
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

December 2019

An Exploratory Study of the Influence of Design Process Ordering An Exploratory Study of the Influence of Design Process Ordering

on the Requirement Generation of Novice Designers on the Requirement Generation of Novice Designers

Nicholas Spivey
Clemson University, nwspive@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Recommended Citation Recommended Citation
Spivey, Nicholas, "An Exploratory Study of the Influence of Design Process Ordering on the Requirement
Generation of Novice Designers" (2019). All Theses. 3211.
https://tigerprints.clemson.edu/all_theses/3211

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3211?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3211&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

AN EXPLORATORY STUDY OF THE INFLUENCE OF DESIGN PROCESS

ORDERING ON THE REQUIREMENT GENERATION

OF NOVICE DESIGNERS

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mechanical Engineering

by

Nicholas Spivey

December 2019

Accepted by:

Dr. Joshua Summers, Committee Chair

Dr. Gregory Mocko

Dr. Kapil Madathil

ii

ABSTRACT

In engineering design, the classic methodology of the design process encourages

the problem definition to be developed prior to beginning concept generation. It is shown,

however, that the problem definition and solutions must coevolve throughout the design

process, each phase building off information learned from the other to develop in an

iterative process. The current structuring of these steps leads to a disconnect between a

final solution and the initial problem definition (often presented in the form design

requirements). This research explores a methodology for improving the connection of

design requirements to those final solutions through manipulation of the ordering of the

design process. An experimental study was conducted to assess 104 engineering students’

requirements lists for a given design problem as they are influenced by developing

requirements first versus sketching an initial concept prior to requirement generation. The

control group was asked to generate requirements prior to sketching. The “sketch first”

group was then asked to use their sketch to assist their requirement generation.

Additionally, a second “sketch first” group was tested to determine the influence of being

given explicit instructions to identify features of their sketch to further improve the

requirements generated. It was found that this feature identification aspect of sketching

leads to improved requirements lists based on the metrics of requirement quantity, variety,

typology, completeness, and novelty, while simply changing the order of requirement

generation and sketching had little or no effect. This indicates that the design process

should explicitly connect a solution to the design requirements through formal instruction

in order to improve the designers’ understanding of their goal.

iii

DEDICATION

This thesis is dedicated to my parents, Andy and Kim Spivey, my sister, Emilie,

and my fiancée Mikaela. To my family, thank you for the constant encouragement to do

what I love while supporting me in every choice I make. I would not be where I am today

without all of your help, love, and support through the years. To my future wife, thank you

for always being there for me, especially during the difficult times. You help make me a

better person, and always push me to succeed. I can’t imagine where I would be without

all of your help.

iv

ACKNOWLEDGMENTS

First, I would like to thank Dr. Joshua Summers for being my advisor through my

graduate studies. He helped convince me to go to graduate school in the first place, and

continuously challenged me as a researcher along the way. Without his guidance, I would

not have been able to learn what I have, and will take this knowledge with me wherever I

may go. I also appreciate his support of my intramural sports accomplishments, continuing

my quest to play in as many intramural games as possible.

Next, I would like to thank my committee members Dr. Gregory Mocko and Dr.

Kapil Madathil. Dr. Mocko challenged me with questions about my research that gave me

insight to my work that I could not have found without his help. His thorough discussions

about random topics always kept me intrigued and help me to think about things in new

ways.

I reached out to Dr. Madathil and he welcomed the thought of joining my committee

with a positive attitude and no hesitation. His expertise in his field provided a unique

outlook to my work that I could not have gotten without his help. I appreciate his constant

encouragement and support for continuing my education.

I would like to thank Hallie Stidham and Doug Chickarello for introducing me to

the CEDAR lab group, as the CEDAR lab has been my second home during the last two

years. Thank you to all my current and past lab mates for being great people in and out of

school, always supporting me and providing great feedback for me to improve my work.

Apparently, I tend to be quiet and keep my emotions to myself… but know that I

truly appreciate everything you all have done for me both in school and out of school.

v

TABLE OF CONTENTS

i
ii

iii
iv
vii

viii

ABSTRACT..
DEDICATION...
ACKNOWLEDGMENTS ..
LIST OF TABLES..
LIST OF FIGURES...

CHAPTER ONE MOTIVATION AND BACKGROUND FOR

STUDYING REQUIREMENTS.. 1

1.1 The Engineering Design Process .. 2

1.2 Engineering Design Requirements ... 6
1.2.1 How Requirements are Studied ... 8

1.3 Coevolutionary Model of Engineering Design ... 11
1.4 Use of Sketching in Design... 13
1.5 Research Goals.. 14

CHAPTER TWO EXPERIMENTAL DESIGN... 17
2.1 Experimental Variables ... 18

2.1.1 Participants ... 19
2.1.2 Experimental Environment .. 20
2.1.3 Design Prompt ... 20

2.2 Packet Design and Procedure .. 22
CHAPTER THREE EXPERIMENTAL RESULTS AND ANALYSIS........................ 30

3.1 Class Equivalency ... 30
3.2 Quantity Results .. 32

3.2.1 Coding Methodology for Quantity... 33
3.2.2 Quantity Analysis... 36

3.3 Variety Results .. 39

3.3.1 Coding Methodology for Variety ... 40
3.3.2 Variety Analysis... 42

3.4 Typology Results .. 46

3.4.1 Coding Methodology for Typology ... 47
3.4.2 Typology Analysis ... 48

3.5 Completeness Results ... 51
3.5.1 Coding Methodology for Completeness .. 53
3.5.2 Completeness Analysis .. 57

3.6 Novelty Results ... 60
3.6.1 Coding Methodology for Novelty .. 61

3.6.2 Novelty Analysis .. 63
CHAPTER FOUR DISCUSSION OF RESULTS... 66

4.1 Quantity Findings.. 68
4.2 Variety Findings.. 72
4.3 Typology Findings .. 74

TITLE PAGE...

vi

4.4 Completeness Findings ... 77
4.5 Novelty Findings ... 81
4.6 Overall Findings.. 83

CHAPTER FIVE CONCLUSIONS.. 87
5.1 Research Limitations .. 89
5.2 Future Work .. 90

94 REFERENCES...
APPENDICES.. 99

Appendix A. Experimental Packets .. 100
Appendix B. TOST Code for Class Equivalency ... 121
Appendix C. Full Requirements List .. 127
Appendix D. Coded Results for Variety Metric ... 136

Appendix E. Coded Results for Typology Metric .. 153
Appendix F. Coded Results for Completeness Metric .. 161
Appendix G. Coded Results for Novelty Metric and Coding Algorithm 182

Table of Contents (Continued) Page

vii

LIST OF TABLES

Table 1.1. Requirement uses [19] ... 6
Table 1.2. Summary table comparing requirements studies ... 9
Table 2.1. Experimental layout showing each test groups instructed steps 18
Table 2.2. Summary of observed parameters and method of control 19
Table 2.3. Blank “Requirements Table” used in Packets A and C 23
Table 2.4. Example of “Feature Identification Table” from Packet B 26
Table 3.1. TOST results for each condition and metric to determine equivalency 31
Table 3.2. Pairwise comparisons of two class sections for each experimental

condition and metric (p- values) ... 31
Table 3.3. Example of requirements taken from packets and how they were split into

unique requirements, if necessary ... 34
Table 3.4. Number of counted requirements and number of times requirements were

split .. 35
Table 3.5. Sample of rules used to split requirements into components..................... 36
Table 3.6. Fischer’s LSD analysis for Quantity .. 38
Table 3.7. Categories for evaluating requirement variety [5] 40
Table 3.8. Variety score results at packet level .. 43
Table 3.9. Coding sample for typology .. 48
Table 3.10. Packet level Results for Typology ... 49
Table 3.11. Fischer’s LSD comparisons for Typology ... 50
Table 3.12. Benefits of writing a complete requirement [79] 52
Table 3.13. Parts of speech observed and their definitions... 54

Table 3.14. Example coding of requirements for completeness 56
Table 3.15. Kappa Scores from Cohen’s Kappa test for Inter-Rater Reliability 57
Table 3.16. Fisher Least Significant Difference (LSD) Method for Completeness ... 58
Table 3.17. Percentage that each part of speech appeared in requirements for each

condition ... 59

Table 3.18. Statistical pairwise comparisons between parts of speech for each

experimental condition.. 59
Table 3.19. Example of coding scheme for novelty ... 62

Table 3.20. Number and percentage of novel requirements in each packet 63
Table 3.21. Fischer’s LSD comparisons for Novelty ... 64
Table 4.1. Summary of conclusions for comparisons of each experimental condition

... 68
Table 4.2. Repeated summary of conclusions for comparisons of each experimental

condition ... 84

Table Page

viii

LIST OF FIGURES

Figure 1.1.Example of design process shown in textbooks excluding requirement

definition[4] .. 3
Figure 1.2. Coevolution diagram showing path explored in this study 12
Figure 2.1. Problem statement given in all three test packets [71] 21
Figure 2.2. Instructions given for Step 1 of Packet A ... 23
Figure 2.3. Instructions given for Step 2 in Packet A ... 24
Figure 2.4. Instructions for Step 3 of Packet A... 24
Figure 2.5. Instructions for Step 1 for Packet B ... 25
Figure 2.6. Instructions for Step 2 for Packet B ... 26
Figure 2.7. Instructions for Step 2 for Packet B ... 27

Figure 2.8. Instructions for Steps 2 and 3 for Packet C .. 28
Figure 3.1. Normal distribution fitting for RSI quantity data 38
Figure 3.2. Sample of variety coding used ... 41
Figure 3.3. Percentage of each category’s distribution in each packet 43
Figure 3.4. Percentile that each category was occupied by requirements 44
Figure 4.1. Summary of quantity conclusions .. 69
Figure 4.2. Overall comparisons for variety metric between experimental conditions

... 74
Figure 4.3. Summary of typology conclusions ... 77
Figure 4.4. Rank order comparison of experimental conditions for completeness

metric .. 78
Figure 4.5. Ranked ordering of experimental conditions for novelty metric.............. 83

Figure Page

1

CHAPTER ONE
MOTIVATION AND BACKGROUND FOR STUDYING REQUIREMENTS

The objective of this thesis is to observe the effects of reordering the early design

activities of requirements definition and concept sketching by engineering undergraduate

students. The contributions from this thesis support:

• Improving problem definition activities of early stage design,

• Evaluating the co-evolutionary model of engineering design, and

• Mitigating the negative effects of design fixation.

These contributions are based on the contextual limits of the study:

• being done on mechanical engineering undergraduate students in their third

year of study,

• applied to simple mechanical design problems, and

• done during short, individual-based design activities.

This chapter first defines the motivation for studying requirements in engineering

design through observed gaps in how they are currently presented in commonly used design

textbooks. It also highlights connections between the conceptual design and requirements

definition stages that are supported by the coevolutionary model of design. These topics

are further explained in the following sections, specifically focusing on engineering design

requirements, the coevolutionary model of engineering design, and the use of sketches as

a preliminary conceptual design. This motivation is used to develop the work done in this

thesis to provide an alternate methodology for the design process that mitigates the

shortcomings of the current process.

2

1.1 The Engineering Design Process

The engineering design process is a model used to inform designers how to progress

through a design problem. The current design process, as presented in several design

textbooks, follows the stages of conceptual design, embodiment design, and detailed design

[1–7]. The design process is sometimes presented as a linear model to be followed serially

[6]. These texts also mention the iterative nature of design, where each stage in the process

is used to evaluate the previous stages so they can be further developed [1–7]. Additionally,

these sources mention the act of defining engineering requirements in the form of a list

prior to beginning the conceptual design stage [1–7]. This step of defining the

requirements, however, is not always included in the iterative portion of the cycle presented

in these textbooks. Even if this step is included, how they should be used is not fully

explained. Figure 1.1 shows an example of the design process as presented in a design

textbook.

3

Figure 1.1.Example of design process shown in textbooks excluding requirement definition[4]

From Figure 1.1, the requirements definition stage is entirely separated from the

remaining stages of the design process. The conceptual design stage and al subsequent

steps are included in the iterative cycle of design, but the requirements are not a part of that

iteration. This disconnect between the requirement definition stage and the standard design

process drives the motivation for introducing a change. Some texts do not give a reason for

this ordering, while others state the reasoning for having a complete requirements list prior

to beginning conceptual design is to avoid a limited scope of the solution space caused by

a pre-conception of what the final solution should be [4]. This limitation is defined as

“design fixation” and is a bias that inhibits the ability to adequately explore how to solve a

design problem [8,9]. There are several methods for mitigating design fixation, although it

is typically expressed in the design textbooks that early concepts should simply be avoided

in the requirement definition stage [1–7,10]. Is design fixation, then, the only reason to

develop a requirements list prior to concept generation? A formal method for using a

4

conceptual sketch while avoiding design fixation is proposed in this thesis. If the design

process constantly evaluates the solution with the design requirements, then theoretically

the earlier in the process a solution is introduced, the sooner the solution can be evaluated

and corrected.

As the design process is taught in most engineering curricula, a large number of

students are exposed to the methods presented in these textbooks [11]. Thus, it would be

valuable to know if the used method provides the most optimal results in terms of the

solutions the students are able to design. It has been shown that products can fail if their

requirements lists are not adequate [12, 13]. Another study has shown that higher customer

satisfaction is achieved when more time is spent on the problem definition stage [14].

Further, how the use of requirements are carried through the design process is not well

understood by the designers, so a connection between the requirements list and the final

solution is lacking [11]. If the current design process is not optimally defined, then it should

be altered or presented differently to students so that they can be better prepared to design.

Rather than observing the entire design process, this thesis focuses on the problem

definition and conceptual design stages because they are arguably the most influential

stages for product success as 80% of the manufacturing cost is committed here [15]. If a

requirement is implemented or adjusted later in the design process, the costs of associated

with that change are much higher than implementing the change in an earlier stage [16]. In

addition to the importance of the problem definition and conceptual design for a successful

solution [12, 13], these two stages are also critical for establishing the designer’s

5

understanding of the design problem, which allows them to adequately explore the solution

space [17].

Problem definition and conceptual design are separated as two distinct steps in the

current design textbooks. It is explicitly stated that no solutions should be considered in

the requirement development stage “unless it is needed to clarify requirements [2].” Not

only does this statement highlight the tendency to instruct designers to complete a

requirements list prior to the conceptual design stage, but it also inherently associates the

value of using a solution to assist in the requirement definition stage. The use of solutions

to aid in requirement development is not a novel idea, and has been addressed by several

of these design texts. As the design process progresses, the solution can be used to evaluate

a requirements list to ensure the requirements are being met [18]. Using this reasoning, this

step can be implemented much earlier in the design process (i.e. the problem definition

stage) to accelerate the understanding of the problem. This thesis introduces the formal use

of a conceptual solution to aid in the problem definition stage of the design process.

Using the overarching motivation of using concepts to aid problem definition, these

terms must first be defined. Problem definition is the stage of the design process in which

the designer establishes the goals of the designed product [7]. These goals are known as

engineering design requirements, and the collection of the specifications defines the full

design problem, since a successful solution will meet all the requirements [1]. Concepts

refer to the potential solutions to a design problem, but for this thesis, concepts are only

observed in the form of sketches. Sketches are discussed in Section 1.5. The following

section expands on the use of requirements in this thesis.

6

1.2 Engineering Design Requirements

The goal of this thesis is to evaluate how a requirements list is influenced by

changes to the ordering of the design process. Thus, it is important to define what

engineering requirements are and how they are studied. Engineering requirements are

defined as a want, need, or characteristic of a design that describes what a product must do

[1]. A requirements list is a representation of the collection of specifications by which the

final solution is evaluated [5]. Aside from these formal definitions, requirements have

multiple uses and roles in engineering design, as depicted in Table 1.1.

Table 1.1. Requirement uses [19]

According to these definitions, there is a clear connection between the requirements

and final solution of a problem, as a solution cannot exist without addressing at least one

requirement. Requirements serve as the basis for beginning a design project, as without

them there is nothing to guide the conception of solutions [20]. This is highlighted by the

fact that these design textbooks explicitly instruct designers to establish a comprehensive

requirements list as the first step in their design process, so that the conceptualization of

solutions has some basis for evaluation [2]. An understanding of how to use requirements

effectively can aid in the design of a successful solution [11].

7

Novice designers, herein defined as engineering students, are known to have trouble

developing the scope of the design problem to encompass a sufficient set of requirements

[21]. One speculation as to why novices struggle with this is that their lack of experience

limits their tacit knowledge of how to solve certain design problems, so they cannot

adequately apply relevant experiences to the given problem [22, 23]. Another reason is that

novice designers tend to follow backwards reasoning whereas experts use mostly forward

reasoning or a combination of the two, signifying that they rely on a solution to proceed

through the design process by building the design process around that solution [24–27].

Not only do novice designers struggle with problem definition, but they struggle to carry

the developed requirements throughout the design process to their final solution [28]. This

is not just a problem for novices, as experts have been shown to ignore requirements in

their solutions as well, identifying a need to improve the understanding of the role of

requirements in the design process [29]. Since novice designers tend to rely on external

sources in lieu of their experiences when approaching a design problem, they should be

formally instructed to do so to avoid potential biases and address this issue directly.

If a novice designer is given a design problem, their earliest concepts will be based

on their experiences (or lack thereof) [30]. If they were allowed to sketch that concept and

evaluate it in the problem definition stage, they could potentially see which aspects or

features of that solution would or would not be feasible to solve the problem. They would

then have guidance as to where to look to gain knowledge in the areas that do not

sufficiently address the problem. This premise is a portion of the proposed methodology in

this thesis, and its use is evaluated in later chapters.

8

1.2.1 How Requirements are Studied

Thus far, engineering requirements have been studied to further the understanding

of the problem formation phase of the design process. With this understanding, a

methodology for how requirements are used and studied has been gained and applied to

the work in this thesis. Much of the research done on requirements has been conducted in

the software engineering field [31–35]. Although this research is not entirely applicable to

mechanical engineering design due to inherent differences between software and

mechanical design problems, many of the applications can be generalized [36]. The

software engineering field, along with many of the mechanical engineering design

textbooks, agree that requirements must be defined at the beginning of the design process

and come from various sources, primarily from the customer [1–7, 37]. They also agree on

many of the methods used to elicit requirements [38, 39]. Further, they aim to connect the

requirements developed in the problem definition stage to the final solutions [40].

Since the importance of requirement development is consistent across various fields

of design, requirements are a useful parameter for evaluation in this thesis. Past studies

have observed the development of engineering design requirements, but few have used the

requirements themselves as the “data” to analyze for the studies. A summary of previous

requirement studies is shown in Table 1.2.

9

The table shows several different studies done in various research groups and

domains regarding the use of requirements. There is a variance in the expertise level tested

between novices and experts, each with their own definition of what an expert is.

Regardless, the results span the spectrum of expertise level and can be extrapolated to any

level. It can be seen that a majority of the conducted studies used requirements as a task to

be completed by the participants (denoted by M for Method). This signifies that the

requirements themselves were not of importance, but rather how they were used to

influence other aspects of design, mainly regarding the solution. Only three of the studies

used requirements as a form of data that was analyzed to draw conclusions. Two of these

three, [33, 42], simply evaluated the requirements based on the quantity of needs generated.

