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ABSTRACT 

Additive manufacturing (AM) is becoming increasingly popular in the automotive, 

aerospace, energy and healthcare industries. Standards for critical defect sizes and porosity 

levels in AM materials have not been established. A critical porosity manufactured defect 

relationship which can qualify components for safe use needs to be developed. Defects 

including a quarter crack, an internal void, and a through-hole were intentionally 

manufactured into SS 316L and AlSi10Mg AM tubular tensile specimens to investigate 

and improve the understanding of the ductility-defect-porosity relationship of AM Metals. 

SS 316L and AlSi10Mg compression specimens were tested from different build heights 

and locations on the build plate to explore the effects of spatial location on the material 

properties. Thin single edge notch tensile fracture toughness specimens with AM notch and 

diamond saw notch were studied to investigate the apparent fracture toughness of thin AM 

specimens. Levels of porosity were introduced by reduced laser power in all the AlSi10Mg 

specimens. This study helps define the relationship between defects, porosity, and ductility 

of AM SS 316L and AlSi10Mg and compares this relationship to conventional metals. 

From the results of this study, AM SS 316L and AM AlSi10Mg follow conventional 

knowledge about stress concentration and ductility for metals.   

There was no significant difference in fracture toughness between the AM and 

diamond saw notch in the fracture toughness specimens. The SS 316L compression 

specimens closer to the build plate had increased material properties while the AlSi10Mg 

compression specimens had similar material properties throughout. The material properties 

of the SS 316L and AlSi10Mg compression specimens varied by the build plate location.  
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 Geometric defects decreased the ductility and strength for all the tubular tensile 

specimens. With a significant increase in porosity, the mechanical behavior started to be 

dominated by the porosity over the intentionally manufactured geometric defects. The 

mechanical behavior of the ductile SS 316L tubular specimens was driven by the reduction 

in the cross-sectional area while the more brittle AlSi10Mg was driven by stress 

concentrations. From this study, AM SS 316L and AlSi10Mg produced by selective laser 

melting had similar mechanical behavior to traditional ductile and brittle metals.   
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1. Chapter 1: Introduction  

 

1.1 Motivation 

 

 Additive manufacturing (AM) is becoming increasingly popular in industries such 

as automotive, medical, energy, and aerospace, because of the flexibility and customization 

over traditional manufacturing methods [1,2]. For the past five years, there has been a 40% 

growth in the sale of AM powdered metal alloys [3]. ASTM has developed standards for 

describing AM in terms of geometry, tolerances, and nomenclature, but there is not a 

defined standard for critical defect sizes and porosity level for any AM material in terms 

of quality control [4–7]. A critical defect-porosity relationship needs to be determined to 

qualify AM metal components for safe use.   

Understanding how the build height and location affect the material properties is 

also important for characterizing AM material for safe use.  The effects of the build plate 

height and location have been studied, but the observations and conclusions vary for each 

study and material [8–10].  In a study on AM SS 304, results concluded components closer 

to the build plate height had finer grain size and increased mechanical properties [10]. In 

another study on AM Inconel 718 components, the build height had no significant effect 

on the material properties[9].  This thesis investigates the effect of build plate height and 

location for SS 316L and AlSi10Mg.     

When making components it is essential that the material properties meet a certain 

standard for design. Knowing the fracture toughness for thin complex AM structural 
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components is critical for designing against catastrophic failure. As the thickness decreases 

the apparent fracture, toughness generally increases and above a certain thickness, the 

apparent fracture toughness is constant [11]. The effect of porosity on the fracture 

toughness of AM parts can provide additional information on the influence of porosity on 

the mechanical behavior for AM metals. The diamond saw and AM notches were studied 

to compare the effects of the manufacturing method to produce the notch.  

 Defects will be present in AM components and it is important to be able to qualify 

the size and shape of defects for safe-use.   The function and safety of components could 

be put at risk if the mechanical properties are lower than required. A critical porosity 

manufactured defect relationship which can qualify components for safe use needs to be 

developed. Once this porosity manufactured defect relationship is established, methods 

such as computed tomography (CT) and acoustic resonance testing can be used to identified 

components safe for use [12,13]. The goal of this thesis project is to move the field closer 

to an understanding of this material-defect-porosity relationship. 

1.2 Research Questions 

 

Additive manufacturing has become increasingly popular in commercial applications.  

Defects will always occur with AM and will be a concern for qualify components for safe-

use.  The focus of the thesis is expanding the understanding of the ductility-defect-porosity 

relationship in AM metals.   

1. What is the relationship between porosity, geometric defects and ductility for AM 

metals?  
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2. What level of the ductility-defect-porosity relationship understanding is needed to 

qualify AM components for safe use?   

3. What knowledge about stress concentrations and ductility for conventional metals 

can also be applied to AM metals?  

4. How does porosity and type of notch affect the fracture toughness of single edge 

notch AlSi10Mg and SS 316L fracture toughness specimens?  

5. How does spatial location (height, build plate location) affect the material 

properties of AM SS 316L and AM AlSi10Mg in compression?  

1.3 Background  

Additive manufacturing is fundamentally different from traditional, subtractive 

manufacturing methods, as the material is added layer by layer to build the component. 

Complex geometries and custom components are possible with AM that would have been 

cost-prohibitive or impossible with traditional manufacturing methods. AM can produce a 

near-net shape compared to traditional manufacturing methods that might use multiple 

machines and tooling [1].  Using AM can drastically reduce the tooling cost and lead time 

to make low production and custom component [1,14]. There is a variety of AM process 

and they each have unique benefits and advantages.  

Most metal AM processes fall into three categories: powder bed systems, powder 

feed systems, and wire feed systems [15,16]. In a powder bed system, metal powder is 

spread out over the bed and a laser melts the powder layer by layer [15–17]. In a powder 

feed system, metal powder is fed throw a nozzle, and the powder is melted by a laser on to 

the component and built layer by layer [15,16]. In a wire feed system, the metal wire is fed 
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into the laser beam or energy source to metal the wire and the component is built up layer 

by layer [16].   

One type of powder bed metal AM, and the process used in this study is selective 

laser melting (SLM). SLM is a popular AM method for producing aluminum and stainless 

steel alloys [18] [19]. SLM is a powder bed additive manufacturing process that uses a 

high-intensity laser to melt powder metal together layer by layer to build a component 

[17,20,21]. This study focused on ductile SS 316L, moderate-ductility heat-treated 

AlSi10Mg, and brittle as-built AlSi10Mg tubular tensile specimen produced with SLM to 

compare the material behavior of ductile and brittle AM materials with intentionally 

manufactured defects 

Geometric defects can occur internally in AM materials because of the layer by 

layer manufacturing process. Some common defects in AM components include gas 

bubbles, voids from lack of fusion, keyhole porosity, surface skin defects such as roughness 

and cracks, and layer separation [22,23]. Voids are individual defects formed throughout 

the AM material and reduce the density and can lead to premature failure. Porosity is a  

term for the decrease in the overall relative density of the material from the formation of 

voids which comes either lack of fusion induced, gas-induced or keyhole induced [23].  

