the 

vehicle can maintain the higher initial speed for a longer duration of time. This will 

ultimately allow for a further minimum point compared to the sustained behavior option.  

Finally, given a more rapid deceleration rate, a calculation to determine the 

location where the decision is made to begin slowing down (xBD) is carried out.  

𝑥𝐵𝐷 = −28 −
𝑣𝑖

2 − 𝑣𝑇
2

2 ∗ (𝑎𝑖𝑑 + 3)
 

(3.29) 

The vehicle will initially maintain speed (vi) until the rear part of the car reaches 

coordinate xBD. The improved deceleration rate will then be implemented to reduce the 

initial velocity down to the safe turning speed.   

 The equations for making a boosted left turn are like that of a right. They are listed 

as the following:  

𝑥𝐵𝐿 = −16 − 𝑣𝑖 ∗ 𝑡𝑌 +
1

2
∗ (𝑎𝑖𝑑 + 3) ∗ 𝑡2

2 (3.30) 

𝑥𝐵𝐷 = −16 −
𝑣𝑖

2 − 𝑣𝑇
2

2 ∗ (𝑎𝑖𝑑 + 3)
 

(3.31) 

Missed Light 

 If neither the sustained nor boosted behavior can be implemented based on the 

distance from the intersection or from the lengthy time required to slow down, the 

vehicle will miss the light and be prohibited from proceeding through the intersection. At 

this stage, the vehicle will perform the previously discussed light deceleration process to 

ultimately arrive at stopping point xS which is determined by the number of vehicles in 
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front. The overall criteria for the yellow light decision logic regarding the 3 options is 

displayed in Table 6.  

Table 6: Yellow Light Decision Logic. 

 Straight Right Left 

Sustained xi ≥ xSS xi ≥ xSR xi ≥ xSL 

Boosted xSS ˃ xi ≥ xBS xSR ˃ xi ≥ xBR xSL ˃ xi ≥ xBL 

Missed xi ˂ xBS  xi ˂ xBR  xi ˂ xBL  

 

3.3.1.6 Vehicle Acceleration Decision and Instantaneous Behavior Update 

After calculating all potential acceleration options of a vehicle, the most 

appropriate decision can be made given the circumstances. This logic is the main 

evaluation for an autonomous agent. The agent will continue to travel at its desired 

behavior (vi = vid, ai = 0) until it either recognizes an upcoming autonomous agent or if it 

is approaching an upcoming traffic signal.  

 Overall in any scenario, if a vehicle is following another, it will always yield 

appropriately based on the headway. This is a specific type of interaction with another 

agent. This detail is fixed due to only one lane of traffic per direction. Until a front vehicle 

is removed from that direction through a different turning agenda, an autonomous agent 

will continue to follow at the fixed headway value.  

Alternative scenarios include yielding to the environment which considers 

upcoming turns or engaging yellow and red lights. While referencing direction 2, the 

ultimate acceleration decision per vehicle based on the current scenario is displayed in 

Table 7. The criteria for the decision is based on the current time behind a  
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Table 7: Appropriate Acceleration Decision. 

Headway 
Time 

Vehicle 
Position 

Vehicle 
Velocity 

Light Status Vehicle 
Output 

Acceleration 
Decision 

tc ≈ tf xi ≥ xd vi < vid G/Y/R S/R/L - 

Light Status and Vehicle Output Direction Not Considered 

True True True - - Distance 

True False True - - Distance 

True False False - - Distance 

False False False - - Distance 

False False True - - Distance 

Green Light Scenarios 

False True False Green Straight Distance 

False True False Green Right Right 

False True False Green Left Left 

False True True Green Straight Distance 

False True True Green Right Right 

False True True Green Left Left 

Yellow Light Scenarios 

False True False Yellow Straight Light 

False True False Yellow Right Right 

False True False Yellow Left Left 

False True True Yellow Straight Light 

False True True Yellow Right Right 

False True True Yellow Left Left 

Red Light Scenarios 

False True False Red Straight Light 

False True False Red Right Light 

False True False Red Left Light 

False True True Red Straight Light 

False True True Red Right Light 

False True True Red Left Light 

 

vehicle (tc), current vehicle speed (vi), current vehicle position (xi), vehicle output (O), and 

the upcoming light status (c). For simplicity, (xd) will be the variable related to the point 

at which a vehicle will begin interacting with the upcoming intersection regardless of the 

desired directional output. The light status table abbreviation considers G/Y/R as Green, 
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Yellow, and Red. The vehicle output table abbreviation S/R/L refers to Straight, Right, and 

Left turns. The acceleration options are referred to as distance acceleration (Distance), 

Straight Light Status Acceleration (Light), Right Turn Acceleration (Right), Left Turn 

Acceleration (Left). At this stage of the MATLAB code, all numerical values have already 

been calculated based on the previous equations. The logic here is to identify the most 

appropriate acceleration choice. 

After determining the appropriate acceleration (ai) for the current iteration, given 

known input position (xi) and velocity (vi) parameters, kinematic equations can be used 

to determine the new position (xi+1) and velocity (vi+1). The kinematic equations are 

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖 ∗ 𝑡 +
1

2
∗ 𝑎𝑖 ∗ 𝑡2 (3.32) 

𝑣𝑖+1 = 𝑣𝑖 + 𝑎𝑖 ∗ 𝑡 (3.33) 

where the timestep (t) is equal to 1/88 seconds for this simulation. These newly calculated 

position and velocity values are used for the same vehicle in the next iteration and the 

entire process beginning at section 3.3.1.3 is repeated. 

3.3.2 Intersection Grid with Fixed Timing Signals  

Upon completion of the basic intersection model, individual intersections are then 

connected to create a city environment. The initial evaluation of traffic flow through the 

intersection is evaluated using fixed timing signals. This objective is critical for 

understanding the status and behavior of previously constructed intersection or city 

models. Once the behavior of a basic city environment can be evaluated, approaches to 
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improve the efficiency of these models while ensuring a safer environment for the 

transportation infrastructure can be determined.  

3.3.2.1 Background Evaluation of Basic City Intersection Behavior 

Initially, basic intersection modeling was carried out. A simple intersection model 

has been created with vehicles passing through the intersection based on light status. 

Next, the basic intersection model was scaled to simulate a city environment with fixed 

timing signals. This is important so the efficiency of the grid setup and an average vehicle 

time through individual intersections can be calculated. Overall, these parameters will be 

calculated given fixed green light signal times to establish a baseline for improvement in 

each city grid scenario.   

3.3.2.2 Additional MATLAB Modeling for Connected Intersections 

The initial MATLAB 

code was created to simulate 

vehicles traveling through one 

specific intersection. To 

consider a city scenario, 

individual intersections are 

placed in new locations 

throughout a mapped area with one 

lane road transitions connecting each adjacent intersection. An example of a 2x3 

intersection setup is shown in Figure 10. The center of each individual intersection was 

Figure 10: 2 x 3 Intersection Grid. 
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placed at a specific (xI, yI) coordinate on the map based on the lane length (L) of the 

intersection, the intersection grid row (R) count and intersection column (C) count. 

Furthermore, the intersection number (I) is established as well as the direction (d) per 

intersection. The single intersection 1 used direction numbers 1 – 4 to establish north, 

south, east, and west surrounding the intersection; intersection 2 will possess directions 

5 – 8. This numbering process will continue for the total amount of intersections in the 

grid (N = R*C).  

The center location of the individual intersection is based on the lane length (L). In 

Figure 10, L = 800 ft. Due to the intersections all possessing the same length, the location 

of each intersection center must be exactly L*2 ft away from an adjacent intersection to 

represent a square setup. The grid setup in Figure 10 is not displayed to scale.  

The iteration process per vehicle is very similar compared to the single intersection 

acceleration determination process. The main difference is the overall location evaluation 

per vehicle. Individual calculations regarding position are all based on the center location 

of the intersection. For example, the through intersection equations from section 3.3.1.4 

now include an additional xI center location term. Furthermore, the specific direction 

number 2 from the individual intersection cannot always be referenced however, the 

west direction relative to an individual intersection will still be considered. The new 

through intersection evaluation equations are listed as 

𝑥𝑃𝑆 = 𝑥𝐼 − 28 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 (3.34) 
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𝑥𝑃𝑅 = 𝑥𝐼 − 22 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.35) 

𝑥𝑃𝐿 = 𝑥𝐼 − 16 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.36) 

which still directly relate to the individual intersection equations. All equations from 

section 3.3.1 can be used for any direction west of an intersection given the center x 

coordinate. This consistency highlights the scalable ability of the individual intersection 

to a grid city model.  

3.3.2.3 Evaluation of Fixed Timing Intersection Performance 

The initial evaluation of intersection performance will begin by modeling a select 

few basic intersection networks to build a framework for the experiment. To evaluate the 

performance of this intersection, we will consider the average time for each car to 

proceed through an intersection. Individual vehicle timing can be evaluated using the 

actual simulation start time (ts) of the vehicle when it is located at the beginning of the 

intersection and the final intersection departure time (td). The actual time through the 

simulation (ta) can be found using the equation 

𝑡𝑎 = 𝑡𝑑 − 𝑡𝑠 (3.37) 

To compare the quality of this value, we can study how long it may take for each 

individual car to pass through based on the typical behavior of that driver (desired speed, 

following time, desired acceleration). We can determine the time it would take for an 

individual driver to pass through this intersection given a green light and no other cars to 

impede the progress. This calculation will be used as an ideal time (tid) scenario per car.  
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The ideal time is based on the output direction relative to the input direction. 

Given different output directions of straight, right, or left, the following three equations 

for the ideal time (tid) can be determined. 

𝑡𝑖𝑑𝑆 =
2𝐿

𝑣𝑖𝑑
 

(3.38) 

The right and left turn equations require more detail regarding deceleration and 

acceleration time as it is necessary to slow down to complete a turn safely. 

𝑡𝑖𝑑𝑅 = 2 [
−28 − 𝑣𝑖𝑑 (

𝑣𝑖𝑑 − 𝑣𝑇
𝑎𝑖𝑑

) + 1
2
(𝑎𝑖𝑑) (

𝑣𝑖𝑑 − 𝑣𝑇
𝑎𝑖𝑑

)
2

+ 𝐿

𝑣𝑖𝑑
] + 2 (

𝑣𝑖𝑑 − 𝑣𝑇

𝑎𝑖𝑑
) +

6

𝑣𝑇
 

(3.39) 

 

𝑡𝑖𝑑𝐿 = 2 [
−20 − 𝑣𝑖𝑑 (

𝑣𝑖𝑑 − 𝑣𝑇
𝑎𝑖𝑑

) + 1
2
(𝑎𝑖𝑑) (

𝑣𝑖𝑑 − 𝑣𝑇
𝑎𝑖𝑑

)
2

+ 𝐿

𝑣𝑖𝑑
] + 2 (

𝑣𝑖𝑑 − 𝑣𝑇

𝑎𝑖𝑑
) +

10

𝑣𝑇
 

(3.40) 

Eventually, an overall real average time per car is evaluated to determine the efficiency 

of the intersection given the average ideal calculation.  

Given details from the MATLAB model from a fixed timing intersection, there is 

room for improvement. Autonomous vehicles are moving in a positive direction 

possessing new vehicle recognition and 5g technology. This creates the ability for vehicles 

to communicate. Building on this initial model and improving intersection performance 

by light and vehicle communication is a challenging problem. These initial basic steps will 

help determine the best approach for intersection evaluation.  
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3.3.3 Implementing Coordinated Traffic Signals  

After evaluating and modeling multiple basic intersections, agents will be 

introduced in traffic signals. As previously stated, an agent is an autonomous decision 

maker whose decision making is determined internally but may be altered by interactions 

with the environment or other agents. Therefore, to ensure a proper functioning network, 

individual traffic signal agents will have their own internal behavior function and will 

gather data from nearby intelligent intersections to build and improve the model from 

section 3.3.2. These coordinated traffic signals communicate light status to optimize 

traffic flow for safety and resilience improvement for the transportation network.  

3.3.3.1 Additional MATLAB Modeling for Coordinated Intelligent Traffic Signals 

Given the basic intersection model for city grid scenarios, intelligent traffic signals 

are now implemented. Nearby intersections view the status of adjacent intersections and 

adapt their own status based on average time for a vehicle to travel between 

intersections.  The average time for a vehicle to travel between intersections (tb) is 

𝑡𝑏 =
2𝐿

𝑆
 

(3.41) 

where L is the lane length and S is the speed limit. This is the approximated time a vehicle 

will take to travel from the center of one intersection to another. Given fixed values of L 

= 800 and S = 40 mph (58.6667 ft/s) for all simulations run, the average vehicle time 

between intersection tb = 27.27s. This calculation considers vehicles traveling at the full 

speed limit throughout the transition. Realistically, a range of drivers will travel above and 
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below this value however, this is used as a reasonable approximation for this scenario. 

This value is used to initialize the adjacent intersection green light countdown.  

In this example, the 2 x 3 

intersection setup will be used. 

Figure 11 displays a sampled 

view of the coordinated traffic 

signal intersection setup. All 

traffic is initially routed to pass 

through each intersection in 

the north and south directions 

(Figure 10). Note the intersection numbers displayed in Figure 11. For this coordinated 

traffic scenario, intersection 1 has the leading fixed signal. This intersection behaves 

similarly to the fixed timing lights from section 3.3.2 based on the maximum green light 

time. All other intersections in this simulation will adapt to the nearby intersections 

relative to the west or north depending on location.  

Based on the overall mapping, the direction of coordinated traffic flow will be in 

the southeast direction. Intersections 2 and 4 are informed when intersection 1 changes 

state to a yellow light and will immediately start a countdown for their individual light 

change generally based on the average time for a vehicle to travel between intersections 

(tb = 27.27s). Referring to the display in Figure 11, intersection 1 has already allowed 

traffic to pass through in the east and west directions while the north and south traffic is 

Figure 11: Coordinated Intelligent Intersection Setup. 
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held at a red light. Intersections 2 and 4 have switched to a yellow light which has started 

a countdown for intersections 3 and 5 to adjust to their yellow light. Figure 12 shows the 

coordinated logic for a 2x3 intersection example.  

3.3.3.2 Coordinated Traffic Signals 

Overall, various maximum green light times 

were run to simulate alternative traffic scenarios. To 

coordinate traffic appropriately, the intersections 

receive the instant yellow light change and create a 

countdown for their individual light change based on 

either the maximum green light time (tG) or the 

average time for a vehicle to travel between 

intersections (tb). The appropriate choice is 

determined by which numerical value is smaller.  

Figure 13 displays a section of the Traffic Light matrix from the MATLAB code which 

displays the light number, the status of the light, the countdown of that specific light 

Figure 12: Coordinated Traffic Signal Logic. 

Figure 13: Individual Traffic Signal Status. 
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status, and the intersection at which the light is placed. For the status, green = 2, yellow 

= 1, and red = 0. For reference, the individual intersection setup in Figure 5 can be directly 

labeled as intersection 1. Intersections 2 – 6 contain the same relative direction numbers 

as intersection 1. The traffic light status in Figure 13 can be directly related to the visual 

light status representation in Figure 11. An equation relating light status countdown from 

coordinated intersections (3 coordinate from 2) is important to consider.  

𝑡𝑌 − 𝑇5 = 𝑡𝐺 − 𝑇9 (3.42) 

From Figure 13, given a yellow light time of 4 seconds (tY = 4) and a maximum green 

light time of 10 seconds (tG = 10), it can be observed that intersection 2, which contains 

lights 5 and 7 has communicated information to intersections 3 (lights 9 and 11) and 5 

about the recent light status change from green to yellow (0.5 seconds have passed since 

the light change). Therefore, the simulation logic is accurate as the countdown time that 

has passed in intersections 3 and 5 is exactly 0.5 seconds less than the maximum green 

light time. This logic is repeated for the duration of the simulation and the average vehicle 

time through individual intersections is evaluated.  

3.3.4 Implementing Adaptive Traffic Signals 

Finally, autonomous vehicles will be implemented into the current coordinated 

traffic signal environment through vehicle recognition ability. This will give lights at an 

intersection the ability to change status according to the number of vehicles waiting in a 

red-light direction. This ability will ultimately improve traffic flow through individual 
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intersections as individual light countdowns may be altered due to a potential higher level 

of traffic in that specific direction.  

3.3.4.1 Additional MATLAB Modeling for Adaptive Traffic Signals  

The main addition to the MATLAB model is the ability for a traffic light to recognize 

the level of vehicles waiting in a specific direction at the intersection. This is referred to 

as the queue (Q) of the light. For each experiment, the queue of each individual 

intersection throughout the overall simulation is a fixed value. Each intersection will add 

up the number of vehicles waiting in the red light direction and when the current queue 

value reaches the maximum (Q ≥ Qmax) set in the simulation, a new countdown for the 

green light direction may be applied.  

 Overall, the intelligent coordinated traffic signal environment is still implemented. 

However, the status may be altered due to a large queue. For consistency, the basic 

intersection directions from Figure 5 will be referenced in this scenario. If directions 1 and 

3 (north and south) currently display a green light, directions 2 and 4 (east and west) will 

display red to avoid intersection collisions. As the countdown to a yellow light continues, 

traffic from the direction with a red light will build up. A car will be officially added to the 

queue count when it is completely stopped at the intersection (vi = 0) while waiting for 

the light to change. When the Qmax value is reached in either direction 2 or 4, a calculation 

to determine the amount of time it will take for the furthest vehicle in a green light 

direction (1 or 3) to reach the intersection (tv) is carried out. 
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 Initially, the code determines the furthest vehicle in each direction from the 

intersection that is within the lane length range. A situation may occur where no 

upcoming vehicles are present in the green light directions. In this scenario, the green 

light countdown will automatically be reduced to 1. This will ensure the vehicles in the 

red-light direction are not waiting more time when no traffic is present for a green light.  

The time each vehicle will take to reach the intersection in each direction (tv1 and 

tv3) will be evaluated. For simplicity, only the evaluation for direction 1 will be explained. 

First, a calculation is completed to determine the minimum distance the individual vehicle 

can be from the intersection to make it through given ideal behavior in the event of an 

immediate change to a yellow light. These calculations are the same compared to the 

through intersection calculations in section 3.3.1.4. They are shown here again as 

equations 3.15, 3.16, and 3.17 and are based on the desired output direction straight (xPS), 

right (xPR), or left(xPL). 

𝑥𝑃𝑆 = −28 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 (3.15) 

𝑥𝑃𝑅 = −22 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.16) 

𝑥𝑃𝐿 = −16 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.17) 

Next a calculation is completed to determine how long it will take the vehicle to 

reach this specific point. Realistically, depending on the true output direction of the 

vehicle, any of the three above equations could be used. For this scenario, the displayed 

calculation assumes the upcoming vehicle will make a right turn therefore, variable (xPR) 

will be used. The time for the vehicle in direction 1 (tv1) is calculated as 
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𝑡𝑣1 =
𝑥𝑃𝑅 − 𝑥1𝑖

𝑣1𝑖
 (3.43) 

given current vehicle speed (v1i) and position(x1i).  

 A comparison for calculated values tv1 and tv3 is completed. The greater value will 

be used as the ultimate tv value which is then compared to the light countdown. In this 

scenario, tv1 > tv3 is assumed therefore, tv = tv1. The individual light countdown in direction 

one (T1) is then compared to the calculated value tv. If tv < T1, the new countdown value 

will be tv. This will allow all vehicles in each green light direction to proceed through the 

light and ensures that once this happens, vehicles in the red-light direction will not have 

to wait unnecessarily. Alternatively, if tv > T1, the light will continue its normal countdown 

(T1) to keep traffic continuously moving. In this research, no additional time will be given 

to a green light countdown.  

3.4 Simulation Goals of the MATLAB Model 

The MATLAB code can run simulations regarding either the fixed, coordinated, or 

adaptive timing signal network. Furthermore, based on details explained throughout 

chapter 3, a variety of inputs can be adjusted to vary the intersection simulation (car load, 

intersection grid setup, etc.) These varying parameters allow a user to determine how 

efficient an intersection may be based on the input details and the signal performance 

choice. The overall evaluation and explanation regarding the performance difference of 

each scenario will be explained throughout chapter 4. The appendix contains the main 

MATLAB code for an adaptive traffic signal setup.   
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4. Simulation Results 

To determine if this adaptive approach improves intersection performance in city 

environments, evaluations per car will be completed. These evaluations will be completed 

by comparing overall distance traveled through the entirety of the intersection and time 

it takes to reach the destination from the initial starting point. Evaluations were initially 

completed from the fixed timing intersection model to establish a baseline and to confirm 

there is potential for improvement. The evaluations of the fixed timing signal are 

compared to the coordinated signal setup as well as the adaptive signal setup. 

Comparison criteria will be the intersection grid setup, the number of vehicles in the 

setup, and the queue count for the various adaptive signal options.  

4.1 Fixed Timing Evaluation Results 

Timing is the most important factor that will be considered during this evaluation. 

Performance will be evaluated for overall time through intersections. The key factor in 

this research is 

reducing wait times 

at intersections 

(stopped delay). 

Figure 14 displays 

the fixed timing 

intersection sequence in two phases given a 2x2 intersection setup. Due to the fixed 

Figure 14: 2x2 Fixed Timing Signal Sequence 
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timing evaluation, the only varying parameters are the intersection setup, the number of 

vehicles on the road, and the maximum green light time. The main comparisons are the 

intersection setup and the number of vehicles present on the road. The green light time 

varies and average traffic flow time and overall efficiency through an intersection is 

evaluated. The maximum green light ranges from a time of 10 – 50 seconds and the 

number of vehicles on the road per intersection ranges from 5 – 60 cars. The intersection 

setups evaluated for the fixed timing signal are 1x1, 2x2, 2x3, and 3x3.  

4.1.1 1x1 Intersection Setup 

The initial baseline evaluation was determined from a single intersection with 

varied light times and number of vehicles on the road. The graphs represent the varying 

number of vehicles comparing the average amount of time it takes for one vehicle to 

   

Figure 15: Fixed Timing, 5 Vehicles   Figure 16: Fixed Timing, 10 Vehicles  

proceed through the intersection based on the initial input direction and final output 

direction. As shown through the display of the graphs, the average time for a vehicle to 

proceed through the intersection is much larger with a higher number of vehicles on the 
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road. The average vehicle travel time 

generally takes longer given the maximum 

green light time. However, few cases are 

the opposite with more traffic on the road 

due to it being more efficient to allow more 

vehicles through in one cycle. This is like a 

scenario where an intersection signal on a 

   

Figure 18: Fixed Timing, 40 Vehicles   Figure 19: Fixed Timing, 60 Vehicles 

main road has broken down resulting in a 4 way stop. Traffic flow through an intersection 

in this scenario typically is slower therefore, the 10 second light results given a large 

amount of traffic can be compared. 

 Efficiencies per scenario are also compared. To maintain consistency for 

minimizing parameters, the inefficiency will be measured and displayed using the 

following equation: 

𝐼𝑒𝑓𝑓 = 1 − %𝐸 = (1 −
𝑡𝑖𝑑

𝑡𝑎
) 

(4.1) 

  

Figure 17: Fixed Timing, 20 Vehicles 
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where tid is the average ideal time and ta is the average actual time for a vehicle to proceed 

through the intersection.  

