
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

December 2019

Agent-Based Resilient Transportation Infrastructure with Agent-Based Resilient Transportation Infrastructure with

Surrogate Adaptive Networks Surrogate Adaptive Networks

Andre Aaron Apostol
Clemson University, andre.apostol95@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Recommended Citation Recommended Citation
Apostol, Andre Aaron, "Agent-Based Resilient Transportation Infrastructure with Surrogate Adaptive
Networks" (2019). All Theses. 3230.
https://tigerprints.clemson.edu/all_theses/3230

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3230?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

AGENT-BASED RESILIENT TRANSPORTATION INFRASTRUCTURE WITH
SURROGATE ADAPTIVE NETWORKS

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Mechanical Engineering

by
Andre A. Apostol
December 2019

Accepted by:
Dr. Cameron J Turner, Committee Chair

Dr. Ardalan Vahidi
Dr. Mashrur Chowdhury

ii

Abstract

Connected autonomous intelligent agents (AIA) with enhanced decision making

through machine learning can improve intersection performance and resilience for the

transportation infrastructure. An agent is an autonomous decision maker whose decision

making is determined internally but may be altered by interactions with the environment

or other agents. Implementing agent-based modeling techniques to advance

communication for more appropriate decision making will provide great benefits to

autonomous vehicle technology.

A new algorithm is proposed to improve the decision-making process of

autonomous vehicles and intelligent traffic signals, specifically at city like intersections.

This is completed by understanding vehicle to vehicle (V2V), vehicle to infrastructure

(V2I), and infrastructure to infrastructure (I2I) communication and using gathered data to

ensure these agents make more appropriate decisions given the circumstances. These

vehicles and signals are modeled to adapt to the common traffic flow of the intersection

and ultimately find an optimum flow that will decrease average vehicle time to ultimately

reduce inefficiency through each intersection. Considering each light and vehicle as an

agent and utilizing communication between these agents will enable opportunity for data

transmission. Improving agent-based I2I communication and decision making will

provide performance benefits to traffic flow capacities.

iii

Evaluations were completed comparing intersections with fixed, coordinated, and

adaptive timing signals. A fixed timing signal is an intersection using a fixed maximum

green light time with no opportunity for adjustment. The coordinated signals adapt and

change light status based on the current light status of adjacent intersections. Adaptive

signals add in a recognition of vehicle load in one direction and adjust their own status

either based on the load at the individual intersection or a neighboring light status change

with the intent to improve traffic flow.

To compare these scenarios given a specific example of 160 total vehicles present

on the road in a 2x2 intersection grid setup, inefficiency was reduced from 50% to 45%

given the relationship between ideal average time compared to actual average time for

vehicles proceeding through an intersection. Overall tests were run to compare the

different light signal options based on the number of vehicles on the road and maximum

green light time in one direction. The results were consistent and overall inefficiency was

reduced using an adaptive traffic signal to recognize upcoming vehicles combined with

the ability to adjust based on adjacent intersection light status changes.

iv

Table of Contents
1. Introduction ... 1

1.1 Introduction.. 1

1.2 Research Problem and Motivation .. 2

1.3 Thesis Statement .. 4

1.4 Research Outline .. 5

1.4.1 Chapter 2: Literature Review .. 5

1.4.2 Chapter 3: Simulation Method ... 5

1.4.3 Chapter 4: Simulation Results ... 6

1.4.4 Chapter 5: Conclusions and Future Work ... 6

2. Literature Review .. 7

2.1 Current Infrastructure Technology .. 7

2.2 Recent Autonomous Vehicle Technology Advancements 8

2.3 Partially Observable Markov Decision Process (POMDP) 11

2.4 Connected Vehicle Technology .. 12

2.5 Potential for Communication Improvement .. 19

3. Simulation Method ... 21

3.1 Research Campaign .. 21

3.2 Introduction of Autonomous Vehicle and Intelligent Traffic Signal Agents 21

3.2.1 Defining an Agent Based Autonomous Vehicle .. 21

3.2.2 Defining an Agent Based Intelligent Traffic Signal 23

3.2.3 Coupled System of Autonomous Vehicles and Intelligent Traffic Signals .. 24

3.3 The MATLAB Model .. 25

3.3.1 Modeling a Single Fixed Timing Signal Intersection 25

3.3.2 Intersection Grid with Fixed Timing Signals .. 52

3.3.3 Implementing Coordinated Traffic Signals ... 57

3.3.4 Implementing Adaptive Traffic Signals ... 60

3.4 Simulation Goals of the MATLAB Model .. 63

4. Simulation Results ... 64

4.1 Fixed Timing Evaluation Results ... 64

4.1.1 1x1 Intersection Setup .. 65

v

4.1.2 2x2 Intersection Setup .. 68

4.1.3 Overall Fixed Timing Results ... 70

4.2 Coordinated Signal Evaluation Results ... 73

4.2.1 Graphic Displays of Coordinated Light Sequence 74

4.2.2 Overall Coordinated Light Sequence Results .. 77

4.3 Adaptive Signal Results .. 80

4.3.1 Graphic Displays of Adaptive Light Sequence... 81

4.3.2 Overall Adaptive Light Sequence Results ... 83

4.4 Light Sequence Comparison ... 87

5. Conclusions and Future Work ... 89

5.1 Research Conclusion .. 89

5.2 Future Work ... 89

5.3 Thesis Reflection .. 89

6. References .. 93

7. Appendix ... 97

vi

List of Figures

FIGURE 1: AGENT BASED MODELING APPROACH.3

FIGURE 2: VEHICLE RECOGNITION TECHNOLOGY. .. .9

FIGURE 3: FULL CITY INTERSECTION CONNECTIVITY. .. .19

FIGURE 4: COUPLED AGENT-BASED BEHAVIOR. .. .24

FIGURE 5: INDIVIDUAL MATLAB SIMULATION INTERSECTION. .. .25

FIGURE 6: LANE LENGTH REFERENCE.28

FIGURE 7: HONDA ACCORD ADAPTIVE CRUISE CONTROL OPTIONS. .. .33

FIGURE 8: DISTANCE ACCELERATION PROCESS. .. .34

FIGURE 9: DISTANCE FROM INTERSECTION TO LIKELY PROCEED THROUGH BASED ON DESIRED TURN.43

FIGURE 10: 2 X 3 INTERSECTION GRID.53

FIGURE 11: COORDINATED INTELLIGENT INTERSECTION SETUP.58

FIGURE 12: COORDINATED TRAFFIC SIGNAL LOGIC. .. .59

FIGURE 13: INDIVIDUAL TRAFFIC SIGNAL STATUS.59

FIGURE 14: 2X2 FIXED TIMING SIGNAL SEQUENCE64

FIGURE 15: FIXED TIMING, 5 VEHICLES……65

FIGURE 16: FIXED TIMING, 10 VEHICLES……………….65

FIGURE 17: FIXED TIMING, 20 VEHICLES .. .66

FIGURE 18: FIXED TIMING, 40 VEHICLES……… .66

FIGURE 19: FIXED TIMING, 60 VEHICLES……66

FIGURE 20: INEFFICIENCY FIXED TIMING, 5 VEHICLES…………………………………………………………………………………………… .67

FIGURE 21: INEFFICIENCY FIXED TIMING, 10 VEHICLES…………. .. .67

FIGURE 22: INEFFICIENCY FIXED TIMING, 20 VEHICLES ..………………………………………………………………………………………..67

FIGURE 23: INEFFICIENCY FIXED TIMING, 40 VEHICLES………67

vii

FIGURE 24: INEFFICIENCY FIXED TIMING, 60 VEHICLES…………………………………………………………………………………………..67

FIGURE 25: AVERAGE TIME, FIXED, 5 VEHICLES…………………………………………………………………………………………………...68

FIGURE 26: AVERAGE TIME, FIXED, 10 VEHICLES……………………………………………………………………………………………….…68

FIGURE 27: AVERAGE TIME, FIXED, 20 VEHICLES……………………………………………………………………………………………….…68

FIGURE 28: AVERAGE TIME, FIXED, 40 VEHICLES……………… .. 68

FIGURE 29: AVERAGE TIME, FIXED, 60 VEHICLES .. 69

FIGURE 30: INEFFICIENCY, FIXED, 5 VEHICLES……………………………………………………………………………………………………...69

FIGURE 31: INEFFICIENCY, FIXED, 10 VEHICLES…………………………………………………………………………………………………… 69

FIGURE 32: INEFFICIENCY, FIXED, 20 VEHICLES…………………………………………………………………………………………………… 70

FIGURE 33: INEFFICIENCY, FIXED, 40 VEHICLES…………..70

FIGURE 34: INEFFICIENCY, FIXED, 60 VEHICLES ... 70

FIGURE 35: AVERAGE VEHICLE TIME FOR 2X2 INTERSECTION, FIXED SIGNAL ... 72

FIGURE 36: AVERAGE VEHICLE TIME FOR 2X3 INTERSECTION, FIXED SIGNAL ... 72

FIGURE 37: AVERAGE VEHICLE TIME FOR 3X3 INTERSECTION, FIXED SIGNAL ... 73

FIGURE 38: COORDINATED SIGNAL LIGHT SEQUENCE ... 73

FIGURE 39: AVERAGE TIME, COORDINATED, 5 VEHICLES………………………………………………………………………………………..74

FIGURE 40: INEFFICIENCY, COORDINATED, 5 VEHICLES…………………………………………………………………………………………..74

FIGURE 41: AVERAGE TIME, COORDINATED, 10 VEHICLES………………………………………………………………………………………75

FIGURE 42: INEFFICIENCY, COORDINATED, 10 VEHICLES………………………………………………………………………………………...75

FIGURE 43: AVERAGE TIME, COORDINATED, 20 VEHICLES……………………………………………………………………………………...75

FIGURE 44: INEFFICIENCY, COORDINATED, 20 VEHICLES………………………………………………………………………………………...75

FIGURE 45: AVERAGE TIME, COORDINATED, 40 VEHICLES………………………………………………………………………………………75

FIGURE 46: INEFFICIENCY, COORDINATED, 40 VEHICLES…………………………………………………………………………………..…….75

FIGURE 47: AVERAGE TIME, COORDINATED, 60 VEHICLES………………………………………………………………………………………76

FIGURE 48: INEFFICIENCY, COORDINATED, 60 VEHICLES………………………………………………………………………………………...76

viii

FIGURE 49: 2X2 INTERSECTION LIGHT NUMBER LOCATIONS76

FIGURE 50: VISUAL STATUS REPRESENTATION OF COORDINATED TRAFFIC SIGNALS77

FIGURE 51: AVERAGE VEHICLE TIME FOR 2X2 INTERSECTION, COORDINATED SIGNAL .. .79

FIGURE 52: AVERAGE VEHICLE TIME FOR 2X3 INTERSECTION, COORDINATED SIGNAL .. .79

FIGURE 53: AVERAGE VEHICLE TIME FOR 3X3 INTERSECTION, COORDINATED SIGNAL .. .80

FIGURE 54: AVERAGE TIME, ADAPTIVE, 5 VEHICLES ………………………………………………………………………………………………81

FIGURE 55: INEFFICIENCY, ADAPTIVE, 5 VEHICLES ..……………………………………………………………………………………………...81

FIGURE 56: AVERAGE TIME, ADAPTIVE, 10 VEHICLES…………………………………………………………………………………………….81

FIGURE 57: INEFFICIENCY, ADAPTIVE, 10 VEHICLES……………………………………………………………………………………………… 81

FIGURE 58: AVERAGE TIME, ADAPTIVE, 20 VEHICLES…………………………………………………………………………………………….82

FIGURE 59: INEFFICIENCY, ADAPTIVE, 20 VEHICLES... .82

FIGURE 60: AVERAGE TIME, ADAPTIVE, 40 VEHICLES…………………………………………………………………………………………….82

FIGURE 61: INEFFICIENCY, ADAPTIVE 40 VEHICLES………………………………………………………………………………………………. 82

FIGURE 62: AVERAGE TIME, ADAPTIVE, 60 VEHICLES…………………………………………………………………………………………….82

FIGURE 63: INEFFICIENCY, ADAPTIVE, 60 VEHICLES……………………………………………………………………………………………… 82

FIGURE 64: VISUAL STATUS REPRESENTATION OF ADAPTIVE TRAFFIC SIGNALS83

FIGURE 65: OVERALL COMPARISON OF AVERAGE VEHICLE TIME FROM ADAPTIVE SIGNAL IMPLEMENTATION87

FIGURE 66: VARIOUS SIGNAL SEQUENCE COMPARISON OF AVERAGE VEHICLE TIME .. .88

FIGURE 67: VARIOUS SIGNAL SEQUENCE COMPARISON OF INEFFICIENCY88

FIGURE 68: TRENDLINE COMPARISON OF VARIOUS SIGNAL SEQUENCES .. .88

1

1. Introduction

1.1 Introduction

Connected autonomous intelligent agents (AIA) with enhanced decision making

through machine learning can improve intersection performance and resilience for the

transportation infrastructure. An agent is an autonomous decision maker whose decision

making is determined internally but may be altered by interactions with the environment

or other agents. Implementing agent-based modeling techniques to advance

communication for more appropriate decision making will provide great benefits to

autonomous vehicle technology.

In general, swarm robotic decision making has been optimized using a central master

controller that relays information to other slave robots. This technique may be difficult to

utilize when many subsystems must be controlled. This is due to the main controller

functioning as the only input to one robot; these robots do not consider the input of

neighboring robots. This creates difficulty in synchronizing the control of all subsystems.

Therefore, agent-based communication is a beneficial alternative to improve

autonomous vehicle decision making. Advancing this form of technology will improve

traffic flow as well as create a safer and more resilient environment for the transportation

infrastructure.

To improve overall communication within a group of agents, it is beneficial to allow

the robots to communicate individually as opposed to having one centralized controller.

2

This will create a more resilient environment and allow each agent to communicate their

own status to neighboring agents. Success of this method will ensure the system stays

more up to date as time continues. Furthermore, rather than having a centralized

controller gathering all information, each individual robot will gather data that can be

interpreted and used for individual decision making. The ability for individual agents to

gather data to provide information to nearby agents will allow the system to function

more as a realistic intersection model.

1.2 Research Problem and Motivation

With the emerging autonomous vehicle technology, it is important to study the

positive and negative effects that may occur throughout a realistic connected vehicle/city

environment. Furthermore, how can the newer communication technology be used to

improve performance through intersections? Enhanced safety, traffic flow, and resilience

are all beneficial to vehicle transportation and an agent-based approach will ultimately

create a more positive outcome.

This technique can be applied to autonomous vehicle transportation aspects. The

ability for each car to gather data through its own sensors as well as pull data from other

local cars can be a huge technology improvement. If automobiles can relay information

about current locations to nearby vehicles as well as traffic lights, the intersection can

apply the received data to the immediate situation. For example, an individual

intersection may be overcrowded from a high number of approaching vehicles. The

improved communication between the status of intersections will allow traffic lights to

3

communicate to provide alternative light signal times. This is just one example that

displays the benefits of improved vehicle communication and decision making. This

knowledge will ultimately improve traffic flow, safety and overall agent behavior.

Intelligence is a systems ability to act

appropriately in an uncertain environment,

where an appropriate action increases the

probability of success, and success is the

achievement of behavioral sub-goals that

support the system’s main goal [Likhachev

2009]. To improve autonomous vehicle

intelligence, this Autonomous Intelligent Agent

(AIA) technique can be applied to the automotive transportation system. Individual

vehicles can recognize and communicate status to other nearby vehicles regarding

position, velocity and upcoming desired direction. The ability for these agents to

communicate will allow for more detailed traffic data and the interpretation of this data

can result in an improvement of resilience for the transportation infrastructure.

Furthermore, to ultimately improve roadway intersection performance, it is

beneficial to consider traffic signal controllers as agents as well. Figure 1 displays this

utilization of the connected agent technology. Automobiles can relay information about

their current speed and location to the intelligent traffic signal controllers whom can then

interpret this data and apply it appropriately. This ideally will allow the traffic signal

Figure 1: Agent Based Modeling Approach.

4

controllers to make a status decision based on the abundance or lack of vehicles

approaching from a specific direction. It will be demonstrated how relaying individual

status can ultimately improve traffic flow at intersection scenarios.

1.3 Thesis Statement

A new algorithm is proposed to improve the decision-making process of

autonomous vehicles and intelligent traffic signals, specifically at city like intersections.

This is completed by understanding vehicle to vehicle (V2V), vehicle to infrastructure

(V2I), and infrastructure to infrastructure (I2I) communication and using gathered data to

ensure these agents make more appropriate decisions given the circumstances. Working

with more complex and realistic situations for intersections is a new study and overall,

the connection of the vehicles and traffic lights will ultimately allow for the ability to solve

an ideal traffic signal optimization problem. This concept will be proven by modeling city

intersections while considering vehicle distances from an intersection to determine light

change probability. The performance will be evaluated, and the information gathered

through the agent-based communication at each intersection will be used to improve the

decision making of the traffic signals at individual intersections.

With improved decision making, we can create more accurate models of common

intersections. These vehicles and signals are modeled to adapt to the common traffic flow

of the intersection and ultimately find an optimum flow that will decrease average vehicle

time through each intersection. Considering each light and vehicle as an agent and

utilizing communication between these agents will enable opportunity for data

5

transmission. As data is gathered, each agent can make safer, time dependent decisions

to benefit the intersection in that city. Improving agent-based I2I communication and

decision making will provide performance benefits to traffic flow capacities.

Furthermore, advancing this form of communication to allow for self-configuring systems

will improve traffic flow as well as create a safer environment for the transportation

infrastructure.

1.4 Research Outline

This section will highlight the details of each chapter to provide insight on what can

be expected.

1.4.1 Chapter 2: Literature Review

A literature review has been completed on different approaches to modeling

autonomous vehicle behavior and on the potential to connect intersections in a smart city

environment. The initial improvement of autonomous vehicles is a new technological

advancement and studies to show potential upgrades using this technology for more

advanced communication abilities are the main areas of focus for this literature review.

Simulating a connected agent environment is a new study but literature reviews on many

aspects of autonomous vehicles can demonstrate the need for agent-based behavior in

this specific environment.

1.4.2 Chapter 3: Simulation Method

The MATLAB model demonstrating the improved traffic flow will be described. The

logic and equations used to calculate the appropriate behavior for each vehicle and traffic

6

signal will be explained. The various techniques and methods used throughout the code

are related to the kinematic performance of vehicles and the data gathered will be used

to prove that this method is of use to the transportation infrastructure.

1.4.3 Chapter 4: Simulation Results

The results from the various simulations run will be displayed and discussed.

Numerous tests were carried out based on overall car count in the simulation, maximum

green signal light time per intersection, and car load at a specific intersection. Basic

intersection models with fixed timing signals were initially evaluated and ultimately

compared to the adaptive timing signal network. The average vehicle time through each

intersection is evaluated to determine if overall traffic flow is improved.

1.4.4 Chapter 5: Conclusions and Future Work

Traffic flow improvement is an engineering problem that has been discussed for many

years. With emerging autonomous vehicle technology, a new type of solution can be

utilized. This autonomous agent technique can eventually be applied for all dynamic

components that may be considered in a city environment.

7

2. Literature Review

The individual details of each component in the transportation infrastructure are

complex, therefore highlights of current, new, and potential improvements will be

discussed. Overall, there is a need and potential for improved communication between

vehicles and traffic signals given emerging autonomous vehicle technology.

2.1 Current Infrastructure Technology

General traffic lights operate on a fixed timing schedule typically only allowing

adjustments to the sequence based on a sensor to detect vehicles at the intersection and

through expected volumes of traffic based on daily traffic routines. These common

approaches are solely based on the detection of nearby vehicles. A benefit of detection

devices present in a fixed light sequence traffic signal is the option to alter traffic flow

directions through nearby vehicle detection given the light has not reached its maximum

green light time display. Another benefit is the option to skip certain cycles if no vehicle

is present in a specific direction at that intersection. This will result in an improved flow

of traffic in the opposite direction. Another common technique for traffic flow

optimization is the use of the concept rolling horizon [Goodall 2013]. A traffic control

algorithm will optimize an objective function over a short period of time to estimate the

position of vehicles over future cycles. This approach again only allows for estimation of

a vehicle location as opposed to a precise recognition. With emerging autonomous

vehicle technology, intersection performance can greatly be enhanced.

8

Furthermore, a rolling horizon quadratic programming approach was used for signal

control [Aboudolas 2010]. They investigated recently developed signal control and

discovered new ways to improve real-time network control in large-scale networks. The

traffic responsive urban control (TUC) method was used and is based on a linear quadratic

multivariable regulator which considers minimum green time constraints and cycle time.

Two different strategies of first and second class were created. First class considers

undersaturated traffic conditions while second class considers oversaturated traffic

conditions. Overall optimization for network wide signal control of traffic was proven

effective through efficiency improvement.

2.2 Recent Autonomous Vehicle Technology Advancements

For over a decade, there have been several attempts to develop approaches for

improving operations of self-driving vehicles through signalized intersections [Mladenovic

2014]. One main concentration for improvement has been the cooperation of the vehicles

to improve safety. About 96% of traffic engineers recognize the importance of safety at

intersections, while identifying the concern for respect and morality. Crashes that occur

generally are due to human error. Therefore, to implement autonomous vehicles and

ensure citizens are content with this improvement, a safer environment throughout the

automotive transportation must be proven successful.

A wide range of approaches to improve decision making of autonomous vehicles have

been carried out. Although certain problems may be anticipated, methods in the

literature neglect uncertainty on the future states of other nearby vehicles [Petti 2005].

9

Some approaches assume a dynamic model of a detected obstacle and propagate its state

using standard filtering techniques such as the extended Kalman filter [Fulgenzi 2008].

However, these experiments have resulted in unrealistic models as these approaches

have led to conservative and partially unrealistic data due to too many assumptions of

current and future states of nearby vehicles.

Autonomous vehicles have

also seen instances of decision-

making approaches in traffic

situations from the 2007 DARPA

Urban Challenge [Darpa 2007].

Generally, decision making was

performed for a variety of solutions that ranged from finite state machines [Montemerlo

2008], to decision trees [Miller 2008], to several heuristics [Urmson 2008]. However,

some approaches have attempted to solve the decision-making problem for autonomous

driving through the lens of trajectory optimization [Ferguson 2008]. These approaches

were beneficial in demonstrating the use of this technology. Newer studies have gathered

information from these experiments to improve the ability of autonomous vehicles in

different environments.

Decision-making for autonomous driving can be challenging because of uncertainty

and the continuous state of nearby vehicles [Galceran 2015]. Majority of autonomous

vehicle decision making algorithms assume full knowledge of each dynamic component

Figure 2: Vehicle Recognition Technology.

10

which can lead to incorrect perception of the road. Galceran et al [2015] discusses the

development of a new algorithm with an improved method of tracking dynamic objects

on the road by using model-based estimation. This algorithm is used to improve reasoning

in occluded regions and in passing, merging, or intersection handling situations that

autonomous vehicles may encounter. The overall method in tracking full dynamic

behavior of certain components can be implemented in an appropriate agent-based

model algorithm.

Galceran et al [2015] also created a method to allow nearby autonomous vehicles to

evaluate consequences of potential actions given possible decisions of that vehicle. The

history of common dynamic states of a nearby vehicle is first evaluated to create a likely

outcome policy for the nearby vehicle. The intentions of the initial vehicle are observed

as well. Given the two behaviors of the vehicles, a closed loop interaction maximizes the

reward given the direct scenario. These outcomes were then evaluated to prove this

anticipated decision-making approach is beneficial. This decision-making approach can be

used to improve the overall safety in an agent-based environment as nearby vehicles will

be able to track and predict upcoming states of nearby vehicles

Cunningham et al [2015] also created a multipolicy approach for improved decision

making in uncertain environments. Considering the future states of other agents has

resulted in an ability to scale the model to more complex traffic scenarios. A real-time

policy from nearby vehicles as well as the selected vehicle is evaluated, and the algorithm

ultimately selects the best outcome for the controlled vehicle. Furthermore, different

11

driving preferences are considered which creates opportunity for an improved human

experience based on driver preference. The experiment for this approach was

demonstrated using a real-world autonomous vehicle to justify the need for this

algorithm. Overall, implementing these autonomous systems into our infrastructure

requires a delicate balance of new technologies, but the improved performance in an

agent-based environment is evident.

2.3 Partially Observable Markov Decision Process (POMDP)

A common method that has been used to solve decision optimization problems is the

Partially Observable Markov Decision Process (POMDP). This model provides a

mathematically rigorous formalization of the decision-making problem in uncertain

dynamic scenarios [Galceran 2015]. In general, these problems have resulted in very

complex computations which can take several hours to converge even while considering

an extremely basic non-real-world scenario. Although solutions have been considered

lengthy, POMDP methods have still been formulated to arrive at appropriate solutions for

these decision-making scenarios.

Bandyopadhyay et al [2013] performed a POMDP approach that considers motion

planning through the possibilities of the human intention. The model uses a finite set of

possible human intentions and an algorithm for an autonomous robot is developed to

recognize these intentions. The method consists of an autonomous vehicle agent

interacting with a human agent. Given the possibilities of the human intention, the

autonomous vehicle agent will observe the behavior and establish a decision in advance

12

to act optimally in that specific scenario. Given the different scenarios in this type of

environment, a safer decision can be determined to create a safer environment. Agent

based modeling can be used to improve interactions between automobiles and humans.

A point-based Markov decision process for single-lane driving and merging was

performed by [Wei 2011] and [Ulbrich 2013] and was applied to a POMPD formulation

that considered highway changes. [Brechtel 2014] also performed an experiment using

continuous state space reasoning about objects that may potentially be hidden while

considering observation uncertainty. Ideas using these methods have been performed

but due to the complex nature of these problems, it is generally not extremely beneficial

to include a POMDP problem in this research.

2.4 Connected Vehicle Technology

Although quality decision making is important in the improvement of safety,

connectivity between vehicles adds an extra component to improve the traffic flow and

overall safety of the vehicle. Talebpour and Mahmassani [2016] performed a study

demonstrating the influence of connected autonomous vehicles and the impact on traffic

flow. It was proven that connected vehicle technology can provide real-time information

about nearby traffic and ultimately can increase efficiency and reliability.

In the same article published by Talebpour and Mahmassani [2016], the type of

communication that can occur in an autonomous environment was discussed. Active

Vehicle-to-Vehicle (V2V) communication is the ability for one vehicle to maintain an

appropriate distance behind another. This is typically based on desired spacing,

13

comfortable acceleration or deceleration, and the relative velocity between the vehicles.

This specific type of communication is like adaptive cruise control (ACC) which allows a

user to specify a top speed which may be reduced based on the distance behind and

speed of a vehicle in front. Vehicle to Infrastructure (V2I) is also an important level of

communication. Active V2I communications allow real-time data to be transmitted

regarding speeds of multiple vehicles. The signal can then update an appropriate speed

limit to allow the connected autonomous vehicles to work in harmony. It is concluded

that the general autonomous vehicle will calculate the appropriate acceleration based on

all inputs to the system from nearby vehicles and infrastructure signals. This calculation

is important as the basic behavior of a vehicle begins with the ability to accelerate and

decelerate appropriately.

Smith et al [2010] created a decentralized innovative traffic signal algorithm that

utilizes IntelliDrive technologies to improve the efficacy of traffic signals. This traffic

control algorithm determined the optimal point to terminate the green phase in one

direction based on the present traffic pattern. Furthermore, data gathering strategies for

changes in acceleration, network connectivity, and road conditions were implemented.

This knowledge allowed traffic control algorithms to be created that would determine the

strength in the connectivity of connected vehicles. Eventually, an interface between

MATLAB and VISSIM was used to implement the algorithm and real-world performance

was evaluated in the Washington DC metro area. Dedicated short range communication

technology (DSRC) was used to implement this communication. The proportion of

14

vehicles passing through the intersection was compared with real world data and

demonstrates that a decentralized adaptive traffic signal was beneficial.

More recent research relating to the topic of connecting autonomous vehicles and

traffic signals is through [Feng 2015] paper titled “A real-time adaptive signal control in a

connected vehicle environment.” Common traffic signals have been optimized to improve

traffic flow based on real-real time traffic conditions. Adaptive signal controls design

signal time and phasing on-the-fly based on real-time traffic demand as well as predicted

traffic demand. Furthermore, they can use sensors embedded in the pavement or non-

intrusive sensors, like video detectors. However, this traffic flow can be improved with

advances in wireless communication technology as vehicles can communicate with each

other and with the infrastructure in the emerging connected vehicle system [Feng 2015].

There have been many advances in Vehicle to Vehicle (V2V) communication as well as

Vehicle to Infrastructure (V2I) communication. These technologies use dedicated short-

range communication (DSRC) and this technology can be used to gather data for these

specific communication scenarios.

This study considered both autonomous and non-autonomous vehicles. Applications

utilizing V2I communication enable the intersection to acquire a more complete picture

of the nearby vehicle states. Data from connected vehicles provide real-time vehicle

location, speed, acceleration, and other status-based vehicle data. From this new source

of data, traffic controllers should be able to make “smarter” decisions [Feng 2015]. This

author has presented a real-time adaptive traffic control algorithm by utilizing data from

15

connected vehicles. Algorithms for this study utilize arrival time, estimation for traffic

signal timing, and phasing decision at the traffic controller.

To improve light signal timing, Goodall et al [2013] created an algorithm to control

traffic signals with connected vehicles. Instead of relying on point detectors to recognize

vehicles at a fixed location, traffic signals can use data transmitted from a vehicle through

DSRC to gain access to previously estimated measures such as vehicle speed, position,

arrival time, acceleration rates, and queue lengths [Goodall 2013]. The predictive

microscopic simulation algorithm (PMSA) was then created to improve state of the

practice performance by responding to real time demands while eliminating the ability to

reidentify records of an individual vehicle to protect driver privacy. The algorithm initially

receives data regarding the position and speed within a 300-meter distance of the light.

Assuming a minimum green light signal time of 5 seconds and a maximum of 15 seconds,

the most appropriate green light signal timing is determined by the time required to clear

vehicles in that direction.

Similar connected vehicle and infrastructure research was also completed for

situational awareness for a connected autonomous vehicle (CAV) making a left turn at a

signalized intersection [Khan 2019]. Video cameras as well as lidar and radar sensors are

placed at the intersection to recognize upcoming vehicles traveling in the opposite

direction of the vehicle intending to make a yielding left turn. The intersection will predict

the arrival time to the intersection of the opposite direction vehicles. If the maneuver can

be completed safely, the intersection sensors will notify the CAV (I2V) that it may proceed

16

through the intersection. Furthermore, given a two-lane road, the autonomous vehicle

control system can recognize behind vehicles to determine if a safe maneuver to the left

turn lane can be completed [Khan 2019]. This study was completed given an aggressive

non-CAV driver which is important to consider because not all vehicles on the road today

are autonomous. Overall, the ability for the traffic signal to recognize upcoming vehicles

from a distance was proven effective.