Porosity can be powder-induced, process-induced, or an artifact of solidification  [20]. To 

complicate the matter, there are multiple variables at play during the building process 

creating a complex process-property relationship that must be optimized for the specific 

material and individual build. Studies on optimizing the processing parameters, including 

laser power, scan speed, and hatch distance, have shown a decrease in overall porosity and 
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material variability [24–26]. Layer separation or delamination is the separation of adjacent 

layers, because of incomplete melting between layers [20]. Cracking can occur in AM from 

unmelted particles between layers. Thermal gradients can also cause cracks to form [22]. 

Nevertheless, because of the complexity in optimizing parameters, it is expected that 

internal porosity in these materials will continue to be a present feature well into the 

evolution of this technology.   

 Voids can be caused by a combination of different build parameters,  and there are 

three types of mechanisms that have been identified by which void defects are produced 

[23]. First, at very high power density, deposition, or melting, AM may be performed in 

keyhole mode. With poor control, the keyhole can be unstable, collapse, and entrap vapor. 

If the applied power, scan speed, and beam size are above a certain value, spatter injection 

may occur in a process called keyhole formation [20]. In keyhole formation, the power 

density is high enough to cause evaporation of the metal and the formation of plasma. Metal 

evaporation causes the development of a vapor cavity. The collapse of the cavity can leave 

a void in the wake of the laser beam [27]. Second, gas can be entrapped inside the powder 

particles during the powder atomization process. The entrapped gas cause gas pores. Gas 

pores may also be caused by the entrapment of shielding gas or alloy vapors inside the melt 

pool.  Third, lack of fusion defects can be caused by inadequate penetration of the molten 

pool into either the substrate or into the previous layer [23]. When there is not enough laser 

power to melt the powder lack of fusion can occur which results in porosity and unmelted 

particles.  Lack of fusion regions may be identifiable by un-melted powder particles in or 
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near the pore [20]. Each of these types of voids can be caused by incorrect laser power and 

contamination in the material.    

AM can be used with numerous powder metals alloys including stainless steel, 

aluminum alloys, and titanium alloys [25,28].  It is critical to know how each type of defect 

affects different materials. Typically, brittle metals are generally more sensitive to stress 

concentrations and have rapid crack propagation compared to ductile metals [11].   The 

effects of defects on powder metal AM materials may not be consistent across all AM 

metals and may not align with ductile and brittle wrought metals.  It is important to 

understand how defects affect the material behavior of AM materials.  Identifying the 

critical defect size and type of defect is vital for quality control and reliability prediction 

of AM components.  By knowing the critical defect type and size for each AM material, 

techniques can be taken to inspect for these defects. Geometric defects in AM can be stress 

concentrations that could be an initial site for crack growth and lead to failure.  

In this study, AM metal specimens were studied to investigate the ductility-defect-

porosity relationship, the effect of spatial location on the build plate, and fracture toughness 

of thin AM specimen.  Geometric defects (internal voids, through-holes, and quarter 

cracks) were intentionally manufactured in AlSi10Mg and SS316L tubular tensile 

specimens using SLM to observe the effect of porosity, geometric defects, and ductility on 

the mechanical behavior. Fracture toughness specimens were studied to evaluate effective 

fracture toughness on thin AM specimens with AM notches and diamond saw notches at 

different porosity levels. Compression specimens were studied to observe the impact the 

distance from the build plate and location on the build had on the material properties.  There 
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have been studies on the effect of build plate location on the material properties of powder 

bed AM materials [29].  Smaller grain sizes have been observed closer to the build plate, 

resulting in better material properties compared to further away from the build plate for SS 

304 [30,31]. 

The two materials, SS 316L and AlSi10Mg, were chosen based on their expected 

mechanical behavior ranging from relatively brittle in the case of the aluminum material to 

relatively ductile in the case of the stainless steel. Furthermore, the effect of relative 

material porosity induced from laser power levels was varied at three levels in the 

AlSi10Mg specimens. It is known that bulk porosity will also affect the overall ductility of 

a material [32,33], yet it is unclear how the geometry of a key defect will interact will the 

bulk porosity. This study helps define the relationship between defects, porosity, and 

ductility of AM SS316L and AlSi10Mg and compares this relationship to conventional 

metals.    

 

2. Chapter 2: Materials 

  

2.1 Materials and Characterization 

AM SS 316L and AM AlSi10Mg were the two materials studied to represent a 

ductile material and a brittle material.  SS 316L and AlSi10Mg are two common metals 

used for direct metal laser sintering (DMLS) [34].  The SS 316L specimens were produced 

on a single build plate in a Renshaw AM 400 operating at a nominal laser power of 200W 

and a hatch distance of 0.06 mm.  Three different build plates of AlSi10Mg were produced 
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on an EOS M290 with a laser speed of 1300 mm/s and a hatch distance of 0.19 mm, each 

with a different laser power output.  

AlSi10Mg build plates A, B, and C were manufactured at different laser power 

levels. Build plate A was at 370 W; the recommended operating parameter from the 

manufacturer. Build plate B and build plate C reduced the laser power to 227.5W (75% 

reduction) and 185W (50% reduction) of the first build, respectively. The goal of reducing 

laser output was to observe the effect this would have on the overall porosity; and thus, 

criticality of additional intentionally introduced geometric flaws.  The relative change in 

laser power induced porosity can be seen in the fracture surface of dog bone specimens in 

Figure 1.  The relative density in Table 1 was calculated using the Archimedes method 

with water and a basket support arrangement to follow ASTM standard B311[35]. The 

density measurement of each build plate was an average of four square column specimens 

that were printed beside the tubular tensile specimens. The middle section of the 

compression specimen which had a similar height to the defect in the tubular tensile 

specimens was used for the density measurements. The density of 2.67 g/cm3 was used for 

the fully dense AlSi10Mg in the calculation for the relative density [36], while the SS316L 

assumed a full density of 7.99 g/cm3 [37]. The density measurement for build plate C was 

outside the two percent porosity as defined in the ASTM standard B311 [35].   

It is common to heat treat AlSi10Mg to increase ductility with a trade-off of 

strength [36,38]. As a worst-case scenario of limited ductility, some engineered tubular 

specimens were not heat-treated in the present study.  The remaining tubular AlSi10Mg 

specimens were heat-treated to provide a material that was used in real-world applications 
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and had a ductility between SS 316L and the as-built AlSi10Mg.   Heat treatment was 

performed on a series of characterization coupons on the build plates to obtain baseline 

material properties between the heat-treated and as-received states. The heat treatment 

followed a common stress-relief annealing process of placing the samples at 300°C for 2 

hours followed with a static air quench [39,40].       

 

 

Figure 1: Images of the fracture surface of dog bone specimens from AlSi10Mg build plate 

A, build plate B, and build plate C show the different levels of porosity (dark spots) and 

build quality. 