   

        Figure 20: Inefficiency Fixed Timing, 5 Vehicles        Figure 21: Inefficiency Fixed Timing, 10 Vehicles 

   

       Figure 22: Inefficiency Fixed Timing, 20 Vehicles         Figure 23: Inefficiency Fixed Timing, 40 Vehicles 

For an individual fixed timing signal, based 

on the figures displayed on this page, it is 

evident the inefficiency of the intersection 

rises based on the overall traffic level. This 

was the baseline data recorded and efforts 

to improve the efficiency of the intersection 

were completed to prove that an adaptive intersection can be beneficial to the 

transportation infrastructure.   

Figure 24: Inefficiency Fixed Timing, 60 Vehicles 
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4.1.2 2x2 Intersection Setup 

To compare all evaluation results, the 2x2 intersection will be used. From the timing 

evaluation sequence displayed in Figure 14, the following data regarding the average 

vehicle time through the intersection and the inefficiency is evaluated. Like the 1x1 

intersection setup, the overall goal is to minimize both parameters. The minimization of 

these parameters will demonstrate an improvement in intersection performance. The 2x2 

fixed performance evaluation is the base level to improve the network. 

   

Figure 25: Average Time, Fixed, 5 Vehicles  Figure 26: Average Time, Fixed, 10 Vehicles 

   

Figure 27: Average Time, Fixed, 20 Vehicles  Figure 28: Average Time, Fixed, 40 Vehicles 
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The 2x2 intersection grid setup behaves 

similarly to the 1x1 setup. Overall, the 

average time it takes for one vehicle to 

proceed through the light increases as 

there is more traffic on the road. Similarly, 

the scenario with 60 vehicles on the road 

creates a nonlinear situation where the longer green light creates average shorter vehicle 

times through the intersection. However, the general trend is consistent in allowing more 

traffic through per cycle like the 1x1 intersection.  

The inefficiency scenarios are also consistent with the 1x1 as the 

efficiency/inefficiency is directly related to the actual vehicle time through the 

intersection. Given these baseline parameters, the improved traffic signals will be 

improved and compared.  

   

Figure 30: Inefficiency, Fixed, 5 Vehicles  Figure 31: Inefficiency, Fixed, 10 Vehicles 

Figure 29: Average Time, Fixed, 60 Vehicles 
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Figure 32: Inefficiency, Fixed, 20 Vehicles  Figure 33: Inefficiency, Fixed, 40 Vehicles 

 

Figure 34: Inefficiency, Fixed, 60 Vehicles 

4.1.3 Overall Fixed Timing Results 

The overall details for the basic intersection setup regarding the numerical details 

per intersection are displayed in Table 8. The detailed comparisons show the difference 

in vehicle time through each intersection based on the vehicle load, the green light times 

per direction, and the intersection setup. It is evident that the intersection setup does not 

increase the average time per vehicle. It is overall based on the longer light time as well 

as the increased number of vehicles on the road.  
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Table 8: Fixed Signal Timing Results 

2x2 Intersection 

 Average Vehicle Time (s)  Inefficiency 

 Maximum Green Light  Maximum Green Light 

Cars 10 20 30 40 50  10 20 30 40 50 

5 35.2 37.1 38.2 40.3 45.1  0.20 0.24 0.25 0.30 0.37 

10 36.4 38.0 39.6 41.2 45.2  0.23 0.25 0.28 0.31 0.37 

20 40.4 40.4 43.5 46.1 48.4  0.29 0.29 0.35 0.38 0.41 

40 56.1 56.7 61.6 64.6 66.0  0.50 0.50 0.54 0.56 0.57 

60 70.1 55.0 66.3 59.2 65.2  0.59 0.48 0.57 0.52 0.56 

2x3 Intersection 

 Average Vehicle Time (s)  Inefficiency 

Cars 10 20 30 40 50  10 20 30 40 50 

5 35.8 38.1 36.6 40.0 44.6  0.20 0.26 0.23 0.28 0.36 

10 36.5 37.4 39.5 39.9 44.2  0.22 0.24 0.27 0.29 0.36 

20 40.8 40.5 43.8 45.1 47.6  0.30 0.29 0.34 0.37 0.40 

40 54.4 52.7 53.8 55.4 58.4  0.48 0.45 0.47 0.48 0.51 

60 70.3 67.8 59.0 62.8 71.3  0.59 0.58 0.51 0.55 0.60 

3x3 Intersection 

 Average Vehicle Time (s)  Inefficiency 

Cars 10 20 30 40 50  10 20 30 40 50 

5 35.9 36.3 37.8 39.4 44.6  0.20 0.22 0.25 0.28 0.36 

10 36.6 35.9 39.1 40.9 43.9  0.24 0.20 0.27 0.30 0.35 

20 39.5 39.9 44.1 43.7 47.6  0.28 0.29 0.36 0.35 0.41 

40 52.5 49.6 54.3 54.1 53.0  0.46 0.43 0.47 0.47 0.46 

60 67.6 62.5 59.9 62.6 63.4  0.58 0.54 0.53 0.54 0.55 

 

Graphs to summarize the data can be viewed in Figure 35, Figure 36, and Figure 37. Trends 

generally show that increasing the signal timing and the number of vehicles on the road 

will yield longer times through the intersection. 60 vehicles on the road has unique trends 

most likely based on the number of vehicles at an individual intersection. It can be seen 

though that longer green light times are more beneficial for a larger vehicle count.  
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Figure 35: Average Vehicle Time for 2x2 Intersection, Fixed Signal 

 

 

Figure 36: Average Vehicle Time for 2x3 Intersection, Fixed Signal 
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Figure 37: Average Vehicle Time for 3x3 Intersection, Fixed Signal 

4.2 Coordinated Signal Evaluation Results 

The coordinated traffic 

signal is the first step for 

improving the intersection 

performance. As discussed 

in chapter 3, the nearby 

light sequences are now 

adaptable based on nearby 

intersection signal changes 

which includes rudimentary 

I2I communication. A Figure 38: Coordinated Signal Light Sequence 
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representation of this light sequence in ongoing phases for a 2x2 intersection is displayed 

in Figure 38. The exact phase changes may not be represented by the exact figure but 

overall, the upper left intersection will change first to allow the opposite directional traffic 

to flow. The next phase includes the adjacent intersections compared to the initial. Finally, 

the bottom right intersection will adjust the direction. Other situations could occur where 

the initial intersection may change back to allow north and south traffic to flow before 

the last intersection has the option for a change. This ultimately will depend on the 

maximum green light time.  

4.2.1 Graphic Displays of Coordinated Light Sequence 

The data displayed for each graph will also be for a 2x2 intersection grid setup for 

consistency. More traffic creates an overall longer wait time. However, the wait times are 

more consistent given the longer green light time in scenarios with a higher number of 

vehicles. This is also consistent for the inefficiency of the intersection.  

      

       Figure 39: Average Time, Coordinated, 5 Vehicles         Figure 40: Inefficiency, Coordinated, 5 Vehicles 
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       Figure 41: Average Time, Coordinated, 10 Vehicles             Figure 42: Inefficiency, Coordinated, 10 Vehicles 

 

    

       Figure 43: Average Time, Coordinated, 20 Vehicles           Figure 44: Inefficiency, Coordinated, 20 Vehicles 

    

        Figure 45: Average Time, Coordinated, 40 Vehicles             Figure 46: Inefficiency, Coordinated, 40 Vehicles 



76 
 

   

        Figure 47: Average Time, Coordinated, 60 Vehicles         Figure 48: Inefficiency, Coordinated, 60 Vehicles 

To demonstrate the importance of the light signals, Figure 50 shows the light 

status as run through a 2x2 simulation with 20 vehicles on the road per intersection (80 

total). These values specifically are identified as the west directional light statuses per 

intersection in the 2x2 setup. Light 2 is the 

upper left intersection, light 6 is for the upper 

right, light 10 references lower left, and light 14 

refers to the lower right intersection. Figure 49 

shows the light locations for a 2x2 intersection 

setup. The light patterns can be compared, and 

it is evident that as light 2 changes to a yellow, 

it is within a certain amount of time that lights 

6 and 10 will alter their status. It is furthermore clear that lights 6 and 10 are on the exact 

same track as they both alter their status based on light 2.  

 

 

Figure 49: 2x2 Intersection Light Number Locations 
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Figure 50: Visual Status Representation of Coordinated Traffic Signals 

4.2.2 Overall Coordinated Light Sequence Results 

The overall details for the basic intersection setup regarding the numerical details 

per intersection are displayed in Table 9. As the vehicle load increases, the longer green 

light times seem to stay nearly as efficiency as the lower light times. This is due to the 

coordinated lights syncing up appropriately to allow vehicles to make it through the 

upcoming light given it is traveling in a direction towards the new signal changed 

intersection.   
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Table 9: Coordinated Signal Timing Results 

2x2 Intersection 

 Average Vehicle Time (s)  Inefficiency 

 Maximum Green Light  Maximum Green Light 

Cars 10 20 30 40 50  10 20 30 40 50 

5 33.9 38.1 40.7 43.6 47.4  0.15 0.27 0.31 0.35 0.41 

10 35.4 39.8 40.8 46.5 50.1  0.20 0.29 0.31 0.39 0.44 

20 39.1 42.5 46.3 49.7 49.4  0.28 0.34 0.39 0.42 0.43 

40 56.8 57.5 59.7 59.3 63.9  0.50 0.50 0.52 0.52 0.56 

60 71.8 63.2 69.2 66.3 71.0  0.61 0.55 0.58 0.57 0.60 

2x3 Intersection 

 Average Vehicle Time (s)  Inefficiency 

Cars 10 20 30 40 50  10 20 30 40 50 

5 33.7 38.1 40.3 43.8 49.0  0.16 0.26 0.29 0.36 0.42 

10 34.8 38.8 43.5 43.8 51.3  0.18 0.28 0.35 0.35 0.45 

20 40.0 44.5 47.9 48.1 50.6  0.30 0.36 0.41 0.41 0.44 

40 51.4 55.3 59.1 60.2 64.2  0.45 0.48 0.52 0.53 0.56 

60 73.1 62.3 67.9 70.4 68.4  0.61 0.55 0.58 0.60 0.58 

3x3 Intersection 

 Average Vehicle Time (s)  Inefficiency 

Cars 10 20 30 40 50  10 20 30 40 50 

5 33.9 40.0 41.3 44.6 47.2  0.16 0.30 0.31 0.36 0.40 

10 34.6 40.8 45.6 45.3 50.5  0.19 0.30 0.37 0.38 0.43 

20 38.4 45.9 51.0 50.5 51.6  0.26 0.38 0.44 0.44 0.44 

40 53.4 58.7 57.1 62.2 59.2  0.46 0.51 0.50 0.54 0.52 

60 70.6 61.5 61.2 65.5 60.2  0.59 0.54 0.53 0.57 0.53 

 

Trendlines can again be formed from the data in Table 9. These are shown in 

Figure 51, Figure 52, and Figure 53. Again, like the fixed signal timing, it is evident that 

longer wait times occur with more vehicles on the road and with longer green signal 

times. Higher loads of vehicles contain trends where longer green light times improve the 

overall efficiency. This is due to more vehicles allowed through the intersection in one 

cycle.  
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Figure 51: Average Vehicle Time for 2x2 Intersection, Coordinated Signal 

 

 

Figure 52: Average Vehicle Time for 2x3 Intersection, Coordinated Signal 
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Figure 53: Average Vehicle Time for 3x3 Intersection, Coordinated Signal 

 

4.3 Adaptive Signal Results 

Overall, the best improvement for the vehicles to proceed through the intersection 

is the addition of the adaptive signal. This will allow the lights to adjust their light signal 

from neighboring traffic light status as well as the vehicle queue at a specific intersection. 

There is no specific phase diagram for this sequence. The initial light changes are based 

on the phases from Figure 38, but may be altered based on the queue size of cars at each 

intersection in the direction of the red light. In this research, the queue is not adjusted 

per simulation.  
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4.3.1 Graphic Displays of Adaptive Light Sequence 

There have been simulations run for queue lineup numbers set for 1, 3 and 10 

vehicles. Future research will enable a smart queue factor however, to display the initial 

benefits of this adaptive signal, a queue value of 3 vehicles will be used. All simulations 

displayed are based on a 2x2 intersection scenario.  

   

          Figure 54: Average time, Adaptive, 5 Vehicles            Figure 55: Inefficiency, Adaptive, 5 Vehicles 

    

           Figure 56: Average Time, Adaptive, 10 Vehicles             Figure 57: Inefficiency, Adaptive, 10 Vehicles 
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         Figure 58: Average Time, Adaptive, 20 Vehicles                      Figure 59: Inefficiency, Adaptive, 20 Vehicles 

    

             Figure 60: Average Time, Adaptive, 40 Vehicles                Figure 61: Inefficiency, Adaptive 40 Vehicles 

    

            Figure 62: Average Time, Adaptive, 60 Vehicles            Figure 63: Inefficiency, Adaptive, 60 Vehicles 

Furthermore, the light sequence status can be viewed as well. Like the 

coordinated signal setup, these lights are all based on the west direction from each 

intersection as displayed in Figure 49. Individual lights now have their own specific agenda 

based on the queue count but can also be altered from the neighboring light status. Light 

14 in Figure 64 has a red-light section that lasts a very large amount of time. This scenario 
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may occur when no vehicles are present in a specific direction. In this case, no vehicles 

are waiting for the lights at the intersection approaching from both the east and west 

input directions. This allows for the north and south signals to be green for an extended 

period as it is unnecessary to alter the status for no upcoming vehicles.  

 

 

 

 

Figure 64: Visual Status Representation of Adaptive Traffic Signals 

4.3.2 Overall Adaptive Light Sequence Results 

The results from the adaptive light sequences are displayed in the following tables. 

They are separated by the maximum queue values (1, 3, 10) for each intersection grid 

setup. Note that in some scenarios, the average time per vehicles is reduced more given 
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a higher queue with a higher number of vehicles on the road. Based on the data from the 

tables and from the previous detail, there is an ideal queue value that can be chosen 

based on the number of vehicles on the road. This queue size can be made adaptable in 

future problems regarding this research.  

Table 10: Adaptive Signal Timing Results, Queue 1 

2x2 Intersection 

 Average Vehicle Time (s)  Inefficiency 

 Maximum Green Light  Maximum Green Light 

Cars 10 20 30 40 50  10 20 30 40 50 

5 35.9 41.5 35.2 34.9 35.4  0.20 0.31 0.19 0.18 0.19 

10 34.8 37.7 36.2 37.6 39.8  0.19 0.25 0.22 0.25 0.28 

20 42.1 45.0 41.1 43.1 44.1  0.32 0.37 0.31 0.35 0.34 

40 60.1 59.4 61.0 64.6 67.2  0.53 0.51 0.53 0.56 0.57 

60 78.8 77.2 62.8 64.3 71.6  0.64 0.63 0.55 0.55 0.60 

2x3 Intersection 

 Average Vehicle Time (s)  Inefficiency 

Cars 10 20 30 40 50  10 20 30 40 50 

5 35.0 36.9 41.5 35.3 35.8  0.20 0.23 0.31 0.19 0.22 

10 36.6 36.9 35.4 36.4 39.3  0.23 0.23 0.20 0.22 0.27 

20 39.3 39.3 41.5 42.5 43.8  0.27 0.27 0.31 0.33 0.34 

40 57.2 53.4 57.4 51.1 56.6  0.50 0.47 0.50 0.44 0.49 

60 73.6 70.5 72.2 71.6 72.9  0.61 0.59 0.60 0.60 0.61 

3x3 Intersection 

 Average Vehicle Time (s)  Inefficiency 

Cars 10 20 30 40 50  10 20 30 40 50 

5 35.1 36.6 36.7 35.8 34.2  0.20 0.23 0.22 0.20 0.18 

10 36.5 36.9 37.4 37.2 37.1  0.21 0.23 0.24 0.25 0.23 

20 39.5 39.0 42.1 42.8 39.7  0.28 0.26 0.33 0.35 0.29 

40 53.4 55.6 53.1 59.3 56.5  0.47 0.49 0.46 0.52 0.50 

60 54.3 60.4 66.6 59.5 61.6  0.48 0.53 0.57 0.52 0.53 
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Table 11: Adaptive Signal Timing Results, Queue 3 

2x2 Intersection 

 Average Vehicle Time (s)  Inefficiency 

 Maximum Green Light  Maximum Green Light 

Cars 10 20 30 40 50  10 20 30 40 50 

5 34.8 37.1 40.4 41.9 45.0  0.17 0.23 0.29 0.32 0.37 

10 35.8 40.9 45.8 42.7 40.3  0.21 0.31 0.38 0.33 0.30 

20 42.1 46.4 42.3 41.7 41.9  0.34 0.39 0.33 0.31 0.32 

40 51.8 59.0 59.8 60.5 60.3  0.45 0.51 0.52 0.53 0.54 

60 68.1 69.6 76.5 68.1 64.5  0.58 0.58 0.63 0.58 0.56 

2x3 Intersection 

 Average Vehicle Time (s)  Inefficiency 

Cars 10 20 30 40 50  10 20 30 40 50 

5 34.1 38.3 40.6 42.5 44.4  0.17 0.26 0.30 0.34 0.37 

10 35.0 40.9 42.3 43.0 41.1  0.18 0.30 0.33 0.34 0.31 

20 41.1 42.7 43.3 42.3 43.1  0.31 0.34 0.34 0.32 0.33 

40 57.1 53.5 56.3 56.5 58.9  0.50 0.47 0.49 0.49 0.52 

60 66.2 69.9 65.5 71.2 63.8  0.57 0.59 0.57 0.60 0.55 

3x3 Intersection 

 Average Vehicle Time (s)  Inefficiency 

Cars 10 20 30 40 50  10 20 30 40 50 

5 34.1 37.0 41.1 42.6 41.7  0.18 0.24 0.31 0.34 0.34 

10 35.6 40.1 44.5 41.9 41.6  0.21 0.29 0.37 0.33 0.33 

20 42.3 41.1 42.0 40.5 41.4  0.33 0.31 0.32 0.30 0.32 

40 57.0 52.4 54.8 52.1 53.2  0.50 0.46 0.48 0.46 0.46 

60 64.3 61.4 68.9 68.1 63.4  0.56 0.54 0.59 0.58 0.55 
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Table 12: Adaptive Signal Timing Results, Queue 10 

2x2 Intersection 

 Average Vehicle Time (s)  Inefficiency 

 Maximum Green Light  Maximum Green Light 

Cars 10 20 30 40 50  10 20 30 40 50 

5 34.6 39.3 40.5 44.4 45.9  0.18 0.28 0.30 0.37 0.39 

10 35.4 39.9 42.6 45.0 51.5  0.20 0.29 0.33 0.37 0.45 

20 39.8 44.8 46.4 48.8 51.6  0.29 0.36 0.39 0.41 0.45 

40 52.6 60.0 64.6 63.4 61.8  0.46 0.53 0.56 0.55 0.54 

60 69.1 64.6 79.6 61.8 68.6  0.59 0.55 0.64 0.54 0.58 

2x3 Intersection 

 Average Vehicle Time (s)  Inefficiency 

Cars 10 20 30 40 50  10 20 30 40 50 

5 33.7 39.2 41.9 42.5 49.0  0.15 0.28 0.32 0.33 0.42 

10 35.3 40.5 44.8 46.5 48.8  0.18 0.29 0.36 0.38 0.42 

20 39.2 44.6 48.8 49.3 54.6  0.27 0.36 0.43 0.42 0.48 

40 55.8 58.5 58.6 58.3 61.7  0.50 0.51 0.51 0.51 0.54 

60 73.5 69.6 69.0 71.3 68.5  0.61 0.59 0.58 0.60 0.58 

3x3 Intersection 

 Average Vehicle Time (s)  Inefficiency 

Cars 10 20 30 40 50  10 20 30 40 50 

5 33.9 37.4 41.5 45.7 49.6  0.17 0.26 0.31 0.38 0.42 

10 35.3 40.5 44.0 45.0 49.1  0.20 0.30 0.35 0.37 0.42 

20 39.2 45.2 47.4 48.1 50.2  0.28 0.36 0.40 0.40 0.44 

40 54.0 54.1 54.9 58.0 58.1  0.47 0.48 0.48 0.51 0.51 

60 64.6 62.9 65.6 63.4 65.5  0.56 0.54 0.57 0.55 0.56 

 

The overall comparisons from the different intersection setups compared to the 

queue values can be evaluated. Note that a lower count of vehicles on the road has better 

performance with a smaller queue as the lights need to adapt more recently. The larger 

queue though is more beneficial for a higher number of cars on the road and the trendline 

is steadier for the varying light times. By using this data appropriately, an adaptive queue 

can be implemented in future work.  
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Figure 65: Overall Comparison of Average Vehicle Time from Adaptive Signal Implementation 

4.4 Light Sequence Comparison 

Furthermore, to consider the benefits of the adaptive traffic signal, details of each 

traffic light in a 2x2 scenario can be observed based on the gathered data. For consistency, 

the 2x2 intersections graphs will be compared while 40 vehicles are on the road. Figure 

68 displays trendlines of the average vehicle time by comparing all car counts and signal 

types for a 2x2 intersection setup.  
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Figure 66: Various Signal Sequence Comparison of Average Vehicle Time 

 

Figure 67: Various Signal Sequence Comparison of Inefficiency 

 

Figure 68: Trendline Comparison of Various Signal Sequences 

As can be seen here, by comparing the basic light timing sequence to the coordinated 

and adaptive sequences, the overall time per vehicle is reduced as well as the inefficiency 

especially with 40 vehicles on the road. In some cases, the coordinated signal may be 

more beneficial compared to the adaptive but that is generally based on the maximum 

queue value. As previously mentioned, this research only considers a fixed queue value 

per simulation and overall, a lower vehicle load will require a smaller queue value to 

improve traffic flow. It will eventually be beneficial to consider an adaptive queue for 

greater intersection improvement.  
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5. Conclusions and Future Work 

5.1 Research Conclusion 

All in all, the data outlining the comparisons between the different signal abilities 

proved that the adaptive signal does increase intersection performance with respect to 

the metrics considered. Using this data and methods appropriately coded for different 

scenarios shows that this new type of communication can be implemented into the real 

world. The MATLAB method allows for different types of inputs that would be compared 

to vehicle behavior and an intersection setup seen today. The various details that can be 

implemented allow for a numerous amount of simulations to be carried out. 

5.2 Future Work 

Future work for this research can be taken in several directions. First, in this specific 

research, the queue size was fixed for different scenarios. A new research method would 

be to implement an adaptive queue size for the number of vehicles on the road or the 

duration of vehicles in the queue. The data already gathered from this research can be 

used to create a linear or quadratic maximum queue count for individual intersections or 

the overall intersection setup. This could depend on the number of vehicles proceeding 

through one intersection which may require that specific intersection to allow for an 

adaptive queue size. 

Another opportunity for future work would be the individual intersection setup. 

Common intersections today have 2 or more lanes approaching from an individual 
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direction. Many intersections also include a designated left turn lane which may assist 

with traffic flow improvement as well. Allowing these different types of intersections to 

communicate with each other (I2I) as well as with nearby vehicles (I2V) adds complexity 

on a new level. Queue sizes will need to then be adjusted potentially per number of lanes 

and for a potential left turn lane. Given the wide variety of intersection setups that are 

seen today, the possibilities are endless. 

A final opportunity for future work is related to the different types of connected 

agents. In a real intersection, more types of dynamic components are found throughout. 

