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ABSTRACT 

This research focused on evaluating how crash geocoding has improved over the 

years and how this enhanced spatial accuracy of crashes can potentially lead to a new 

paradigm for midblock crash safety analysis. Robust midblock safety analysis exhibits 

special challenges because methods of locating crashes have historically not been very 

accurate.   One objective of this research was to assess how the accuracy of crashes has 

improved over time and what the current state of the art is.  

The second objective focused on using segment lengths less than the Highway 

Safety Manual (HSM) recommended minimum of 0.1 miles for statewide screening of 

midblock crash locations to identify site specific locations with high crash incidence 

through a peak search methodology.  The research clearly indicates that the use of segments 

of 0.1 miles (or greater) in many instances’ “hides” the severity of a single location if the 

rest of the segment has few or no additional crashes.  The research also evaluated a sliding 

window approach using short segments.  Based on the analysis, the short segment peak 

search method is recommended for use by state agencies as a network screening approach 

because it is much less complex to implement than the sliding window approach, locations 

can be easily ranked, and direct comparisons can be made of segment crash incidence over 

multiple years.   

The final objective of this research was to compare the short segment peak search 

approach to other HSM methods. The results of the comparison revealed similar results at 

the highest priority level and thus the former can be used as an alternative in case of 

insufficient data on driveway and roadway characteristics. 
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This research shows that improvements in crash geocoding makes short-segment 

peak search network screening viable for segment lengths less than 0.1 miles.  By using 

short segment network screening, segments of high crash incidence can be displayed with 

overlayed crashes at their actual crash locations which can minimize the need for 

developing collision diagrams. Secondly, one of the hypotheses is that the current 

intersection to intersection process aggregates crashes to long segments which can mask 

the crash severity of point locations.  
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CHAPTER ONE 

INTRODUCTION 

Over the last several years, traffic fatality rates in South Carolina have been 

consistently ranked amongst the highest in the country (1). Throughout the nation, a lot of 

emphasis has been put on intersection crashes over the years.  Intersection crashes are 

typically geocoded more accurately than other crashes because they are explicitly 

associated with intersections as part of the crash attributes (2). Midblock crashes are 

segment oriented and studies have shown that for the most part most analysis is done on 

an intersection to intersection basis using very long segments. A review of literature 

indicates that there has not been a great deal of midblock safety analysis research using 

smaller segments. Midblock safety analysis exhibits special challenges because methods 

of locating crashes have historically not been very accurate.  Recent developments in crash 

geocoding techniques have improved spatial accuracy. This research focuses on evaluating 

how crash geocoding has improved over the years and how this enhanced spatial accuracy 

of crashes can potentially lead to a new paradigm on midblock crash safety analysis. 

Several years of South Carolina crash data is used in this research.  It is anticipated that the 

findings of this research are transferable to other states because of the sample size of the 

data used.  In actuality, the research was conducted using all reported midblock crashes for 

all roadway classes over a multi-year period.  The research has three primary objectives 

discussed in the following paragraphs.   

1 
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The first objective of the research is to assess how the accuracy of crashes has 

improved over time and what the current state of the art is. Case studies are used in the 

assessment of the accuracy of South Carolina crash data and a survey of state highway 

agencies conducted as part of this research will be used to assess the current state of the art 

in crash geocoding across the US. 

The AASHTO Highway Safety Manual (HSM) presents a variety of methods for 

quantitatively estimating crash frequency or severity at a variety of locations (3). The HSM 

predictive methods require the roadway network to be divided into homogeneous segments 

and intersections, or sites populated with a series of attributes. It recommends a minimum 

segment length of 0.1 miles.  A review of literature indicates that segments lengths less 

than 0.1 miles are not advisable because findings are highly variable.  These findings are 

based on crash data with questionable spatial accuracy. The second objective of this 

research focuses on segment lengths of less than 0.1 miles for statewide screening of 

midblock crash locations to identify site specific locations with high crash incidence.  The 

hypothesis is that improved spatial accuracy of crashes can result in worthwhile analysis 

using segments less than 0.1 miles.   Different analysis methods will be used to look at 

short segments.   

The final objective of this research is to compare the new network screening 

identified upon completion of the second objective to other HSM methods. 