Table 1: Average relative density measurement (ASTM B311) of AlSi10Mg with build 

plate A laser power (370W), build plate B laser power (277.5W) and build plate C laser 

power (185W) as well as the 316 L comparator build.  

 

Baseline mechanical testing was also performed by Sandia National Laboratories 

on a variety of coupons from the build plates to fully characterize the mechanical behavior 

before testing the engineered tubular specimens with intentional geometric defects. 

Specimen  Average Relative Density  

Build Plate A  AlSi10Mg 99.5 % 

Build Plate B  AlSi10Mg  99.3% 

Build Plate C  AlSi10Mg  94.9 % 

316L Stainless Steel 99.2% 
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Samples had a nominal gauge cross-section of 6.25 x 6.25 mm2 and a gauge length of 32.5 

mm [39].  Samples were tested in the as-printed condition except for a few heat-treated 

AlSi10Mg samples from both build plates for comparators. Monotonic tensile tests were 

performed until failure at strain rates of 10-3 mm/mm/s and used a virtual extensometer via 

digital image correlation (DIC) to obtain strain and a load cell to obtain force. The results 

of these tests can be found in Table 2. The SS 316L material shows the highest strength 

and ductility, as expected. The AlSi10Mg was both affected by thermal processing history 

and laser power. The significant increase in lack of fusion porosity with build plate C had 

a detrimental effect on the mechanical properties; the build plate C displayed a 6.5% lower 

yield strength, 31.2% lower ultimate tensile strength, and 67.8% lower ductility compared 

to build plate A for the as-received case. Similar trends in the reduction of properties were 

seen between the build plate A and build plate C post-heat treatment as well. The heat 

treatment process however drastically altered the fundamental behavior of the AlSi10Mg 

transitioning it from a brittle to a semi-ductile metal with a significant increase in ductility 

of over 400% at the cost of a reduction in the yield and ultimate tensile strengths. For 

example, heat-treatment of the recommended laser power specimens decreased the yield 

strength and ultimate tensile strength by 47.7% and 35.5%, respectively.  This transition of 

material properties with heat treatment is well documented in the literature[41–46].  
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Table 2: Material properties from dog bone tensile specimens of SS 316lL, heat-treated 

and as-built AlSi10Mg build plate A, B, and C.  Heat treatment was two hours at 300°C. 

AlSi10Mg 
Yield Strength 

(MPa) 
Ultimate Tensile 

Strength (MPa) 
Ductility (%)  

SS 316L 511 ± 4 620 ± 4 50.57 ± 0.66 

Build Plate A  260 ± 2 380 ± 12 2.95 ± 0.28 

Build Plate B  279 ± 2 392 ± 3 2.91 ± 0.08 

Build Plate C  243 ± 1 261 ± 4 0.95 ± 0.07 

Build Plate A  
Heat Treated 

136 ± 2 245 ± 2 12.66 ± 0.21 

Build Plate B  
Heat Treated  

151 ± 0 250 ± 1 13.78 ± 0.41 

Build Plate C  
Heat Treated  

130 ± 1 194 ± 1 4.08 ± 0.22 

 

 

The build plates of SS 316L and AlSi10Mg are shown in Figure 2. The tubular 

tensile specimens are labeled with the defect type (pristine, P; internal void, IV; quarter 

crack, QC; through hole, TH) The location of the compression specimen is circled in red 

and the fracture specimen are boxed in red. The AM notch in the fracture specimens is 

printed on the top.  



12 
 

 

Figure 2: A) AM SS316L build plate layout B) AlSi10Mg build plate layout with Pristine 

(P), Internal Void (IV), Through Hole (TH) and Quarter Crack (QC) defects in tubular 

tensile specimens, Compression specimens are circled in red  

 

2.2 Specimens  

2.2.1 Tapered Tubular Specimens  

Tapered tubular specimens were used in this study to represent the geometry of an 

engineering component. The tapered tubular tensile specimens were intentionally 

manufactured with defects (quarter cracks, internal voids, through holes) located in the 

middle at the thinnest section of the sidewall shown in Figure 3 to demonstrate the effect 

of a critical geometric flaw in the worst possible scenario. These defects represent potential 

manufacturing defects (internal voids, quarter cracks) and stress concentrations that may 

be required for fastening (through hole). 
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Figure 3: Tubular Tensile Specimens with four types of defects: pristine (no intentional 

flaw), quarter crack, 0.5mm internal void, 2mm through hole  (Image provided by Sandia 

National Laboratories) 

 

The dimensions of the tubular specimens are shown in Figure 3. Components were 

printed vertically with the tensile axis aligning with the build direction. These thin-walled 

exemplary components were designed to mimic typical components being built by AM. 

The internal void and through-hole defects were printed in a diamond shape (see Figure 3) 

to avoid steep overhangs thus support material was not required. As a consequence, the 

internal void and through-hole defects had significantly sharper radii for stress 

concentration than if they were sphered. 
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2.2.2 Fracture Toughness Specimens  

 

Figure 4: Fracture toughness specimen dimensions (inches)  

AM SS 316L and AM AlSi10Mg fracture toughness specimens were manufactured 

to dimension in Figure 4. These fracture toughness specimens were not designed to ASTM 

standard E399, because of the space on the build plate [47]. The specimens did not meet 

the standard for the straight-through wide notch because the crack tip angle was greater 

than 90°. The specimen also did not meet the standard for a straight-through narrow notch, 

because the crack width was too large relative to the specimen width. The fracture 

toughness testing procedure closely followed the ASTM standard E399 [47]. The two notch 

types included an AM notch and a diamond saw notch. Specimens were notched to 

approximately 40% of the width using a diamond saw. Pre-cracking was performed on 

some as the specimen to achieve an a/W (notch plus crack length/specimen width) of 0.45 

to 0.55 as stated in the ASTM standard E399 [47]. Half of then AlSi10Mg fracture 
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toughness specimens were heat treated. The reported fracture toughness values are not 

standard values for the AM 316 SS and AlSi10Mg but are still useful in studying as a 

comparison of how notch types and how heat treatment and porosity of AlSi10Mg affect 

the fracture behavior by comparing their effective fracture toughness values to each other.  

2.2.3 Compression Specimens  

AM SS 316L  and AM AlSi10Mg bars with a cross-section of 10 mm by 10 mm 

with an approximate length of 100 mm were manufactured. Each of the SS 316L bars and 

AlSi10Mg bars were machined into five 20 mm long sections for the desired length ratio 

of 2:1.  The build plate location of the bars is circled in red in Figure 2.  For both the 

AlSi10Mg and SS 316l compression specimens, the section closed to the build plate was 

labeled “1” and the furthest section from the build plate was labeled “5”.   The specimens 

were machined and leveled to 0.0005’’ with the accordance with ASTM standard E9-9 

[48].  