2.5 Multi-Intersection and Adaptive Signal Control for Traffic Optimization

SCOOT and SCAT traffic signal techniques have been used widely throughout traffic

control for many decades. SCOOT is an optimization technique that incorporates a

centralized system that measure traffic loads continuously [Luk 1984]. These

measurements of traffic volumes adjust signal timings to minimize the average vehicle

queue in specific areas per intersections [Stevanovic 2009]. Multiple details of the overall

optimization include split timing, offset, and cycle length which provide smaller individual

details for queue minimization. SCAT is an automated real time traffic responsive signal

control strategy that incorporates local and regional computers [Stevanovic 2009].

Information from vehicle detectors regarding location is used to adjust signal timing

based on the variation in traffic demand. Software program VISSIM is often used with this

method and overall, signal timing is adjusted based on change in traffic flow which is

monitored from the heuristic feedback system.

A connected vehicle research study based on an adaptive traffic signal in a mixed

traffic stream was also completed [Khan 2019]. Connected vehicles (CV) are considered

17

mobile nodes that communicate with nearby vehicles (connected road users) and

infrastructure traffic signals. The intersection signals use an algorithm to optimize the

traffic flow and adapt the timing based on vehicle load through the intersection. Initially,

traffic signal timing is estimated based on the number of connected vehicles at the

intersection. As vehicles travel through the intersection, dynamic offsets based on the

initial signal timing can be implemented from the vehicle data load [Khan 2019]. Finally,

the green time interval can be adjusted from the queue load of vehicles in the red

direction. Overall, the time a vehicle is stopped at the intersection (stopped delay) can be

reduced through adaptive signal timing.

Reinforcement learning (RL) for adaptive traffic signal control was also an important

addition to traffic signal technology. Reinforcement learning involves an agent that finds

new ways to achieve a goal by interacting dynamically with the environment [Abdulhai

2003]. The agent will consider different situations and evaluate performance to

determine the overall best sequence of actions to achieve the ideal goal in the most

appropriate manner. Feedback signals aid the agent in determining the level of

contribution for each situation. The research uses a Q-learning technique [Watkins 1989]

to determine appropriate relationships between states, actions, and rewards given the

interaction with the environment.

Reinforcement learning was also applied in a multi-agent system [Arel 2010]. In this

research, two types of agents were considered. Outbound agents adjust traffic signals by

considering the length of the queue at individual intersections. This is determined using

18

the longest queue first algorithm (LQF). Central agents are also considered which use a

value function to alter status which is driven by local neighboring traffic conditions.

Overall, a machine learning technique is implemented to approximate and determine the

optimal decision [Arel 2010] through interactions between the different agents.

Finally, multi intersection autonomous vehicle interactions have been simulated

based on distributed mixed integer linear programming (MILP) to enhance traffic flow at

signalized intersections [Ashtiani 2018]. Using connected autonomous vehicles (CAV),

intersections solve their own optimizations given vehicle information and communicate

decisions to other autonomous vehicles. Using time for a vehicle to proceed through an

intersection and distance to the intersection, the controller can create a list of subscribed

vehicles to neighboring intersection to find the desired access time. Overall traffic flow is

optimized given these calculations.

This research was also incorporated using optimal schedule of autonomous vehicle

arrivals at intelligent intersections [Fayazi 2017]. Using the mixed integer linear

programming technique (MILP), a live picture of traffic conditions can be created.

Notifications per vehicle can be communicated to the upcoming intersections to

determine arrival time of that vehicle. Considering all subscribed vehicles to the upcoming

intersection, an optimal schedule for light time can be determined to minimize

intersection delay while ensuring safety. The access distance of the vehicle to the

intersection allows for further calculations of the desired arrival time to ensure vehicles

19

do not face extreme delays. Furthermore, safety is more improved through ensuring

vehicles travel safely behind vehicles ahead given autonomous vehicle reaction time.

2.6 Potential for Communication Improvement

In general, studies have been completed through connecting vehicles to determine

common traffic flow. This data is used to ultimately improve the traffic signal patterns.

However, there is not a significant amount of research considering the communication

between both vehicles and

traffic signals and treating each

as an individual intelligent

agent. This further includes a

lack in research of

communication between adjacent intersections (I2I). Including this newer form of

communication can create improved traffic flow across a wider range of roads.

Connecting vehicle flow through multiple intersections allows for more accurate status

updates that can be used to improve both vehicle and intersection status decisions.

Considering previous research regarding connected vehicle behavior and implementing

optimization algorithms for the addition of connected traffic signals will allow for further

improvement of intersection performance. A full network of agent-based communication

between autonomous vehicles and intelligent traffic signals is a new study that will be

discussed and proven to be advantageous to the transportation infrastructure.

Eventually, this communication can be improved to full dynamic component connectivity

Figure 3: Full City Intersection Connectivity.

20

in a city intersection as shown in Figure 3 however, this research will only consider

communication between autonomous vehicles and intelligent traffic signals.

21

3. Simulation Method

3.1 Research Campaign

The following tasks have been completed to demonstrate improved intersection

performance from agent-based communication between autonomous vehicles and

intelligent traffic signals:

• Introduce Autonomous Vehicles and Intelligent Traffic Signals as Agents;

• Create a MATLAB model of a realistic single fixed timing signal intersection;

• Create a grid of intersection situations with fixed timing signals and gather data of

vehicle behavior to establish a baseline for improvement;

• Implement coordinated traffic signals to alter light status due to the status of

neighboring intersections; and

• Improve overall intelligence through adaptive light signal timing based on nearby

intersection light status and upcoming vehicle load to individual intersections.

Individual details about the tasks will be explained throughout the following chapter.

Methods using AIA (Autonomous Intelligent Agents) are introduced and evaluations are

completed to demonstrate improvement of intersection efficiency and safety.

3.2 Introduction of Autonomous Vehicle and Intelligent Traffic Signal Agents

3.2.1 Defining an Agent Based Autonomous Vehicle

The initial task consists of ultimately defining what is an agent based autonomous

vehicle. The look, behavior, and interaction are qualities that must be addressed and

22

defined as these autonomous agents can interact with other vehicle agents, nearby

intelligent traffic signal agents, as well as the environment. Each autonomous agent will

have its own set of rules and the goal is to model the behavior of these agents to simulate

potential interaction between autonomous vehicles to ultimately determine if these

connected vehicles do improve safety and timing of traffic in a city.

Inputs, outputs, and individual behaviors for autonomous agents will be discussed.

These qualities are important for determining a desired goal of an agent through an

intersection and to provide output details to communicate these goals and current status.

Environmental inputs to an agent are the heading direction to an intersection (d) and the

desired exit direction (O). Upcoming vehicle locations (xF) will also be considered for

proper yielding. The uncertainty variables that are calculated per autonomous agent

iteration are based on the vehicle instantaneous velocity (vi) and distance from the

intersection (xi). This data will be used to predict the amount of time (tid) a vehicle will

take to proceed through the entirety of the intersection. Previous research emphasizes

the importance of reaction time when considering braking times per distance to an

intersection [McGehee 2000]. However, for this simulation, reaction time will be

neglected as the autonomous agent velocity will be calculated in real time to simulate a

connected vehicle environment. Technology with instantaneous feedback is more

efficient in recognizing upcoming vehicle updates than the common human reaction time.

Finally, an initial calculation of time to an upcoming intersection will be used as an input

to the intelligent agent traffic signal.

23

3.2.2 Defining an Agent Based Intelligent Traffic Signal

The intelligent traffic signal agent is beneficial for gathering status data from

nearby autonomous vehicles and neighboring light agents. An intelligent agent is also

designed to communicate individual status to other nearby agents. The signal agents are

designed to work together to improve traffic flow through individual intersections. With

these goals in mind, qualities of traffic signal agents can be determined to ultimately lead

to the creation of a world model for intersection improvement.

The initial control input parameter for the intelligent lights will be a fixed timing

per light signal status. These timing values in seconds consist of the common green (tG),

yellow (tY), and red (tR) light signals that are present today. The initial timing per green

light will be adjusted for different simulations to evaluate traffic flow of a common

intersection. For all simulations, the individual intersection setup consists of a one lane

input and output per direction. Directions are limited to north, south, east, and west. The

nearby light status (n) depending on which intersection it is receiving data from, will

change with time based on the status of these adjacent intersections. This variable will

only be used when multiple intersections are considered. The current light status (c) is a

dependent output from an individual light that will be considered an input to both nearby

vehicles and traffic signals. By considering the status of adjacent intersections, the status

of a current traffic signal may be adjusted for improved traffic flow.

24

3.2.3 Coupled System of Autonomous Vehicles and Intelligent Traffic Signals

The main goal is to model an intersection that connects both autonomous vehicle

and intelligent traffic signal agents. Figure 4 displays the ideal coupled system at an

individual intersection when considering both an autonomous vehicle and an intelligent

traffic signal each as an agent. Realistically, numerous nearby vehicles and traffic signals

will be in simultaneous communication. However, for simplicity, initially only the

interaction between one vehicle and light are considered.

The importance of this experiment is to ensure the autonomous vehicle agents and

intelligent traffic signal agents are working in harmony. As displayed in Figure 4,

autonomous agents can communicate approach time to an intersection when necessary.

The intelligent light can then put that autonomous car in queue and determine if a

potential light status change is necessary based on the load of vehicles currently waiting

Figure 4: Coupled Agent-Based Behavior.

25

at the light. The traffic signal will continuously gather nearby vehicle data to determine if

a light status change is necessary. Furthermore, to allow two-way communication,

intelligent traffic signals can relay light status to upcoming vehicles to ensure common

traffic laws are obeyed.

3.3 The MATLAB Model

The following section will describe the process for constructing the MATLAB model

and provide detailed explanations regarding individual code sections.

3.3.1 Modeling a Single Fixed Timing Signal Intersection

The MATLAB model has been created to run specific simulation scenarios on the

behavior of autonomous vehicles in a smart city environment. The initial model was

created to demonstrate traffic

flow at one individual

intersection. Figure 5 displays

the individual intersection model

labeled with specific directional

values for facilitated reference

throughout this section. The

direction number is based on the

input or output location relative to the center of the intersection and it is assumed that

all cars will travel on the right side of the road. The overall model is a fixed time step

iteration-based code which calculates the desired acceleration of each individual vehicle

Figure 5: Individual MATLAB Simulation Intersection.

26

for appropriate movement throughout the simulation. This model is based on the

behavior of a realistic vehicle. As time passes, drivers change positions relative to the

traveled road in the desired direction. Vehicles will continue to move throughout the

simulation until their desired destination is reached.

3.3.1.1 Important Intersection Inputs for Desired Behavior

The basic intersection was developed to allow for different input values into the

simulation. The important inputs are displayed in Table 1 which include the MATLAB

model variable name for reference, a range of potential values that can be chosen for

common intersection performance, and the units of that value.

The number of vehicles in the simulation refers to the fixed number of vehicles that

will always be active in the simulation. With a fixed number of vehicles per intersection,

the departure of one vehicle will automatically place a new vehicle at an entrance point

in the simulation. That new vehicle will have a different driver behavior compared to the

exiting vehicle. The timestep is critical as the iteration for the movement of each vehicle

is based on that specific time. Based on the given time in the table, each vehicle update

will be completed 88 times to simulate 1 second in real time. The time to run the

simulation is based on the desired length of running time in seconds. This number can be

compared with the maximum number of cars to run through the simulation. The length

of the simulation can either be based on the total number of vehicles that pass through

the intersection or the desired length of time depending on which value is reached first.

27

Table 1: Important Simulation Inputs.

Input Variable MATLAB Name Common Value Units

Overall Simulation Inputs

Number of Vehicles in
Simulation

CarsPerInt 5 – 60 -

Time of Simulation

TotalTime 30 - 300 seconds

Maximum Cars
Through Simulation

MaxCars 500 -

Timestep for Vehicle
Iterations

timestep 1/88 seconds

Individual Intersection Properties

Speed Limit

SpeedLimit 20 – 60 mph

Lane Length to
Intersection

LaneLength 400 – 1200 feet

Display Window

Window 250 feet

Light Timing Sequences

Red Light Cycle
Time

Red 0.5 – 2 seconds

Yellow Light Cycle
Time

Yellow 2 – 5 seconds

Green Light Cycle
Time

Green 10 – 60 seconds

The individual intersection properties are based on situations that may occur in

everyday life. The lane length refers to the number of feet a vehicle must travel to an

intersection center after indicating that it will be soon be arriving at that center. The lane

length value (L) is also the location where new vehicles will be placed. Figure 6 displays a

sample lane length value. The speed limit value can be chosen based on the desired

simulation. In real world scenarios, the speed limit is determined from safe traffic

28

conditions. Typically, a shorter lane length will be paired with a slower speed limit due to

cars having less distance to accelerate to higher speeds.

The light timing sequences are

important for overall intersection

performance evaluation. Based on this

simulation, the red, yellow, and green

light times make up the time in seconds

given to a specific direction per

intersection. Referring to Figure 5,

directions 1 and 3 will have

simultaneous green lights for the

given input time with 2 and 4 being held to red. The intersection behavior will then switch

allowing vehicles from directions 2 and 4 to travel through for the duration of that

common green light time. The yellow light time is generally determined by the speed

limit. A common method for evaluating the appropriate yellow light duration is by dividing

the speed limit in mph by 10. This will allow for a general approximation in seconds.

Furthermore, the appropriate red-light time can be adjusted to account for vehicles that

may arrive at the intersection slightly after their individual light changes from yellow to

red (running a red light). This will ensure vehicles in the direction perpendicular to a

previous yellow light will not proceed immediately through the intersection as some

vehicles in the opposite direction may be clearing the intersection at higher speeds.

Figure 6: Lane Length Reference.

29

Finally, the red-light time can be adjusted to lengthier times to account for scenarios

where all traffic is stopped to allow pedestrians to proceed through safely. Overall, these

scenarios are not considered in this research.

3.3.1.2 Creating Vehicles with Random Behavior and Location Placement

To ensure few prior assumptions are made that could improve data outcome,

individual vehicle behavior and initial placement in the simulation are randomized. This

section is evaluated for the number of vehicles in the intersection. The process provides

a random initial input and output direction combined with a random intensity rating per

vehicle.

To compare a realistic example of a vehicle scenario that may occur, the directions

from Figure 5 will be considered. Given directions 1 – 4, a random input direction is

initially determined with the output direction being a random value in that same range

but neglecting the previously determined input. U turns are not considered in this

scenario. From the input and output direction, it can be determined the type of turn that

will be made by the individual vehicle (ex. 1 to 4 is a right turn, 3 to 1 is straight, etc.).

Further calculations can be completed from knowing the upcoming direction desired.

The random intensity rating is important as it determines the type of individual

driver behavior. Throughout the entire driving population, there is a wide range of various

driving behaviors that are present on roads today. For simplicity, only 10 potential but

common options are considered. The intensity rating parameter determines the driver

desired speed of travel relative to the speed limit, the desired acceleration or deceleration

30

given more intense drivers tend to change velocities at a more rapid rate, and the desired

headway a vehicle traveling directly in front. Less headway time accounts for a driver

whom is more likely to tailgate. The potential intensity ratings that can be implemented

on a scale from 1 to 10 are displayed in Table 2. An intensity rating of 5 is a driver whom

is considered neither too cautious nor aggressive.

Table 2: Intensity Rating Behavior.

Intensity Rating Desired Speed (mph) Acceleration (ft/s) Headway (s)

1 Speed Limit – 4 6 3.0

2 Speed Limit – 3 7 2.8

3 Speed Limit – 2 8 2.6

4 Speed Limit – 1 9 2.4

5 Speed Limit 10 2.2

6 Speed Limit + 1 12 2.0

7 Speed Limit + 3 14 1.9

8 Speed Limit + 5 16 1.6

9 Speed Limit + 7 18 1.3

10 Speed Limit + 10 20 1.0

Individual drivers will travel at their own desired speed which may be altered due

to vehicles in front traveling at a lower speed. In this scenario, the vehicle will react to the

slower speed and adjust to the desired time behind given the intensity rating. A simple

kinematics equation is used to determine the headway of a vehicle in seconds (t) given

the distance from the upcoming vehicle (d) and the velocity of the current vehicle (v).

𝑡 =
𝑑

𝑣

(3.1)

After receiving data regarding the initial input direction of the vehicle to the

intersection and the intensity rating, a random placement in that direction is determined.

31

If no vehicles have been placed in a specific direction, a vehicle can be placed randomly

throughout a range of 200 feet from the center of the intersection to the lane length.

Finally, to ensure vehicles are not placed in similar locations, a random location placement

is found in that overall range neglecting a smaller range of ± 20 feet from an originally

placed vehicle.

3.3.1.3 Vehicle Acceleration Calculation

Updated behavior parameters calculated from the previous iteration to be used for

the current iteration include the current position (xi) and velocity (vi) of an individual

vehicle. The main objective of each iteration per car is to calculate the appropriate

acceleration given the situation. Four main types of accelerations are calculated per

iteration and the most appropriate acceleration is implemented in the final car movement

calculation. The accelerations are highlighted in Table 3 and explained in detail

throughout this section.

Table 3: Individual Iteration Acceleration Options

Distance Acceleration Maintaining an appropriate following distance behind
a car given the desired headway time.

Light Status Acceleration Determining the appropriate acceleration given no
cars ahead, the current light status, and an intent to
proceed straight through the intersection

Right Turn Acceleration Calculated instantaneous acceleration given no cars
to impede upcoming progress and a desire to make a
right turn at the upcoming intersection

Left Turn Acceleration Calculated instantaneous acceleration given no cars
to impede upcoming progress and a desire to make a
left turn at the upcoming intersection

32

Distance Acceleration

It is critical for a vehicle to have the ability to accelerate and decelerate when a

vehicle in front is present. Maintaining a safe distance is extremely important to ensure

the following vehicle can slow down appropriately to avoid contact with the vehicle in

front in an emergency stop situation. Therefore, based on the intensity rating assigned to

an individual vehicle, the headway of a car in front will be maintained based on the actions

of the preceding vehicle.

Today, many vehicles are equipped with adaptive cruise control. This technological

improvement allows the following car to maintain a safe distance from the lead vehicle

given a selected following distance. The 2018 Honda Accord has the option to select four

following distances when using this feature [Honda 2018]. This is like the intensity rating

headway feature as more aggressive drivers will tend to choose a following distance that

is closer compared to a cautious driver. Figure 7 displays the different distance/headway

selection options from the 2018 Honda Accord owner’s manual [Honda 2018]. The Accord

options are consistent with the headway values from the intensity rating.

33

Figure 7: Honda Accord Adaptive Cruise Control Options.

Headway time is used to evaluate the appropriate following distance due to

consistency given different velocities of a vehicle. From the figure, it is evident that the

following distance in meters is greater for higher speeds but the time behind remains the

same. This is due to a fixed ratio from equation 3.1. Rearranging the equation to solve for

distance (d = vt) gives the product of the instantaneous velocity and the desired headway

time to determine the appropriate following distance. The radar sensor on the vehicle can

then detect the instantaneous distance from the vehicle in front and adjust the velocity

of the vehicle to minimize the error between the ideal and actual distance.

34

This research uses the series of steps

displayed in Figure 8 to ultimately arrive at the

appropriate distance acceleration. Eventually,

if statements in the time domain are used to

calculate the appropriate acceleration per

iteration given the instantaneous headway.

The current and initial slowing down time are

first evaluated. The current time (tc) behind is

measured as described in equation 3.1 relating the distance and velocity. The initial time

(ti) is calculated as the appropriate headway time (current time) to begin slowing down

at the desired acceleration to reach the desired time behind at a similar velocity of the

preceding vehicle. For consistent units, all velocities are calculated in ft/s and

accelerations in ft/s2. The real time (teq) it takes for the behind vehicle to reach the same

speed as the front vehicle given the front vehicle velocity (vFi), the initial ideal speed of

the behind vehicle (vBideal), and the ideal acceleration of the behind vehicle (aBid) is

calculated as follows:

𝑡𝑒𝑞 =
𝑣𝐹𝑖 − 𝑣𝐵𝑖𝑑𝑒𝑎𝑙

−𝑎𝐵𝑖𝑑
 (3.2)

The final position of the front car (xFf) is then found using the front vehicle initial

position (xFi) and the time (teq) value previously calculated:

Figure 8: Distance Acceleration Process.

35

𝑥𝐹𝑓 = 𝑥𝐹𝑖 + 𝑣𝐹𝑖 ∗ 𝑡𝑒𝑞 (3.3)

The final position of the rear vehicle (xBf) is then found relative to the front vehicle

position xFf using the desired final time behind (tf) and the desired final speed which is

equivalent to the front vehicle assuming no velocity change.

𝑥𝐵𝑓 = 𝑥𝐹𝑓 − 𝑣𝐹𝑖 ∗ 𝑡𝑓 (3.4)

The real vehicle initial position for slowing down (xBi) is finally calculated.

𝑥𝐵𝑖 = 𝑥𝐵𝑓 − 𝑣𝐵𝑖𝑑𝑒𝑎𝑙 ∗ 𝑡𝑒𝑞 +
1

2
∗ 𝑎𝐵𝑖𝑑 ∗ 𝑡𝑒𝑞

2 (3.5)

The initial time behind (ti) to begin slowing down is then found by using the

quadratic formula by relating the positions between both vehicles, the initial velocity of

the rear vehicle, and the ideal acceleration.

0 = 𝑥𝐵𝑖 − 𝑥𝐹𝑖 + 𝑣𝐵𝑖𝑑𝑒𝑎𝑙 ∗ 𝑡𝑖 +
1

2
∗ 𝑎𝐵𝑖𝑑 ∗ 𝑡𝑖

2 (3.6)

Two solutions for ti will be presented after using this formula but the most

appropriate answer is selected. The error between the desired time (tf) and current time

(tci) is evaluated as well as the error between the velocity of the rear (vBi) and front car.

The equations are used in the if statement logic to determine the most appropriate

acceleration.

𝑡𝑒𝑟𝑟𝑜𝑟 = 𝑡𝑐𝑖 − 𝑡𝑓 (3.7)

𝑣𝑒𝑟𝑟𝑜𝑟 = 𝑣𝐵𝑖 − 𝑣𝐹𝑖 (3.8)

A potential acceleration (ap) value is calculated to arrive at the appropriate tf

based on relative positions between the two cars and the current velocity. This

acceleration is generally used when tci ≈ tf or tci – tci – 1 ≈ 0 but relative velocities are still

36

different. The answer will be accurate based on the final sign (acceleration > 0,

deceleration < 0),

𝑎𝑝 =
2 ∗ (𝑥𝐹𝑖 − 𝑥𝐵𝑖) − 𝑣𝐵𝑖 ∗ 𝑡𝑓

𝑡𝑓
2

(3.9)

Finally, the appropriate distance acceleration is determined. The logic to

determine the correct decision is displayed in Table 4. Previous calculations of tci are used

to understand how the relative headway time is changing between iterations. One g is

equal to gravitational acceleration (32.2 ft/s2).

Table 4: Distance Acceleration Decision Logic.

Current
< Initial

Current
> Final

Back Vel >
Front Vel

Back Vel <
Ideal Vel

Gaining
Time

Acceleration
Choice

ti – tc tci – tf vBi – vFi vBideal – vBi tci – 1 – tci Acceleration

+ + + + ± 0.0001 ap

+ + - + ± 0.0001 -ap

+ + + + + -aBid

+ + + + - -ap

+ + - + - aBid

+ ± 0.01 + + ± 0.0001 ap

+ ± 0.01 - + ± 0.0001 -ap

+ ± 0.01 + + + -aBid

+ ± 0.01 + + - -aBid

+ ± 0.01 - + - aBid

-∞ ∞ + aBid

- + + aBid

+ - + -2*aBid

+ ≈ < -0.5 + + -1g

- + ± 0.01 0

37

This acceleration is considered the distance acceleration throughout the code. It

is solely based on a vehicle in front of the currently evaluated vehicle. This acceleration is

used frequently throughout the simulation.

Light Status Acceleration

The light acceleration calculation is directly formed from the status of the

upcoming traffic signal. This light only has the option of being green, yellow, or red.

Therefore, calculations regarding the light acceleration are based on these three status.

Variables discussed in the distance acceleration section used B and F to refer to the

behind and front vehicle. New variables will neglect the capitalized letters as only

individual vehicles will be considered.

The green light acceleration calculation is extremely simple. Considering a goal to

arrive at the light without traffic conditions impeding progress, the vehicle will move at

its desired speed until it is in a certain range from the upcoming intersection. Details

regarding this range will be explained in upcoming paragraphs. Overall, for a green light

scenario, the light acceleration will only be the ideal acceleration (aid) given the vehicle is

traveling slower than its desired speed. A vehicle can travel through the light at its desired

speed without having to consider a slower pace for an upcoming turn.

The main calculation for this type of acceleration is finding the appropriate distance

from the intersection that a vehicle should begin to slow down if necessary. This

calculation is based on the number of cars between a specific vehicle and the intersection

38

(CI), the current velocity (vi), and the ideal acceleration rate (aid). A vehicle is considered

through the intersection if the front of the vehicle has entered the intersection.

The following equation is used to determine the ideal straight slow down point for

a vehicle (xS) heading towards an intersection. In this given equation, the vehicle is

traveling in the positive direction 2 (west to east) therefore, the slow down point value

will be numerically less than the center coordinate of the intersection (0,0). The fixed car

length throughout the simulation is 16 feet therefore, the constant 25 is used to

approximate a 9-foot distance between stopped vehicles waiting for a green light. The

exact coordinate point of the vehicle in direction 2 is measured from the back of the

vehicle and the limit line for the intersection entrance is at x = -12. Given the fixed ending

point of -35 ft from the back of the vehicle, the vehicle front coordinate will be -7 ft from

the entrance of the intersection. Given these initial values, the ideal deceleration point

can be calculated. Vehicles will only consider the light acceleration option if the current

position of the car (xi) is greater than point xS.

𝑥𝑆 = −35 − 25 ∗ 𝐶𝐼 −
𝑣𝑖

2

2 ∗ 𝑎𝑖𝑑

(3.10)

Situations may occur where a vehicle is determined to decide if it can proceed

through an intersection from a changed yellow light. Those scenarios will be discussed in

the following section. Only two scenarios may occur regarding a yellow light status

assuming the vehicle has not decided to proceed rapidly through the intersection. First, if

the vehicle position is of a lower value compared to location xS, it will continue to travel

39

with its current behavior until xi ≥ xS. At this point, the light acceleration will equal aid until

the vehicle has come to a complete stop. This same equation can be applied to a red light

at the upcoming intersection. The second scenario is if a vehicle has decided not to

proceed through the intersection but, has a position greater than xS. A new equation is

used to determine the appropriate acceleration regarding the straight light status (aS)

given previously discussed parameters.

𝑎𝑆 =
−𝑣𝑖

2

2(−35 − 25 ∗ 𝐶𝐼 − 𝑥𝑖)

(3.11)

Right Turn Acceleration

The right turn acceleration option is calculated assuming a vehicle wants to turn

right at the upcoming intersection. To simplify the scenario, no right turns on a red light

are allowed throughout the simulation. A vehicle may only proceed right on a green or

yellow light. A red-light scenario for this acceleration is like the previously discussed light

status acceleration.

Given a green light at the upcoming intersection with the desire to make a right

turn, the vehicle must decelerate to an appropriate velocity to avoid vehicle roll during

the turn. This turning velocity (vT) has a fixed value of 10 mph throughout the simulation

regardless of the vehicle intensity rating. For consistency, the same direction 2 will be

considered. Using similar values from the light status acceleration combined with the

turning velocity of 10 mph (14.667 ft/s) being reached at the limit line of the intersection,

the ideal right turn slowing point (xR) is calculated using equation 3.12.

40

𝑥𝑅 = −28 −
𝑣𝑖

2 − 𝑣𝑇
2

2 ∗ 𝑎𝑖𝑑

(3.12)

The same equation can also be used for a yellow light given the car can proceed

through the light with normal behavior due to no interactions with other vehicles. If this

basic scenario arises, the acceleration due to a right turn will be aR = aid.

Left Turn Acceleration

The left turn acceleration is like the right turn acceleration. The main differences

are the position where vT begins and the potential to yield to vehicles traveling in the

opposite direction. The calculation for the left turn initial starting point given ideal

acceleration (xL) is based on the front of the vehicle having traveled 8 ft into the

intersection (x = -4). To consider the exact location of the vehicle measured from the back,

the ideal arrival coordinate with the velocity reaching vT is at -20. The calculation for xL

uses the following equation:

𝑥𝐿 = −20 −
𝑣𝑖

2 − 𝑣𝑇
2

2 ∗ 𝑎𝑖𝑑

(3.13)

The same equation can also be used for a yellow light given the car is able to

proceed through the light with normal behavior due to no interactions with other vehicles

or having to rush through the intersection to beat the red light. If this basic scenario arises,

the acceleration due to a left turn will be aL = aid.

Furthermore, vehicles that intend to turn left are required to yield to oncoming

traffic traveling in the opposite direction. The criteria for a vehicle to proceed across the

oncoming traffic lane is based on the opposite vehicle ability to proceed through the

41

intersection given an immediate green to yellow light change. The calculations to

determine if a vehicle can proceed through the intersection without altering the behavior

given a sudden yellow light will be discussed in the next section.

 As previously discussed, the ideal turn speed vT of 10 mph and front of the vehicle

at x = -4 ft from the center of the intersection is the goal of a vehicle with intentions to

turn left. However, in some cases, the vehicle may need to completely stop due to

oncoming traffic in the opposite direction. The x coordinate where the vehicle will

officially begin the left turn is when the front of the vehicle reaches x = 6. This allows the

vehicle about 10 ft to perform a velocity change of -10 mph. In the event of a more rapid

stop due to a last second decision to not proceed through the oncoming traffic lane, an

acceleration is calculated for a vehicle to reduce its speed to 0 mph at a location slightly

before the front of the vehicle reaches the turning point of x = 6 (ex. x = 5) or through

measuring from the rear of the vehicle at x = -11. This equation will ensure the vehicle

reaches 0 velocity to safely wait for oncoming traffic to pass through the intersection

before completing the turn.

𝑎𝐿 =
𝑣𝑖

2

2(𝑥𝑖 + 11)

(3.14)

3.3.1.4 Through Intersection Calculations

Calculations in the previous section were based on direct positions of the vehicles

relative to the intersection and the desired final velocities. The following equations based

on the desired turn are calculated to determine if the vehicle at the current speed will

42

make it through the intersection if the light were to change immediately from green to

yellow. Considering the same direction 2, if the current xi position is greater than the

through intersection calculation position, it is highly likely the vehicle will make it through

given an immediate yellow light change. The equations are evaluated only with a green

light at the upcoming intersection. An additional value used is the yellow light time (tY).

The following equations calculate the passing position (through point) based on ideal

behavior for a straight (xPS), right (xPR), and left (xPL) turns.

𝑥𝑃𝑆 = −28 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 (3.15)

𝑥𝑃𝑅 = −22 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.16)

𝑥𝑃𝐿 = −16 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.17)

 These equations are used to determine if a vehicle will pass through the

intersection and to provide opposite direction vehicle status to confirm if a vehicle can

proceed through an unprotected left turn. If no cars in that opposite direction have

reached the through point, the yielding vehicle can proceed safely across the lanes of

traffic. Figure 9 displays a comparison between the straight (xPS), right (xPR), and left (xPL)

turns values for a vehicle with an intensity rating of 5. It is clear from the graph that a

vehicle traveling straight can be the furthest distance away from the center of the

intersection but still make the light given a potential yellow light change. This is because

no deceleration is required for a vehicle proceeding straight assuming no nearby vehicles

are impeding the progress. Vehicles turning left and right are required to slow down to

complete the turn safely.