The third, [41], evaluated requirements based on the metrics of quantity, completeness,

Table 1.2. Summary table comparing requirements studies

Author

Domain

Studied

Expertise of

Participants

Type

of

Study

Use of

Requirements

Order

of

Design

Process Reference

Chakrabarti ME E P M Pr,G,S [29]

Effendi SE E C M Pr,G,S [36]

Elena ME N,E X D Pr,G [41]

Engelbrektsson - N,E P M,D Pr,S,G [42]

Joshi ME N C I,M Pr,G,S [28]

Joshi ME N X I,M Pr,G,S [43]

Moore SE E P O Pr,G [32]

Morkos et. al ME N A M Pr,G,S [44]

Pitts SE E X M,D Pr,G [33]

Suwa, Gero Arch. E P M Pr,S G [45]

Worinkeng ME N X I Pr,G,S [46]

Key:

Domain: ME – Mechanical Engineering, SE – Software Engineering, Arch - Architecture

Expertise: E – Expert, N – Novice,

Type: P – Protocol Study, C – Case Study, X – Experimental Study, A – Action Study,

Requirements: M – Method, D – Data, I – Input, O - Output

Order: Pr – Problem Definition, G – Requirement Generation, S – Solution Creation

10

novelty, and variety, and these evaluation techniques were adopted and modified for this

thesis, discussed later.

Of other importance from this table is the ordering of the design process used in

each study. All studies except [42] and [45] followed the classic design process and

progressed from problem statement to requirement generation to solution creation. This

shows a clear adherence to the serial design process, when the influence of this ordering

has not been studied previously. The exceptions to this trend were two experiments: one

that required the participants to generate requirements for an existing solution based on

two different representations of the same solution, and the other that observed how an

architect used a conceptual sketch to elicit requirements. The purpose of the first

experiment was to observe differences in expertise of participants and differences between

representations of a solution on the number and focus of requirements generated. Although

not the explicit intention of this study, the use of solutions to elicit requirements is observed

here and further motivates this thesis.

The second experiment observed an architect’s ability to generate requirements

through a protocol study. The architect was told to sketch his ideas and use those sketches

to elicit requirements. It was found that the architect relied heavily on his own sketches to

generate requirements (53% of requirements stemmed from the sketch). This study

demonstrates the idea this thesis is built upon. The work done in this thesis aims to verify

this finding with a larger number of samples and clear experimental variables discussed in

CHAPTER Two.

11

1.3 Coevolutionary Model of Engineering Design

Another motivating aspect of this thesis is to validate the coevolutionary model of

engineering design. Coevolution is defined as the simultaneous development of the

problem space and solution space throughout the design process [47]. The problem space

is the theoretical breadth of space that contains all the information relevant to the given

design problem [48]. The solution space is the theoretical space that all potential solutions

to the problem are contained by [48]. It is not likely that a designer or team of designers

can accurately represent the entirety of either the problem or solution space when first

presented with the design problem, or even after an entire design problem is completed

[49]. Thus, developing both of these spaces as much as possible is needed to be confident

that a particular solution is the best candidate to solve the given problem. To develop these

spaces adequately, the evolution of the design process requires new information to be

gained in each space in order to progress in the other space [50]. This can be done by using

explicit or sub-conscious cognitive processes related to using the information present in

each space, whether it be requirements in the problem space or concepts from the solution

space [51].

Current practices as demonstrated by design textbooks mention the development of

the problem space as an important stage of design [2,5,7,52]. What they do not show is the

use of solutions to assist in that development. Requirement are used to evaluate a solution,

but the solutions are not properly used to encompass the design requirements. This work

explores the use of a solution to aid in the development of the problem space. Figure 1.2

shows a diagram modeling coevolution by showing the simultaneous development of the

12

problem and solution space. The red path in the figure is the path observed by this thesis.

A problem is given to designers, and this work explores the use of the initial problem to

develop a solution, then use that solution to develop the problem space. The study by Suwa

and Gero again supports this model of engineering design based on the findings of that

protocol study [45].

The coevolutionary model has been a topic of engineering design research for the

last two or three decades, but little research has been done to implement the use of this

model into engineering design [53,54]. The fear of design fixation seems to be holding

back the implementation of early solutions in the engineering design process [55]. The

work in this thesis attempts to determine a method for mitigating design fixation while

using sketches to assist in requirement generation so that creativity is not inhibited by this

phenomenon [56].

Although coevolution is not as widespread as other models of engineering design,

some industries take advantage of the concepts held within the model. Industries using

model-based systems engineering, or MBSE, use various models to drive the development

Figure 1.2. Coevolution diagram showing path explored in this study

13

of requirements for their projects. MBSE is both a method and a mentality that allows all

potential requirements to be constantly used and developed throughout the design process

[57]. This methodology also makes the management of a changing requirements easier as

every stage of the design process incorporates the verification of the solution or model with

the requirements of the project [58]. The MBSE approach is one of the primary

demonstrators of the coevolutionary model of engineering design, with design

requirements at the heart of its use. This thesis aims to apply the theories of coevolution

and MBSE to mechanical engineering design through the experimental study explained in

ChapterCHAPTER Two.

1.4 Use of Sketching in Design

The last theme observed in this thesis is the use of sketching in engineering design.

Sketching is commonly used as a tool to quickly develop early concepts for a design

problem [59]. Using this technique, designers are able to create physical relations between

ideas in their heads that may not have any form [51]. Not only do sketches allow the creator

of the sketch to better understand their own ideas, but sketches allow information to be

shared among teammates of a collaborative design project [60]. Seeing as sketches allow

both the creator and others to gather information about a potential concept, there is by

default information to be gained from a sketch.

Much of the research done on conceptual sketching has been regarding the

cognitive load it places on the designer or creator of the sketch [61–63]. This increased

brain activity is linked to a stimulation for their creativity, allowing the designers to store

their ideas in a visual representation in the form of a sketch [64]. Sketching has also been

14

used as a task to improve idea generation by stimulating the brain [65].This thesis aims to

uncover the information stored in a sketch using a formal technique to elicit requirements

for the problem statement that are embedded in a sketch.

When designers use a sketch, it is a quick and easy way to represent their ideas. As

the design progresses, however, more details get added to the sketch and a CAD model is

made from the sketch. If the concept does not address the requirements completely, then

progressing from a sketch to a CAD model will not change that. As more time and

resources are put into these representations, the designers become subject to what is known

as “sunk-cost bias.” This phenomenon is the tendency of designers to be hesitant to let go

of their solution because of how much time they have invested into its development,

regardless of the concept’s quality [66]. When designers experience the sunk cost effect,

the stages of the design process are retroactively followed to make it appear that their final

solution followed the process when it is clear that the design may not have been the most

optimal solution [67]. The aim of this thesis is to allow designers to use an early concept

such as a sketch to aid in the problem definition so that value can be gained and the sunk-

cost effect can be avoided.

1.5 Research Goals

The background previously discussed has brought forth several gaps in the

literature that this thesis addresses. Firstly, the ordering of the design process as it is

currently presented is lacking in the justification and reasoning for the methodology it uses.

Design textbooks inform the readers to not develop solutions until their requirements lists

have been developed, whereas literature on coevolution suggests that these two phases

15

should develop simultaneously throughout the design process in order to encompass more

of the problem and solution spaces [2,50]. Since requirements are used consistently as a

means to evaluate solutions, this serves as the impetus to introduce a solution earlier in the

design process so that: 1) the solution can be more rapidly analyzed and refined, and 2) the

solution itself can be used to develop the requirements list prior to the official design of a

concept.

Additionally, literature about sketches suggest a wealth of information that can be

gained from the proper use of this representation [68]. Sketches allow the abstraction of

information from the visuo-spatial features of the drawings, thus can accelerate the process

of establishing design specifications [45]. This is done by eliciting requirements that are

implicit in “why” each feature was included in the sketch.

From these major trends and gaps observed, two research questions were developed

for the work in this thesis:

RQ1) Does using a conceptual sketch to extract requirements influence a

requirements list?

RQ2) Does extracting features from a sketch influence the ability to generate

requirements?

These research questions are addressed in the following chapter through the design

of an experimental study. The experiment was designed to test the hypotheses that: 1) a

conceptual sketch can be used to help elicit requirements, and 2) identifying features of a

sketch can help elicit requirements. The requirements were evaluated based on the metrics

of quantity, completeness, variety, novelty, and typology. Each of these metrics and the

16

definitions of how the requirements are “improved” relative to each metric is explained in

later sections.

17

CHAPTER TWO

EXPERIMENTAL DESIGN

To answer the two research questions from CHAPTER One, an experimental study

was designed. An experimental study allows the different test groups to be controlled to

observe the implemented changes’ effects on the designs of the participants. Each test

group was given explicit instructions to follow that resulted in three different orderings of

the early stages of the design process, two of which give insight into the use of a conceptual

sketch to answer RQ1, and one which instructs designers to extract features from sketches

to further develop their requirements lists (addresses RQ2).

The first experimental condition was used as the “control” group for this

experiment, where the participants were asked to read a problem statement, generate a list

of requirements, sketch a solution, then identify in their solution where each requirement

was addressed. The ordering of the steps were Requirements, Sketch, and Identify, thus

given the case name RSI. The RSI group was used as the control because it most closely

aligns with the design processes presented in design literature [1,2,5–7,69]. The second

group was given the same problem statement, asked to sketch a solution, identify features

of the sketch, then generate requirements for each feature. This group was given the name

SIR for the Sketch, Identify, and Requirements steps. The final group was given the same

problem statement, asked to create a sketch, then generate requirements, and identify where

in their sketch each requirement was addressed. The order of Sketch, Requirements, and

Identify gives this group the name SRI. A summary of the layout of the experiment is

shown in Table 2.1. The content of each of these experimental conditions is explained in

Section 2.2.

18

Table 2.1. Experimental layout showing each test groups instructed steps

Experimental Layout

Steps Packet A (RSI) Packet B (SIR) Packet C (SRI)

Step 1 (10 min.) Requirements Sketch Sketch

Step 2 (10 min.) Sketch Identify Requirements

Step 3 (10 min.) Identify Requirements Identify

This chapter details the design of the experiment given to test the hypotheses used

to address the research questions. Section 2.1 explains the variables in the experiment,

while Section 2.2 details the experimental packets as given to the participants along with

the procedure followed.

2.1 Experimental Variables

In the design of the experiment developed to test the hypotheses in this thesis, there

were independent, dependent, and control variables that were determined. The independent

and dependent variables were identified by the goals of this thesis, which were to observe

the effects of: 1) using a sketch to elicit requirements, and 2) using feature identification of

a sketch to elicit requirements. From these goals, the independent variable was identified

as the presented ordering of the design process (whether developing a sketch before

generating requirements has an influence), and the dependent variables are the

requirements lists generated by the participants.

To ensure that the designed experiment only observes the effects of the independent

variable on the dependent variable, the remaining components of the experiment were

controlled as much as possible to limit the influence of any external factors. Table 2.2

shows the potential external variables and how they were accounted for. The following

sub-sections justify the choices made for each variable.

19

Table 2.2. Summary of observed parameters and method of control

Parameter Observed Method of Control

Participant

Experience

Conducted on 104 junior level participants between

two ME 3060 sections

Student Differences Packets were randomly distributed among students

Motivation for Effort Extra credit offered for completion of experiment

Quality of Education Same professor for both tested class sections

Experimental

Environment

Same class time and location

Requirement

Familiarity

Brief lecture given to explain design process and

how requirements are used

Packet Equivalency Same design problem used; same amount of time

given for each section in each packet

2.1.1 Participants

This experiment was conducted on two class sections consisting of 104 mechanical

engineering (ME) students in the same machine design course (ME3060). There were 26

students in the first course and 78 students in the second course that attended the

experiment. This course is an introductory machine design course that teaches the

fundamentals of designing for many factors, such as loading condition. This course does

not teach the engineering design process, but rather the analytical methods used in many

design applications. This course is also a pre-requisite for Clemson’s senior design courses,

thus, none of the students had prior classes on engineering design. Because of this, each

participant’s experience with engineering design was controlled to be at the same level as

any other participant since this is the first design course offered in Clemson’s ME

curriculum. These participants were chosen for this experiment because, having no

experience with engineering design, the participants would have no pre-conception of how

20

design should be conducted. This way, there is a high confidence that the only influences

on the outcome of the experiment would be due to the independent variables introduced.

To control for any differences between the students themselves, such as knowledge,

age, race, gender, etc., the experimental packets were randomly distributed to students.

When the packets were distributed, there were 38 participants with Packet A, 33 with

Packet B, and 33 with Packet C. The participants were offered extra credit for completing

the experiment to motivate them to put forth an effort and provide valid results.

2.1.2 Experimental Environment

The same professor taught both class sections, so they also should have received

the same information from the lectures up to the point the experiment was conducted. The

experiment was held at the usual class time and location; thus, the environmental factors

were not an influence. Prior to conducting the experiment, the researcher presented a brief

lecture to both classes to establish familiarity with requirements, as the machine design

course did not cover that material. The lecture did not instruct on how to generate

requirements, but rather was a brief introduction to the engineering design process and

what engineering requirements are.

2.1.3 Design Prompt

The same design problem was used for all three test groups so that there could be

no discrepancies that would occur if multiple design problems were used. The design

problem was chosen from a similar experiment conducted on students roughly the same

educational level [41,70]. The experiment by Elena examined the requirements generated

21

by senior mechanical engineering students before and after a lecture was given on

requirements to determine the effectiveness of lecture intervention on requirement

generation. The “book grabbing” problem was one of the two problems used in that

experiment, so it was repeated in this experiment. Because of the design problem’s

previous use, the results from this experiment and the previous experiment can be used for

additional analysis. The chosen design problem is shown in Figure 2.1 [71].

Figure 2.1. Problem statement given in all three test packets [71]

In this problem statement, several requirements were embedded in the wording

used. These requirements include:

• Help people in wheelchairs grab books from the highest level of the

bookshelf (6ft or above)

• The device must be safe to use

• The device must be convenient to use

• The device must operate smoothly without damaging books

• The assembly should be relatively simple so that it can be installed on most

existing bookshelves

These embedded requirements give enough information about what the device

should do without constraining the possible solutions. These embedded requirements were

22

allowed to be used in the participants’ generation of requirements as they were part of the

complete requirements list. The level of detail of the problem statement was deemed

appropriate for the level of education of the participants [70].

With these controls in place, the experiment was conducted on the participants, and

the results obtained could be observed to determine only the influence of the independent

variable on the dependent variable. The next section explains the design of the

experimental packets that were given to the participants.

2.2 Packet Design and Procedure

With the variables of the experiment established, three experimental packets were

designed to give to the three test groups. Each of the test cases had its own packet content,

although the formatting, instruction detail, and layout were common between the three.

Each packet consisted of three, ten-minute sections so that they could be completed at the

same time with the same set of verbal instructions from the researcher despite differences

in the steps themselves. These verbal instructions simply notified the participants when to

begin the experiment, when to proceed to the next step, and when to finish the experiment.

The first page for each packet was simply a cover page stating the packet type (A,

B, and C corresponding to the RSI, SIR, and SRI groups, respectively) and the course

section number the students were in. For all three packets, the problem statement was given

to the participants on the page after the cover page. On the same page as the problem

statement, the first instruction for each packet was given. The overall structure for Packet

A was based on the RSI structure explained in CHAPTER Two. For Packet A, the

instructions stated to read the problem statement and populate a “Requirements Table” on

23

the following page(s). The table consisted of two columns, the first with numbers ranging

from one to twenty-five, and the other with blank rows to be populated with written

requirements. An example of the layout of this table is shown in Table 2.3.

Table 2.3. Blank “Requirements Table” used in Packets A and C

Requirement

1

2

3

4

5

The “Requirements Table” spanned two pages with up to 25 requirement slots to

compel the designer to generate multiple requirements, as well as to provide more spaces

than the designer should be able to fill in a ten-minute time period. On the last page of the

“Requirements Table”, a stop sign was shown to notify students to wait until further notice

to continue to the next step. The instructions given for the first step in Packet A are shown

in Figure 2.2.

Instructions – STEP 1

Read the problem statement. After reading, generate as complete a list of

requirements as possible for a potential solution by populating the Requirements

Table on the page(s) after the problem statement. Write the requirements in the

second column, with one requirement per row

Figure 2.2. Instructions given for Step 1 of Packet A

The second step in Packet A began after the ten-minute requirement generation

period. This second step instructed the participants to use their generated requirements to

help them sketch a single, high-quality concept. A single sketch was chosen for this

24

experiment rather than multiple sketches so that the participants could put as much detail

into their one idea as possible in the ten-minute time period for this step. The higher level

of detail allows the connections between the requirements and the sketch to be more easily

connected [59]. Again, a stop sign was placed at the bottom of the page to prohibit

participants from moving to the next step until instructed by the researcher after the ten

minutes ended. The second step is shown in Figure 2.3.

Instructions – STEP 2
Using your requirements list and the given problem statement, sketch one high

quality solution in the box below to solve the problem.
Figure 2.3. Instructions given for Step 2 in Packet A

The final step in Packet A was another ten-minute period where the students were

instructed to identify where in their sketch each requirement they generated was addressed.

The instructions told the participants to use the requirement number from their

“Requirements Table” to label specific features of their sketch that they believed addressed

the requirement. The labeling was done by circling a specific feature of the sketch. These

instructions are shown in Figure 2.4.

Instructions – STEP 3
After your sketch is complete, identify which features of your sketch address each of

the requirements from the Requirements Table by circling the features of the

sketch (i.e. subsystems, components, or characteristics of your solution) on the

previous page and labeling the identifying number of the addressed requirement for

that feature. If multiple requirements are addressed, label each requirement number.
Figure 2.4. Instructions for Step 3 of Packet A

This step was done to observe the connection between the requirements and

solutions of the participants to either support or reject claims that requirements are not

actually used to generate solutions from [72]. A study by Joshi showed that many of the

generated or given requirements to a problem were not addressed in the solutions generated

25

by the participants, indicating a lack of connection between these two important stages of

design [73]. The full version of Packet A is shown in Appendix A.

Packet B consisted of similar steps to Packet A, although the order they were

presented was different. The ordering of Packet be is based off of the SIR structuring

explained in CHAPTER Two. The problem statement was given first, but the instructions

with the problem statement told the participants to create a single, high-quality sketch

rather than generate requirements. When the participants finished the sketch, a stop sign

on the page notified the students to wait for further instructions before proceeding. The

first set of instructions for Packet B is shown in Figure 2.5.

Instructions – STEP 1

Read the problem statement. After reading, sketch one high-quality solution that

solves the problem on the following page in the provided box.

Figure 2.5. Instructions for Step 1 for Packet B

The second ten-minute step instructed the participants to identify features of their

sketch by circling them, and then writing the name of the feature in the first column of the

“Feature Identification Table” on the following pages. This table in Packet B differs from

the “Requirements Table” in Packet A and C in that rather than the first column being

numbered for requirements, the column is for writing the names of the features identified

in this step. An example of this table is shown in Table 2.4.

26

Table 2.4. Example of “Feature Identification Table” from Packet B

Feature Requirement

For each feature, there are five rows in the second column to populate with

requirements in the subsequent step. Because of this design change in the packets, there

were rows for up to forty requirements in Packet B so that each feature could have

requirements generated for it. There were enough feature rows so that the participants could

populate up to twelve features, which was selected because it was more than the

participants should have been able to identify from their sketches. This step is similar to

step three in Packet A, where the participants were asked where their requirements were

addressed in the sketch. Step 2 of Packet B is shown in Figure 2.6.

Instructions – STEP 2

Using your sketch, identify features of the sketch (i.e. subsystems, components, or

characteristics of your solution) by circling them. Label each circled feature using a

letter. Use each feature to populate the first column of the Feature Identification

Table with the appropriate letter. Add a one- or two-word description of the feature

in the Feature column as well. DO NOT FILL OUT REQUIRMENTS COLUMN

YET.

