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ABSTRACT 

 
 

Ice nucleating particles have a great impact on weather and climate by affecting the 

freezing process of water in the atmosphere. Therefore, INP measurements are essential to 

developing more accurate climate models. Despite of the importance of INP measurements, 

available measurement techniques are costly, which leads to scarcity of available data. 

Microfluidic technology offers unique features including small scales and low fabrication 

costs; thus, can be used to design and develop an INP instrument with lower operation 

costs, which can enhance the number of INP measurements. In this study, we used a 

microfluidic platform that can be further developed to an INP instrument. Our initial 

experiments showed that droplet formation in the microfluidic system can be affected by 

external factors, such as vibration and heat transfer. We have performed numerical 

simulations to derive the equations that describe droplet properties (size, generation 

frequency, and velocity) as a function of flow rate ratio.  The derived correlation can be 

used in designing a future INP measurement device that features a method to keep the 

consistency of droplet formation. Moreover, the effect of cooling on pressure inside the 

channel was studied and it was found that cooling increases the pressure inside the channel 

due to increasing the viscosity of the fluids.  
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CHAPTER 1 

 

Homogenous and Heterogenous Freezing of Water 

Water freezes at temperatures below 0°	C when a microscopic amount of stable solid 

phase is present within the bulk of the liquid.1 This transition from liquid to solid phase 

requires energy to form an interface between the two phases; thus, it is thermodynamically 

unfavorable.2 Suspended or dissolved impurities can act as a catalyst to reduce the energy 

required for ice nucleation, while mechanical vibrations provide the necessary initiation 

energy. When impurities are present, the phenomenon is called heterogenous ice 

nucleation. In the absence of external perturbations, water can be further supercooled to 

near -41.15	 °C before it freezes.3 Near this temperature, thermally-driven density 

fluctuations can overcome the energy barrier and form embryos – “a thermodynamically 

unstable aggregate of water molecules in a structure that favors further development into 

stable ice”4 - within the bulk of the metastable liquid.1 These embryos either decay or grow 

depending on their size; the possibility of growth of an embryo increases with the embryo 

size. At a critical embryo size, the possibility of growth and decay becomes equal; 

therefore, an ice nucleus is probable to be formed beyond this point.4 This phase 

transformation is called homogenous ice nucleation. Ice formation in liquid water is one of 

the most important liquid-to-solid transitions and it has been studied because of its key 

impacts on many areas of research, including atmospheric chemistry, cloud physics, and 
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precipitation;5 icing on surfaces such as aircraft wings;6 food, biosystems, and 

pharmaceutical industry;7–9 and cryobiology and life at temperatures below 0°C.10,11  

Ice Nucleating Particles (INPs), Weather, and Climate 

The formation of ice crystals in the atmosphere plays an essential role in the 

hydrological cycle, earth’s energy balance, and climate by affecting physicochemical 

properties of the clouds.12–14 Therefore, understanding the parameters that affect ice 

initiation and evolution in clouds is essential for developing more accurate weather and 

climate prediction models. Atmospheric particles play a critical role in ice initiation by 

serving as ice nucleating particles (INPs) and catalyzing the freezing process; leading to 

heterogenous ice nucleation.4 Although ice is formed in the atmosphere through both 

heterogenous and homogenous processes, heterogenous nucleation is considered to be the 

dominant freezing mode in the clouds.12 Complex interactions between INPs and 

supercooled water droplets in mixed-phase clouds lead to various ice nucleation pathways. 

These pathways include deposition nucleation, immersion freezing, condensation freezing, 

and contact freezing.13 Deposition ice nucleation occurs in the absence of liquid water 

when supersaturated water vapor freezes on an INP surface. Immersion freezing refers to 

a pathway in which an immersed INP in the liquid droplet initiates ice nucleation.15 

Condensation freezing occurs when water vapor is first condensed on the surface of the 

INP and freezes afterward. Contact freezing refers to a nucleation pathway in which ice is 

formed as the result of collision between an INP and a supercooled water droplet. 
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INP Measurement Techniques  

Accurate measurements of INP concentration and understanding the mechanisms by 

which nucleation is initiated are essential to validate laboratory and modeling studies. 

However, field measurements of INP are relatively rare and restricted to a few locations 

with limited temporal coverage.16,17 Continuous flow diffusion chambers (CFDCs) 

currently used for in situ INP measurements expose the sample air flow to controlled 

freezing conditions to generate frozen ice particles.18 The formed ice particles are then 

detected optically, and the quantity of detected ice corresponds to INP concentration in the 

air flow. CFDCs large, heavy, and energy intensive due to the design of the temperature 

control unit; thus, must be carried by manned research aircraft, which leads to high 

operational costs to measure spatiotemporal patterns of INP in the atmosphere. As opposed 

to manned aircraft, Unmanned Aerial Systems (UAS) can provide greater temporal and 

spatial flexibility while reducing operating costs and, thus, have the potential for use in the 

future to make ambient INP measurements.19 However, one challenge remains to be 

solved: lack of a small, lightweight, and continuous INP measurement platform designed 

for the UAS-based approach. 

Microfluidic Technology  

Microfluidics refers to the design and fabrication of systems that feature fluid channels 

on the order of submillimeter. The application of submillimeter tubes in the industry dates 

back to the 1950s when nozzle arrays capable of dispensing small amounts of liquids were 

used in ink-jet printing.20 Later, in the 1970s, the fabrication of a miniaturized gas 

chromatograph on a silicon wafer made a breakthrough in molecular analysis techniques, 
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including high-pressure liquid chromatography (HPLC) and gas phase chromatography 

(GC).21 This achievement reduced the size and footprint of HPLC and GC instruments. In 

the 1990s, a series of research projects were supported by the Department of Defense to 

design and fabricate small microfluidic chips capable of detecting biological and chemical 

hazards.22 Microfluidics were later introduced to the field of molecular biology and 

provided higher sensitivity and resolution techniques for DNA sequencing.23,24 Further 

advances in microfabrication technology resulted in the emergence of complex 

microfluidic chips that include microvalves, micropumps, reaction chambers, and 

temperature control and sensing units. These systems are termed “lab-on-a-chip”. Today 

lab-on-a-chip systems have numerous applications in single cell analysis,25 drug delivery,26 

DNA amplification,27 and diagnostic chips.28 The wide ranging interest in microfluidics 

arises from the technology’s unique features, including small scales, rapid prototyping, and 

relatively low fabrication costs.29  

Droplet microfluidics – a subcategory of microfluidics – enables continuous generation 

of discrete droplets suspended in a carrier fluid using a variety of configurations, including 

T-junction, flow-focusing, and co-flowing geometries (Fig. 1). In all of these 

configurations, droplets are generated as the result of complex interactions between two 

immiscible fluids.30 This interaction is affected by the flow rates and physical properties of 

the phases including density, viscosity, and surface tension.  