43

Figure 9: Distance from Intersection to Likely Proceed Through Based on Desired Turn.

3.3.1.5 Yellow Light Decision Logic

In realistic scenarios, drivers are required to make split second decisions when a

nearby upcoming light immediately becomes yellow. To improve the decision making of

an individual vehicle, calculations are performed using the instantaneous vehicle position,

velocity, desired acceleration, and the fixed yellow light time. There are three main

decision options for a vehicle. These options are briefly displayed in Table 5 and will be

explained in detail throughout this section.

Table 5: Yellow Light Decision Options.

Vehicle Options Options Description

Sustained
Behavior

The vehicle will maintain its original behavior as if there was no
yellow light update.

Boosted Behavior Based on the upcoming turn, the vehicle will accelerate or
decelerate more rapidly than normal to avoid running the red
light.

Missed Light The vehicle will slow down behind the limit line due to no
possibility of proceeding through safely and legally.

44

Sustained Behavior

A vehicle will sustain its initial plan upon making this decision. This decision is

based on the vehicle being close enough to the upcoming intersection that it can travel

through with ease. The following calculations detail the logic for this decision based on

post intersection behavior.

For a vehicle proceeding straight, a common kinematics equation is used to

determine if the vehicle will clear the intersection based on the current velocity and

distance from the limit line. All calculations assume the car is traveling from direction 2

west to east and the absolute position of the vehicle is measured from the rear. If the

vehicle position is greater than this calculated value, the vehicle can proceed through by

maintaining this current speed. The equation to determine the minimum position relative

to the intersection for proceeding straight at normal behavior (xSS) is as follows:

𝑥𝑆𝑆 = −28 − 𝑣𝑖 ∗ 𝑡𝑌 (3.18)

The calculations considering a vehicle making a right or left turn at an intersection

are different for the necessity of slowing down. The decision logic is similar when turning

with the only exception being the numerical target line approach for the appropriate

turning velocity therefore, only the right turn scenario will be discussed in detail.

The main criteria to determine if a vehicle can maintain its current path upon

encountering a yellow light is its ability to reduce speed to make a safe turn in the time it

takes for the light to turn red. Therefore, a timing calculation (t1) is required based on the

45

initial velocity, the desired turning speed (10 mph), and the desired deceleration rate

from the initial intensity rating.

𝑡1 =
𝑣𝑖 − 𝑣𝑇

𝑎𝑖𝑑
 (3.19)

This time is then evaluated against the fixed yellow light time at that intersection.

This time value is required to be less than the yellow light time or the vehicle cannot

realistically complete the maneuver. This evaluation will determine how much extra time

is available (t1e) when relating the yellow light time. A positive answer is required to

continue with the procedure.

𝑡1𝑒 = 𝑡𝑌 − 𝑡1, 𝑡1𝑒 ≥ 0 (3.20)

With a positive evaluation of variable t1e, the minimum position of the vehicle

relative to the intersection can now be calculated. The current velocity, desired

acceleration, and yellow light time are used. With direction 2 being the input, the current

position of the vehicle must be greater than the calculated position to maintain the

current vehicle behavior through the intersection. The calculated position to sustain

behavior (xSR) for a right turn is as follows:

𝑥𝑆𝑅 = −28 − 𝑣𝑖 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡1

2 (3.21)

In this equation, the velocity term uses the light time as a timing reference while

the acceleration term uses the t1 term calculated previously. This is to allow a further

maximum distance from the intersection due to the shorter amount of time it will take to

slow down. If a vehicle required more overall time to slow down to the turning speed vT,

46

the allowable minimum distance to the intersection would be smaller as the vehicle would

be traveling at a slower speed throughout a longer duration of the deceleration process.

This equation indicates that if the current position of the vehicle was perfectly at the

minimum position to proceed through the light (xi = xSR), the vehicle would decelerate

throughout the total length of the yellow light barely proceeding through to avoid running

the red light. If the yellow light time is greater than the time taken to slow down to the

turn speed t1e > 0, the vehicle could travel at its initial velocity for the length of time t1e

and begin the deceleration at a specific position related to the distance required to

change velocities based on the desired deceleration rate. This specific decision point (xSD)

for the sustained behavior is calculated using the following equation.

𝑥𝑆𝐷 = −28 −
𝑣𝑖

2 − 𝑣𝑇
2

2 ∗ 𝑎𝑖𝑑

(3.22)

For a vehicle making a right turn, this position is directly related to variable xR which

also determines the point at which the vehicle begins to decelerate given the desired

deceleration rate. The initial time evaluation t1e ≥ 0 simply checks that this maneuver can

be completed in an appropriate amount of time. The distance equations and process for

a left turn are like the right with an adjustment solely based on the final position relative

to the intersections. The equations are shown below.

𝑥𝑆𝐿 = −16 − 𝑣𝑖 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡1

2 (3.23)

𝑥𝑆𝐷 = −16 −
𝑣𝑖

2 − 𝑣𝑇
2

2 ∗ 𝑎𝑖𝑑

(3.24)

47

Boosted Behavior

If the yellow light time is shorter than the required time for the vehicle to

decelerate to the turning speed t1e < 0 or if the current location of the vehicle is less than

the minimum distance to the intersection assuming direction 2 and a right turn scenario

(xi < xSR), the boosted acceleration/deceleration option is considered. A common driver

determined to proceed through the intersection upon encountering a yellow light

generally will perform a more rapid maneuver. To simulate this scenario, a boosted

behavior for a vehicle proceeding straight will be explained first.

The minimum position for a vehicle proceeding straight is based on the initial

velocity of a vehicle and the ideal acceleration. Generally, a vehicles acceleration ability

is lower at higher speeds due to a decreased amount of torque. To account for this

mechanical disadvantage, half of the ideal acceleration will be applied. The equation to

determine the minimum position value for a vehicle to proceed straight through the

intersection with a boosted acceleration is as follows:

𝑥𝐵𝑆 = −28 − 𝑣𝑖 ∗ 𝑡𝑌 −
1

4
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.25)

 If the vehicle position is greater than this boosted value calculation but less than

the maintained position value, (xBS ≤ xi ≤ xSS), an acceleration half of the ideal value will be

applied to the vehicle until it clears the intersection.

 Furthermore, the boosted behavior for a turning vehicle must be considered.

Similar to the maintained vehicle behavior, the right and left turning values have a similar

process therefore, only the right turn process will be described. The main addition to the

48

upgraded driving intensity is the ability to decelerate at a more rapid rate than normal.

Given a typical driver deceleration rate based on the intensity rating, the improved rate

is 3 ft/s2 faster than the initial. This allows for more time at higher speeds and for a quicker

velocity change reducing to the appropriate turn speed.

Similar to the maintained behavior, a timing calculation (t2) is required to

determine how long it takes for a vehicle to reduce its current speed to the desired turning

speed (10 mph). The equation is as follows:

𝑡2 =
𝑣𝑖 − 𝑣𝑇

𝑎𝑖𝑑 + 3
 (3.26)

In the boosted calculation, the velocity difference is the same however, the

deceleration is numerically 3 more ft/s2 than the ideal. This new time value can be

compared to the yellow light signal time.

𝑡2𝑒 = 𝑡𝑌 − 𝑡2, 𝑡2𝑒 ≥ 0 (3.27)

The numerical value t2e must also be smaller than tY to avoid proceeding through

the intersection on a red light. With a positive evaluation of variable t2e, the minimum

position of the vehicle relative to the intersection to make the light can now be calculated.

Referencing direction 2, the current position must be greater than the calculated decision

position to allow opportunity for the improved deceleration through the intersection. The

calculation to determine the minimum location (xBR) for a boosted right turn is as follows:

𝑥𝐵𝑅 = −28 − 𝑣𝑖 ∗ 𝑡𝑌 +
1

2
∗ (𝑎𝑖𝑑 + 3) ∗ 𝑡2

2 (3.28)

49

If xSR ≥ xi ≥ xBR, and t2e ≥ 0, the vehicle will perform the boosted deceleration

maneuver. Due to a quicker deceleration process that requires less time to complete, the

vehicle can maintain the higher initial speed for a longer duration of time. This will

ultimately allow for a further minimum point compared to the sustained behavior option.

Finally, given a more rapid deceleration rate, a calculation to determine the

location where the decision is made to begin slowing down (xBD) is carried out.

𝑥𝐵𝐷 = −28 −
𝑣𝑖

2 − 𝑣𝑇
2

2 ∗ (𝑎𝑖𝑑 + 3)

(3.29)

The vehicle will initially maintain speed (vi) until the rear part of the car reaches

coordinate xBD. The improved deceleration rate will then be implemented to reduce the

initial velocity down to the safe turning speed.

 The equations for making a boosted left turn are like that of a right. They are listed

as the following:

𝑥𝐵𝐿 = −16 − 𝑣𝑖 ∗ 𝑡𝑌 +
1

2
∗ (𝑎𝑖𝑑 + 3) ∗ 𝑡2

2 (3.30)

𝑥𝐵𝐷 = −16 −
𝑣𝑖

2 − 𝑣𝑇
2

2 ∗ (𝑎𝑖𝑑 + 3)

(3.31)

Missed Light

 If neither the sustained nor boosted behavior can be implemented based on the

distance from the intersection or from the lengthy time required to slow down, the

vehicle will miss the light and be prohibited from proceeding through the intersection. At

this stage, the vehicle will perform the previously discussed light deceleration process to

ultimately arrive at stopping point xS which is determined by the number of vehicles in

50

front. The overall criteria for the yellow light decision logic regarding the 3 options is

displayed in Table 6.

Table 6: Yellow Light Decision Logic.

 Straight Right Left

Sustained xi ≥ xSS xi ≥ xSR xi ≥ xSL

Boosted xSS ˃ xi ≥ xBS xSR ˃ xi ≥ xBR xSL ˃ xi ≥ xBL

Missed xi ˂ xBS xi ˂ xBR xi ˂ xBL

3.3.1.6 Vehicle Acceleration Decision and Instantaneous Behavior Update

After calculating all potential acceleration options of a vehicle, the most

appropriate decision can be made given the circumstances. This logic is the main

evaluation for an autonomous agent. The agent will continue to travel at its desired

behavior (vi = vid, ai = 0) until it either recognizes an upcoming autonomous agent or if it

is approaching an upcoming traffic signal.

 Overall in any scenario, if a vehicle is following another, it will always yield

appropriately based on the headway. This is a specific type of interaction with another

agent. This detail is fixed due to only one lane of traffic per direction. Until a front vehicle

is removed from that direction through a different turning agenda, an autonomous agent

will continue to follow at the fixed headway value.

Alternative scenarios include yielding to the environment which considers

upcoming turns or engaging yellow and red lights. While referencing direction 2, the

ultimate acceleration decision per vehicle based on the current scenario is displayed in

Table 7. The criteria for the decision is based on the current time behind a

51

Table 7: Appropriate Acceleration Decision.

Headway
Time

Vehicle
Position

Vehicle
Velocity

Light Status Vehicle
Output

Acceleration
Decision

tc ≈ tf xi ≥ xd vi < vid G/Y/R S/R/L -

Light Status and Vehicle Output Direction Not Considered

True True True - - Distance

True False True - - Distance

True False False - - Distance

False False False - - Distance

False False True - - Distance

Green Light Scenarios

False True False Green Straight Distance

False True False Green Right Right

False True False Green Left Left

False True True Green Straight Distance

False True True Green Right Right

False True True Green Left Left

Yellow Light Scenarios

False True False Yellow Straight Light

False True False Yellow Right Right

False True False Yellow Left Left

False True True Yellow Straight Light

False True True Yellow Right Right

False True True Yellow Left Left

Red Light Scenarios

False True False Red Straight Light

False True False Red Right Light

False True False Red Left Light

False True True Red Straight Light

False True True Red Right Light

False True True Red Left Light

vehicle (tc), current vehicle speed (vi), current vehicle position (xi), vehicle output (O), and

the upcoming light status (c). For simplicity, (xd) will be the variable related to the point

at which a vehicle will begin interacting with the upcoming intersection regardless of the

desired directional output. The light status table abbreviation considers G/Y/R as Green,

52

Yellow, and Red. The vehicle output table abbreviation S/R/L refers to Straight, Right, and

Left turns. The acceleration options are referred to as distance acceleration (Distance),

Straight Light Status Acceleration (Light), Right Turn Acceleration (Right), Left Turn

Acceleration (Left). At this stage of the MATLAB code, all numerical values have already

been calculated based on the previous equations. The logic here is to identify the most

appropriate acceleration choice.

After determining the appropriate acceleration (ai) for the current iteration, given

known input position (xi) and velocity (vi) parameters, kinematic equations can be used

to determine the new position (xi+1) and velocity (vi+1). The kinematic equations are

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖 ∗ 𝑡 +
1

2
∗ 𝑎𝑖 ∗ 𝑡2 (3.32)

𝑣𝑖+1 = 𝑣𝑖 + 𝑎𝑖 ∗ 𝑡 (3.33)

where the timestep (t) is equal to 1/88 seconds for this simulation. These newly calculated

position and velocity values are used for the same vehicle in the next iteration and the

entire process beginning at section 3.3.1.3 is repeated.

3.3.2 Intersection Grid with Fixed Timing Signals

Upon completion of the basic intersection model, individual intersections are then

connected to create a city environment. The initial evaluation of traffic flow through the

intersection is evaluated using fixed timing signals. This objective is critical for

understanding the status and behavior of previously constructed intersection or city

models. Once the behavior of a basic city environment can be evaluated, approaches to

53

improve the efficiency of these models while ensuring a safer environment for the

transportation infrastructure can be determined.

3.3.2.1 Background Evaluation of Basic City Intersection Behavior

Initially, basic intersection modeling was carried out. A simple intersection model

has been created with vehicles passing through the intersection based on light status.

Next, the basic intersection model was scaled to simulate a city environment with fixed

timing signals. This is important so the efficiency of the grid setup and an average vehicle

time through individual intersections can be calculated. Overall, these parameters will be

calculated given fixed green light signal times to establish a baseline for improvement in

each city grid scenario.

3.3.2.2 Additional MATLAB Modeling for Connected Intersections

The initial MATLAB

code was created to simulate

vehicles traveling through one

specific intersection. To

consider a city scenario,

individual intersections are

placed in new locations

throughout a mapped area with one

lane road transitions connecting each adjacent intersection. An example of a 2x3

intersection setup is shown in Figure 10. The center of each individual intersection was

Figure 10: 2 x 3 Intersection Grid.

54

placed at a specific (xI, yI) coordinate on the map based on the lane length (L) of the

intersection, the intersection grid row (R) count and intersection column (C) count.

Furthermore, the intersection number (I) is established as well as the direction (d) per

intersection. The single intersection 1 used direction numbers 1 – 4 to establish north,

south, east, and west surrounding the intersection; intersection 2 will possess directions

5 – 8. This numbering process will continue for the total amount of intersections in the

grid (N = R*C).

The center location of the individual intersection is based on the lane length (L). In

Figure 10, L = 800 ft. Due to the intersections all possessing the same length, the location

of each intersection center must be exactly L*2 ft away from an adjacent intersection to

represent a square setup. The grid setup in Figure 10 is not displayed to scale.

The iteration process per vehicle is very similar compared to the single intersection

acceleration determination process. The main difference is the overall location evaluation

per vehicle. Individual calculations regarding position are all based on the center location

of the intersection. For example, the through intersection equations from section 3.3.1.4

now include an additional xI center location term. Furthermore, the specific direction

number 2 from the individual intersection cannot always be referenced however, the

west direction relative to an individual intersection will still be considered. The new

through intersection evaluation equations are listed as

𝑥𝑃𝑆 = 𝑥𝐼 − 28 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 (3.34)

55

𝑥𝑃𝑅 = 𝑥𝐼 − 22 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.35)

𝑥𝑃𝐿 = 𝑥𝐼 − 16 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.36)

which still directly relate to the individual intersection equations. All equations from

section 3.3.1 can be used for any direction west of an intersection given the center x

coordinate. This consistency highlights the scalable ability of the individual intersection

to a grid city model.

3.3.2.3 Evaluation of Fixed Timing Intersection Performance

The initial evaluation of intersection performance will begin by modeling a select

few basic intersection networks to build a framework for the experiment. To evaluate the

performance of this intersection, we will consider the average time for each car to

proceed through an intersection. Individual vehicle timing can be evaluated using the

actual simulation start time (ts) of the vehicle when it is located at the beginning of the

intersection and the final intersection departure time (td). The actual time through the

simulation (ta) can be found using the equation

𝑡𝑎 = 𝑡𝑑 − 𝑡𝑠 (3.37)

To compare the quality of this value, we can study how long it may take for each

individual car to pass through based on the typical behavior of that driver (desired speed,

following time, desired acceleration). We can determine the time it would take for an

individual driver to pass through this intersection given a green light and no other cars to

impede the progress. This calculation will be used as an ideal time (tid) scenario per car.

56

The ideal time is based on the output direction relative to the input direction.

Given different output directions of straight, right, or left, the following three equations

for the ideal time (tid) can be determined.

𝑡𝑖𝑑𝑆 =
2𝐿

𝑣𝑖𝑑

(3.38)

The right and left turn equations require more detail regarding deceleration and

acceleration time as it is necessary to slow down to complete a turn safely.

𝑡𝑖𝑑𝑅 = 2 [
−28 − 𝑣𝑖𝑑 (

𝑣𝑖𝑑 − 𝑣𝑇
𝑎𝑖𝑑

) + 1
2
(𝑎𝑖𝑑) (

𝑣𝑖𝑑 − 𝑣𝑇
𝑎𝑖𝑑

)
2

+ 𝐿

𝑣𝑖𝑑
] + 2 (

𝑣𝑖𝑑 − 𝑣𝑇

𝑎𝑖𝑑
) +

6

𝑣𝑇

(3.39)

𝑡𝑖𝑑𝐿 = 2 [
−20 − 𝑣𝑖𝑑 (

𝑣𝑖𝑑 − 𝑣𝑇
𝑎𝑖𝑑

) + 1
2
(𝑎𝑖𝑑) (

𝑣𝑖𝑑 − 𝑣𝑇
𝑎𝑖𝑑

)
2

+ 𝐿

𝑣𝑖𝑑
] + 2 (

𝑣𝑖𝑑 − 𝑣𝑇

𝑎𝑖𝑑
) +

10

𝑣𝑇

(3.40)

Eventually, an overall real average time per car is evaluated to determine the efficiency

of the intersection given the average ideal calculation.

Given details from the MATLAB model from a fixed timing intersection, there is

room for improvement. Autonomous vehicles are moving in a positive direction

possessing new vehicle recognition and 5g technology. This creates the ability for vehicles

to communicate. Building on this initial model and improving intersection performance

by light and vehicle communication is a challenging problem. These initial basic steps will

help determine the best approach for intersection evaluation.

57

3.3.3 Implementing Coordinated Traffic Signals

After evaluating and modeling multiple basic intersections, agents will be

introduced in traffic signals. As previously stated, an agent is an autonomous decision

maker whose decision making is determined internally but may be altered by interactions

with the environment or other agents. Therefore, to ensure a proper functioning network,

individual traffic signal agents will have their own internal behavior function and will

gather data from nearby intelligent intersections to build and improve the model from

section 3.3.2. These coordinated traffic signals communicate light status to optimize

traffic flow for safety and resilience improvement for the transportation network.

3.3.3.1 Additional MATLAB Modeling for Coordinated Intelligent Traffic Signals

Given the basic intersection model for city grid scenarios, intelligent traffic signals

are now implemented. Nearby intersections view the status of adjacent intersections and

adapt their own status based on average time for a vehicle to travel between

intersections. The average time for a vehicle to travel between intersections (tb) is

𝑡𝑏 =
2𝐿

𝑆

(3.41)

where L is the lane length and S is the speed limit. This is the approximated time a vehicle

will take to travel from the center of one intersection to another. Given fixed values of L

= 800 and S = 40 mph (58.6667 ft/s) for all simulations run, the average vehicle time

between intersection tb = 27.27s. This calculation considers vehicles traveling at the full

speed limit throughout the transition. Realistically, a range of drivers will travel above and

58

below this value however, this is used as a reasonable approximation for this scenario.

This value is used to initialize the adjacent intersection green light countdown.

In this example, the 2 x 3

intersection setup will be used.

Figure 11 displays a sampled

view of the coordinated traffic

signal intersection setup. All

traffic is initially routed to pass

through each intersection in

the north and south directions

(Figure 10). Note the intersection numbers displayed in Figure 11. For this coordinated

traffic scenario, intersection 1 has the leading fixed signal. This intersection behaves

similarly to the fixed timing lights from section 3.3.2 based on the maximum green light

time. All other intersections in this simulation will adapt to the nearby intersections

relative to the west or north depending on location.

Based on the overall mapping, the direction of coordinated traffic flow will be in

the southeast direction. Intersections 2 and 4 are informed when intersection 1 changes

state to a yellow light and will immediately start a countdown for their individual light

change generally based on the average time for a vehicle to travel between intersections

(tb = 27.27s). Referring to the display in Figure 11, intersection 1 has already allowed

traffic to pass through in the east and west directions while the north and south traffic is

Figure 11: Coordinated Intelligent Intersection Setup.

59

held at a red light. Intersections 2 and 4 have switched to a yellow light which has started

a countdown for intersections 3 and 5 to adjust to their yellow light. Figure 12 shows the

coordinated logic for a 2x3 intersection example.

3.3.3.2 Coordinated Traffic Signals

Overall, various maximum green light times

were run to simulate alternative traffic scenarios. To

coordinate traffic appropriately, the intersections

receive the instant yellow light change and create a

countdown for their individual light change based on

either the maximum green light time (tG) or the

average time for a vehicle to travel between

intersections (tb). The appropriate choice is

determined by which numerical value is smaller.

Figure 13 displays a section of the Traffic Light matrix from the MATLAB code which

displays the light number, the status of the light, the countdown of that specific light

Figure 12: Coordinated Traffic Signal Logic.

Figure 13: Individual Traffic Signal Status.

60

status, and the intersection at which the light is placed. For the status, green = 2, yellow

= 1, and red = 0. For reference, the individual intersection setup in Figure 5 can be directly

labeled as intersection 1. Intersections 2 – 6 contain the same relative direction numbers

as intersection 1. The traffic light status in Figure 13 can be directly related to the visual

light status representation in Figure 11. An equation relating light status countdown from

coordinated intersections (3 coordinate from 2) is important to consider.

𝑡𝑌 − 𝑇5 = 𝑡𝐺 − 𝑇9 (3.42)

From Figure 13, given a yellow light time of 4 seconds (tY = 4) and a maximum green

light time of 10 seconds (tG = 10), it can be observed that intersection 2, which contains

lights 5 and 7 has communicated information to intersections 3 (lights 9 and 11) and 5

about the recent light status change from green to yellow (0.5 seconds have passed since

the light change). Therefore, the simulation logic is accurate as the countdown time that

has passed in intersections 3 and 5 is exactly 0.5 seconds less than the maximum green

light time. This logic is repeated for the duration of the simulation and the average vehicle

time through individual intersections is evaluated.

3.3.4 Implementing Adaptive Traffic Signals

Finally, autonomous vehicles will be implemented into the current coordinated

traffic signal environment through vehicle recognition ability. This will give lights at an

intersection the ability to change status according to the number of vehicles waiting in a

red-light direction. This ability will ultimately improve traffic flow through individual

61

intersections as individual light countdowns may be altered due to a potential higher level

of traffic in that specific direction.

3.3.4.1 Additional MATLAB Modeling for Adaptive Traffic Signals

The main addition to the MATLAB model is the ability for a traffic light to recognize

the level of vehicles waiting in a specific direction at the intersection. This is referred to

as the queue (Q) of the light. For each experiment, the queue of each individual

intersection throughout the overall simulation is a fixed value. Each intersection will add

up the number of vehicles waiting in the red light direction and when the current queue

value reaches the maximum (Q ≥ Qmax) set in the simulation, a new countdown for the

green light direction may be applied.

 Overall, the intelligent coordinated traffic signal environment is still implemented.

However, the status may be altered due to a large queue. For consistency, the basic

intersection directions from Figure 5 will be referenced in this scenario. If directions 1 and

3 (north and south) currently display a green light, directions 2 and 4 (east and west) will

display red to avoid intersection collisions. As the countdown to a yellow light continues,

traffic from the direction with a red light will build up. A car will be officially added to the

queue count when it is completely stopped at the intersection (vi = 0) while waiting for

the light to change. When the Qmax value is reached in either direction 2 or 4, a calculation

to determine the amount of time it will take for the furthest vehicle in a green light

direction (1 or 3) to reach the intersection (tv) is carried out.

62

 Initially, the code determines the furthest vehicle in each direction from the

intersection that is within the lane length range. A situation may occur where no

upcoming vehicles are present in the green light directions. In this scenario, the green

light countdown will automatically be reduced to 1. This will ensure the vehicles in the

red-light direction are not waiting more time when no traffic is present for a green light.

The time each vehicle will take to reach the intersection in each direction (tv1 and

tv3) will be evaluated. For simplicity, only the evaluation for direction 1 will be explained.

First, a calculation is completed to determine the minimum distance the individual vehicle

can be from the intersection to make it through given ideal behavior in the event of an

immediate change to a yellow light. These calculations are the same compared to the

through intersection calculations in section 3.3.1.4. They are shown here again as

equations 3.15, 3.16, and 3.17 and are based on the desired output direction straight (xPS),

right (xPR), or left(xPL).

𝑥𝑃𝑆 = −28 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 (3.15)

𝑥𝑃𝑅 = −22 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.16)

𝑥𝑃𝐿 = −16 − 𝑣𝑖𝑑 ∗ 𝑡𝑌 +
1

2
∗ 𝑎𝑖𝑑 ∗ 𝑡𝑌

2 (3.17)

Next a calculation is completed to determine how long it will take the vehicle to

reach this specific point. Realistically, depending on the true output direction of the

vehicle, any of the three above equations could be used. For this scenario, the displayed

calculation assumes the upcoming vehicle will make a right turn therefore, variable (xPR)

will be used. The time for the vehicle in direction 1 (tv1) is calculated as

63

𝑡𝑣1 =
𝑥𝑃𝑅 − 𝑥1𝑖

𝑣1𝑖
 (3.43)

given current vehicle speed (v1i) and position(x1i).

 A comparison for calculated values tv1 and tv3 is completed. The greater value will

be used as the ultimate tv value which is then compared to the light countdown. In this

scenario, tv1 > tv3 is assumed therefore, tv = tv1. The individual light countdown in direction

one (T1) is then compared to the calculated value tv. If tv < T1, the new countdown value

will be tv. This will allow all vehicles in each green light direction to proceed through the

light and ensures that once this happens, vehicles in the red-light direction will not have

to wait unnecessarily. Alternatively, if tv > T1, the light will continue its normal countdown

(T1) to keep traffic continuously moving. In this research, no additional time will be given

to a green light countdown.

3.4 Simulation Goals of the MATLAB Model

The MATLAB code can run simulations regarding either the fixed, coordinated, or

adaptive timing signal network. Furthermore, based on details explained throughout

chapter 3, a variety of inputs can be adjusted to vary the intersection simulation (car load,

intersection grid setup, etc.) These varying parameters allow a user to determine how

efficient an intersection may be based on the input details and the signal performance

choice. The overall evaluation and explanation regarding the performance difference of

each scenario will be explained throughout chapter 4. The appendix contains the main

MATLAB code for an adaptive traffic signal setup.

64

4. Simulation Results

To determine if this adaptive approach improves intersection performance in city

environments, evaluations per car will be completed. These evaluations will be completed

by comparing overall distance traveled through the entirety of the intersection and time

it takes to reach the destination from the initial starting point. Evaluations were initially

completed from the fixed timing intersection model to establish a baseline and to confirm

there is potential for improvement. The evaluations of the fixed timing signal are

compared to the coordinated signal setup as well as the adaptive signal setup.

Comparison criteria will be the intersection grid setup, the number of vehicles in the

setup, and the queue count for the various adaptive signal options.

4.1 Fixed Timing Evaluation Results

Timing is the most important factor that will be considered during this evaluation.

Performance will be evaluated for overall time through intersections. The key factor in

this research is

reducing wait times

at intersections

(stopped delay).

Figure 14 displays

the fixed timing

intersection sequence in two phases given a 2x2 intersection setup. Due to the fixed

Figure 14: 2x2 Fixed Timing Signal Sequence

65

timing evaluation, the only varying parameters are the intersection setup, the number of

vehicles on the road, and the maximum green light time. The main comparisons are the

intersection setup and the number of vehicles present on the road. The green light time

varies and average traffic flow time and overall efficiency through an intersection is

evaluated. The maximum green light ranges from a time of 10 – 50 seconds and the

number of vehicles on the road per intersection ranges from 5 – 60 cars. The intersection

setups evaluated for the fixed timing signal are 1x1, 2x2, 2x3, and 3x3.

4.1.1 1x1 Intersection Setup

The initial baseline evaluation was determined from a single intersection with

varied light times and number of vehicles on the road. The graphs represent the varying

number of vehicles comparing the average amount of time it takes for one vehicle to

Figure 15: Fixed Timing, 5 Vehicles Figure 16: Fixed Timing, 10 Vehicles

proceed through the intersection based on the initial input direction and final output

direction. As shown through the display of the graphs, the average time for a vehicle to

proceed through the intersection is much larger with a higher number of vehicles on the

66

road. The average vehicle travel time

generally takes longer given the maximum

green light time. However, few cases are

the opposite with more traffic on the road

due to it being more efficient to allow more

vehicles through in one cycle. This is like a

scenario where an intersection signal on a

Figure 18: Fixed Timing, 40 Vehicles Figure 19: Fixed Timing, 60 Vehicles

main road has broken down resulting in a 4 way stop. Traffic flow through an intersection

in this scenario typically is slower therefore, the 10 second light results given a large

amount of traffic can be compared.

 Efficiencies per scenario are also compared. To maintain consistency for

minimizing parameters, the inefficiency will be measured and displayed using the

following equation:

𝐼𝑒𝑓𝑓 = 1 − %𝐸 = (1 −
𝑡𝑖𝑑

𝑡𝑎
)

(4.1)

Figure 17: Fixed Timing, 20 Vehicles

67

where tid is the average ideal time and ta is the average actual time for a vehicle to proceed

through the intersection.

 Figure 20: Inefficiency Fixed Timing, 5 Vehicles Figure 21: Inefficiency Fixed Timing, 10 Vehicles

 Figure 22: Inefficiency Fixed Timing, 20 Vehicles Figure 23: Inefficiency Fixed Timing, 40 Vehicles

For an individual fixed timing signal, based

on the figures displayed on this page, it is

evident the inefficiency of the intersection

rises based on the overall traffic level. This

was the baseline data recorded and efforts

to improve the efficiency of the intersection

were completed to prove that an adaptive intersection can be beneficial to the

transportation infrastructure.