Figure 2.6. Instructions for Step 2 for Packet B

The final step in Packet B was to generate requirements for each feature that had

been populated in the table. The aim of this step was to compel the participants to focus on

why each aspect of their sketch was drawn to provide them with a stimulus to generate

requirements. By using specific features of the sketch to generate requirements, there is an

27

inherent and explicit connection between the requirements and the solution that is not

apparent in the other two packets. Step 3 is shown in Figure 2.7, and Packet B can be seen

in its entirety in Appendix A.

Instructions – STEP 3

Using your sketch and the Feature Identification Table, generate a list of

requirements associated with each feature in the table by writing the requirements in

the second column. Requirements should only be written next to the associated

feature.

Figure 2.7. Instructions for Step 2 for Packet B

Packet C is the last iteration of the manipulation of the ordering of the design

process. Packet C corresponds to the SRI structure from CHAPTER Two. The first step for

this packet was the same as in Packet B, shown in Figure 2.5, where the participants were

asked to read the problem statement and sketch a single, high-quality solution. Again, a

stop sign at the bottom of the page instructed the participants to wait until further notice to

move forward.

After the sketching step, the second step instructed the participants to generate a

list of requirements based on their solution. The difference between this packet and Packet

B stems from the lack of formal instruction to identify features of the sketch at this step.

The participants are simply told to use their sketch to generate requirements. The

requirements were to be populated in the second column of the “Requirements Table,”

which is exactly the same as the one from Packet A, shown in Table 2.3. It is in the third

step that the participants were instructed to identify where in their solution each

requirement was addressed, much like the final step of Packet A. Steps 2 and 3 of are shown

in Figure 2.8, Packet C is shown in Appendix A as it was given to the participants.

28

Instructions – STEP 2

Using your sketch, generate as complete a list of requirements as possible by

populating the Requirements Table on the following page(s). Write the requirement

in the second column, with one requirement per row.

Instructions – STEP 3

After your sketch is complete, identify which features of your sketch address each

of the requirements from the Requirements Table by circling the features of the

sketch (i.e. subsystems, components, or characteristics of your solution) and

labeling the identifying number of the addressed requirement for that feature. If

multiple requirements are addressed, label each requirement number.

Figure 2.8. Instructions for Steps 2 and 3 for Packet C

The procedure for the experiment began with the brief lecture mentioned

previously. After the lecture, the packets were randomly distributed to all the students.

Once all the participants had a packet, the researcher instructed the participants to begin

the first step labeled in their packet. The participants had ten minutes to complete the first

step, as this was deemed enough time to generate a sufficient sketch or requirements list

before they stalled out [71]. Once nine minutes had passed, the researcher announced that

there was one minute left to finish up their thoughts. After that final minute passed, the

researcher instructed the participants to proceed to the second stage of their packet. Again,

a ten-minute time period was used with announcements signifying when there was one

minute left and when time was up, in which case the participants proceeded to the final

stage. Another ten-minute period with a one-minute and ending announcement completed

the experimentation period. A brief discussion was had with the participants to talk about

the purpose of the research, as well as to answer any questions, and the participants were

free to go afterwards.

Each of the packets was designed to test the ordering of the early stages of the

design process through manipulation of the given instructions so that the requirements

29

generated by the participants could be analyzed. With the completion of the experiment,

there were 104 requirements lists and sketches available for analysis. The analysis

conducted on the results obtained is detailed in the following section.

30

CHAPTER THREE

EXPERIMENTAL RESULTS AND ANALYSIS

The results of the experiment were obtained in the form of written requirements

from each of the participants. Additionally, the sketches of each participant were collected

and available for observation. This work focuses on the developed requirements rather than

the solutions, so the following sections detail what was found regarding the evaluation of

the requirements based on the five metrics of quantity, variety, typology, completeness,

and novelty. Since two different classes were used in this experiment, it was important to

make sure that the results of each class were similar enough to compare results between

classes. This comparison was made between both classes for each metric. If the classes

were found to be different, the smaller class was excluded from the analysis. This chapter

first presents the results of the class equivalency, then details the analytical methods used

to code and interpret the results, then presents the analytical results regarding each metric.

3.1 Class Equivalency

To ensure that the two observed classes used for this experiment provided similar

results, they were compared using two, one-sided t-tests, or TOST. This test compares the

samples to determine if they are statistically equivalent, based on a user-defined range for

acceptable equivalency. For each metric, the coding schemes detailed in each

corresponding section were used and the analytical methods used were applied between

the two participant classes rather than between experimental conditions. One class was

much smaller than the other (n = 26 vs. n = 78), thus, if differences were found between

the class times, the smaller class was excluded from the analysis because it is a smaller

31

data set. A MatLab program was written to conduct the statistical test. An acceptable range

for equivalence was defined by the researcher to be within one standard deviation of the

larger of the two observed means. Using the standard deviation accounts for discrepancies

between data sets using values that are derived from the data themselves. The results of the

TOST tests with α values of 0.05 are shown in Table 3.2, and the MatLab code used is

shown in Error! Reference source not found..

From Table 3.1, it can be seen that there was enough evidence to support the claim

that most of the conditions were equivalent between classes. The only cases in which they

were not equivalent were for the completeness metric for the SIR and SRI groups. Since

these cases could not be considered statistically equal, it was desired to know if any of the

cases were considered statistically different. To see if any of the classes were statistically

different between each test case, standard t-tests were conducted. The results of these t-

tests with a 95% confidence level are shown in Table 3.2.

From Table 3.2, it is shown that the class sections were not statistically different in

most cases, however, there were differences between the classes for the completeness

Table 3.1. TOST results for each condition and metric to determine equivalency

Quantity Variety Typology Completeness Novelty

RSI Eq. Eq. Eq. Eq. Eq.

SIR Eq. Eq. Eq. Not Eq. Eq.

SRI Eq. Eq. Eq. Not Eq. Eq.

Table 3.2. Pairwise comparisons of two class sections for each experimental condition and metric

(p- values)

Quantity Variety Typology Completeness Novelty

RSI 0.08 0.057 0.082 0.0037 0.15

SIR 0.3 0.45 0.75 0.00017 p < 0.001

SRI 0.41 0.33 0.50 0.15 0.91

32

metric for Packet A and B, or the RSI and SIR methods. There were also differences

between the classes in Packet B (SIR method) for the novelty metric. Comparing Table 3.1

with Table 3.2, the only case that was determined to be statistically different and not

equivalent was the completeness metric for the SIR method. This method excluded the

smaller class section for analysis. The other two cases that were deemed statistically

different were found to be equivalent for the purposes of this experiment based on the

equivalence bound set by the researcher. For the cases that there were no statistical

differences between the classes, the results from both classes were grouped together to

provide more statistical power for the analysis.

3.2 Quantity Results

Quantity is a count of the requirements generated by each participant. Using the

“Requirements Table” and “Feature Identification Table” from each packet, the number of

rows in the requirements column was counted for each participant and used as their score

for quantity. It was found that there were many compound requirements in single rows,

thus these compound requirements were manipulated to result in multiple, individual

requirements. This was done for each participant across all packets, resulting in 104

quantity scores. These scores were grouped accordingly to each packet (38, 33, and 33

scores per packet, for Packets A, B, and C, respectively), and further analysis was

conducted. Quantity was used as an evaluation metric because it is said that a designer’s

ability to generate more requirements early is indicative of a better understanding of the

problem that is more likely to lead to “good” requirements than a low quantity [74,75]. The

hypotheses tested for this portion of the analysis were:

33

HQ1) the SIR method would lead to a change in the number of requirements

generated by the participants compared to the RSI or SRI methods, and

HQ2) The SRI method would lead to a change in the number of requirements

generated by the participants compared the RSI or SIR methods.

3.2.1 Coding Methodology for Quantity

The initial count of the requirements resulted in a quantity of 1153 requirements.

There were 412, 436, and 305 requirements in Packets A, B, and C, respectively. To

account for participants that wrote requirements with more than one requirement per row

in the “Requirements Table” or “Feature Identification Table,” an additional step was

followed to split all “compound requirements” into their individual components. This was

done so that each individual component of the compound requirements could be analyzed

individually for the remaining metrics. For Packets A and C, this led to splitting the

requirements from the “Requirements” column in their “Requirements Table” into

individual requirements. For Packet B, the same procedure was followed with the added

case of when requirements were written into the “Feature” column of the “Feature

Identification Table” as well. Splitting requirements is important because it allows for the

evaluation of each separate idea the designer was attempting to make [72]. A protocol was

developed on how to identify compound requirements, as well as how to split them up.

Table 3.3 shows an example list of the requirements gathered from the experimental

packets and how they were split into unique requirements. The full list of split requirements

is shown in Appendix C.

34

 To observe the frequency that the participants tended to write compound

requirements, the number of times a requirement was split was determined. This value was

also represented as a percentage relative to each test case by dividing the number of times

a requirement was split by the total number of requirements for that packet prior to being

split. Additionally, the number of requirements counted before and after the splitting was

found for each packet and for each individual participant. The method for counting the

requirements consisted of a rater counting the number of individual requirements for each

participant, including those in the feature column for Packet B. Table 3.4 shows the number

of requirements from the preliminary count, the final count (after splitting), the average

number of requirements generated per person, and the number of times a requirement was

split. The number of times a requirement was split is different from the number of added

requirements in the case that a requirement was split into more than two individual

components.

Table 3.3. Example of requirements taken from packets and how they were split into unique

requirements, if necessary

Number of

Requirements

Split Version - If a requirement should

be split, rewrite the new requirements in

the columns to the right of the original

requirement

Requirement 1 2

Securely hold

book when raising

or lowering 2

Securely hold

book when raising

Securely hold

book when

lowering

Must be

convenient to use

(not too bulky) 2

Must be

convenient to use

Must not be too

bulky

can be installed on

multiple/most

bookshelf designs 2

Can be installed

on multiple

bookshelf designs

Can be installed

on most

bookshelf designs

be able to grab

books 6ft or

higher 1

35

Table 3.4. Number of counted requirements and number of times requirements were split

Packet A

(RSI)

Packet B

(SIR)

Packet C

(SRI)

Number of

Participants

38 32 33

Prelim. Count 412 436 305

Final Count 471 588 368

Average per Person

(Final Count)

12.4 18.4 11.2

Number of Times

Split (% of

preliminary

requirements)

60 (14.6%) 116 (26.6%) 54 (17.7%)

To ensure that the method of splitting and writing split requirements was robust,

inter-rater reliability (IRR) was checked for a representative sample of requirements. A

secondary rater was instructed on how to split compound requirements (if necessary) using

a protocol, and to write each of their components as a new requirement. The rules from the

protocol are shown in Table 3.5.

36

Table 3.5. Sample of rules used to split requirements into components

Rules for splitting requirements

Requirements will be split into multiple requirements if:

1. There are more than one verb describing an action of the explicit or implicit subject, separated by a

conjunction such as and, but, or, /, etc.;

2. There are more than one adjective describing the design (i.e. the device must be reliably easy to

use);

3. There are more than one object that the verb of the subject acts upon

4. There is a modifier to the verb of the subject (i.e. the device must grab the books safely);

5. There are multiple modifiers to the object being acted on (i.e. the device must pick up books that are

light and heavy)

6. There are more than one adjective describing the object

7. There is a conditional expression describing two functions or characteristics (i.e. the device must be

strong while remaining lightweight)

8. There are two complete thoughts in one requirements box, either separated by parentheses or in

multiple distinct sentences

Requirements should not be split up if:

9. A separate clause is used to describe the purpose of a requirement (i.e. the device must be strong so

it doesn’t break)

10. A single conditional applies to the object rather than the subject (i.e. the device must pick up a book

that is lightweight)

11. Two options are suggested that CANNOT coexist (The mechanism should have a trigger or button to

operate)

12. Two objects exist that MUST exist with the other to complete the requirement (device must support

the person AND the wheelchair)

The IRR test compared the number of requirements each rater split the mother

requirement into. It was found that the inter-rater reliability test was acceptable for use of

this protocol (κ = 0.90), so a single rater split and wrote all the requirements. Once all the

compound requirements were split into their unique components according to the provided

rules, this new set of requirements was used for the quantity analysis, as well as in the

analysis for the remaining metrics.

3.2.2 Quantity Analysis

Once counted, the number of requirements for each participant were used to

compare if there were differences in the number of requirements generated by individual

between each test case. The purpose of this portion of the analysis was to test the

37

hypotheses that the two manipulations of the design process (SIR and SRI) would lead to

a change in the number requirements generated (HQ1 and HQ2). These hypotheses were

tested using an ANOVA test to determine if there was a significant difference between the

quantity of requirements generated per person between any two of the three packets. A

significance level of α = 0.05 was used to establish a confidence interval that was

acceptable for this analysis. The null and alternate hypotheses are shown below.

𝐻0 (𝜇𝑅𝑆𝐼 = 𝜇𝑆𝐼𝑅 = 𝜇𝑆𝑅𝐼)

𝐻1 (𝜇𝑅𝑆𝐼 ≠ 𝜇𝑆𝐼𝑅 ≠ 𝜇𝑆𝑅𝐼)

To use an ANOVA test, the data was checked to observe the normality. This was

done using the normality check using the XLSTAT add-in for Microsoft Excel, and

histograms of the data sets were observed to view the assumed normal distributions. This

was done for each experimental condition and the data from the coding of each metric.

Shown in Figure 3.1 and supported by a p-value of 0.24 to test the hypothesis that the data

is normally distributed, the results of the normality check for the quantity metric in the RSI

method show that the data is normally distributed. This was repeated for the SIR and SRI

methods, confirming their normal distributions.

38

Figure 3.1. Normal distribution fitting for RSI quantity data

 An ANOVA was performed on the quantity count of each packet to note any

differences between the experimental conditions. It was found that there was a statistical

difference between at least two of the groups, thus, the null hypothesis was rejected. There

was a significant effect of the ordering of the observed stages of design process on the

quantity of generated requirements at the p < 0.05 level [F(2, 102) = 17.17, p < 0.001]. A

post-hoc analysis was conducted using Fischer’s LSD test to find which sets of data were

different. The pairwise comparisons are shown in Table 3.6.

Observing Table 3.6, the SIR packet is statistically different from both other test

cases for both counts. This indicates a strong difference between this test case and the

others. Comparing the means of the number of requirements generated by each individual

Table 3.6. Fischer’s LSD analysis for Quantity

Family Conf. Int.=87.85%, Individual Conf. Int.=95%

Comparisons Diff. in

Means

LSD LCon UCon p-values

RSI - SIR -6.28 2.67 -8.96 -3.61 0.0001

RSI - SRI 1.34 2.65 -1.31 3.99 0.116

SIR - SRI 7.63 2.77 4.86 10.39 p < 0.001

There is evidence that some pairs of means are different.

39

for each packet as shown in Table 3.4, the SIR method increases the number of

requirements generated by approximately 50% compared to the other test cases.

The RSI and SRI methods were statistically different when using the preliminary

count (p = 0.017), but when the final count was used, the two methods did not produce a

statistically different number of requirements from each participant (p = 0.116). This

indicates that one of the two methods resulted in the participants writing more compound

requirements. The means were observed to determine that the SRI method was the case

that had more compound requirements.

In summary, through ANOVA it was determined that the null hypotheses for HQ1

and HQ2 were rejected because at least two of the packets were different from another

regarding the number of requirements generated. The SIR method leads to significantly

more requirements than the RSI and SRI methods, although there is not a difference

between the SRI and RSI methods.

3.3 Variety Results

The next observed metric for study was the requirements’ variety. The variety is a

measure of the breadth of coverage of the requirements list [49,76]. Pahl and Beitz separate

the possible categories of what a requirement can pertain to into seventeen different bins,

as well as a “Not Applicable” category [5]. This metric was chosen to evaluate the

requirements because it is a common method for evaluation, and because a higher variety

is indicative of a deeper understanding of the design problem since more of the engineering

categories are addressed [77]. Variety was measured both at the requirement level and the

individual participant level to observe any changes in either. Using the split requirements

40

list as described in Section 3.1, each requirement was able to be coded and evaluated for

its variety. The hypotheses tested in this case are shown below:

HV1) The SIR method will lead to a change in the variety of the requirements lists

compared to the RSI or SRI methods.

HV2) The SRI method will lead to a change in the variety of the requirements lists

compared to the RSI or SIR methods.

3.3.1 Coding Methodology for Variety

A coding methodology adopted from Elena was used for this thesis [41]. The first

stage of the variety coding was to code each requirement based on which of the categories

it fit into. The methodology used the following table to decide how each requirement would

be sorted.

Table 3.7. Categories for evaluating requirement variety [5]

Category Specification

Geometry Size, height, breadth, length, diameter, space, footprint Type

Kinematics Type of motion, direction of motion, velocity, acceleration

Forces Direction, magnitude, frequency, weight, load, stiffness,

deformation Output,

Energy Output, efficiency, loss, friction, temperature, pressure

Material Physical properties, chemical properties, prescribed materials

(food processing)

Signals Inputs, outputs, form, display, control equipment

Safety Manufacturer, environmental, operator

Ergonomics Man-machine relationship, aesthetics

Production Factory limits, production methods, achievable tolerances

Quality

Control

Testing, measurement, special regulations and standards

Category Specification

Assembly Installation, siting, foundation

Transport Lifting gear, clearance, means of transport

Operations Noise, wear, marketing area, destination

Maintenance Servicing intervals, inspection, exchange

Recycling Reuse, reprocessing, waste disposal

41

Costs Maximum manufacturing cost, tooling cost, investment and

depreciation

Schedules End date of development, project planning and control

N/A If requirement does not fit in any of the categories

A rater sorted each of the split requirements and placed them in up to three of the

categories from Table 3.7. Three categories were chosen to limit the raters’ ability to assign

categories that only marginally apply to the requirement, as well as to lead the rater to

assigning the most obvious applicable categories to the requirements. Since this method of

analysis was used in a previous study with an interrater reliability test (κ >0.763 for all

categories), no additional verification was used and a single rater evaluated all 1427

requirements. An example of how the requirements were coded is shown in Figure 3.2.

Figure 3.2. Sample of variety coding used

With the list of coded requirements in this grid format, the number of times a

requirement was sorted into a bin (denoted by an ‘x’ in Figure 3.2) could be counted. This

allowed the variety to be observed for each individual as well as for each packet. The full

results for the variety coding are shown in Appendix D.

Requirement G
e

o
m

e
tr

y

K
in

e
m

at
ic

s

Fo
rc

e
s

En
e

rg
y

M
at

e
ri

al

Si
gn

al
s

Sa
fe

ty

Er
go

n
o

m
ic

s

P
ro

d
u

ct
io

n

Q
u

al
it

y
C

o
n

tr
o

l

A
ss

e
m

b
ly

Tr
an

sp
o

rt

O
p

e
ra

ti
o

n

M
ai

n
te

n
an

ce

R
e

cy
cl

in
g

C
o

st
s

able to grab books that have a width up to 4 inches x x

must be convenient for the user x

device must fit varying book sizes x

Soft enough force on gripper to not damage books x x x

simple starting mechanism x

able to be mounted to common bookshelf x

Reach 6+ft (higher bookshelf) x

Have some sort of holder to put books in x x

Needs to run inside (cannot be powered by anything w/ exhaust x x

Must be able to move both vertically and horizontally x x

42

3.3.2 Variety Analysis

Once the requirements were coded based on which categories they applied to, they

could be analyzed. The first analysis done was to observe the variety of requirements at the

packet level. This was done to observe any inherent changes the packet representation had

on the requirement variety, if any. A separate analysis was done to observe differences in

the variety at the individual level.