T-junction. The T-junction configuration (Fig. 1a) was first introduced by Thorsen et 

al.31 In this design, the continuous phase flows through the main channel while the 

dispersed phase is introduced from a perpendicular branch channel.32 At the junction of the 
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device, the interaction between shear forces and interfacial tension results in the formation 

of droplets.  

Flow-focusing. The flow-focusing microfluidic design (Fig. 1b) consists of three inlet 

microchannels that merge into a main midchannel and was first implemented by Anna et 

al.33 The dispersed phase (reagent fluid) is introduced to the device from the middle channel 

while the continuous phase (carrier fluid) enters the device from two symmetrical side 

channels. At the generation region where the two phases meet, symmetric shearing forces 

– caused by the continuous phase – break the dispersed phase into a consistent series of 

droplets.  

Co-flowing. The co-flowing geometry (Fig. 1c) was first implemented by Cramer et 

al.34 and consists of a capillary nozzle inside a microfluidic channel. The dispersed phase 

is introduced into the continuous phase flow through the nozzle. In this configuration, 

droplets only form if the continuous phase velocity increases beyond a critical value. Below 

this value, shear and pressure forces cannot overcome the interfacial tension to form a 

droplet.35 

 

 
Figure 1. Schematic of different droplet microfluidic configurations including T-junction (a), 
flow-focusing (b), and co-flowing (c). Figure adopted from Ma et al. (2017).36 

a) b) c) 
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In a lab-on-a-chip device, these droplets are transferred downstream to a processing 

region where they are treated as a microreactor in which physical, chemical, or biological 

reactions can occur.37 A relatively high surface-to-volume ratio of the droplets guarantees 

rapid heat and mass transfer, which leads to faster reactions.38 Continuous measurements 

in these systems allow rapid repeatability of experiments, which provides a buildup of 

statistics in a significantly shorter time compared to traditional experimental methods.2 

Precise Control over Droplet Formation  

A large number of experimental and numerical studies has been performed to identify 

methods which can be used to control droplet formation. These methods include adjusting 

fluid flow rates or velocities,39 and manipulating the temperature of the droplet formation 

region.40 Changing the flow rates directly effects the interaction between the fluids by 

changing the magnitude of shear forces while manipulating nozzle temperature changes 

fluid temperature-dependent physical properties. These properties include viscosity, 

density, and interfacial tension, and previous studies have shown their effect on droplet 

formation.41–43 

Although manipulating the nozzle temperature is an option to control droplet 

formation, changing the flow rates is still the easiest and most practiced method to obtain 

the desired droplet size, generation frequency, and velocity. The only drawback of this 

method is that these droplet parameters cannot be controlled independently by changing 

the flow rates. This means only a specific combination of droplet size, velocity, and 

generation frequency can be obtained in a specific droplet microfluidic geometry. 
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In a variety of microfluidic applications, downstream heat transfer is used as an external 

controllable factor to manipulate droplets’ physical properties.44–46 Downstream heating 

has been used to sort droplets and increase the mixing efficiency within them. Lee et al. 

used a temperature control system integrated into a microfluidic device to measure the 

temperature-dependent interfacial tension between two immiscible fluids.47 Ting et al.48 

investigated droplet breakup by embedding a microheater far downstream of a symmetrical 

micro-bifurcation device. Size of daughter droplets were controlled by adjusting the heater 

temperature. Baroud et al.49 showed that heat from a laser beam can act as a thermocapillary 

valve to block the motion of the oil-water interface in a microfluidic channel. They also 

showed that this method can be integrated into complex microfluidic systems to sort 

droplets. Yesiloz et al.50 placed a resonator as a local heating source in a microfluidic 

channel to investigate the mixing efficiency inside single droplets. The heat produced by 

the resonator causes three-dimensional motion inside droplets, which results in fast mixing. 

Ho et al.51 used a 3D numerical model to investigate the thermo-coalescence of droplets in 

a T-junction microfluidic device. They concluded that droplet velocity in the channel is a 

function of temperature; therefore, at a critical temperature, an individual droplet can be 

trapped inside a heated chamber. In another study, Khater et al.52 investigated volume and 

stability of droplets as they travel over a heating source placed far downstream from the 

droplet generation region both experimentally and numerically. In all the above 

applications, external heating was used as a parameter to manipulate the droplet transport 

in microchannels.,   
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Downstream cooling has been mainly used in droplet microfluidic systems to study ice 

nucleation and kinetics and freezing biological substances. Laval et al.53 and Teychené et 

al.54 used a microfluidic platform to store monodispersed droplets exposed to cooling to 

study nucleation kinetics. Stan et al. developed a microfluidic system capable of 

continuously measuring homogenous freezing temperature of water.2 Although continuous 

measurements require precise droplet formation control, there is a lack of study on the 

effects of downstream cooling on droplet formation.  

Droplet Microfluidics for INP Measurements  

Droplet-based microfluidic systems have the potential for use in UAS for INP 

measurements. Small, lightweight microfluidic devices are capable of generating 

microdroplets, freezing them, and measuring the temperature at which they freeze. These 

systems must have the capability to be coupled with a collector to continuously sample 

INPs in the ambient air, run the analysis, and provide real-time results. The advantages and 

disadvantages of a proposed microfluidic device in comparison to currently available INP 

measurement techniques are listed in Table 1.  

 
Table 1. Summary of advantages and disadvantages of INP measurement techniques.13,55,56 

Approach Advantages Disadvantages 
Portable chambers 
(e.g. CFDC) 

- Mimic real atmospheric processes 
- Can measure temperatures below 

water homogenous freezing limit 
- INPs can be separated and 

analyzed 
- Semi-continuous measurements 

- Large size and heavy 
- High power requirement 
- Limited sensitivity (related to 

sample volume) 
- High operational costs 
- Labor intensive 
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Approach Advantages Disadvantages 
Offline analysis - Flexible and easier sampling 

- Relatively inexpensive 
- Sampling and storage may affect 

the analysis 
- Labor intensive 
- Offline technique, not a continuous 

measurement 

Microfluidic chip  - Small and lightweight 
- Low power consumption 
- Inexpensive 
- Continuous measurements 

- Unclear, possible interaction 
between carrier fluid and the 
sample 

 