Figure 24: Inefficiency Fixed Timing, 60 Vehicles

68

4.1.2 2x2 Intersection Setup

To compare all evaluation results, the 2x2 intersection will be used. From the timing

evaluation sequence displayed in Figure 14, the following data regarding the average

vehicle time through the intersection and the inefficiency is evaluated. Like the 1x1

intersection setup, the overall goal is to minimize both parameters. The minimization of

these parameters will demonstrate an improvement in intersection performance. The 2x2

fixed performance evaluation is the base level to improve the network.

Figure 25: Average Time, Fixed, 5 Vehicles Figure 26: Average Time, Fixed, 10 Vehicles

Figure 27: Average Time, Fixed, 20 Vehicles Figure 28: Average Time, Fixed, 40 Vehicles

69

The 2x2 intersection grid setup behaves

similarly to the 1x1 setup. Overall, the

average time it takes for one vehicle to

proceed through the light increases as

there is more traffic on the road. Similarly,

the scenario with 60 vehicles on the road

creates a nonlinear situation where the longer green light creates average shorter vehicle

times through the intersection. However, the general trend is consistent in allowing more

traffic through per cycle like the 1x1 intersection.

The inefficiency scenarios are also consistent with the 1x1 as the

efficiency/inefficiency is directly related to the actual vehicle time through the

intersection. Given these baseline parameters, the improved traffic signals will be

improved and compared.

Figure 30: Inefficiency, Fixed, 5 Vehicles Figure 31: Inefficiency, Fixed, 10 Vehicles

Figure 29: Average Time, Fixed, 60 Vehicles

70

Figure 32: Inefficiency, Fixed, 20 Vehicles Figure 33: Inefficiency, Fixed, 40 Vehicles

Figure 34: Inefficiency, Fixed, 60 Vehicles

4.1.3 Overall Fixed Timing Results

The overall details for the basic intersection setup regarding the numerical details

per intersection are displayed in Table 8. The detailed comparisons show the difference

in vehicle time through each intersection based on the vehicle load, the green light times

per direction, and the intersection setup. It is evident that the intersection setup does not

increase the average time per vehicle. It is overall based on the longer light time as well

as the increased number of vehicles on the road.

71

Table 8: Fixed Signal Timing Results

2x2 Intersection

 Average Vehicle Time (s) Inefficiency

 Maximum Green Light Maximum Green Light

Cars 10 20 30 40 50 10 20 30 40 50

5 35.2 37.1 38.2 40.3 45.1 0.20 0.24 0.25 0.30 0.37

10 36.4 38.0 39.6 41.2 45.2 0.23 0.25 0.28 0.31 0.37

20 40.4 40.4 43.5 46.1 48.4 0.29 0.29 0.35 0.38 0.41

40 56.1 56.7 61.6 64.6 66.0 0.50 0.50 0.54 0.56 0.57

60 70.1 55.0 66.3 59.2 65.2 0.59 0.48 0.57 0.52 0.56

2x3 Intersection

 Average Vehicle Time (s) Inefficiency

Cars 10 20 30 40 50 10 20 30 40 50

5 35.8 38.1 36.6 40.0 44.6 0.20 0.26 0.23 0.28 0.36

10 36.5 37.4 39.5 39.9 44.2 0.22 0.24 0.27 0.29 0.36

20 40.8 40.5 43.8 45.1 47.6 0.30 0.29 0.34 0.37 0.40

40 54.4 52.7 53.8 55.4 58.4 0.48 0.45 0.47 0.48 0.51

60 70.3 67.8 59.0 62.8 71.3 0.59 0.58 0.51 0.55 0.60

3x3 Intersection

 Average Vehicle Time (s) Inefficiency

Cars 10 20 30 40 50 10 20 30 40 50

5 35.9 36.3 37.8 39.4 44.6 0.20 0.22 0.25 0.28 0.36

10 36.6 35.9 39.1 40.9 43.9 0.24 0.20 0.27 0.30 0.35

20 39.5 39.9 44.1 43.7 47.6 0.28 0.29 0.36 0.35 0.41

40 52.5 49.6 54.3 54.1 53.0 0.46 0.43 0.47 0.47 0.46

60 67.6 62.5 59.9 62.6 63.4 0.58 0.54 0.53 0.54 0.55

Graphs to summarize the data can be viewed in Figure 35, Figure 36, and Figure 37. Trends

generally show that increasing the signal timing and the number of vehicles on the road

will yield longer times through the intersection. 60 vehicles on the road has unique trends

most likely based on the number of vehicles at an individual intersection. It can be seen

though that longer green light times are more beneficial for a larger vehicle count.

72

Figure 35: Average Vehicle Time for 2x2 Intersection, Fixed Signal

Figure 36: Average Vehicle Time for 2x3 Intersection, Fixed Signal

73

Figure 37: Average Vehicle Time for 3x3 Intersection, Fixed Signal

4.2 Coordinated Signal Evaluation Results

The coordinated traffic

signal is the first step for

improving the intersection

performance. As discussed

in chapter 3, the nearby

light sequences are now

adaptable based on nearby

intersection signal changes

which includes rudimentary

I2I communication. A Figure 38: Coordinated Signal Light Sequence

74

representation of this light sequence in ongoing phases for a 2x2 intersection is displayed

in Figure 38. The exact phase changes may not be represented by the exact figure but

overall, the upper left intersection will change first to allow the opposite directional traffic

to flow. The next phase includes the adjacent intersections compared to the initial. Finally,

the bottom right intersection will adjust the direction. Other situations could occur where

the initial intersection may change back to allow north and south traffic to flow before

the last intersection has the option for a change. This ultimately will depend on the

maximum green light time.

4.2.1 Graphic Displays of Coordinated Light Sequence

The data displayed for each graph will also be for a 2x2 intersection grid setup for

consistency. More traffic creates an overall longer wait time. However, the wait times are

more consistent given the longer green light time in scenarios with a higher number of

vehicles. This is also consistent for the inefficiency of the intersection.

 Figure 39: Average Time, Coordinated, 5 Vehicles Figure 40: Inefficiency, Coordinated, 5 Vehicles

75

 Figure 41: Average Time, Coordinated, 10 Vehicles Figure 42: Inefficiency, Coordinated, 10 Vehicles

 Figure 43: Average Time, Coordinated, 20 Vehicles Figure 44: Inefficiency, Coordinated, 20 Vehicles

 Figure 45: Average Time, Coordinated, 40 Vehicles Figure 46: Inefficiency, Coordinated, 40 Vehicles

76

 Figure 47: Average Time, Coordinated, 60 Vehicles Figure 48: Inefficiency, Coordinated, 60 Vehicles

To demonstrate the importance of the light signals, Figure 50 shows the light

status as run through a 2x2 simulation with 20 vehicles on the road per intersection (80

total). These values specifically are identified as the west directional light statuses per

intersection in the 2x2 setup. Light 2 is the

upper left intersection, light 6 is for the upper

right, light 10 references lower left, and light 14

refers to the lower right intersection. Figure 49

shows the light locations for a 2x2 intersection

setup. The light patterns can be compared, and

it is evident that as light 2 changes to a yellow,

it is within a certain amount of time that lights

6 and 10 will alter their status. It is furthermore clear that lights 6 and 10 are on the exact

same track as they both alter their status based on light 2.

Figure 49: 2x2 Intersection Light Number Locations

77

Figure 50: Visual Status Representation of Coordinated Traffic Signals

4.2.2 Overall Coordinated Light Sequence Results

The overall details for the basic intersection setup regarding the numerical details

per intersection are displayed in Table 9. As the vehicle load increases, the longer green

light times seem to stay nearly as efficiency as the lower light times. This is due to the

coordinated lights syncing up appropriately to allow vehicles to make it through the

upcoming light given it is traveling in a direction towards the new signal changed

intersection.

78

Table 9: Coordinated Signal Timing Results

2x2 Intersection

 Average Vehicle Time (s) Inefficiency

 Maximum Green Light Maximum Green Light

Cars 10 20 30 40 50 10 20 30 40 50

5 33.9 38.1 40.7 43.6 47.4 0.15 0.27 0.31 0.35 0.41

10 35.4 39.8 40.8 46.5 50.1 0.20 0.29 0.31 0.39 0.44

20 39.1 42.5 46.3 49.7 49.4 0.28 0.34 0.39 0.42 0.43

40 56.8 57.5 59.7 59.3 63.9 0.50 0.50 0.52 0.52 0.56

60 71.8 63.2 69.2 66.3 71.0 0.61 0.55 0.58 0.57 0.60

2x3 Intersection

 Average Vehicle Time (s) Inefficiency

Cars 10 20 30 40 50 10 20 30 40 50

5 33.7 38.1 40.3 43.8 49.0 0.16 0.26 0.29 0.36 0.42

10 34.8 38.8 43.5 43.8 51.3 0.18 0.28 0.35 0.35 0.45

20 40.0 44.5 47.9 48.1 50.6 0.30 0.36 0.41 0.41 0.44

40 51.4 55.3 59.1 60.2 64.2 0.45 0.48 0.52 0.53 0.56

60 73.1 62.3 67.9 70.4 68.4 0.61 0.55 0.58 0.60 0.58

3x3 Intersection

 Average Vehicle Time (s) Inefficiency

Cars 10 20 30 40 50 10 20 30 40 50

5 33.9 40.0 41.3 44.6 47.2 0.16 0.30 0.31 0.36 0.40

10 34.6 40.8 45.6 45.3 50.5 0.19 0.30 0.37 0.38 0.43

20 38.4 45.9 51.0 50.5 51.6 0.26 0.38 0.44 0.44 0.44

40 53.4 58.7 57.1 62.2 59.2 0.46 0.51 0.50 0.54 0.52

60 70.6 61.5 61.2 65.5 60.2 0.59 0.54 0.53 0.57 0.53

Trendlines can again be formed from the data in Table 9. These are shown in

Figure 51, Figure 52, and Figure 53. Again, like the fixed signal timing, it is evident that

longer wait times occur with more vehicles on the road and with longer green signal

times. Higher loads of vehicles contain trends where longer green light times improve the

overall efficiency. This is due to more vehicles allowed through the intersection in one

cycle.

79

Figure 51: Average Vehicle Time for 2x2 Intersection, Coordinated Signal

Figure 52: Average Vehicle Time for 2x3 Intersection, Coordinated Signal

80

Figure 53: Average Vehicle Time for 3x3 Intersection, Coordinated Signal

4.3 Adaptive Signal Results

Overall, the best improvement for the vehicles to proceed through the intersection

is the addition of the adaptive signal. This will allow the lights to adjust their light signal

from neighboring traffic light status as well as the vehicle queue at a specific intersection.

There is no specific phase diagram for this sequence. The initial light changes are based

on the phases from Figure 38, but may be altered based on the queue size of cars at each

intersection in the direction of the red light. In this research, the queue is not adjusted

per simulation.

81

4.3.1 Graphic Displays of Adaptive Light Sequence

There have been simulations run for queue lineup numbers set for 1, 3 and 10

vehicles. Future research will enable a smart queue factor however, to display the initial

benefits of this adaptive signal, a queue value of 3 vehicles will be used. All simulations

displayed are based on a 2x2 intersection scenario.

 Figure 54: Average time, Adaptive, 5 Vehicles Figure 55: Inefficiency, Adaptive, 5 Vehicles

 Figure 56: Average Time, Adaptive, 10 Vehicles Figure 57: Inefficiency, Adaptive, 10 Vehicles

82

 Figure 58: Average Time, Adaptive, 20 Vehicles Figure 59: Inefficiency, Adaptive, 20 Vehicles

 Figure 60: Average Time, Adaptive, 40 Vehicles Figure 61: Inefficiency, Adaptive 40 Vehicles

 Figure 62: Average Time, Adaptive, 60 Vehicles Figure 63: Inefficiency, Adaptive, 60 Vehicles

Furthermore, the light sequence status can be viewed as well. Like the

coordinated signal setup, these lights are all based on the west direction from each

intersection as displayed in Figure 49. Individual lights now have their own specific agenda

based on the queue count but can also be altered from the neighboring light status. Light

14 in Figure 64 has a red-light section that lasts a very large amount of time. This scenario

83

may occur when no vehicles are present in a specific direction. In this case, no vehicles

are waiting for the lights at the intersection approaching from both the east and west

input directions. This allows for the north and south signals to be green for an extended

period as it is unnecessary to alter the status for no upcoming vehicles.

Figure 64: Visual Status Representation of Adaptive Traffic Signals

4.3.2 Overall Adaptive Light Sequence Results

The results from the adaptive light sequences are displayed in the following tables.

They are separated by the maximum queue values (1, 3, 10) for each intersection grid

setup. Note that in some scenarios, the average time per vehicles is reduced more given

84

a higher queue with a higher number of vehicles on the road. Based on the data from the

tables and from the previous detail, there is an ideal queue value that can be chosen

based on the number of vehicles on the road. This queue size can be made adaptable in

future problems regarding this research.

Table 10: Adaptive Signal Timing Results, Queue 1

2x2 Intersection

 Average Vehicle Time (s) Inefficiency

 Maximum Green Light Maximum Green Light

Cars 10 20 30 40 50 10 20 30 40 50

5 35.9 41.5 35.2 34.9 35.4 0.20 0.31 0.19 0.18 0.19

10 34.8 37.7 36.2 37.6 39.8 0.19 0.25 0.22 0.25 0.28

20 42.1 45.0 41.1 43.1 44.1 0.32 0.37 0.31 0.35 0.34

40 60.1 59.4 61.0 64.6 67.2 0.53 0.51 0.53 0.56 0.57

60 78.8 77.2 62.8 64.3 71.6 0.64 0.63 0.55 0.55 0.60

2x3 Intersection

 Average Vehicle Time (s) Inefficiency

Cars 10 20 30 40 50 10 20 30 40 50

5 35.0 36.9 41.5 35.3 35.8 0.20 0.23 0.31 0.19 0.22

10 36.6 36.9 35.4 36.4 39.3 0.23 0.23 0.20 0.22 0.27

20 39.3 39.3 41.5 42.5 43.8 0.27 0.27 0.31 0.33 0.34

40 57.2 53.4 57.4 51.1 56.6 0.50 0.47 0.50 0.44 0.49

60 73.6 70.5 72.2 71.6 72.9 0.61 0.59 0.60 0.60 0.61

3x3 Intersection

 Average Vehicle Time (s) Inefficiency

Cars 10 20 30 40 50 10 20 30 40 50

5 35.1 36.6 36.7 35.8 34.2 0.20 0.23 0.22 0.20 0.18

10 36.5 36.9 37.4 37.2 37.1 0.21 0.23 0.24 0.25 0.23

20 39.5 39.0 42.1 42.8 39.7 0.28 0.26 0.33 0.35 0.29

40 53.4 55.6 53.1 59.3 56.5 0.47 0.49 0.46 0.52 0.50

60 54.3 60.4 66.6 59.5 61.6 0.48 0.53 0.57 0.52 0.53

85

Table 11: Adaptive Signal Timing Results, Queue 3

2x2 Intersection

 Average Vehicle Time (s) Inefficiency

 Maximum Green Light Maximum Green Light

Cars 10 20 30 40 50 10 20 30 40 50

5 34.8 37.1 40.4 41.9 45.0 0.17 0.23 0.29 0.32 0.37

10 35.8 40.9 45.8 42.7 40.3 0.21 0.31 0.38 0.33 0.30

20 42.1 46.4 42.3 41.7 41.9 0.34 0.39 0.33 0.31 0.32

40 51.8 59.0 59.8 60.5 60.3 0.45 0.51 0.52 0.53 0.54

60 68.1 69.6 76.5 68.1 64.5 0.58 0.58 0.63 0.58 0.56

2x3 Intersection

 Average Vehicle Time (s) Inefficiency

Cars 10 20 30 40 50 10 20 30 40 50

5 34.1 38.3 40.6 42.5 44.4 0.17 0.26 0.30 0.34 0.37

10 35.0 40.9 42.3 43.0 41.1 0.18 0.30 0.33 0.34 0.31

20 41.1 42.7 43.3 42.3 43.1 0.31 0.34 0.34 0.32 0.33

40 57.1 53.5 56.3 56.5 58.9 0.50 0.47 0.49 0.49 0.52

60 66.2 69.9 65.5 71.2 63.8 0.57 0.59 0.57 0.60 0.55

3x3 Intersection

 Average Vehicle Time (s) Inefficiency

Cars 10 20 30 40 50 10 20 30 40 50

5 34.1 37.0 41.1 42.6 41.7 0.18 0.24 0.31 0.34 0.34

10 35.6 40.1 44.5 41.9 41.6 0.21 0.29 0.37 0.33 0.33

20 42.3 41.1 42.0 40.5 41.4 0.33 0.31 0.32 0.30 0.32

40 57.0 52.4 54.8 52.1 53.2 0.50 0.46 0.48 0.46 0.46

60 64.3 61.4 68.9 68.1 63.4 0.56 0.54 0.59 0.58 0.55

86

Table 12: Adaptive Signal Timing Results, Queue 10

2x2 Intersection

 Average Vehicle Time (s) Inefficiency

 Maximum Green Light Maximum Green Light

Cars 10 20 30 40 50 10 20 30 40 50

5 34.6 39.3 40.5 44.4 45.9 0.18 0.28 0.30 0.37 0.39

10 35.4 39.9 42.6 45.0 51.5 0.20 0.29 0.33 0.37 0.45

20 39.8 44.8 46.4 48.8 51.6 0.29 0.36 0.39 0.41 0.45

40 52.6 60.0 64.6 63.4 61.8 0.46 0.53 0.56 0.55 0.54

60 69.1 64.6 79.6 61.8 68.6 0.59 0.55 0.64 0.54 0.58

2x3 Intersection

 Average Vehicle Time (s) Inefficiency

Cars 10 20 30 40 50 10 20 30 40 50

5 33.7 39.2 41.9 42.5 49.0 0.15 0.28 0.32 0.33 0.42

10 35.3 40.5 44.8 46.5 48.8 0.18 0.29 0.36 0.38 0.42

20 39.2 44.6 48.8 49.3 54.6 0.27 0.36 0.43 0.42 0.48

40 55.8 58.5 58.6 58.3 61.7 0.50 0.51 0.51 0.51 0.54

60 73.5 69.6 69.0 71.3 68.5 0.61 0.59 0.58 0.60 0.58

3x3 Intersection

 Average Vehicle Time (s) Inefficiency

Cars 10 20 30 40 50 10 20 30 40 50

5 33.9 37.4 41.5 45.7 49.6 0.17 0.26 0.31 0.38 0.42

10 35.3 40.5 44.0 45.0 49.1 0.20 0.30 0.35 0.37 0.42

20 39.2 45.2 47.4 48.1 50.2 0.28 0.36 0.40 0.40 0.44

40 54.0 54.1 54.9 58.0 58.1 0.47 0.48 0.48 0.51 0.51

60 64.6 62.9 65.6 63.4 65.5 0.56 0.54 0.57 0.55 0.56

The overall comparisons from the different intersection setups compared to the

queue values can be evaluated. Note that a lower count of vehicles on the road has better

performance with a smaller queue as the lights need to adapt more recently. The larger

queue though is more beneficial for a higher number of cars on the road and the trendline

is steadier for the varying light times. By using this data appropriately, an adaptive queue

can be implemented in future work.

87

Figure 65: Overall Comparison of Average Vehicle Time from Adaptive Signal Implementation

4.4 Light Sequence Comparison

Furthermore, to consider the benefits of the adaptive traffic signal, details of each

traffic light in a 2x2 scenario can be observed based on the gathered data. For consistency,

the 2x2 intersections graphs will be compared while 40 vehicles are on the road. Figure

68 displays trendlines of the average vehicle time by comparing all car counts and signal

types for a 2x2 intersection setup.

88

Figure 66: Various Signal Sequence Comparison of Average Vehicle Time

Figure 67: Various Signal Sequence Comparison of Inefficiency

Figure 68: Trendline Comparison of Various Signal Sequences

As can be seen here, by comparing the basic light timing sequence to the coordinated

and adaptive sequences, the overall time per vehicle is reduced as well as the inefficiency

especially with 40 vehicles on the road. In some cases, the coordinated signal may be

more beneficial compared to the adaptive but that is generally based on the maximum

queue value. As previously mentioned, this research only considers a fixed queue value

per simulation and overall, a lower vehicle load will require a smaller queue value to

improve traffic flow. It will eventually be beneficial to consider an adaptive queue for

greater intersection improvement.

89

5. Conclusions and Future Work

5.1 Research Conclusion

All in all, the data outlining the comparisons between the different signal abilities

proved that the adaptive signal does increase intersection performance with respect to

the metrics considered. Using this data and methods appropriately coded for different

scenarios shows that this new type of communication can be implemented into the real

world. The MATLAB method allows for different types of inputs that would be compared

to vehicle behavior and an intersection setup seen today. The various details that can be

implemented allow for a numerous amount of simulations to be carried out.

5.2 Future Work

Future work for this research can be taken in several directions. First, in this specific

research, the queue size was fixed for different scenarios. A new research method would

be to implement an adaptive queue size for the number of vehicles on the road or the

duration of vehicles in the queue. The data already gathered from this research can be

used to create a linear or quadratic maximum queue count for individual intersections or

the overall intersection setup. This could depend on the number of vehicles proceeding

through one intersection which may require that specific intersection to allow for an

adaptive queue size.

Another opportunity for future work would be the individual intersection setup.

Common intersections today have 2 or more lanes approaching from an individual

90

direction. Many intersections also include a designated left turn lane which may assist

with traffic flow improvement as well. Allowing these different types of intersections to

communicate with each other (I2I) as well as with nearby vehicles (I2V) adds complexity

on a new level. Queue sizes will need to then be adjusted potentially per number of lanes

and for a potential left turn lane. Given the wide variety of intersection setups that are

seen today, the possibilities are endless.

A final opportunity for future work is related to the different types of connected

agents. In a real intersection, more types of dynamic components are found throughout.

Examples of more components may include but are not limited to pedestrians, bikers,

electric scooters, and pets. For improved safety, it will be beneficial to consider these

components as agents as well. This will ensure autonomous vehicles will know one of

these components is nearby regardless of camera technology ability. These extra

possibilities that can be considered will add more complexity to the system but the ability

to model this will be beneficial for improving safety.

With overall implementation of this future work, intersection performance can be

evaluated and improved regarding average vehicle time, resilience, and safety. The newer

technologies for individual autonomous vehicles allow for connected vehicles in city

intersections to be implemented. The addition of agent-based communication for

improved performance will greatly enhance the transportation infrastructure.

91

5.3 Thesis Reflection

All in all, the use of agent-based communication for improved decision making has

been proven effective. Referring to the design statement, it has been shown that

improving agent-based Infrastructure to Infrastructure (I2I) communication and decision

making does provide performance benefits to traffic flow capacities.

The initial communication of queue size from the vehicle to the traffic light (V2I)

allows the intersection to make an appropriate decision for the status based on the load

of traffic. This change of state based on the queue is then communicated to nearby traffic

signals. Next, the addition of agent communication between traffic signals allows for

further improved decision making. The I2I addition is the main area of improvement for

the transportation infrastructure. This improved ability allows intersections to

communicate status effectively and the coordinated approach demonstrates success of

this improvement. From the individual light status change based on the level of traffic to

the communication between intersections, a level of connectivity is created between

vehicles and traffic lights that are at different intersections. The traffic flow is then further

optimized as the intelligent signals communicate and adjust individual status based on

nearby intersection signal updates.

The decision-making process and improved communication through intersections (I2I)

is proven effective and can be implemented throughout the real world as overall vehicle

technology improves. This has been proven through multiple scenario simulations

regarding various city intersection setups, load of traffic present throughout the

92

simulation, and for alternative maximum green signal times. The overall ability to reduce

average vehicle time through an intersection and reduce inefficiency is possible through

adaptive signals and nearby intersection communication.

93

6. References

Abdulhai, B., Pringle, R., & Karakoulas, G. J. (2003). Reinforcement learning for true
adaptive traffic signal control. Journal of Transportation Engineering, 129(3), 278-285.

Aboudolas, K., Papageorgiou, M., Kouvelas, A., & Kosmatopoulos, E. (2010). A rolling-
horizon quadratic-programming approach to the signal control problem in large-scale
congested urban road networks. Transportation Research Part C: Emerging Technologies,
18(5), 680-694.

Arel, I., Liu, C., Urbanik, T., & Kohls, A. G. (2010). Reinforcement learning-based multi-
agent system for network traffic signal control. IET Intelligent Transport Systems, 4(2),
128-135.

Ashtiani, F., Fayazi, S. A., & Vahidi, A. (2018, June). Multi-Intersection Traffic Management
for Autonomous Vehicles via Distributed Mixed Integer Linear Programming. In 2018
Annual American Control Conference (ACC) (pp. 6341-6346). IEEE.

Bandyopadhyay, T., Won, K. S., Frazzoli, E., Hsu, D., Lee, W. S., & Rus, D. (2013). Intention-
aware motion planning. In Algorithmic Foundations of Robotics X (pp. 475-491). Springer,
Berlin, Heidelberg.

Brechtel, S., Gindele, T., & Dillmann, R. (2011, October). Probabilistic MDP-behavior
planning for cars. In Intelligent Transportation Systems (ITSC), 2011 14th International
IEEE Conference on (pp. 1537-1542). IEEE.

Brechtel, S., Gindele, T., & Dillmann, R. (2014, October). Probabilistic decision-making
under uncertainty for autonomous driving using continuous POMDPs. In Intelligent
Transportation Systems (ITSC), 2014 IEEE 17th International Conference on (pp. 392-399).
IEEE.

Cunningham, A. G., Galceran, E., Eustice, R. M., & Olson, E. (2015, May). MPDM:
Multipolicy decision-making in dynamic, uncertain environments for autonomous driving.
In Robotics and Automation (ICRA), 2015 IEEE International Conference on (pp. 1670-
1677). IEEE.

DARPA (2007) DARPA Urban Challenge. http://archive.darpa.mil/grandchallenge/

Dolgov, D., Thrun, S., Montemerlo, M., & Diebel, J. (2010). Path planning for autonomous
vehicles in unknown semi-structured environments. The International Journal of Robotics
Research, 29(5), 485-501.

94

Fayazi, S. A., Vahidi, A., & Luckow, A. (2017, May). Optimal scheduling of autonomous
vehicle arrivals at intelligent intersections via MILP. In 2017 American control conference
(ACC) (pp. 4920-4925). IEEE.

Fayazi, S. A., & Vahidi, A. (2017, August). Vehicle-in-the-loop (VIL) verification of a smart
city intersection control scheme for autonomous vehicles. In 2017 IEEE Conference on
Control Technology and Applications (CCTA) (pp. 1575-1580). IEEE.

Feng, Y., Head, K. L., Khoshmagham, S., & Zamanipour, M. (2015). A real-time adaptive
signal control in a connected vehicle environment. Transportation Research Part C:
Emerging Technologies, 55, 460-473.

Ferguson, D., Darms, M., Urmson, C., & Kolski, S. (2008, June). Detection, prediction, and
avoidance of dynamic obstacles in urban environments. In Intelligent Vehicles
Symposium, 2008 IEEE (pp. 1149-1154). IEEE.

Ferguson, D., Howard, T. M., & Likhachev, M. (2008). Motion planning in urban
environments. Journal of Field Robotics, 25(11‐12), 939-960.

Francis, R., & Bekera, B. (2014). A metric and frameworks for resilience analysis of
engineered and infrastructure systems. Reliability Engineering & System Safety, 121, 90-
103.

Fulgenzi, C., Tay, C., Spalanzani, A., & Laugier, C. (2008, September). Probabilistic
navigation in dynamic environment using rapidly-exploring random trees and gaussian
processes. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on (pp. 1056-1062). IEEE.

Galceran, E., Olson, E., & Eustice, R. M. (2015, September). Augmented vehicle tracking
under occlusions for decision-making in autonomous driving. In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on (pp. 3559-3565). IEEE.

Galceran, E., Cunningham, A. G., Eustice, R. M., & Olson, E. (2015, July). Multipolicy
Decision-Making for Autonomous Driving via Changepoint-based Behavior Prediction.
In Robotics: Science and Systems (pp. 2290-2297).

Goodall, N. J., Smith, B. L., & Park, B. (2013). Traffic signal control with connected vehicles.
Transportation Research Record, 2381(1), 65-72.

Hunt, P. B., Robertson, D. I., Bretherton, R. D., & Royle, M. C. (1982). The SCOOT on-line
traffic signal optimisation technique. Traffic Engineering & Control, 23(4).

Honda. (2018). Honda Accord: Owner’s Manual.

95

Khan, S.M. and Chowdhury, M., 2019. Connected Vehicle Supported Adaptive Traffic
Control for Near-congested Condition in a Mixed Traffic Stream. arXiv preprint
arXiv:1907.07243.

Khan, S.M. and Chowdhury, M., 2019. Situation-Aware Left-Turning Connected and
Automated Vehicle Operation at Signalized Intersections. arXiv preprint
arXiv:1908.00981.

Lee, J., & Park, B. (2012). Development and evaluation of a cooperative vehicle
intersection control algorithm under the connected vehicles environment. IEEE
Transactions on Intelligent Transportation Systems, 13(1), 81-90.

Likhachev, M., & Ferguson, D. (2009). Planning long dynamically feasible maneuvers for
autonomous vehicles. The International Journal of Robotics Research, 28(8), 933-945.

Luk, J. Y. K. (1984). Two traffic-responsive area traffic control methods: SCAT and SCOOT.
Traffic engineering & control, 25(1).

McGehee, D. V., Mazzae, E. N., & Baldwin, G. S. (2000, July). Driver reaction time in crash
avoidance research: validation of a driving simulator study on a test track. In Proceedings
of the human factors and ergonomics society annual meeting (Vol. 44, No. 20, pp. 3-320).
Sage CA: Los Angeles, CA: SAGE Publications.

Mladenovic, M. N., & Abbas, M. (2014, November). Priority-based intersection control
framework for self-driving vehicles: Agent-based model development and evaluation.
In Connected Vehicles and Expo (ICCVE), 2014 International Conference on (pp. 377-384).
IEEE.

Miller, I., Campbell, M., Huttenlocher, D., Kline, F. R., Nathan, A., Lupashin, S., ... & Garcia,
E. (2008). Team Cornell's Skynet: Robust perception and planning in an urban
environment. Journal of Field Robotics, 25(8), 493-527.

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., ... & Johnston,
D. (2008). Junior: The stanford entry in the urban challenge. Journal of field
Robotics, 25(9), 569-597.

Petti, S., & Fraichard, T. (2005, August). Safe motion planning in dynamic environments.
In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International
Conference on (pp. 2210-2215). IEEE.

Smith, B. L., Venkatanarayana, R., Park, H., Goodall, N., Datesh, J., & Skerrit, C. (2010).
IntelliDriveSM traffic signal control algorithms. University of Virginia.

96

Stevanovic, A., Kergaye, C., & Martin, P. T. (2009, January). Scoot and scats: A closer look
into their operations. In 88th Annual Meeting of the Transportation Research Board.
Washington DC.

Talebpour, A., & Mahmassani, H. S. (2016). Influence of connected and autonomous
vehicles on traffic flow stability and throughput. Transportation Research Part C:
Emerging Technologies, 71, 143-163.