It is anticipated that the findings of this research will show how improvements in 

crash geocoding can enhance safety analysis.  This research could potentially lead to a 
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changing paradigm of how network screening of midblock crashes is done by state 

agencies.  

This dissertation document consists of three research papers on transportation 

safety. These papers make use of South Carolina Crash Data over fourteen years (2004 – 

2018). Each paper focuses on one objective of this research and accounts for one chapter 

of the dissertation. The objectives are restated below along with the titles of each paper and 

the tasks performed towards achieving the research objectives. 

PAPER I: Assessment of Crash Location Accuracy in Electronic Crash 
Reporting Systems 

Objective 1 

Assess how the accuracy of crashes has improved over time and what the current 

state of the art is. Case studies are used in the assessment of the accuracy of South Carolina 

crash data and a survey of state highway agencies conducted as part of this research will 

be used to assess the current state of the art in crash geocoding across the US. 

Tasks 

Task 1: Deploy a survey and send to all state transportation agencies to better 

understand data collection and network screening methods. 

Task 2: Acquire 2010 – 2018 South Carolina Crash Data and geocode on 

ArcMap. 

Task 3: Use of different analysis methods to compare the accuracy of the different 

crash geocoding methods used in South Carolina throughout the years. Mi 
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PAPER II: Short Segment Statewide Screening of Midblock Crashes in 
South Carolina 

Objective 2 

Develop fixed-length segmentation network screening approach to identify the 

top midblock segments for each roadway type that has the highest crash incidence in the 

state.  

Tasks 

Task 1: Create a GIS layer representing the road surface variable buffer using the 

roadway width attribute in the SCDOT road characteristics database. 

Task 2: Test different segment lengths and width and compare results. 

 Task 3: Segment the buffered layer using the different fixed segment length. 

Task 4: Aggregate crash data to segment buffers. 

Task 5: Compare peak search method to NKDE (Network Kernel Density 

Estimation) method. 

PAPER III: Assessing the Predictability of Short Segment Crash Analysis in 
the State of South Carolina 

Objective 3 

Compare fixed-length segment approach to other Highway Safety Manual (HSM) 

methods. 

Tasks 

Predicted SPF (Safety Performance Function) for Intersection to Intersection Midblock 
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Task 1: Create Midblock segmentation from Intersection to Intersection for the 

entire state. 

Task 2: Obtain AADT data from Database (DOT). 

Task 3: Calculate SPF’s for each segment and predict number of crashes 

Task 4: Find excess and rank the obtained segments and compare with short 

segments method. 

Task 5: Obtain number of Buffers from Short Segment method that are also in the 

high ranked SPF’s segment.  

Predicted SPF on Driveway using only AADT 

Task 6: Segment Roadway based on Short Segments screening method and obtain 

buffers for the entire roadway.  

Task 7: Calculate predicted SPF driveway value considering  

Task 8: Find excess and rank the buffers based on excess 

Task 9: Obtain high ranked buffers from Short Segment method that match with 

the high ranked predicted SPF for driveway. 

Predicted SPF for driveways adjusting with CMFs 

Task 10: Segment Roadway based on short segment screening method and obtain 

buffers for the entire roadway. 

Task 11: Calculate predicted SPF for each driveway adjusted based on driveway 

characteristics. 

Task 12: Find excess and rank the buffers based on excess. 
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Task 13: Obtain high ranked buffers from short segment method that match with 

the high ranked CMF buffers, 

 ***Two papers have been submitted to Transportation Research Board Journal 

(one being already published) and third paper is in the process of being submitted to 

scholarly journals.  

The next three chapters (Chapter Two, Chapter Three and Chapter Four) contain 

the three research papers introduced in this chapter, followed by the dissertation conclusion 

in Chapter Five and then appendices.  

REFERENCES 

1. South Carolina Department of Public Safety (SCDPS). South Carolina Traffic 

Collision Fact Book 2013-17. http://www.scdps.gov/ohsjp/stat_services.asp , 

Accessed March 10, 2017.

2. AASHTO, 2010. Highway safety manual, 1st Edition. American Association of 

State Highway and Transportation Officials, Washington, D.C.