Examples of more components may include but are not limited to pedestrians, bikers, 

electric scooters, and pets. For improved safety, it will be beneficial to consider these 

components as agents as well. This will ensure autonomous vehicles will know one of 

these components is nearby regardless of camera technology ability. These extra 

possibilities that can be considered will add more complexity to the system but the ability 

to model this will be beneficial for improving safety.  

With overall implementation of this future work, intersection performance can be 

evaluated and improved regarding average vehicle time, resilience, and safety. The newer 

technologies for individual autonomous vehicles allow for connected vehicles in city 

intersections to be implemented. The addition of agent-based communication for 

improved performance will greatly enhance the transportation infrastructure. 
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5.3 Thesis Reflection 

All in all, the use of agent-based communication for improved decision making has 

been proven effective. Referring to the design statement, it has been shown that 

improving agent-based Infrastructure to Infrastructure (I2I) communication and decision 

making does provide performance benefits to traffic flow capacities.  

The initial communication of queue size from the vehicle to the traffic light (V2I) 

allows the intersection to make an appropriate decision for the status based on the load 

of traffic. This change of state based on the queue is then communicated to nearby traffic 

signals. Next, the addition of agent communication between traffic signals allows for 

further improved decision making. The I2I addition is the main area of improvement for 

the transportation infrastructure. This improved ability allows intersections to 

communicate status effectively and the coordinated approach demonstrates success of 

this improvement. From the individual light status change based on the level of traffic to 

the communication between intersections, a level of connectivity is created between 

vehicles and traffic lights that are at different intersections. The traffic flow is then further 

optimized as the intelligent signals communicate and adjust individual status based on 

nearby intersection signal updates.  

The decision-making process and improved communication through intersections (I2I) 

is proven effective and can be implemented throughout the real world as overall vehicle 

technology improves. This has been proven through multiple scenario simulations 

regarding various city intersection setups, load of traffic present throughout the 
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simulation, and for alternative maximum green signal times. The overall ability to reduce 

average vehicle time through an intersection and reduce inefficiency is possible through 

adaptive signals and nearby intersection communication.  
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7. Appendix 

%% Important Inputs to the Simulation 

CarsPerInt = 10; % Maximum number of cars in the simulation per intersection 

TotalTime = 100000; % Total time in seconds to run the simulation, large for MaxCar 

variable 

MaxCars = 500; % How many total cars will run through the simulation 

timestep = 1/88; % Time step accuracy for cars (DO NOT CHANGE!) 

  

% Properties of each Individual Intersection 

SpeedLimit = 40; % mph 

LaneLength = 800; % 800 feet normally 

Window = 250; % display window 

  

% Light Sequence Time in seconds 

Red = 1; % Normal Range from 0.5 - 2.0 Seconds 

Yellow = SpeedLimit/10; % Approximation based on Speed Limit 

Greens = [10 20 30 40 50]; 

  

% Other Important Properties 

CarLength = 16; % Constant Throughout Simulation 

MaxQueue = 10; % Check for Light Change Based on Number of Stopped Vehicles 

  

% Intersection Grid Setup 

Rows = 3; % Max 10 

Columns = 3; % Max 10 

  

Cars = CarsPerInt*Rows*Columns; 

  

% Simulation On/Off 1 = On, 0 = Off 

Simulation = 0; 

%% Multi Intersection Setup 

  

Intersections = zeros(Rows*Columns,8); 

IntNumber = 1; % IntersectionNumber 

  

for R = 1:Rows 

    for C = 1:Columns 

        % Intersection Number 

        Intersections(IntNumber,1) = IntNumber; 

         

        % Intersection Center Location 

        if C == 1 

            Intersections(IntNumber,2) = 0; 

        else 

            Intersections(IntNumber,2) = (2*C*LaneLength) - (2*LaneLength); % X Center 

Location 

        end 

         

        if R == 1 

            Intersections(IntNumber,3) = 0; 

        else 

            Intersections(IntNumber,3) = (-2*R*LaneLength) + (2*LaneLength); % Y Center 

Location 

        end 

         

         

        %Intersection Directions 

        Intersections(IntNumber,4) = (IntNumber*4) - 3; % South 

        Intersections(IntNumber,5) = (IntNumber*4) - 2; % West 

        Intersections(IntNumber,6) = (IntNumber*4) - 1; % North 

        Intersections(IntNumber,7) = (IntNumber*4);     % East 

         

        % New IntNumber for Next Iteration 
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        IntNumber = IntNumber + 1; 

  

    end 

end 

  

%% Plotting the intersection (Used for visualization of the simulation) 

  

% Multipe figures to display different intersections 

% for I = 1:size(Intersections,1) 

%      

% % Figure Number 

% figure(I + 1) 

%  

% hold on 

% Line1 = plot([Intersections(I,2)-LaneLength,Intersections(I,2)-12], 

[Intersections(I,3),Intersections(I,3)],'--'); 

% Line2 = plot([Intersections(I,2)-LaneLength,Intersections(I,2)-12], 

[Intersections(I,3)-12,Intersections(I,3)-12]); 

% Line3 = plot([Intersections(I,2)-LaneLength,Intersections(I,2)-12], 

[Intersections(I,3)+12,Intersections(I,3)+12]); 

% Line4 = plot([Intersections(I,2)+12,Intersections(I,2)+LaneLength], 

[Intersections(I,3),Intersections(I,3)],'--'); 

% Line5 = plot([Intersections(I,2)+12,Intersections(I,2)+LaneLength], 

[Intersections(I,3)-12,Intersections(I,3)-12]); 

% Line6 = plot([Intersections(I,2)+12,Intersections(I,2)+LaneLength], 

[Intersections(I,3)+12,Intersections(I,3)+12]); 

%  

% Line7 = plot([Intersections(I,2),Intersections(I,2)], [Intersections(I,3)-

LaneLength,Intersections(I,3)-12],'--'); 

% Line8 = plot([Intersections(I,2)-12,Intersections(I,2)-12], [Intersections(I,3)-

LaneLength,Intersections(I,3)-12]); 

% Line9 = plot([Intersections(I,2)+12,Intersections(I,2)+12], [Intersections(I,3)-

LaneLength,Intersections(I,3)-12]); 

% Line10 = plot([Intersections(I,2),Intersections(I,2)], 

[Intersections(I,3)+12,Intersections(I,3)+LaneLength],'--'); 

% Line11 = plot([Intersections(I,2)-12,Intersections(I,2)-12], 

[Intersections(I,3)+12,Intersections(I,3)+LaneLength]); 

% Line12 = plot([Intersections(I,2)+12,Intersections(I,2)+12], 

[Intersections(I,3)+12,Intersections(I,3)+LaneLength]); 

%  

%  

% set(Line1,'color','black') 

% set(Line2,'color','black') 

% set(Line3,'color','black') 

% set(Line4,'color','black') 

% set(Line5,'color','black') 

% set(Line6,'color','black') 

% set(Line7,'color','black') 

% set(Line8,'color','black') 

% set(Line9,'color','black') 

% set(Line10,'color','black') 

% set(Line11,'color','black') 

% set(Line12,'color','black') 

% axis([Intersections(I,2)-Window Intersections(I,2)+Window Intersections(I,3)-Window 

Intersections(I,3)+Window]) 

% grid on 

% hold off 

%      

%      

% end 

  

  

% Total Grid of All Intersections 

for I = 1:size(Intersections,1) 

     

% Figure Number 

figure(1) % figure(size(Intersections,1) + 1) for other simulations 
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hold on 

Line1 = plot([Intersections(I,2)-LaneLength,Intersections(I,2)-12], 

[Intersections(I,3),Intersections(I,3)],'--'); 

Line2 = plot([Intersections(I,2)-LaneLength,Intersections(I,2)-12], [Intersections(I,3)-

12,Intersections(I,3)-12]); 

Line3 = plot([Intersections(I,2)-LaneLength,Intersections(I,2)-12], 

[Intersections(I,3)+12,Intersections(I,3)+12]); 

Line4 = plot([Intersections(I,2)+12,Intersections(I,2)+LaneLength], 

[Intersections(I,3),Intersections(I,3)],'--'); 

Line5 = plot([Intersections(I,2)+12,Intersections(I,2)+LaneLength], [Intersections(I,3)-

12,Intersections(I,3)-12]); 

Line6 = plot([Intersections(I,2)+12,Intersections(I,2)+LaneLength], 

[Intersections(I,3)+12,Intersections(I,3)+12]); 

  

Line7 = plot([Intersections(I,2),Intersections(I,2)], [Intersections(I,3)-

LaneLength,Intersections(I,3)-12],'--'); 

Line8 = plot([Intersections(I,2)-12,Intersections(I,2)-12], [Intersections(I,3)-

LaneLength,Intersections(I,3)-12]); 

Line9 = plot([Intersections(I,2)+12,Intersections(I,2)+12], [Intersections(I,3)-

LaneLength,Intersections(I,3)-12]); 

Line10 = plot([Intersections(I,2),Intersections(I,2)], 

[Intersections(I,3)+12,Intersections(I,3)+LaneLength],'--'); 

Line11 = plot([Intersections(I,2)-12,Intersections(I,2)-12], 

[Intersections(I,3)+12,Intersections(I,3)+LaneLength]); 

Line12 = plot([Intersections(I,2)+12,Intersections(I,2)+12], 

[Intersections(I,3)+12,Intersections(I,3)+LaneLength]); 

  

% Intersection Line Features 

set(Line1,'color','black') 

set(Line2,'color','black') 

set(Line3,'color','black') 

set(Line4,'color','black') 

set(Line5,'color','black') 

set(Line6,'color','black') 

set(Line7,'color','black') 

set(Line8,'color','black') 

set(Line9,'color','black') 

set(Line10,'color','black') 

set(Line11,'color','black') 

set(Line12,'color','black') 

  

end 

  

axis([0-Window Intersections(Columns,2)+Window Intersections((Columns*Rows)-(Columns-

1),3)-Window 0+Window]); 

grid on 

  

  

  

%% Creating Cars 

  

for Green = Greens(1):10:Greens(5) 

  

% Creating Matrices for Car Evaluations 

Locations = zeros(Cars,9); 

CarBehavior = zeros(Cars,5); 

Positions = zeros(Cars,10); 

Time = zeros(Cars,6); 

Light = zeros(Cars,9); 

Observation = zeros(Cars,9); 

TimeEvaluation = zeros(Cars, 12); 

PositionEvaluation = zeros(1,Cars*2 + 1); 

CarChange = zeros(Cars,2); 

  

% Possibly Irrelevant 

Overlap = zeros(Cars - 1, 9); 
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i = 1; 

Exclude = 0; 

TimeIdeal = 0; 

  

while i <= Cars 

  

% Choose random direction placement and intensity rating 

Direction = randi([1,Intersections(size(Intersections,1),size(Intersections,2) - 

2)],1,1); 

% d = randsample(setdiff(1:3, 2), 1); % For testing intersections 1 and 3 

Intensity = randi([1 10],1,1); 

[Speedy, Accel, Timing] = IntensityRating(Intensity,SpeedLimit); 

  

  

% Choosing a Random Output Direction Based on Intersection 

[IntNumber,d] = find(Intersections(:,4:7) == Direction); % Finding row and column 

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7), 

Direction), 1); 

  

% Intersection X and Y Position 

IntX = Intersections(IntNumber,2); 

IntY = Intersections(IntNumber,3); 

  

  

  

% Check if placement location is the same, if not go to original  

k = find(Locations(:,5) == Direction); % Returns index or empty matrix 

v = isempty(k); % determines if matrix is empty or not 

  

if v == 0 % if the matrix is not empty (there is a match in direction) 

    % For a similar direction 

    % Car Number   X Position   Y Position   Ouput   Intersection   MPH 

  

    if d == 1 

        Option = Locations(k,3); % Other starting car locations 

        Exclude = zeros(length(Option)*41,1); % Initial matrix of excluding values 

         

         

        for e = 1:length(Option)   % Run amount of times as other cars in that direction 

            Z = Option(e)-20:Option(e)+20; % Create 41 points that cannot be used 

             

            for f = 1:41 

                Exclude(41*(e-1)+f) = Z(f); % Put 5 points into exclude matrix 

            end 

  

        end 

         

    elseif d == 2 

        Option = Locations(k,2);   % Other starting car locations 

        Exclude = zeros(length(Option)*41,1); % Initial matrix of excluding values         

         

        for e = 1:length(Option)   % Run amount of times as other cars in that direction 

            Z = Option(e)-20:Option(e)+20; % Create 5 points that cannot be used 

            for f = 1:41 

                Exclude(41*(e-1)+f) = Z(f); % Put 5 points into exclude matrix 

            end 

        end     

         

        y = IntY - 9; 

        x = randsample(setdiff(IntX - LaneLength:IntX - 200, Exclude), 1);         

         

    elseif d == 3 

        Option = Locations(k,3);   % Other starting car locations 

        Exclude = zeros(length(Option)*41,1); % Initial matrix of excluding values         

         

        for e = 1:length(Option)   % Run amount of times as other cars in that direction 

            Z = Option(e)-20:Option(e)+20; % Create 5 points that cannot be used 
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            for f = 1:41 

                Exclude(41*(e-1)+f) = Z(f); % Put 5 points into exclude matrix 

            end 

        end     

         

    else 

        Option = Locations(k,2);   % Other starting car locations 

        Exclude = zeros(length(Option)*41,1); % Initial matrix of excluding values         

         

        for e = 1:length(Option)   % Run amount of times as other cars in that direction 

            Z = Option(e)-20:Option(e)+20; % Create 5 points that cannot be used 

            for f = 1:41 

                Exclude(41*(e-1)+f) = Z(f); % Put 5 points into exclude matrix 

            end 

        end     

         

    end 

  

    

else  

    

% Option if a car has not yet been placed in this direction  

if d == 1 

    x = IntX + 3; 

    y = randi([(IntY - LaneLength) (IntY - 200)],1,1); 

elseif d == 2 

    x = randi([(IntX - LaneLength) (IntX - 200)],1,1); 

    y = IntY - 9; 

elseif d == 3 

    x = IntX - 9; 

    y = randi([(IntY + 200 - CarLength) (IntY + LaneLength - CarLength)],1,1); 

else 

    x = randi([(IntX + 200 - CarLength) (IntX + LaneLength - CarLength)],1,1); 

    y = IntY + 3;  

end 

  

  

end 

  

if v == 1 

  

elseif length(Exclude) > length(IntX + 200 - CarLength:IntX + LaneLength - CarLength) 

    % If the random direction is full, place the car elsewhere 

    i = i - 1; 

else 

if d == 1 

    x = IntX + 3; 

    y = randsample(setdiff(IntY - LaneLength:IntY - 200, Exclude), 1); % choose placement 

that has not been occupied     

elseif d == 2 

    y = IntY - 9; 

    x = randsample(setdiff(IntX - LaneLength:IntX - 200, Exclude), 1);     

elseif d == 3 

    x = IntX - 9; 

    y = randsample(setdiff(IntY + 200 - CarLength:IntY + LaneLength - CarLength, 

Exclude), 1);      

else 

    y = IntY + 3; 

    x = randsample(setdiff(IntX + 200 - CarLength:IntX + LaneLength - CarLength, 

Exclude), 1);     

end 

  

end 

  

  

  

% Input Values for the Location Matrix 
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% Car Number(1)   X Position(2)   Y Position(3)  OutDirection(4)  InDirection(5)  MPH(6) 

Locations(i,1) = i; 

Locations(i,2) = x; 

Locations(i,3) = y; 

  

  

% Output Direction 

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column 

  

Locations(i,4) = Out; % output direction (Out) 

Locations(i,5) = Direction; 

Locations(i,6) = Speedy;   

Locations(i,7) = IntNumber; 

Locations(i,8) = d; 

Locations(i,9) = O; 

  

  

% Values for the Car Behavior Matrix 

CarBehavior(i,1) = i; 

CarBehavior(i,2) = Intensity; 

CarBehavior(i,3) = Speedy;  % Normally based on intensity rating          

CarBehavior(i,4) = Accel;   % Normally based on intensity rating          

CarBehavior(i,5) = Timing;  % Normally based on intensity rating     

  

  

  

% Values for Positions Matrix 

Positions(i,1) = i; 

Positions(i,5) = ToFPS(Speedy); 

Positions(i,6) = ToFPS(Speedy); 

Positions(i,7) = ToFPS(Speedy); 

  

if d == 1 

    Positions(i,2) = y; 

    Positions(i,3) = (y - ToFPS(Speedy)*timestep); 

    Positions(i,4) = (y - ToFPS(Speedy)*2*timestep); 

elseif d == 2 

    Positions(i,2) = x; 

    Positions(i,3) = (x - ToFPS(Speedy)*timestep); 

    Positions(i,4) = (x - ToFPS(Speedy)*2*timestep);     

elseif d == 3 

    Positions(i,2) = y; 

    Positions(i,3) = (y + ToFPS(Speedy)*timestep); 

    Positions(i,4) = (y + ToFPS(Speedy)*2*timestep);  

else 

    Positions(i,2) = x;     

    Positions(i,3) = (x + ToFPS(Speedy)*timestep); 

    Positions(i,4) = (x + ToFPS(Speedy)*2*timestep);  

end 

    

  

% Values for Time Matrix 

Time(i,1) = i; 

Time(i,6) = Timing; 

  

% Values for Light Matrix 

Light(i,1) = i; 

Light(i,2) = 4; 

  

% Initial Slowing Down Point for the Light 

if d == 1 

    Light(i,5) = IntY - 35 - (Positions(i,5))^2/(2*CarBehavior(i,4));     

elseif d == 2 

    Light(i,5) = IntX - 35 - (Positions(i,5))^2/(2*CarBehavior(i,4)); 

elseif d == 3 

    Light(i,5) = IntY + 19 + (Positions(i,5))^2/(2*CarBehavior(i,4)); 

else 
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    Light(i,5) = IntX + 19 + (Positions(i,5))^2/(2*CarBehavior(i,4)); 

end 

  

if d == 2 || d == 4 

    Light(i,2) = 4; 

    FC = i; 

end 

  

  

% Initial Time Evaluation 

TimeEvaluation(i,1) = i; 

TimeEvaluation(i,2) = Locations(i,5); % Input Direction 

TimeEvaluation(i,3) = Locations(i,2); % Input X Location 

TimeEvaluation(i,4) = Locations(i,3); % Input Y Location 

TimeEvaluation(i,5) = 0; 

TimeEvaluation(i,6) = Locations(i,4); % Output Direction 

  

[TimeIdeal] = IdealTime(d,O,Speedy,Accel,LaneLength); 

TimeEvaluation(i,11) = TimeIdeal; 

TimeEvaluation(i,12) = Intensity; 

  

% CarChange Matrix 

CarChange(i,1) = i; 

  

% Updated Car Value 

i = i + 1; 

  

end 

  

%% Moving Cars Light Status 

  

% Lights 

  

  

jj = 0; 

  

% Acceleration Initial Values 

DistanceAccel = 0; 

  

% Creating Traffic Light Matrix 

TrafficLight = zeros(Rows*Columns*4,9); 

LightStatus = zeros(100000,Rows*Columns*4 + 1); 

  

for traf = 1:size(TrafficLight,1) 

    TrafficLight(traf,1) = traf; 

    LightStatus(1,traf + 1) = traf; 

end 

  

% Initial Light Status (Green Light in North and South Directions) 

for L = 1:size(TrafficLight,1) 

     

    if L == 1 || L == 3 

        TrafficLight(L,2) = 2; 

        TrafficLight(L,7) = 10; 

    elseif mod(L,2) == 1 % Odd Number (North and South) 

        TrafficLight(L,2) = 2; 

        TrafficLight(L,7) = 100; 

    else 

        TrafficLight(L,2) = 0; 

        TrafficLight(L,7) = 0; 

    end 

end 

  

  

% Direction Transition Added to Traffic LightMatrix 

Transition = zeros(size(TrafficLight,1),2); 
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% Transition Directions 

for a = 1:Rows 

    for b = 1:Columns - 1 

        D = Intersections((a*Columns) - Columns + b,7); 

        TrafficLight(D,3) = D + 2; 

        TrafficLight(D+2,3) = D; 

    end 

end 

  

for a = 1:Rows - 1 

    for b = 1:Columns 

        D = Intersections((a*Columns) - Columns + b,4); 

        O = Intersections((a*Columns) + b,6); 

         

        % Placing Appropriate Output Directions 

        TrafficLight(D,3) = O; 

        TrafficLight(O,3) = D; 

    end 

end 

  

  

% Creating Countdown Values 

for TLight = 1:size(TrafficLight,1) 

    if TrafficLight(TLight,2) == 2 

        Indicator = 1; 

        Switch = 1;      

    else 

        Countdown = 0; 

        Indicator = 0; 

        Switch = 0;        

    end 

     

    TrafficLight(TLight,8) = Indicator; 

    TrafficLight(TLight,9) = Switch; 

     

end 

  

  

DD = 1; 

  

% Intersection Details Per Light 

for TLight = 1:size(TrafficLight,1) 

    if DD == 1 

        TrafficLight(TLight,4) = TLight + 1; % Left Direction 

        TrafficLight(TLight,5) = TLight + 2; % Straight Direction 

        TrafficLight(TLight,6) = TLight + 3; % Right Direction 

    elseif DD == 2 

        TrafficLight(TLight,4) = TLight + 1; % Left Direction 

        TrafficLight(TLight,5) = TLight + 2; % Straight Direction 

        TrafficLight(TLight,6) = TLight - 1; % Right Direction 

    elseif DD == 3 

        TrafficLight(TLight,4) = TLight + 1; % Left Direction 

        TrafficLight(TLight,5) = TLight - 2; % Straight Direction 

        TrafficLight(TLight,6) = TLight - 1; % Right Direction 

    else 

        TrafficLight(TLight,4) = TLight - 3; % Left Direction 

        TrafficLight(TLight,5) = TLight - 2; % Straight Direction 

        TrafficLight(TLight,6) = TLight - 1; % Right Direction  

    end 

  

    DD = DD + 1; 

    if DD > 4 

        DD = 1; 

    else 

    end 

end 
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% Intersection Number for Light 

for II = 1:size(Intersections,1) 

    TrafficLight(II*4 - 3,10) = II; 

    TrafficLight(II*4 - 2,10) = II; 

    TrafficLight(II*4 - 1,10) = II; 

    TrafficLight(II*4    ,10) = II; 

     

     

end 

  

  

  

  

% Starting Direction for Intersections (Green North and South) 

Intersections(:,8) = 2; 

Intersections(:,9) = 1; 

  

% Traffic Signal Graphic Values 

for TLight = 1:size(TrafficLight,1) 

    if TrafficLight(TLight,2) == 2 

        if Intersections(TrafficLight(TLight,10),4) == TLight 

            

plot(Intersections(TrafficLight(TLight,10),2),Intersections(TrafficLight(TLight,10),3) - 

50, '.g', 'MarkerSize',15) 

        elseif Intersections(TrafficLight(TLight,10),5) == TLight 

            plot(Intersections(TrafficLight(TLight,10),2) - 

50,Intersections(TrafficLight(TLight,10),3), '.g', 'MarkerSize',15)             

        elseif Intersections(TrafficLight(TLight,10),6) == TLight 

            

plot(Intersections(TrafficLight(TLight,10),2),Intersections(TrafficLight(TLight,10),3) + 