3. Chapter 3. Experimental Methods 

 

3.1 Tubular Tensile Specimens  

Monotonic tensile tests were performed on an MTS Landmark 370 hydraulic load 

frame with a 100 kN load cell. Experiments were performed in displacement control at a 

rate of 50 μm/s for SS 316L and 20 μm/s for AlSi10Mg until failure.  Different strain rates 

were used to ensure ample data points were collected because SS 316L was more ductile 

than AlSi10Mg. Five SS 316L specimens were tested for each defect type.  Three as-built 

and one heat-treated AlSi10Mg specimens were tested for each defect type and build plate.  
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Clevis grip adaptors with 12.7 mm diameter pins were used to hold the specimen due to 

the specimen geometry.  

Figure 5: Tubular tensile specimen experiment setup with MTS Landmark load Frame and 

digital image correlation 

The elongation and strain fields were measured using 2D DIC. VIC-Gauge 2D 

software by Correlated Solutions with a virtual extensometer was used to collect the images 

for DIC. The two ends of the virtual extensometer were placed at the end of the tapered 

section of the specimen. The virtual extensometer gauge length ranged from 890 to 948 

pixels and a pixel area subset of 121 pixels at the ends.  A point grey model GS3 camera 

was used to capture images at 750 ms intervals. The camera was equipped with a Schneider 

Kreuznach Xenoplan lens model 1001960.  The images taken with DIC had a resolution of 

2448 x 2048 pixels. The surface roughness of the tubular specimen provided enough 

contrast for DIC without the need for an applied speckle pattern.  Two bright LED lights 

were used to provide adequate lighting for DIC shown in  
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Figure 5.  

Fractography was performed at Clemson University’s Advanced Materials 

Research Laboratory with a Hitachi SU 6600 SEM.  Images were taken with accelerating 

voltages of 20 kV. The fracture surface was examined on both SS 316L and AlSi10Mg 

tubular tensile specimens for each type of defect and build plate. 

3.2 Fracture Toughness Testing 

Fracture toughness testing was performed using a MTS Landmark load frame. 

Pinhole grips were inserted to the hydric grips on the load frame. The specimens were 

loaded into the grips by lining up the specimen with the top pinhole grips and inserted a 

pin. The actuator was moved up to align the bottom pinhole grip with the specimen. After 

both pins were inserted into place, the load frame was set to load control of 0 N to make 

sure there was no accidental loading on the specimen when tightening the plate on the 

pinhole grips.  Plates on the pinhole grips were used to friction clamp the fracture specimen. 

In order to measure the fracture toughness, monotonic tensile experiments were 

performed for each test with a known crack length. This crack length was measured by 

taking the length of the crack in pixels and using the resolution of the point grey model 

GS3 camera with a Navistar lens to obtain the crack length in meters. The initial notch and 

crack were additionally measured after fracture using a microscope. The monotonic tensile 

tests were performed in displacement control at a rate of 60 μm/s, or a strain rate of 

approximately 10-3 s-1. An initial monotonic tensile test was run to establish a baseline for 

the strength of the AM notch specimens. In order to test both the effect of an AM notch on 
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the fracture toughness compared to a diamond saw notch, and the effect of pre-cracking on 

the fracture toughness compared to initial notches without pre-cracking, four types of tests 

were performed: diamond saw notch (DS), diamond saw notch with pre-crack grown, AM 

notch, and AM notch with pre-crack grown. Diamond saw notches were cut into the middle 

virgin AM SS 316L and AlSi10Mg specimens (same locations as AM notch specimens) to 

a length of approximately 40% of the width of the specimen. A monotonic test on a 

diamond saw notch specimen was first performed. This established both an expected value 

for fracture toughness of notched specimens and a baseline for the expected maximum load 

that the notched specimens could handle. The SS316L fracture toughness testing was 

performed by Joby Bartanus [49]. The resulting maximum stress was approximately 700 

MPa for SS 316L and 190 MPa for AlSi10Mg.  Using this maximum load, a value of 350 

MPa for SS316L and 95 Mpa for AlSi10Mg (50% expected max load) was determined to 

be used as the max cyclic loading of specimens. Pre-cracking of the specimen was 

performed by cyclically loaded at an R-value of 0.1 between 35 MPa and 350 MPa for the 

SS316L and 9.5 MPa and 95 MPa or AlSi10Mg to ensure incidental compressive loading 

was avoided. This was done for the diamond saw and AM notch pre-cracked specimens 

while viewing the end of the notch through a camera until the crack tip grew and the total 

crack length reached between 0.45W and 0.55W, according to ASTM standard.  
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3.3 Compression Testing 

Compression tests were performed using a MTS Land Mark load frame. Platen 

grips were manufactured and inserted into the hydraulic collets for the use of the 

compression tests with the dimensions (inches) shown in Figure 6. 

Figure 6: Compression platen tooling dimensions (inches) used in compression testing 

The faces of the grips were leveled to 0.0005’’ as specified in ASTM standard E9-09 

[48].  Each specimen was placed in the center of the bottom grip with the side of the 

specimen parallel to the camera face. The actuator was slowly raised until just touching the 

top grip. A digital extensometer was setup using Vic-Guage-2D software to collect strains 

throughout the experiments. Each compression experiment was performed in displacement 
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control at 20 μm/s to a compressive strain of approximately 10%.  A point grey model GS3 

camera was used to capture images at 500 ms intervals. The images taken with DIC had a 

resolution of 1900 x 1200 pixels. The rough surface finish from the additive manufacturing 

process on the tubular specimen provided enough contrast for DIC without the need for an 

applied speckle pattern.  The testing of the 4 top and 4 bottom sections of the SS 316L 

compression specimens was performed by Jody Bartanus [49]. Two bright LED lights were 

used to provide adequate lighting for DIC. 

4. Chapter 4: Results

4.1 Tubular Tensile Specimen Results  

4.1.1 SS 316L Tubular Tensile Specimens Results 

Figure 7: Force-displacement results for SS 316L tubular specimen with intentionally 

manufactured defects in the sidewall.  
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Force/displacement results of tensile tests on all SS 316L tubular components are 

displayed in Figure 7. The flawed specimens exhibited ductility and softening after peak 

load. The pristine specimen exhibited less softening before failure. Tubular specimens with 

internal voids had similar strength to the pristine specimens with an average maximum 

force of 43.47 ± 0.15 kN compared to 42.90 ± 0.42 kN. The internal void in the SS 316L 

specimens decreased the overall ductility of the component, resulting in a reduction of 6% 

average elongation compared to the pristine counterparts, reducing from 5.01 ± 0.22 mm 

to 4.71 ± 0.27 mm.    Quarter crack specimens were the weakest with an average maximum 

force of 31.12 ± 0.22 kN followed by the through-hole specimens with an average 

maximum force of 38.01 ± 0.71 kN. During testing, the quarter crack specimens had an 

audible ‘pop’ when the quarter crack opening up and a drop in force was measured.   The 

overall decrease in elongation to failure of samples containing these two flaws were 

significant compared to the pristine case and ranged between 3 to 4 mm. Overall, 

intentionally manufactured defects decreased the strength and ductility in AM SS 316L 

tubular tensile specimens.  The reduced strength and ductility correlated to a reduction in 

cross-sectional area from each defect starting with pristine, internal void, through hole and 

quarter crack which was the weakest and least ductile.  
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4.1.2 AlSi10Mg Tubular Tensile Specimen Results 