Technical Approach for Microfluidic INP Measurements 

Stan et al. (2009)2 developed a lab-on-a-chip microfluidic platform that integrates 

droplet microfluidics with cooling processes to measure the homogenous freezing 

temperature of water (Fig. 2). The platform includes a flow-focusing microfluidic device 

to generate water droplets in a liquid fluorocarbon carrier and an extended straight 

microchannel for temperature processing. The device is mounted on a stage that features 

three separate temperature-stabilized zones. The first zone (inlet hot zone) keeps the droplet 

formation region at a constant temperature to assure consistent droplet generation. The 

second zone (cold zone) cools the droplets to freezing temperature, and the third zone 

(outlet hot zone) melts the frozen droplets to prevent any accumulation of ice to avoid 

clogging. A coolant fluid (ethanol) is pumped through the copper zones of the stage to cool 

down the cold zone. Temperature of each zone is precisely set using thermo-electric 

controllers. A high-speed CCD (charge coupled device) camera is mounted on a stereo 

microscope to capture images of the droplets’ transport and freezing phenomenon. The 

exact location of the channel where droplets freeze is determined by analyzing the captured 

images; and an array of platinum residence temperature detectors (PRTDs), embedded in 
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the device, provides the corresponding freezing temperature. PRTD and microfluidic 

device fabrication methods are described in Appendix A and B, respectively. 

In summary, this method forms the basis of a microfluidic approach for INP 

measurements on UAS: an ambient sample that contains INPs is collected into droplets 

within a microfluidic device, the droplets are cooled to near their freezing point, and the 

precise temperature at which the droplets freeze is measured with a PRTD array embedded 

on the device.  

 

 

Figure 2. Schematic of the microfluidic platform on a cooling stage. Water droplets are carried 
from left to right over the cold stage. Figure from Stan et al. (2009).2 
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CHAPTER 2 

 

Experiment Setup and Initial Experiments  

The initial tests began with generating droplets using a pair of syringe pumps coupled 

to the PDMS microfluidic device using Teflon tubing. To attach the tubing to the device 

we removed a cylinder of PDMS material above the oil and water input regions of the 

device using a medical biopsy punch. The small size of the punch and flexibility of the 

PDMS materials guarantees a tight, seal by simply inserting the tubing into the PDMS. One 

pair of syringe pumps were used to see if desired droplet sizes (i.e. droplet diameter much 

smaller than the dimensions of the flow channel) can be achieved. However, experiments 

revealed that the smallest achievable droplets came into contact with the channel walls 

(Fig. 3). Moreover, we also observed that there was often a small amount of air which led 

to an inconsistent compression rate on the syringes, resulting in inconsistent droplet 

formation. To fix this inconsistency, we had to go through a trial-and-error process of 

changing the inlet flow rates until consistent droplet formation with desired droplet sizes 

was achieved. This process was time consuming and not desirable for a continuous INP 

measurement system. Therefore, in our later experiments, we used a pair of pressure pumps 

to force compressed air into the headspace of liquid reservoirs, thus pushing the liquids 

through the tubing with constant pressure rather than flow rate. This approach indicated a 

much easier way to generate a consistent series of monodisperse droplets using the pressure 

valves. 
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Figure 3. Water droplets in contact with the channel walls carried in mineral oil at 
Qoil	=	0.4	ml/h and Qwater	=	0.2	ml/h (a) and 0.1	ml/h (b) at room temperature. 

 
Fig. 4 shows the setup used for performing freezing experiments. Microfluidic device 

is mounted on the cold stage while pressure pumps push the continuous and dispersed 

phase into the device (Fig. 5). We used a chiller to decrease the temperature of a coolant 

fluid (ethanol) to around -15	°C. The coolant fluid is then pushed through a copper tubing 

to a bath of dry ice and acetone (Fig. 6) to further reduce its temperature to around -90	°C 

before being pushed into the cold stage (Fig. 7). Another chiller is used to keep the 

temperature of the droplet formation region at 25	°C to assure consistent droplet formation 

(Fig. 8a).  

  

a) b) 

200	µm	
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Figure 4. Photograph of experiment setup for the preliminary experiments in this project. 

 

 

 

 
Figure 5. Closeup of the microfluidic device on the 
cold stage. 

 Figure 6. Bath of dry ice and acetone. 

 
During the freezing experiments we noticed that droplet formation behavior changes 

when temperature of the cold stage changes significantly. This change leads to inconsistent 

droplet formation in which large slugs of the dispersed phase can be formed (Fig. 8b). 

These slugs are in contact with the channel wall and will block the channel when they 

Dry ice and 
acetone bath 

Water and mineral 
oil containers 

Microfluidic device 
on the cold stage 

Data acquisition system 

Pressure pumps 

CCD camera 
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freeze over the cold stage. Newly formed droplets also hit this ice block to the point that 

the entire channel was filled with frozen water (Fig. 9b). At this point, the experiment had 

to be stopped to either warm up the frozen microchannel or to substitute it with another 

microfluidic device. 

 

 
a) 

 

b) 

 

Figure 8. Consistent droplet formation (a) vs inconsistent droplet formation during the cooling 
process (b). 

 
  

 
Figure 7. Photograph of cold stage and thermo-electric controllers used in this project.  

Coolant tubing 

Droplet formation region 

Thermo-electric temperature controllers 

Five cold zones Melting region 

200	µm	

Melting region 
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a)   

b)   

Figure 9. Images of experiments using Arizona Test Dust suspended in 
water. Top: liquid droplets traveling from left to right, fully suspended in 
the middle of the flow channel. Bottom: ice clogging the channel.  
(𝑇QRST	UVWXY = −20℃) 

 
Droplet generation and freezing experiments revealed several important challenges that 

must be overcome in the future development of this project. First, the INP measurement 

instrument must have an online method for assessing the consistency and quality of the 

droplet formation and have the capability to adjust input fluid flows to maintain a steady 

droplet generation rate. Second, one of the parameters that affects droplet formation is the 

cold stage temperature. Freezing temperatures at the cold zone increases the fluids’ 

viscosities and results in higher pressure in the channel. We hypothesize that this pressure 

increase can affect the droplet formation region due to the elastic nature of PDMS. 

In this study we have performed a series of 2D numerical simulations to establish the 

mathematical relations that describe the variety of droplet properties with respect to 

continuous phase flow rate in the INP measurement microfluidic device. Also, 3D 

numerical simulations are used to study the effect of external cooling on the pressure at the 

formation region. The results from this study provide insight into designing a continuous 

INP measurement instrument. 

b) 
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Fluid Dynamics Modeling 

The numerical models in this study were implemented in Ansys Fluent 19.0 software 

package. The Volume of Fluid (VOF) interface capturing method available in the Fluent 

CFD solver has been used in a variety of numerical studies to investigate droplet formation 

and transport in different microfluidic geometries, including T-junction,57 co-flowing,58 

and flow-focusing.59  

Governing equations 

The transient flow of liquids in the model is governed by the continuity and Navier-

Stokes equations as follows.  