50, '.g', 'MarkerSize',15)             

        else 

            plot(Intersections(TrafficLight(TLight,10),2) + 

50,Intersections(TrafficLight(TLight,10),3), '.g', 'MarkerSize',15)             

        end         

    else     

        if Intersections(TrafficLight(TLight,10),4) == TLight 

            

plot(Intersections(TrafficLight(TLight,10),2),Intersections(TrafficLight(TLight,10),3) - 

50, '.r', 'MarkerSize',15) 

        elseif Intersections(TrafficLight(TLight,10),5) == TLight 

            plot(Intersections(TrafficLight(TLight,10),2) - 

50,Intersections(TrafficLight(TLight,10),3), '.r', 'MarkerSize',15)             

        elseif Intersections(TrafficLight(TLight,10),6) == TLight 

            

plot(Intersections(TrafficLight(TLight,10),2),Intersections(TrafficLight(TLight,10),3) + 

50, '.r', 'MarkerSize',15)             

        else 

            plot(Intersections(TrafficLight(TLight,10),2) + 

50,Intersections(TrafficLight(TLight,10),3), '.r', 'MarkerSize',15)             

        end              

    end 

end 

  

% Time to run the simulation 

% v = VideoWriter('Intersection.avi'); 

% open(v); 

  

% TimeMatrix = zeros(88*TotalTime,1); 

% BehindMatrix = zeros(88*TotalTime,1); 

% SmallMatrix = zeros(88*TotalTime,1); 

% VelocityMatrix = zeros(88*TotalTime,1); 

  

  

  

% Intersection Transition Time (Based on Lane Length and Speed Limit) 
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TransitionTime = (LaneLength*2)/ToFPS(SpeedLimit); 

  

  

Allie = 1; 

  

for j = 0:(1/timestep)*TotalTime % Total Time to Run the Simulation 

%% Updating Traffic Lights 

  

% Adaptive Traffic Signal Calculations 

  

for III = 1:size(Intersections,1) 

     

% Adaptive Signal from Queue Overload     

if Intersections(III,8) == 2 || Intersections(III,8) == -2 

    for G = 1:4 

        IntChoice = Intersections(III,G + 3); % Current Direction 

        DirectionIndex = find(Locations(:,5) == IntChoice); 

        Stopped = zeros(length(DirectionIndex),1); 

         

        if isempty(Stopped) 

        else 

        for E = 1:length(Stopped) 

            if Locations(DirectionIndex(E),6) == 0 

                Stopped(E) = 1;   

            else 

                Stopped(E) = 0; 

            end 

        end 

        end 

         

        if sum(Stopped) >= MaxQueue && Intersections(III,9) == 1; 

            % Need to Switch the Light to a New Countdown 

            % Remember to switch to the new light then countdown, dont keep 

            % switching back to the new light time 

             

            if G == 1 % Count Opposite Directions from this G 

                 

                % Right Side Furthest Car Time Calculation 

                RightSide = find(Locations(:,5) == Intersections(III,7)); % Find Cars 

Numbers to the Right (Direction 4) 

                 

                if isempty(RightSide) 

                    RightTime = 1; 

                else 

                [DistanceR,indexR] = max(Positions(RightSide,2)); 

                RightCar = RightSide(indexR,1); 

                 

                if Locations(RightCar,9) == 2 % Straight Output 

                    RightDistance = Intersections(III,2) + 12 + 

ToFPS(CarBehavior(RightCar,3))*Yellow; 

                elseif Locations(RightCar,9) == 3 % Right Output 

                    RightDistance = Intersections(III,2) + 6 + 

ToFPS(CarBehavior(RightCar,3))*Yellow - (1/2)*CarBehavior(RightCar,4)*Yellow^2;                     

                elseif Locations(RightCar,9) == 1 % Left Output 

                    RightDistance = Intersections(III,2) + 0 + 

ToFPS(CarBehavior(RightCar,3))*Yellow - (1/2)*CarBehavior(RightCar,4)*Yellow^2; 

                end 

  

                RightTime = (Positions(RightCar,2) - 

RightDistance)/Positions(RightCar,5);      

                end 

                 

                % Left Side Furthest Car Time Calculation                 

                LeftSide = find(Locations(:,5) == Intersections(III,5)); % Find Cars 

Numbers to the Left (Direction 2) 

                 

                if isempty(LeftSide) 
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                    LeftTime = 1; 

                else 

                [DistanceL,indexL] = min(Positions(LeftSide,2));   

                LeftCar = LeftSide(indexL,1); 

                 

                if Locations(LeftCar,9) == 2 % Straight Output 

                    LeftDistance = Intersections(III,2) - 28 - 

ToFPS(CarBehavior(LeftCar,3))*Yellow; 

                elseif Locations(LeftCar,9) == 3 % Right Output 

                    LeftDistance = Intersections(III,2) - 22 - 

ToFPS(CarBehavior(LeftCar,3))*Yellow + (1/2)*CarBehavior(LeftCar,4)*Yellow^2;                     

                elseif Locations(LeftCar,9) == 1 % Left Output 

                    LeftDistance = Intersections(III,2) - 16 - 

ToFPS(CarBehavior(LeftCar,3))*Yellow + (1/2)*CarBehavior(LeftCar,4)*Yellow^2; 

                end 

                 

                LeftTime = (LeftDistance - Positions(LeftCar,2))/Positions(LeftCar,5); 

                end 

                 

                if isempty(RightTime) && isempty(LeftTime) 

                    LeftTime = 1; 

                    RightTime = 1; 

                elseif isempty(RightTime) 

                    RightTime = 1; 

                elseif isempty(LeftTime) 

                    LeftTime = 1;                    

                end 

                 

                % New Light Countdown Time (Max of Right or Left) 

                NewTime = max(RightTime,LeftTime); 

                 

                if NewTime < TrafficLight(Intersections(III,5),7) || NewTime < 

TrafficLight(Intersections(III,7),7) 

                    TrafficLight(Intersections(III,5),7) = NewTime; 

                    TrafficLight(Intersections(III,7),7) = NewTime; 

                     

                    % If Intersection can update Load Calculation 

                    Intersections(III,9) = 0; 

                else 

                    Intersections(III,9) = 0;                     

                end                 

                 

  

            elseif G == 2 

                 

                % Right Side Furthest Car Time Calculation 

                RightSide = find(Locations(:,5) == Intersections(III,4)); % Find Cars 

Numbers to the Right (Direction 1) 

                 

                if isempty(RightSide) 

                    RightTime = 1; 

                else 

                 

                [DistanceR,indexR] = min(Positions(RightSide,2)); 

                RightCar = RightSide(indexR,1); 

                 

                if Locations(RightCar,9) == 3 % Straight Output 

                    RightDistance = Intersections(III,3) - 28 - 

ToFPS(CarBehavior(RightCar,3))*Yellow; 

                elseif Locations(RightCar,9) == 4 % Right Output 

                    RightDistance = Intersections(III,3) - 22 - 

ToFPS(CarBehavior(RightCar,3))*Yellow + (1/2)*CarBehavior(RightCar,4)*Yellow^2;                     

                elseif Locations(RightCar,9) == 2 % Left Output 

                    RightDistance = Intersections(III,3) - 16 - 

ToFPS(CarBehavior(RightCar,3))*Yellow + (1/2)*CarBehavior(RightCar,4)*Yellow^2; 

                end 
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                RightTime = (RightDistance - 

Positions(RightCar,2))/Positions(RightCar,5); 

                end 

                 

                % Left Side Furthest Car Time Calculation                 

                LeftSide = find(Locations(:,5) == Intersections(III,6)); % Find Cars 

Numbers to the Left (Direction 3) 

                 

                if isempty(LeftSide) 

                    LeftTime = 1; 

                else 

                [DistanceL,indexL] = max(Positions(LeftSide,2));   

                LeftCar = LeftSide(indexL,1); 

                 

                if Locations(LeftCar,9) == 1 % Straight Output 

                    LeftDistance = Intersections(III,3) + 12 + 

ToFPS(CarBehavior(LeftCar,3))*Yellow; 

                elseif Locations(LeftCar,9) == 2 % Right Output 

                    LeftDistance = Intersections(III,3) + 6 + 

ToFPS(CarBehavior(LeftCar,3))*Yellow - (1/2)*CarBehavior(LeftCar,4)*Yellow^2;                     

                elseif Locations(LeftCar,9) == 4 % Left Output 

                    LeftDistance = Intersections(III,3) + 0 + 

ToFPS(CarBehavior(LeftCar,3))*Yellow - (1/2)*CarBehavior(LeftCar,4)*Yellow^2; 

                end 

                 

                LeftTime = (Positions(LeftCar,2) - LeftDistance)/Positions(LeftCar,5); 

                end 

                 

                if isempty(RightTime) && isempty(LeftTime) 

                    LeftTime = 1; 

                    RightTime = 1; 

                elseif isempty(RightTime) 

                    RightTime = 1; 

                elseif isempty(LeftTime) 

                    LeftTime = 1;                    

                end  

                 

                % New Light Countdown Time (Max of Right or Left) 

                NewTime = max(RightTime,LeftTime); 

                 

                if NewTime < TrafficLight(Intersections(III,4),7) || NewTime < 

TrafficLight(Intersections(III,6),7) 

                    TrafficLight(Intersections(III,4),7) = NewTime; 

                    TrafficLight(Intersections(III,6),7) = NewTime; 

                     

                    % If Intersection can update Load Calculation 

                    Intersections(III,9) = 0; 

                else 

                    Intersections(III,9) = 0;                     

                end 

                 

                 

            elseif G == 3 

                 

                % Right Side Furthest Car Time Calculation 

                RightSide = find(Locations(:,5) == Intersections(III,5)); % Find Cars 

Numbers to the Right (Direction 2) 

                 

                if isempty(RightSide) 

                    RightTime = 1; 

                else 

                [DistanceR,indexR] = min(Positions(RightSide,2)); 

                RightCar = RightSide(indexR,1); 

                 

                if Locations(RightCar,9) == 4 % Straight Output 

                    RightDistance = Intersections(III,2) - 28 - 

ToFPS(CarBehavior(RightCar,3))*Yellow; 
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                elseif Locations(RightCar,9) == 1 % Right Output 

                    RightDistance = Intersections(III,2) - 22 - 

ToFPS(CarBehavior(RightCar,3))*Yellow + (1/2)*CarBehavior(RightCar,4)*Yellow^2;                     

                elseif Locations(RightCar,9) == 3 % Left Output 

                    RightDistance = Intersections(III,2) - 16 - 

ToFPS(CarBehavior(RightCar,3))*Yellow + (1/2)*CarBehavior(RightCar,4)*Yellow^2; 

                end 

  

                RightTime = (RightDistance - 

Positions(RightCar,2))/Positions(RightCar,5); 

                end 

                 

                % Left Side Furthest Car Time Calculation                 

                LeftSide = find(Locations(:,5) == Intersections(III,7)); % Find Cars 

Numbers to the Left (Direction 4) 

                 

                if isempty(LeftSide) 

                    LeftTime = 1; 

                else 

                [DistanceL,indexL] = max(Positions(LeftSide,2));   

                LeftCar = LeftSide(indexL,1);  

                 

                if Locations(LeftCar,9) == 2 % Straight Output 

                    LeftDistance = Intersections(III,2) + 12 + 

ToFPS(CarBehavior(LeftCar,3))*Yellow; 

                elseif Locations(LeftCar,9) == 3 % Right Output 

                    LeftDistance = Intersections(III,2) + 6 + 

ToFPS(CarBehavior(LeftCar,3))*Yellow - (1/2)*CarBehavior(LeftCar,4)*Yellow^2;                     

                elseif Locations(LeftCar,9) == 1 % Left Output 

                    LeftDistance = Intersections(III,2) + 0 + 

ToFPS(CarBehavior(LeftCar,3))*Yellow - (1/2)*CarBehavior(LeftCar,4)*Yellow^2; 

                end 

                 

                LeftTime = (Positions(LeftCar,2) - LeftDistance)/Positions(LeftCar,5);  

                end 

                 

                if isempty(RightTime) && isempty(LeftTime) 

                    LeftTime = 1; 

                    RightTime = 1; 

                elseif isempty(RightTime) 

                    RightTime = 1; 

                elseif isempty(LeftTime) 

                    LeftTime = 1;                    

                end                 

                 

                % New Light Countdown Time (Max of Right or Left) 

                NewTime = max(RightTime,LeftTime); 

                 

                if NewTime < TrafficLight(Intersections(III,5),7) || NewTime < 

TrafficLight(Intersections(III,7),7) 

                    TrafficLight(Intersections(III,5),7) = NewTime; 

                    TrafficLight(Intersections(III,7),7) = NewTime; 

                     

                    % If Intersection can update Load Calculation 

                    Intersections(III,9) = 0; 

                else 

                    Intersections(III,9) = 0;                     

                end                 

  

            else  

                 

                % Right Side Furthest Car Time Calculation 

                RightSide = find(Locations(:,5) == Intersections(III,6)); % Find Cars 

Numbers to the Right (Direction 3) 

                 

                if isempty(RightSide) 

                    RightTime = 1; 
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                else 

                [DistanceR,indexR] = max(Positions(RightSide,2)); 

                RightCar = RightSide(indexR,1); 

                 

                if Locations(RightCar,9) == 1 % Straight Output 

                    RightDistance = Intersections(III,3) + 12 + 

ToFPS(CarBehavior(RightCar,3))*Yellow; 

                elseif Locations(RightCar,9) == 2 % Right Output 

                    RightDistance = Intersections(III,3) + 6 + 

ToFPS(CarBehavior(RightCar,3))*Yellow - (1/2)*CarBehavior(RightCar,4)*Yellow^2;                     

                elseif Locations(RightCar,9) == 4 % Left Output 

                    RightDistance = Intersections(III,3) + 0 + 

ToFPS(CarBehavior(RightCar,3))*Yellow - (1/2)*CarBehavior(RightCar,4)*Yellow^2; 

                end 

  

                RightTime = (Positions(RightCar,2) - 

RightDistance)/Positions(RightCar,5);      

                end 

                 

                % Left Side Furthest Car Time Calculation                 

                LeftSide = find(Locations(:,5) == Intersections(III,4)); % Find Cars 

Numbers to the Left (Direction 1) 

                 

                if isempty(LeftSide) 

                    LeftTime = 1; 

                else 

                [DistanceL,indexL] = min(Positions(LeftSide,2));   

                LeftCar = LeftSide(indexL,1); 

                 

                if Locations(LeftCar,9) == 3 % Straight Output 

                    LeftDistance = Intersections(III,3) - 28 - 

ToFPS(CarBehavior(LeftCar,3))*Yellow; 

                elseif Locations(LeftCar,9) == 4 % Right Output 

                    LeftDistance = Intersections(III,3) - 22 - 

ToFPS(CarBehavior(LeftCar,3))*Yellow + (1/2)*CarBehavior(LeftCar,4)*Yellow^2;                     

                elseif Locations(LeftCar,9) == 2 % Left Output 

                    LeftDistance = Intersections(III,3) - 16 - 

ToFPS(CarBehavior(LeftCar,3))*Yellow + (1/2)*CarBehavior(LeftCar,4)*Yellow^2; 

                end 

                 

                LeftTime = (LeftDistance - Positions(LeftCar,2))/Positions(LeftCar,5);  

                end 

                 

                if isempty(RightTime) && isempty(LeftTime) 

                    LeftTime = 1; 

                    RightTime = 1; 

                elseif isempty(RightTime) 

                    RightTime = 1; 

                elseif isempty(LeftTime) 

                    LeftTime = 1;                    

                end             

        

                % New Light Countdown Time (Max of Right or Left) 

                NewTime = max(RightTime,LeftTime); 

                 

                if NewTime < TrafficLight(Intersections(III,4),7) || NewTime < 

TrafficLight(Intersections(III,6),7) 

                    TrafficLight(Intersections(III,4),7) = NewTime; 

                    TrafficLight(Intersections(III,6),7) = NewTime; 

                     

                    % If Intersection can update Load Calculation 

                    Intersections(III,9) = 0; 

                else 

                    Intersections(III,9) = 0;                     

                end                  

            end   

        end 
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    end 

end 

     

     

     

  

  

     

% Intelligent Traffic Signal Calculations from Neighboring Lights 

    % (Only update if signal timing is bigger than the actual car load time calculation) 

       

if Intersections(III,9) == 1     

     

    if Intersections(III,8) == 1 && TrafficLight(Intersections(III,4),7) == Yellow 

        if Intersections(III,2) < max(Intersections(:,2)) && Intersections(III,3) > 

min(Intersections(:,3)) 

            if Green > TransitionTime 

                TrafficLight(Intersections(III + 1,4),7) = TransitionTime; 

                TrafficLight(Intersections(III + 1,6),7) = TransitionTime; 

                TrafficLight(Intersections(III + Columns,4),7) = TransitionTime; 

                TrafficLight(Intersections(III + Columns,6),7) = TransitionTime;       

            else 

                TrafficLight(Intersections(III + 1,4),7) = Green; 

                TrafficLight(Intersections(III + 1,6),7) = Green; 

                TrafficLight(Intersections(III + Columns,4),7) = Green; 

                TrafficLight(Intersections(III + Columns,6),7) = Green; 

            end 

  

        elseif Intersections(III,2) == max(Intersections(:,2)) && Intersections(III,3) == 

min(Intersections(:,3)) 

            % Do Nothing  

        elseif Intersections(III,2) == max(Intersections(:,2)) || Intersections(III,3) == 

min(Intersections(:,3)) 

            if Intersections(III,2) == max(Intersections(:,2)) 

                if Green > TransitionTime 

                    TrafficLight(Intersections(III + Columns,4),7) = TransitionTime; 

                    TrafficLight(Intersections(III + Columns,6),7) = TransitionTime;       

                else 

                    TrafficLight(Intersections(III + Columns,4),7) = Green; 

                    TrafficLight(Intersections(III + Columns,6),7) = Green; 

                end        

            else 

                if Green > TransitionTime 

                    TrafficLight(Intersections(III + 1,4),7) = TransitionTime; 

                    TrafficLight(Intersections(III + 1,6),7) = TransitionTime;       

                else 

                    TrafficLight(Intersections(III + 1,4),7) = Green; 

                    TrafficLight(Intersections(III + 1,6),7) = Green; 

                end                       

            end 

        end 

  

% West and East Direction Light Configuration         

    elseif Intersections(III,8) == -1 && TrafficLight(Intersections(III,5),7) == Yellow 

        if Intersections(III,2) < max(Intersections(:,2)) && Intersections(III,3) > 

min(Intersections(:,3)) 

            if Green > TransitionTime 

                TrafficLight(Intersections(III + 1,5),7) = TransitionTime; 

                TrafficLight(Intersections(III + 1,7),7) = TransitionTime; 

                TrafficLight(Intersections(III + Columns,5),7) = TransitionTime; 

                TrafficLight(Intersections(III + Columns,7),7) = TransitionTime;       

            else 

                TrafficLight(Intersections(III + 1,5),7) = Green; 

                TrafficLight(Intersections(III + 1,7),7) = Green; 

                TrafficLight(Intersections(III + Columns,5),7) = Green; 

                TrafficLight(Intersections(III + Columns,7),7) = Green; 

            end 
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        elseif Intersections(III,2) == max(Intersections(:,2)) && Intersections(III,3) == 

min(Intersections(:,3)) 

            % Do Nothing  

        elseif Intersections(III,2) == max(Intersections(:,2)) || Intersections(III,3) == 

min(Intersections(:,3)) 

            if Intersections(III,2) == max(Intersections(:,2)) 

                if Green > TransitionTime 

                    TrafficLight(Intersections(III + Columns,5),7) = TransitionTime; 

                    TrafficLight(Intersections(III + Columns,7),7) = TransitionTime;       

                else 

                    TrafficLight(Intersections(III + Columns,5),7) = Green; 

                    TrafficLight(Intersections(III + Columns,7),7) = Green; 

                end        

            else 

                if Green > TransitionTime 

                    TrafficLight(Intersections(III + 1,5),7) = TransitionTime; 

                    TrafficLight(Intersections(III + 1,7),7) = TransitionTime;       

                else 

                    TrafficLight(Intersections(III + 1,5),7) = Green; 

                    TrafficLight(Intersections(III + 1,7),7) = Green; 

                end                        

            end 

        end 

    end 

     

     

else 

end 

     

end 

  

  

  

  

  

% Traffic Light Operation From Intelligent Calculations 

for T = 1:size(TrafficLight,1) 

     

    if TrafficLight(T,7) >= 0 % Counting down Green Light 

        TrafficLight(T,7) = TrafficLight(T,7) - timestep; 

    elseif TrafficLight(T,2) == 2 && TrafficLight(T,7) <= 0 % Changing Green to Yellow 

        TrafficLight(T,2) = 1; 

        TrafficLight(T,7) = Yellow; 

         

if Simulation == 1         

        if Intersections(TrafficLight(T,10),4) == T 

            plot(Intersections(TrafficLight(T,10),2),Intersections(TrafficLight(T,10),3) 

- 50, '.y', 'MarkerSize',15) 

        elseif Intersections(TrafficLight(T,10),5) == T 

            plot(Intersections(TrafficLight(T,10),2) - 

50,Intersections(TrafficLight(T,10),3), '.y', 'MarkerSize',15)             

        elseif Intersections(TrafficLight(T,10),6) == T 

            plot(Intersections(TrafficLight(T,10),2),Intersections(TrafficLight(T,10),3) 

+ 50, '.y', 'MarkerSize',15)             

        else 

            plot(Intersections(TrafficLight(T,10),2) + 

50,Intersections(TrafficLight(T,10),3), '.y', 'MarkerSize',15)             

        end 

         

end         

  

    elseif TrafficLight(T,2) == 1 && TrafficLight(T,7) <= 0 && TrafficLight(T,8) == 1 % 

Changing Yellow to Red 

        TrafficLight(T,2) = 0; 

        TrafficLight(T,7) = 0; 

        TrafficLight(T,8) = 0; 
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        TrafficLight(TrafficLight(T,4),8) = 1; % Light to left Indicator at 1 

         

if Simulation == 1         

         

        if Intersections(TrafficLight(T,10),4) == T 

            plot(Intersections(TrafficLight(T,10),2),Intersections(TrafficLight(T,10),3) 

- 50, '.r', 'MarkerSize',15) 

        elseif Intersections(TrafficLight(T,10),5) == T 

            plot(Intersections(TrafficLight(T,10),2) - 

50,Intersections(TrafficLight(T,10),3), '.r', 'MarkerSize',15)             

        elseif Intersections(TrafficLight(T,10),6) == T 

            plot(Intersections(TrafficLight(T,10),2),Intersections(TrafficLight(T,10),3) 

+ 50, '.r', 'MarkerSize',15)             

        else 

            plot(Intersections(TrafficLight(T,10),2) + 

50,Intersections(TrafficLight(T,10),3), '.r', 'MarkerSize',15)             

        end     

         

end 

         

    elseif T > TrafficLight(T,5) && TrafficLight(T,2) == 0 && TrafficLight(T,7) <= 0 && 

TrafficLight(T,8) == 1 && TrafficLight(T,9) == 0 && TrafficLight(TrafficLight(T,5),8) == 

1 

        TrafficLight(T,7) = Red; 

        TrafficLight(T,9) = 1; 

         

        TrafficLight(TrafficLight(T,5),7) = Red; 

        TrafficLight(TrafficLight(T,5),9) = 1; 

         

        TrafficLight(TrafficLight(T,4),9) = 0; 