To complete analysis at the packet level, the number of times a category was

occupied was counted for each packet. Once this was done for all requirements, the

percentage of requirements that was present in each category was determined by dividing

the number of times each category was used by the total number of cells occupied with an

‘x’ for each packet. The percentage normalizes for differences in the participants’ quantity

of requirements, as a higher number of requirements would have a higher chance of

meeting more of the categories.

To avoid comparing the individual percentages for each packet, each category was

grouped into one of five percentiles. The percentiles were calculated by taking the highest

percentage value present minus the lowest percentage and dividing that range by five. For

example, the highest percentage for categories in Packet A was 20.92% and the lowest was

0%. The range for Packet A was 20.92% and was divided by five to arrive at a percentile

range of 4.18%. This allows more direct comparisons between the packets when their

percentages do not exactly align. These results are shown in Table 3.8.

43

Table 3.8. Variety score results at packet level

With these values determined, comparisons between the packets were made. To

better visualize any differences between the variety of packets, the percentages and

percentiles were individually graphed against the eighteen categories. Figure 3.3 shows the

percentages versus the categories demonstrates the range of percentages occupied by the

categories.

Figure 3.3. Percentage of each category’s distribution in each packet

To better compare the results shown in Figure 3.3, the percentile method previously

described was used. By doing so, the categories could be compared to see if they were in

Categories G
e

o
m

e
tr

y

K
in

e
m

at
ic

s

Fo
rc

e
s

En
e

rg
y

M
at

e
ri

al

Si
gn

al
s

Sa
fe

ty

Er
go

n
o

m
ic

s

P
ro

d
u

ct
io

n

Q
u

al
it

y
C

o
n

tr
o

l

A
ss

e
m

b
ly

Tr
an

sp
o

rt

O
p

e
ra

ti
o

n

M
ai

n
te

n
an

ce

R
e

cy
cl

in
g

C
o

st
s

Sc
h

e
d

u
le

s

N
/A

To
ta

l

Packet A 38 20 33 46 17 24 41 122 9 14 56 35 127 7 1 7 0 10 607

Percentage 6.26 3.29 5.44 7.58 2.80 3.95 6.75 20.10 1.48 2.31 9.23 5.77 20.92 1.15 0.16 1.15 0.00 1.65 100

Percentile 2 1 2 2 1 1 2 5 1 1 3 2 5 1 1 1 1 1

Packet B 61 16 86 64 50 65 18 84 4 17 52 48 122 7 0 7 0 1 702

Percentage 8.69 2.28 12.25 9.12 7.12 9.26 2.56 11.97 0.57 2.42 7.41 6.84 17.38 1.00 0.00 1.00 0.00 0.14 100

Percentile 3 1 4 3 3 3 1 4 1 1 3 2 5 1 1 1 1 1

Packet C 36 9 38 24 27 13 20 67 13 7 49 36 89 9 0 13 1 13 464

Percentage 7.76 1.94 8.19 5.17 5.82 2.80 4.31 14.44 2.80 1.51 10.56 7.76 19.18 1.94 0.00 2.80 0.22 2.80 100

Percentile 3 1 3 2 2 1 2 4 1 1 3 2 5 1 1 1 1 1

44

the same percentile between the packets rather than trying to analyze the raw percentages.

Figure 3.4 shows the variety data adjusted into the percentiles from Table 3.8.

Figure 3.4. Percentile that each category was occupied by requirements

This analysis allows any differences between the packets’ distribution of variety to

be observed. It can be seen that there are many differences between the percentage values

of the packets from Figure 3.3, but when the percentiles are observed in Figure 3.4, it is

seen that many of the categories are the same between packets. It can be seen from Figure

3.4 that there were differences between at least two of the three test cases for the categories

of Geometry, Forces, Energy, Material, Signals, Safety, and Ergonomics. Of those

differences, the ones deemed significant were between the RSI group and SIR group for

Forces, Material, and Signals, as well as between the SIR and SRI groups for Signals. A

difference was deemed significant if the difference between the percentiles of that category

were two or more.

Notably, the only cases in which the RSI group has a higher percentile of

requirements than the other groups were in the Safety (only higher than SIR) and

45

Ergonomics (higher than both SIR and SRI) categories. The remaining categories with

differences had the RSI group exceeded by either or both of the SIR and SRI groups. The

latter categories relate more to the physical manifestation of a solution regarding its

geometry, forces, material, energy, and signals. This could be expected from the two test

cases as opposed to the control group since these groups required a concept to be sketched

prior to the requirement generation. The relative decrease, however, of requirements

relating to safety and ergonomics could be contributed to the designers being more focused

on the embodiment of the concept rather than the functions or traits a potential solution

may have in regard to these categories.

In addition to the observations at the packet level, the variety at the individual

participant level was observed. Because of the high number of participants (104), observing

the individual level for variety allowed statistical verification of the results. Using the same

coding scheme as the packet level analysis, the number of categories used by each

participant were found. Each participants’ variety score was calculated as a percentage of

the categories from Table 3.7 that were used by that participant. Once these percentages

were found, ANOVA was done to observe differences in the percentage of categories met

with a significance level of α = 0.05. To answer HV1 and HV2 from Section 3.3, the null

and alternate hypotheses were tested using the following:

𝐻0 (𝜇𝑅𝑆𝐼 = 𝜇𝑆𝐼𝑅 = 𝜇𝑆𝑅𝐼)

𝐻1 (𝜇𝑅𝑆𝐼 ≠ 𝜇𝑆𝐼𝑅 ≠ 𝜇𝑆𝑅𝐼)

To use the ANOVA test, the data for each experimental condition was checked for

normality. Upon confirmation of normality, the ANOVA test revealed that there were no

46

significant differences in the percentage of variety categories occupied by the requirements

between each packet (p = 0.64), failing to reject the null hypothesis. The hypothesis that

either the SIR or SRI methods would change the variety of the requirements could not be

proven with the analysis done.

3.4 Typology Results

Another metric used to evaluate the requirements was typology. Typology refers to

the type of a requirement, being either functional or non-functional. This metric is used to

observe the effects of the imposed methodologies on the type of requirements elicited. Each

of the requirements was identified as being either functional or non-functional, and was

used for the analysis of this metric. It is important to observe the type of the generated

requirements because this metric has shown that both types of requirements are important

for a successful project [18,19]. Since many early design tools rely on establishing the

functionality of the design, the use of functional requirements is clear [72]. Non-functional

requirements are important for establishing parameters such as product cost, size, shape,

etc., that can stem from functional requirements and further embody the design [78]. It is

not known if having more of one type of requirement over another is “better” than the

alternate, but if the types are more evenly split between functional and non-functional, this

is considered as a positive trait because the benefits of both are more closely balanced.

In the analysis of requirement typology, the quantity analysis was considered to

make broader claims regarding the number of functional and non-functional requirements.

Since a requirement can only be classified as functional or non-functional in this thesis, it

is only necessary to observe one of the two types of requirements. The arbitrarily selected

47

type was non-functional requirements, and any results from non-functionality can be

inverted and applied to the functional requirements. The number of non-functional

requirements was observed at the packet level as well as the individual level, much like the

variety analysis. The hypotheses tested for the analysis of this metric are as follows:

HT1) The SIR method will lead to a change in the number of non-functional

requirements compared to the RSI or SRI methods.

HT2) The SRI method will lead to a change in the number of non-functional

requirements compared to the RSI or SIR methods.

3.4.1 Coding Methodology for Typology

To assign a type to a requirement, the definitions of functional and non-functional

requirements need to be known. A functional requirement is defined as any requirement

that specifies anything that the design “must do” to meet the design objectives [28,79]. A

non-functional requirement specifies how a function can be met, typically through what

the design “must be” or “must have [19].” For this thesis, the requirements were coded

based on these given definitions of functional or non-functional requirements. A rater

assigned each requirement a functional (F) or non-functional (N) tag using these definitions

as a protocol for analysis. There were some cases that contradicted the formal definition of

the non-functional requirement, such as when a device must be strong to support books. In

this case, the requirement was counted as functional because the adverb of what the device

must be (must be strong) is to meet a functional goal (must support books). If the

requirement were simply a device must be strong, it would be counted as a non-functional

requirement. Inter-reliability was tested for this coding protocol and was found to be

48

sufficient for this study (κ = 0.48). A sample of the typology coding is shown in Table 3.9,

and the entire coded list can be seen in Appendix E.

Table 3.9. Coding sample for typology

Requirement Type

Strong enough to hold heavy books F

Easily attach to existing bookshelves F

Must be capable of lifting a person and wheelchair F

Must be easy to operate N

Cannot damage books N

The tool end should effectively grip the target book F

Support the load of the system F

Parts of the clamp will contain rubber for grip N

Has to be accessible for everyone N

F – Functional, N – Non-functional

Once coded, the typology analysis was conducted by counting the number of

functional and non-functional requirements. These were counted at the packet level to

observe the total number of each, as well as at the individual level within each packet to

statistically observe any effects the different packet methodologies may have on the type

of generated requirements.

3.4.2 Typology Analysis

To analyze the requirement typology at the packet level, the number of functional

and non-functional requirements were simply counted for each packet. Since the numbers

for each packet are dependent on the total quantity of generated requirements, the

percentages of functional and non-functional requirements were found. Table 3.10 shows

the packet level results for the number of functional and non-functional requirements, along

with the percentages each type takes for the packet.

49

Table 3.10. Packet level Results for Typology

Number of

Nonfunctional

Number

of

Functional %N %F

RSI 291 188 0.61 0.39

SIR 298 297 0.50 0.50

SRI 209 152 0.58 0.42

It can be seen from Table 3.10 that there are differences between the number of

functional and non-functional requirements between some of the packets, as well as in the

percentages of functional vs. non-functional requirements. The total number of non-

functional requirements are similar between the RSI and SIR methods, although the

number of functional requirements is much higher for the SIR method. It is shown by the

percentages that the SIR method leads participants to generate an equal number of

functional and non-functional requirements.

The SRI method has a lower total number of requirements than either of the other

two methods, but when the percentages are compared, the SRI method has approximately

the same percentage of functional and non-functional requirements as the RSI method.

From these high-level comparisons, it appears that the SIR method may lead the

participants to generating a higher number and percentage of functional requirements than

the other two methods.

To statistically validate this high-level observation, the typology of the

requirements was observed at the individual participant level. This was done by counting

the number of functional and non-functional requirements each participant generated and

finding the percentage of each to account for differences in the number of requirements

generated by each participant. Once counted, the non-functional requirements of each

50

participant within each packet were compared to each of the other two packets using an

ANOVA test with a significance level of α = 0.05. This statistical analysis was conducted

to test the hypotheses HT1 and HT2, using the following null and alternate hypotheses.

𝐻0 (𝜇𝑅𝑆𝐼 = 𝜇𝑆𝐼𝑅 = 𝜇𝑆𝑅𝐼)

𝐻1 (𝜇𝑅𝑆𝐼 ≠ 𝜇𝑆𝐼𝑅 ≠ 𝜇𝑆𝑅𝐼)

Again, checking for normality using the method described in Section 3.2, it was

confirmed that the data was normally distributed which allows for ANOVA to be

conducted. A p-value of 0.009 indicated that there was a difference between at least two of

the three test cases, thus, the null hypothesis was rejected. There was a significant effect of

the ordering of the observed stages of design process on the quantity of generated

requirements at the p < 0.05 level [F(2, 99) = 4.91, p = 0.009]. A post-hoc Fischer’s LSD

analysis compared each case to the other cases individually. Table 3.11 shows the results

for these comparisons.

Table 3.11. Fischer’s LSD comparisons for Typology

Family Conf. Int.=87.85%, Individual Conf. Int.=95%

Comparisons Diff. in

Means

LSD LCon UCon p-

values

RSI - SIR 0.141748 0.0970 0.0447 0.2388 0.002

RSI - SRI 0.015604 0.0970 -0.0814 0.1126 0.74

SIR - SRI -0.12614 0.0998 -0.2260 -0.0263 0.03

There is evidence that some pairs of means are different.

From this table it is shown that there were statistical differences between the SIR

method and both other cases. Comparing the means of each, it can be seen that there is a

lower percentage of non-functional requirements in the SIR group than the RSI or SRI

51

groups, or inversely, a higher percentage of functional requirements. There was no

statistical difference between the RSI and SRI groups.

3.5 Completeness Results

The completeness metric evaluates the requirement’s grammatical structure and

whether or not it has the necessary language components to be a complete statement. When

requirements are taught to engineering students, they are taught to write complete

requirements [11]. This is done to leave no ambiguity in interpretation between different

stakeholders reading a requirement [20]. There are several other reasons given by the NASA

Systems Engineering Handbook that establish the benefits of writing a complete

requirement [79]. These points are shown in Table 3.12.

52

Table 3.12. Benefits of writing a complete requirement [79]

Benefit Rationale

Establish the basis

for agreement

between the

stakeholders and the

developers on what

the product is to do

The complete description of the functions to be

performed by the product specified in the requirements

will assist the potential users in determining if the

product specified meets their needs or how the product

should be modified to meet their needs. During system

design, requirements are allocated to subsystems (e.g.,

hardware, software, and other major components of the

system), people, or processes.

Reduce the

development effort

because less rework

is required to

address poorly

written, missing, and

misunderstood

requirements

The Technical Requirements Definition Process

activities force the relevant stakeholders to rigorously

consider all of the requirements before design begins.

Careful review of the requirements can reveal

omissions, misunderstandings, and inconsistencies early

in the development cycle when these problems are

easier to correct thereby reducing costly redesign,

remanufacture, recoding, and retesting in later life cycle

phases.

Provide a basis for

estimating costs and

schedules

The description of the product to be developed as given

in the requirements is a realistic basis for estimating

project costs and can be used to evaluate bids or price

estimates.

Provide a baseline

for verification and

validation

Organizations can develop their verification and

validation plans much more productively from a good

requirements document. Both system and subsystem test

plans and procedures are generated from the

requirements. As part of the development, the

requirements document provides a baseline against

which compliance can be measured. The requirements

are also used to provide the stakeholders with a basis for

acceptance of the system.

Facilitate transfer The requirements make it easier to transfer the product.

Stakeholders thus find it easier to transfer the product to

other parts of their organization, and developers find it

easier to transfer it to new stakeholders or reuse it.

Serve as a basis for

enhancement

The requirements serve as a basis for later enhancement

or alteration of the finished product.

These reasons were used to validate the choice of using completeness as a metric

for evaluation of the requirements. Additionally, from the NASA Systems Engineering

Handbook, there are instructions for how a “good” requirement is written. One of the key

53

points is that the requirement is grammatically correct, consisting of one subject and one

predicate [79]. These two parameters were the key parts of speech observed in this thesis.

Additionally, for this analysis, several other parts of speech were included in the evaluation

of a requirement’s completeness, including a modal verb, object, and modifier to either the

subject, predicate, or object. These parameters were included to encompass a

grammatically correct sentence that a requirement would likely adhere to. Since the

participants were not instructed on how to correctly write a requirement prior to the

experiment, it was not expected that they would write “good requirements,” as defined by

the given rules. For this work, the implementation of the SIR and SRI methods were

comparing the completeness of the requirements on a relative level rather than an objective

“good” or “bad” level. For these reasons, a more grammatically complete requirement was

deemed as better than a less complete requirement. The experiment tested the following

hypotheses:

HC1) The SIR method will lead to a change in the completeness of the requirements

compared to the RSI and SRI methods.

HC2) The SRI method will lead to a change in the completeness of the requirements

compared to the RSI and SIR methods.

3.5.1 Coding Methodology for Completeness

To analyze the requirements for their completeness, several steps were taken to

code the requirements in a usable manner. The first step was to use the list of split

requirements and determine the observed parts of speech used in each. This was done by a

54

rater using explicit definitions of each of the parts of speech. These parameters and their

definitions are shown in Table 3.13.

Table 3.13. Parts of speech observed and their definitions

Part of Speech Definition Used for Coding

Subject The noun that the requirement acts for.

Subject must be explicitly stated

Verb The action completed by the subject

(implicit or explicit). For verbs like "to

be" and "to have," the associated

adjective, trait, or noun is included in

the count for the verb unless there is a

secondary action verb. (i.e. must be

safe to prevent harm)

Modal "Must" or "should" verb describing the

modality of another verb

Modifier Adjectives or adverbs of the

subject/verb, or verbs/adjectives of the

object

Object A noun or recipient of the

verb/adjective of the requirement

Target Value Numerical value that the requirement

aims to achieve

A requirement containing a subject allows the rest of the requirement to be

associated with that “thing,” whether the subject is the device as a whole or a specific

component of the system. The verb describes what the subject is doing in the requirement,

and can be describing an action or characteristic of the subject. Theoretically, a requirement

must have a verb to be a valid trait. In reality, the participants did not always include an

explicit verb as the action was implied by the requirement (i.e. “lightweight” instead of

“must be lightweight”). For the purposes of this paper, only explicit verbs were counted

for the completeness analysis since the participants had not been exposed to how to write

55

requirements prior to the experiment. This way, any difference in use of the verb was

concluded to be due to the introduced method.

Modal verbs are used to address the modality of the acting verb of the requirement.

The observed modal verbs were defined as what the subject “must” or “should” do, thus,

any requirement containing either of these words was given a count for the modal category.

The modality of the verb adds detail to the requirement by describing the inherent

importance of that requirement, with “must” describing a constraint of the design, and

“should” describing a non-necessary desire or wish of the design.

Modifiers are also used to add detail to the requirement by describing different

aspects of the subject, verb, or object. Modifiers may take the form of adjectives or adverbs

and add specificity to the requirement. For example, a requirement without a modifier may

state “the device must accommodate a wheelchair,” where a modifier to that requirement

would state “the device must accommodate a heavy wheelchair.” This added detail gives

insight to the desires of the requirement stakeholder and provides additional value for how

to address that specific requirement.

The object of a requirement is defined as the recipient of the verb of the

requirement. The object(s) establish co-relations between different nouns of a requirement

and allow the system to have a perceived use in the context of the design problem. For

example, in the requirement “the device must accommodate a wheelchair,” the wheelchair

is the object that is the recipient of what the device must accommodate.

Lastly, target values are important for establishing the technical specifications of

the requirements, and often take the place of a modifier. By setting a quantitative goal for

56

what a requirement should meet, this gives a testable and verifiable benchmark that the

solution needs to address.

Using these definitions, the rater identified the number of times each part of speech

was present in each requirement. These values were tabulated and used to find a weighted

completeness score for each requirement. The subject, verb, object, and target value were

given a weighting of one for each time they were present. The modal and modifier were

given a weighting of 0.5 because these simply add clarification and detail to the

requirement rather than being a crucial component of the requirement’s relevance. An

example of how the coding was conducted is shown in Table 3.14, and the full coding

scheme is shown in Appendix F.

Table 3.14. Example coding of requirements for completeness

Requirement Subject Verb Modal Modifier Object Target

Value

Score

must be able to deliver books

to wheelchair height

1 1 2 3.5

safety --> mechanism must

be stable

1 1 1 2.5

Safe 1 0.5

operates with smooth motion 1 1 1 2.5

Should be able to withstand

more weight than heavy

coffee table type books

1 1 2 1 3.5

Controls panel should not

exceed height of 36"

1 1 1 1 1 4.5

A second rater was used to verify the coding protocol and coded a sample of twenty

requirements following the given instructions. The inter-rater reliability was tested in two

ways from this coding scheme: one to verify that the same parts of speech were used by

both raters, and the other to verify the number of times each part of speech was used. The

first IRR test was done by observing whether each part of speech was present at least once

according to each rater. The other method compared the number of times each part of

57

speech was used between each of the raters. Kappa values were obtained for each part of

speech for both of the IRR tests, and are shown in Table 3.15. Parts of speech that do not

have a value in the second row indicate that the corresponding part of speech was never

counted more than once by any of the raters.