Figure 8: AlSi10Mg force-displacement results for each build plate.  A) As-built build plate 

A AlSi10MG B) As-built build plate B AlSi10Mg C) As-built build plate C AlSi10Mg D) 

Heat-treated build plate A AlSi10Mg E) Heat-treated build plate B AlSi10Mg F) Heat-

treated build plate C AlSi10Mg  
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The force and displacement results for each type of defect and laser power are 

shown in Figure 8 for both as-built and heat-treated specimens.  The pristine as-built 

AlSi10Mg had an average maximum force and elongation of 22.27 ± 0.04 kN and 0.586 ± 

0.01mm for build plate A and 13.40 ± 0.34 kN and 0.183 ± 0.02 mm for build plate C. The 

results showed the addition of the internal void defect only decreased the average 

maximum force and elongation by 23% and 54% for build plate A, 19 % and 56% for build 

plate B, and  2.6% and 4.4% for build plate C  respectively.  The through hole defect in as-

built AlSi10Mg decreased the average maximum force and elongation by 43% and 77% 

for build plate A, 41% and 73% for build plate B, and 27% and 46% for build plate C. The 

addition of a quarter crack in as-built AlSi10Mg decreased the average maximum force 

and elongation by 33% and 62% for build plate A,  22% and 57% for build plate A and 

37% and 49% for build plate C.   Results of the average maximum force and elongation to 

failure for the test matrix are found in Tables 3 and 4, respectively. From comparing SS 

316L and AlSi10Mg in Table 3 and  
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Table 4, the as-built AlSi10Mg specimens were more negatively affected by defects 

compared to the SS 316L specimens. 

Heat-treatment of AlSi10Mg pristine specimens decreased the average maximum 

force and increased the average elongation by 42% and 125% for build plate A, 31% and 

103 % for build plate B, and 23% and 253% for build plate C, respectively. The addition 

of an internal void in the heat-treated AlSi10Mg changed the maximum force and the 

elongation by +12% and -28% for build plate A and -2.3% and +18 % for build plate B, 

and +3.9% and -33% for build plate C. The through hole in the heat-treated AlSi10Mg 

changed the maximum force and the elongation by -19% and +2.2% for build plate A, -

33% and +17% for build plate B, and by -33% and +24% for build plate C. The quarter 

crack in the heat-treated AlSi10Mg changed the maximum force and the elongation by -

10% and -18% for build plate A, -10% and +4% for build plate B, and by -41% and +10% 

for build plate C. During the quarter crack specimen experiments, the crack opened with 

an audible ‘pop’ and a drop in force was observed, similar to the SS 316L quarter crack 

specimens. 

Table 3: Average maximum force of AlSi10Mg and SS 316L tubular tensile specimens 

with intentionally manufactured defects in the sidewall   

Specimen Average Maximum Force (kN) 

Pristine Internal Void Through Hole Quarter Crack 

AlSI10Mg Build 

Plate A  

22.27 ±0.04 17.10 ± 0.65 12.74 ± 0.63 14.93 ± 1.54 

AlSI10Mg Build 

Plate B  

21.75 ± 0.43 17.61 ± 0.35 12.92 ± 0.85 16.89 ± 0.58 

AlSI10Mg Build 

Plate C 

13.40 ± 0.34 13.10 ± 0.17 9.78 ± 1.83 8.36 ± 1.40 
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SS 316L 42.90 ±0.43 43.47 ± 0.15 38.01 ± 0.71 31.12 ± 0.22 

Table 4: Average elongation of AlSi10Mg and SS 316L tubular tensile specimens with 

intentionally manufactured defects in the sidewall 

Specimen Average Elongation (mm) 

Pristine Internal Void Through Hole Quarter 

Crack 

AlSI10Mg Build 

Plate A  

0.586 ± 

0.01 

0.278 ± 0.01 0.136 ±  0.009 0.220 ± 

0.024 

AlSi10Mg Build 

Plate B  

0.474± 0.06 0.209 ± 0.02 0.127 ± 0.01 0.201 ± 0.03 

AlSI10Mg Build 

Plate C 

0.183 ± 

0.02 

0.175 ± 0.02 0.099 ± 0.004 0.093 ± 

0.022 

SS 316L 5.01 ± 0.22 4.71 ± 0.27 3.76 ± 0.27 3.68 ± 0.22 

Table 5: SS 316L and AlSi10Mg recommended power specimen defects types comparison 

of cross-sectional area to peak load and displacement 

GeometricFeatures Area (%) Peak Load (%) Max Disp (%) 

SS 316L AlSi10Mg SS 316L AlSi10Mg 

Pristine 100 100 100 100 100 
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Internal Void 99.6 100 77 94 47 

Through Hole 96.1 89 56 75 23 

Quarter Crack 75 73 67 73 38 

Shown in Table 5, SS 316L mechanical behavior was driven by a reduction in the cross-

sectional area. The quarter crack SS 316L peak load was 73% of the pristine load with 75% 

of the area.  The through-hole acted as a stress concentration because of the sharp corners 

and there the decrease in peak load for both SS 316L and AlSi10Mg was greater than the 

reduction in cross-sectional area. AlSi10Mg is driven more by the stress concentration 

compared to the AlSi10Mg which follows close to the reduction in cross-sectional area.  

The maximum displacement for both materials is impacted more by the reduction in the 

cross-sectional area compared to the peak load.: Average maximum force of AlSi10Mg and SS 

316L tubular tensile specimens  

4.1.3 Tubular Tensile Specimens Fractography Results  



27 

Figure 9: Fractography images of the fracture surface of the as-built AlSi10Mg pristine 

specimens build plate A, B, and C  

In Figure 9A, there was a brittle fracture in the build plate A AlSi10Mg and a few 

identified internal voids and unmelted particles in the interior of the fracture surface. In 

build plate C in Figure 9C, the fracture surface was comprised of voids and unmelted 

particles.  The increase of voids and unmelted particles was seen in all build plate C 

AlSi10Mg tubular tensile specimens. Reducing the manufacturing laser power resulted in 

an increase in porosity with a relative density of 94.9% and a decrease in average maximum 

force by 40% of the recommended power pristine specimens.  The increase in porosity in 

the reduced power negatively affected the strength and ductility of the AlSi10Mg 

specimens. Build plate B had a relative density of 99.2% and has similar strength to build 

plate A. 
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Figure 10: Fractography images of the fracture surface at manufactured defects in SS 316L 

and build plate A AlSi10Mg specimens A) SS 316L internal void highlighted in the red 

triangle.  B) SS 316 through hole C) SS 316L quarter crack transition line between fracture 

surface and manufactured quarter crack defect D) AlSi10Mg internal void highlighted in 

the red triangle  E) AlSi10Mg through hole  F) AlSi10Mg quarter crack defect surface G) 

Heat-treated AlSi10Mg internal void highlighted in the red triangle H) Heat-treated 

AlSi10Mg through hole I) Heat-treated AlSi10Mg quarter crack transition area shown 

between the red lines   
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Figure 11: Quarter crack defect surface of SS 316L and AlSi10Mg. Bridging on the quarter 

crack defects surface is circled in red. 