        TrafficLight(TrafficLight(T,6),9) = 0; 

         

    elseif T > TrafficLight(T,5) && TrafficLight(T,2) == 0 && TrafficLight(T,7) <= 0 && 

TrafficLight(T,8) == 1 && TrafficLight(T,9) == 1 && TrafficLight(TrafficLight(T,5),9) == 

1 

        TrafficLight(T,2) = 2; 

        TrafficLight(T,7) = Green; 

         

        TrafficLight(TrafficLight(T,5),2) = 2; 

        TrafficLight(TrafficLight(T,5),7) = Green; 

        Intersections(TrafficLight(T,10),9) = 1; 

         

         

if Simulation == 1         

        if Intersections(TrafficLight(T,10),4) == T 

            plot(Intersections(TrafficLight(T,10),2),Intersections(TrafficLight(T,10),3) 

- 50, '.g', 'MarkerSize',15) 

        elseif Intersections(TrafficLight(T,10),5) == T 

            plot(Intersections(TrafficLight(T,10),2) - 

50,Intersections(TrafficLight(T,10),3), '.g', 'MarkerSize',15)             

        elseif Intersections(TrafficLight(T,10),6) == T 

            plot(Intersections(TrafficLight(T,10),2),Intersections(TrafficLight(T,10),3) 

+ 50, '.g', 'MarkerSize',15)             

        else 

            plot(Intersections(TrafficLight(T,10),2) + 

50,Intersections(TrafficLight(T,10),3), '.g', 'MarkerSize',15)             

        end    

         

        if Intersections(TrafficLight(T - 2,10),4) == T - 2 

            plot(Intersections(TrafficLight(T - 2,10),2),Intersections(TrafficLight(T - 

2,10),3) - 50, '.g', 'MarkerSize',15) 

        elseif Intersections(TrafficLight(T - 2,10),5) == T - 2 

            plot(Intersections(TrafficLight(T - 2,10),2) - 

50,Intersections(TrafficLight(T - 2,10),3), '.g', 'MarkerSize',15)             

        elseif Intersections(TrafficLight(T - 2,10),6) == T - 2 

            plot(Intersections(TrafficLight(T - 2,10),2),Intersections(TrafficLight(T - 

2,10),3) + 50, '.g', 'MarkerSize',15)             
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        else 

            plot(Intersections(TrafficLight(T - 2,10),2) + 

50,Intersections(TrafficLight(T - 2,10),3), '.g', 'MarkerSize',15)             

        end    

  

end 

         

  

    end 

     

     

    % Filling in Light Status Matrix 

    LightStatus(j + 2,1) = j*timestep; 

    LightStatus(j + 2,T + 1) = TrafficLight(T,2); 

     

end 

  

  

% Updating Intersection Direction Change 

for III = 1:size(Intersections,1) 

     

    if TrafficLight(Intersections(III,4),2) == 2 || TrafficLight(Intersections(III,6),2) 

== 2 

        Intersections(III,8) = 2; 

    elseif TrafficLight(Intersections(III,4),2) == 1 || 

TrafficLight(Intersections(III,6),2) == 1 

        Intersections(III,8) = 1;         

    elseif  TrafficLight(Intersections(III,5),2) == 2 || 

TrafficLight(Intersections(III,7),2) == 2 

        Intersections(III,8) = -2; 

    elseif  TrafficLight(Intersections(III,5),2) == 1 || 

TrafficLight(Intersections(III,7),2) == 1 

        Intersections(III,8) = -1; 

    else 

        Intersections(III,8) = 0; 

    end 

     

end 

  

  

  

  

TrafficLight; 

Intersections; 

  

  

    for k = 1:Cars 

%% Transition when Changing Direction 

  

% Intersection Location 

IntNumber = Locations(k,7); 

IntX = Intersections(IntNumber,2); 

IntY = Intersections(IntNumber,3); 

  

  

if Locations(k,8) == 1 && Locations(k,9) ~= 3 

     

    if Locations(k,9) == 4 && Positions(k,2) >= IntY - 22 

        Positions(k,2) = IntX + 5; 

        Locations(k,3) = IntY - 9; 

        Locations(k,5) = Intersections(IntNumber,5); 

        Locations(k,8) = 2; 

        Locations(k,9) = 4; 

        Light(k,2) = 5; 

         

    elseif Locations(k,9) == 2 && Positions(k,2) >= IntY - 10 

        Positions(k,2) = IntX - 11; 
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        Locations(k,3) = IntY + 3; 

        Locations(k,5) = Intersections(IntNumber,7); 

        Locations(k,8) = 4; 

        Locations(k,9) = 2; 

        Light(k,2) = 5; 

    end 

     

elseif Locations(k,8) == 2 && Locations(k,9) ~= 4    

     

    if Locations(k,9) == 1 && Positions(k,2) >= IntX - 22 

        Positions(k,2) = IntY - 21; 

        Locations(k,2) = IntX - 9; 

        Locations(k,5) = Intersections(IntNumber,6); 

        Locations(k,8) = 3; 

        Locations(k,9) = 1; 

        Light(k,2) = 5; 

    elseif Locations(k,9) == 3 && Positions(k,2) >= IntX - 10 

        Positions(k,2) = IntY - 5; 

        Locations(k,2) = IntX + 3; 

        Locations(k,5) = Intersections(IntNumber,4); 

        Locations(k,8) = 1; 

        Locations(k,9) = 3; 

        Light(k,2) = 5; 

         

    end     

     

elseif Locations(k,8) == 3 && Locations(k,9) ~= 1 

     

    if Locations(k,9) == 2 && Positions(k,2) <= IntY + 6 

        Positions(k,2) = IntX - 21; 

        Locations(k,3) = IntY + 3; 

        Locations(k,5) = Intersections(IntNumber,7); 

        Locations(k,8) = 4; 

        Locations(k,9) = 2; 

        Light(k,2) = 5; 

    elseif Locations(k,9) == 4 && Positions(k,2) <= IntY - 6 

        Positions(k,2) = IntX - 5; 

        Locations(k,3) = IntY - 9; 

        Locations(k,5) = Intersections(IntNumber,5); 

        Locations(k,8) = 2; 

        Locations(k,9) = 4; 

        Light(k,2) = 5; 

         

    end       

     

elseif Locations(k,8) == 4 && Locations(k,9) ~= 2  

     

    if Locations(k,9) == 3 && Positions(k,2) <= IntX + 6 

        Positions(k,2) = IntY + 5; 

        Locations(k,2) = IntX + 3; 

        Locations(k,5) = Intersections(IntNumber,4); 

        Locations(k,8) = 1; 

        Locations(k,9) = 3; 

        Light(k,2) = 5; 

    elseif Locations(k,9) == 1 && Positions(k,2) <= IntX - 6 

        Positions(k,2) = IntY - 11; 

        Locations(k,2) = IntX - 9; 

        Locations(k,5) = Intersections(IntNumber,6); 

        Locations(k,8) = 3; 

        Locations(k,9) = 1; 

        Light(k,2) = 5; 

    end       

         

end 
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%% Ensuring one car does not run into the car directly in front       

        % Find the location where the directions are the same 

        Direct = find(Locations(:,5) == Locations(k,5)); 

        % Create the new matrix for same direction data 

        Check = zeros(length(Direct),9); 

        Check(1,:) = Locations(k,:); % Plot the first line 

  

        % Delete Location where it is the same as the first line 

        X = find(Direct(:) == Locations(k,1)); 

        Direct(X, :) = []; 

         

        % Place rest of similar direction data into the check matrix 

        for z = 1:length(Direct) 

            Check(z + 1,:) = Locations(Direct(z),:); 

        end 

         

  

         

      

% Find which car is directly in front based on initial direction 

% and have it slow down to the speed of front car if necessary 

        if Check(1,8) == 1 

            % Create initial matrix to fill in distance values 

            Distance = zeros(length(Direct),1); 

             

            for m = 1:length(Direct) 

                % Check the distance of each car relative to the first 

                Distance(m) = Check(m + 1,3) - Check(1,3); 

            end 

  

            % Make sure the values is only considered as greater than 0 but 

            % that the index considers all locations 

            Small = min(Distance(Distance > 0)); 

             

        elseif Check(1,8) == 2 

            % Create initial matrix to fill in distance values 

            Distance = zeros(length(Direct),1); 

             

            for m = 1:length(Direct) 

                % Check the distance of each car relative to the first 

                Distance(m) = Check(m + 1,2) - Check(1,2);  

            end 

  

            % Make sure the values is only considered as greater than 0 but 

            % that the index considers all locations 

            Small = min(Distance(Distance > 0));             

             

  

        elseif Check(1,8) == 3 

            % Create initial matrix to fill in distance values 

            Distance = zeros(length(Direct),1); 

             

            for m = 1:length(Direct) 

                % Check the distance of each car relative to the first 

                Distance(m) = Check(1,3) - Check(m + 1,3);  

            end 

  

            % Make sure the values is only considered as greater than 0 but 

            % that the index considers all locations 

            Small = min(Distance(Distance > 0));             

             

        else 

            % Create initial matrix to fill in distance values 

            Distance = zeros(length(Direct),1); 
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            for m = 1:length(Direct) 

                % Check the distance of each car relative to the first 

                Distance(m) = Check(1,2) - Check(m + 1,2);  

            end 

  

            % Make sure the values is only considered as greater than 0 but 

            % that the index considers all locations 

            Small = min(Distance(Distance > 0)); 

             

        end 

             

            if isempty(Small) % No cars in front of the current car 

                if Positions(k,5) < ToFPS(CarBehavior(k,3)) && Positions(k,5) >= 0 

                    DistanceAccel = CarBehavior(k,4); 

                    Time(k,2) = 0;  

                else 

                    DistanceAccel = 0; 

                    Time(k,2) = Inf; 

                end 

                 

  

                 

            else 

                 

                 

Index = find(Distance == Small); 

             

% Front and Back Car Numbers             

FC = Check(Index+1,1); % Number of the car in front 

BC = Check(1,1); % Number of the back car (current car) = k 

  

if k > FC 

  

% Calculation for Current Time Behind and Desired Initial Time 

[Current,Initial] = BehindTime(Positions(FC,3),Positions(k,2),Positions(FC,6),... 

    

Positions(k,5),ToFPS(CarBehavior(k,3)),CarBehavior(k,4),CarBehavior(k,5),CarLength,Locati

ons(k,5)); 

  

Time(k,2) = Current; 

Time(k,5) = Initial; 

  

% Appropriate Acceleration Calculation 

Accel = 

Acceleration(Positions(FC,3),Positions(k,2),Positions(k,5),CarBehavior(k,5),Locations(k,5

)); 

  

% Desired Velocity and Time Errors 

TimeError = abs(Current - CarBehavior(k,5)); 

VelocityError = Positions(k,5) - Positions(FC,6); 

  

% Acceleration Calculation 

[DistanceAccel] = CarInFront(Positions(FC,6),Positions(k,5),... 

    CarBehavior(k,4),Current,Time(k,3),Initial,CarBehavior(k,5),... 

    ToFPS(CarBehavior(k,3)),TimeError,VelocityError,Accel); 

  

  

  

else % If the Back Car is a lower number than the front car 

    

     

% Calculation for Current Time Behind and Desired Initial Time 

  

[Current,Initial] = BehindTime(Positions(FC,2),Positions(k,2),Positions(FC,5),... 

    

Positions(k,5),ToFPS(CarBehavior(k,3)),CarBehavior(k,4),CarBehavior(k,5),CarLength,Locati

ons(k,5)); 
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Time(k,2) = Current; 

Time(k,5) = Initial; 

  

% Appropriate Acceleration Calculation 

Accel = 

Acceleration(Positions(FC,2),Positions(k,2),Positions(k,5),CarBehavior(k,5),Locations(k,5

)); 

  

% Desired Velocity and Time Errors 

TimeError = abs(Current - CarBehavior(k,5)); 

VelocityError = Positions(k,5) - Positions(FC,5); 

  

% Acceleration Calculation 

[DistanceAccel] = CarInFront(Positions(FC,5),Positions(k,5),... 

    CarBehavior(k,4),Current,Time(k,3),Initial,CarBehavior(k,5),... 

    ToFPS(CarBehavior(k,3)),TimeError,VelocityError,Accel); 

     

end 

  

            end 

             

             

             

             

                         

%% Decision at Instant Occurance of Yellow Light 

  

if TrafficLight(Locations(k,5),2) == 1 && TrafficLight(Locations(k,5),7) == Yellow 

    [Decision,xii] = 

LightTime(Positions(k,2),Locations(k,8),Positions(k,5),Yellow,CarBehavior(k,4),Locations(

k,9),IntX,IntY); 

    Light(k,2) = Decision; 

    Light(k,9) = xii;     

end  

     

%    if Locations(k,8) == 1  

%         [Decision,xii] = 

LightTime(Positions(k,2),Locations(k,8),Positions(k,5),Yellow,CarBehavior(k,4),Locations(

k,9),IntX,IntY); 

%         Light(k,2) = Decision; 

%         Light(k,9) = xii; 

%    elseif Locations(k,8) == 3 

%         [Decision,xii] = 

LightTime(Positions(k,2),Locations(k,8),Positions(k,5),Yellow,CarBehavior(k,4),Locations(

k,9),IntX,IntY);         

%         Light(k,2) = Decision; 

%         Light(k,9) = xii;        

%    end 

%  

%  

%  

%    if Locations(k,8) == 2  

%         [Decision,xii] = 

LightTime(Positions(k,2),Locations(k,8),Positions(k,5),Yellow,CarBehavior(k,4),Locations(

k,9),IntX,IntY); 

%         Light(k,2) = Decision; 

%         Light(k,9) = xii; 

%    elseif Locations(k,8) == 4 

%         [Decision,xii] = 

LightTime(Positions(k,2),Locations(k,8),Positions(k,5),Yellow,CarBehavior(k,4),Locations(

k,9),IntX,IntY); 

%         Light(k,2) = Decision; 

%         Light(k,9) = xii;       

%    end     
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%% Straight Proceed Light Status Acceleration 

  

% Calculate initial slowing down position  

  

if Locations(k,8) == 1 

     

    xi = Light(k,6) - (Positions(k,5))^2/(2*CarBehavior(k,4)); 

    Light(k,5) = xi; % Starting position for slowing down before the light     

  

    if TrafficLight(Locations(k,5),2) == 0 % Red Light 

        if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 && 

Positions(k,2) >= Light(k,6) - 1 

            LightAccel = 0; 

            Positions(k,5) = 0; 

        elseif Positions(k,2) >= Light(k,5) && Light(k,2) == 4 

            LightAccel = -Positions(k,5)^2/(2*(Light(k,6) - Positions(k,2)));  

        elseif Positions(k,2) < Light(k,5) && Positions(k,5) < ToFPS(CarBehavior(k,3)) && 

Light(k,2) == 4 

            LightAccel = CarBehavior(k,4); 

        end 

  

    elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light 

        if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 && 

Positions(k,2) >= Light(k,6) - 1 

            LightAccel = 0; 

            Positions(k,5) = 0; 

        elseif Light(k,2) == 4 && Positions(k,2) >= Light(k,5) 

            LightAccel = -Positions(k,5)^2/(2*(Light(k,6) - Positions(k,2))); 

        elseif Light(k,2) == 3 

            LightAccel = 0; % Adjust for Faster Acceleration 

        elseif Light(k,2) == 2 

            LightAccel = 0; 

        end  

         

    else % Green Light 

        if Time(k,2) == Inf || Time(k,2) < 0 || Time(k,5) == 0 

            LightAccel = CarBehavior(k,4);             

        end 

         

    end     

     

     

     

elseif Locations(k,8) == 2 

    xi = Light(k,6) - (Positions(k,5))^2/(2*CarBehavior(k,4)); 

    Light(k,5) = xi; % Starting position for slowing down before the light     

  

    if TrafficLight(Locations(k,5),2) == 0 % Red Light 

        if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 && 

Positions(k,2) >= Light(k,6) - 1 

            LightAccel = 0; 

            Positions(k,5) = 0; 

        elseif Positions(k,2) >= Light(k,5) && Light(k,2) == 4 

            LightAccel = -Positions(k,5)^2/(2*(Light(k,6) - Positions(k,2)));  

        elseif Positions(k,2) < Light(k,5) && Positions(k,5) < ToFPS(CarBehavior(k,3)) && 

Light(k,2) == 4 

            LightAccel = CarBehavior(k,4);             

        end  

  

    elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light 

        if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 && 

Positions(k,2) >= Light(k,6) - 1 

            LightAccel = 0; 

            Positions(k,5) = 0; 

        elseif Light(k,2) == 4 && Positions(k,2) >= Light(k,5) 
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            LightAccel = -Positions(k,5)^2/(2*(Light(k,6) - Positions(k,2))); 

        elseif Light(k,2) == 3 

            LightAccel = 0; % Adjust for Faster Acceleration 

        elseif Light(k,2) == 2 

            LightAccel = 0; 

        end  

         

    else % Green Light 

        if Time(k,2) == Inf || Time(k,2) < 0 || Time(k,5) == 0 

            LightAccel = CarBehavior(k,4);             

        end 

         

    end     

         

  

elseif Locations(k,8) == 3 

    xi = Light(k,6) + (Positions(k,5))^2/(2*CarBehavior(k,4)); 

    Light(k,5) = xi; % Starting position for slowing down before the light      

  

    if TrafficLight(Locations(k,5),2) == 0 % Red Light 

        if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 && 

Positions(k,2) >= Light(k,6) - 1 

            LightAccel = 0; 

            Positions(k,5) = 0; 

        elseif Positions(k,2) <= Light(k,5) && Light(k,2) == 4 

            LightAccel = -Positions(k,5)^2/(2*(-Light(k,6) + Positions(k,2)));    

        elseif Positions(k,2) > Light(k,5) && Positions(k,5) < ToFPS(CarBehavior(k,3)) && 

Light(k,2) == 4 

            LightAccel = CarBehavior(k,4);             

        end  

             

    elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light 

        if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 && 

Positions(k,2) >= Light(k,6) - 1 

            LightAccel = 0; 

            Positions(k,5) = 0; 

        elseif Light(k,2) == 4 && Positions(k,2) <= Light(k,5) 

            LightAccel = -Positions(k,5)^2/(2*(-Light(k,6) + Positions(k,2))); 

        elseif Light(k,2) == 3 

            LightAccel = 0; % Adjust for Faster Acceleration 

        elseif Light(k,2) == 2 

            LightAccel = 0; 

        end  

  

    else % Green Light 

        if Time(k,2) == Inf || Time(k,2) < 0 || Time(k,5) == 0 

            LightAccel = CarBehavior(k,4);             

        end 

         

    end        

  

else 

    xi = Light(k,6) + (Positions(k,5))^2/(2*CarBehavior(k,4)); 

    Light(k,5) = xi; % Starting position for slowing down before the light      

  

    if TrafficLight(Locations(k,5),2) == 0 % Red Light 

        if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 && 

Positions(k,2) >= Light(k,6) - 1 

            LightAccel = 0; 

            Positions(k,5) = 0; 

        elseif Positions(k,2) <= Light(k,5) && Light(k,2) == 4 

            LightAccel = -Positions(k,5)^2/(2*(-Light(k,6) + Positions(k,2))); 

        elseif Positions(k,2) > Light(k,5) && Positions(k,5) < ToFPS(CarBehavior(k,3)) && 

Light(k,2) == 4 

            LightAccel = CarBehavior(k,4);             

        end  
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    elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light 

        if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 && 

Positions(k,2) >= Light(k,6) - 1 

            LightAccel = 0; 

            Positions(k,5) = 0; 

        elseif Light(k,2) == 4 && Positions(k,2) <= Light(k,5) 

            LightAccel = -Positions(k,5)^2/(2*(-Light(k,6) + Positions(k,2))); 

        elseif Light(k,2) == 3 

            LightAccel = 0; % Adjust for Faster Acceleration 

        elseif Light(k,2) == 2 

            LightAccel = 0; 

        end  

  

    else % Green Light 

        if Time(k,2) == Inf || Time(k,2) < 0 || Time(k,5) == 0 

            LightAccel = CarBehavior(k,4);             

        end 

         

    end    

      

  

end 

  

  

%% Changing Directions at the Intersection (Right Turn Acceleration) 

  

if Locations(k,8) == 1 

        if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 % 

Green/Yellow Light 

            xi = IntY - 28 - ((Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4))); % 

Look at this calculation 

            Light(k,7) = xi; % Starting position for slowing down before the light 

             

            if Light(k,2) == 3 && Positions(k,2) < Light(k,9) 

                TurnAccel = 0; % Stay Fast until Rushed Decceleration 

            elseif Light(k,2) == 3 && Positions(k,2) >= Light(k,9) 

                TurnAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration 

                if j == 5; 

                end 

            elseif Positions(k,2) >= Light(k,7) && Positions(k,2) < IntY - 28 

                TurnAccel = -CarBehavior(k,4); 

            else 

                TurnAccel = 0; 

            end 

        else 

            TurnAccel = (0 - Positions(k,5)^2)/(2*(Light(k,6) - Positions(k,2))); % Red 

Light 

        end     

elseif Locations(k,8) == 2 

        if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 % 

Green/Yellow Light 

            xi = IntX - 28 - ((Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4))); % 

Look at this calculation 

            Light(k,7) = xi; % Starting position for slowing down before the light 

             

            if Light(k,2) == 3 && Positions(k,2) < Light(k,9) 

                TurnAccel = 0; % Stay Fast until Rushed Decceleration 

            elseif Light(k,2) == 3 && Positions(k,2) >= Light(k,9) 

                TurnAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration 

            elseif Positions(k,2) >= Light(k,7) && Positions(k,2) < IntX - 28 

                TurnAccel = -CarBehavior(k,4); 

            else 

                TurnAccel = 0; 

            end 

        else 

            TurnAccel = (0 - Positions(k,5)^2)/(2*(Light(k,6) - Positions(k,2))); % Red 

Light 
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        end         

         

elseif Locations(k,8) == 3 

        if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 % 

Green/Yellow Light 

            xi = IntY + 12 + ((Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4))); % 

Look at this calculation 

            Light(k,7) = xi; % Starting position for slowing down before the light 

             

            if Light(k,2) == 3 && Positions(k,2) > Light(k,9) 

                TurnAccel = 0; % Stay Fast until Rushed Decceleration 

            elseif Light(k,2) == 3 && Positions(k,2) <= Light(k,9) 

                TurnAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration 

            elseif Positions(k,2) <= Light(k,7) && Positions(k,2) > IntY + 12 

                TurnAccel = -CarBehavior(k,4); 

            else 

                TurnAccel = 0; 

            end 

        else 

            TurnAccel = (0 - Positions(k,5)^2)/(2*(-Light(k,6) + Positions(k,2))); % Red 

Light 

        end      

         

else 

        if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 % 

Green/Yellow Light 

            xi = IntX + 12 + ((Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4))); % 

Look at this calculation 

            Light(k,7) = xi; % Starting position for slowing down before the light 

             

            if Light(k,2) == 3 && Positions(k,2) > Light(k,9) 

                TurnAccel = 0; % Stay Fast until Rushed Decceleration 

            elseif Light(k,2) == 3 && Positions(k,2) <= Light(k,9) 

                TurnAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration 

            elseif Positions(k,2) <= Light(k,7) && Positions(k,2) > IntX + 12 

                TurnAccel = -CarBehavior(k,4); 

            else 

                TurnAccel = 0; 

            end 

        else 

            TurnAccel = (0 - Positions(k,5)^2)/(2*(-Light(k,6) + Positions(k,2))); % Red 

Light 

        end     

         

end 

  