The values from this table indicate a strong agreement between raters for the

subject, modal, modifier, and target value parts of speech. Weaker agreement was observed

for the verb and object parts of speech for the test checking for the number of times the

parts of speech were counted. These values were improved when the test that only checked

for the presence of the part of speech was used, although they were still lower than the

other parts of speech.

3.5.2 Completeness Analysis

With the list of requirements coded for completeness and their scores tabulated,

analysis of the coding was conducted. The first analysis done observed the total

completeness score for the requirements in each packet. The score for each requirement

was used as a data point within the packets and an ANOVA test with a significance level

of α = 0.05 was conducted to determine if there was a significant difference between the

Table 3.15. Kappa Scores from Cohen’s Kappa test for Inter-Rater Reliability

Part of Speech

Subject Verb Modal Modifier Object Target

Value

Number of

times used

1 0.24 0.82 0.55 0.39 0.78

If present at

least once

0.4 0.71 0.49

58

completeness of requirements in each packet. This analysis would answer the hypotheses

HC1 and HC2, and are evaluated by the following null and alternate hypotheses.

𝐻0 (𝜇𝑅𝑆𝐼 = 𝜇𝑆𝐼𝑅 = 𝜇𝑆𝑅𝐼)

𝐻1 (𝜇𝑅𝑆𝐼 ≠ 𝜇𝑆𝐼𝑅 ≠ 𝜇𝑆𝑅𝐼)

Following the method described in Section 3.2, the data was tested and confirmed

to be normally distributed. Using the ANOVA test, a p-value much less than 0.001

indicated a large difference between at least two of the three groups, allowing the null

hypothesis to be rejected. There was a significant effect of the ordering of the observed

stages of design process on the quantity of generated requirements at the p < 0.05 level

[F(2, 1439) = 148.4, p < 0.001]. A post-hoc Fischer’s LSD analysis confirmed that the SIR

method had a statistically higher completeness score than the RSI and SRI methods, and

the SRI method had a higher completeness score than the RSI method. The results from

the post-hoc analysis are shown in Table 3.16.

Table 3.16. Fisher Least Significant Difference (LSD) Method for Completeness

Family Conf. Int.=87.82%, Individual Conf. Int.=95%

Comparisons Diff. in

Means

LSD LCon UCon p-values

RSI Score - SIR Score -1.12156 0.137 -1.259 -0.984 p < 0.001

RSI Score - SRI Score -0.18474 0.155 -0.340 -0.029 0.02

SIR Score - SRI Score 0.936819 0.149 0.788 1.085 p < 0.001

There is evidence that some pairs of means are different.

The completeness score itself is important to observe for the conclusions drawn for

this metric, but it was also important to determine which parts of speech were used in the

experimental conditions. The percentage that each part of speech was present at least once

59

in a requirement was found within each experimental condition, and these numbers were

compared. Table 3.17 shows these percentages for all observed parts of speech.

Some differences were noted in several of the parts of speech regarding their usage

within each experimental condition, so statistical analysis was conducted to determine if

there were any significant differences between their uses. ANOVA tests were conducted

to compare the percent usage of each part of speech within each condition, with each

participant being the data point. The individuals’ percentages of use of the parts of speech

were found and compared using a confidence level of 95%. A Fischer’s LSD post-hoc test

was conducted and the results of these comparisons are shown in Table 3.18.

Table 3.18. Statistical pairwise comparisons between parts of speech for each experimental condition

Subject Verb Modal Modifier Object Target

Value

RSI vs SIR p < 0.001 0.14 0.93 0.65 0.055 0.023

RSI vs SRI 0.001 0.4 0.02 0.85 0.76 0.013

SIR vs SRI p < 0.001 0.04 0.04 0.79 0.055 0.85

It can be observed that there were significant differences between at least two of

the conditions in all but the modifier and object categories. The object category was close

to the confidence bound but did not meet the 0.05 threshold for significance. The RSI

Table 3.17. Percentage that each part of speech appeared in requirements for each condition

Contained Subject Contained Verb Contained Object

RSI SIR SRI RSI SIR SRI RSI SIR SRI

13.2 96.3 33.6 72.6 76.3 67.8 65.8 74.8 61.4

Contained Modal Contained Modifier

Contained Target

Value

RSI SIR SRI RSI SIR SRI RSI SIR SRI

17.3 17.5 36.3 71.6 73.6 71.9 6.7 2.7 3.6

60

method had a statistically higher use of the target value than the other two methods. The

SIR method led to a statistically higher percentage in the use of subjects and verbs than the

SRI method, although not statistically different than the RSI method for verb use. The SRI

method resulted in a higher percentage of use for modals.

3.6 Novelty Results

The last metric used in this analysis was novelty, which is a measure of the

uniqueness of the requirements. An important part of innovation is the creation of new or

unique ideas, thus, the importance of being able to generate novel requirements is

associated with the pursuit of innovation and high-quality solutions [80]. For this work, a

relative increase in novelty by any of the tested methods was considered a benefit because

of this connection between novel requirements and novel solutions. Novelty has several

definitions, usually referring to a new or previously unused idea [81]. In this work however,

novelty uses a more relative definition that essentially means “more unique”. Novelty was

observed using an a-posteriori coding and analysis method in this thesis. Since the

conditions were evaluated relative to the other conditions in the previous metrics, the a-

posteriori novelty analysis compares the novelty of each individual requirement to the

others observed in this study and maintains these relative evaluations.

Novelty was evaluated using two different methodologies. One determined the

number of unique requirements in each packet using a two-stage screening process to

identify the number of novel requirements in each experimental condition. The other

method gave each requirement a novelty score based on the coding methodology for the

first method, and statistical analysis was used to evaluate the novelty score within each

61

experimental condition. Two hypotheses were tested for the evaluation of the novelty

metric:

HN1) The SIR method will lead to a change in the number of novel requirements

compared to the RSI or SRI methods.

HN2) The SRI method will lead to a change in the number of novel requirements

compared to the RSI or SIR methods.

3.6.1 Coding Methodology for Novelty

With the split requirements list that the other metrics used, each requirement was

evaluated for its novelty. The a-posteriori analysis involved analyzing each requirement’s

novelty relative to the other requirements. To make comparisons between any of the

requirements, a linguistic analysis was used. Each requirement was parsed into up to four

key words. The key words were selected by a rater and instructed to choose the key words

according to a certain protocol. The protocol instructed the rater to select the key words

according to the following rules:

• Key words must be relevant to the requirement

• A requirement does not necessarily need all four key words, if they are

deemed irrelevant

With these rules, the rater assigned key words to each requirement. This protocol

was checked for inter-rater reliability using Cohen’s Kappa test. A κ value of 0.79 indicated

that the protocol was acceptable between the raters, and a single rater reviewed all the

requirements to assign their key words.

62

Once the key words were assigned, an algorithm was made to compare the key

words of each requirement to those of all other requirements. This was done in Microsoft

Excel where the list of requirements was in the first column, their key words were in the

following four columns, and a transposed list of requirements was in the remaining

columns. This way, all requirements in the first column and their key words could be

compared to the other requirements by proceeding down the row and evaluating the

requirement. The algorithm checked if each of the key words were present in each

requirement, adding a value of one for each time a key word is present in another

requirement. The algorithm would then assign a value of zero to four depending on the

number of matched key words for each requirement. The sum of these values in each row

(requirement) was found and used as the novelty score for that requirement. An example

of the coding scheme is shown in Table 3.19. The full coding and results of the Microsoft

Excel algorithm are shown in Appendix G.

Table 3.19. Example of coding scheme for novelty

Requirements Key Words

user interface from seated height user interface seated height

can be installed on multiple/most

bookshelf designs installed multiple bookshelf

convenient for user convenient user

able to collect books with width b/w 1/4"

and 4" collect book width

can collect books within entire width of

shelf collect book width shelf

must be safe be safe

Once the initial novelty results were obtained, a secondary screening was used on

the requirements. This was done to check for requirements that may have used a unique

term that has the same definition as a more commonly used word. The novelty scores of

63

the requirements ranged from 3 to 3487 from the used coding scheme. To identify the most

unique requirements, requirements in the bottom 10% of the range were screened out. From

these, a rater identified those requirements that were similar to at least ten other

requirements. It was important in this stage to not consider requirements that described

solutions rather than actual requirements. In this way, there is not a bias for the SIR and

SRI methods that would skew the results due to having requirements stem from the

sketches. Once this screening was done, the novelty metric was analyzed.

3.6.2 Novelty Analysis

To evaluate the requirements’ novelty, their numerical novelty score determined by

the coding scheme was used. The novelty was evaluated for each requirement, and the

number of novel requirements was observed for each test case. Much like the other metrics,

a percentage of the number of novel requirements was used to normalize for differences in

the total number of requirements for each experimental condition. After performing the

screenings, a comparison of the novel requirements was done. The number and percentages

of novel requirements from each experimental condition are shown in Table 3.20.

Table 3.20. Number and percentage of novel requirements in each packet

RSI SIR SRI

Number of Novel Requirements

34 79 38

Percentage of Novel Requirements

(Out of total requirements per

packet) 7.1 13.3 10.4

From this table, the percentage of novel requirements per packet increases between

RSI, SRI, and SIR methods, in that order. There is a difference of approximately three

64

percent between each condition, with the SIR having the highest percentage of novel

requirements at 13.3%, and the RSI having the lowest at 7.1%.

After this high-level analysis was conducted, the overall novelty of the

experimental conditions was determined statistically using each requirement as a data

point. To complete this analysis, an ANOVA test was run with a confidence level of α =

0.05 to test HN1 and HN2 from Section 3.6. The following null and alternate hypotheses

were tested:

𝐻0 (𝜇𝑅𝑆𝐼 = 𝜇𝑆𝐼𝑅 = 𝜇𝑆𝑅𝐼)

𝐻1 (𝜇𝑅𝑆𝐼 ≠ 𝜇𝑆𝐼𝑅 ≠ 𝜇𝑆𝑅𝐼)

Using the novelty scores from the coding scheme, the values were grouped by

experimental condition for the ANOVA test. Normality of the data was checked and

validated using the method described in Section 3.2. A p-value much less than 0.001

indicated a significant difference between at least two of the three experimental conditions,

thus, the null hypothesis was rejected. There was a significant effect of the ordering of the

observed stages of design process on the quantity of generated requirements at the p < 0.05

level [F(2, 1144) = 14.5, p < 0.001]. A post-hoc Fischer’s LSD was conducted, and the

results are shown in Table 3.21.

Table 3.21. Fischer’s LSD comparisons for Novelty

Family Conf. Int.=87.83%, Individual Conf. Int.=95%

Comparisons Diff. in

Means

LSD LCon UCon Sig Diff.?

RSI - SIR 373.5778 137.4 236.2 511.0 p < 0.001

RSI - SRI 246.8285 151.9 94.9 398.7 0.001

SIR - SRI -126.7493 150.0 -276.7 23.2 0.10

There is evidence that some pairs of means are different.

65

It was determined that the SIR method was statistically different from the RSI

method, yielding a higher percentage of novel requirements. The SRI method yielded a

higher percentage of novel requirements than the RSI method as well. There was no

statistical difference between the SIR and SRI methods, although the mean for the SIR

method was slightly higher than the SRI method.

66

CHAPTER FOUR

DISCUSSION OF RESULTS

The research questions that drive this experiment were to determine the influence

of changing the sequence of early stages of the design process on the generation of

requirements. The research questions used in this thesis are:

RQ1) Does using a conceptual sketch to extract requirements influence a

requirements list?

RQ2) Does extracting features from a sketch influence the ability to generate

requirements?

It was hypothesized that the use of a sketch prior to requirement generation would

aid in the development of the requirements, which would be further enhanced by adding a

feature identification step before requirements generation. With the analysis of the

requirements for each of the five metrics of quantity, variety, typology, completeness, and

novelty, conclusions can be made about the effectiveness of the three experimental

conditions.

The goal of the experiment was to observe changes in requirements list based on

the sequencing of design tasks. To determine how these changes would influence common

design practices as they are currently used, it was important to note how each of the

experimental conditions related to the “classic” design process. The RSI method was used

as the control group for this experiment because it aligns with the classic procedure

followed by the design process as presented in textbooks. Analysis of this method gives

insight of how effective this method is in the limited experimental scenario used in this

thesis. When given a problem statement and proceeding to the requirement generation

67

stage, followed by conceptual sketching, and then identifying where the sketch addresses

the requirements, this method demonstrates the expected results of following the early

stages of the design process.

The SIR method was a complete re-ordering of the three observed stages of the

early part of the design process. After the problem statement is given, this group created a

sketch, identified features of their sketch, and generated requirements specific to each

feature. This method highlights the feature identification aspect of the process and

demonstrates the effects of this focusing of a sketch on the generated requirements. The

use of the SIR method is not known to be used or presented in any engineering applications.

The SRI method, unlike the SIR method, only re-orders two of the three observed

stages of the design process. This method starts with a sketch after the problem statement,

much like the SIR method, but rather than identifying features, proceeds to the requirement

generation stage. After the requirement generation stage, the participants identify where in

their sketch each requirement was generated, similar to the RSI method. This method gives

insight into the inherent use of a sketch to generate requirements, if any. Since the sketches

were not analyzed in this work, the identification aspect of this method did not influence

the results.

The requirements generated by the participants using these three methods were

observed and evaluated based on the metrics of quantity, variety, typology, completeness,

and novelty. Each metric was evaluated independently of the others, but results of each

metric can be combined to draw wider conclusions. In Sections 4.1 to 4.5, only the

individual metrics are discussed, but the overall findings are discussed in Section 4.6. This

68

chapter explains the strengths and limitations of using each experimental condition in

regard to each of the observed metrics. Table 4.1 demonstrates the overall findings from

this study that are discussed in the following sections.

Table 4.1. Summary of conclusions for comparisons of each experimental condition

RSI SIR SRI

Quantity 2 1 3

Variety 1 1 1

Typology (F vs N) 3 1 3

Completeness 3 1 2

Novelty 3 1 1

4.1 Quantity Findings

The null hypotheses to test HQ1 and HQ2 from Section 3.2 were rejected and not

rejected, respectively, indicating that there was a statistical difference between the SIR

method and the other methods, but not a difference between the SRI method and the RSI

method. The RSI, SIR, and SRI methods resulted in 12.4, 18.4, and 11.2 requirements per

person, respectively, on average. The SIR method yields approximately 50% more

requirements than either of the other conditions. This was statistically validated with an

ANOVA test followed by a post-hoc Fischer’s LSD test that confirmed the SIR method

contributed to the participants generated more requirements than the RSI and SRI methods

(p < 0.001). An increase in quantity in the early stages of problem definition is indicative

of a better understanding of the problem since there are more ideas about how to address

the problem [74]. By considering more aspects of what the design should accomplish, this

signifies that the designer is more aware of the problem at hand. A larger number of

requirements does not necessarily indicate a better understanding of the problem, but by

69

increasing the quantity of requirements there is a higher likelihood of better understanding

the problem.

Additionally, having more requirements is more likely to result in good

requirements than having a low number of requirements [75]. The more requirements that

are generated allows a lower percentage of “good” requirements to be present to yield the

same number of quality requirements as a low number of generated requirements with a

high percentage of “good” requirements. In this work, the SIR method yielded the highest

number of requirements of the three methods. The findings from the analysis of the quantity

metric are discussed in this section. Figure 4.1 demonstrates the ranking of the three

methods relating to quantity, where the SIR method outperforms both the RSI and SRI

methods, which are not statistically different from each other.

Figure 4.1. Summary of quantity conclusions

There are several possibilities for why the SIR method resulted in a larger quantity

of requirements. The “Feature Identification Table” was used in the SIR method as opposed

to the “Requirements Table” from the RSI and SRI methods. The layout of the “Feature

Identification Table” may have compelled the participants to write more requirements due

to the feature column having five rows of possible requirements for each feature. Nine of

the 33 participants for the SIR method were able to saturate at least one feature with the

full five requirements allocated to the feature. This could have limited the participants’

70

requirement generation by serving as an unintentional indicator that they had completed

requirement generation for the feature. None of those nine participants wrote more than

five rows per feature, although several of the requirements contained within the saturated

feature blocks were compound requirements as explained in Section 3.2. By providing five

rows of potential requirements for each feature, this may have encouraged the participants

to fill all five of them out. On the other hand, if the participants populated all five

requirement rows per feature, they simply moved on to the next feature. These potential

biases both propel and limit the requirement generation of the participants, thus, it would

be beneficial to improve the packet design of the SIR method for future experiments.

In combination with the table layout, the act of sketching first and then identifying

features prior to requirement generation leads to a higher number of generated

requirements. By using a sketch that was generated by the participant and having that

participant interrogate the sketch, this allows them to identify why they made the design

choices they made for their sketch. Supported by Schon and Wiggins, the use of sketches

allows a designer to make physical relations between some of the initial conceptual ideas

in their head [82]. By explicitly instructing a designer to look at specific features of their

sketch, this accelerates these connections and relations that the designer must make. This

act allows them to better understand their idea and better address the problem.

One previous study tested the use of sketches to assist in requirement generation,

and the same results were seen [45]. In this study, a single participant was observed when

given the instructions to use a sketch to elicit requirements. The designer was able to

generate many more requirements using this technique than without the sketch, indicating

71

the usefulness of using these representations for generating a higher number of

requirements. It was found that 53% of the requirements were elicited from the designer’s

sketch. These findings align with the findings from this work in that designers are able to

generate many requirements by gathering information from a sketch. The study by Suwa

differs from this thesis by conducting a protocol study on a single designer in a longer

experimental process. These results provide insight to the behaviors of the designer in a

specific application. The results from this thesis provide statistical evidence of similar

findings by using a much larger sample size (n=104).

From this work, it was found that the feature identification stage coming prior to

requirement generation is crucial to increase the quantity of requirements generated. The

SIR method resulted in an average 18.4 requirements being generated per person, whereas

the SRI method yielded 11.2 requirements per person. The difference between the SIR and

SRI methods is that in the latter, the feature identification is done after the requirement

generation instead of before. Based on this single difference, it can be concluded that the

use of a conceptual sketch prior to requirement generation alone is not sufficient to increase

the number of generated requirements. This was not expected, and slightly differs from the

results of Suwa’s study, because it was hypothesized that the use of the sketch would

contribute to a better awareness of what the solution would accomplish, leading to more

requirements generated.

The stark difference between the SIR and SRI conditions indicates a lack of use of

the sketch without explicit instructions to interrogate it. Despite the instructions for the SRI

method explicitly stating to use the sketch to assist in the requirement generation, this did

72

not seem to provide any benefits regarding the quantity metric. This could be due in part

to the two separate tasks of generating a sketch and generating a requirements list.

Although the instructions say to use the sketch to aid in requirements generation, the two

tasks are still divided. This could also be the reason that the RSI method results in fewer

requirements generated than the SIR method. In the SIR method, the act of identifying the

features of the sketch allows the participants to directly tie the requirements to specific

aspects of the solution, making for a more connected process.