Ulbrich, S., & Maurer, M. (2013, October). Probabilistic online POMDP decision making
for lane changes in fully automated driving. In Intelligent Transportation Systems-(ITSC),
2013 16th International IEEE Conference on(pp. 2063-2067). IEEE.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N., ... & Gittleman, M.
(2008). Autonomous driving in urban environments: Boss and the urban
challenge. Journal of Field Robotics, 25(8), 425-466.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N., ... & Gittleman, M.
(2009). Autonomous driving in urban environments: Boss and the urban challenge. In The
DARPA Urban Challenge (pp. 1-59). Springer, Berlin, Heidelberg.

Veres, S. M., Molnar, L., Lincoln, N. K., & Morice, C. P. (2011). Autonomous vehicle control
systems—a review of decision making. Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering, 225(2), 155-195.

Wei, J., Dolan, J. M., Snider, J. M., & Litkouhi, B. (2011, May). A point-based mdp for robust
single-lane autonomous driving behavior under uncertainties. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on (pp. 2586-2592). IEEE.

97

7. Appendix

%% Important Inputs to the Simulation

CarsPerInt = 10; % Maximum number of cars in the simulation per intersection

TotalTime = 100000; % Total time in seconds to run the simulation, large for MaxCar

variable

MaxCars = 500; % How many total cars will run through the simulation

timestep = 1/88; % Time step accuracy for cars (DO NOT CHANGE!)

% Properties of each Individual Intersection

SpeedLimit = 40; % mph

LaneLength = 800; % 800 feet normally

Window = 250; % display window

% Light Sequence Time in seconds

Red = 1; % Normal Range from 0.5 - 2.0 Seconds

Yellow = SpeedLimit/10; % Approximation based on Speed Limit

Greens = [10 20 30 40 50];

% Other Important Properties

CarLength = 16; % Constant Throughout Simulation

MaxQueue = 10; % Check for Light Change Based on Number of Stopped Vehicles

% Intersection Grid Setup

Rows = 3; % Max 10

Columns = 3; % Max 10

Cars = CarsPerInt*Rows*Columns;

% Simulation On/Off 1 = On, 0 = Off

Simulation = 0;

%% Multi Intersection Setup

Intersections = zeros(Rows*Columns,8);

IntNumber = 1; % IntersectionNumber

for R = 1:Rows

 for C = 1:Columns

 % Intersection Number

 Intersections(IntNumber,1) = IntNumber;

 % Intersection Center Location

 if C == 1

 Intersections(IntNumber,2) = 0;

 else

 Intersections(IntNumber,2) = (2*C*LaneLength) - (2*LaneLength); % X Center

Location

 end

 if R == 1

 Intersections(IntNumber,3) = 0;

 else

 Intersections(IntNumber,3) = (-2*R*LaneLength) + (2*LaneLength); % Y Center

Location

 end

 %Intersection Directions

 Intersections(IntNumber,4) = (IntNumber*4) - 3; % South

 Intersections(IntNumber,5) = (IntNumber*4) - 2; % West

 Intersections(IntNumber,6) = (IntNumber*4) - 1; % North

 Intersections(IntNumber,7) = (IntNumber*4); % East

 % New IntNumber for Next Iteration

98

 IntNumber = IntNumber + 1;

 end

end

%% Plotting the intersection (Used for visualization of the simulation)

% Multipe figures to display different intersections

% for I = 1:size(Intersections,1)

%

% % Figure Number

% figure(I + 1)

%

% hold on

% Line1 = plot([Intersections(I,2)-LaneLength,Intersections(I,2)-12],

[Intersections(I,3),Intersections(I,3)],'--');

% Line2 = plot([Intersections(I,2)-LaneLength,Intersections(I,2)-12],

[Intersections(I,3)-12,Intersections(I,3)-12]);

% Line3 = plot([Intersections(I,2)-LaneLength,Intersections(I,2)-12],

[Intersections(I,3)+12,Intersections(I,3)+12]);

% Line4 = plot([Intersections(I,2)+12,Intersections(I,2)+LaneLength],

[Intersections(I,3),Intersections(I,3)],'--');

% Line5 = plot([Intersections(I,2)+12,Intersections(I,2)+LaneLength],

[Intersections(I,3)-12,Intersections(I,3)-12]);

% Line6 = plot([Intersections(I,2)+12,Intersections(I,2)+LaneLength],

[Intersections(I,3)+12,Intersections(I,3)+12]);

%

% Line7 = plot([Intersections(I,2),Intersections(I,2)], [Intersections(I,3)-

LaneLength,Intersections(I,3)-12],'--');

% Line8 = plot([Intersections(I,2)-12,Intersections(I,2)-12], [Intersections(I,3)-

LaneLength,Intersections(I,3)-12]);

% Line9 = plot([Intersections(I,2)+12,Intersections(I,2)+12], [Intersections(I,3)-

LaneLength,Intersections(I,3)-12]);

% Line10 = plot([Intersections(I,2),Intersections(I,2)],

[Intersections(I,3)+12,Intersections(I,3)+LaneLength],'--');

% Line11 = plot([Intersections(I,2)-12,Intersections(I,2)-12],

[Intersections(I,3)+12,Intersections(I,3)+LaneLength]);

% Line12 = plot([Intersections(I,2)+12,Intersections(I,2)+12],

[Intersections(I,3)+12,Intersections(I,3)+LaneLength]);

%

%

% set(Line1,'color','black')

% set(Line2,'color','black')

% set(Line3,'color','black')

% set(Line4,'color','black')

% set(Line5,'color','black')

% set(Line6,'color','black')

% set(Line7,'color','black')

% set(Line8,'color','black')

% set(Line9,'color','black')

% set(Line10,'color','black')

% set(Line11,'color','black')

% set(Line12,'color','black')

% axis([Intersections(I,2)-Window Intersections(I,2)+Window Intersections(I,3)-Window

Intersections(I,3)+Window])

% grid on

% hold off

%

%

% end

% Total Grid of All Intersections

for I = 1:size(Intersections,1)

% Figure Number

figure(1) % figure(size(Intersections,1) + 1) for other simulations

99

hold on

Line1 = plot([Intersections(I,2)-LaneLength,Intersections(I,2)-12],

[Intersections(I,3),Intersections(I,3)],'--');

Line2 = plot([Intersections(I,2)-LaneLength,Intersections(I,2)-12], [Intersections(I,3)-

12,Intersections(I,3)-12]);

Line3 = plot([Intersections(I,2)-LaneLength,Intersections(I,2)-12],

[Intersections(I,3)+12,Intersections(I,3)+12]);

Line4 = plot([Intersections(I,2)+12,Intersections(I,2)+LaneLength],

[Intersections(I,3),Intersections(I,3)],'--');

Line5 = plot([Intersections(I,2)+12,Intersections(I,2)+LaneLength], [Intersections(I,3)-

12,Intersections(I,3)-12]);

Line6 = plot([Intersections(I,2)+12,Intersections(I,2)+LaneLength],

[Intersections(I,3)+12,Intersections(I,3)+12]);

Line7 = plot([Intersections(I,2),Intersections(I,2)], [Intersections(I,3)-

LaneLength,Intersections(I,3)-12],'--');

Line8 = plot([Intersections(I,2)-12,Intersections(I,2)-12], [Intersections(I,3)-

LaneLength,Intersections(I,3)-12]);

Line9 = plot([Intersections(I,2)+12,Intersections(I,2)+12], [Intersections(I,3)-

LaneLength,Intersections(I,3)-12]);

Line10 = plot([Intersections(I,2),Intersections(I,2)],

[Intersections(I,3)+12,Intersections(I,3)+LaneLength],'--');

Line11 = plot([Intersections(I,2)-12,Intersections(I,2)-12],

[Intersections(I,3)+12,Intersections(I,3)+LaneLength]);

Line12 = plot([Intersections(I,2)+12,Intersections(I,2)+12],

[Intersections(I,3)+12,Intersections(I,3)+LaneLength]);

% Intersection Line Features

set(Line1,'color','black')

set(Line2,'color','black')

set(Line3,'color','black')

set(Line4,'color','black')

set(Line5,'color','black')

set(Line6,'color','black')

set(Line7,'color','black')

set(Line8,'color','black')

set(Line9,'color','black')

set(Line10,'color','black')

set(Line11,'color','black')

set(Line12,'color','black')

end

axis([0-Window Intersections(Columns,2)+Window Intersections((Columns*Rows)-(Columns-

1),3)-Window 0+Window]);

grid on

%% Creating Cars

for Green = Greens(1):10:Greens(5)

% Creating Matrices for Car Evaluations

Locations = zeros(Cars,9);

CarBehavior = zeros(Cars,5);

Positions = zeros(Cars,10);

Time = zeros(Cars,6);

Light = zeros(Cars,9);

Observation = zeros(Cars,9);

TimeEvaluation = zeros(Cars, 12);

PositionEvaluation = zeros(1,Cars*2 + 1);

CarChange = zeros(Cars,2);

% Possibly Irrelevant

Overlap = zeros(Cars - 1, 9);

100

i = 1;

Exclude = 0;

TimeIdeal = 0;

while i <= Cars

% Choose random direction placement and intensity rating

Direction = randi([1,Intersections(size(Intersections,1),size(Intersections,2) -

2)],1,1);

% d = randsample(setdiff(1:3, 2), 1); % For testing intersections 1 and 3

Intensity = randi([1 10],1,1);

[Speedy, Accel, Timing] = IntensityRating(Intensity,SpeedLimit);

% Choosing a Random Output Direction Based on Intersection

[IntNumber,d] = find(Intersections(:,4:7) == Direction); % Finding row and column

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7),

Direction), 1);

% Intersection X and Y Position

IntX = Intersections(IntNumber,2);

IntY = Intersections(IntNumber,3);

% Check if placement location is the same, if not go to original

k = find(Locations(:,5) == Direction); % Returns index or empty matrix

v = isempty(k); % determines if matrix is empty or not

if v == 0 % if the matrix is not empty (there is a match in direction)

 % For a similar direction

 % Car Number X Position Y Position Ouput Intersection MPH

 if d == 1

 Option = Locations(k,3); % Other starting car locations

 Exclude = zeros(length(Option)*41,1); % Initial matrix of excluding values

 for e = 1:length(Option) % Run amount of times as other cars in that direction

 Z = Option(e)-20:Option(e)+20; % Create 41 points that cannot be used

 for f = 1:41

 Exclude(41*(e-1)+f) = Z(f); % Put 5 points into exclude matrix

 end

 end

 elseif d == 2

 Option = Locations(k,2); % Other starting car locations

 Exclude = zeros(length(Option)*41,1); % Initial matrix of excluding values

 for e = 1:length(Option) % Run amount of times as other cars in that direction

 Z = Option(e)-20:Option(e)+20; % Create 5 points that cannot be used

 for f = 1:41

 Exclude(41*(e-1)+f) = Z(f); % Put 5 points into exclude matrix

 end

 end

 y = IntY - 9;

 x = randsample(setdiff(IntX - LaneLength:IntX - 200, Exclude), 1);

 elseif d == 3

 Option = Locations(k,3); % Other starting car locations

 Exclude = zeros(length(Option)*41,1); % Initial matrix of excluding values

 for e = 1:length(Option) % Run amount of times as other cars in that direction

 Z = Option(e)-20:Option(e)+20; % Create 5 points that cannot be used

101

 for f = 1:41

 Exclude(41*(e-1)+f) = Z(f); % Put 5 points into exclude matrix

 end

 end

 else

 Option = Locations(k,2); % Other starting car locations

 Exclude = zeros(length(Option)*41,1); % Initial matrix of excluding values

 for e = 1:length(Option) % Run amount of times as other cars in that direction

 Z = Option(e)-20:Option(e)+20; % Create 5 points that cannot be used

 for f = 1:41

 Exclude(41*(e-1)+f) = Z(f); % Put 5 points into exclude matrix

 end

 end

 end

else

% Option if a car has not yet been placed in this direction

if d == 1

 x = IntX + 3;

 y = randi([(IntY - LaneLength) (IntY - 200)],1,1);

elseif d == 2

 x = randi([(IntX - LaneLength) (IntX - 200)],1,1);

 y = IntY - 9;

elseif d == 3

 x = IntX - 9;

 y = randi([(IntY + 200 - CarLength) (IntY + LaneLength - CarLength)],1,1);

else

 x = randi([(IntX + 200 - CarLength) (IntX + LaneLength - CarLength)],1,1);

 y = IntY + 3;

end

end

if v == 1

elseif length(Exclude) > length(IntX + 200 - CarLength:IntX + LaneLength - CarLength)

 % If the random direction is full, place the car elsewhere

 i = i - 1;

else

if d == 1

 x = IntX + 3;

 y = randsample(setdiff(IntY - LaneLength:IntY - 200, Exclude), 1); % choose placement

that has not been occupied

elseif d == 2

 y = IntY - 9;

 x = randsample(setdiff(IntX - LaneLength:IntX - 200, Exclude), 1);

elseif d == 3

 x = IntX - 9;

 y = randsample(setdiff(IntY + 200 - CarLength:IntY + LaneLength - CarLength,

Exclude), 1);

else

 y = IntY + 3;

 x = randsample(setdiff(IntX + 200 - CarLength:IntX + LaneLength - CarLength,

Exclude), 1);

end

end

% Input Values for the Location Matrix

102

% Car Number(1) X Position(2) Y Position(3) OutDirection(4) InDirection(5) MPH(6)

Locations(i,1) = i;

Locations(i,2) = x;

Locations(i,3) = y;

% Output Direction

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column

Locations(i,4) = Out; % output direction (Out)

Locations(i,5) = Direction;

Locations(i,6) = Speedy;

Locations(i,7) = IntNumber;

Locations(i,8) = d;

Locations(i,9) = O;

% Values for the Car Behavior Matrix

CarBehavior(i,1) = i;

CarBehavior(i,2) = Intensity;

CarBehavior(i,3) = Speedy; % Normally based on intensity rating

CarBehavior(i,4) = Accel; % Normally based on intensity rating

CarBehavior(i,5) = Timing; % Normally based on intensity rating

% Values for Positions Matrix

Positions(i,1) = i;

Positions(i,5) = ToFPS(Speedy);

Positions(i,6) = ToFPS(Speedy);

Positions(i,7) = ToFPS(Speedy);

if d == 1

 Positions(i,2) = y;

 Positions(i,3) = (y - ToFPS(Speedy)*timestep);

 Positions(i,4) = (y - ToFPS(Speedy)*2*timestep);

elseif d == 2

 Positions(i,2) = x;

 Positions(i,3) = (x - ToFPS(Speedy)*timestep);

 Positions(i,4) = (x - ToFPS(Speedy)*2*timestep);

elseif d == 3

 Positions(i,2) = y;

 Positions(i,3) = (y + ToFPS(Speedy)*timestep);

 Positions(i,4) = (y + ToFPS(Speedy)*2*timestep);

else

 Positions(i,2) = x;

 Positions(i,3) = (x + ToFPS(Speedy)*timestep);

 Positions(i,4) = (x + ToFPS(Speedy)*2*timestep);

end

% Values for Time Matrix

Time(i,1) = i;

Time(i,6) = Timing;

% Values for Light Matrix

Light(i,1) = i;

Light(i,2) = 4;

% Initial Slowing Down Point for the Light

if d == 1

 Light(i,5) = IntY - 35 - (Positions(i,5))^2/(2*CarBehavior(i,4));

elseif d == 2

 Light(i,5) = IntX - 35 - (Positions(i,5))^2/(2*CarBehavior(i,4));

elseif d == 3

 Light(i,5) = IntY + 19 + (Positions(i,5))^2/(2*CarBehavior(i,4));

else

103

 Light(i,5) = IntX + 19 + (Positions(i,5))^2/(2*CarBehavior(i,4));

end

if d == 2 || d == 4

 Light(i,2) = 4;

 FC = i;

end

% Initial Time Evaluation

TimeEvaluation(i,1) = i;

TimeEvaluation(i,2) = Locations(i,5); % Input Direction

TimeEvaluation(i,3) = Locations(i,2); % Input X Location

TimeEvaluation(i,4) = Locations(i,3); % Input Y Location

TimeEvaluation(i,5) = 0;

TimeEvaluation(i,6) = Locations(i,4); % Output Direction

[TimeIdeal] = IdealTime(d,O,Speedy,Accel,LaneLength);

TimeEvaluation(i,11) = TimeIdeal;

TimeEvaluation(i,12) = Intensity;

% CarChange Matrix

CarChange(i,1) = i;

% Updated Car Value

i = i + 1;

end

%% Moving Cars Light Status

% Lights

jj = 0;

% Acceleration Initial Values

DistanceAccel = 0;

% Creating Traffic Light Matrix

TrafficLight = zeros(Rows*Columns*4,9);

LightStatus = zeros(100000,Rows*Columns*4 + 1);

for traf = 1:size(TrafficLight,1)

 TrafficLight(traf,1) = traf;

 LightStatus(1,traf + 1) = traf;

end

% Initial Light Status (Green Light in North and South Directions)

for L = 1:size(TrafficLight,1)

 if L == 1 || L == 3

 TrafficLight(L,2) = 2;

 TrafficLight(L,7) = 10;

 elseif mod(L,2) == 1 % Odd Number (North and South)

 TrafficLight(L,2) = 2;

 TrafficLight(L,7) = 100;

 else

 TrafficLight(L,2) = 0;

 TrafficLight(L,7) = 0;

 end

end

% Direction Transition Added to Traffic LightMatrix

Transition = zeros(size(TrafficLight,1),2);

104

% Transition Directions

for a = 1:Rows

 for b = 1:Columns - 1

 D = Intersections((a*Columns) - Columns + b,7);

 TrafficLight(D,3) = D + 2;

 TrafficLight(D+2,3) = D;

 end

end

for a = 1:Rows - 1

 for b = 1:Columns

 D = Intersections((a*Columns) - Columns + b,4);

 O = Intersections((a*Columns) + b,6);

 % Placing Appropriate Output Directions

 TrafficLight(D,3) = O;

 TrafficLight(O,3) = D;

 end

end

% Creating Countdown Values

for TLight = 1:size(TrafficLight,1)

 if TrafficLight(TLight,2) == 2

 Indicator = 1;

 Switch = 1;

 else

 Countdown = 0;

 Indicator = 0;

 Switch = 0;

 end

 TrafficLight(TLight,8) = Indicator;

 TrafficLight(TLight,9) = Switch;

end

DD = 1;

% Intersection Details Per Light

for TLight = 1:size(TrafficLight,1)

 if DD == 1

 TrafficLight(TLight,4) = TLight + 1; % Left Direction

 TrafficLight(TLight,5) = TLight + 2; % Straight Direction

 TrafficLight(TLight,6) = TLight + 3; % Right Direction

 elseif DD == 2

 TrafficLight(TLight,4) = TLight + 1; % Left Direction

 TrafficLight(TLight,5) = TLight + 2; % Straight Direction

 TrafficLight(TLight,6) = TLight - 1; % Right Direction

 elseif DD == 3

 TrafficLight(TLight,4) = TLight + 1; % Left Direction

 TrafficLight(TLight,5) = TLight - 2; % Straight Direction

 TrafficLight(TLight,6) = TLight - 1; % Right Direction

 else

 TrafficLight(TLight,4) = TLight - 3; % Left Direction

 TrafficLight(TLight,5) = TLight - 2; % Straight Direction

 TrafficLight(TLight,6) = TLight - 1; % Right Direction

 end

 DD = DD + 1;

 if DD > 4

 DD = 1;

 else

 end

end

105

% Intersection Number for Light

for II = 1:size(Intersections,1)

 TrafficLight(II*4 - 3,10) = II;

 TrafficLight(II*4 - 2,10) = II;

 TrafficLight(II*4 - 1,10) = II;

 TrafficLight(II*4 ,10) = II;

end

% Starting Direction for Intersections (Green North and South)

Intersections(:,8) = 2;

Intersections(:,9) = 1;

% Traffic Signal Graphic Values

for TLight = 1:size(TrafficLight,1)

 if TrafficLight(TLight,2) == 2

 if Intersections(TrafficLight(TLight,10),4) == TLight

plot(Intersections(TrafficLight(TLight,10),2),Intersections(TrafficLight(TLight,10),3) -

50, '.g', 'MarkerSize',15)

 elseif Intersections(TrafficLight(TLight,10),5) == TLight

 plot(Intersections(TrafficLight(TLight,10),2) -

50,Intersections(TrafficLight(TLight,10),3), '.g', 'MarkerSize',15)

 elseif Intersections(TrafficLight(TLight,10),6) == TLight

plot(Intersections(TrafficLight(TLight,10),2),Intersections(TrafficLight(TLight,10),3) +

50, '.g', 'MarkerSize',15)

 else

 plot(Intersections(TrafficLight(TLight,10),2) +

50,Intersections(TrafficLight(TLight,10),3), '.g', 'MarkerSize',15)

 end

 else

 if Intersections(TrafficLight(TLight,10),4) == TLight

plot(Intersections(TrafficLight(TLight,10),2),Intersections(TrafficLight(TLight,10),3) -

50, '.r', 'MarkerSize',15)

 elseif Intersections(TrafficLight(TLight,10),5) == TLight

 plot(Intersections(TrafficLight(TLight,10),2) -

50,Intersections(TrafficLight(TLight,10),3), '.r', 'MarkerSize',15)

 elseif Intersections(TrafficLight(TLight,10),6) == TLight

plot(Intersections(TrafficLight(TLight,10),2),Intersections(TrafficLight(TLight,10),3) +

50, '.r', 'MarkerSize',15)

 else

 plot(Intersections(TrafficLight(TLight,10),2) +

50,Intersections(TrafficLight(TLight,10),3), '.r', 'MarkerSize',15)

 end

 end

end

% Time to run the simulation

% v = VideoWriter('Intersection.avi');

% open(v);

% TimeMatrix = zeros(88*TotalTime,1);

% BehindMatrix = zeros(88*TotalTime,1);

% SmallMatrix = zeros(88*TotalTime,1);

% VelocityMatrix = zeros(88*TotalTime,1);

% Intersection Transition Time (Based on Lane Length and Speed Limit)

106

TransitionTime = (LaneLength*2)/ToFPS(SpeedLimit);

Allie = 1;

for j = 0:(1/timestep)*TotalTime % Total Time to Run the Simulation

%% Updating Traffic Lights

% Adaptive Traffic Signal Calculations

for III = 1:size(Intersections,1)

% Adaptive Signal from Queue Overload

if Intersections(III,8) == 2 || Intersections(III,8) == -2

 for G = 1:4

 IntChoice = Intersections(III,G + 3); % Current Direction

 DirectionIndex = find(Locations(:,5) == IntChoice);

 Stopped = zeros(length(DirectionIndex),1);

 if isempty(Stopped)

 else

 for E = 1:length(Stopped)

 if Locations(DirectionIndex(E),6) == 0

 Stopped(E) = 1;

 else

 Stopped(E) = 0;

 end

 end

 end

 if sum(Stopped) >= MaxQueue && Intersections(III,9) == 1;

 % Need to Switch the Light to a New Countdown

 % Remember to switch to the new light then countdown, dont keep

 % switching back to the new light time

 if G == 1 % Count Opposite Directions from this G

 % Right Side Furthest Car Time Calculation

 RightSide = find(Locations(:,5) == Intersections(III,7)); % Find Cars

Numbers to the Right (Direction 4)

 if isempty(RightSide)

 RightTime = 1;

 else

 [DistanceR,indexR] = max(Positions(RightSide,2));

 RightCar = RightSide(indexR,1);

 if Locations(RightCar,9) == 2 % Straight Output

 RightDistance = Intersections(III,2) + 12 +

ToFPS(CarBehavior(RightCar,3))*Yellow;

 elseif Locations(RightCar,9) == 3 % Right Output

 RightDistance = Intersections(III,2) + 6 +

ToFPS(CarBehavior(RightCar,3))*Yellow - (1/2)*CarBehavior(RightCar,4)*Yellow^2;

 elseif Locations(RightCar,9) == 1 % Left Output

 RightDistance = Intersections(III,2) + 0 +

ToFPS(CarBehavior(RightCar,3))*Yellow - (1/2)*CarBehavior(RightCar,4)*Yellow^2;

 end

 RightTime = (Positions(RightCar,2) -

RightDistance)/Positions(RightCar,5);

 end

 % Left Side Furthest Car Time Calculation

 LeftSide = find(Locations(:,5) == Intersections(III,5)); % Find Cars

Numbers to the Left (Direction 2)

 if isempty(LeftSide)

107

 LeftTime = 1;

 else

 [DistanceL,indexL] = min(Positions(LeftSide,2));

 LeftCar = LeftSide(indexL,1);

 if Locations(LeftCar,9) == 2 % Straight Output

 LeftDistance = Intersections(III,2) - 28 -

ToFPS(CarBehavior(LeftCar,3))*Yellow;

 elseif Locations(LeftCar,9) == 3 % Right Output

 LeftDistance = Intersections(III,2) - 22 -

ToFPS(CarBehavior(LeftCar,3))*Yellow + (1/2)*CarBehavior(LeftCar,4)*Yellow^2;

 elseif Locations(LeftCar,9) == 1 % Left Output

 LeftDistance = Intersections(III,2) - 16 -

ToFPS(CarBehavior(LeftCar,3))*Yellow + (1/2)*CarBehavior(LeftCar,4)*Yellow^2;

 end

 LeftTime = (LeftDistance - Positions(LeftCar,2))/Positions(LeftCar,5);

 end

 if isempty(RightTime) && isempty(LeftTime)

 LeftTime = 1;

 RightTime = 1;

 elseif isempty(RightTime)

 RightTime = 1;

 elseif isempty(LeftTime)

 LeftTime = 1;

 end

 % New Light Countdown Time (Max of Right or Left)

 NewTime = max(RightTime,LeftTime);

 if NewTime < TrafficLight(Intersections(III,5),7) || NewTime <

TrafficLight(Intersections(III,7),7)

 TrafficLight(Intersections(III,5),7) = NewTime;

 TrafficLight(Intersections(III,7),7) = NewTime;

 % If Intersection can update Load Calculation

 Intersections(III,9) = 0;

 else

 Intersections(III,9) = 0;

 end

 elseif G == 2

 % Right Side Furthest Car Time Calculation

 RightSide = find(Locations(:,5) == Intersections(III,4)); % Find Cars

Numbers to the Right (Direction 1)

 if isempty(RightSide)

 RightTime = 1;

 else

 [DistanceR,indexR] = min(Positions(RightSide,2));

 RightCar = RightSide(indexR,1);

 if Locations(RightCar,9) == 3 % Straight Output

 RightDistance = Intersections(III,3) - 28 -

ToFPS(CarBehavior(RightCar,3))*Yellow;

 elseif Locations(RightCar,9) == 4 % Right Output

 RightDistance = Intersections(III,3) - 22 -

ToFPS(CarBehavior(RightCar,3))*Yellow + (1/2)*CarBehavior(RightCar,4)*Yellow^2;

 elseif Locations(RightCar,9) == 2 % Left Output

 RightDistance = Intersections(III,3) - 16 -

ToFPS(CarBehavior(RightCar,3))*Yellow + (1/2)*CarBehavior(RightCar,4)*Yellow^2;

 end

108

 RightTime = (RightDistance -

Positions(RightCar,2))/Positions(RightCar,5);

 end

 % Left Side Furthest Car Time Calculation

 LeftSide = find(Locations(:,5) == Intersections(III,6)); % Find Cars

Numbers to the Left (Direction 3)

 if isempty(LeftSide)

 LeftTime = 1;

 else

 [DistanceL,indexL] = max(Positions(LeftSide,2));

 LeftCar = LeftSide(indexL,1);

 if Locations(LeftCar,9) == 1 % Straight Output

 LeftDistance = Intersections(III,3) + 12 +

ToFPS(CarBehavior(LeftCar,3))*Yellow;

 elseif Locations(LeftCar,9) == 2 % Right Output

 LeftDistance = Intersections(III,3) + 6 +

ToFPS(CarBehavior(LeftCar,3))*Yellow - (1/2)*CarBehavior(LeftCar,4)*Yellow^2;

 elseif Locations(LeftCar,9) == 4 % Left Output

 LeftDistance = Intersections(III,3) + 0 +

ToFPS(CarBehavior(LeftCar,3))*Yellow - (1/2)*CarBehavior(LeftCar,4)*Yellow^2;

 end

 LeftTime = (Positions(LeftCar,2) - LeftDistance)/Positions(LeftCar,5);

 end

 if isempty(RightTime) && isempty(LeftTime)

 LeftTime = 1;

 RightTime = 1;

 elseif isempty(RightTime)

 RightTime = 1;

 elseif isempty(LeftTime)

 LeftTime = 1;

 end

 % New Light Countdown Time (Max of Right or Left)

 NewTime = max(RightTime,LeftTime);

 if NewTime < TrafficLight(Intersections(III,4),7) || NewTime <

TrafficLight(Intersections(III,6),7)

 TrafficLight(Intersections(III,4),7) = NewTime;

 TrafficLight(Intersections(III,6),7) = NewTime;

 % If Intersection can update Load Calculation

 Intersections(III,9) = 0;

 else

 Intersections(III,9) = 0;

 end

 elseif G == 3

 % Right Side Furthest Car Time Calculation

 RightSide = find(Locations(:,5) == Intersections(III,5)); % Find Cars

Numbers to the Right (Direction 2)

 if isempty(RightSide)

 RightTime = 1;

 else

 [DistanceR,indexR] = min(Positions(RightSide,2));

 RightCar = RightSide(indexR,1);

 if Locations(RightCar,9) == 4 % Straight Output

 RightDistance = Intersections(III,2) - 28 -

ToFPS(CarBehavior(RightCar,3))*Yellow;

109

 elseif Locations(RightCar,9) == 1 % Right Output

 RightDistance = Intersections(III,2) - 22 -

ToFPS(CarBehavior(RightCar,3))*Yellow + (1/2)*CarBehavior(RightCar,4)*Yellow^2;

 elseif Locations(RightCar,9) == 3 % Left Output

 RightDistance = Intersections(III,2) - 16 -

ToFPS(CarBehavior(RightCar,3))*Yellow + (1/2)*CarBehavior(RightCar,4)*Yellow^2;

 end

 RightTime = (RightDistance -

Positions(RightCar,2))/Positions(RightCar,5);

 end

 % Left Side Furthest Car Time Calculation

 LeftSide = find(Locations(:,5) == Intersections(III,7)); % Find Cars

Numbers to the Left (Direction 4)

 if isempty(LeftSide)

 LeftTime = 1;

 else

 [DistanceL,indexL] = max(Positions(LeftSide,2));

 LeftCar = LeftSide(indexL,1);

 if Locations(LeftCar,9) == 2 % Straight Output

 LeftDistance = Intersections(III,2) + 12 +

ToFPS(CarBehavior(LeftCar,3))*Yellow;

 elseif Locations(LeftCar,9) == 3 % Right Output

 LeftDistance = Intersections(III,2) + 6 +

ToFPS(CarBehavior(LeftCar,3))*Yellow - (1/2)*CarBehavior(LeftCar,4)*Yellow^2;

 elseif Locations(LeftCar,9) == 1 % Left Output

 LeftDistance = Intersections(III,2) + 0 +

ToFPS(CarBehavior(LeftCar,3))*Yellow - (1/2)*CarBehavior(LeftCar,4)*Yellow^2;

 end

 LeftTime = (Positions(LeftCar,2) - LeftDistance)/Positions(LeftCar,5);

 end

 if isempty(RightTime) && isempty(LeftTime)