  

  

%% Yielding at the Intersection (Left Turn Acceleration) 

  

if Locations(k,8) == 1 

     

        if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 || 

TrafficLight(Locations(k,5),2) == 0 

            xi = IntY - 20 - (Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4)); 

            Light(k,8) = xi; % Starting position for slowing down before the light 

            % Adjust the xi for other directions            

             

            if Light(k,2) == 3 && Positions(k,2) < Light(k,9) 

                YieldAccel = 0; % Stay Fast until Rushed Decceleration 

            elseif Light(k,2) == 3 && Positions(k,2) >= Light(k,9) 

                YieldAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration 

                if j == 5; 

                end 

  

            elseif Positions(k,2) >= IntY - 20 && Positions(k,2) < IntY - 10 % Yielding 

to Opposing Traffic 
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                % Check Traffic in Opposite Direction 

                 

                % Find the location where the direction is opposite 

                Opposite = find(Locations(:,5) == Intersections(IntNumber,6)); 

                % Create the new matrix for opposite direction data 

                Yield = zeros(length(Opposite),9); 

                % Yield(1,:) = Light(k,:); % Plot the first line 

  

                % Delete Location where it is the same as the first line 

                Y = find(Opposite(:) == Light(k,1)); 

                Opposite(Y, :) = []; 

  

                % Check if there are cars near the intersection in the 

                % opposite direction                 

                if isempty(Opposite) 

                    pp = 0; 

                else 

                    pp = 0; 

                    for z = 1:length(Opposite) 

                     

                        if  Light(Opposite(z),2) == 4 || Light(Opposite(z),2) == 5 

                            pp = pp + 0; 

                        else 

                            pp = pp + 1; 

                        end 

                    end 

                end 

                 

                 

                if pp == 0 && Positions(k,2) >= IntY - 20 && Positions(k,2) < IntY - 11 

&& Positions(k,5) >= ToFPS(10) 

                    YieldAccel = 0; 

                elseif pp >= 1 && Positions(k,2) >= IntY - 20 && Positions(k,2) < IntY - 

11 

                    YieldAccel = (Positions(k,5)^2)/(2*(Positions(k,2) + IntY + 11)); 

                elseif pp == 0 && Positions(k,2) >= IntY - 20 && Positions(k,2) < IntY - 

11 && Positions(k,5) < ToFPS(10) 

                    YieldAccel = CarBehavior(k,4); 

                elseif pp >= 1 && Positions(k,2) > IntY - 12 && Positions(k,2) < IntY - 

11 

                    YieldAccel = 0; 

                    Positions(k,5) = 0; 

                elseif pp == 0 && Positions(k,2) > IntY - 11 

                    if Positions(k,5) > 1 && Positions(k,5) <= 2 

                        YieldAccel = 0; 

                    elseif Positions(k,5) > 2 

                        YieldAccel = -CarBehavior(k,4); 

                    else 

                        YieldAccel = 0; 

                        Positions(k,5) = 1; 

                    end 

                elseif pp >= 1 && Positions(k,2) > IntY - 11 && Locations(k,4) == 

Intersections(IntNumber,5); % Watch for unsolvable Yield Accel 

                    YieldAccel = 0; 

                    Positions(k,5) = 2; 

                end 

                  

                 

            elseif Positions(k,2) >= Light(k,8) && Positions(k,2) < IntY - 20 

                YieldAccel = -CarBehavior(k,4); 

            else 

                YieldAccel = 0; 

            end 

  

       end 

         

elseif Locations(k,8) == 2 
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%         if TrafficLight(2,2) == 2 || TrafficLight(2,2) == 1 

%             xi = -20 - (Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4)); 

%             Light(k,8) = xi; % Starting position for slowing down before the light 

%  % Adjust the xi for other directions            

%              

%             if Light(k,2) == 3 && Positions(k,2) < Light(k,9) 

%                 YieldAccel = 0; % Stay Fast until Rushed Decceleration 

%             elseif Light(k,2) == 3 && Positions(k,2) >= Light(k,9) 

%                 YieldAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration 

%                 if j == 5; 

%                 end 

%                  

%                  

%             elseif Positions(k,2) >= -20 && Positions(k,2) < -10 % Yielding to Opposing 

Traffic 

%                 % Check Traffic in Opposite Direction 

%                  

%                 % Find the location where the direction is opposite 

%                 Opposite = find(Locations(:,5) == 3); 

%                 % Create the new matrix for opposite direction data 

%                 Yield = zeros(length(Opposite),9); 

%                 % Yield(1,:) = Light(k,:); % Plot the first line 

%  

%                 % Delete Location where it is the same as the first line 

%                 Y = find(Opposite(:) == Light(k,1)); 

%                 Opposite(Y, :) = []; 

%          

%                  

%                 if isempty(Opposite) 

%                     pp = 0; 

%                 else 

%                     pp = 0; 

%                     for z = 1:length(Opposite) 

%                      

%                         if  Positions(Opposite(z),2) > 100 || Positions(Opposite(z),2) 

< 0 

%                             pp = pp + 0; 

%                         else  

%                             pp = pp + 1; 

%                         end 

%                     end 

%                 end 

%                  

%                  

%  

%                 if pp == 0 && Positions(k,5) < 14 % If none of the opposite cars, 

proceed with the yield 

%                     YieldAccel = CarBehavior(k,4); 

%                 elseif pp == 0 

%                     YieldAccel = 0; 

%                 elseif pp >= 1 && Positions(k,2) < -11 % If there is an opposite car 

about to pass through intersection 

%                     % Have cars that passed through turn to 4 so they arent 

%                     % counted    This decceleration is kinda fast 

%                     YieldAccel = (Positions(k,5)^2)/(2*(Positions(k,2) + 11)); 

%                 else  

%                     YieldAccel = 0; 

%                     Positions(k,5) = 0; 

%                 end                 

%                  

%                 if j == 0 

%                 end 

%             

%                  

%             elseif Positions(k,2) >= Light(k,8) && Positions(k,2) < -20 

%                 YieldAccel = -CarBehavior(k,4); 



125 
 

%             else 

%                 YieldAccel = 0; 

%             end 

%         else 

%                 % Find the location where the direction is opposite 

%                 Opposite = find(Locations(:,5) == 3); 

%                 % Create the new matrix for opposite direction data 

%                 Yield = zeros(length(Opposite),9); 

%                  % Yield(1,:) = Light(k,:); % Plot the first line 

%  

%                 % Delete Location where it is the same as the first line 

%                 Y = find(Opposite(:) == Light(k,1)); 

%                 Opposite(Y, :) = []; 

%          

%                 % Place rest of similar direction data into the check matrix 

%  

%                 if isempty(Opposite) 

%                     pp = 0; 

%                 else 

%                     pp = 0; 

%                     for z = 1:length(Opposite) 

%                      

%                         if  Positions(Opposite(z),2) > 12 

%                             pp = pp + 0; 

%                         else  

%                             pp = pp + 1; 

%                         end 

%                     end 

%                 end 

%                  

%                  

%  

%                 if pp == 0 && Positions(k,5) < 14 % If none of the opposite cars, 

proceed with the yield 

%                     YieldAccel = CarBehavior(k,4); 

%                 elseif pp == 0 

%                     YieldAccel = 0; 

%                 elseif pp >= 1 && Positions(k,2) < -11 % If there is an opposite car 

about to pass through intersection 

%                     % Have cars that passed through turn to 4 so they arent 

%                     % counted    This decceleration is kinda fast 

%                     YieldAccel = (Positions(k,5)^2)/(2*(Positions(k,2) + 11)); 

%                 else  

%                     YieldAccel = 0; 

%                     Positions(k,5) = 0; 

%                 end                 

%                  

%                 if j == 0 

%                 end                 

                 

  

        if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 || 

TrafficLight(Locations(k,5),2) == 0 

            xi = IntX - 18 - (Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4)); 

            Light(k,8) = xi; % Starting position for slowing down before the light 

            % Adjust the xi for other directions            

             

            if Light(k,2) == 3 && Positions(k,2) < Light(k,9) 

                YieldAccel = 0; % Stay Fast until Rushed Decceleration 

            elseif Light(k,2) == 3 && Positions(k,2) >= Light(k,9) 

                YieldAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration 

                 

            elseif Positions(k,2) >= IntX - 20 && Positions(k,2) < IntX - 10 % Yielding 

to Opposing Traffic 

                % Check Traffic in Opposite Direction 

                 

                % Find the location where the direction is opposite 
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                Opposite = find(Locations(:,5) == Intersections(IntNumber,7)); 

                % Create the new matrix for opposite direction data 

                Yield = zeros(length(Opposite),9); 

                % Yield(1,:) = Light(k,:); % Plot the first line 

  

                % Delete Location where it is the same as the first line 

                Y = find(Opposite(:) == Light(k,1)); 

                Opposite(Y, :) = []; 

                 

                % Check if there are cars near the intersection in the 

                % opposite direction 

                if isempty(Opposite) 

                    pp = 0; 

                else 

                    pp = 0; 

                    for z = 1:length(Opposite) 

                     

                        if  Light(Opposite(z),2) == 4 || Light(Opposite(z),2) == 5 

                            pp = pp + 0; 

                        else 

                            pp = pp + 1; 

                        end 

                    end 

                end 

                 

                 

                if pp == 0 && Positions(k,2) >= IntX - 20 && Positions(k,2) < IntX - 11 

&& Positions(k,5) >= ToFPS(10) 

                    YieldAccel = 0; 

                elseif pp >= 1 && Positions(k,2) >= IntX - 20 && Positions(k,2) < IntX - 

11 

                    YieldAccel = (Positions(k,5)^2)/(2*(Positions(k,2) + IntX + 11)); 

                elseif pp == 0 && Positions(k,2) >= IntX - 20 && Positions(k,2) < IntX - 

11 && Positions(k,5) < ToFPS(10) 

                    YieldAccel = CarBehavior(k,4); 

                elseif pp >= 1 && Positions(k,2) > IntX - 12 && Positions(k,2) < IntX - 

11 

                    YieldAccel = 0; 

                    Positions(k,5) = 0; 

                elseif pp == 0 && Positions(k,2) > IntX - 11 

                    if Positions(k,5) > 1 && Positions(k,5) <= 2 

                        YieldAccel = 0; 

                    elseif Positions(k,5) > 2 

                        YieldAccel = -CarBehavior(k,4); 

                    else 

                        YieldAccel = 0; 

                        Positions(k,5) = 1; 

                    end 

                elseif pp >= 1 && Positions(k,2) > IntX - 11 && Locations(k,4) == 

Intersections(IntNumber,6); % Watch for unsolvable Yield Accel 

                    YieldAccel = 0; 

                    Positions(k,5) = 2; 

                end 

                  

                 

            elseif Positions(k,2) >= Light(k,8) && Positions(k,2) < IntX - 20 

                YieldAccel = -CarBehavior(k,4); 

            else 

                YieldAccel = 0; 

            end 

  

       end 

  

  

         

elseif Locations(k,8) == 3 
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        if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 || 

TrafficLight(Locations(k,5),2) == 0 

            xi = IntY + 4 + (Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4)); 

            Light(k,8) = xi; % Starting position for slowing down before the light 

     

             

            if Light(k,2) == 3 && Positions(k,2) > Light(k,9) 

                YieldAccel = 0; % Stay Fast until Rushed Decceleration 

            elseif Light(k,2) == 3 && Positions(k,2) <= Light(k,9) 

                YieldAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration 

                 

                 

            elseif Positions(k,2) <= IntY + 4 && Positions(k,2) > IntY - 6 % Yielding to 

Opposing Traffic 

                % Check Traffic in Opposite Direction 

                 

                % Find the location where the direction is opposite 

                Opposite = find(Locations(:,5) == Intersections(IntNumber,7)); 

                % Create the new matrix for opposite direction data 

                Yield = zeros(length(Opposite),9); 

                % Yield(1,:) = Light(k,:); % Plot the first line 

  

                % Delete Location where it is the same as the first line 

                Y = find(Opposite(:) == Light(k,1)); 

                Opposite(Y, :) = []; 

  

                 

                if isempty(Opposite) 

                    pp = 0; 

                else 

                    pp = 0; 

                    for z = 1:length(Opposite) 

                     

                        if  Light(Opposite(z),2) == 4 || Light(Opposite(z),2) == 5 

                            pp = pp + 0; 

                        else 

                            pp = pp + 1; 

                        end 

                    end 

                end 

  

                 

                 

                 

                 

                 

                 

                 

                if pp == 0 && Positions(k,2) <= IntY + 4 && Positions(k,2) > IntY - 5 && 

Positions(k,5) >= ToFPS(10) 

                    YieldAccel = 0; 

                elseif pp >= 1 && Positions(k,2) <= IntY + 4 && Positions(k,2) > IntY - 5 

                    YieldAccel = (Positions(k,5)^2)/(2*(Positions(k,2) + IntY + 6)); % 

Make sure this is accurate 

                elseif pp == 0 && Positions(k,2) <= IntY + 4 && Positions(k,2) > IntY - 5 

&& Positions(k,5) < ToFPS(10) 

                    YieldAccel = CarBehavior(k,4); 

                elseif pp >= 1 && Positions(k,2) < IntY - 4 && Positions(k,2) > IntY - 5 

                    YieldAccel = 0; 

                    Positions(k,5) = 0; 

                elseif pp == 0 && Positions(k,2) < IntY - 5 

                    if Positions(k,5) > 1 && Positions(k,5) <= 2 

                        YieldAccel = 0; 

                    elseif Positions(k,5) > 2 

                        YieldAccel = -CarBehavior(k,4); 

                    else 

                        YieldAccel = 0; 
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                        Positions(k,5) = 1; 

                    end 

                elseif pp >= 1 && Positions(k,2) < IntY - 5 && Locations(k,4) == 

Intersections(IntNumber,7); % Watch for unsolvable Yield Accel 

                    YieldAccel = 0; 

                    Positions(k,5) = 2; 

                end 

  

                 

                 

                 

                 

                 

                 

            elseif Positions(k,2) <= Light(k,8) && Positions(k,2) > IntY + 4 

                YieldAccel = -CarBehavior(k,4); 

            else 

                YieldAccel = 0; 

            end 

             

        end   

%         else 

%                 % Find the location where the direction is opposite 

%                 Opposite = find(Locations(:,5) == 1); 

%                 % Create the new matrix for opposite direction data 

%                 Yield = zeros(length(Opposite),9); 

%                  % Yield(1,:) = Light(k,:); % Plot the first line 

%  

%                 % Delete Location where it is the same as the first line 

%                 Y = find(Opposite(:) == Light(k,1)); 

%                 Opposite(Y, :) = []; 

%          

%                 % Place rest of similar direction data into the check matrix 

%                 for z = 1:length(Opposite) 

%                     Yield(z,:) = Light(Opposite(z),:); 

%                 end                 

%                  

%                 True = Yield(:,2) ~= 4; 

%                 v = nonzeros(True); 

%                  

%                if isempty(v) && Positions(k,5) == 0 

%                     YieldAccel = CarBehavior(k,4);   

%                elseif Positions(k,5) == 0 

%                     YieldAccel = 0; 

%                else 

%             YieldAccel = (0 - Positions(k,5)^2)/(2*(-Light(k,6) + Positions(k,2)));                 

%                end 

%      

%         end           

         

         

         

         

         

else 

        if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 || 

TrafficLight(Locations(k,5),2) == 0 

            xi = IntX + 4 + (Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4)); 

            Light(k,8) = xi; % Starting position for slowing down before the light 

     

             

            if Light(k,2) == 3 && Positions(k,2) > Light(k,9) 

                YieldAccel = 0; % Stay Fast until Rushed Decceleration 

            elseif Light(k,2) == 3 && Positions(k,2) <= Light(k,9) 

                YieldAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration 
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            elseif Positions(k,2) <= IntX + 4 && Positions(k,2) > IntX - 6 % Yielding to 

Opposing Traffic 

                % Check Traffic in Opposite Direction 

                 

                % Find the location where the direction is opposite 

                Opposite = find(Locations(:,5) == Intersections(IntNumber,5)); 

                % Create the new matrix for opposite direction data 

                Yield = zeros(length(Opposite),9); 

                % Yield(1,:) = Light(k,:); % Plot the first line 

  

                % Delete Location where it is the same as the first line 

                Y = find(Opposite(:) == Light(k,1)); 

                Opposite(Y, :) = []; 

  

                 

                if isempty(Opposite) 

                    pp = 0; 

                else 

                    pp = 0; 

                    for z = 1:length(Opposite) 

                     

                        if  Light(Opposite(z),2) == 4 || Light(Opposite(z),2) == 5 

                            pp = pp + 0; 

                        else 

                            pp = pp + 1; 

                        end 

                    end 

                end 

  

  

                if pp == 0 && Positions(k,2) <= IntX + 4 && Positions(k,2) > IntX - 5 && 

Positions(k,5) >= ToFPS(10) 

                    YieldAccel = 0; 

                elseif pp >= 1 && Positions(k,2) <= IntX + 4 && Positions(k,2) > IntX - 5 

                    YieldAccel = (Positions(k,5)^2)/(2*(Positions(k,2) + IntX + 6)); % 

Make sure this is accurate 

                elseif pp == 0 && Positions(k,2) <= IntX + 4 && Positions(k,2) > IntX - 5 

&& Positions(k,5) < ToFPS(10) 

                    YieldAccel = CarBehavior(k,4); 

                elseif pp >= 1 && Positions(k,2) < IntX - 4 && Positions(k,2) > IntX - 5 

                    YieldAccel = 0; 

                    Positions(k,5) = 0; 

                elseif pp == 0 && Positions(k,2) < IntX - 5 

                    if Positions(k,5) > 1 && Positions(k,5) <= 2 

                        YieldAccel = 0; 

                    elseif Positions(k,5) > 2 

                        YieldAccel = -CarBehavior(k,4); 

                    else 

                        YieldAccel = 0; 

                        Positions(k,5) = 1; 

                    end 

                elseif pp >= 1 && Positions(k,2) < IntX - 5 && Locations(k,4) == 

Intersections(IntNumber,7); % Watch for unsolvable Yield Accel 

                    YieldAccel = 0; 

                    Positions(k,5) = 2; 

                end 

  

  

                 

            elseif Positions(k,2) <= Light(k,8) && Positions(k,2) > IntX + 4 

                YieldAccel = -CarBehavior(k,4); 

            else 

                YieldAccel = 0; 

            end 

             

        end   
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end 

  

         

%% Transition to New Intersection or Random Reset Location       

if Locations(k,9) == 3 && Locations(k,3) >= IntY + LaneLength % If car runs out of bounds 

  

% Final Time Evaluation Update 

if TimeEvaluation(k,10) == 0 

    TimeEvaluation(k,7) = Locations(k,2); 

    TimeEvaluation(k,8) = Locations(k,3); 

    TimeEvaluation(k,9) = j*timestep; 

    TimeEvaluation(k,10) = size(TimeEvaluation,1) + 1; 

     

    % Update Car Change Matrix 

    CarChange(k,2) = TimeEvaluation(k,10); 

    CarNumber = k; 

     

else 

    Count = 0; 

    index = 1; 

    CarNumber = TimeEvaluation(k,10);   

    while index > 0 

        if TimeEvaluation(CarNumber,10) == 0 

            index = 0; 

        else 

            CarNumber = TimeEvaluation(CarNumber,10); 

            index = 1; 

        end 

        Count = Count + 1; 

    end 

     

    TimeEvaluation(CarNumber,7) = Locations(k,2); 

    TimeEvaluation(CarNumber,8) = Locations(k,3); 

    TimeEvaluation(CarNumber,9) = j*timestep;   

    TimeEvaluation(CarNumber,10) = size(TimeEvaluation,1) + 1; 

     

    % Update Car Change Matrix 

    CarChange(k,Count + 2) = TimeEvaluation(CarNumber,10);  

     

end 

  

% Configure Newly Created Car 

if TrafficLight(Locations(k,4),3) == 0 % If Car Exits the Simulation 

  

% Random New Location and Position 

indices = find(TrafficLight(:,3) == 0); 

Entrance = datasample(indices,1); 

  

[IntNumber,d] = find(Intersections(:,4:7) == Entrance); % Finding row and column 

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7), 

Entrance), 1); 

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column     

  

IntX = Intersections(IntNumber,2); 

IntY = Intersections(IntNumber,3); 

  

  

% New Position Location 

Locations(k,4) = Out; 

Locations(k,5) = Entrance; % Adjust to make random entrance into the simulation 

Locations(k,7) = IntNumber; 

Locations(k,8) = d; 

Locations(k,9) = O; 
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if d == 1 

    Locations(k,2) = IntX + 3; 

    Locations(k,3) = IntY - LaneLength; 

    Positions(k,2) = Locations(k,3); 

elseif d == 2 

    Locations(k,2) = IntX - LaneLength; 

    Locations(k,3) = IntY - 9; 

    Positions(k,2) = Locations(k,2);     

elseif d == 3 

    Locations(k,2) = IntX - 9; 

    Locations(k,3) = IntY + LaneLength - CarLength; 

    Positions(k,2) = Locations(k,3);     

else 

    Locations(k,2) = IntX + LaneLength - CarLength; 

    Locations(k,3) = IntY + 3; 

    Positions(k,2) = Locations(k,2);     

end 

  

  

% New Car Behavior 

Intensity = randi([1 10],1,1); 

[Speedy, Accel, Timing] = IntensityRating(Intensity,SpeedLimit);  

  

CarBehavior(k,2) = Intensity; 

CarBehavior(k,3) = Speedy; 

CarBehavior(k,4) = Accel; 

CarBehavior(k,5) = Timing; 

  

% Updated Position Matrix 

Positions(k,5) = ToFPS(Speedy); 

Positions(k,8) = 0; 

  

Time(k,6) = Timing; 

Light(k,2) = 4;    

  

  

% New Car Evaluation 

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW> 

TimeEvaluation(end,2) = Locations(k,5); 

TimeEvaluation(end,3) = Locations(k,2); 

TimeEvaluation(end,4) = Locations(k,3); 

TimeEvaluation(end,5) = j*timestep; 

TimeEvaluation(end,6) = Locations(k,4); 

TimeEvaluation(end,12) = Intensity; 

  

  

% Ideal Time Calculation 

[TimeIdeal] = IdealTime(d,O,Speedy,Accel,LaneLength); 

TimeEvaluation(end,11) = TimeIdeal; 

  

  

else % If Car is Transitioning Within the Simulation 

      

% New Position Directions 

Direction = TrafficLight(Locations(k,4),3); % New Direction Input 

[IntNumber,d] = find(Intersections(:,4:7) == Direction); % Finding row and column 

  

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7), 

Direction), 1); 

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column 

  

IntX = Intersections(IntNumber,2); 

IntY = Intersections(IntNumber,3); 

  

% Adding Values to Locations Matrix 

Locations(k,4) = Out; 

Locations(k,5) = Direction; 
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Locations(k,7) = IntNumber; 

Locations(k,8) = d; 

Locations(k,9) = O; 

  

% Light Matrix 

Light(k,2) = 4; 

  

% New Car Evaluation 

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW> 

TimeEvaluation(end,2) = Locations(k,5); 

TimeEvaluation(end,3) = Locations(k,2); 

TimeEvaluation(end,4) = Locations(k,3); 