Comparing the RSI and SRI methods, the participants generated 12.4 and 11.2

requirements per person, respectively, on average. These numbers were not statistically

different (p = 0.12), but the SRI method had a lower average number of requirements

generated per person. If the separation of sketching and requirement generation is indeed

a factor, then it is expected that these two methods yield similar results because the solution

and problem definition phases are independent of each other in both.

If the goal is to generate more requirements, the SIR method should be used rather

than the RSI or SRI methods.

4.2 Variety Findings

The variety metric was used to observe any changes in the breadth of coverage of

the requirements. Even if a method results in a larger quantity of requirements, it is

important to know how these requirements relate to the solution. The variety and typology

metrics provide insight to this factor. A wider variety indicates a better understanding of

the problem due to an increase in the number of applicable engineering categories

addressed by the requirements [77]. The alternative to this is that a lower variety of

73

requirements is not desired. If a higher number of requirements is generated but they are

all related to a single topic, such as safety, this is deemed less valuable than the same

number of requirements distributed among more topics.

For idea generation, it is good practice to explore a wider breadth of solutions to

ensure the best path is being taken to find a solution [83]. Adapting this ideal to

requirements suggests that a wider variety of requirements allows for the breadth of

solutions to be generated from the same requirements list. This would reduce the time

needed for each iteration of design if these requirements could be elicited from an early

conceptual sketch. Hence, a wider variety of requirement use is desired in this thesis.

From the variety analysis conducted from Section 3.3, it was found that there was

not a statistical difference between any of the three methods in terms of their variety. This

means that the participants using any of the methods would likely address requirements in

the same number of categories. From this, it can be concluded that there are no apparent

drawbacks to using any of these methods to aid in requirement generation for influencing

the variety of the requirements. Since the SIR method had a higher quantity of requirements

but no change in variety, the method did not expand the participants’ ability to cover a

wider variety of engineering topics in the requirements. This does indicate, however, that

the participants were able to generate more requirements within the variety categories that

they were already using.

From a more observational standpoint, the results from the packet level analysis in

Section 3.3 provide slightly different conclusions than the statistical analysis. Referring to

Figure 3.4, the distribution of the SIR method is higher than the other two methods. The

74

number of requirements rated to align with each of the variety categories is higher in the

SIR method than the others, whereas the RSI and SRI methods tended to have a higher

percentage of requirements assigned to fewer categories. This could indicate that the SIR

method leads the participants to write a more equal number of requirements for each

feature. This could also be caused by the participants repeating certain requirements for

each feature. For example, multiple features of a solution could have the requirement

“Feature X must be lightweight.” This type of requirement generation (not specific to

lightweight) occurred in twelve of the 33 participants from the SIR group. In these cases,

the number of requirements pertaining to that category is increased when a participant from

the RSI or SRI methods may not have had the lightweight requirement at a subsystem level,

but rather the system level. These reasonings are purely speculative, however, since the

statistical analysis of the variety metric did not conclude that there were any differences

between the experimental conditions. The overall comparisons between the experimentl

conditions are shown in Figure 4.2.

Figure 4.2. Overall comparisons for variety metric between experimental conditions

4.3 Typology Findings

Typology was observed to determine if the requirements developed by the

participants of each condition pertained more to the functionality of the solution or the

characteristics of it. Since both functional and non-functional requirements are an

75

important aspect of engineering design, a more equal distribution of functional and non-

functional requirements was desired for the experimental conditions [18,46]. The balance

of these types of requirements indicates the ability of the designer to understand both the

functional and non-functional aspects of a solution, both of which are crucial to a successful

product.

The typology of each requirement was coded as either functional or non-functional,

and the analysis was conducted using only the non-functional requirements since the

statistical values would be the same for either functional or non-functional due to the binary

nature of the coding scheme. From the typology analysis completed in Section 3.4, it was

found that there was a statistical difference between the SIR method and both other

methods in the number of non-functional requirements generated. There was no difference

found between the RSI and SRI methods.

The SIR method resulted in a lower percentage of non-functional requirements than

either of the other two groups. Comparing all the results for each experimental condition,

the SIR method had 50% non-functional requirements, whereas the other two methods both

had approximately 60% non-functional requirements. Inversely, the SIR method resulted

in an increased percentage of functional requirements compared to the other two methods.

This suggests two potential conclusions about the use of the SIR method: one, there is a

decrease in non-functional requirements while the number of functional requirements

remains the same, or two, there is an increase in the number of functional requirements

while the number of non-functional requirements remains the same. To determine which

of these conclusions is correct, the high-level summary from Table 3.10 was observed

76

along with the results from the quantity metric. From Sections 3.2 and 4.1, the number of

total requirements generated by the SIR method is higher than the other two methods. From

Table 3.10, the SIR method resulted in 298 non-functional requirements and 297 functional

requirements. The RSI method resulted in 291 non-functional requirements and 188

functional requirements. It can be seen from this comparison that there is not a decrease in

the number of non-functional requirements, but an increase in the number of functional

requirements between the SIR and RSI methods, thus, the second of the two conclusions

for typology is accepted.

From this conclusion, it can be stated that the SIR method exposes some

functionality of the solution that is not exposed in the other two methods. Due to differences

in the experimental conditions between the SIR and SRI methods, it is derived that the

feature identification of the sketches is what contributes to the difference in typology

between the groups. By forcing the participants to analyze specific features of their sketch,

they are compelled to understand why they made those features in the first place. This

connects their solution to whichever requirements they were attempting to address, and

allows the participants to establish what each feature functionally does in relation to the

overall solution. By exposing functionality of the solution, this allows other design tools

such as function models and structures to be used in conjunction with this method to further

develop and understand the problem.

Studies by Worinkeng and Joshi examine the use of functional and non-functional

requirements to develop sketches [19,46]. Their findings suggest that the use non-

functional requirements lead to an improvement in the quantity, variety, and novelty of

77

sketches compared to only functional requirements. A combination of both types of

requirements also provides similar benefits to that of using non-functional requirements.

In this thesis, the effects of sketches on the type of requirements is observed, which is the

inverse of the Worinkeng and Joshi studies. The findings from this thesis suggest that using

the SIR method yields in an equivalent mix of functional and nonfunctional requirements,

which would in turn lead to better solutions based on the claims from the other studies. The

similarities between these findings helps to validate the interconnectedness of the problem

and solutions spaces described by the coevolutionary model of design.

If more functional requirements or a more even distribution of functional and non-

functional requirements are desired, then the SIR method should be used. The overall

results are findings are shown in Figure 4.3.

Figure 4.3. Summary of typology conclusions

4.4 Completeness Findings

The grammatical structure of a requirement regarding its completeness is

considered important for a well-developed problem and understanding of the design task

at hand [58,79]. A complete requirement is a trait of what are commonly deemed “good”

requirements, signifying the importance of this metric [79]. A more complete requirement

was desired in this work because of the reasons provided here and in Section 3.5. The

coding scheme determined which parts of speech were used in each requirement, and each

78

requirement was given a weighted completeness score based on the observed parts of

speech.

From the analysis for completeness in Section 3.5, it was seen that the SIR method

led to statistically more complete requirements than both the RSI and SRI methods. The

difference in means of the completeness scores was approximately one. There are several

possibilities for where this extra point in score came from, but the most likely reason is that

the SIR method’s “Feature Identification Table” attaches an explicit subject to each

requirement in almost all cases. The SIR method had a subject in 96.3% of the

requirements, where the next highest use of the subject was 33.6% in the SRI method, and

13.2% for the RSI method. These differences were statistically significant (p < 0.001) as

determined from Section 3.5. The difference in use of the subjects is believed to be the

cause of the large discrepancy for the completeness scores, although the scores could be

influenced by many other factors including the use of other parts of speech, or the use of a

single part of speech multiple times within one requirement to increase the scores. The

comparisons between each method relating to overall completeness are shown in Figure

4.4.

Figure 4.4. Rank order comparison of experimental conditions for completeness metric

The layout of the “Feature Identification Table” for the SIR method is different than

the “Requirements Table” in the RSI and SRI methods that explicitly connects a feature to

the requirements. Because of this, almost all requirements within the SIR condition had a

79

subject. The only observed case where this was not true was for a participant that did not

write the name of features in the “Feature” column of the “Feature Identification Table,”

but rather an additional requirement. In the “Requirements” column, that participant did

not use an explicit subject, thus there was no use of a subject for those requirements.

The SRI method had the next highest use of subject at 33.6%, which is almost a

third the use of the SIR method. The reason this percentage is much lower than the SIR

method is thought to be due to the difference in requirement collection tables used, but the

difference between the SRI method and RSI method cannot be due to differences in the

tables since the “Requirements Table” was exactly the same for both methods. It is thought

that the SRI method has a higher use of subjects than the RSI method because of the

instructions in the SRI method to use their sketch to develop requirements. By observing

their sketches prior to requirement generation, the participants may be informally

identifying features of their sketch and writing why that feature is there. This process is not

formally instructed for the SRI method like it is in the SIR method, and since the only

difference between the RSI and SRI methods is the order of the requirement generation

and sketching stages, this is the only logical reasoning for differences between the two

groups.

For the other observed parts of speech, there were statistical differences in use of

the verb, modal, and target value. There were no statistical differences found in the use of

the modifier and object between each condition. For verb use, there was a statistical

difference between the SIR and SRI method (p = 0.044), with the SIR having a higher

percentage of verb use. This could be attributed again to the subsystem level requirements

80

developed from the SIR method, with the action of each of those features contributing to a

higher use of verbs. Since there was not a difference between the SIR and RSI method,

perhaps the participants of the RSI method need to clarify the ideas represented in their

requirements by using a verb since there is no visual representation when the requirements

are created.

For the modal use in the requirements, there was a statistical difference between

the SRI method and both others, with the SRI having a higher modal use for both cases. A

modal verb is a verb describing the modality of the action verb of the requirement,

simplified in this case to be either what the subject “must” or “should” do. By containing

a modal verb in the requirement, it increases the level of detail regarding the inherent

importance of that requirement. It is speculated that the SRI method led to a much higher

use of the modal than the other method because of the limited use of the sketch to aid in

requirement generation. By having a sketch but not being instructed to interrogate the

sketch for more detail, the participants make claims about what the solution must or should

do based on the relevance of each requirement to the solution. This differs from the SIR

method because of that explicit instruction to interrogate the sketch, thus the modality is

not as important. The SRI method differs from the RSI method in that there is no sketch

present in the latter, thus the relationship between the requirement and solution is not

known prior to the requirement generation stage.

For the target value use in the requirements, there was a statistical difference

between the RSI method and both cases, with the RSI method having a higher use of target

value in both instances. It is thought that the RSI method has a higher use of target values

81

because having quantitative goals can be used as a surrogate for what can be implied from

a sketch. Where the relative size of books can be presented in a sketch, for example, a

participant without a sketch relies on a numerical representation of the size of the books,

such as 12” x 12” or 20 pounds.

The results of the completeness analysis vary depending on which aspect of the

analysis is observed, but in general, the SIR method leads to the generation of more

complete requirements than the RSI and SRI methods.

4.5 Novelty Findings

Novelty of the requirements was observed to determine the influence of each

experimental condition on the ability to generate more unique requirements. Since novelty

of ideas is the basis of continuing to innovate, which is a core principle of engineering,

having more novel requirements was desired [80,81]. The coding scheme was used to

separate each requirement into up to four keywords, and the associated novelty scores for

each requirement were observed in Section 3.6.

It was found that the SIR method resulted in a higher percentage of novel

requirements than the RSI and SRI methods. The SIR method had 13.3% novel

requirements, the SRI method had 10.4% novel requirements, and the RSI method had

7.1% novel requirements. There was approximately 3% difference between each of the

experimental conditions, and the differences between the RSI and both other groups were

statistically different (p ≤ 0.0014).

The SIR method had the highest percentage of novel requirements based on the

used coding scheme, indicating that this method sparks more creativity in the participants

82

than the other two methods. A potential reason for this increase in creativity again stems

from the feature identification task of this method. By observing the features and

subsystems of a sketch, more of the subsystem-level traits and functions of the solution are

observed than in other methods. These requirements would be more focused and detailed

than the system-level requirements generated from the other two methods, thus, being more

likely to be unique requirements. By having both a higher quantity of requirements and a

higher percentage of novel requirements than the other two methods, the SIR method

greatly increases the novelty of a requirements list. When observing the novelty along with

the typology metric, the SIR method identifies more novel functions of the solutions.

The SRI method did have a statistically higher number of novel requirements than

the RSI method as well. Again, this could be due to the informal use of the sketch to identify

subsystem-level requirements that a user without a sketch may have difficulty considering.

By using the sketch and not identifying features of the sketch, the participants may not

have been compelled to interrogate their sketch and determine what each aspect does. The

participants would focus only on what their solution does as a system. Although the

percentage of novel requirements is higher for the SRI method than the RSI method, the

overall number of requirements is less. Due to this, the actual number of novel

requirements is similar between these two groups, as shown in Table 3.20.

As for the RSI method, not having a sketch available to observe, the participants

are forced to internalize their ideas for requirements in their minds. This may cause them

to think about the solutions as a system rather than a collection of subsystems, thus limiting

the creativity of the requirements they generate. According to the co-evolutionary model

83

of engineering design, without a sketch to compare the requirements with, the participants

are theoretically missing half of the developmental tools necessary for adequate

progression through the design process. This is validated by the results seen for the novelty

metric.

Based on the analysis done in this work, the SIR method should be used to increase

the number and percentage of novel requirements generated. The comparisons between the

experimental conditions are shown in Figure 4.5.

Figure 4.5. Ranked ordering of experimental conditions for novelty metric

4.6 Overall Findings

With the observations from the analysis of the requirements lists of the RSI, SIR,

and SRI groups for the metrics of quantity, variety, typology, completeness, and novelty,

each experimental condition was evaluated in relation to the others and conclusions were

drawn. It was found that the SIR method statistically improved the requirements lists in all

observed metrics except variety, based on the used definitions of what an “improvement”

was. The SIR method increased the quantity of requirements generated, more evenly

distributed the requirements between functional and non-functional, increased the

grammatical completeness of the requirements, and increased the number and percentage

of novel requirements in relation to the RSI and SRI methods. This allowed the null

hypotheses for HQ1, HT1, HC1, and HN1 to be rejected, indicating the SIR method

improved all these categories. For the variety metric, there were no statistical differences

84

between any of the methods, but the SIR method had a slightly higher distribution of

requirements into the categories from an observational standpoint than the other methods.

The SRI method was not better than the SIR method in any case, but led to an

increase in the overall completeness and percentage of novel requirements over the RSI

method. For the quantity metric, the SRI method performed worse than the RSI method,

and for the variety and typology metrics, did not perform statistically different than the RSI

method. The RSI method performed better than the SRI method for the quantity metric,

and worse than the SIR method for all metrics. These conclusions are summarized in Table

4.2, repeated from Table 4.1

Table 4.2. Repeated summary of conclusions for comparisons of each experimental

condition

RSI SIR SRI

Quantity 2 1 3

Variety 1 1 1

Typology (F vs N) 3 1 3

Completeness 3 1 2

Novelty 3 1 1

The SIR method allows a deeper understanding of the problem definition than the

RSI and SRI methods, which contributes to the better requirements lists generated by the

participants of the study. Based on the analysis done in this work, the feature identification

stage of the experimental procedure is the perceived cause of the differences seen from the

SIR method. By formally instructing the designers to identify features of their sketches and

generate requirements based on those features, this stage connects different ideas from the

designers’ minds and allows the problem definition and concept to evolve together, making

better use of the value of information within each of these stages. Using the SIR method,

85

more and better requirements are generated in the same amount of time as the RSI and SRI

methods, the RSI method being the method currently used in most engineering design

applications. The SIR method allows more information to be gained in a more time-

efficient manner, accelerating the early stages of the design process. To answer the research

questions put forth by RQ1 and RQ2 from Section 1.5, it was found that the ordering of

the identified stages of the design process has an influence on the generated requirements.

Regarding RQ1, using a sketch and identifying features of that sketch prior to generating

requirements allows a designer to elicit a higher quantity of requirements along with an

increased number of grammatically complete, functional, and novel requirements. No other

observed ordering led to such an influence on the requirements lists.

For RQ2, the act of extracting features of a sketch before generating requirements

is a crucial step in increasing the quality of a requirements list regarding the observed

metrics. By focusing the attention of the designer on the details of their own ideas, this

allows them to be more familiar with the solution and what problem they are trying to

address, thus, improving their ability to generate requirements.

Since this experiment determined that following the process of sketching a solution,

identifying features of that sketch, then generating requirements based on those features

leads to a significant improvement of requirements lists, it becomes necessary to identify

gaps within the literature to determine where these differences are introduced. The feature

identification step in the SIR method was introduced by the work in this thesis. This task

is not discussed in design textbooks, despite the positive benefits observed from this thesis.

The design textbooks often inform the readers to “use requirements to evaluate solutions,”

86

but this is often done at the end of the process after a solution has been detailed [2,5–7,52].

The lack of formal instruction for how to use the combination of requirements and solutions

to proceed through the design process may be the reason for the disconnect between the

problem definition and conceptual design phases that is observed. The method introduced

in this thesis provides that formal instruction that could be used in the future to bridge the

gap between requirements and solutions.

87

CHAPTER FIVE

CONCLUSIONS

From the work done in this thesis, several conclusions were drawn about the

effectiveness of the RSI, SIR, and SRI methods. These methods effect the generation of

requirements in relation to the five metrics of quantity, variety, typology, completeness,

and novelty. The conclusions made from the analysis done in this work are limited by

several factors due to the nature of the experimental design. These conclusions also open

up a window for potential continuations or improvements to the work done in this thesis.

This chapter highlights the major conclusions of this experiment, along with some of the

limitations of study, and provides possibilities for the work to be done in the future.

The purpose of this thesis was to determine the influence of the ordering of the

early stages of the design process on the generation of requirements. The observed stages

of the design process included the problem definition and conceptual design stages relating

to the development of engineering requirements and conceptual sketches. These stages

were divided into three steps associated with their use in the design process: requirement

generation (R), sketching (S), and identifying the location of features or requirements

within a sketch (I). To observe the sequencing of these three steps, an experimental study

was designed and conducted on two classes of third year mechanical engineering students

in a machine design course at Clemson University. The experimental conditions were

combinations of these steps that resulted in the RSI (control) method, SIR method, and SRI

method. The data obtained from this experiment were the written requirements of the

participants which were evaluated based on the metrics of quantity, variety, typology,

88

completeness, and novelty. The experimental study was designed to address two research

questions:

RQ1) How does using a conceptual sketch to extract requirements influence a

requirements list?

RQ2) How does extracting features from a sketch influence the ability to generate

requirements?

It was found that a conceptual sketch could be used to influence a requirements list

based on the sequencing of the observed stages of the design process. Both the SIR and

SRI methods caused a change in the requirements lists developed in relation to the RSI

method, which was used as the control for this experiment. The SIR method led to mostly

positive changes in the requirements list, whereas the SRI method led to more negative

changes in the requirements list. This indicates that the sequencing of event does matter,

but the task of sketching prior to requirement generation alone should not be used to

improve a requirements list.

The difference in sequencing of the steps of the early stage of the design process

between the SIR and SRI method is the task of identifying features prior to requirement

generation in the SIR method as opposed to identifying features after requirement

generation in the SRI method. This feature identification step from the SIR method is the

key factor to be used for improving a requirements list. This stage in the sequencing

allowed the participants to focus their attention on the features of their sketches to identify

why each feature was there. By generating requirements for these features, the requirement

89

list contained improved content to that of the RSI and SRI methods and should be used to

help elicit requirements in future design tasks.