Continuity equation:  

∇ · (ρ U⃗̀̀)	= 0 (1) 

 
Navier-stokes equation:  

∂(ρU⃗̀̀)
∂t + ∇ · eρU⃗̀̀ × U⃗̀̀g = −∇P + ∇ · (τi) + ρg⃗̀ + F⃗̀ (2) 

 
In eq. 1 and eq. 2, U⃗̀̀,	 P,	 τi,	 ρg⃗̀,	 F⃗̀ are velocity vector, static pressure, shear tensor, 

gravitational body force, and external body forces, respectively. The interface between the 

fluid is tracked by solving continuity equation for each of the phases, as follows. 

∂αm
∂t + U⃗̀̀ · ∇αm = 0 (3) 
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In eq. 3,αm is the volume fraction of the phase q, where ∑α = 1 for each computational 

cell in the domain and 0 ≤ 𝛼q ≤ 1. When a cell is completely filled with phase q,  αm = 1, 

whereas, αm = 0 shows that the cell is devoid of phase q. 

The temperature of each cell of the model domain is calculated using the energy 

equation. 

∂
∂r
+ ∇ · ev̀⃗ · (ρE + P)g = ∇ · (kvww∇T) + Sy	 (4) 

 
In eq. 4, kvww is effective thermal conductivity and Sy is the heat source term.60 

Droplet size, frequency, and velocity analysis 

As mentioned before, although manipulating the flow rate ratio is the most common 

method for achieving desired droplet size, generation frequency, and velocity, these 

parameters cannot be controlled independently. Each of these parameters is a function of 

flow rate ratio; thus, a system of three algebraic equations must be derived for a specific 

device geometry at constant dispersed phase flow rate. By solving the described system of 

equations, a three variable equation can be derived which shows the relationship between 

droplet size, frequency, and flow rate ratio. Therefore, the objectives of the numerical 

simulations in this section are:   

- Study the effect of flow rate ratio on droplet size, generation frequency, and 

velocity in a flow-focusing microfluidic device.  

- Derive equations that correlate flow rate ratio to droplet size, frequency, and 

velocity. 
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- Develop a mathematical equation that describes all the possible configurations of 

droplet size, generation frequency, and velocity for a specific dispersed phase 

flow rate.   

Problem statement. A two-dimensional geometry of the flow-focusing microfluidic 

device used in our INP experiments is considered and the effect of flow rate ratio on size, 

velocity, and generation frequency is studied. The dispersed phase (water) is introduced 

through the main channel while the continuous phase (mineral oil) enters the device from 

the two symmetrical side channels. At the generation region where two phases meet, 

complex physical interactions between the two fluids result in the formation of a series of 

droplets.  

Model setup. A rectangular 1	µm grid has been used in this study after performing a mesh 

independency test (Fig. 10) . The results showed that, when mesh size larger than 1.4	µm	

is	used, the solver cannot track the interface of the forming droplets properly; therefore, 

the dispersed phase spreads on the throat wall of the device, which leads to an invalid 

numerical solution. Therefore, mesh sizes smaller than 1.4	 µm are used in the mesh 

independency test and a 1	 µm mesh face size was selected for each element in the 

computational domain. The continuous and dispersed phases enter the channel with a 

constant dispersed flow rate of 50	µl/h and flow rate ratios, φ = ~�
~�
= 2.5, 5,	7.5,	10,	12.5. 

Table. 2 indicates the physical properties of both continuous and dispersed fluids. Constant 

inlet velocities for both the continuous and dispersed phases are specified, while 

atmospheric pressure boundary is imposed at the outlet. The continuous phase is assumed 

to wet the device walls completely before dispersed phase is introduced. Flow rate ratio is 
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adjusted so that droplets are formed in the throat of device without spreading to the walls.  

The volume of fluid (VOF) method was used to trace the interface between the two phases. 

The pressure implicit with splitting of operators (PISO) algorithm was used for the 

pressure-velocity coupling,61 while quadradic upstream interpolation for convective 

kinetics (QUICK) scheme was employed for solving the momentum equation.62 The 

pressure interpolation was performed by pressure staggering option (PRESTO!) method.63  

The geometric reconstruction and second-order upwind schemes are adopted to solve the 

volume fraction and energy equations, respectively. A relatively short time step (t = 10�� 

seconds) is specified to avoid inaccurate results (Fig. 11). Subsequently, constant Courant 

number (Co = 0.25) is specified to solve the governing equations. The convergence 

criteria for continuity and momentum equations were set to 10-3 and 10-4, respectively. 

 

 
Figure 10. Mesh independency test.  
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Figure 11. An example of inaccurate results when time step is set at 10�� seconds. (Despite of 
symmetric boundary conditions, droplets do not travel on the centerline of the channel.) 

 
Table 2. Physical properties of the continuous and dispersed phases used in the constant 
temperature simulations.52,64 (T = 293.15	K) 

Physical properties 
Continuous phase 
(mineral oil) 

Dispersed phase 
(water) 

Density [kg/m3] 848.7894 998.2 

Viscosity [Pa·	s] 0.0330 0.001003 

Interfacial tension [N/m] 0.018685 

 
Effect of droplet size on time required for freezing 

The heat transfer between the droplets and the cold stage are affected by droplets’ 

volume and velocity, both of which are controlled by flow rate ratio. If we assume that 

temperature within the droplet remains uniform during the heat transfer, the lumped system 

method (eq. 5) can be used to estimate the time required for droplets to reach thermal 

equilibrium with the continuous phase.52,65 The accuracy of this method depends on how 

close the uniform temperature assumption is to reality, which is determined by the Biot 

number.65 The Biot number (eq. 6 ) is defined as the ratio of body’s conduction resistance 

Channel centerline 

125	µm	
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to convection resistance. The lumped system method is considered applicable when the 

condition Bi ≤ 0.1 is satisfied.65  

T(t) − T�
T� − T�

= e
� y�
��∀���

�r
 (5) 

 

Bi =
hL�	
k�

 (6) 

 
Where, L� =

∀
�
. In eq. 5, t is the time required by a water droplet at temperature T(t) to 

reach the steady state mineral oil temperature T�, from its initial temperature T�. ρw, C��, 

and kw are water density, specific heat ratio, and thermal conductivity, respectively. In eq. 