TimeEvaluation(end,5) = j*timestep; 

TimeEvaluation(end,6) = Locations(k,4); 

TimeEvaluation(end,11) = TimeEvaluation(CarNumber,11); 

TimeEvaluation(end,12) = TimeEvaluation(CarNumber,12); 

  

  

end 

  

  

elseif Locations(k,9) == 4 && Locations(k,2) >= IntX + LaneLength 

     

% Final Time Evaluation Update        

if TimeEvaluation(k,10) == 0 

    TimeEvaluation(k,7) = Locations(k,2); 

    TimeEvaluation(k,8) = Locations(k,3); 

    TimeEvaluation(k,9) = j*timestep; 

    TimeEvaluation(k,10) = size(TimeEvaluation,1) + 1; 

     

    % Update Car Change Matrix 

    CarChange(k,2) = TimeEvaluation(k,10); 

    CarNumber = k; 

  

else 

    Count = 0; 

    index = 1; 

    CarNumber = TimeEvaluation(k,10);     

    while index > 0 

        if TimeEvaluation(CarNumber,10) == 0 

            index = 0; 

        else 

            CarNumber = TimeEvaluation(CarNumber,10); 

            index = 1; 

        end 

        Count = Count + 1; 

    end 

     

    TimeEvaluation(CarNumber,7) = Locations(k,2); 

    TimeEvaluation(CarNumber,8) = Locations(k,3); 

    TimeEvaluation(CarNumber,9) = j*timestep;   

    TimeEvaluation(CarNumber,10) = size(TimeEvaluation,1) + 1; 

     

    % Update Car Change Matrix 

    CarChange(k,Count + 2) = TimeEvaluation(CarNumber,10);       

     

end  

  

  

% Configure Newly Created Car 

if TrafficLight(Locations(k,4),3) == 0 % If Car Exits the Simulation 

  

% Random New Location and Position 

indices = find(TrafficLight(:,3) == 0); 

Entrance = datasample(indices,1); 

  

[IntNumber,d] = find(Intersections(:,4:7) == Entrance); % Finding row and column 
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Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7), 

Entrance), 1); 

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column     

  

IntX = Intersections(IntNumber,2); 

IntY = Intersections(IntNumber,3); 

  

  

% New Position Location 

Locations(k,4) = Out; 

Locations(k,5) = Entrance; % Adjust to make random entrance into the simulation 

Locations(k,7) = IntNumber; 

Locations(k,8) = d; 

Locations(k,9) = O; 

  

if d == 1 

    Locations(k,2) = IntX + 3; 

    Locations(k,3) = IntY - LaneLength; 

    Positions(k,2) = Locations(k,3); 

elseif d == 2 

    Locations(k,2) = IntX - LaneLength; 

    Locations(k,3) = IntY - 9; 

    Positions(k,2) = Locations(k,2);     

elseif d == 3 

    Locations(k,2) = IntX - 9; 

    Locations(k,3) = IntY + LaneLength - CarLength; 

    Positions(k,2) = Locations(k,3);     

else 

    Locations(k,2) = IntX + LaneLength - CarLength; 

    Locations(k,3) = IntY + 3; 

    Positions(k,2) = Locations(k,2);     

end 

  

  

% New Car Behavior 

Intensity = randi([1 10],1,1); 

[Speedy, Accel, Timing] = IntensityRating(Intensity,SpeedLimit);  

  

CarBehavior(k,2) = Intensity; 

CarBehavior(k,3) = Speedy; 

CarBehavior(k,4) = Accel; 

CarBehavior(k,5) = Timing; 

  

% Updated Position Matrix 

Positions(k,5) = ToFPS(Speedy); 

Positions(k,8) = 0; 

  

Time(k,6) = Timing; 

Light(k,2) = 4;    

  

  

% New Car Evaluation 

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW> 

TimeEvaluation(end,2) = Locations(k,5); 

TimeEvaluation(end,3) = Locations(k,2); 

TimeEvaluation(end,4) = Locations(k,3); 

TimeEvaluation(end,5) = j*timestep; 

TimeEvaluation(end,6) = Locations(k,4); 

TimeEvaluation(end,12) = Intensity; 

  

  

% Ideal Time Calculation 

[TimeIdeal] = IdealTime(d,O,Speedy,Accel,LaneLength); 

TimeEvaluation(end,11) = TimeIdeal; 

  

  

else % If Car is Transitioning Within the Simulation 
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% New Position Directions 

Direction = TrafficLight(Locations(k,4),3); % New Direction Input 

[IntNumber,d] = find(Intersections(:,4:7) == Direction); % Finding row and column 

  

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7), 

Direction), 1); 

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column 

  

IntX = Intersections(IntNumber,2); 

IntY = Intersections(IntNumber,3); 

  

% Adding Values to Locations Matrix 

Locations(k,4) = Out; 

Locations(k,5) = Direction; 

Locations(k,7) = IntNumber; 

Locations(k,8) = d; 

Locations(k,9) = O; 

  

% Light Matrix 

Light(k,2) = 4; 

  

% New Car Evaluation 

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW> 

TimeEvaluation(end,2) = Locations(k,5); 

TimeEvaluation(end,3) = Locations(k,2); 

TimeEvaluation(end,4) = Locations(k,3); 

TimeEvaluation(end,5) = j*timestep; 

TimeEvaluation(end,6) = Locations(k,4); 

TimeEvaluation(end,11) = TimeEvaluation(CarNumber,11); 

TimeEvaluation(end,12) = TimeEvaluation(CarNumber,12); 

  

  

end 

  

  

  

elseif Locations(k,9) == 1 && Locations(k,3) <= IntY - LaneLength - CarLength 

     

% Final Time Evaluation Update    

if TimeEvaluation(k,10) == 0 

    TimeEvaluation(k,7) = Locations(k,2); 

    TimeEvaluation(k,8) = Locations(k,3); 

    TimeEvaluation(k,9) = j*timestep; 

    TimeEvaluation(k,10) = size(TimeEvaluation,1) + 1; 

     

    % Update Car Change Matrix 

    CarChange(k,2) = TimeEvaluation(k,10); 

    CarNumber = k; 

     

else 

    Count = 0; 

    index = 1; 

    CarNumber = TimeEvaluation(k,10);     

    while index > 0 

        if TimeEvaluation(CarNumber,10) == 0 

            index = 0; 

        else 

            CarNumber = TimeEvaluation(CarNumber,10); 

            index = 1; 

        end 

        Count = Count + 1; 

    end 

     

    TimeEvaluation(CarNumber,7) = Locations(k,2); 

    TimeEvaluation(CarNumber,8) = Locations(k,3); 

    TimeEvaluation(CarNumber,9) = j*timestep;    
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    TimeEvaluation(CarNumber,10) = size(TimeEvaluation,1) + 1; 

     

    % Update Car Change Matrix 

    CarChange(k,Count + 2) = TimeEvaluation(CarNumber,10); 

     

end  

  

% Configure Newly Created Car 

if TrafficLight(Locations(k,4),3) == 0 % If Car Exits the Simulation 

  

% Random New Location and Position 

indices = find(TrafficLight(:,3) == 0); 

Entrance = datasample(indices,1); 

  

[IntNumber,d] = find(Intersections(:,4:7) == Entrance); % Finding row and column 

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7), 

Entrance), 1); 

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column     

  

IntX = Intersections(IntNumber,2); 

IntY = Intersections(IntNumber,3); 

  

  

% New Position Location 

Locations(k,4) = Out; 

Locations(k,5) = Entrance; % Adjust to make random entrance into the simulation 

Locations(k,7) = IntNumber; 

Locations(k,8) = d; 

Locations(k,9) = O; 

  

if d == 1 

    Locations(k,2) = IntX + 3; 

    Locations(k,3) = IntY - LaneLength; 

    Positions(k,2) = Locations(k,3); 

elseif d == 2 

    Locations(k,2) = IntX - LaneLength; 

    Locations(k,3) = IntY - 9; 

    Positions(k,2) = Locations(k,2);     

elseif d == 3 

    Locations(k,2) = IntX - 9; 

    Locations(k,3) = IntY + LaneLength - CarLength; 

    Positions(k,2) = Locations(k,3);     

else 

    Locations(k,2) = IntX + LaneLength - CarLength; 

    Locations(k,3) = IntY + 3; 

    Positions(k,2) = Locations(k,2);     

end 

  

  

% New Car Behavior 

Intensity = randi([1 10],1,1); 

[Speedy, Accel, Timing] = IntensityRating(Intensity,SpeedLimit);  

  

CarBehavior(k,2) = Intensity; 

CarBehavior(k,3) = Speedy; 

CarBehavior(k,4) = Accel; 

CarBehavior(k,5) = Timing; 

  

% Updated Position Matrix 

Positions(k,5) = ToFPS(Speedy); 

Positions(k,8) = 0; 

  

Time(k,6) = Timing; 

Light(k,2) = 4;    

  

  

% New Car Evaluation 
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TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW> 

TimeEvaluation(end,2) = Locations(k,5); 

TimeEvaluation(end,3) = Locations(k,2); 

TimeEvaluation(end,4) = Locations(k,3); 

TimeEvaluation(end,5) = j*timestep; 

TimeEvaluation(end,6) = Locations(k,4); 

TimeEvaluation(end,12) = Intensity; 

  

  

% Ideal Time Calculation 

[TimeIdeal] = IdealTime(d,O,Speedy,Accel,LaneLength); 

TimeEvaluation(end,11) = TimeIdeal; 

  

  

else % If Car is Transitioning Within the Simulation 

      

% New Position Directions 

Direction = TrafficLight(Locations(k,4),3); % New Direction Input 

[IntNumber,d] = find(Intersections(:,4:7) == Direction); % Finding row and column 

  

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7), 

Direction), 1); 

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column 

  

IntX = Intersections(IntNumber,2); 

IntY = Intersections(IntNumber,3); 

  

% Adding Values to Locations Matrix 

Locations(k,4) = Out; 

Locations(k,5) = Direction; 

Locations(k,7) = IntNumber; 

Locations(k,8) = d; 

Locations(k,9) = O; 

  

% Light Matrix 

Light(k,2) = 4; 

  

% New Car Evaluation 

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW> 

TimeEvaluation(end,2) = Locations(k,5); 

TimeEvaluation(end,3) = Locations(k,2); 

TimeEvaluation(end,4) = Locations(k,3); 

TimeEvaluation(end,5) = j*timestep; 

TimeEvaluation(end,6) = Locations(k,4); 

TimeEvaluation(end,11) = TimeEvaluation(CarNumber,11); 

TimeEvaluation(end,12) = TimeEvaluation(CarNumber,12); 

  

  

end 

  

  

  

  

  

elseif Locations(k,9) == 2 && Locations(k,2) <= IntX - LaneLength - CarLength 

     

if TimeEvaluation(k,10) == 0 

    TimeEvaluation(k,7) = Locations(k,2); 

    TimeEvaluation(k,8) = Locations(k,3); 

    TimeEvaluation(k,9) = j*timestep; 

    TimeEvaluation(k,10) = size(TimeEvaluation,1) + 1; 

  

    % Update Car Change Matrix 

    CarChange(k,2) = TimeEvaluation(k,10); 

    CarNumber = k; 

     

else 
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    Count = 0; 

    index = 1; 

    CarNumber = TimeEvaluation(k,10);     

    while index > 0 

        if TimeEvaluation(CarNumber,10) == 0 

            index = 0; 

        else 

            CarNumber = TimeEvaluation(CarNumber,10); 

            index = 1; 

        end 

        Count = Count + 1; 

    end 

     

    TimeEvaluation(CarNumber,7) = Locations(k,2); 

    TimeEvaluation(CarNumber,8) = Locations(k,3); 

    TimeEvaluation(CarNumber,9) = j*timestep;    

    TimeEvaluation(CarNumber,10) = size(TimeEvaluation,1) + 1; 

     

    % Update Car Change Matrix 

    CarChange(k,Count + 2) = TimeEvaluation(CarNumber,10);  

     

end     

  

% Configure Newly Created Car 

if TrafficLight(Locations(k,4),3) == 0 % If Car Exits the Simulation 

  

% Random New Location and Position 

indices = find(TrafficLight(:,3) == 0); 

Entrance = datasample(indices,1); 

  

[IntNumber,d] = find(Intersections(:,4:7) == Entrance); % Finding row and column 

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7), 

Entrance), 1); 

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column     

  

IntX = Intersections(IntNumber,2); 

IntY = Intersections(IntNumber,3); 

  

  

% New Position Location 

Locations(k,4) = Out; 

Locations(k,5) = Entrance; % Adjust to make random entrance into the simulation 

Locations(k,7) = IntNumber; 

Locations(k,8) = d; 

Locations(k,9) = O; 

  

if d == 1 

    Locations(k,2) = IntX + 3; 

    Locations(k,3) = IntY - LaneLength; 

    Positions(k,2) = Locations(k,3); 

elseif d == 2 

    Locations(k,2) = IntX - LaneLength; 

    Locations(k,3) = IntY - 9; 

    Positions(k,2) = Locations(k,2);     

elseif d == 3 

    Locations(k,2) = IntX - 9; 

    Locations(k,3) = IntY + LaneLength - CarLength; 

    Positions(k,2) = Locations(k,3);     

else 

    Locations(k,2) = IntX + LaneLength - CarLength; 

    Locations(k,3) = IntY + 3; 

    Positions(k,2) = Locations(k,2);     

end 

  

  

% New Car Behavior 

Intensity = randi([1 10],1,1); 
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[Speedy, Accel, Timing] = IntensityRating(Intensity,SpeedLimit);  

  

CarBehavior(k,2) = Intensity; 

CarBehavior(k,3) = Speedy; 

CarBehavior(k,4) = Accel; 

CarBehavior(k,5) = Timing; 

  

% Updated Position Matrix 

Positions(k,5) = ToFPS(Speedy); 

Positions(k,8) = 0; 

  

Time(k,6) = Timing; 

Light(k,2) = 4;    

  

  

% New Car Evaluation 

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW> 

TimeEvaluation(end,2) = Locations(k,5); 

TimeEvaluation(end,3) = Locations(k,2); 

TimeEvaluation(end,4) = Locations(k,3); 

TimeEvaluation(end,5) = j*timestep; 

TimeEvaluation(end,6) = Locations(k,4); 

TimeEvaluation(end,12) = Intensity; 

  

  

% Ideal Time Calculation 

[TimeIdeal] = IdealTime(d,O,Speedy,Accel,LaneLength); 

TimeEvaluation(end,11) = TimeIdeal; 

  

  

else % If Car is Transitioning Within the Simulation 

      

% New Position Directions 

Direction = TrafficLight(Locations(k,4),3); % New Direction Input 

[IntNumber,d] = find(Intersections(:,4:7) == Direction); % Finding row and column 

  

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7), 

Direction), 1); 

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column 

  

IntX = Intersections(IntNumber,2); 

IntY = Intersections(IntNumber,3); 

  

% Adding Values to Locations Matrix 

Locations(k,4) = Out; 

Locations(k,5) = Direction; 

Locations(k,7) = IntNumber; 

Locations(k,8) = d; 

Locations(k,9) = O; 

  

% Light Matrix 

Light(k,2) = 4; 

  

% New Car Evaluation 

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW> 

TimeEvaluation(end,2) = Locations(k,5); 

TimeEvaluation(end,3) = Locations(k,2); 

TimeEvaluation(end,4) = Locations(k,3); 

TimeEvaluation(end,5) = j*timestep; 

TimeEvaluation(end,6) = Locations(k,4); 

TimeEvaluation(end,11) = TimeEvaluation(CarNumber,11); 

TimeEvaluation(end,12) = TimeEvaluation(CarNumber,12); 

  

  

end 
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end    

  

  

         

  

 %% Choosing the Appropriate Acceleration 

  

  

  

 % Do you thing, CasualAccel 

 % Following another car, FollowAccel 

 % Inching closer, InchAccel 

 % No Acceleration, Stopped 

  

if Locations(k,8) == 1 

    if TrafficLight(Locations(k,5),2) == 0 % Red Light 

        if Light(k,2) == 4 && Positions(k,2) >= Light(k,5) 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

            if Time(k,2) < 0.5 && Time(k,2) > 0 

                FinalAcceleration = -32; 

                Light(k,3) = 1; 

            end 

        elseif Positions(k,2) > IntY - 20 && Light(k,2) ~= 4 && Locations(k,9) == 2 

            FinalAcceleration = YieldAccel; 

            Light(k,3) = 4; 

        elseif Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 

1 && Positions(k,2) >= Light(k,6) - 1 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

        elseif Light(k,2) == 5 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

        elseif Light(k,2) == 4 && Light(k,4) == 0 && Positions(k,2) >= Light(k,5) 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

        elseif Light(k,2) == 4 && Positions(FC,5) < 5 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

        else 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

        end          

         

    elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light 

        if Light(k,2) == 4 && Positions(k,2) >= Light(k,5) % Stop Before Light 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

            if Time(k,2) < 0.5 && Time(k,2) > 0 

                FinalAcceleration = -32; 

                Light(k,3) = 1; 

            end    

        elseif Light(k,2) == 3 || Light(k,2) == 2 

            if Light(k,4) == 0  

                if Locations(k,9) == 3 

                    FinalAcceleration = LightAccel; 

                    Light(k,3) = 2; 

                elseif Locations(k,9) == 4 

                    FinalAcceleration = TurnAccel; 

                    Light(k,3) = 3; 

                elseif Locations(k,9) == 2 

                    FinalAcceleration = YieldAccel; 

                    Light(k,3) = 4; 

                else 

                    FinalAcceleration = DistanceAccel; 



140 
 

                    Light(k,3) = 1; 

                end 

            else % Edit this for multiple cars making through decisions 

                FinalAcceleration = DistanceAccel; 

                Light(k,3) = 1; 

            end    

        else % if Light(k,2) == 1 or 5 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

        end 

  

    else % Green Light 

        if Locations(k,9) == 3 % Proceeding Straight 

            ToIntersection = IntY - 28 - ToFPS(CarBehavior(k,3))*Yellow;             

            if Positions(k,2) >= ToIntersection && Positions(k,2) < IntY - 10 

                Light(k,2) = 1; 

            elseif Positions(k,2) < ToIntersection 

                Light(k,2) = 4; 

            else 

                Light(k,2) = 5; 

            end         

            % On a Green Light Proceeding Straight, always DistanceAccel 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

             

        elseif Locations(k,9) == 4 % Right Turn 

            ToIntersection = IntY - 22 - ToFPS(CarBehavior(k,3))*Yellow + 

(1/2)*CarBehavior(k,4)*Yellow^2; 

            if Positions(k,2) >= ToIntersection && Positions(k,2) < IntY - 12 

                Light(k,2) = 1; 

            elseif Positions(k,2) < ToIntersection 

                Light(k,2) = 4; 

            else 

                Light(k,2) = 5; 

            end             

             

            if Positions(k,2) >= Light(k,7) && Light(k,4) == 0 

                FinalAcceleration = TurnAccel; 

                Light(k,3) = 3; 

            else 

                FinalAcceleration = DistanceAccel; 

                Light(k,3) = 1; 

            end 

        elseif Locations(k,9) == 2 % Left Turn 

            ToIntersection = IntY - 16 - ToFPS(CarBehavior(k,3))*Yellow + 

(1/2)*CarBehavior(k,4)*Yellow^2;  

            if Positions(k,2) >= ToIntersection && Positions(k,2) < IntY - 10 

                Light(k,2) = 1; 

            elseif Positions(k,2) < ToIntersection 

                Light(k,2) = 4; 

            else 

                Light(k,2) = 5; 

            end 

             

            if Positions(k,2) >= Light(k,8) && Light(k,4) == 0 

                FinalAcceleration = YieldAccel; 

                Light(k,3) = 4; 

            elseif Positions(k,2) >= IntY - 20 && Positions(k,2) < IntY - 10 && 

Light(k,4) == 0 

                FinalAcceleration = YieldAccel; 

                Light(k,3) = 4; 

            else 

                FinalAcceleration = DistanceAccel; 

                Light(k,3) = 1; 

            end 

        end 

    end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

elseif Locations(k,8) == 2 

    if TrafficLight(Locations(k,5),2) == 0 % Red Light 

        if Light(k,2) == 4 && Positions(k,2) >= Light(k,5) 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

            if Time(k,2) < 0.5 && Time(k,2) > 0 

                FinalAcceleration = -32; 

                Light(k,3) = 1; 

            end 

        elseif Positions(k,2) > IntX - 20 && Light(k,2) ~= 4 && Locations(k,9) == 3 

            FinalAcceleration = YieldAccel; 

            Light(k,3) = 4; 

        elseif Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 

1 && Positions(k,2) >= Light(k,6) - 1 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

        elseif Light(k,2) == 5 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

        elseif Light(k,2) == 4 && Light(k,4) == 0 && Positions(k,2) >= Light(k,5) 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

        elseif Light(k,2) == 4 && Positions(FC,5) < 5 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

        else 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

        end          

         

    elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light 

        if Light(k,2) == 4 && Positions(k,2) >= Light(k,5) % Stop Before Light 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

            if Time(k,2) < 0.5 && Time(k,2) > 0 

                FinalAcceleration = -32; 

                Light(k,3) = 1; 

            end    

        elseif Light(k,2) == 3 || Light(k,2) == 2 

            if Light(k,4) == 0 

                if Locations(k,9) == 4 

                    FinalAcceleration = LightAccel; 

                    Light(k,3) = 2; 

                elseif Locations(k,9) == 1 

                    FinalAcceleration = TurnAccel; 

                    Light(k,3) = 3; 

                elseif Locations(k,9) == 3 

                    FinalAcceleration = YieldAccel; 

                    Light(k,3) = 4; 

                else 

                    FinalAcceleration = DistanceAccel; 

                    Light(k,3) = 1; 

                end 

            else % Edit this for multiple cars making through decisions 

                FinalAcceleration = DistanceAccel; 

                Light(k,3) = 1; 

            end    

        else % if Light(k,2) == 1 or 5 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

        end 

  

    else % Green Light 
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        if Locations(k,9) == 4 % Proceeding Straight 

            ToIntersection = IntX - 28 - ToFPS(CarBehavior(k,3))*Yellow;             

            if Positions(k,2) >= ToIntersection && Positions(k,2) < IntX - 10 

                Light(k,2) = 1; 

            elseif Positions(k,2) < ToIntersection 

                Light(k,2) = 4; 

            else 

                Light(k,2) = 5; 

            end         

            % On a Green Light Proceeding Straight, always DistanceAccel 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

             

        elseif Locations(k,9) == 1 % Right Turn 

            ToIntersection = IntX - 22 - ToFPS(CarBehavior(k,3))*Yellow + 

(1/2)*CarBehavior(k,4)*Yellow^2; 

            if Positions(k,2) >= ToIntersection && Positions(k,2) < IntX - 12 

                Light(k,2) = 1; 

            elseif Positions(k,2) < ToIntersection 

                Light(k,2) = 4; 

            else 

                Light(k,2) = 5; 

            end             

             

            if Positions(k,2) >= Light(k,7) && Light(k,4) == 0 

                FinalAcceleration = TurnAccel; 

                Light(k,3) = 3; 

            else 

                FinalAcceleration = DistanceAccel; 