 LeftTime = 1;

 RightTime = 1;

 elseif isempty(RightTime)

 RightTime = 1;

 elseif isempty(LeftTime)

 LeftTime = 1;

 end

 % New Light Countdown Time (Max of Right or Left)

 NewTime = max(RightTime,LeftTime);

 if NewTime < TrafficLight(Intersections(III,5),7) || NewTime <

TrafficLight(Intersections(III,7),7)

 TrafficLight(Intersections(III,5),7) = NewTime;

 TrafficLight(Intersections(III,7),7) = NewTime;

 % If Intersection can update Load Calculation

 Intersections(III,9) = 0;

 else

 Intersections(III,9) = 0;

 end

 else

 % Right Side Furthest Car Time Calculation

 RightSide = find(Locations(:,5) == Intersections(III,6)); % Find Cars

Numbers to the Right (Direction 3)

 if isempty(RightSide)

 RightTime = 1;

110

 else

 [DistanceR,indexR] = max(Positions(RightSide,2));

 RightCar = RightSide(indexR,1);

 if Locations(RightCar,9) == 1 % Straight Output

 RightDistance = Intersections(III,3) + 12 +

ToFPS(CarBehavior(RightCar,3))*Yellow;

 elseif Locations(RightCar,9) == 2 % Right Output

 RightDistance = Intersections(III,3) + 6 +

ToFPS(CarBehavior(RightCar,3))*Yellow - (1/2)*CarBehavior(RightCar,4)*Yellow^2;

 elseif Locations(RightCar,9) == 4 % Left Output

 RightDistance = Intersections(III,3) + 0 +

ToFPS(CarBehavior(RightCar,3))*Yellow - (1/2)*CarBehavior(RightCar,4)*Yellow^2;

 end

 RightTime = (Positions(RightCar,2) -

RightDistance)/Positions(RightCar,5);

 end

 % Left Side Furthest Car Time Calculation

 LeftSide = find(Locations(:,5) == Intersections(III,4)); % Find Cars

Numbers to the Left (Direction 1)

 if isempty(LeftSide)

 LeftTime = 1;

 else

 [DistanceL,indexL] = min(Positions(LeftSide,2));

 LeftCar = LeftSide(indexL,1);

 if Locations(LeftCar,9) == 3 % Straight Output

 LeftDistance = Intersections(III,3) - 28 -

ToFPS(CarBehavior(LeftCar,3))*Yellow;

 elseif Locations(LeftCar,9) == 4 % Right Output

 LeftDistance = Intersections(III,3) - 22 -

ToFPS(CarBehavior(LeftCar,3))*Yellow + (1/2)*CarBehavior(LeftCar,4)*Yellow^2;

 elseif Locations(LeftCar,9) == 2 % Left Output

 LeftDistance = Intersections(III,3) - 16 -

ToFPS(CarBehavior(LeftCar,3))*Yellow + (1/2)*CarBehavior(LeftCar,4)*Yellow^2;

 end

 LeftTime = (LeftDistance - Positions(LeftCar,2))/Positions(LeftCar,5);

 end

 if isempty(RightTime) && isempty(LeftTime)

 LeftTime = 1;

 RightTime = 1;

 elseif isempty(RightTime)

 RightTime = 1;

 elseif isempty(LeftTime)

 LeftTime = 1;

 end

 % New Light Countdown Time (Max of Right or Left)

 NewTime = max(RightTime,LeftTime);

 if NewTime < TrafficLight(Intersections(III,4),7) || NewTime <

TrafficLight(Intersections(III,6),7)

 TrafficLight(Intersections(III,4),7) = NewTime;

 TrafficLight(Intersections(III,6),7) = NewTime;

 % If Intersection can update Load Calculation

 Intersections(III,9) = 0;

 else

 Intersections(III,9) = 0;

 end

 end

 end

111

 end

end

% Intelligent Traffic Signal Calculations from Neighboring Lights

 % (Only update if signal timing is bigger than the actual car load time calculation)

if Intersections(III,9) == 1

 if Intersections(III,8) == 1 && TrafficLight(Intersections(III,4),7) == Yellow

 if Intersections(III,2) < max(Intersections(:,2)) && Intersections(III,3) >

min(Intersections(:,3))

 if Green > TransitionTime

 TrafficLight(Intersections(III + 1,4),7) = TransitionTime;

 TrafficLight(Intersections(III + 1,6),7) = TransitionTime;

 TrafficLight(Intersections(III + Columns,4),7) = TransitionTime;

 TrafficLight(Intersections(III + Columns,6),7) = TransitionTime;

 else

 TrafficLight(Intersections(III + 1,4),7) = Green;

 TrafficLight(Intersections(III + 1,6),7) = Green;

 TrafficLight(Intersections(III + Columns,4),7) = Green;

 TrafficLight(Intersections(III + Columns,6),7) = Green;

 end

 elseif Intersections(III,2) == max(Intersections(:,2)) && Intersections(III,3) ==

min(Intersections(:,3))

 % Do Nothing

 elseif Intersections(III,2) == max(Intersections(:,2)) || Intersections(III,3) ==

min(Intersections(:,3))

 if Intersections(III,2) == max(Intersections(:,2))

 if Green > TransitionTime

 TrafficLight(Intersections(III + Columns,4),7) = TransitionTime;

 TrafficLight(Intersections(III + Columns,6),7) = TransitionTime;

 else

 TrafficLight(Intersections(III + Columns,4),7) = Green;

 TrafficLight(Intersections(III + Columns,6),7) = Green;

 end

 else

 if Green > TransitionTime

 TrafficLight(Intersections(III + 1,4),7) = TransitionTime;

 TrafficLight(Intersections(III + 1,6),7) = TransitionTime;

 else

 TrafficLight(Intersections(III + 1,4),7) = Green;

 TrafficLight(Intersections(III + 1,6),7) = Green;

 end

 end

 end

% West and East Direction Light Configuration

 elseif Intersections(III,8) == -1 && TrafficLight(Intersections(III,5),7) == Yellow

 if Intersections(III,2) < max(Intersections(:,2)) && Intersections(III,3) >

min(Intersections(:,3))

 if Green > TransitionTime

 TrafficLight(Intersections(III + 1,5),7) = TransitionTime;

 TrafficLight(Intersections(III + 1,7),7) = TransitionTime;

 TrafficLight(Intersections(III + Columns,5),7) = TransitionTime;

 TrafficLight(Intersections(III + Columns,7),7) = TransitionTime;

 else

 TrafficLight(Intersections(III + 1,5),7) = Green;

 TrafficLight(Intersections(III + 1,7),7) = Green;

 TrafficLight(Intersections(III + Columns,5),7) = Green;

 TrafficLight(Intersections(III + Columns,7),7) = Green;

 end

112

 elseif Intersections(III,2) == max(Intersections(:,2)) && Intersections(III,3) ==

min(Intersections(:,3))

 % Do Nothing

 elseif Intersections(III,2) == max(Intersections(:,2)) || Intersections(III,3) ==

min(Intersections(:,3))

 if Intersections(III,2) == max(Intersections(:,2))

 if Green > TransitionTime

 TrafficLight(Intersections(III + Columns,5),7) = TransitionTime;

 TrafficLight(Intersections(III + Columns,7),7) = TransitionTime;

 else

 TrafficLight(Intersections(III + Columns,5),7) = Green;

 TrafficLight(Intersections(III + Columns,7),7) = Green;

 end

 else

 if Green > TransitionTime

 TrafficLight(Intersections(III + 1,5),7) = TransitionTime;

 TrafficLight(Intersections(III + 1,7),7) = TransitionTime;

 else

 TrafficLight(Intersections(III + 1,5),7) = Green;

 TrafficLight(Intersections(III + 1,7),7) = Green;

 end

 end

 end

 end

else

end

end

% Traffic Light Operation From Intelligent Calculations

for T = 1:size(TrafficLight,1)

 if TrafficLight(T,7) >= 0 % Counting down Green Light

 TrafficLight(T,7) = TrafficLight(T,7) - timestep;

 elseif TrafficLight(T,2) == 2 && TrafficLight(T,7) <= 0 % Changing Green to Yellow

 TrafficLight(T,2) = 1;

 TrafficLight(T,7) = Yellow;

if Simulation == 1

 if Intersections(TrafficLight(T,10),4) == T

 plot(Intersections(TrafficLight(T,10),2),Intersections(TrafficLight(T,10),3)

- 50, '.y', 'MarkerSize',15)

 elseif Intersections(TrafficLight(T,10),5) == T

 plot(Intersections(TrafficLight(T,10),2) -

50,Intersections(TrafficLight(T,10),3), '.y', 'MarkerSize',15)

 elseif Intersections(TrafficLight(T,10),6) == T

 plot(Intersections(TrafficLight(T,10),2),Intersections(TrafficLight(T,10),3)

+ 50, '.y', 'MarkerSize',15)

 else

 plot(Intersections(TrafficLight(T,10),2) +

50,Intersections(TrafficLight(T,10),3), '.y', 'MarkerSize',15)

 end

end

 elseif TrafficLight(T,2) == 1 && TrafficLight(T,7) <= 0 && TrafficLight(T,8) == 1 %

Changing Yellow to Red

 TrafficLight(T,2) = 0;

 TrafficLight(T,7) = 0;

 TrafficLight(T,8) = 0;

113

 TrafficLight(TrafficLight(T,4),8) = 1; % Light to left Indicator at 1

if Simulation == 1

 if Intersections(TrafficLight(T,10),4) == T

 plot(Intersections(TrafficLight(T,10),2),Intersections(TrafficLight(T,10),3)

- 50, '.r', 'MarkerSize',15)

 elseif Intersections(TrafficLight(T,10),5) == T

 plot(Intersections(TrafficLight(T,10),2) -

50,Intersections(TrafficLight(T,10),3), '.r', 'MarkerSize',15)

 elseif Intersections(TrafficLight(T,10),6) == T

 plot(Intersections(TrafficLight(T,10),2),Intersections(TrafficLight(T,10),3)

+ 50, '.r', 'MarkerSize',15)

 else

 plot(Intersections(TrafficLight(T,10),2) +

50,Intersections(TrafficLight(T,10),3), '.r', 'MarkerSize',15)

 end

end

 elseif T > TrafficLight(T,5) && TrafficLight(T,2) == 0 && TrafficLight(T,7) <= 0 &&

TrafficLight(T,8) == 1 && TrafficLight(T,9) == 0 && TrafficLight(TrafficLight(T,5),8) ==

1

 TrafficLight(T,7) = Red;

 TrafficLight(T,9) = 1;

 TrafficLight(TrafficLight(T,5),7) = Red;

 TrafficLight(TrafficLight(T,5),9) = 1;

 TrafficLight(TrafficLight(T,4),9) = 0;

 TrafficLight(TrafficLight(T,6),9) = 0;

 elseif T > TrafficLight(T,5) && TrafficLight(T,2) == 0 && TrafficLight(T,7) <= 0 &&

TrafficLight(T,8) == 1 && TrafficLight(T,9) == 1 && TrafficLight(TrafficLight(T,5),9) ==

1

 TrafficLight(T,2) = 2;

 TrafficLight(T,7) = Green;

 TrafficLight(TrafficLight(T,5),2) = 2;

 TrafficLight(TrafficLight(T,5),7) = Green;

 Intersections(TrafficLight(T,10),9) = 1;

if Simulation == 1

 if Intersections(TrafficLight(T,10),4) == T

 plot(Intersections(TrafficLight(T,10),2),Intersections(TrafficLight(T,10),3)

- 50, '.g', 'MarkerSize',15)

 elseif Intersections(TrafficLight(T,10),5) == T

 plot(Intersections(TrafficLight(T,10),2) -

50,Intersections(TrafficLight(T,10),3), '.g', 'MarkerSize',15)

 elseif Intersections(TrafficLight(T,10),6) == T

 plot(Intersections(TrafficLight(T,10),2),Intersections(TrafficLight(T,10),3)

+ 50, '.g', 'MarkerSize',15)

 else

 plot(Intersections(TrafficLight(T,10),2) +

50,Intersections(TrafficLight(T,10),3), '.g', 'MarkerSize',15)

 end

 if Intersections(TrafficLight(T - 2,10),4) == T - 2

 plot(Intersections(TrafficLight(T - 2,10),2),Intersections(TrafficLight(T -

2,10),3) - 50, '.g', 'MarkerSize',15)

 elseif Intersections(TrafficLight(T - 2,10),5) == T - 2

 plot(Intersections(TrafficLight(T - 2,10),2) -

50,Intersections(TrafficLight(T - 2,10),3), '.g', 'MarkerSize',15)

 elseif Intersections(TrafficLight(T - 2,10),6) == T - 2

 plot(Intersections(TrafficLight(T - 2,10),2),Intersections(TrafficLight(T -

2,10),3) + 50, '.g', 'MarkerSize',15)

114

 else

 plot(Intersections(TrafficLight(T - 2,10),2) +

50,Intersections(TrafficLight(T - 2,10),3), '.g', 'MarkerSize',15)

 end

end

 end

 % Filling in Light Status Matrix

 LightStatus(j + 2,1) = j*timestep;

 LightStatus(j + 2,T + 1) = TrafficLight(T,2);

end

% Updating Intersection Direction Change

for III = 1:size(Intersections,1)

 if TrafficLight(Intersections(III,4),2) == 2 || TrafficLight(Intersections(III,6),2)

== 2

 Intersections(III,8) = 2;

 elseif TrafficLight(Intersections(III,4),2) == 1 ||

TrafficLight(Intersections(III,6),2) == 1

 Intersections(III,8) = 1;

 elseif TrafficLight(Intersections(III,5),2) == 2 ||

TrafficLight(Intersections(III,7),2) == 2

 Intersections(III,8) = -2;

 elseif TrafficLight(Intersections(III,5),2) == 1 ||

TrafficLight(Intersections(III,7),2) == 1

 Intersections(III,8) = -1;

 else

 Intersections(III,8) = 0;

 end

end

TrafficLight;

Intersections;

 for k = 1:Cars

%% Transition when Changing Direction

% Intersection Location

IntNumber = Locations(k,7);

IntX = Intersections(IntNumber,2);

IntY = Intersections(IntNumber,3);

if Locations(k,8) == 1 && Locations(k,9) ~= 3

 if Locations(k,9) == 4 && Positions(k,2) >= IntY - 22

 Positions(k,2) = IntX + 5;

 Locations(k,3) = IntY - 9;

 Locations(k,5) = Intersections(IntNumber,5);

 Locations(k,8) = 2;

 Locations(k,9) = 4;

 Light(k,2) = 5;

 elseif Locations(k,9) == 2 && Positions(k,2) >= IntY - 10

 Positions(k,2) = IntX - 11;

115

 Locations(k,3) = IntY + 3;

 Locations(k,5) = Intersections(IntNumber,7);

 Locations(k,8) = 4;

 Locations(k,9) = 2;

 Light(k,2) = 5;

 end

elseif Locations(k,8) == 2 && Locations(k,9) ~= 4

 if Locations(k,9) == 1 && Positions(k,2) >= IntX - 22

 Positions(k,2) = IntY - 21;

 Locations(k,2) = IntX - 9;

 Locations(k,5) = Intersections(IntNumber,6);

 Locations(k,8) = 3;

 Locations(k,9) = 1;

 Light(k,2) = 5;

 elseif Locations(k,9) == 3 && Positions(k,2) >= IntX - 10

 Positions(k,2) = IntY - 5;

 Locations(k,2) = IntX + 3;

 Locations(k,5) = Intersections(IntNumber,4);

 Locations(k,8) = 1;

 Locations(k,9) = 3;

 Light(k,2) = 5;

 end

elseif Locations(k,8) == 3 && Locations(k,9) ~= 1

 if Locations(k,9) == 2 && Positions(k,2) <= IntY + 6

 Positions(k,2) = IntX - 21;

 Locations(k,3) = IntY + 3;

 Locations(k,5) = Intersections(IntNumber,7);

 Locations(k,8) = 4;

 Locations(k,9) = 2;

 Light(k,2) = 5;

 elseif Locations(k,9) == 4 && Positions(k,2) <= IntY - 6

 Positions(k,2) = IntX - 5;

 Locations(k,3) = IntY - 9;

 Locations(k,5) = Intersections(IntNumber,5);

 Locations(k,8) = 2;

 Locations(k,9) = 4;

 Light(k,2) = 5;

 end

elseif Locations(k,8) == 4 && Locations(k,9) ~= 2

 if Locations(k,9) == 3 && Positions(k,2) <= IntX + 6

 Positions(k,2) = IntY + 5;

 Locations(k,2) = IntX + 3;

 Locations(k,5) = Intersections(IntNumber,4);

 Locations(k,8) = 1;

 Locations(k,9) = 3;

 Light(k,2) = 5;

 elseif Locations(k,9) == 1 && Positions(k,2) <= IntX - 6

 Positions(k,2) = IntY - 11;

 Locations(k,2) = IntX - 9;

 Locations(k,5) = Intersections(IntNumber,6);

 Locations(k,8) = 3;

 Locations(k,9) = 1;

 Light(k,2) = 5;

 end

end

116

%% Ensuring one car does not run into the car directly in front

 % Find the location where the directions are the same

 Direct = find(Locations(:,5) == Locations(k,5));

 % Create the new matrix for same direction data

 Check = zeros(length(Direct),9);

 Check(1,:) = Locations(k,:); % Plot the first line

 % Delete Location where it is the same as the first line

 X = find(Direct(:) == Locations(k,1));

 Direct(X, :) = [];

 % Place rest of similar direction data into the check matrix

 for z = 1:length(Direct)

 Check(z + 1,:) = Locations(Direct(z),:);

 end

% Find which car is directly in front based on initial direction

% and have it slow down to the speed of front car if necessary

 if Check(1,8) == 1

 % Create initial matrix to fill in distance values

 Distance = zeros(length(Direct),1);

 for m = 1:length(Direct)

 % Check the distance of each car relative to the first

 Distance(m) = Check(m + 1,3) - Check(1,3);

 end

 % Make sure the values is only considered as greater than 0 but

 % that the index considers all locations

 Small = min(Distance(Distance > 0));

 elseif Check(1,8) == 2

 % Create initial matrix to fill in distance values

 Distance = zeros(length(Direct),1);

 for m = 1:length(Direct)

 % Check the distance of each car relative to the first

 Distance(m) = Check(m + 1,2) - Check(1,2);

 end

 % Make sure the values is only considered as greater than 0 but

 % that the index considers all locations

 Small = min(Distance(Distance > 0));

 elseif Check(1,8) == 3

 % Create initial matrix to fill in distance values

 Distance = zeros(length(Direct),1);

 for m = 1:length(Direct)

 % Check the distance of each car relative to the first

 Distance(m) = Check(1,3) - Check(m + 1,3);

 end

 % Make sure the values is only considered as greater than 0 but

 % that the index considers all locations

 Small = min(Distance(Distance > 0));

 else

 % Create initial matrix to fill in distance values

 Distance = zeros(length(Direct),1);

117

 for m = 1:length(Direct)

 % Check the distance of each car relative to the first

 Distance(m) = Check(1,2) - Check(m + 1,2);

 end

 % Make sure the values is only considered as greater than 0 but

 % that the index considers all locations

 Small = min(Distance(Distance > 0));

 end

 if isempty(Small) % No cars in front of the current car

 if Positions(k,5) < ToFPS(CarBehavior(k,3)) && Positions(k,5) >= 0

 DistanceAccel = CarBehavior(k,4);

 Time(k,2) = 0;

 else

 DistanceAccel = 0;

 Time(k,2) = Inf;

 end

 else

Index = find(Distance == Small);

% Front and Back Car Numbers

FC = Check(Index+1,1); % Number of the car in front

BC = Check(1,1); % Number of the back car (current car) = k

if k > FC

% Calculation for Current Time Behind and Desired Initial Time

[Current,Initial] = BehindTime(Positions(FC,3),Positions(k,2),Positions(FC,6),...

Positions(k,5),ToFPS(CarBehavior(k,3)),CarBehavior(k,4),CarBehavior(k,5),CarLength,Locati

ons(k,5));

Time(k,2) = Current;

Time(k,5) = Initial;

% Appropriate Acceleration Calculation

Accel =

Acceleration(Positions(FC,3),Positions(k,2),Positions(k,5),CarBehavior(k,5),Locations(k,5

));

% Desired Velocity and Time Errors

TimeError = abs(Current - CarBehavior(k,5));

VelocityError = Positions(k,5) - Positions(FC,6);

% Acceleration Calculation

[DistanceAccel] = CarInFront(Positions(FC,6),Positions(k,5),...

 CarBehavior(k,4),Current,Time(k,3),Initial,CarBehavior(k,5),...

 ToFPS(CarBehavior(k,3)),TimeError,VelocityError,Accel);

else % If the Back Car is a lower number than the front car

% Calculation for Current Time Behind and Desired Initial Time

[Current,Initial] = BehindTime(Positions(FC,2),Positions(k,2),Positions(FC,5),...

Positions(k,5),ToFPS(CarBehavior(k,3)),CarBehavior(k,4),CarBehavior(k,5),CarLength,Locati

ons(k,5));

118

Time(k,2) = Current;

Time(k,5) = Initial;

% Appropriate Acceleration Calculation

Accel =

Acceleration(Positions(FC,2),Positions(k,2),Positions(k,5),CarBehavior(k,5),Locations(k,5

));

% Desired Velocity and Time Errors

TimeError = abs(Current - CarBehavior(k,5));

VelocityError = Positions(k,5) - Positions(FC,5);

% Acceleration Calculation

[DistanceAccel] = CarInFront(Positions(FC,5),Positions(k,5),...

 CarBehavior(k,4),Current,Time(k,3),Initial,CarBehavior(k,5),...

 ToFPS(CarBehavior(k,3)),TimeError,VelocityError,Accel);

end

 end

%% Decision at Instant Occurance of Yellow Light

if TrafficLight(Locations(k,5),2) == 1 && TrafficLight(Locations(k,5),7) == Yellow

 [Decision,xii] =

LightTime(Positions(k,2),Locations(k,8),Positions(k,5),Yellow,CarBehavior(k,4),Locations(

k,9),IntX,IntY);

 Light(k,2) = Decision;

 Light(k,9) = xii;

end

% if Locations(k,8) == 1

% [Decision,xii] =

LightTime(Positions(k,2),Locations(k,8),Positions(k,5),Yellow,CarBehavior(k,4),Locations(

k,9),IntX,IntY);

% Light(k,2) = Decision;

% Light(k,9) = xii;

% elseif Locations(k,8) == 3

% [Decision,xii] =

LightTime(Positions(k,2),Locations(k,8),Positions(k,5),Yellow,CarBehavior(k,4),Locations(

k,9),IntX,IntY);

% Light(k,2) = Decision;

% Light(k,9) = xii;

% end

%

%

%

% if Locations(k,8) == 2

% [Decision,xii] =

LightTime(Positions(k,2),Locations(k,8),Positions(k,5),Yellow,CarBehavior(k,4),Locations(

k,9),IntX,IntY);

% Light(k,2) = Decision;

% Light(k,9) = xii;

% elseif Locations(k,8) == 4

% [Decision,xii] =

LightTime(Positions(k,2),Locations(k,8),Positions(k,5),Yellow,CarBehavior(k,4),Locations(

k,9),IntX,IntY);

% Light(k,2) = Decision;

% Light(k,9) = xii;

% end

119

%% Straight Proceed Light Status Acceleration

% Calculate initial slowing down position

if Locations(k,8) == 1

 xi = Light(k,6) - (Positions(k,5))^2/(2*CarBehavior(k,4));

 Light(k,5) = xi; % Starting position for slowing down before the light

 if TrafficLight(Locations(k,5),2) == 0 % Red Light

 if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 &&

Positions(k,2) >= Light(k,6) - 1

 LightAccel = 0;

 Positions(k,5) = 0;

 elseif Positions(k,2) >= Light(k,5) && Light(k,2) == 4

 LightAccel = -Positions(k,5)^2/(2*(Light(k,6) - Positions(k,2)));

 elseif Positions(k,2) < Light(k,5) && Positions(k,5) < ToFPS(CarBehavior(k,3)) &&

Light(k,2) == 4

 LightAccel = CarBehavior(k,4);

 end

 elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light

 if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 &&

Positions(k,2) >= Light(k,6) - 1

 LightAccel = 0;

 Positions(k,5) = 0;

 elseif Light(k,2) == 4 && Positions(k,2) >= Light(k,5)

 LightAccel = -Positions(k,5)^2/(2*(Light(k,6) - Positions(k,2)));

 elseif Light(k,2) == 3

 LightAccel = 0; % Adjust for Faster Acceleration

 elseif Light(k,2) == 2

 LightAccel = 0;

 end

 else % Green Light

 if Time(k,2) == Inf || Time(k,2) < 0 || Time(k,5) == 0

 LightAccel = CarBehavior(k,4);

 end

 end

elseif Locations(k,8) == 2

 xi = Light(k,6) - (Positions(k,5))^2/(2*CarBehavior(k,4));

 Light(k,5) = xi; % Starting position for slowing down before the light

 if TrafficLight(Locations(k,5),2) == 0 % Red Light

 if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 &&

Positions(k,2) >= Light(k,6) - 1

 LightAccel = 0;

 Positions(k,5) = 0;

 elseif Positions(k,2) >= Light(k,5) && Light(k,2) == 4

 LightAccel = -Positions(k,5)^2/(2*(Light(k,6) - Positions(k,2)));

 elseif Positions(k,2) < Light(k,5) && Positions(k,5) < ToFPS(CarBehavior(k,3)) &&

Light(k,2) == 4

 LightAccel = CarBehavior(k,4);

 end

 elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light

 if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 &&

Positions(k,2) >= Light(k,6) - 1

 LightAccel = 0;

 Positions(k,5) = 0;

 elseif Light(k,2) == 4 && Positions(k,2) >= Light(k,5)

120

 LightAccel = -Positions(k,5)^2/(2*(Light(k,6) - Positions(k,2)));

 elseif Light(k,2) == 3

 LightAccel = 0; % Adjust for Faster Acceleration

 elseif Light(k,2) == 2

 LightAccel = 0;

 end

 else % Green Light

 if Time(k,2) == Inf || Time(k,2) < 0 || Time(k,5) == 0

 LightAccel = CarBehavior(k,4);

 end

 end

elseif Locations(k,8) == 3

 xi = Light(k,6) + (Positions(k,5))^2/(2*CarBehavior(k,4));

 Light(k,5) = xi; % Starting position for slowing down before the light

 if TrafficLight(Locations(k,5),2) == 0 % Red Light

 if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 &&

Positions(k,2) >= Light(k,6) - 1

 LightAccel = 0;

 Positions(k,5) = 0;

 elseif Positions(k,2) <= Light(k,5) && Light(k,2) == 4

 LightAccel = -Positions(k,5)^2/(2*(-Light(k,6) + Positions(k,2)));

 elseif Positions(k,2) > Light(k,5) && Positions(k,5) < ToFPS(CarBehavior(k,3)) &&

Light(k,2) == 4

 LightAccel = CarBehavior(k,4);

 end

 elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light

 if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 &&

Positions(k,2) >= Light(k,6) - 1

 LightAccel = 0;

 Positions(k,5) = 0;

 elseif Light(k,2) == 4 && Positions(k,2) <= Light(k,5)

 LightAccel = -Positions(k,5)^2/(2*(-Light(k,6) + Positions(k,2)));

 elseif Light(k,2) == 3

 LightAccel = 0; % Adjust for Faster Acceleration

 elseif Light(k,2) == 2

 LightAccel = 0;

 end

 else % Green Light

 if Time(k,2) == Inf || Time(k,2) < 0 || Time(k,5) == 0

 LightAccel = CarBehavior(k,4);

 end

 end

else

 xi = Light(k,6) + (Positions(k,5))^2/(2*CarBehavior(k,4));

 Light(k,5) = xi; % Starting position for slowing down before the light

 if TrafficLight(Locations(k,5),2) == 0 % Red Light

 if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 &&

Positions(k,2) >= Light(k,6) - 1

 LightAccel = 0;

 Positions(k,5) = 0;

 elseif Positions(k,2) <= Light(k,5) && Light(k,2) == 4

 LightAccel = -Positions(k,5)^2/(2*(-Light(k,6) + Positions(k,2)));

 elseif Positions(k,2) > Light(k,5) && Positions(k,5) < ToFPS(CarBehavior(k,3)) &&

Light(k,2) == 4

 LightAccel = CarBehavior(k,4);

 end

121

 elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light

 if Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) + 1 &&

Positions(k,2) >= Light(k,6) - 1

 LightAccel = 0;

 Positions(k,5) = 0;

 elseif Light(k,2) == 4 && Positions(k,2) <= Light(k,5)

 LightAccel = -Positions(k,5)^2/(2*(-Light(k,6) + Positions(k,2)));

 elseif Light(k,2) == 3

 LightAccel = 0; % Adjust for Faster Acceleration

 elseif Light(k,2) == 2

 LightAccel = 0;

 end

 else % Green Light

 if Time(k,2) == Inf || Time(k,2) < 0 || Time(k,5) == 0

 LightAccel = CarBehavior(k,4);

 end

 end

end

%% Changing Directions at the Intersection (Right Turn Acceleration)

if Locations(k,8) == 1

 if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 %

Green/Yellow Light

 xi = IntY - 28 - ((Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4))); %

Look at this calculation

 Light(k,7) = xi; % Starting position for slowing down before the light

 if Light(k,2) == 3 && Positions(k,2) < Light(k,9)

 TurnAccel = 0; % Stay Fast until Rushed Decceleration

 elseif Light(k,2) == 3 && Positions(k,2) >= Light(k,9)

 TurnAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration

 if j == 5;

 end

 elseif Positions(k,2) >= Light(k,7) && Positions(k,2) < IntY - 28

 TurnAccel = -CarBehavior(k,4);

 else

 TurnAccel = 0;

 end

 else

 TurnAccel = (0 - Positions(k,5)^2)/(2*(Light(k,6) - Positions(k,2))); % Red

Light

 end

elseif Locations(k,8) == 2

 if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 %

Green/Yellow Light

 xi = IntX - 28 - ((Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4))); %

Look at this calculation

 Light(k,7) = xi; % Starting position for slowing down before the light

 if Light(k,2) == 3 && Positions(k,2) < Light(k,9)

 TurnAccel = 0; % Stay Fast until Rushed Decceleration

 elseif Light(k,2) == 3 && Positions(k,2) >= Light(k,9)

 TurnAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration

 elseif Positions(k,2) >= Light(k,7) && Positions(k,2) < IntX - 28

 TurnAccel = -CarBehavior(k,4);

 else

 TurnAccel = 0;

 end

 else

 TurnAccel = (0 - Positions(k,5)^2)/(2*(Light(k,6) - Positions(k,2))); % Red

Light

122

 end

elseif Locations(k,8) == 3

 if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 %

Green/Yellow Light

 xi = IntY + 12 + ((Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4))); %

Look at this calculation

 Light(k,7) = xi; % Starting position for slowing down before the light

 if Light(k,2) == 3 && Positions(k,2) > Light(k,9)