6, Lc	is characteristic length of a droplet, and A and ∀ are droplet surface area and volume, 

respectively. The heat transfer coefficient h is defined by eq. 7. 

 

h =
k�	Nu
D��

 (7)  

 
Where DHy is hydraulic diameter of the channel defined by eq. 8. 

D�� =
2w. h
w + h (8) 

 
The Nusselt number (Nu) is defined using eq. 9.66,67 

Nu = 2 + 0.6Re� �⁄ Pr�  ⁄  (9)  
 
The Prandtl number (Pr) and Reynolds number (Re) are defined by eq. 10 and eq. 11, 

respectively. 
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Pr = 	
µC�¡
k  (10)  

 

Re = 	
ρ�uD��

µ  (11)  

 
Where u is flow velocity; µ, ρ�, and C�¡  are mineral oil viscosity, density, and specific 

heat, respectively. Table 3 shows the variable used in the analysis. 

 
Table 3. List of variables used in the analysis. 

T(i) Droplet temperature [K] ∀ Droplet volume [m3] 

T∞ Oil temperature [K] cp Specific heat [J/kg. K] 

Ti	 Droplet initial temperature t	 Time [s] 

h	 Heat transfer coefficient [W/m2.	K] Lc	 Characteristic length [m] 

A	 Droplet surface area [m2] k	 Thermal conductivity [W/m.	K] 

ρ	 Density [kg/m3] µ	 Oil viscosity [Pa.	s] 

DHy	 Hydraulic diameter of the channel [-] u	 Flow velocity [m/s] 

w	 Channel width [m] h	 Channel height [m] 
 
Effect of cold stage temperature on the pressure inside the microfluidic device 

Three-dimensional simulations are necessary to study droplet formation in response to 

downstream external cooling because the cold boundary cannot be specified in two-

dimensional geometries. However, 3D simulations involving heat transfer are complicated 

and computationally expensive.68 Moreover, the microfluidic device geometry used in this 

study has a relatively long (~5	cm) extended channel, which results in a large number of 

elements in the computational domain. To tackle this challenge, the simulations are divided 

into two less computationally demanding models as follows: 
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1. The effect of cold zone temperature on the pressure inside the channel is 

estimated using steady simulations. In the simulations only mineral oil is 

introduced at the inlets of the device. 

2. Based on the results from the previous model, a pressure outlet boundary is set 1	

mm downstream of the droplet formation region to represent the pressure increase 

in the channel caused by cooling (Fig. 12). Transient simulations are performed to 

study pressure changes in the channel during droplet formation. 

 

 
Figure 12. Schematic of the 3D simulation approach.  

 
Problem 1 statement. A three-dimensional geometry of the flow-focusing microfluidic 

device with a 5	 cm extended channel is considered as the domain for numerical 

simulations. There is a 4	cm cold zone 1	cm downstream of the droplet formation region. 

Mineral oil at constant flow rate and temperature is introduced at the inlets of the device 

and it is assumed to be in direct contact with the cold boundary. Numerical simulations 

have been performed to determine the steady state pressure at 1	mm downstream of the 
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channel when two different temperatures (T = 25	℃ and T = −40	℃) are applied to the 

cold wall boundary. 

Model 1 setup. A 5	mm mesh is used to divide the computational domain into 8,225,200 

cubic elements. Cold zone temperature is considered to be T = 25	℃, 0	℃, −20	℃,−40	℃ 

for each individual simulation. Constant flow rate and atmospheric pressure are imposed 

at the inlets and outlet, respectively. Temperature dependent properties of the mineral oil 

are shown in Table 3. The SIMPLE scheme was used for the pressure-velocity coupling in 

the continuity equation and pressure interpolation was performed by the Second Order 

method.60 The Second Order Upwind method was used to solve the momentum and energy 

equation.60 The convergence criteria for continuity, momentum, and energy equations were 

set to be 10� , 10� , and 10��; respectively. 

 
Table 4. Physical properties of the mineral oil as function of temperature (T).52,64 

Physical properties  Mineral oil 

Density [kg/m3] −0.524T + 1002.4	

Viscosity [Pa.	s] 9 × 10��T� − 0.0061T + 1.0478	

Thermal conductivity [W/m.	K] 0.14	

Specific heat [J/Kg.	K] 2500	

 
Problem 2 statement. The three-dimensional geometry of the flow focusing device and 1 

mm downstream channel are considered to calculate the transient pressure across the 

device during droplet formation (Fig. 12). Mineral oil and water are introduced to the 

device to form the droplets under two different pressure outlet boundary conditions which 
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reflect the effect of two different temperatures (T = 25	℃ and T = −40	℃) at the 

downstream cold zone.  

Model 2 setup. A 0.0014	mm mesh is used to divide the computational domain into 

10,732,573 cubic elements. Constant flow rates and atmospheric pressure are imposed at 

the inlet and the outlet of the geometry, respectively. It is also assumed that the domain is 

filled with mineral oil before water is introduced. Governing equations are solved using 

the same methods represented in two-dimensional simulations. A fixed time step (10-5 

seconds) and constant Courant number (Co = 0.25) are considered in the simulations. The 

convergence criteria for continuity and momentum equations were set to 10-4. 
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MODELING RESULTS 

 

Droplet Size, Frequency, and Velocity Analysis 

Two-dimensional numerical simulations were carried out to study the effect of flow 

rate ratio on droplet size, velocity, and generation frequency. Fig. 13 shows the variation 

of droplet size at five different flow rate ratios (φ	=	2.5,	φ	=	5, φ	=	7.5, and φ	=	10) with 

constant dispersed phase flow rate (50	µl/h)	at	t	=	2.5	ms. As shown in the figure, the 

increase in the flow rate ratio results in generation of more droplets with relatively smaller 

size. Fig. 14 shows the mathematical relation that describes the effect of flow ratio on 

droplet size and generation frequency. When the flow rate ratio is increased from 2.5 to 

10, droplet diameter decreases from 53	µm to 34	µm (~36%); while droplet generation 

frequency increases from 70	Hz to 147	Hz (110% increase). As the continuous phase flow 

rate increases, the magnitude of the symmetrical shearing forces acting on the dispersed 

phase also increases. Therefore, droplets are formed faster; thus, droplet volume decreases.  
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Figure 13. Water volume fraction at 𝑡 = 0.0025	𝑠 and 𝑄T = 50	 𝜇𝑙 ℎ⁄  for the following flow 
rate ratios: (a) 𝜑 = 2.5. (b) 𝜑 = 5. (c) 𝜑 = 7.5. (d) 𝜑 = 10. (e) 𝜑 = 12.5.  