5.1 Research Limitations

Although the results from this study provided conclusive evidence of the benefits

of using the SIR method as opposed to the RSI and SRI methods, these conclusions are

limited to the conditions of this specific study. By conducting an experiment on novice

engineers (engineering design students) at Clemson University, whether the results can be

extrapolated to other users is unknown. No information was collected from the participants

regarding their demographics or previous experience with design research, which could

have potentially resulted in outliers in the data that were not accounted for. Since the

participating students are all from Clemson University, they were assumed to have the

same knowledge of engineering design and thus may yield different results from engineers

from other institutes or experts in the engineering design field.

Additionally, the experiment was conducted in a short, 30-minute time frame, thus,

the experimental design problem given to the students was necessary to be simple enough

to be addressed in those thirty minutes. It is easy enough to generate requirements for such

a simple device as a book-grabber, but whether or not these techniques tested in this

experiment can be used for larger scale or more complex projects is unknown. The

experiment was also conducted individually, so the participants only relied on their own

experiences to address the problem.

The main goal of this work was to study the requirements lists generated by the

participants. However, the requirements lists were never associated with the solutions

90

themselves, so whether the “better” requirements lists resulted in better solutions or not

was not determined. The assumption from past literature is that a better developed

requirements list yields better solutions, but in this case for the SIR and SRI methods, the

solutions yielded the requirements [46]. If the same connection between requirements and

solutions applies in the inverted order, this would further validate the coevolutionary model

of engineering design, but this was not done in this work.

5.2 Future Work

From both the limitations observed in this work and the conclusions from this work,

new opportunities for research were discovered. This thesis contributes to the underlying

value that could be gained by pursuing any of these continuations for future work on this

topic.

The research limitations discussed in the previous section provide a clear idea for

improvements to this work that could be done in future studies. Since there are many

comparisons in literature about the differences in how novice and expert engineers

complete design tasks, the methods proposed in this thesis could be applied to experts

.[23]–[27], [84]. Novice engineers were the participants in this experiment, so the results

obtained from expert engineers would aid in either validating or refuting the findings from

these past works.

Since the experiment conducted in this thesis was done in a short, 30-minute time

span, the use of these methods throughout a longer project timeline would be valuable. By

expanding the timeline of the experiment and methods used, it would be interesting to see

if the requirements lists generated from each method would converge in their quality based

91

on the observed metrics, or if the results would compound in each iteration by continuing

to yield the same differences in requirements. Conducting this experiment and using the

tested methods in a team environment would be interesting as well. Based on information

about the benefits of teamwork and how sketches convey information between teammates,

it is hypothesized that the SIR method would continue to increase the quality of the

requirements lists regarding the observed metrics [59], [60].

Lastly, from the observed limitations of this work, the solutions that the participants

created could be analyzed. Using Shah’s metrics for the evaluation of solutions, of which

the analysis methods used in this thesis were adopted from, the solutions could be directly

compared to the requirements lists generated by each participant. This would provide

insight to the connection between the problem definition and conceptual design stages in

accordance with the coevolutionary model of design. Observing the solutions would also

provide results not addressed in this thesis regarding the relevance of the requirements.

Since the requirements generated by the participants of the SIR and SRI methods were

elicited from the sketches, it would be important to determine which of those requirements

were dependent on the solution. If the requirements were specific to a single solution, then

the relevance of that requirement would be meaningless to a solution of a different form or

function. In that case, it would be important to add a step to the procedure to instruct the

participants to identify a solution independent form of the requirement so that the

requirements could be applied more generally.

In addition to the future work brought about by the limitations of the work in this

thesis, some of the major findings from this work spark the avenue for future work to

92

expand upon. One of the major topics from this work is the use of sketches as the form of

the solution. The SIR and SRI methods could be applied to higher or lower fidelity

representations of the same solution to observe any differences in the requirements lists

generated. For example, a CAD model could be created as the solution, and the

requirements could be generated based on that representation of the solution. This study

would provide insight into differences in these representations, as well as to phenomena

such as the “sunk cost bias.”

Rather than using the SIR or SRI methods as stand-alone design tools, they could

be used in combination with other design tools or representations of solutions, or as an

intermediate stage to the current design process. Instead of changing the entire ordering of

the early stages of design, the SIR or SRI methods could be applied in the standard design

process once the designers reach the conceptual design phase. The requirements generated

at this point could be added to the existing requirements list and simply add value to the

design.

By using the SIR or SRI techniques to elicit more or different requirements from

each type representation used, the requirements list could be the driving factor for

progression through the design process. For example, if the SIR method is used to elicit

requirements from an early sketch, this step can be iterated upon until the requirements

elicited stagnate. At this point, there is a natural indication that the design is ready to

proceed to a new or higher fidelity representation of the solution. The SIR method could

be applied again to the new representation again until the requirements elicited stagnate.

93

The future works discussed in this section are not exhaustive by any means, but are

a few of the avenues that could be pursued for future work relating to the work in this

thesis. Based on the findings of this thesis, the SIR method provides an interesting method

to aid in the early stages of the design process. The continuations discussed in this section

could shed light on some of the other uses or potential drawbacks of using this method that

were not addressed or discovered by this experiment.

94

REFERENCES

[1] K. T. Ulrich and S. D. Eppinger, Product Design and Development. 1995.

[2] W. L. Chapman, A. T. Bahill, and A. W. Wymore, Engineering Modeling and

Design. 1992.

[3] R. G. Budynas and J. K. Nisbett, Shigley’s Mechanical Engineering Design, vol.

91. 2017.

[4] M. F. Ashby, Materials Selection in Engineering Design. 2017.

[5] G. Pahl, W. Beitz, J. Feldhusen, and K. H. Grote, Engineering Design: A

Systematic Approach. 2007.

[6] C. L. Dym and P. Little, Engineering Design: A Project-Based Introduction. 1999.

[7] D. G. Ullman, The Mechanical Design Process Fourth Edition. 1997.

[8] D. G. Jansson and S. M. Smith, “Design fixation,” vol. 12, no. 1, pp. 3–11, 1991.

[9] M. Perttula and P. Sipilä, “The idea exposure paradigm in design idea generation,”

vol. 4828, 2007.

[10] J. S. Linsey, I. Tseng, K. Fu, J. Cagan, K. L. Wood, and C. Schunn, “A Study of

Design Fixation , Its Mitigation and Perception in,” vol. 132, no. April 2010, pp.

1–12, 2019.

[11] S. Joshi, J. D. Summers, and G. M. Mocko, “REQUIREMENTS IN

ENGINEERING DESIGN : WHAT ARE WE TEACHING ? 2 . 1 . Understanding

use of,” pp. 1–8, 2012.

[12] J. A. Goguen and C. Linde, “Techniques for Requirements Elicit at ion*,” 1992.

[13] S. Joshi, B. Morkos, and J. D. Summers, “Mapping problem and requirements to

final solution: A document analysis of capstone design projects,” Int. J. Mech.

Eng. Educ., 2018.

[14] V. K. Jain and Æ. D. K. Sobek, “Linking design process to customer satisfaction

through virtual design of experiments,” pp. 59–71, 2006.

[15] V. Goel and P. Pirolli, “The structure of design problem spaces,” Cogn. Sci., vol.

16, no. 3, pp. 395–429, 1992.

[16] A. Ravid and D. M. Berry, “A method for extracting and stating software

requirements that a user interface prototype contains,” Requir. Eng., vol. 5, no. 4,

pp. 225–241, 2000.

[17] J. A. Studer, S. R. Daly, S. Mckilligan, and C. M. Seifert, “Evidence of problem

exploration in creative designs,” 2018.

[18] E. Worinkeng and J. D. Summers, “Analyzing Requirement Type Influence on

Concept Quality and Quantity During Idation : an Experimental Study,” pp. 1–10,

2014.

[19] E. Worinkeng, S. Joshi, and J. D. Summers, “An experimental study: analyzing

requirement type influence on novelty and variety of generated solutions,” no.

Style 1, 2015.

[20] M. J. und C. M. J. und C. M. Darlington and S. Culley, “Current Research in the

Engineering Design Requirement,” J. Eng. Manuf., vol. 216, no. 3, pp. 375-, 2002.

[21] C. J. Atman, R. S. Adams, M. E. Cardella, J. Turns, S. Mosborg, and J. Saleem,

“Engineering design processes: A comparison of students and expert

95

practitioners,” J. Eng. Educ., vol. 96, no. 4, pp. 359–379, 2007.

[22] S. Ahmed and K. M. Wallace, “Understanding the differences between how novice

and experienced designers approach design tasks,” vol. 14, pp. 1–11, 2003.

[23] H. Christiaans and K. Venselaar, “Creativity in Design Engineering and the Role

of Knowledge : Modelling the Expert,” pp. 217–236, 2005.

[24] K. A. Ericsson and N. Charness, Cognitive and developmental factors in expert

performance. Cambridge, MA, US: The MIT Press, 1997.

[25] M. B. Waldron and K. J. Waldron, “The Influence of the Designer’s Expertise on

the Design Process BT - Mechanical Design: Theory and Methodology,” M. B.

Waldron and K. J. Waldron, Eds. New York, NY: Springer New York, 1996, pp.

5–20.

[26] C. M. Zeitz, “Expert-Novice Differences in Memory, Abstraction, and Reasoning

in the Domain of Literature,” Cogn. Instr., vol. 12, no. 4, pp. 277–312, Dec. 1994.

[27] C. W. Ennis and S. W. Gyeszly, “Protocol analysis of the engineering systems

design process,” Res. Eng. Des., vol. 3, no. 1, pp. 15–22, 1991.

[28] S. Joshi and J. D. Summers, “Requirements Evolution : Understanding the Type of

Changes in Requirement Document of Novice Designers Requirements evolution :

Understanding the type of changes in the requirement document of novice

designers,” no. May, 2015.

[29] A. Chakrabarti, S. Morgenstern, and H. Knaab, “Identification and application of

requirements and their impact on the design process: A protocol study,” Res. Eng.

Des., vol. 15, no. 1, pp. 22–39, 2004.

[30] N. Cross, “Expertise in design: An overview,” Des. Stud., vol. 25, no. 5, pp. 427–

441, 2004.

[31] D. C. Moreno, O. D. Tubio, and N. J. Juzgado, “Study of Elicitation Techniques

Adequacy,” pp. 104–114, 2009.

[32] J. M. Moore and F. M. Shipman, “A comparison of questionnaire-based and GUI-

based requirements gathering,” Proc. ASE 2000 15th IEEE Int. Conf. Autom.

Softw. Eng., pp. 35–43, 2000.

[33] M. G. Pitts and G. J. Browne, “Stopping Behavior of Systems Analysts During

Information Requirements Elicitation,” J. Manag. Inf. Syst., vol. 37, no. 4, pp.

423–430, 2004.

[34] Z. Y. Chen, S. Yao, J. Q. Lin, and Y. Zeng, “Formalisation of product

requirements: from natural language descriptions to formal specifications,” Int. J.

Manuf. Res., vol. 2, no. 3, pp. 362–387, 2007.

[35] C. Rolland and N. Prakash, “From conceptual modelling to requirements

engineering,” Ann. Softw. Eng., vol. 10, no. 1, p. 151, 2000.

[36] I. Effendi, B. Henson, V. Agouridas, and A. De Pennington, “METHODS AND

TOOLS FOR REQUIREMENTS ENGINEERING OF MADE-TO-ORDER

MECHANICAL PRODUCTS,” pp. 1–10, 2002.

[37] D. T. Ross and K. E. Schoman, “Structured Analysis for Requirements

Definition,” IEEE Trans. Softw. Eng., vol. SE-3, no. 1, pp. 6–15, 1977.

[38] K. Pohl, Requirements Engineering: Fundamentals, Principles, and Techniques.

2010.

96

[39] A. Davis, O. Dieste, A. Hickey, N. Juristo, and A. M. Moreno, “Effectiveness of

Requirements Elicitation Techniques: Empirical Results Derived from a

Systematic Review,” Kline Hudson’s Nerve Inj., pp. 107–138, 2008.

[40] G. Auriol, C. Baron, and J. Y. Fourniols, “Teaching requirements skills within the

context of a physical engineering project,” 2008 Requir. Eng. Educ. Training,

REET’08, pp. 0–5, 2008.

[41] M. V. Elena, “Role of Lecture Intervention on Requirement Generation.” 2018.

[42] P. Engelbrektsson, “Effects of product experience and product representations in

focus group interviews,” J. Eng. Des., vol. 13, no. 3, pp. 215–221, 2002.

[43] S. Joshi and J. D. Summers, “Impact of Requirements Elicitation Activity on Idea

Generation: A Designer Study,” Detc, no. November, pp. 1–10, 2014.

[44] B. Morkos and J. D. Summers, “Implementing Design Tools in Capstone Design

Projects: Requirements Elicitation Through Use of Personas,” Natl. Capstone

Conf., no. March 2014, p. 50, 2010.

[45] M. Suwa, J. Gero, and T. Purcell, “Unexpected discoveries and S-invention of

design requirements: Important vehicles for a design process,” Des. Stud., 2000.

[46] E. Worinkeng, “Analyzing Requirement Type Influence on Generated Solutions,”

All Theses, 2013.

[47] K. Dorst and N. Cross, “Creativity in the design process: co-evolution of problem–

solution,” vol. 22, pp. 425–437, 2001.

[48] S. Daly, S. Mckilligan, and A. Ostrowski, “3 . 1 Tracing Problem Evolution :

Factors That Impact Design Problem Definition,” no. November, 2016.

[49] J. Shah, N. Vargas-Hernandez, and S. Smith, “Metrics for measuring ideation

effectiveness,” Des Stud, vol. 24, no. 2, pp. 111–134, 2003.

[50] M. L. O. U. Maher, J. Poon, and S. Boulanger, “Formalising design exploration as

co-evolution,” 1996.

[51] Z. Bilda and H. Demirkan, “An insight on designers’ sketchingactivities in

traditional versus digital media,” vol. 11, no. 2, pp. 27–50, 2002.

[52] K. T. Ulrich and S. D. Eppinger, “Product Design and Development,” 2015.

[53] T. J. Howard, S. J. Culley, E. Dekoninck, and I. Manufacturing, “Describing the

creative design process by the integration of engineering design and cognitive

psychology literature,” pp. 160–180, 2008.

[54] M. Lou Maher and H. Tang, “Co-evolution as a computational and cognitive

model of design,” vol. 14, no. 2003, pp. 47–63, 2006.

[55] N. Crilly and C. Cardoso, “Where next for research on fixation, inspiration and

creativity in design?,” Des. Stud., vol. 50, 2017.

[56] N. Crilly, “Fixation and creativity in concept development: The attitudes and

practices of expert designers,” Des. Stud., vol. 38, 2015.

[57] A. M. Madni and M. Sievers, “Model-based systems engineering: Motivation,

current status, and needed advances,” Discip. Converg. Syst. Eng. Res., pp. 311–

325, 2017.

[58] A. Hanson et al., “A Model-Based Systems Engineering Approach to Exploration

Medical System Development,” IEEE Aerosp. Conf., pp. 1–19, 2019.

[59] S. Song and A. M. Agogino, “Insights on designers’ sketching activities in new

97

product design teams,” Proc. ASME Des. Eng. Tech. Conf., vol. 3, no. September

2014, pp. 351–360, 2004.

[60] N. O. E. Vargas-hernandez, “Collaborative Sketching (C-Sketch) – An Idea

Generation Technique for Engineering Design,” vol. 35, no. 3, pp. 168–198, 2001.

[61] M. Suwa, T. Purcell, and J. Gero, “Macroscopic analysis of design processes based

on a scheme for coding designers’ cognitive actions,” Des. Stud., 1998.

[62] A. Mcgown, G. Green, P. A. Rodgers, E. D. Centre, and T. Street, “Visible ideas:

information patterns of conceptual sketch activity,” pp. 8–10, 1998.

[63] C. Sen, Q. Parrish, and O. Galil, “MEASURING INFORMATION CONTENT OF

FREEHAND SKETCHES USING A COGNITIVE CHUNK VISUALIZATION

PROTOCOL,” pp. 1–10, 2017.

[64] T. Taura and N. Yukari, Design Creativity. 2010.

[65] S. Joshi, E. Worinkeng, and J. D. Summers, “Can a Pre-Sketching Activity

Improve Idea Generation?,” 2013.

[66] V. K. Viswanathan and J. S. Linsey, “Role of Sunk Cost in Engineering Idea

Generation : An Experimental Investigation,” vol. 135, no. December, pp. 1–12,

2013.

[67] R. Krishnamurti, “Explicit design space ?,” pp. 95–103, 2006.

[68] M. C. Yang and J. G. Cham, “An Analysis of Sketching Skill and Its Role in Early

Stage Engineering Design,” vol. 129, no. May, pp. 476–482, 2007.

[69] M. F. Ashby, Materials Selection in Engineering Design. 2017.

[70] A. Patel and M. V. Elena, “A Systematic Approach to Evaluating Design Prompt.”

2018.

[71] M. V. Elena, “Understanding Requirement Generation : Studies on Interventions

and Comparison between Novices and Practitioners,” 2019.

[72] Shraddha Joshi, “Understanding the role of requirements in engineering design by

novices,” no. December, p. 233, 2013.

[73] S. Joshi, B. Morkos, and J. D. Summers, “Mapping Problem and Requirements To

Final Solution : a Document Analysis,” Proc. ASME IDETC/CIE 2011, no.

January, pp. 1–10, 2011.

[74] M. W. Glier, S. R. Schmidt, J. S. Linsey, and D. A. McAdams, “Distributed

ideation: Idea generation in distributed capstone engineering design teams,” Int. J.

Eng. Educ., vol. 27, no. 6, pp. 1281–1294, 2011.

[75] N. V. Hernandez, G. E. Okudan, and L. C. Schmidt, “Effectiveness metrics for

ideation: Merging genealogy trees and improving novelty metric,” Proc. ASME

Des. Eng. Tech. Conf., vol. 7, pp. 85–93, 2012.

[76] B. A. Nelson, J. O. Wilson, D. Rosen, and J. Yen, “Refined metrics for measuring

ideation effectiveness,” Des. Stud., vol. 30, no. 6, pp. 737–743, 2009.

[77] V. K. Viswanathan and J. S. Linsey, “Physical models and design thinking: A

study of functionality, novelty and variety of ideas,” J. Mech. Des. Trans. ASME,

vol. 134, no. 9, pp. 1–13, 2012.

[78] J. D. Summers, “REQUIREMENTS EVOLUTION: RELATING FUNCTIONAL

AND NON-FUNCTIONAL REQUIREMENT CHANGE ON STUDENT

PROJECT SUCCESS,” IDETC, pp. 1–12, 2014.

98

[79] NASA, “NASA System Engineering Handbook Revision 2,” p. 297, 2016.

[80] V. Srinivasan and A. Chakrabarti, “Investigating novelty-outcome relationships in

engineering design,” Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM, vol. 24, no. 2,

pp. 161–178, 2010.

[81] B. Lopez-Mesa and R. Vidal, “Novelty Metrics in Engineering Design

Experiments,” 2006, pp. 557–564.

[82] D. A. Schon and G. Wiggins, “Kinds of seeing and their functions in designing,”

Des. Stud., 1992.

[83] M. V Martin and K. Ishii, “Design for variety : developing standardized and

modularized product platform architectures,” vol. 13, pp. 213–235, 2002.

[84] C. J. Atman, J. R. Chimka, K. M. Bursic, and H. L. Nachtmann, “A comparison of

freshman and senior engineering design processes,” Des. Stud., vol. 20, no. 2, pp.