 TurnAccel = 0; % Stay Fast until Rushed Decceleration

 elseif Light(k,2) == 3 && Positions(k,2) <= Light(k,9)

 TurnAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration

 elseif Positions(k,2) <= Light(k,7) && Positions(k,2) > IntY + 12

 TurnAccel = -CarBehavior(k,4);

 else

 TurnAccel = 0;

 end

 else

 TurnAccel = (0 - Positions(k,5)^2)/(2*(-Light(k,6) + Positions(k,2))); % Red

Light

 end

else

 if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 %

Green/Yellow Light

 xi = IntX + 12 + ((Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4))); %

Look at this calculation

 Light(k,7) = xi; % Starting position for slowing down before the light

 if Light(k,2) == 3 && Positions(k,2) > Light(k,9)

 TurnAccel = 0; % Stay Fast until Rushed Decceleration

 elseif Light(k,2) == 3 && Positions(k,2) <= Light(k,9)

 TurnAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration

 elseif Positions(k,2) <= Light(k,7) && Positions(k,2) > IntX + 12

 TurnAccel = -CarBehavior(k,4);

 else

 TurnAccel = 0;

 end

 else

 TurnAccel = (0 - Positions(k,5)^2)/(2*(-Light(k,6) + Positions(k,2))); % Red

Light

 end

end

%% Yielding at the Intersection (Left Turn Acceleration)

if Locations(k,8) == 1

 if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 ||

TrafficLight(Locations(k,5),2) == 0

 xi = IntY - 20 - (Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4));

 Light(k,8) = xi; % Starting position for slowing down before the light

 % Adjust the xi for other directions

 if Light(k,2) == 3 && Positions(k,2) < Light(k,9)

 YieldAccel = 0; % Stay Fast until Rushed Decceleration

 elseif Light(k,2) == 3 && Positions(k,2) >= Light(k,9)

 YieldAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration

 if j == 5;

 end

 elseif Positions(k,2) >= IntY - 20 && Positions(k,2) < IntY - 10 % Yielding

to Opposing Traffic

123

 % Check Traffic in Opposite Direction

 % Find the location where the direction is opposite

 Opposite = find(Locations(:,5) == Intersections(IntNumber,6));

 % Create the new matrix for opposite direction data

 Yield = zeros(length(Opposite),9);

 % Yield(1,:) = Light(k,:); % Plot the first line

 % Delete Location where it is the same as the first line

 Y = find(Opposite(:) == Light(k,1));

 Opposite(Y, :) = [];

 % Check if there are cars near the intersection in the

 % opposite direction

 if isempty(Opposite)

 pp = 0;

 else

 pp = 0;

 for z = 1:length(Opposite)

 if Light(Opposite(z),2) == 4 || Light(Opposite(z),2) == 5

 pp = pp + 0;

 else

 pp = pp + 1;

 end

 end

 end

 if pp == 0 && Positions(k,2) >= IntY - 20 && Positions(k,2) < IntY - 11

&& Positions(k,5) >= ToFPS(10)

 YieldAccel = 0;

 elseif pp >= 1 && Positions(k,2) >= IntY - 20 && Positions(k,2) < IntY -

11

 YieldAccel = (Positions(k,5)^2)/(2*(Positions(k,2) + IntY + 11));

 elseif pp == 0 && Positions(k,2) >= IntY - 20 && Positions(k,2) < IntY -

11 && Positions(k,5) < ToFPS(10)

 YieldAccel = CarBehavior(k,4);

 elseif pp >= 1 && Positions(k,2) > IntY - 12 && Positions(k,2) < IntY -

11

 YieldAccel = 0;

 Positions(k,5) = 0;

 elseif pp == 0 && Positions(k,2) > IntY - 11

 if Positions(k,5) > 1 && Positions(k,5) <= 2

 YieldAccel = 0;

 elseif Positions(k,5) > 2

 YieldAccel = -CarBehavior(k,4);

 else

 YieldAccel = 0;

 Positions(k,5) = 1;

 end

 elseif pp >= 1 && Positions(k,2) > IntY - 11 && Locations(k,4) ==

Intersections(IntNumber,5); % Watch for unsolvable Yield Accel

 YieldAccel = 0;

 Positions(k,5) = 2;

 end

 elseif Positions(k,2) >= Light(k,8) && Positions(k,2) < IntY - 20

 YieldAccel = -CarBehavior(k,4);

 else

 YieldAccel = 0;

 end

 end

elseif Locations(k,8) == 2

124

% if TrafficLight(2,2) == 2 || TrafficLight(2,2) == 1

% xi = -20 - (Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4));

% Light(k,8) = xi; % Starting position for slowing down before the light

% % Adjust the xi for other directions

%

% if Light(k,2) == 3 && Positions(k,2) < Light(k,9)

% YieldAccel = 0; % Stay Fast until Rushed Decceleration

% elseif Light(k,2) == 3 && Positions(k,2) >= Light(k,9)

% YieldAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration

% if j == 5;

% end

%

%

% elseif Positions(k,2) >= -20 && Positions(k,2) < -10 % Yielding to Opposing

Traffic

% % Check Traffic in Opposite Direction

%

% % Find the location where the direction is opposite

% Opposite = find(Locations(:,5) == 3);

% % Create the new matrix for opposite direction data

% Yield = zeros(length(Opposite),9);

% % Yield(1,:) = Light(k,:); % Plot the first line

%

% % Delete Location where it is the same as the first line

% Y = find(Opposite(:) == Light(k,1));

% Opposite(Y, :) = [];

%

%

% if isempty(Opposite)

% pp = 0;

% else

% pp = 0;

% for z = 1:length(Opposite)

%

% if Positions(Opposite(z),2) > 100 || Positions(Opposite(z),2)

< 0

% pp = pp + 0;

% else

% pp = pp + 1;

% end

% end

% end

%

%

%

% if pp == 0 && Positions(k,5) < 14 % If none of the opposite cars,

proceed with the yield

% YieldAccel = CarBehavior(k,4);

% elseif pp == 0

% YieldAccel = 0;

% elseif pp >= 1 && Positions(k,2) < -11 % If there is an opposite car

about to pass through intersection

% % Have cars that passed through turn to 4 so they arent

% % counted This decceleration is kinda fast

% YieldAccel = (Positions(k,5)^2)/(2*(Positions(k,2) + 11));

% else

% YieldAccel = 0;

% Positions(k,5) = 0;

% end

%

% if j == 0

% end

%

%

% elseif Positions(k,2) >= Light(k,8) && Positions(k,2) < -20

% YieldAccel = -CarBehavior(k,4);

125

% else

% YieldAccel = 0;

% end

% else

% % Find the location where the direction is opposite

% Opposite = find(Locations(:,5) == 3);

% % Create the new matrix for opposite direction data

% Yield = zeros(length(Opposite),9);

% % Yield(1,:) = Light(k,:); % Plot the first line

%

% % Delete Location where it is the same as the first line

% Y = find(Opposite(:) == Light(k,1));

% Opposite(Y, :) = [];

%

% % Place rest of similar direction data into the check matrix

%

% if isempty(Opposite)

% pp = 0;

% else

% pp = 0;

% for z = 1:length(Opposite)

%

% if Positions(Opposite(z),2) > 12

% pp = pp + 0;

% else

% pp = pp + 1;

% end

% end

% end

%

%

%

% if pp == 0 && Positions(k,5) < 14 % If none of the opposite cars,

proceed with the yield

% YieldAccel = CarBehavior(k,4);

% elseif pp == 0

% YieldAccel = 0;

% elseif pp >= 1 && Positions(k,2) < -11 % If there is an opposite car

about to pass through intersection

% % Have cars that passed through turn to 4 so they arent

% % counted This decceleration is kinda fast

% YieldAccel = (Positions(k,5)^2)/(2*(Positions(k,2) + 11));

% else

% YieldAccel = 0;

% Positions(k,5) = 0;

% end

%

% if j == 0

% end

 if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 ||

TrafficLight(Locations(k,5),2) == 0

 xi = IntX - 18 - (Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4));

 Light(k,8) = xi; % Starting position for slowing down before the light

 % Adjust the xi for other directions

 if Light(k,2) == 3 && Positions(k,2) < Light(k,9)

 YieldAccel = 0; % Stay Fast until Rushed Decceleration

 elseif Light(k,2) == 3 && Positions(k,2) >= Light(k,9)

 YieldAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration

 elseif Positions(k,2) >= IntX - 20 && Positions(k,2) < IntX - 10 % Yielding

to Opposing Traffic

 % Check Traffic in Opposite Direction

 % Find the location where the direction is opposite

126

 Opposite = find(Locations(:,5) == Intersections(IntNumber,7));

 % Create the new matrix for opposite direction data

 Yield = zeros(length(Opposite),9);

 % Yield(1,:) = Light(k,:); % Plot the first line

 % Delete Location where it is the same as the first line

 Y = find(Opposite(:) == Light(k,1));

 Opposite(Y, :) = [];

 % Check if there are cars near the intersection in the

 % opposite direction

 if isempty(Opposite)

 pp = 0;

 else

 pp = 0;

 for z = 1:length(Opposite)

 if Light(Opposite(z),2) == 4 || Light(Opposite(z),2) == 5

 pp = pp + 0;

 else

 pp = pp + 1;

 end

 end

 end

 if pp == 0 && Positions(k,2) >= IntX - 20 && Positions(k,2) < IntX - 11

&& Positions(k,5) >= ToFPS(10)

 YieldAccel = 0;

 elseif pp >= 1 && Positions(k,2) >= IntX - 20 && Positions(k,2) < IntX -

11

 YieldAccel = (Positions(k,5)^2)/(2*(Positions(k,2) + IntX + 11));

 elseif pp == 0 && Positions(k,2) >= IntX - 20 && Positions(k,2) < IntX -

11 && Positions(k,5) < ToFPS(10)

 YieldAccel = CarBehavior(k,4);

 elseif pp >= 1 && Positions(k,2) > IntX - 12 && Positions(k,2) < IntX -

11

 YieldAccel = 0;

 Positions(k,5) = 0;

 elseif pp == 0 && Positions(k,2) > IntX - 11

 if Positions(k,5) > 1 && Positions(k,5) <= 2

 YieldAccel = 0;

 elseif Positions(k,5) > 2

 YieldAccel = -CarBehavior(k,4);

 else

 YieldAccel = 0;

 Positions(k,5) = 1;

 end

 elseif pp >= 1 && Positions(k,2) > IntX - 11 && Locations(k,4) ==

Intersections(IntNumber,6); % Watch for unsolvable Yield Accel

 YieldAccel = 0;

 Positions(k,5) = 2;

 end

 elseif Positions(k,2) >= Light(k,8) && Positions(k,2) < IntX - 20

 YieldAccel = -CarBehavior(k,4);

 else

 YieldAccel = 0;

 end

 end

elseif Locations(k,8) == 3

127

 if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 ||

TrafficLight(Locations(k,5),2) == 0

 xi = IntY + 4 + (Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4));

 Light(k,8) = xi; % Starting position for slowing down before the light

 if Light(k,2) == 3 && Positions(k,2) > Light(k,9)

 YieldAccel = 0; % Stay Fast until Rushed Decceleration

 elseif Light(k,2) == 3 && Positions(k,2) <= Light(k,9)

 YieldAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration

 elseif Positions(k,2) <= IntY + 4 && Positions(k,2) > IntY - 6 % Yielding to

Opposing Traffic

 % Check Traffic in Opposite Direction

 % Find the location where the direction is opposite

 Opposite = find(Locations(:,5) == Intersections(IntNumber,7));

 % Create the new matrix for opposite direction data

 Yield = zeros(length(Opposite),9);

 % Yield(1,:) = Light(k,:); % Plot the first line

 % Delete Location where it is the same as the first line

 Y = find(Opposite(:) == Light(k,1));

 Opposite(Y, :) = [];

 if isempty(Opposite)

 pp = 0;

 else

 pp = 0;

 for z = 1:length(Opposite)

 if Light(Opposite(z),2) == 4 || Light(Opposite(z),2) == 5

 pp = pp + 0;

 else

 pp = pp + 1;

 end

 end

 end

 if pp == 0 && Positions(k,2) <= IntY + 4 && Positions(k,2) > IntY - 5 &&

Positions(k,5) >= ToFPS(10)

 YieldAccel = 0;

 elseif pp >= 1 && Positions(k,2) <= IntY + 4 && Positions(k,2) > IntY - 5

 YieldAccel = (Positions(k,5)^2)/(2*(Positions(k,2) + IntY + 6)); %

Make sure this is accurate

 elseif pp == 0 && Positions(k,2) <= IntY + 4 && Positions(k,2) > IntY - 5

&& Positions(k,5) < ToFPS(10)

 YieldAccel = CarBehavior(k,4);

 elseif pp >= 1 && Positions(k,2) < IntY - 4 && Positions(k,2) > IntY - 5

 YieldAccel = 0;

 Positions(k,5) = 0;

 elseif pp == 0 && Positions(k,2) < IntY - 5

 if Positions(k,5) > 1 && Positions(k,5) <= 2

 YieldAccel = 0;

 elseif Positions(k,5) > 2

 YieldAccel = -CarBehavior(k,4);

 else

 YieldAccel = 0;

128

 Positions(k,5) = 1;

 end

 elseif pp >= 1 && Positions(k,2) < IntY - 5 && Locations(k,4) ==

Intersections(IntNumber,7); % Watch for unsolvable Yield Accel

 YieldAccel = 0;

 Positions(k,5) = 2;

 end

 elseif Positions(k,2) <= Light(k,8) && Positions(k,2) > IntY + 4

 YieldAccel = -CarBehavior(k,4);

 else

 YieldAccel = 0;

 end

 end

% else

% % Find the location where the direction is opposite

% Opposite = find(Locations(:,5) == 1);

% % Create the new matrix for opposite direction data

% Yield = zeros(length(Opposite),9);

% % Yield(1,:) = Light(k,:); % Plot the first line

%

% % Delete Location where it is the same as the first line

% Y = find(Opposite(:) == Light(k,1));

% Opposite(Y, :) = [];

%

% % Place rest of similar direction data into the check matrix

% for z = 1:length(Opposite)

% Yield(z,:) = Light(Opposite(z),:);

% end

%

% True = Yield(:,2) ~= 4;

% v = nonzeros(True);

%

% if isempty(v) && Positions(k,5) == 0

% YieldAccel = CarBehavior(k,4);

% elseif Positions(k,5) == 0

% YieldAccel = 0;

% else

% YieldAccel = (0 - Positions(k,5)^2)/(2*(-Light(k,6) + Positions(k,2)));

% end

%

% end

else

 if TrafficLight(Locations(k,5),2) == 2 || TrafficLight(Locations(k,5),2) == 1 ||

TrafficLight(Locations(k,5),2) == 0

 xi = IntX + 4 + (Positions(k,5)^2 - ToFPS(10)^2)/(2*CarBehavior(k,4));

 Light(k,8) = xi; % Starting position for slowing down before the light

 if Light(k,2) == 3 && Positions(k,2) > Light(k,9)

 YieldAccel = 0; % Stay Fast until Rushed Decceleration

 elseif Light(k,2) == 3 && Positions(k,2) <= Light(k,9)

 YieldAccel = -CarBehavior(k,4) - 3; % Rushed Decceleration

129

 elseif Positions(k,2) <= IntX + 4 && Positions(k,2) > IntX - 6 % Yielding to

Opposing Traffic

 % Check Traffic in Opposite Direction

 % Find the location where the direction is opposite

 Opposite = find(Locations(:,5) == Intersections(IntNumber,5));

 % Create the new matrix for opposite direction data

 Yield = zeros(length(Opposite),9);

 % Yield(1,:) = Light(k,:); % Plot the first line

 % Delete Location where it is the same as the first line

 Y = find(Opposite(:) == Light(k,1));

 Opposite(Y, :) = [];

 if isempty(Opposite)

 pp = 0;

 else

 pp = 0;

 for z = 1:length(Opposite)

 if Light(Opposite(z),2) == 4 || Light(Opposite(z),2) == 5

 pp = pp + 0;

 else

 pp = pp + 1;

 end

 end

 end

 if pp == 0 && Positions(k,2) <= IntX + 4 && Positions(k,2) > IntX - 5 &&

Positions(k,5) >= ToFPS(10)

 YieldAccel = 0;

 elseif pp >= 1 && Positions(k,2) <= IntX + 4 && Positions(k,2) > IntX - 5

 YieldAccel = (Positions(k,5)^2)/(2*(Positions(k,2) + IntX + 6)); %

Make sure this is accurate

 elseif pp == 0 && Positions(k,2) <= IntX + 4 && Positions(k,2) > IntX - 5

&& Positions(k,5) < ToFPS(10)

 YieldAccel = CarBehavior(k,4);

 elseif pp >= 1 && Positions(k,2) < IntX - 4 && Positions(k,2) > IntX - 5

 YieldAccel = 0;

 Positions(k,5) = 0;

 elseif pp == 0 && Positions(k,2) < IntX - 5

 if Positions(k,5) > 1 && Positions(k,5) <= 2

 YieldAccel = 0;

 elseif Positions(k,5) > 2

 YieldAccel = -CarBehavior(k,4);

 else

 YieldAccel = 0;

 Positions(k,5) = 1;

 end

 elseif pp >= 1 && Positions(k,2) < IntX - 5 && Locations(k,4) ==

Intersections(IntNumber,7); % Watch for unsolvable Yield Accel

 YieldAccel = 0;

 Positions(k,5) = 2;

 end

 elseif Positions(k,2) <= Light(k,8) && Positions(k,2) > IntX + 4

 YieldAccel = -CarBehavior(k,4);

 else

 YieldAccel = 0;

 end

 end

130

end

%% Transition to New Intersection or Random Reset Location

if Locations(k,9) == 3 && Locations(k,3) >= IntY + LaneLength % If car runs out of bounds

% Final Time Evaluation Update

if TimeEvaluation(k,10) == 0

 TimeEvaluation(k,7) = Locations(k,2);

 TimeEvaluation(k,8) = Locations(k,3);

 TimeEvaluation(k,9) = j*timestep;

 TimeEvaluation(k,10) = size(TimeEvaluation,1) + 1;

 % Update Car Change Matrix

 CarChange(k,2) = TimeEvaluation(k,10);

 CarNumber = k;

else

 Count = 0;

 index = 1;

 CarNumber = TimeEvaluation(k,10);

 while index > 0

 if TimeEvaluation(CarNumber,10) == 0

 index = 0;

 else

 CarNumber = TimeEvaluation(CarNumber,10);

 index = 1;

 end

 Count = Count + 1;

 end

 TimeEvaluation(CarNumber,7) = Locations(k,2);

 TimeEvaluation(CarNumber,8) = Locations(k,3);

 TimeEvaluation(CarNumber,9) = j*timestep;

 TimeEvaluation(CarNumber,10) = size(TimeEvaluation,1) + 1;

 % Update Car Change Matrix

 CarChange(k,Count + 2) = TimeEvaluation(CarNumber,10);

end

% Configure Newly Created Car

if TrafficLight(Locations(k,4),3) == 0 % If Car Exits the Simulation

% Random New Location and Position

indices = find(TrafficLight(:,3) == 0);

Entrance = datasample(indices,1);

[IntNumber,d] = find(Intersections(:,4:7) == Entrance); % Finding row and column

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7),

Entrance), 1);

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column

IntX = Intersections(IntNumber,2);

IntY = Intersections(IntNumber,3);

% New Position Location

Locations(k,4) = Out;

Locations(k,5) = Entrance; % Adjust to make random entrance into the simulation

Locations(k,7) = IntNumber;

Locations(k,8) = d;

Locations(k,9) = O;

131

if d == 1

 Locations(k,2) = IntX + 3;

 Locations(k,3) = IntY - LaneLength;

 Positions(k,2) = Locations(k,3);

elseif d == 2

 Locations(k,2) = IntX - LaneLength;

 Locations(k,3) = IntY - 9;

 Positions(k,2) = Locations(k,2);

elseif d == 3

 Locations(k,2) = IntX - 9;

 Locations(k,3) = IntY + LaneLength - CarLength;

 Positions(k,2) = Locations(k,3);

else

 Locations(k,2) = IntX + LaneLength - CarLength;

 Locations(k,3) = IntY + 3;

 Positions(k,2) = Locations(k,2);

end

% New Car Behavior

Intensity = randi([1 10],1,1);

[Speedy, Accel, Timing] = IntensityRating(Intensity,SpeedLimit);

CarBehavior(k,2) = Intensity;

CarBehavior(k,3) = Speedy;

CarBehavior(k,4) = Accel;

CarBehavior(k,5) = Timing;

% Updated Position Matrix

Positions(k,5) = ToFPS(Speedy);

Positions(k,8) = 0;

Time(k,6) = Timing;

Light(k,2) = 4;

% New Car Evaluation

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW>

TimeEvaluation(end,2) = Locations(k,5);

TimeEvaluation(end,3) = Locations(k,2);

TimeEvaluation(end,4) = Locations(k,3);

TimeEvaluation(end,5) = j*timestep;

TimeEvaluation(end,6) = Locations(k,4);

TimeEvaluation(end,12) = Intensity;

% Ideal Time Calculation

[TimeIdeal] = IdealTime(d,O,Speedy,Accel,LaneLength);

TimeEvaluation(end,11) = TimeIdeal;

else % If Car is Transitioning Within the Simulation

% New Position Directions

Direction = TrafficLight(Locations(k,4),3); % New Direction Input

[IntNumber,d] = find(Intersections(:,4:7) == Direction); % Finding row and column

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7),

Direction), 1);

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column

IntX = Intersections(IntNumber,2);

IntY = Intersections(IntNumber,3);

% Adding Values to Locations Matrix

Locations(k,4) = Out;

Locations(k,5) = Direction;

132

Locations(k,7) = IntNumber;

Locations(k,8) = d;

Locations(k,9) = O;

% Light Matrix

Light(k,2) = 4;

% New Car Evaluation

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW>

TimeEvaluation(end,2) = Locations(k,5);

TimeEvaluation(end,3) = Locations(k,2);

TimeEvaluation(end,4) = Locations(k,3);

TimeEvaluation(end,5) = j*timestep;

TimeEvaluation(end,6) = Locations(k,4);

TimeEvaluation(end,11) = TimeEvaluation(CarNumber,11);

TimeEvaluation(end,12) = TimeEvaluation(CarNumber,12);

end

elseif Locations(k,9) == 4 && Locations(k,2) >= IntX + LaneLength

% Final Time Evaluation Update

if TimeEvaluation(k,10) == 0

 TimeEvaluation(k,7) = Locations(k,2);

 TimeEvaluation(k,8) = Locations(k,3);

 TimeEvaluation(k,9) = j*timestep;

 TimeEvaluation(k,10) = size(TimeEvaluation,1) + 1;

 % Update Car Change Matrix

 CarChange(k,2) = TimeEvaluation(k,10);

 CarNumber = k;

else

 Count = 0;

 index = 1;

 CarNumber = TimeEvaluation(k,10);

 while index > 0

 if TimeEvaluation(CarNumber,10) == 0

 index = 0;

 else

 CarNumber = TimeEvaluation(CarNumber,10);

 index = 1;

 end

 Count = Count + 1;

 end

 TimeEvaluation(CarNumber,7) = Locations(k,2);

 TimeEvaluation(CarNumber,8) = Locations(k,3);

 TimeEvaluation(CarNumber,9) = j*timestep;

 TimeEvaluation(CarNumber,10) = size(TimeEvaluation,1) + 1;

 % Update Car Change Matrix

 CarChange(k,Count + 2) = TimeEvaluation(CarNumber,10);

end

% Configure Newly Created Car

if TrafficLight(Locations(k,4),3) == 0 % If Car Exits the Simulation

% Random New Location and Position

indices = find(TrafficLight(:,3) == 0);

Entrance = datasample(indices,1);

[IntNumber,d] = find(Intersections(:,4:7) == Entrance); % Finding row and column

133

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7),

Entrance), 1);

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column

IntX = Intersections(IntNumber,2);

IntY = Intersections(IntNumber,3);

% New Position Location

Locations(k,4) = Out;

Locations(k,5) = Entrance; % Adjust to make random entrance into the simulation

Locations(k,7) = IntNumber;

Locations(k,8) = d;

Locations(k,9) = O;

if d == 1

 Locations(k,2) = IntX + 3;

 Locations(k,3) = IntY - LaneLength;

 Positions(k,2) = Locations(k,3);

elseif d == 2

 Locations(k,2) = IntX - LaneLength;

 Locations(k,3) = IntY - 9;

 Positions(k,2) = Locations(k,2);

elseif d == 3

 Locations(k,2) = IntX - 9;

 Locations(k,3) = IntY + LaneLength - CarLength;

 Positions(k,2) = Locations(k,3);

else

 Locations(k,2) = IntX + LaneLength - CarLength;

 Locations(k,3) = IntY + 3;

 Positions(k,2) = Locations(k,2);

end

% New Car Behavior

Intensity = randi([1 10],1,1);

[Speedy, Accel, Timing] = IntensityRating(Intensity,SpeedLimit);

CarBehavior(k,2) = Intensity;

CarBehavior(k,3) = Speedy;

CarBehavior(k,4) = Accel;

CarBehavior(k,5) = Timing;

% Updated Position Matrix

Positions(k,5) = ToFPS(Speedy);

Positions(k,8) = 0;

Time(k,6) = Timing;

Light(k,2) = 4;

% New Car Evaluation

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW>

TimeEvaluation(end,2) = Locations(k,5);

TimeEvaluation(end,3) = Locations(k,2);

TimeEvaluation(end,4) = Locations(k,3);

TimeEvaluation(end,5) = j*timestep;

TimeEvaluation(end,6) = Locations(k,4);

TimeEvaluation(end,12) = Intensity;

% Ideal Time Calculation

[TimeIdeal] = IdealTime(d,O,Speedy,Accel,LaneLength);

TimeEvaluation(end,11) = TimeIdeal;

else % If Car is Transitioning Within the Simulation

134

% New Position Directions

Direction = TrafficLight(Locations(k,4),3); % New Direction Input

[IntNumber,d] = find(Intersections(:,4:7) == Direction); % Finding row and column

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7),

Direction), 1);

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column

IntX = Intersections(IntNumber,2);

IntY = Intersections(IntNumber,3);

% Adding Values to Locations Matrix

Locations(k,4) = Out;

Locations(k,5) = Direction;

Locations(k,7) = IntNumber;

Locations(k,8) = d;

Locations(k,9) = O;

% Light Matrix

Light(k,2) = 4;

% New Car Evaluation

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW>

TimeEvaluation(end,2) = Locations(k,5);

TimeEvaluation(end,3) = Locations(k,2);

TimeEvaluation(end,4) = Locations(k,3);

TimeEvaluation(end,5) = j*timestep;

TimeEvaluation(end,6) = Locations(k,4);

TimeEvaluation(end,11) = TimeEvaluation(CarNumber,11);

TimeEvaluation(end,12) = TimeEvaluation(CarNumber,12);

end

elseif Locations(k,9) == 1 && Locations(k,3) <= IntY - LaneLength - CarLength

% Final Time Evaluation Update

if TimeEvaluation(k,10) == 0

 TimeEvaluation(k,7) = Locations(k,2);

 TimeEvaluation(k,8) = Locations(k,3);

 TimeEvaluation(k,9) = j*timestep;

 TimeEvaluation(k,10) = size(TimeEvaluation,1) + 1;

 % Update Car Change Matrix

 CarChange(k,2) = TimeEvaluation(k,10);

 CarNumber = k;

else

 Count = 0;

 index = 1;

 CarNumber = TimeEvaluation(k,10);

 while index > 0

 if TimeEvaluation(CarNumber,10) == 0

 index = 0;

 else

 CarNumber = TimeEvaluation(CarNumber,10);

 index = 1;

 end

 Count = Count + 1;

 end

 TimeEvaluation(CarNumber,7) = Locations(k,2);

 TimeEvaluation(CarNumber,8) = Locations(k,3);

 TimeEvaluation(CarNumber,9) = j*timestep;

135

 TimeEvaluation(CarNumber,10) = size(TimeEvaluation,1) + 1;

 % Update Car Change Matrix

 CarChange(k,Count + 2) = TimeEvaluation(CarNumber,10);

end

% Configure Newly Created Car

if TrafficLight(Locations(k,4),3) == 0 % If Car Exits the Simulation

% Random New Location and Position

indices = find(TrafficLight(:,3) == 0);

Entrance = datasample(indices,1);

[IntNumber,d] = find(Intersections(:,4:7) == Entrance); % Finding row and column

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7),

Entrance), 1);

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column

IntX = Intersections(IntNumber,2);

IntY = Intersections(IntNumber,3);

% New Position Location

Locations(k,4) = Out;

Locations(k,5) = Entrance; % Adjust to make random entrance into the simulation

Locations(k,7) = IntNumber;

Locations(k,8) = d;

Locations(k,9) = O;

if d == 1

 Locations(k,2) = IntX + 3;

 Locations(k,3) = IntY - LaneLength;

 Positions(k,2) = Locations(k,3);

elseif d == 2

 Locations(k,2) = IntX - LaneLength;

 Locations(k,3) = IntY - 9;

 Positions(k,2) = Locations(k,2);

elseif d == 3

 Locations(k,2) = IntX - 9;

 Locations(k,3) = IntY + LaneLength - CarLength;

 Positions(k,2) = Locations(k,3);

else

 Locations(k,2) = IntX + LaneLength - CarLength;

 Locations(k,3) = IntY + 3;

 Positions(k,2) = Locations(k,2);

end

% New Car Behavior

Intensity = randi([1 10],1,1);

[Speedy, Accel, Timing] = IntensityRating(Intensity,SpeedLimit);

CarBehavior(k,2) = Intensity;

CarBehavior(k,3) = Speedy;

CarBehavior(k,4) = Accel;

CarBehavior(k,5) = Timing;

% Updated Position Matrix

Positions(k,5) = ToFPS(Speedy);

Positions(k,8) = 0;

Time(k,6) = Timing;

Light(k,2) = 4;

% New Car Evaluation

136

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW>

TimeEvaluation(end,2) = Locations(k,5);

TimeEvaluation(end,3) = Locations(k,2);

TimeEvaluation(end,4) = Locations(k,3);

TimeEvaluation(end,5) = j*timestep;

TimeEvaluation(end,6) = Locations(k,4);

TimeEvaluation(end,12) = Intensity;

% Ideal Time Calculation

[TimeIdeal] = IdealTime(d,O,Speedy,Accel,LaneLength);

TimeEvaluation(end,11) = TimeIdeal;

else % If Car is Transitioning Within the Simulation

% New Position Directions

Direction = TrafficLight(Locations(k,4),3); % New Direction Input

[IntNumber,d] = find(Intersections(:,4:7) == Direction); % Finding row and column

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7),

Direction), 1);

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column

IntX = Intersections(IntNumber,2);

IntY = Intersections(IntNumber,3);

% Adding Values to Locations Matrix

Locations(k,4) = Out;

Locations(k,5) = Direction;

Locations(k,7) = IntNumber;

Locations(k,8) = d;

Locations(k,9) = O;

% Light Matrix

Light(k,2) = 4;

% New Car Evaluation

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW>

TimeEvaluation(end,2) = Locations(k,5);