 
Fig. 15 indicates that droplet velocity increases almost linearly from 3,933	µm/s at 

φ = 2.5, to 11,265	µm/s at φ = 10. As mentioned before, droplet velocity in the channel 

directly effects the reaction residence time in microfluidic systems; in our devices, droplet 

velocity effects the contact time with the cold zones in the microfluidic device. Based on 

the numerical results, it takes 3.55 seconds for the fastest droplets (φ = 10) to travel over 

the 4	cm cold stage in the experiments. Fig. 15. also shows that the distance between 

droplets increases linearly with the flow rate ratio. When flow rate ratio is increased from 

2.5 to 10, distance between droplets increases from 4	µm to 42	µm. Therefore, at flow rate 

500	µm	

a) b) 

c) d) 

e) 
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ratios smaller than 2.5, there is a high chance that droplets merge at the formation region 

of the channel. On the other hand, when the flow rate ratio is increased from 10 to 12.5, 

droplet size remains approximately constant (d10	=	34.7 and d12.5	=	34.75). Therefore, to 

reduce the computational time, φ = 2.5 and φ = 10 are considered the lower and upper 

limits of the flow rate ratio in this study, respectively. Within the introduced range, the 

following equations can be used to estimate droplet properties (diameter, generation 

frequency, and velocity) as a function of flow rate ratio. 

d	 = 		69.74𝜑�§. 	 (12) 
 

f	 = 10.28φ + 47.5	 (13) 
 

v	 = 	971.54φ	 + 	1454.5 (14) 
 
Where d, f, and v are droplet diameter [µm], droplet frequency [Hz], and droplet velocity 

[µm/s]; Eq. 15 can be derived by combining the above equations as follows. 

(
𝑑

69.74
)�

10
3 =

1
10.28

	f	 − 4.62 =
1

971.54
		𝑣 − 1.49 (15) 

 
By knowing a desired droplet property (size, generation frequency, or velocity), eq. 15 

can be used to determine the other two properties. This method can be used in future to 

design a droplet microfluidics chip that is capable of adjusting the flow rate at any time to 

achieve the desired droplet size, frequency, and velocity.  
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Figure 15. Variation of droplet velocity and distance between two consecutive droplets with 
flow rate ratio. 

 
Fig. 16 shows a three-dimensional curve that describes the relationship between droplet 

properties and represents all the possible configurations of droplet size, frequency, and 

viscosity for the microfluidic device used in this research. 
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Figure 14. Variation of droplet diameter and droplet generation frequency with flow rate ratio. 
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Figure 16. Black line represents possible configurations of droplet size, generation frequency, 
and velocity at 𝑄T = 50	 µ𝑙 ℎ⁄ . 

 
Lumped system analysis has been performed for four different sized droplets to 

determine the time that each droplet requires to reach Tdroplet	=	-39.9	°C; where cold stage 

temperature is considered to be at 𝑇QRST	UVWXY = −40	℃ (mathematically, droplet 

temperature reaches the temperature of the cold stage when t	(time) approaches infinity) . 

Fig. 17 shows the variation of time required to cool down the entire droplet volume as a 

function of droplet diameter. Based on the results, when droplet dimeter changes from 35	

µm to 53	µm, required cooling time increases from 47	ms to 82.3	ms (75%). Fig. 18 

shows the temperature of the different sized droplets with respect to time during the cooling 

process. The smallest droplet reaches T = 39.9	℃ after traveling 0.5	mm in silicon oil at 

T = −40	℃. However, temperature of the silicon oil flowing over the cold stage is not 

uniform. Fig. 19 shows that silicon oil reaches the temperature of the cold stage after 
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traveling 233.15	µm above the cold stage. Therefore, in a conservative redesign, the length 

of the cold stage can be reduced to around 1	cm.  

 

  

Figure 17. Variation of droplet diameter with 
required cooling time. 

Figure 18. Variation of droplet temperature 
with time. 

 

 

Figure 19. Temperature gradient at the XY plane of the channel (side view). 

 

Effect of Downstream Cooling on the Pressure at the Droplet Formation Zone 

Three-dimensional numerical simulations were performed to study the effect of the 

downstream cooling on the gauge pressure along the microfluidic geometry. Fig. 20 shows 

that the variation of pressure at the centerline of the channel at four different cold zone 

temperatures (T = 25	℃, T = 0	℃, T = 20	℃ , T = −40	℃). When cold zone temperature 
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is reduced from 25	℃ to -40	℃,  maximum steady-state pressure along the channel 

centerline increases from 46,000 Pa to 138,000 Pa,	or by approximately 244%. Fig. 21 

shows the correlation between cold zone temperature and channel maximum pressure.  

 

 

Figure 20. Modeled 
gauge pressure in the 
channel as a result of 
position and cold 
stage temperature. A 
position of 50	mm is 
the outlet boundary of 
the device, which is 
set to a gauge 
pressure of 0	Pa. 
(𝑄® = 110	µ𝑙/ℎ and 
𝜑 = 10). 

 

 

Figure 21. Variation 
of maximum pressure 
in the channel with 
cold zone 
temperature. 

 
Because we were not sure the inlet flow rates used in above calculations lead to 

formation of a desirable-sized droplet, we readjusted inlet flow rates. In this case, water 
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at 1 mm downstream of the channel increases from 37,252	Pa to 99,146	Pa	(167%) when 

the cold zone temperature decreases from 25	℃ to -40	℃. We used these pressures in three-

dimensional multiphase simulations as outlet boundaries representing the effect of a 

downstream cold stage to calculate the maximum pressure in the channel during droplet 

formation.  

Fig. 22 shows two slices of the channel at two different outlet pressures (P = 37,252	

Pa	and	P = 99,146.2	Pa)	at	t	=	0.14	s.	These results show that droplet formation is not 

affected by the outlet boundary under the boundary conditions specified. Therefore, more 

parameters, including wall elasticity and heat transfer in the walls, need to be considered 

in numerical simulations. Fig. 23 shows the pressure at the centerline of the channel at t	=	

0.14	s and outlet pressure P	=	99,146.2	Pa. Based on the results, the maximum pressure 

at the specified time is 102,784	 Pa and occurs at the water inlet. This pressure is 

maintained nearly constant through the water inlet of the device and subsequently drops 

sharply at the junction with the continuous phase. Pressure inside each droplet is 

approximately 1300	Pa higher than the mineral oil stream surrounding it. Fig. 24 shows 

the pressure at the center point of the water inlet during a droplet formation cycle. 