From the fractography images are shown in Figure 10 A-C ductile fracture was 

observed in the SS 316L specimen evident by the dimpled fracture surface.  Indicating 

brittle fracture sharp ridges on the fracture surface in the AlSi10Mg specimens’ 

fractography was observed.   Shown in Figure 10 A and Figure 10 D, the fractography 

images showed the triangle-shaped internal void on the fracture surface of the SS 316L and 

AlSi10Mg specimens. The internal void and through hole defects were diamond-shaped to 

avoid using support material. The diamond-shaped defects had sharp corners that have a 

higher stress concentration factor than a spherical void. In Figure 10 C, the quarter crack 

SS 316L specimen, there was a clear transition line between the fractured surface and 

manufactured quarter crack, indicated by a red line on the micrograph. There is evidence 

of bridging in Figure 11 A from fracture surfaces on areas of the SS 316L quarter crack 
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defect surface, and this aligns with the test results.  Individual layers from the additive 

manufacturing process were seen at the fracture surface of the internal void and through 

hole defects, in Figure 10 A, B, D, E, G, H.  Unmelted particles were seen on all of the 

defect fracture surfaces in both SS 316L and AlSi10Mg. The image shown in Figure 10 F 

specifically showed the unmelted particles on the quarter crack defect, and there is 

evidence of bridging in Figure 11 B from fracture surfaces on areas of the AlSi10Mg 

quarter crack defect surface.  

Figure 12: SEM secondary electron micrographs of a quarter crack sample for the (a,b) 

stainless steel and (c,d) AlSi10Mg build plate A The white line in the left column 

approximates the end of the printed flaw. Insets in the printed flaw region are highlighted 

in the boxes of the right column which are shown in detail in the left column.  (Images were 

taken by Sandia National Laboratories) 
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The introduction of the quarter crack was effective in the SS 316L with minor bridging 

seen in the flat regions in Figure 12A and B. Shown in Figure 12C and D, the quarter crack 

in the recommended power AlSi10Mg had a significant amount of bridging between the 

layers. Shown in Figure 12D, AlSi10Mg appeared to have an increase in gas bubbles on 

the surface compared to the SS 316L. Gas bubbles are usually formed internally below the 

surface when there is a high solidification rate and there is not enough time for the gas 

bubble to rise and escape from the surface [50,51]. The gas bubbles on the quarter crack 

defect surface indicate the gas could not escape and the surface was bridged between layers. 

The increases in the bridging of the AlSi10Mg quarter crack could help explain why the 

quarter crack specimens were stronger than the through hole specimens.    

The bridging in the AlSi10Mg quarter crack became more apparent with the 

increased ductility from the heat treatment. During testing of the heat-treated AlSi10Mg 

and SS 316L, there was a decrease in force and noticeable noise from the quarter crack 

opening. The results of the as-built AlSi10Mg did not see a drop in force and the quarter 

crack did not open before failure. There was bridging in all of the quarter crack specimens. 

Images in Figure 12 shown there was more bridging on the quarter crack defect surface of 

AlSi10Mg compared to SS 316L. The difference in bridging effects in AlSi10Mg and SS 

316L was due to different material properties and the amount of bridging from the 

manufacturing.   
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Figure 13: Fractography images of AlSi10Mg build plate C comparing internal void and 

pristine specimens.  

The internal void in Figure 13 A was surrounded by unmelted particles and voids. The 

fracture surface in Figure 13 B of the pristine build plate C showed a fracture surface 

abundant with voids and unmelted particles similar to the internal void defects in the 

reduced power.  The fractography in Figure 13 highlights that increased porosity in AM 

materials can start to dominate the material structure over other types of defects. The 

increased porosity in build plate C AlSi10Mg decreased the impact of the interval void 

defect. Shown in Table 3 and  
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Table 4, the introduction of geometric defects in the build plate C AlSi10Mg build plate 

had a smaller percentage decrease in average maximum force and elongation compared to 

the recommended power AlSi10Mg build plate. 

4.2 Fracture Toughness Results 

Table 6: AM SS316L Fracture Toughness Results (Results from Jody Bartanus [49]) 

AM SS316L Fracture Toughness Tests 

Experiment # of Specimens K
IC

 (MPa-m
1/2

) 

Diamond Saw Notch, No Pre-

cracking  

1 85.80 

Diamond Saw Notch, Pre-

cracking  

3 108.73-110.83 

AM Notch, No Pre Cracking 1 79.61 

AM Notch Pre-cracking 1 126.12 

The fracture toughness was calculated using a stress intensity factor for a single 

edge notch in tension from the equations below [52]. 



34 

( ) ,  I I

a
K a F

W
       , where a is total notch and crack length, W is width 

2 3 4( ) 1.12 0.231 10.55 21.72 30.39IF         

Shown in Table 6 pre-cracking the SS 316L resulted in higher fracture toughness. 

AM and diamond saw notches for SS 316L had similar fracture toughness.   

Table 7: AM AlSi10Mg Fracture Toughness Results Heat Treated 

AM AlSi10Mg Fracture Toughness Heat Treated

Build Plate Notch 

Type 

# of 

Specimens 
K

IC
 (MPa-m

1/2

) 

Build Plate A AM 1 31.75 

Build Plate A DS 2 26.21 - 26.68 

Build Plate A, no pre-cracking DS 1 23.41 

Build Plate B AM 1 30.26 

Build Plate B, no pre-cracking AM 1 28.21 

Build Plate B DS 2 27.49 - 29.85 

Build Plate C AM 2 22.80-23.23 

Build Plate C DS 2 22.01-23.47 

The diamond saw notch and AM notch for heat-treated AlSi10Mg shown in Table 

7 had similar fracture toughness when comparing each build plate separately.  The 
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increased porosity with AlSi10Mg build plate C had a negative impact on the fracture 

toughness. AlSi10Mg build plate A and B for both diamond saw and AM notch had similar 

fracture toughness.   

Table 8: AM AlSi10Mg Fracture Toughness As-Built Results 

AM AlSi10Mg Fracture Toughness As-Built 

Build Plate Notch Type # of 

Specimens 
K

IC
 (MPa-m

1/2

) 

Build Plate A AM 2 27.93 - 30.13 

Build Plate A DS 2 29.58 - 30.94 

Build Plate B AM 2 31.01 - 31.72 

Build Plate B DS 2 28.25 – 32.68 

Build Plate C AM 2 21.11 - 22.83 

Build Plate C DS 2 20.37 - 22.26 

The heat treatment of AlSi10Mg appeared to not have a significant impact on the 

fracture toughness for all three build plates. For both the heat-treated and as-built 

AlSi10Mg fracture specimen the AM notch and DS notch had similar results. Shown in 

Table 7 and Table 8 there was a decrease in the fracture toughness from build plate A to 
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build plate C in both the as-built and heat-treated.  With an increase in porosity and the 

fracture toughness decreased.  