TimeEvaluation(end,3) = Locations(k,2);

TimeEvaluation(end,4) = Locations(k,3);

TimeEvaluation(end,5) = j*timestep;

TimeEvaluation(end,6) = Locations(k,4);

TimeEvaluation(end,11) = TimeEvaluation(CarNumber,11);

TimeEvaluation(end,12) = TimeEvaluation(CarNumber,12);

end

elseif Locations(k,9) == 2 && Locations(k,2) <= IntX - LaneLength - CarLength

if TimeEvaluation(k,10) == 0

 TimeEvaluation(k,7) = Locations(k,2);

 TimeEvaluation(k,8) = Locations(k,3);

 TimeEvaluation(k,9) = j*timestep;

 TimeEvaluation(k,10) = size(TimeEvaluation,1) + 1;

 % Update Car Change Matrix

 CarChange(k,2) = TimeEvaluation(k,10);

 CarNumber = k;

else

137

 Count = 0;

 index = 1;

 CarNumber = TimeEvaluation(k,10);

 while index > 0

 if TimeEvaluation(CarNumber,10) == 0

 index = 0;

 else

 CarNumber = TimeEvaluation(CarNumber,10);

 index = 1;

 end

 Count = Count + 1;

 end

 TimeEvaluation(CarNumber,7) = Locations(k,2);

 TimeEvaluation(CarNumber,8) = Locations(k,3);

 TimeEvaluation(CarNumber,9) = j*timestep;

 TimeEvaluation(CarNumber,10) = size(TimeEvaluation,1) + 1;

 % Update Car Change Matrix

 CarChange(k,Count + 2) = TimeEvaluation(CarNumber,10);

end

% Configure Newly Created Car

if TrafficLight(Locations(k,4),3) == 0 % If Car Exits the Simulation

% Random New Location and Position

indices = find(TrafficLight(:,3) == 0);

Entrance = datasample(indices,1);

[IntNumber,d] = find(Intersections(:,4:7) == Entrance); % Finding row and column

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7),

Entrance), 1);

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column

IntX = Intersections(IntNumber,2);

IntY = Intersections(IntNumber,3);

% New Position Location

Locations(k,4) = Out;

Locations(k,5) = Entrance; % Adjust to make random entrance into the simulation

Locations(k,7) = IntNumber;

Locations(k,8) = d;

Locations(k,9) = O;

if d == 1

 Locations(k,2) = IntX + 3;

 Locations(k,3) = IntY - LaneLength;

 Positions(k,2) = Locations(k,3);

elseif d == 2

 Locations(k,2) = IntX - LaneLength;

 Locations(k,3) = IntY - 9;

 Positions(k,2) = Locations(k,2);

elseif d == 3

 Locations(k,2) = IntX - 9;

 Locations(k,3) = IntY + LaneLength - CarLength;

 Positions(k,2) = Locations(k,3);

else

 Locations(k,2) = IntX + LaneLength - CarLength;

 Locations(k,3) = IntY + 3;

 Positions(k,2) = Locations(k,2);

end

% New Car Behavior

Intensity = randi([1 10],1,1);

138

[Speedy, Accel, Timing] = IntensityRating(Intensity,SpeedLimit);

CarBehavior(k,2) = Intensity;

CarBehavior(k,3) = Speedy;

CarBehavior(k,4) = Accel;

CarBehavior(k,5) = Timing;

% Updated Position Matrix

Positions(k,5) = ToFPS(Speedy);

Positions(k,8) = 0;

Time(k,6) = Timing;

Light(k,2) = 4;

% New Car Evaluation

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW>

TimeEvaluation(end,2) = Locations(k,5);

TimeEvaluation(end,3) = Locations(k,2);

TimeEvaluation(end,4) = Locations(k,3);

TimeEvaluation(end,5) = j*timestep;

TimeEvaluation(end,6) = Locations(k,4);

TimeEvaluation(end,12) = Intensity;

% Ideal Time Calculation

[TimeIdeal] = IdealTime(d,O,Speedy,Accel,LaneLength);

TimeEvaluation(end,11) = TimeIdeal;

else % If Car is Transitioning Within the Simulation

% New Position Directions

Direction = TrafficLight(Locations(k,4),3); % New Direction Input

[IntNumber,d] = find(Intersections(:,4:7) == Direction); % Finding row and column

Out = randsample(setdiff(Intersections(IntNumber,4):Intersections(IntNumber,7),

Direction), 1);

[IntNumber,O] = find(Intersections(:,4:7) == Out); % Finding row and column

IntX = Intersections(IntNumber,2);

IntY = Intersections(IntNumber,3);

% Adding Values to Locations Matrix

Locations(k,4) = Out;

Locations(k,5) = Direction;

Locations(k,7) = IntNumber;

Locations(k,8) = d;

Locations(k,9) = O;

% Light Matrix

Light(k,2) = 4;

% New Car Evaluation

TimeEvaluation(end + 1,1) = size(TimeEvaluation,1) + 1; %#ok<SAGROW>

TimeEvaluation(end,2) = Locations(k,5);

TimeEvaluation(end,3) = Locations(k,2);

TimeEvaluation(end,4) = Locations(k,3);

TimeEvaluation(end,5) = j*timestep;

TimeEvaluation(end,6) = Locations(k,4);

TimeEvaluation(end,11) = TimeEvaluation(CarNumber,11);

TimeEvaluation(end,12) = TimeEvaluation(CarNumber,12);

end

139

end

 %% Choosing the Appropriate Acceleration

 % Do you thing, CasualAccel

 % Following another car, FollowAccel

 % Inching closer, InchAccel

 % No Acceleration, Stopped

if Locations(k,8) == 1

 if TrafficLight(Locations(k,5),2) == 0 % Red Light

 if Light(k,2) == 4 && Positions(k,2) >= Light(k,5)

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 if Time(k,2) < 0.5 && Time(k,2) > 0

 FinalAcceleration = -32;

 Light(k,3) = 1;

 end

 elseif Positions(k,2) > IntY - 20 && Light(k,2) ~= 4 && Locations(k,9) == 2

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 elseif Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) +

1 && Positions(k,2) >= Light(k,6) - 1

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 elseif Light(k,2) == 5

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 elseif Light(k,2) == 4 && Light(k,4) == 0 && Positions(k,2) >= Light(k,5)

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 elseif Light(k,2) == 4 && Positions(FC,5) < 5

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light

 if Light(k,2) == 4 && Positions(k,2) >= Light(k,5) % Stop Before Light

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 if Time(k,2) < 0.5 && Time(k,2) > 0

 FinalAcceleration = -32;

 Light(k,3) = 1;

 end

 elseif Light(k,2) == 3 || Light(k,2) == 2

 if Light(k,4) == 0

 if Locations(k,9) == 3

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 elseif Locations(k,9) == 4

 FinalAcceleration = TurnAccel;

 Light(k,3) = 3;

 elseif Locations(k,9) == 2

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 else

 FinalAcceleration = DistanceAccel;

140

 Light(k,3) = 1;

 end

 else % Edit this for multiple cars making through decisions

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 else % if Light(k,2) == 1 or 5

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 else % Green Light

 if Locations(k,9) == 3 % Proceeding Straight

 ToIntersection = IntY - 28 - ToFPS(CarBehavior(k,3))*Yellow;

 if Positions(k,2) >= ToIntersection && Positions(k,2) < IntY - 10

 Light(k,2) = 1;

 elseif Positions(k,2) < ToIntersection

 Light(k,2) = 4;

 else

 Light(k,2) = 5;

 end

 % On a Green Light Proceeding Straight, always DistanceAccel

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 elseif Locations(k,9) == 4 % Right Turn

 ToIntersection = IntY - 22 - ToFPS(CarBehavior(k,3))*Yellow +

(1/2)*CarBehavior(k,4)*Yellow^2;

 if Positions(k,2) >= ToIntersection && Positions(k,2) < IntY - 12

 Light(k,2) = 1;

 elseif Positions(k,2) < ToIntersection

 Light(k,2) = 4;

 else

 Light(k,2) = 5;

 end

 if Positions(k,2) >= Light(k,7) && Light(k,4) == 0

 FinalAcceleration = TurnAccel;

 Light(k,3) = 3;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 elseif Locations(k,9) == 2 % Left Turn

 ToIntersection = IntY - 16 - ToFPS(CarBehavior(k,3))*Yellow +

(1/2)*CarBehavior(k,4)*Yellow^2;

 if Positions(k,2) >= ToIntersection && Positions(k,2) < IntY - 10

 Light(k,2) = 1;

 elseif Positions(k,2) < ToIntersection

 Light(k,2) = 4;

 else

 Light(k,2) = 5;

 end

 if Positions(k,2) >= Light(k,8) && Light(k,4) == 0

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 elseif Positions(k,2) >= IntY - 20 && Positions(k,2) < IntY - 10 &&

Light(k,4) == 0

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 end

 end

141

%%%

%%%%%

elseif Locations(k,8) == 2

 if TrafficLight(Locations(k,5),2) == 0 % Red Light

 if Light(k,2) == 4 && Positions(k,2) >= Light(k,5)

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 if Time(k,2) < 0.5 && Time(k,2) > 0

 FinalAcceleration = -32;

 Light(k,3) = 1;

 end

 elseif Positions(k,2) > IntX - 20 && Light(k,2) ~= 4 && Locations(k,9) == 3

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 elseif Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) +

1 && Positions(k,2) >= Light(k,6) - 1

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 elseif Light(k,2) == 5

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 elseif Light(k,2) == 4 && Light(k,4) == 0 && Positions(k,2) >= Light(k,5)

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 elseif Light(k,2) == 4 && Positions(FC,5) < 5

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light

 if Light(k,2) == 4 && Positions(k,2) >= Light(k,5) % Stop Before Light

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 if Time(k,2) < 0.5 && Time(k,2) > 0

 FinalAcceleration = -32;

 Light(k,3) = 1;

 end

 elseif Light(k,2) == 3 || Light(k,2) == 2

 if Light(k,4) == 0

 if Locations(k,9) == 4

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 elseif Locations(k,9) == 1

 FinalAcceleration = TurnAccel;

 Light(k,3) = 3;

 elseif Locations(k,9) == 3

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 else % Edit this for multiple cars making through decisions

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 else % if Light(k,2) == 1 or 5

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 else % Green Light

142

 if Locations(k,9) == 4 % Proceeding Straight

 ToIntersection = IntX - 28 - ToFPS(CarBehavior(k,3))*Yellow;

 if Positions(k,2) >= ToIntersection && Positions(k,2) < IntX - 10

 Light(k,2) = 1;

 elseif Positions(k,2) < ToIntersection

 Light(k,2) = 4;

 else

 Light(k,2) = 5;

 end

 % On a Green Light Proceeding Straight, always DistanceAccel

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 elseif Locations(k,9) == 1 % Right Turn

 ToIntersection = IntX - 22 - ToFPS(CarBehavior(k,3))*Yellow +

(1/2)*CarBehavior(k,4)*Yellow^2;

 if Positions(k,2) >= ToIntersection && Positions(k,2) < IntX - 12

 Light(k,2) = 1;

 elseif Positions(k,2) < ToIntersection

 Light(k,2) = 4;

 else

 Light(k,2) = 5;

 end

 if Positions(k,2) >= Light(k,7) && Light(k,4) == 0

 FinalAcceleration = TurnAccel;

 Light(k,3) = 3;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 elseif Locations(k,9) == 3 % Left Turn

 ToIntersection = IntX - 16 - ToFPS(CarBehavior(k,3))*Yellow +

(1/2)*CarBehavior(k,4)*Yellow^2;

 if Positions(k,2) >= ToIntersection && Positions(k,2) < IntX - 10

 Light(k,2) = 1;

 elseif Positions(k,2) < ToIntersection

 Light(k,2) = 4;

 else

 Light(k,2) = 5;

 end

 if Positions(k,2) >= Light(k,8) && Light(k,4) == 0

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 elseif Positions(k,2) >= IntX - 20 && Positions(k,2) < IntX - 10 &&

Light(k,4) == 0

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 end

 end

143

%%%

%%%%%

elseif Locations(k,8) == 3

 if TrafficLight(Locations(k,5),2) == 0 % Red Light

 if Light(k,2) == 4 && Positions(k,2) <= Light(k,5)

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 if Time(k,2) < 0.5 && Time(k,2) > 0

 FinalAcceleration = -32;

 Light(k,3) = 1;

 end

 elseif Positions(k,2) < IntY + 4 && Light(k,2) ~= 4 && Locations(k,9) == 4

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 elseif Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) +

1 && Positions(k,2) >= Light(k,6) - 1

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 elseif Light(k,2) == 5

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 elseif Light(k,2) == 4 && Light(k,4) == 0 && Positions(k,2) <= Light(k,5)

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 elseif Light(k,2) == 4 && Positions(FC,5) < 5

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light

 if Light(k,2) == 4 && Positions(k,2) <= Light(k,5) % Stop Before Light

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 if Time(k,2) < 0.5 && Time(k,2) > 0

 FinalAcceleration = -32;

 Light(k,3) = 1;

 end

 elseif Light(k,2) == 3 || Light(k,2) == 2

 if Light(k,4) == 0

 if Locations(k,9) == 1

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 elseif Locations(k,9) == 2

 FinalAcceleration = TurnAccel;

 Light(k,3) = 3;

 elseif Locations(k,9) == 4

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 else % Edit this for multiple cars making through decisions

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

144

 end

 else % if Light(k,2) == 1 or 5

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 else % Green Light

 if Locations(k,9) == 1 % Proceeding Straight

 ToIntersection = IntY + 12 + ToFPS(CarBehavior(k,3))*Yellow;

 if Positions(k,2) <= ToIntersection && Positions(k,2) > IntY - 6

 Light(k,2) = 1;

 elseif Positions(k,2) > ToIntersection

 Light(k,2) = 4;

 else

 Light(k,2) = 5;

 end

 % On a Green Light Proceeding Straight, always DistanceAccel

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 elseif Locations(k,9) == 2 % Right Turn

 ToIntersection = IntY + 6 + ToFPS(CarBehavior(k,3))*Yellow -

(1/2)*CarBehavior(k,4)*Yellow^2;

 if Positions(k,2) <= ToIntersection && Positions(k,2) > IntY - 4

 Light(k,2) = 1;

 elseif Positions(k,2) > ToIntersection

 Light(k,2) = 4;

 else

 Light(k,2) = 5;

 end

 if Positions(k,2) <= Light(k,7) && Light(k,4) == 0

 FinalAcceleration = TurnAccel;

 Light(k,3) = 3;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 elseif Locations(k,9) == 4 % Left Turn

 ToIntersection = IntY + 0 + ToFPS(CarBehavior(k,3))*Yellow -

(1/2)*CarBehavior(k,4)*Yellow^2;

 if Positions(k,2) <= ToIntersection && Positions(k,2) > IntY - 6

 Light(k,2) = 1;

 elseif Positions(k,2) > ToIntersection

 Light(k,2) = 4;

 else

 Light(k,2) = 5;

 end

 if Positions(k,2) <= Light(k,8) && Light(k,4) == 0

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 elseif Positions(k,2) <= IntY + 4 && Positions(k,2) > IntY - 6 && Light(k,4)

== 0

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 end

 end

145

%%%

%%%%%

else

 if TrafficLight(Locations(k,5),2) == 0 % Red Light

 if Light(k,2) == 4 && Positions(k,2) <= Light(k,5)

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 if Time(k,2) < 0.5 && Time(k,2) > 0

 FinalAcceleration = -32;

 Light(k,3) = 1;

 end

 elseif Positions(k,2) < IntX + 4 && Light(k,2) ~= 4 && Locations(k,9) == 1

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 elseif Light(k,2) == 4 && Positions(k,5) < 0.5 && Positions(k,2) <= Light(k,6) +

1 && Positions(k,2) >= Light(k,6) - 1

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 elseif Light(k,2) == 5

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 elseif Light(k,2) == 4 && Light(k,4) == 0 && Positions(k,2) <= Light(k,5)

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 elseif Light(k,2) == 4 && Positions(FC,5) < 5

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 elseif TrafficLight(Locations(k,5),2) == 1 % Yellow Light

 if Light(k,2) == 4 && Positions(k,2) <= Light(k,5) % Stop Before Light

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 if Time(k,2) < 0.5 && Time(k,2) > 0

 FinalAcceleration = -32;

 Light(k,3) = 1;

 end

 elseif Light(k,2) == 3 || Light(k,2) == 2

 if Light(k,4) == 0

 if Locations(k,9) == 2

 FinalAcceleration = LightAccel;

 Light(k,3) = 2;

 elseif Locations(k,9) == 3

 FinalAcceleration = TurnAccel;

 Light(k,3) = 3;

 elseif Locations(k,9) == 1

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 else % Edit this for multiple cars making through decisions

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 else % if Light(k,2) == 1 or 5

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

146

 else % Green Light

 if Locations(k,9) == 2 % Proceeding Straight

 ToIntersection = IntX + 12 + ToFPS(CarBehavior(k,3))*Yellow;

 if Positions(k,2) <= ToIntersection && Positions(k,2) > IntX + -6

 Light(k,2) = 1;

 elseif Positions(k,2) > ToIntersection

 Light(k,2) = 4;

 else

 Light(k,2) = 5;

 end

 % On a Green Light Proceeding Straight, always DistanceAccel

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 elseif Locations(k,9) == 3 % Right Turn

 ToIntersection = IntX + 6 + ToFPS(CarBehavior(k,3))*Yellow -

(1/2)*CarBehavior(k,4)*Yellow^2;

 if Positions(k,2) <= ToIntersection && Positions(k,2) > IntX - 4

 Light(k,2) = 1;

 elseif Positions(k,2) > ToIntersection

 Light(k,2) = 4;

 else

 Light(k,2) = 5;

 end

 if Positions(k,2) <= Light(k,7) && Light(k,4) == 0

 FinalAcceleration = TurnAccel;

 Light(k,3) = 3;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 elseif Locations(k,9) == 1 % Left Turn

 ToIntersection = IntX + 0 + ToFPS(CarBehavior(k,3))*Yellow -

(1/2)*CarBehavior(k,4)*Yellow^2;

 if Positions(k,2) <= ToIntersection && Positions(k,2) > IntX - 6

 Light(k,2) = 1;

 elseif Positions(k,2) > ToIntersection

 Light(k,2) = 4;

 else

 Light(k,2) = 5;

 end

 if Positions(k,2) <= Light(k,8) && Light(k,4) == 0

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 elseif Positions(k,2) <= 4 && Positions(k,2) > IntX - 6 && Light(k,4) == 0

 FinalAcceleration = YieldAccel;

 Light(k,3) = 4;

 else

 FinalAcceleration = DistanceAccel;

 Light(k,3) = 1;

 end

 end

 end

end

Positions(k,8) = FinalAcceleration;

 if Positions(k,5) < 0

 Positions(k,5) = 0;

 Positions(k,8) = 0;

 end

% If Acceleration is infinity or -infinity do not plot it, choose another

147

%% If statement for moving the car based on the location and direction

 if Locations(k,8) == 1

 x = Locations(k,2);

y = Positions(k,2)+(Positions(k,5)*timestep)+((1/2)*Positions(k,8)*(timestep)^2);

 a = 6;

 b = 16;

 elseif Locations(k,8) == 2

x = Positions(k,2)+(Positions(k,5)*timestep)+((1/2)*(Positions(k,8))*(timestep)^2);

 y = Locations(k,3);

 a = 16;

 b = 6;

 elseif Locations(k,8) == 3

 x = Locations(k,2);

y = Positions(k,2)-(Positions(k,5)*timestep)-((1/2)*(Positions(k,8))*(timestep)^2);

 a = 6;

 b = 16;

 else

x = Positions(k,2)-(Positions(k,5)*timestep)-((1/2)*(Positions(k,8))*(timestep)^2);

 y = Locations(k,3);

 a = 16;

 b = 6;

 end

% Plotting the car based on position and direction

if Simulation == 1

 figure(1)

 Car(k) = rectangle('Position',[x y a b],'Curvature',0.3);

 Locations(k,2) = x;

 Locations(k,3) = y;

elseif Simulation == 0

 Locations(k,2) = x;

 Locations(k,3) = y;

end

% Filling in the Position Evaluation Matrix

PositionEvaluation(Allie,1) = j*timestep;

PositionEvaluation(Allie,k*2) = x;

PositionEvaluation(Allie,k*2 + 1) = y;

% Plotting the appropriate number next to the car

% if Locations(k,8) == 1

% b = num2str(k);

% c = cellstr(b);

% Txt(k) = text(x+12,y+8,c);

% elseif Locations(k,8) == 2

% if k < 10

% b = num2str(k);

% c = cellstr(b);

% Txt(k) = text(x+5,y-12,c);

% else

% b = num2str(k);

% c = cellstr(b);

% Txt(k) = text(x+0.5,y-12,c);

% end

% elseif Locations(k,8) == 3

% if k < 10

% b = num2str(k);

% c = cellstr(b);

148

% Txt(k) = text(x-12,y+8,c);

% else

% b = num2str(k);

% c = cellstr(b);

% Txt(k) = text(x-20,y+8,c);

% end

% else

% if k < 10

% b = num2str(k);

% c = cellstr(b);

% Txt(k) = text(x+4,y+20,c);

% else

% b = num2str(k);

% c = cellstr(b);

% Txt(k) = text(x+0.5,y+20,c);

% end

% end

% Updating the Positions Matrix after each car has individually moved

% Position

Positions(k,4) = Positions(k,3);

Positions(k,3) = Positions(k,2);

if Locations(k,8) == 1

 Positions(k,2) = y;

elseif Locations(k,8) == 2

 Positions(k,2) = x;

elseif Locations(k,8) == 3

 Positions(k,2) = y;

else

 Positions(k,2) = x;

end

% Velocity

Positions(k,7) = Positions(k,6);

Positions(k,6) = Positions(k,5);

Positions(k,5) = Positions(k,6) + Positions(k,8)*timestep;

Locations(k,6) = ToMPH(Positions(k,5));

% Acceleration

Positions(k,10) = Positions(k,9);

Positions(k,9) = Positions(k,8);

% Find new value for Positions(k,8) next iteration (Acceleration)

% Time

Time(k,4) = Time(k,3);

Time(k,3) = Time(k,2);

% Observation

Observation(k,1) = k;

Observation(k,2) = Light(k,2);

Observation(k,3) = Light(k,3);

Observation(k,4) = Locations(k,5);

Observation(k,5) = Locations(k,4);

Observation(k,6) = Positions(k,2);

Observation(k,7) = Locations(k,6);

Observation(k,8) = FinalAcceleration;

Observation(k,9) = Time(k,2);

%% Car Direction and Location Evaluation

if Locations(k,8) == 1

149

 if Positions(k,2) >= IntY - 10

 Light(k,2) = 5;

 end

elseif Locations(k,8) == 2

 if Positions(k,2) >= IntX - 10

 Light(k,2) = 5;

 end

elseif Locations(k,8) == 3

 if Positions(k,2) <= IntY - 6

 Light(k,2) = 5;

 end

elseif Locations(k,8) == 4

 if Positions(k,2) <= IntX - 6

 Light(k,2) = 5;

 end

end

% if Light(k,3) ~= 1 && Locations(k,5) == 1

% Light(k,3)

% end

% for temp = 1:size(TimeEvaluation,1)

% if TimeEvaluation(temp,9) == 0

%

% else

% if (TimeEvaluation(temp,9) - TimeEvaluation(temp,5)) < TimeEvaluation(temp,11)

% TimeEvaluation(temp,11) - (TimeEvaluation(temp,9) -

TimeEvaluation(temp,5));

%

% if j == 0

% end

% else

% end

%

% end

%

% end

 end

 % change to 4 when passing through

% Calculate Number of Cars in Front of Intersection

for xx = 1:Cars

 % Intersection Location

 IntNumber = Locations(xx,7);

 IntX = Intersections(IntNumber,2);

 IntY = Intersections(IntNumber,3);

 % Find the location where the directions are the same

 Direct = find(Locations(:,5) == Locations(xx,5));

 % Create the new matrix for same direction data

 Check = zeros(length(Direct),9);

 Check(1,:) = Locations(xx,:); % Plot the first line

 % Delete Location where it is the same as the first line

 X = find(Direct(:) == Locations(xx,1));

 Direct(X, :) = [];

 % Place rest of similar direction data into the check matrix

 for z = 1:length(Direct)

 Check(z + 1,:) = Locations(Direct(z),:);

150

 end

 Front = 0;

 if Locations(xx,8) == 1

 for h = 1:length(Check(:,1)) - 1

 if Check(1,3) < Check(h+1,3)

 index = Check(h+1,1);

 if Light(index,2) ~= 5 && Positions(index,2) < IntY - 10

 Front = Front + 1;

 end

 end

 end

 if Front == 0 && Light(xx,2) ~= 4

 Light(xx,6) = IntY;

 else

 Light(xx,6) = IntY - 35 - 25*Front;

 end

 elseif Locations(xx,8) == 2

 for h = 1:length(Check(:,1)) - 1

 if Check(1,2) < Check(h+1,2)

 index = Check(h+1,1);

 if Light(index,2) ~= 5 && Positions(index,2) < IntX - 10

 Front = Front + 1;

 end

 end

 end

 if Front == 0 && Light(xx,2) ~= 4

 Light(xx,6) = IntX;

 else

 Light(xx,6) = IntX - 35 - 25*Front;

 end

 elseif Locations(xx,8) == 3

 for h = 1:length(Check(:,1)) - 1

 if Check(1,3) > Check(h+1,3)

 index = Check(h+1,1);

 if Light(index,2) ~= 5 && Positions(index,2) > IntY - 6

 Front = Front + 1;

 end

 end

 end

 if Front == 0 && Light(xx,2) ~= 4

 Light(xx,6) = IntY;

 else

 Light(xx,6) = IntY + 19 + 25*Front;

 end

 elseif Locations(xx,8) == 4

 for h = 1:length(Check(:,1)) - 1

 if Check(1,2) > Check(h+1,2)

 index = Check(h+1,1);

151

 if Light(index,2) ~= 5 && Positions(index,2) > IntX - 6

 Front = Front + 1;

 end

 end

 end

 if Front == 0 && Light(xx,2) ~= 4

 Light(xx,6) = IntX;

 else

 Light(xx,6) = IntX + 19 + 25*Front;

 end

 end

 Light(xx,4) = Front;

end

if Simulation == 1

 pause(timestep) % Pausing the simulation to display dynamic change

elseif Simulation == 0

end

% frame = getframe(gcf);

% writeVideo(v,frame);

% Deleting the previous car that was displayed to update overall position

 if j == (1/timestep)*TotalTime % To display final position of all cars

 else

Time;

Positions;

Light;

Locations;

Observation;

PositionEvaluation;

TimeEvaluation;

if Simulation == 1

 Observation

elseif Simulation == 0

 size(TimeEvaluation,1)

end

% Row and Column Names for Observation Matrix

% colNames =

{'Car','Decision','AccelType','Input','Output','Position','Velocity','Acceleration','Time

Behind'};

% ObservationTable = array2table(Observation,'VariableNames',colNames);

if Simulation == 1

 for l = 1:Cars

 delete(Car(l))

% delete(Txt(l))

 end

elseif Simulation == 0

end

152

 end

% frame = getframe(gcf);

% writeVideo(v,frame);

jj = jj + 1;

if jj > 2*(Green+Yellow+Red)/timestep

 jj = 0;

end

% Couting Variable

Allie = Allie + 1;

if size(TimeEvaluation,1) >= MaxCars + (Cars*2)

 break

end

end

%% Evaluation

% Revised Data Compilation

TimeEvaluationRevised = TimeEvaluation(Cars+1:size(TimeEvaluation,1),:);

indices = find(TimeEvaluationRevised(:,10) == 0);

TimeEvaluationRevised(indices,:) = [];

% Time Evaluations Through Simulation

FinalTime = TimeEvaluationRevised(:,9);

InitialTime = TimeEvaluationRevised(:,5);

ITime = TimeEvaluationRevised(:,11);

% Efficiency Calculation

ActualTime = FinalTime - InitialTime;

Average_Time = mean(ActualTime);

Ideal_Average = mean(ITime);

Average_Efficiency = Ideal_Average/Average_Time*100;

ExtraTime = mean(ActualTime - ITime); % Extra Average Seconds per Car

% 3D Positions Matrix

CarPositions3D = zeros(Cars,3);

% Incorrect Calculations

Difference = ActualTime - ITime;

Indices = find(Difference(:) < 0);

Incorrect = TimeEvaluationRevised(Indices,:);

IDiff = (Incorrect(:,9) - Incorrect(:,5)) - Incorrect(:,11);

% Updated Time Evaluation Matrix

TimeEvaluationRevised(:,13) = ActualTime;

Standard = std(ActualTime);

% Directions

Left = 0;

153

Straight = 0;

Right = 0;

for ii = 1:length(TimeEvaluationRevised)

 In = TimeEvaluationRevised(ii,2);

 Out = TimeEvaluationRevised(ii,6);

 if Out - 1 == In || Out + 3 == In

 Left = Left + 1;

 elseif Out + 1 == In || Out - 3 == In

 Right = Right + 1;

 else

 Straight = Straight + 1;

 end

end

Left

Straight

Right

% Signal Timing Details

LightStatusRevised = LightStatus(TimeEvaluationRevised(1,5)/timestep +

2:TimeEvaluationRevised(size(TimeEvaluationRevised,1),9)/timestep + 2,:);

%% Saving Evaluated Matrices to Files

% Excel

filename = ('Cars60AdaptiveQ10.xlsx');

sheet = (Green/10) + 1;

xlswrite(filename,TimeEvaluationRevised,sheet,'A2') % Evaluation Matrix

xlswrite(filename,Average_Time,sheet,'O2') % Average Time

xlswrite(filename,Ideal_Average,sheet,'O3') % Ideal Average Time

xlswrite(filename,Average_Efficiency,sheet,'O4')

xlswrite(filename,ExtraTime,sheet,'O5')

xlswrite(filename,Standard,sheet,'O6')

xlswrite(filename,Left,sheet,'O7')

xlswrite(filename,Straight,sheet,'O8')

xlswrite(filename,Right,sheet,'O9')

% Notepad

dlmwrite(strcat(sprintf('60_Cars_Q10_%d',Green),'_Green_Adaptive.txt'),PositionEvaluation

, 'newline','pc','delimiter','\t','precision',7);

dlmwrite(strcat(sprintf('60_Cars_Q10_%d',Green),'_Green_LightStatus.txt'),LightStatusRevi

sed, 'newline','pc','delimiter','\t','precision',7);

end

% close(v)

% Can begin with cars at fixed positions, or record the random locations

% and initial speeds and behavior

% Based on positions and behavior, can determine how long it would take to

% reach destination without a light or other cars? This would be based on

154

% only allowing one intersection to run at a time no cars either

% Can factor in the light and determine the amount of time with a fixed

% light

% vary number of cars as well

%

% Add in the adaptive light and attempt to make light arrival time close

% to the ideal case

TotalMinutes = j*timestep/60

TotalCars = length(TimeEvaluation)

	Agent-Based Resilient Transportation Infrastructure with Surrogate Adaptive Networks
	Recommended Citation

	Agent-Based Resilient Transportation Infrastructure with Surrogate Adaptive Networks