Maximum pressure and minimum pressure during a droplet formation cycle are 102,350	

Pa and 102,988	Pa; respectively. Pressure fluctuation due to droplet formation at the same 

point are less than 1% of the inlet pressure (P	=	102,755	Pa). 
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Figure 22. 3D Model results for drop formation. Water (in red) and silicone oil (in blue). Outlet 
pressure in (a) and (b) is 37,252	Pa and 99,146.2	𝑃𝑎, respectively. 

 

 
 

Figure 23. Pressure across the centerline of the channel when P	=	99,246	Pa is applied as the 
outlet pressure.  
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Figure 24. Variation of pressure at point x	=	0, y	=	0, and z	=	50	µm (center point of the water 
inlet) with time during a droplet formation cycle.  
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CONCLUSION 

 
 

The initial droplet generation and freezing experiments presented in this research 

revealed an important challenge that must be overcome in the future development of a 

continuous INP measurement instrument. The instrument must have an online method for 

assessing the consistency and quality of the droplet formation and have the capability to 

adjust input fluid flows to maintain a steady droplet generation rate. The online method 

requires knowledge of the relationship between droplet properties and flow rates. 

Therefore, two-dimensional numerical simulations were performed to establish the 

correlations among important droplet parameters, including droplet size, generation 

frequency, and velocity. These simulations showed that at a specific dispersed phase flow 

rate, droplet properties can only be defined within a specific range of the flow rate ratio. 

This range is specified by two limiting parameters: droplet size and distance between two 

subsequent droplets. Below a specific flow rate ratio, two subsequent droplets merge after 

droplet generation; while droplet size remains approximately constant above a specific 

flow rate ratio. This range for the microfluidic geometry used in this study 	=	[2.5,10] µl/h 

at a dispersed phase flow rate Qd	=	50	µl/h.	Four different flow rates (Qc	=	2.5,	5,7.5,	10) 

µl/h within this range were used in the simulations to establish the correlations that 

describe the droplet size, generation frequency, and velocity as a function of flow rate ratio. 

Moreover, the relationship among the droplet properties (droplet size, generation 

frequency, and velocity) was established. The derived relation represents a curve in the 3D 

cartesian coordinates system where droplet size, velocity, and frequency are the axis.  
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Downstream cooling in the microfluidic systems increases the viscosity of the fluids 

causing the pressure inside the channel to increase. In this study, three-dimensional 

numerical simulations suggested that pressure at 1	mm  downstream of the formation zone 

increase by 167% when temperature of the cold stage is reduced from 25	°C to -40	°C. 

Pressure fluctuations at center point of the water inlet during a droplet formation cycle are 

less than 1% of the channel maximum pressure.  

Lumped system analysis was performed to calculate the time that each droplet requires 

to reach the temperature of the cold stage. Based on the calculation, the largest droplet (d	

=	53	µm) can reach to 99.75% temperature of the cold stage after traveling approximately 

1	cm above the cold stage. This method can be used in future cold stage designs in this 

project to optimize the cold stage size and reduce the effects of cooling on pressure in the 

channel. 
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FUTURE WORK 

 
 

In this work we defined a limited range for the continuous phase flow rate at a constant 

dispersed phase flow rate and introduced a 3D curve that represents all possible 

configurations of droplet size, velocity, and generation frequency. For our specific device, 

future work needs to be done to find the continuous phase flow rate limits at different 

dispersed phase flow rates and to find the possible configurations of droplet properties 

within those ranges. By expanding to a more complete model, the future INP measurement 

device can switch between different flow rates to achieve desired droplet properties. By 

having enough data points, a 3D surface, unique to each flow-focusing microfluidic device, 

will govern the flow conditions necessary to produce desired droplet properties.   

The transient pressure data on the channel walls calculated by the 3D simulations can 

be used in future numerical studies to study the effect of PDMS deformation on droplet 

behavior. Moreover, results from lumped analysis can be used in future simulations in 

which cold stage length is 1	cm. The reduction in the cold stage length decreases the 

number of mesh elements in the model domain, which leads to less computationally-

intensive calculations, and therefore, modeling droplet formation and cooling processes at 

the same time can be performed faster. 
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Appendix A:  Microfluidic Device Fabrication 

The fabrication process begins with rinsing and drying the glass wafers using the SRD 

(Spin Rinse Dryer) machine. Wafers are then soaked in a Nano-strip 2X (sulfuric acid 85%, 

hydrogen peroxide <	1%) solution at 65°C for 30 minutes, which is followed by careful 

rinsing and drying. To remove any moisture from the glass surface, wafers are baked at 

200°C for 5 minutes. Wafers are then plasma-cleaned for two minutes (chamber pressure 

kept at 0.50	Torr) to remove any residual contamination from the glass surface.  

A soft lithography technique (Fig. A1) is used to fabricate the microfluidic device. The 

lithography steps begin with spin-coating the glass surface with HMDS 

(hexamethyldisilizane) to improve the adhesion between the glass surface and the 

photoresist.  The wafer is then spin-coated with uniform thickness (100 µm) of positive 

photoresist (SU-8 2100). Before exposure under UV light, the SU-8 coated wafer is baked 

for 5 minutes at 65°C followed by 20 minutes at 95°C. The wafer is then exposed under a 

UV source through the photomask (Fig. A2) which has the pattern of microfluidic flow 

channels to be fabricated. After post-exposure baking (5 minutes at 65° C followed by 20 

minutes at 95° C), wafers are developed in PM-acetate which leaves the SU-8 pattern on 

the glass wafer in the transparent locations on the photomask. At this point, the wafer with 

patterned and cured SU-8 forms a master mold from which the PDMS devices can be made.  
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Figure A1. Soft lithography process, proceeding from 
top to bottom, for fabricating PDMS microfluidic 
devices. Figure adapted from Mazutis et al., 2013.69  

Figure A2. Photomask used to fabrication 
PDMS microfluidic flow channels.  

 
To use the wafer mold, PDMS (Sylgard 184 Silicone Elastomer) is mixed at a 10:1 

ratio of base curing agent and is poured over the wafer mold, which is first treated with a 

silane adhesion-inhibitor. Prior to curing in an oven, tiny air bubbles are removed from the 

PDMS in a vacuum desiccator held at low pressure for approximately 10 minutes. Any 

surface bubbles still stuck to the viscous PDMS are removed with a small flow of purified 

air to move the PDMS around to pop the bubbles. PDMS is cured by baking at about 70°C 

overnight. Finally, the PDMS slab containing the flow channels is cut out with a razor 

blade and holes are punched for the fluid delivery tubing. A complete list of the chemicals 

and equipment we use to fabricate the microfluidic devices can be found in Table A1. 