4.3 Compression Results  

Table 9: AM SS 316L Compression Results (section 5 is furthest from the build plate and 

section 1 is the closest to the build plate.)  

AM SS 316L Compressive Testing 

Compressive Modulus (GPa) Compressive Yield Stress (MPa) 

Specimen 5 (Top) 4 3 2 1 (Bot) 5 (Top) 4 3 2 1 (Bot) 

R1 122 153* 153 144* 132 440 475* 492 488* 462 

B2 131 134 162 161 145 441 469 504 508 524 

T 121 121 156 156 156 424 428 502 516 506 

L1 145 143 163 157 162 465 488 522 504 520 

*Grips slipped during testing

The AM SS 316L compression results in Table 9 show the compressive modulus 

and yield strength decreases as the distance above the build plate increases.  The first three 

sections closest to the build plate of compression specimens B2, T, and L1 had similar 

compressive modulus and compressive yield strength.  Specimen L1 was the strongest 
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specimen with an average compressive yield strength of 500 MPa compared to R1, B2, and 

T with 465 MPa, 489 MPa, and 475 MP.  

Table 10: AM AlSi10Mg Compression Results (Section 5 is the furthest from the build 

plate and section 1 is the closest to the build plate) All specimens heat-treated at 300 °C 

for 2 hours  

AM AlSi10Mg Compressive Testing 

Compressive Modulus (GPa) Compressive Yield Stress (MPa) 

Specimen 5 (Top) 4 3 2 1 (Bot) 
5 

(Top) 
4 3 2 1(Bot) 

20-A 66.3 77.7 72.3 79.4 79.1 189 187 184 189 191 

23-A 72.7 80.9 69.4 67.6 82.2 193 188 187 186 193 

25-A 69.5 76.3 69.3 69.6 68.5 160 168 164 165 165 

27-A 74.7 77.6 66.2 65.9 79.3 168 164 163 162 166 

19-B 84.8 68.1 70.8 78.8 65.6 191 192 191 189 197 

22-B 63.4 65.2 68.3 72.4 57.1 174 171 170 172 173 

24-B 73.1 66.7 66.5 67.1 59.3 172 168 173 164 166 

26-B 69.5 65.6 62.3 79.3 66.3 175 170 170 170 169 

In Table 10, Specimen 20-A and 23-A were significantly stronger than 25-A and 27-

A. The yield strength of the AlSi10Mg remained consistent across all the AlSi10Mg

compression sections regardless of build height. The compressive yield modulus for the 
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AlSi10Mg compression specimens fluctuated from each section. There was not a clear 

trend of certain sections in AlSi10Mg having increased material properties. Specimen 19-

B had an average compressive yield strength of 192 MPa and was significantly stronger 

than 22-B, 24-B, and 26-B with an average yield stress of 172 MPa, 169 MPa, and 171MPa. 

Specimen 25-A and 27-A had similar strength to specimens 22-B, 24-B, and 26-B. Build 

plate A and B had similar compression properties. 

5. Chapter 5: Discussion

5.1 Relationship of Defects and Ductility 

Ductile fracture was seen in the fracture surface of the SS 316L specimens and 

brittle fracture was seen in the as-built AlSi10Mg specimens. The internal void defects had 

a larger impact on the mechanical properties of as-built AlSi10Mg compared to SS 316L.  

As the ductility of the AM metals increased, the impact of the geometric defects decreased.  

The heat treatment of AlSi10Mg begins to shift the defect dependence from geometry to 

cross-sectional area dependence. This relationship between ductility and stress 

concentrations is outlined in literature for traditional metals and can be applied also AM 

materials [11].   Brittle materials are generally more sensitive to crack growth and are more 

negatively affected by geometric defects compared to ductile materials [11,53].  

The through hole was weaker than the quarter crack for the as-built AlSi10Mg 

specimens. This was most likely due to the through hole, acting as a stress concentrator, 

having sharp corners and the brittle materials having increased sensitivity because of their 

lack of hardenability. With a higher ductility, such as in the SS 316L, the reduction in the 
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cross-sectional area becomes the driving factor and the quarter crack becomes weaker than 

the through hole.  

SS 316L and heat-treated AlSi10Mg both exhibited ductile failure.  When the 

quarter cracks opened during testing the SS 316L and heat-treated AlSi10Mg specimens, 

the specimens plastically deformed, stain hardened and continued to support loading.  In 

comparison, the as-built AlSi10Mg specimens fractured when the quarter crack opened. 

Gas bubbles, which are usually only seen below the surface, were seen in the AlSi10Mg 

quarter crack defect surface and are an indicator of bridging.   The combination of bridging, 

sharp corners in the through hole, and a defect transition region is likely the reason the 

through hole was weaker than the quarter crack in the AlSi10Mg as-built components.  

From this study, AM AlSi10Mg and SS 316L follow traditional knowledge on 

mechanical behavior with stress concentration and ductility.  An increase in the ductility 

of an AM metal decreases the influenced of geometric defects.  A previous study 

characterizing the effect of pore size on tensile properties of AM SS 316L   aligned well 

with the AM SS 316L internal void results in the present study [54]. The internal void saw 

similar strength to the pristine specimen, but a small decrease in elongation. The results for 

both SS 316L and AlSi10Mg tubular specimens agree with the findings of the elongation 

to failure is more sensitive than strength with respect to the size of the defect.  In Error! 

Reference source not found., the SS 316L peak load was driven by a significant reduction 

in the cross-sectional area again agree with Wilson-Heid et al.  [54].  
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5.2 Defect and Porosity Relationship   

Distinct material behaviors for each build plate have been seen in AlSi10Mg tubular 

specimens. The mechanical behavior of the as-built AlSi10Mg build plate A in Figure 8A 

was driven by the type of defect because each group of defects displayed similar 

mechanical behavior.  The mechanical behavior of the as-built build plate B shown in 

Figure 8B was driven by the presence of a defect because the results were closely grouped 

together and differ by the presence of a defect.  The mechanical behavior of the as-built 

built plate C AlSi10Mg shown in Figure 8C showed reduced ductility and lower strength 

than the build plate A results.  In the build plate C specimens, porosity dominates the 

overall mechanical behavior. Fractography images in Figure 13 and results in Figure 8 C 

and D further support the conclusion that porosity began to dominate over the geometric 

defects in build plate C AlSi10Mg. There is a clear trend in the AlSi10Mg as-built and 

heat-treated specimens. As the relative density decreases, the porosity starts to dominate 

the material behavior over the other intentionally manufactured defects. The results from 

the AlSi10Mg specimens agreed well with a large study on the relationship between 

porosity and strength of copper made from binder jetting additive manufacturing [55].    