                Light(k,3) = 1; 

            end 

        elseif Locations(k,9) == 3 % Left Turn 

            ToIntersection = IntX - 16 - ToFPS(CarBehavior(k,3))*Yellow + 

(1/2)*CarBehavior(k,4)*Yellow^2;  

            if Positions(k,2) >= ToIntersection && Positions(k,2) < IntX - 10 

                Light(k,2) = 1; 

            elseif Positions(k,2) < ToIntersection 

                Light(k,2) = 4; 

            else 

                Light(k,2) = 5; 

            end 

             

            if Positions(k,2) >= Light(k,8) && Light(k,4) == 0 

                FinalAcceleration = YieldAccel; 

                Light(k,3) = 4; 

            elseif Positions(k,2) >= IntX - 20 && Positions(k,2) < IntX - 10 && 

Light(k,4) == 0 

                FinalAcceleration = YieldAccel; 

                Light(k,3) = 4; 

            else 

                FinalAcceleration = DistanceAccel; 

                Light(k,3) = 1; 

            end 

        end 

    end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%     

elseif Locations(k,8) == 3 

     

    if TrafficLight(Locations(k,5),2) == 0 % Red Light 

         

        if Light(k,2) == 4 && Positions(k,2) <= Light(k,5) 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

            if Time(k,2) < 0.5 && Time(k,2) > 0 

                FinalAcceleration = -32; 

                Light(k,3) = 1; 

            end 

        elseif Positions(k,2) < IntY + 4 && Light(k,2) ~= 4 && Locations(k,9) == 4 

            FinalAcceleration = YieldAccel; 

            Light(k,3) = 4; 

        elseif Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 

1 && Positions(k,2) >= Light(k,6) - 1 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

        elseif Light(k,2) == 5 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

        elseif Light(k,2) == 4 && Light(k,4) == 0 && Positions(k,2) <= Light(k,5) 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

        elseif Light(k,2) == 4 && Positions(FC,5) < 5 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

        else 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

        end          

         

    elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light 

        if Light(k,2) == 4 && Positions(k,2) <= Light(k,5) % Stop Before Light 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

            if Time(k,2) < 0.5 && Time(k,2) > 0 

                FinalAcceleration = -32; 

                Light(k,3) = 1; 

            end    

        elseif Light(k,2) == 3 || Light(k,2) == 2 

            if Light(k,4) == 0  

                if Locations(k,9) == 1 

                    FinalAcceleration = LightAccel; 

                    Light(k,3) = 2; 

                elseif Locations(k,9) == 2 

                    FinalAcceleration = TurnAccel; 

                    Light(k,3) = 3; 

                elseif Locations(k,9) == 4 

                    FinalAcceleration = YieldAccel; 

                    Light(k,3) = 4; 

                else 

                    FinalAcceleration = DistanceAccel; 

                    Light(k,3) = 1; 

                end 

            else % Edit this for multiple cars making through decisions 

                FinalAcceleration = DistanceAccel; 

                Light(k,3) = 1; 
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            end    

        else % if Light(k,2) == 1 or 5 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

        end 

  

    else % Green Light 

        if Locations(k,9) == 1 % Proceeding Straight 

            ToIntersection = IntY + 12 + ToFPS(CarBehavior(k,3))*Yellow;             

            if Positions(k,2) <= ToIntersection && Positions(k,2) > IntY - 6 

                Light(k,2) = 1; 

            elseif Positions(k,2) > ToIntersection 

                Light(k,2) = 4; 

            else 

                Light(k,2) = 5; 

            end 

            % On a Green Light Proceeding Straight, always DistanceAccel 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

             

        elseif Locations(k,9) == 2 % Right Turn 

            ToIntersection = IntY + 6 + ToFPS(CarBehavior(k,3))*Yellow - 

(1/2)*CarBehavior(k,4)*Yellow^2; 

            if Positions(k,2) <= ToIntersection && Positions(k,2) > IntY - 4 

                Light(k,2) = 1; 

            elseif Positions(k,2) > ToIntersection 

                Light(k,2) = 4; 

            else 

                Light(k,2) = 5; 

            end             

             

            if Positions(k,2) <= Light(k,7) && Light(k,4) == 0 

                FinalAcceleration = TurnAccel; 

                Light(k,3) = 3; 

            else 

                FinalAcceleration = DistanceAccel; 

                Light(k,3) = 1; 

            end 

        elseif Locations(k,9) == 4 % Left Turn 

            ToIntersection = IntY + 0 + ToFPS(CarBehavior(k,3))*Yellow - 

(1/2)*CarBehavior(k,4)*Yellow^2;  

            if Positions(k,2) <= ToIntersection && Positions(k,2) > IntY - 6 

                Light(k,2) = 1; 

            elseif Positions(k,2) > ToIntersection 

                Light(k,2) = 4; 

            else 

                Light(k,2) = 5; 

            end 

             

            if Positions(k,2) <= Light(k,8) && Light(k,4) == 0 

                FinalAcceleration = YieldAccel; 

                Light(k,3) = 4; 

            elseif Positions(k,2) <= IntY + 4 && Positions(k,2) > IntY - 6 && Light(k,4) 

== 0 

                FinalAcceleration = YieldAccel; 

                Light(k,3) = 4; 

            else 

                FinalAcceleration = DistanceAccel; 

                Light(k,3) = 1; 

            end 

        end 

    end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

else 

     

    if TrafficLight(Locations(k,5),2) == 0 % Red Light 

        if Light(k,2) == 4 && Positions(k,2) <= Light(k,5) 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

            if Time(k,2) < 0.5 && Time(k,2) > 0 

                FinalAcceleration = -32; 

                Light(k,3) = 1; 

            end 

        elseif Positions(k,2) < IntX + 4 && Light(k,2) ~= 4 && Locations(k,9) == 1 

            FinalAcceleration = YieldAccel; 

            Light(k,3) = 4; 

        elseif Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 

1 && Positions(k,2) >= Light(k,6) - 1 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

        elseif Light(k,2) == 5 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

        elseif Light(k,2) == 4 && Light(k,4) == 0 && Positions(k,2) <= Light(k,5) 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

        elseif Light(k,2) == 4 && Positions(FC,5) < 5 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

        else 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

        end          

         

    elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light 

        if Light(k,2) == 4 && Positions(k,2) <= Light(k,5) % Stop Before Light 

            FinalAcceleration = LightAccel; 

            Light(k,3) = 2; 

            if Time(k,2) < 0.5 && Time(k,2) > 0 

                FinalAcceleration = -32; 

                Light(k,3) = 1; 

            end    

        elseif Light(k,2) == 3 || Light(k,2) == 2 

            if Light(k,4) == 0  

                if Locations(k,9) == 2 

                    FinalAcceleration = LightAccel; 

                    Light(k,3) = 2; 

                elseif Locations(k,9) == 3 

                    FinalAcceleration = TurnAccel; 

                    Light(k,3) = 3; 

                elseif Locations(k,9) == 1 

                    FinalAcceleration = YieldAccel; 

                    Light(k,3) = 4; 

                else 

                    FinalAcceleration = DistanceAccel; 

                    Light(k,3) = 1; 

                end 

            else % Edit this for multiple cars making through decisions 

                FinalAcceleration = DistanceAccel; 

                Light(k,3) = 1; 

            end    

        else % if Light(k,2) == 1 or 5 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

        end 
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    else % Green Light 

        if Locations(k,9) == 2 % Proceeding Straight 

            ToIntersection = IntX + 12 + ToFPS(CarBehavior(k,3))*Yellow;             

            if Positions(k,2) <= ToIntersection && Positions(k,2) > IntX + -6 

                Light(k,2) = 1; 

            elseif Positions(k,2) > ToIntersection 

                Light(k,2) = 4; 

            else 

                Light(k,2) = 5; 

            end         

            % On a Green Light Proceeding Straight, always DistanceAccel 

            FinalAcceleration = DistanceAccel; 

            Light(k,3) = 1; 

             

        elseif Locations(k,9) == 3 % Right Turn 

            ToIntersection = IntX + 6 + ToFPS(CarBehavior(k,3))*Yellow - 

(1/2)*CarBehavior(k,4)*Yellow^2; 

            if Positions(k,2) <= ToIntersection && Positions(k,2) > IntX - 4 

                Light(k,2) = 1; 

            elseif Positions(k,2) > ToIntersection 

                Light(k,2) = 4; 

            else 

                Light(k,2) = 5; 

            end             

             

            if Positions(k,2) <= Light(k,7) && Light(k,4) == 0 

                FinalAcceleration = TurnAccel; 

                Light(k,3) = 3; 

            else 

                FinalAcceleration = DistanceAccel; 

                Light(k,3) = 1; 

            end 

        elseif Locations(k,9) == 1 % Left Turn 

            ToIntersection = IntX + 0 + ToFPS(CarBehavior(k,3))*Yellow - 

(1/2)*CarBehavior(k,4)*Yellow^2;  

            if Positions(k,2) <= ToIntersection && Positions(k,2) > IntX - 6 

                Light(k,2) = 1; 

            elseif Positions(k,2) > ToIntersection 

                Light(k,2) = 4; 

            else 

                Light(k,2) = 5; 

            end 

             

            if Positions(k,2) <= Light(k,8) && Light(k,4) == 0 

                FinalAcceleration = YieldAccel; 

                Light(k,3) = 4; 

            elseif Positions(k,2) <= 4 && Positions(k,2) > IntX - 6 && Light(k,4) == 0 

                FinalAcceleration = YieldAccel; 

                Light(k,3) = 4; 

            else 

                FinalAcceleration = DistanceAccel; 

                Light(k,3) = 1; 

            end 

        end 

    end 

   

end 

  

Positions(k,8) = FinalAcceleration; 

  

     if Positions(k,5) < 0 

         Positions(k,5) = 0; 

         Positions(k,8) = 0; 

     end 

  

   

% If Acceleration is infinity or -infinity do not plot it, choose another      
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%% If statement for moving the car based on the location and direction 

        if Locations(k,8) == 1 

            x = Locations(k,2); 

y = Positions(k,2)+(Positions(k,5)*timestep)+((1/2)*Positions(k,8)*(timestep)^2); 

            a = 6; 

            b = 16; 

        elseif Locations(k,8) == 2 

x = Positions(k,2)+(Positions(k,5)*timestep)+((1/2)*(Positions(k,8))*(timestep)^2); 

            y = Locations(k,3); 

            a = 16; 

            b = 6; 

        elseif Locations(k,8) == 3 

            x = Locations(k,2); 

y = Positions(k,2)-(Positions(k,5)*timestep)-((1/2)*(Positions(k,8))*(timestep)^2); 

            a = 6; 

            b = 16; 

        else 

x = Positions(k,2)-(Positions(k,5)*timestep)-((1/2)*(Positions(k,8))*(timestep)^2); 

            y = Locations(k,3);      

            a = 16; 

            b = 6; 

        end 

         

  

% Plotting the car based on position and direction 

  

if Simulation == 1 

 figure(1) 

        Car(k) = rectangle('Position',[x y a b],'Curvature',0.3); 

        Locations(k,2) = x; 

        Locations(k,3) = y; 

elseif Simulation == 0 

        Locations(k,2) = x; 

        Locations(k,3) = y; 

end 

         

         

  

% Filling in the Position Evaluation Matrix 

PositionEvaluation(Allie,1) = j*timestep; 

PositionEvaluation(Allie,k*2) = x; 

PositionEvaluation(Allie,k*2 + 1) = y; 

  

  

% Plotting the appropriate number next to the car 

% if Locations(k,8) == 1 

%         b = num2str(k); 

%         c = cellstr(b); 

%         Txt(k) = text(x+12,y+8,c);     

% elseif Locations(k,8) == 2 

%     if k < 10 

%         b = num2str(k); 

%         c = cellstr(b); 

%         Txt(k) = text(x+5,y-12,c); 

%     else 

%         b = num2str(k); 

%         c = cellstr(b); 

%         Txt(k) = text(x+0.5,y-12,c); 

%     end 

% elseif Locations(k,8) == 3 

%     if k < 10 

%         b = num2str(k); 

%         c = cellstr(b); 
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%         Txt(k) = text(x-12,y+8,c); 

%     else 

%         b = num2str(k); 

%         c = cellstr(b); 

%         Txt(k) = text(x-20,y+8,c);         

%     end 

% else 

%     if k < 10 

%         b = num2str(k); 

%         c = cellstr(b); 

%         Txt(k) = text(x+4,y+20,c);     

%     else 

%         b = num2str(k); 

%         c = cellstr(b); 

%         Txt(k) = text(x+0.5,y+20,c);          

%     end 

% end 

  

         

         

         

% Updating the Positions Matrix after each car has individually moved 

  

% Position 

Positions(k,4) = Positions(k,3); 

Positions(k,3) = Positions(k,2); 

  

if Locations(k,8) == 1 

    Positions(k,2) = y; 

elseif Locations(k,8) == 2 

    Positions(k,2) = x; 

elseif Locations(k,8) == 3 

    Positions(k,2) = y; 

else 

    Positions(k,2) = x; 

end 

  

% Velocity 

Positions(k,7) = Positions(k,6); 

Positions(k,6) = Positions(k,5); 

Positions(k,5) = Positions(k,6) + Positions(k,8)*timestep; 

Locations(k,6) = ToMPH(Positions(k,5)); 

  

% Acceleration 

Positions(k,10) = Positions(k,9); 

Positions(k,9) = Positions(k,8); 

% Find new value for Positions(k,8) next iteration (Acceleration) 

                                               

% Time 

Time(k,4) = Time(k,3); 

Time(k,3) = Time(k,2); 

  

% Observation 

Observation(k,1) = k; 

Observation(k,2) = Light(k,2); 

Observation(k,3) = Light(k,3); 

Observation(k,4) = Locations(k,5); 

Observation(k,5) = Locations(k,4); 

Observation(k,6) = Positions(k,2); 

Observation(k,7) = Locations(k,6); 

Observation(k,8) = FinalAcceleration; 

Observation(k,9) = Time(k,2); 

  

  

%% Car Direction and Location Evaluation 

         

if Locations(k,8) == 1 
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    if Positions(k,2) >= IntY - 10 

        Light(k,2) = 5; 

    end 

elseif Locations(k,8) == 2 

    if Positions(k,2) >= IntX - 10 

        Light(k,2) = 5; 

    end     

elseif Locations(k,8) == 3 

    if Positions(k,2) <= IntY - 6 

        Light(k,2) = 5; 

    end 

elseif Locations(k,8) == 4 

    if Positions(k,2) <= IntX - 6 

        Light(k,2) = 5; 

    end     

end 

  

  

% if Light(k,3) ~= 1 && Locations(k,5) == 1 

%     Light(k,3) 

% end 

  

% for temp = 1:size(TimeEvaluation,1) 

%     if TimeEvaluation(temp,9) == 0 

%          

%     else 

%         if (TimeEvaluation(temp,9) - TimeEvaluation(temp,5)) < TimeEvaluation(temp,11) 

%              TimeEvaluation(temp,11) - (TimeEvaluation(temp,9) - 

TimeEvaluation(temp,5));  

%              

%             if j == 0 

%             end 

%         else 

%         end 

%  

%     end 

%     

% end 

  

  

  

  

    

    end 

   

   % change to 4 when passing through 

% Calculate Number of Cars in Front of Intersection 

for xx = 1:Cars    

     

        % Intersection Location 

        IntNumber = Locations(xx,7); 

        IntX = Intersections(IntNumber,2); 

        IntY = Intersections(IntNumber,3);     

  

        % Find the location where the directions are the same 

        Direct = find(Locations(:,5) == Locations(xx,5)); 

        % Create the new matrix for same direction data 

        Check = zeros(length(Direct),9); 

        Check(1,:) = Locations(xx,:); % Plot the first line 

  

        % Delete Location where it is the same as the first line 

        X = find(Direct(:) == Locations(xx,1)); 

        Direct(X, :) = []; 

         

        % Place rest of similar direction data into the check matrix 

        for z = 1:length(Direct) 

            Check(z + 1,:) = Locations(Direct(z),:); 
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        end     

  

    Front = 0; 

     

    if Locations(xx,8) == 1 

  

    for h = 1:length(Check(:,1)) - 1 

        if Check(1,3) < Check(h+1,3)     

            index = Check(h+1,1); 

             

            if Light(index,2) ~= 5 && Positions(index,2) < IntY - 10 

                Front = Front + 1; 

            end 

             

        end 

    end 

  

    if Front == 0 && Light(xx,2) ~=  4 

        Light(xx,6) = IntY; 

    else 

        Light(xx,6) = IntY - 35 - 25*Front; 

    end 

     

    elseif Locations(xx,8) == 2     

     

    for h = 1:length(Check(:,1)) - 1 

        if Check(1,2) < Check(h+1,2)     

            index = Check(h+1,1); 

             

            if Light(index,2) ~= 5 && Positions(index,2) < IntX - 10 

                Front = Front + 1; 

            end 

             

        end 

    end 

  

    if Front == 0 && Light(xx,2) ~=  4 

        Light(xx,6) = IntX; 

    else 

    Light(xx,6) = IntX - 35 - 25*Front; 

    end     

     

    elseif Locations(xx,8) == 3      

         

    for h = 1:length(Check(:,1)) - 1 

        if Check(1,3) > Check(h+1,3)     

            index = Check(h+1,1); 

             

            if Light(index,2) ~= 5 && Positions(index,2) > IntY - 6 

                Front = Front + 1; 

            end 

             

        end 

    end 

  

    if Front == 0 && Light(xx,2) ~=  4 

        Light(xx,6) = IntY; 

    else 

        Light(xx,6) = IntY + 19 + 25*Front; 

    end     

           

     

    elseif Locations(xx,8) == 4            

  

    for h = 1:length(Check(:,1)) - 1 

        if Check(1,2) > Check(h+1,2)     

            index = Check(h+1,1); 
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            if Light(index,2) ~= 5 && Positions(index,2) > IntX - 6 

                Front = Front + 1; 

            end 

             

        end 

    end 

  

    if Front == 0 && Light(xx,2) ~=  4 

        Light(xx,6) = IntX; 

    else 

        Light(xx,6) = IntX + 19 + 25*Front; 

    end       

     

    end 

     

     

    Light(xx,4) = Front; 

  

  

end     

  

     

if Simulation == 1     

    pause(timestep) % Pausing the simulation to display dynamic change 

elseif Simulation == 0 

end 

     

  

  

% frame = getframe(gcf); 

% writeVideo(v,frame);   

  

% Deleting the previous car that was displayed to update overall position 

  if j == (1/timestep)*TotalTime % To display final position of all cars 

  

  else 

       

Time; 

Positions; 

Light; 

Locations; 

Observation; 

PositionEvaluation; 

TimeEvaluation; 

  

if Simulation == 1 

    Observation 

elseif Simulation == 0 

    size(TimeEvaluation,1) 

end 

  

% Row and Column Names for Observation Matrix 

% colNames = 

{'Car','Decision','AccelType','Input','Output','Position','Velocity','Acceleration','Time

Behind'}; 

% ObservationTable = array2table(Observation,'VariableNames',colNames); 

  

if Simulation == 1 

  for l = 1:Cars 

       delete(Car(l)) 

%        delete(Txt(l)) 

  end 

elseif Simulation == 0 

end 
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   end 

  

  

  

%  frame = getframe(gcf); 

%  writeVideo(v,frame); 

  

  

jj = jj + 1; 

  

if jj > 2*(Green+Yellow+Red)/timestep 

    jj = 0; 

end 

  

% Couting Variable 

Allie = Allie + 1; 

  

  

if size(TimeEvaluation,1) >= MaxCars + (Cars*2) 

    break 

end 

  

  

  

end 

  

  

%% Evaluation 

  

% Revised Data Compilation 

TimeEvaluationRevised = TimeEvaluation(Cars+1:size(TimeEvaluation,1),:); 

indices = find(TimeEvaluationRevised(:,10) == 0); 

TimeEvaluationRevised(indices,:) = []; 

  

  

% Time Evaluations Through Simulation 

FinalTime = TimeEvaluationRevised(:,9); 

InitialTime = TimeEvaluationRevised(:,5); 

ITime = TimeEvaluationRevised(:,11); 

  

  

% Efficiency Calculation 

ActualTime = FinalTime - InitialTime; 

Average_Time = mean(ActualTime); 

Ideal_Average = mean(ITime); 

  

Average_Efficiency = Ideal_Average/Average_Time*100; 

  

ExtraTime = mean(ActualTime - ITime); % Extra Average Seconds per Car 

  

  

% 3D Positions Matrix 

CarPositions3D = zeros(Cars,3); 

  

% Incorrect Calculations 

Difference = ActualTime - ITime; 

Indices = find(Difference(:) < 0); 

  

Incorrect = TimeEvaluationRevised(Indices,:); 

IDiff = (Incorrect(:,9) - Incorrect(:,5)) - Incorrect(:,11); 

  

% Updated Time Evaluation Matrix 

TimeEvaluationRevised(:,13) = ActualTime; 

Standard = std(ActualTime); 

  

% Directions 

Left = 0; 
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Straight = 0; 

Right = 0; 

  

for ii = 1:length(TimeEvaluationRevised) 

     

    In = TimeEvaluationRevised(ii,2); 

    Out = TimeEvaluationRevised(ii,6); 

     

    if Out - 1 == In || Out + 3 == In 

        Left = Left + 1; 

    elseif Out + 1 == In || Out - 3 == In 

        Right = Right + 1; 

    else 

        Straight = Straight + 1; 

    end 

     

  

end 

  

Left 

Straight 

Right 

  

% Signal Timing Details 

LightStatusRevised = LightStatus(TimeEvaluationRevised(1,5)/timestep + 

2:TimeEvaluationRevised(size(TimeEvaluationRevised,1),9)/timestep + 2,:); 

  

  

  

%% Saving Evaluated Matrices to Files 

  

% Excel 

filename = ('Cars60AdaptiveQ10.xlsx'); 

sheet = (Green/10) + 1; 

  

xlswrite(filename,TimeEvaluationRevised,sheet,'A2') % Evaluation Matrix 

xlswrite(filename,Average_Time,sheet,'O2') % Average Time 

xlswrite(filename,Ideal_Average,sheet,'O3') % Ideal Average Time 

xlswrite(filename,Average_Efficiency,sheet,'O4') 

xlswrite(filename,ExtraTime,sheet,'O5') 

xlswrite(filename,Standard,sheet,'O6') 

xlswrite(filename,Left,sheet,'O7') 

xlswrite(filename,Straight,sheet,'O8') 

xlswrite(filename,Right,sheet,'O9') 

  

  

% Notepad 

dlmwrite(strcat(sprintf('60_Cars_Q10_%d',Green),'_Green_Adaptive.txt'),PositionEvaluation

, 'newline','pc','delimiter','\t','precision',7); 

dlmwrite(strcat(sprintf('60_Cars_Q10_%d',Green),'_Green_LightStatus.txt'),LightStatusRevi

sed, 'newline','pc','delimiter','\t','precision',7); 

  

  

end 

  

  

  

  

  

% close(v) 

  

  

% Can begin with cars at fixed positions, or record the random locations 

% and initial speeds and behavior 

  

% Based on positions and behavior, can determine how long it would take to 

% reach destination without a light or other cars? This would be based on 
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% only allowing one intersection to run at a time no cars either 

  

% Can factor in the light and determine the amount of time with a fixed 

% light 

  

% vary number of cars as well 

  

%  

  

% Add in the adaptive light and attempt to make light arrival time close 

% to the ideal case 

  

  

TotalMinutes = j*timestep/60 

TotalCars = length(TimeEvaluation) 
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