Resist coating 
 
 
 
 
 
 
UV exposure 
 
 
 
 
Development 
 
 
PDMS slab 
fabrication 
 
 
 
PDMS slab 
 
 
Punching the 
ports and 
binding to glass 

Glass 
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Table A1. Materials and equipment used for microfluidic device fabrication.  

Chemicals and Materials Equipment 

SU-8 Developer 
CAS number: 108-65-6 

Plasma cleaner 

Perfluorooctyltrichlorosilane 
CAS number: 78560-45-9 

Spin coater 

HDMS (hexamethyldisilane) 
CAS number: 999-97-3 

UV lamp 

SU-8 series resist Hot plates 

PDMS Vacuum desiccator 

Typical solvents (Acetone, methanol, etc.) Oven 
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Appendix B:  PRTD Fabrication and Initial Testing 

The fabrication of PRTD (platinum resistance temperature detector) arrays took place 

in the Clemson Micro Fabrication Facility. The process, known as lift-off lithography and 

it is highly dependent on the tools available at specific clean room facilities. Fig. B1 shows 

an overview of the lift-off lithography process. Like soft-lithography described earlier, a 

photomask is used to pattern a photoresist onto glass wafers. To achieve the appropriate 

results, glass wafers must be cleaned in the same fashion described in Appendix A. After 

Nano-strip and plasma cleaning, the wafers are soaked in an adhesion promoter solution 

(surpass 300) for one minute to improve the adhesion between the glass surface and the 

photoresist. The wafers are then spin-coated with uniform thickness (0.9	µm) of a negative 

photoresist (AZ-5510) and baked at 110	°C for 105 seconds.  

 

 

 

Resist coating 
 
 
 
 
 
 
 

UV exposure 
 
 
 
 

Development 
 
 
 

E-beam deposit Ti (2 nm) 
 
 
 

E-beam deposit Pt (150 nm) 
 
 
 
 

Lift-off 
 
 

E-beam deposit SiO2 (200 nm) 

Fig. B1. Lift-off lithography 
process, proceeding from top 
to bottom, for fabricating 
PRTD arrays onto glass 
wafers. The final step 
indicates that the PRTD array 
device forms the glass slide 
used in the final PDMS 
microfluidic devices. 
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The PRTD array design is then patterned in the photoresist by UV exposure through a 

chrome mask using a mask aligner. The exposure time must be calculated each time based 

on the measured UV lamp intensity. After a short post-exposure bake, the printed PRTD 

array is developed to lift-off the resist from the areas that are not exposed by UV light; so 

that there is no photoresist on the area on which the metal will be deposited later. After 

inspection under a microscope, the wafers are plasma-etched for 30 seconds to remove any 

organic residue from their surface. Next, the wafers are loaded into an electron beam 

evaporator and ~2	nm of titanium is deposited as an adhesion promoter between the glass 

and platinum. Platinum is then deposited to a thickness of ~150 nm. The platinum-coated 

wafers are then soaked in NMP (N-Methyl-2-pyrrolidone) in an ultrasonic tank to lift off 

the metal from the resist-coated areas and then cleaned in the SRD machine. Fabricated 

PRTD arrays (Fig. B2) are then annealed at ~500	°C for ~12 hours to lower the electrical 

resistance of the sensors. After another plasma cleaning, a ~200	nm layer of SiO2 is 

deposited on the PRTD arrays (except on the leads for electrical connection) to protect the 

sensors and prevent any fluid leakage when the final microfluidic device is assembled. The 

SiO2 layer also provides a surface that can bond to PDMS. The fabrication process ends 

with cutting the PRTD arrays into a rectangular shape using wafer dicing saw. A complete 

list of the chemicals and equipment used for PRTD fabrication is listed in Table B1.  
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Fig. B2. Picture of a glass wafer with two PRTD 
array patterns deposited onto it. 

 
Table B1. Materials and equipment used for PRTD fabrication. 

Chemicals and Materials Equipment 

Nano-strip 2X 
(sulfuric acid 85%, hydrogen peroxide < 1%)  

Profilometer (Tencore Alpha Step 200) 

Glass wafers Wafer holders 

Adhesion Promoter (Surpass 300) Hot plate 

AZ-5510 Photoresist  Plasma etch (PlasmaTherm Versaline 
ICP) 

Titanium 
CAS number: 7440-32-6 

Spin coater (Brewer Sciences) 

Platinum 
CAS number: 7440-06-4 

Contact printer (Nuetronix/Quintel Q-
7000-IR) 

NMP (N-Methyl-2-pyrrolidone) 
CAS number: 872-50-4 

Developer tool (Brewer Sciences) 

Typical solvents (acetone, methanol, etc.) Electron beam evaporator (CCS CA-40) 
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Chemicals and Materials Equipment 

MIF developer (AZ 300) Ultrasonic tank 

PGMEA  
(Propylene glycol methyl ether acetate) 
CAS number: 108-65-6 

Microscope (Nikon Optical microscope 
magnification to 1500X) 

Silicon dioxide 
CAS number: 7631-86-9 

High temperature furnace 

AZ-7710 Photoresist  Wafer dicing saw (K&S 780) 
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Appendix C:  Study Data Storage 

The numerical simulations presented in this study are stored in the following folders in the 

Clemson Air Quality Lab google drive.   

 
Initial droplet formation models:  

 These initial models were performed to understand how proper settings must be set 

in the models to lead to valid results. 

 Address: G:\My Drive\MAML\Members\Ali\CFD\Paper data\Initial droplet 

formation models.  

 
Mesh independency test:  

 These models were performed to find the appropriate mesh size for the simulations. 

 Address: G:\My Drive\MAML\Members\Ali\CFD\Paper data\Mesh test 

 
Two-dimensional models for droplet formation:  

 These simulations were performed to determine droplet properties a function of 

flow rate ratio. 

 Address: G:\My Drive\MAML\Members\Ali\CFD\Paper data\Droplet formation\2D 

 
Steady-state three dimensional models for effect of cold stage temperature on 

pressure:  

 These simulations provide the steady state pressure in the channel as the result of 

cooling. The results from this model is used in the following 3D models to investigate the 

effect of cooling on droplet formation. 

 Address: G:\My Drive\MAML\Members\Ali\CFD\Paper data\Steady-state pressure 

 
Three-dimensional droplet formation:  

 Address: G:\My Drive\MAML\Members\Ali\CFD\Paper data\Droplet formation\3D  
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