131–152, 1999.

99

APPENDICES

100

Appendix A.
Experimental Packets

Packet A

Section Number: ____

101

Instructions – STEP 1
Read the problem statement. After reading, generate as complete a list of requirements

as possible for a potential solution by populating the Requirements Table on the page(s)

after the problem statement. Write the requirements in the second column, with one

requirement per row

Problem Statement:
In order to help people in wheel-chairs grab books from

the highest level of the bookshelf (6ft or above), a

mechanism needs to be developed. The device must be

safe to use, convenient, and operate smoothly without

damaging the books. The assembly should be relatively

simple so that it can be installed on most existing

bookshelves.

102

Requirements Table (page 1)

Requirement

1

2

3

4

5

6

7

8

9

10

11

12

13

103

Requirements Table (page 2)

Requirement

14

15

16

17

18

19

20

21

22

23

24

25

Please wait for additional instructions

104

Instructions – STEP 2

Using your requirements list and the given problem statement, sketch one high

quality solution in the box below to solve the problem.

Please wait for additional Instructions

105

Instructions – STEP 3
After your sketch is complete, identify which features of your sketch address each of

the requirements from the Requirements Table by circling the features of the sketch

(i.e. subsystems, components, or characteristics of your solution) on the previous page

and labeling the identifying number of the addressed requirement for that feature. If

multiple requirements are addressed, label each requirement number.

Please wait for additional instructions

106

Packet B

Section Number: ___

107

Instructions – STEP 1

Read the problem statement. After reading, sketch one high-quality solution that solves the

problem on the following page in the provided box.

Problem Statement:

In order to help people in wheel-chairs grab books from the

highest level of the bookshelf (6ft or above), a mechanism

needs to be developed. The device must be safe to use,

convenient, and operate smoothly without damaging the

books. The assembly should be relatively simple so that it

can be installed on most existing bookshelves.

108

Instructions – STEP 1

Draw your high-quality solution in the box below.

Please wait for additional instructions

109

Instructions – STEP 2

Using your sketch, identify features of the sketch (i.e. subsystems, components, or

characteristics of your solution) by circling them. Label each circled feature using a letter.

Use each feature to populate the first column of the Feature Identification Table with the

appropriate letter. Add a one- or two-word description of the feature in the Feature column

as well. DO NOT FILL OUT REQUIRMENTS COLUMN YET.

Feature Identification Table (page 1)

Feature Requirement

110

Feature Identification Table (page 2)

Feature Requirement

111

Feature Identification Table (page 3)

Feature Requirement

112

Feature Identification Table (page 4)

Feature Requirement

Please wait for additional instructions

113

Instructions – STEP 3

Using your sketch and the Feature Identification Table, generate a list of requirements

associated with each feature in the table by writing the requirements in the second column.

Requirements should only be written next to the associated feature.

Please wait for additional instructions

114

Packet C

Section Number: ___

115

Instructions – STEP 1

Read the problem statement. After reading, sketch a solution that solves the problem on

the following page in the provided box.

Problem Statement:

In order to help people in wheel-chairs grab books from the

highest level of the bookshelf (6ft or above), a mechanism

needs to be developed. The device must be safe to use,

convenient, and operate smoothly without damaging the

books. The assembly should be relatively simple so that it

can be installed on most existing bookshelves.

116

Instructions – STEP 1

Draw your solution in the box below

Please wait for additional instructions

117

Instructions – STEP 2

Using your sketch, generate as complete a list of requirements as possible by populating

the Requirements Table on the following page(s). Write the requirement in the second

column, with one requirement per row.

118

Requirements Table (page 1)

Requirement

1

2

3

4

5

6

7

8

9

10

11

12

13

119

Requirements Table (page 2)

Requirement

14

15

16

17

18

19

20

21

22

23

24

25

Please wait for additional instructions

120

Instructions – STEP 3

After your sketch is complete, identify which features of your sketch address each of the

requirements from the Requirements Table by circling the features of the sketch (i.e.

subsystems, components, or characteristics of your solution) and labeling the identifying

number of the addressed requirement for that feature. If multiple requirements are

addressed, label each requirement number.

Please wait for additional instructions

121

Appendix B.
TOST Code for Class Equivalency

Code to check for equivalence between both class sections within each

experimental condition and metric.

clear

clc

close all

alpha = 0.05;

%Compares the two observed class sections for each experimental condition

%within each observed metric with an alpha value of 0.05

%quantity analysis

%RSI

[sampleq1,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Quantity', 'D8:D17');

[sampleq2,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Quantity', 'D18:D45');

Mq1 = mean(sampleq1);

Mq2 = mean(sampleq2);

stdq1 = std(sampleq1);

stdq2 = std(sampleq2);

% dq1 = 0+(max(Mq1,Mq2))*0.5;

% dq2 = 0-(max(Mq1,Mq2))*0.5;

dq1 = 0-1.2*(max(std(sampleq1),std(sampleq2)));

dq2 = 0+1.2*(max(std(sampleq1),std(sampleq2)));

[pq1, pq2, CIq12] = TOST(sampleq1, sampleq2, dq1,dq2,alpha);

%SIR

[sampleq3,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Quantity', 'G8:G15');

[sampleq4,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Quantity', 'G16:G39');

Mq3 = mean(sampleq3);

Mq4 = mean(sampleq4);

stdq3 = std(sampleq3);

stdq4 = std(sampleq4);

% dq3 = 0-(max(Mq3,Mq4))*0.5;

% dq4 = 0+(max(Mq3,Mq4))*0.5;

dq3 = 0-(max(std(sampleq3),std(sampleq4)));

dq4 = 0+(max(std(sampleq3),std(sampleq4)));

[pq3, pq4, CIq34] = TOST(sampleq3, sampleq4, dq3,dq4,alpha);

%SRI

[sampleq5,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Quantity', 'J8:J15');

[sampleq6,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Quantity', 'J16:J40');

Mq5 = mean(sampleq5);

Mq6 = mean(sampleq6);

stdq5 = std(sampleq5);

stdq6 = std(sampleq6);

% dq5 = 0-(max(Mq5,Mq6))*0.3;

% dq6 = 0+(max(Mq5,Mq6))*0.3;

dq5 = 0-(max(std(sampleq5),std(sampleq6)));

dq6 = 0+(max(std(sampleq5),std(sampleq6)));

[pq5, pq6, CIq56] = TOST(sampleq5, sampleq6, dq5,dq6,alpha);

EquivalenceCheck.m

% %variety analysis

%RSI

[samplev1,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Variety Results', 'A3:A12');

[samplev2,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Variety Results', 'A13:A30');

122

Mv1 = mean(samplev1);

Mv2 = mean(samplev2);

dv1 = 0+(max(Mv1,Mv2))*0.2;

dv2 = 0-(max(Mv1,Mv2))*0.2;

[pv1, pv2, CIv12] = TOST(samplev1, samplev2, dv1,dv2,alpha);

%SIR

[samplev3,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Variety Results', 'B3:B10');

[samplev4,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Variety Results', 'B11:B34');

Mv3 = mean(samplev3);

Mv4 = mean(samplev4);

dv3 = 0+(max(Mv3,Mv4))*0.2;

dv4 = 0-(max(Mv3,Mv4))*0.2;

[pv3, pv4, CIv34] = TOST(samplev3, samplev4, dv3,dv4,alpha);

%SRI

[samplev5,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Variety Results', 'C3:C10');

[samplev6,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Variety Results', 'C11:C35');

Mv5 = mean(samplev5);

Mv6 = mean(samplev6);

dv5 = 0+(max(Mv5,Mv6))*0.2;

dv6 = 0-(max(Mv5,Mv6))*0.2;

[pv5, pv6, CIv56] = TOST(samplev5, samplev6, dv5,dv6,alpha);

%typology analysis

%RSI

[samplet1,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Final - Type', 'J12:J21');

[samplet2,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Final - Type', 'J22:J47');

Mt1 = mean(samplet1);

Mt2 = mean(samplet2);

dt1 = 0+(max(Mt1,Mt2))*0.2;

dt2 = 0-(max(Mt1,Mt2))*0.2;

[pt1, pt2, CIt12] = TOST(samplet1, samplet2, dt1,dt2,alpha);

%SIR

[samplet3,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Final - Type', 'J48:J55');

[samplet4,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Final - Type', 'J56:J79');

Mt3 = mean(samplet3);

Mt4 = mean(samplet4);

dt3 = 0+(max(Mt3,Mt4))*0.2;

dt4 = 0-(max(Mt3,Mt4))*0.2;

[pt3, pt4, CIt34] = TOST(samplet3, samplet4, dt3,dt4,alpha);

%SRI

[samplet5,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Final - Type', 'J80:J87');

[samplet6,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Final - Type', 'J88:J111');

Mt5 = mean(samplet5);

Mt6 = mean(samplet6);

dt5 = 0+(max(Mt5,Mt6))*0.2;

dt6 = 0-(max(Mt5,Mt6))*0.2;

[pt5, pt6, CIt56] = TOST(samplet5, samplet6, dt5,dt6,alpha);

%completeness analysis

%RSI

[samplec1,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Completeness Analysis', 'A2:A112');

[samplec2,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Completeness Analysis', 'A113:A480');

Mc1 = mean(samplec1);

Mc2 = mean(samplec2);

123

dc1 = 0+(max(Mc1,Mc2))*0.2;

dc2 = 0-(max(Mc1,Mc2))*0.2;

[pc1, pc2, CIc12] = TOST(samplec1, samplec2, dc1,dc2,alpha);

%SIR

[samplec3,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Completeness Analysis', 'B2:B136');

[samplec4,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Completeness Analysis', 'B137:B596');

Mc3 = mean(samplec3);

Mc4 = mean(samplec4);

dc3 = 0+(max(Mc3,Mc4))*0.2;

dc4 = 0-(max(Mc3,Mc4))*0.2;

[pc3, pc4, CIc34] = TOST(samplec3, samplec4, dc3,dc4,alpha);

%SRI

[samplec5,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Completeness Analysis', 'C2:C88');

[samplec6,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Completeness Analysis', 'C89:C367');

Mc5 = mean(samplec5);

Mc6 = mean(samplec6);

dc5 = 0+(max(Mc5,Mc6))*0.2;

dc6 = 0-(max(Mc5,Mc6))*0.2;

[pc5, pc6, CIc56] = TOST(samplec5, samplec6, dc5,dc6,alpha);

%novelty analysis

%RSI

[samplen1,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Final - Novelty', 'ARU2:ARU112');

[samplen2,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Final - Novelty', 'ARU113:ARU480');

Mn1 = mean(samplen1);

Mn2 = mean(samplen2);

dn1 = 0+(max(Mn1,Mn2))*0.2;

dn2 = 0-(max(Mn1,Mn2))*0.2;

[pn1, pn2, CIn12] = TOST(samplen1, samplen2, dn1,dn2,alpha);

%SIR

[samplen3,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Final - Novelty', 'ARV2:ARV136');

[samplen4,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Final - Novelty', 'ARV137:ARV596');

Mn3 = mean(samplen3);

Mn4 = mean(samplen4);

dn3 = 0+(max(Mn3,Mn4))*0.2;

dn4 = 0-(max(Mn3,Mn4))*0.2;

[pn3, pn4, CIn34] = TOST(samplen3, samplen4, dn3,dn4,alpha);

%SRI

[samplen5,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Final - Novelty', 'ARW2:ARW88');

[samplen6,~,~] = xlsread('C:\Users\User\Desktop\School Stuff\Grad

School\Research\Relevant\Experiment\Results\Data Analysis.xlsx','Final - Novelty', 'ARW89:ARW367');

Mn5 = mean(samplen5);

Mn6 = mean(samplen6);

dn5 = 0+(max(Mn5,Mn6))*0.2;

dn6 = 0-(max(Mn5,Mn6))*0.2;

[pn5, pn6, CIn56] = TOST(samplen5, samplen6, dn5,dn6,alpha);

124

TOST function run for each condition:

function [p1, p2, CI] = TOST(sample1, sample2, d1, d2, alpha)

%Two One-Sided Test for Equivalence (as per Roger et al, 1993)

%This function tests if two samples come from distributions with

different

%means, against the alternative hypothesis that the means are the same.

%I.e.,

%H0: the two samples have different means (the difference between the

%means falls outside of the equivalence interval [d1, d2])

%HA: the two samples have equivalent means (the difference between the

%means falls within the equivalence interval [d1, d2])

%The null hypothesis is rejected if max([p1, p2]) < alpha, or if the

%confidence interval falls outside of the equivalence interval

%INPUTS:

%sample1 and sample2 are the two samples to be compared

%d1: the lower limit of the equivalence interval

%d2: the upper limit of the equivalence interval

%alpha: level of significance (default 0.05). Resulting confidence

%interval is a (1-2*alpha)% confidence interval

%OUTPUTS:

%p1: the p value associated with the probability that M1-M2 falls to

the

%left of d1

%p2: the p value associated with the likelihood that M1-M2 falls to

the

%right of d2

%CI: Confidence interval, (1-2*alpha)%. Default is 90%

M1 = mean(sample1); %mean of distribution 1

M2 = mean(sample2); %mean of distribution 2

n1 = length(sample1); n2 = length(sample2); %distribution sample sizes

s1 = std(sample1); s2 = std(sample2); %standard deviations of the

distributions

SEM = ((((n1-1).*s1^2+(n2-1).*s2^2)./(n1+n2-2)).* (1/n1 + 1/n2)

).^(1/2);

t1 = ((M1-M2)-d1)/SEM;

t2 = ((M1-M2)-d2)/SEM;

p1 = 1-tcdf(t1,n1+n2-2);

p2 = tcdf(t2,n1+n2-2);

if isempty(alpha)

alpha = 0.05;

end

zcrit = abs(norminv(alpha,0,1));

CI = [(M1-M2) - zcrit*SEM, (M1-M2) + zcrit*SEM];

125

Algorithm to check if the conditions are met to reject the null hypothesis:

clc

%quantity

%if (dq1 & dq2) >= abs(CIq12(1)) && (dq1 & dq2) <= abs(CIq12(2))

if dq2 >= CIq12(2) && dq1 <= CIq12(1)

fprintf('Quantity RSI the same\n')

else

fprintf('Quantity RSI not the same\n')

end

% if (dq3 & dq4) >= abs(CIq34(1)) && (dq3 & dq4) <= abs(CIq34(2))

if dq4 >= CIq34(2) && dq3 <= CIq34(1)

fprintf('Quantity SIR the same\n')

else

fprintf('Quantity SIR not the same\n')

end

% if (dq5 & dq6) >= abs(CIq56(1)) && (dq5 & dq6) <= abs(CIq56(2))

if dq6 >= CIq56(2) && dq5 <= CIq56(1)

fprintf('Quantity SRI the same\n')

else

fprintf('Quantity SRI not the same\n')

end

% %variety

% if (dv1 & dv2) >= abs(CIv12(1)) && (dv1 & dv2) <= abs(CIv12(2))

if dv1 >= CIv12(2) && dv2 <= CIv12(1)

fprintf('Variety RSI the same\n')

else

fprintf('Variety RSI not the same\n')

end

% if (dv3 & dv4) >= abs(CIv34(1)) && (dv3 & dv4) <= abs(CIv34(2))

if dv3 >= CIv34(2) && dv4 <= CIv34(1)

fprintf('Variety SIR the same\n')

else

fprintf('Variety SIR not the same\n')

end

% if (dv5 & dv6) >= abs(CIv56(1)) && (dv5 & dv6) <= abs(CIv56(2))

if dv5 >= CIv56(2) && dv6 <= CIv56(1)

fprintf('Variety SRI the same\n')

else

fprintf('Variety SRI not the same\n')

end

%typology

% if (dt1 & dt2) >= abs(CIt12(1)) && (dt1 & dt2) <= abs(CIt12(2))

if dt1 >= CIt12(2) && dt2 <= CIt12(1)

fprintf('Typology RSI the same\n')

else

fprintf('Typology RSI not the same\n')

end

% if (dt3 & dt4) >= abs(CIt34(1)) && (dt3 & dt4) <= abs(CIt34(2))

if dt3 >= CIt34(2) && dt4 <= CIt34(1)

fprintf('Typology SIR the same\n')

else

fprintf('Typology SIR not the same\n')

126

end

% if (dt5 & dt6) >= abs(CIt56(1)) && (dt5 & dt6) <= abs(CIt56(2))

if dt5 >= CIt56(2) && dt6 <= CIt56(1)

fprintf('Typology SRI the same\n')

else

fprintf('Typology SRI not the same\n')

end

%completeness

% if (dc1 & dc2) >= abs(CIc12(1)) && (dc1 & dc2) <= abs(CIc12(2))

if dc1 >= CIc12(2) && dc2 <= CIc12(1)

fprintf('Completeness RSI the same\n')

else

fprintf('Completeness RSI not the same\n')

end

% if (dc3 & dc4) >= abs(CIc34(1)) && (dc3 & dc4) <= abs(CIc34(2))

if dc3 >= CIc34(2) && dc4 <= CIc34(1)

fprintf('Completeness SIR the same\n')

else

fprintf('Completeness SIR not the same\n')

end

% if (dc5 & dc6) >= abs(CIc56(1)) && (dc5 & dc6) <= abs(CIc56(2))

if dc5 >= CIc56(2) && dc6 <= CIc56(1)

fprintf('Completeness SRI the same\n')

else

fprintf('Completeness SRI not the same\n')

end

%novelty

% if (dn1 & dn2) >= abs(CIn12(1)) && (dn1 & dn2) <= abs(CIn12(2))

if dn1 >= CIn12(2) && dn2 <= CIn12(1)

fprintf('Novelty RSI the same\n')

else

fprintf('Novelty RSI not the same\n')

end

% if (dn3 & dn4) >= abs(CIn34(1)) && (dn3 & dn4) <= abs(CIn34(2))

if dn3 >= CIn34(2) && dn4 <= CIn34(1)

fprintf('Novelty SIR the same\n')

else

fprintf('Novelty SIR not the same\n')

end

% if (dn5 & dn6) >= abs(CIn56(1)) && (dn5 & dn6) <= abs(CIn56(2))

if dn5 >= CIn56(2) && dn6 <= CIn56(1)

fprintf('Novelty SRI the same\n')

else

fprintf('Novelty SRI not the same\n')

end

127

Appendix C.
Full Requirements List

Full list of requirements used for analysis in this thesis. An indentation of the

requirement indicates that the requirement was split from another requirement. Borders

indicate requirements generated by the same individual.

128

129

130

131

132

133

134

135

136

Appendix D.
Coded Results for Variety Metric

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

Appendix E.
Coded Results for Typology Metric

154

155

156

157

158

159

160

161

Appendix F.
Coded Results for Completeness Metric

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

Appendix G.
Coded Results for Novelty Metric and Coding Algorithm

An algorithm was used to score each requirement checked for the presence of each

key word in all other requirements. The number of times any of the key words were found

in any other requirement were summed for the novelty score. The following algorithm

proceeds through each of these comparisons to provide a score of zero to four for each

requirement compared to all other requirements. An example of the score calculated from

one cell is shown:

=IF(IFERROR(FIND($C3,ARL$2),0)>0,1,0)+IF(IFERROR(FIND($D3,ARL$2),0)>0,1,0)+IF(IFERROR(FIND($E3,

ARL$2),0)>0,1,0)+IF(IFERROR(FIND($F3,ARL$2),0)>0,1,0)

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

	An Exploratory Study of the Influence of Design Process Ordering on the Requirement Generation of Novice Designers
	Recommended Citation

	tmp.1578405604.pdf.5Ed8k