There have been separate studies on the effect of porosity [55] and the effect of pore 

size [54] on the mechanical behavior of AM metals, but the combination of porosity and 

geometric defects in AM metals has not been fully explored. A critical porosity-defect 

relationship is needed to qualify components for safe use.  From this study, AM 316L and 

AM AlSi10Mg, in brittle and ductile forms, follow convectional knowledge about stress 
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concentrations and the results have an agreement with other studies on porosity and pores 

size for AM metals.   

5.3 AM and DS Notch Fracture Toughness 

For both AlSi10Mg and SS 316L, there was no significant difference in fracture 

toughness between the AM and DS notch for the single edge notch tensile specimens. The 

fracture toughness of a notch manufactured during SLM was similar to a notch made in a 

post-manufacturing process. In the AlSi10Mg build plate, C the increase in porosity 

decreased the fracture toughness.  This reinforces the conclusion of increased porosity will 

start to dominate the mechanical behavior.  

The fracture toughness of die-cast AlSi7Mg ranges from 18 29 MPa m  depending 

on heat treatment composition [56]. The results of AlSi10Mg are on the upper range to the 

fracture toughness of die-cast AlSi7Mg.  The fracture toughness of the die-cast AlSi7Mg 

was calculated for a plane strain case. Apparent fracture toughness is dependent on the 

thickness of the specimen[11]. As the thickness decreases, the apparent fracture toughness 

increases and becomes closer to a plane stress case.. The AlSi10Mg results at agrees with 

literature that apparent fracture toughness increases with a decrease in thickness. For a 

ductile fracture of metals, the crack grows through the center of the specimens. The crack 

growth of the edges lags behind the center and occurs at a 45° angle to the applied load. 

The fracture surface has a flat surface in the middle and 45° shear lips on the edges[11]. 

With thinner ductile specimens, the shear lips make up a larger area of the fracture surface 
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and have an impact on the apparent fracture toughness [11]. Understanding fracture 

toughness for thin AM components is important because thin and complex sections can be 

made using AM to save weight, cost, and manufacturing time Further research will be 

needed to fully understand the fracture toughness of thin AM components 

. . 

5.4 Effect of Build Plate Height and Location 

The SS 316L compression results show that as the distance from the build plate 

increased the compressive modulus and compressive yield strength decreased. This occurs 

because as the distance from the build height increased the grain size increase [30,31]. The 

Hall-Petch relationship defines an inverse relationship between grain size and yield 

strength[10,53,57]. Observation from a study on AM SS 304 [10] showed large grain sizes 

near the build plate, resulting in increased material properties following the Hall-Petch 

relationship.  

The AlSi10Mg compression results did not show an increase in material properties at 

the sections closet to the build plate. The compression material properties of AlSi10Mg 

shown in Table 10 were constant across the sections of each compression column. 

Compression specimens in build plates A and B had similar material properties. The 

material properties of SS 316L were clearly dependent on the distance from the build plate, 

compared to AlSi10Mg, which has similar material properties as each distance. A study 

[9] on the build height on Inconel 718 produced by SLM observed there was no obvious

changing trend along the build heights of the components. From the results of the SS 316L 
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and AlSi10Mg compression specimens, the effect of build height is material dependent and 

this aligns with findings in literature for various materials [9,10].  

The material properties of the AlSi10Mg and SS 316L compression specimens also 

varied by the location on the build plate.  Specimens 20A and 23A were significantly 

stronger than 25A and 27A. Specimen 19B was significantly stronger than 22B, 24B, and 

26B. Looking at the build plate locations of the AlSi10Mg compression specimens shown 

in Figure 2 B, specimen 19B and 20A are on the opposite side of the build plate from other 

compression specimens. Specimen 23A near the other compression specimen but had 

similar material properties as 20A. Compressive material properties varied by build plate 

location, but there is not a clear trend between build plate location and increased material 

properties.  

6. Chapter 6: Conclusions

Three distinct structural behaviors were observed in the AM AlSi10Mg build

plates. As porosity increased in the AlSi10MG tubular specimens, the mechanical behavior 

changed from being driven by the type of geometric defect to being driven by the increased 

porosity. Porosity in the build plate C AlSi10Mg build plate overwhelmed the intentionally 

manufactured flaws. Heat treatment of AlSi10Mg increased the ductility, thus reduced the 

effect of the defects on material behavior. Heat-treated AlSi10Mg and SS 316L both 

exhibited ductile failures that are seen with typical ductile metals. In all material testing 

conducted in this study, intentionally manufactured defects decrease the strength and 
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ductility. As-built AM AlSi10Mg was more sensitive to defects compared to AM SS 316L 

and saw a larger decrease in strength in ductility. Materials behavior for a ductile AM SS 

316L and a brittle AM AlSi10Mg were similar when compared to brittle and ductile 

wrought metals. 

The mechanical behavior of the brittle AM as-built AlSi10Mg was driven by 

geometric defects acting as stress concentrations. The mechanical behavior of the ductile 

AM SS316L was driven by geometric defects reducing the cross-sectional area.  From this 

study, AM AlSi10Mg and AM SS 316L followed traditional facts about stress 

concentrations and ductility for metals.  The results from this study give the initial steps to 

determining a critical porosity-defect relationship of AM metals for safe use. Interaction 

between natural flaws and the intentionally manufacture flaws could have had a negative 

impact on the structural behavior on the AM components. 

7. Chapter 7: Future Works

From this study, AM SS 316L and AM AlSi10Mg, in brittle and ductile forms, follow 

convectional knowledge about stress concentrations and the results have agreement with 

other studies on porosity and pores size for AM metals.   Further testing and analysis with 

other AM metals, defects sizes, and porosity levels will be needed to fully define the 

relationship between defects and porosity, but these results can assist in the initial steps. 

Beyond this study, the shape and network of the pores may prove to be just as important. 

Uneven porosity near geometric defects can affect the mechanical behavior and could have 

been a contributing factor in this study. This study is the first step to establish a defect-

porosity relationship to qualify AM components for safe-use.   
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AlSi10Mg build plate A and B had very similar strength and ductility compared to 

build plate C. A future investigation to laser power levels between build plates B and C 

would help define the porosity level when the mechanical behavior starts to be dominated 

by the decrease in relative density.  

Three distinct behaviors were observed in AlSi10Mg.  SS 316L could be tested at these 

increased porosity levels to determine if these behaviors are seen in another material that 

is more ductile. Further exploration into the grain structure could explain why build plate 

B was slightly stronger than build plate A.  

Additional testing of thickener AM specimens will help further define the relationship 

for fracture toughness of thick and thin AM components.  The focus of a further fracture 

study would be investigating the influence of the specimen thickness on the apparent 

fracture toughness. The microstructure of thick and thin AM parts is different because of 

the rate of cooling and the manufacturing process.  

 The compression tests reveal the build height affects the material behavior. A further 

studied investigating the on the microstructure and grain size using electron backscatter 

diffraction at each build height and location would help determine why SS 316L showed 

an increase in material properties while AlSi10Mg was constant across all the sections.  
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