3. AASHTO, 2010. Highway safety manual, 1st Edition. American Association 

of State Highway and Transportation Officials, Washington, D.C.

http://www.scdps.gov/ohsjp/stat_services.asp
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CHAPTER TWO 

Paper I: Assessment of Crash Location Accuracy in Electronic Crash Reporting 

Systems 

Co-authors of the paper: Wayne A. Sarasua, Kweku Brown, Jennifer H. Ogle, 

Afshin Famili, William J. Davis, Saurabh B. Basnet, and Devesh Kumar.  

Paper I got accepted by the Annual Meeting of the Transportation Research 

Board and publication decision is pending.  

ABSTRACT 

Over the past several years, traffic fatality rates in South Carolina have been 

consistently ranked amongst the highest in the country. Furthermore, South Carolina 

incurs an annual economic loss of over two billion dollars due to roadway traffic crashes. 

The South Carolina Department of Transportation (SCDOT), in collaboration with the 

South Carolina Department of Public Safety (SCDPS), has undertaken a series of 

initiatives to reduce the number of annual vehicle crashes, with a particular emphasis on 

injury and fatal crashes. One of these initiatives is the deployment of a map-based 

geocoded crash reporting system that has greatly improved the quality of crash location 

data. This paper provides an assessment of improvements in crash geocoding accuracy in 

South Carolina and how improved accuracy is beneficial to systematic statewide safety 

analysis.  A case study approach is used to demonstrate practical applications and 



8 

analysis techniques based on spatially accurate crash data. A survey of state highway 

agencies indicates that there are disparate crash reporting systems used across the country 

with regard to crash geocoding procedures and accuracies.  Survey results indicate that 

not only does geocoded accuracy of crash locations vary by state, accuracies often vary 

by jurisdiction within each state. Research results suggest that poorly geocoded crash 

data can bias certain types of safety analysis procedures and that many state safety 

initiatives, analysis methods, and outcomes can benefit from improving crash report 

geocoding procedures and accuracies. 

INTRODUCTION 

From 2014 through 2018 approximately 4,852 motor vehicle-related deaths 

occurred in South Carolina resulting in an average of 970 traffic fatalities per year over the 

five-year period. These rates are considerably higher than the national averages of 1.16 

fatalities per 100 million VMT and 11.52 fatalities per 100,000 populations. In 2017 alone, 

there were 988 traffic fatalities in South Carolina resulting in rates of 1.78 fatalities per 100 

million vehicle miles traveled (VMT) and 19.70 fatalities per 100,000 population (1). 

Further, South Carolina incurs an annual economic loss of over two billion dollars due to 

road traffic crashes (2).  

Recent efforts by the South Carolina Department of Transportation (SCDOT) to 

reduce vehicle crashes, in particular injury and fatal crashes, within the state led to 

development of the 2015-2018 South Carolina’s Strategic Highway Safety Plan (SHSP): 
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Target Zero. Published in 2015, the SHSP was the result of concerted efforts by SCDOT, 

South Carolina Department of Public Safety (SCDPS), South Carolina Division Office of 

the Federal Highway Administration (FHWA) and other local, state, and federal road safety 

advocacy groups and agencies. The primary goal of SHSP is to eventually eliminate traffic 

fatalities and significantly reduce injuries in South Carolina.  SHSP emphasizes data-

driven, evidence-based recommendations for appropriate strategies and countermeasures 

to achieve its safety goals (2).  

In the previous SHSP published in 2007, improved crash reporting was deemed as 

essential for safety analysis (4) which led to the development and deployment of an 

electronic crash reporting system.  The 2015 SHSP has recommended continued 

enhancement of the system (3).  This system, known as the South Carolina Collision and 

Ticket Tracking System (SCCATTS), has grown substantially in its development and 

implementation since 2007.  Starting in 2010, the electronic collision report form 

component of SCCATTS was deployed to the South Carolina Highway Patrol (with 100% 

compliance by January 2012) and has since been adopted by local law enforcement 

agencies throughout the state.  The main reason of using SCCATTS was to improve 

accuracy and timeliness from date of crash to date of data available in the collision master 

file (5).  Recent estimates indicate more than 75% of collision report forms are being 

submitted to SCDPS electronically which has decreased the number of days for processing 

a collision report from 35 or more days in 2010 to 5 days or less currently.   One of the 

biggest benefits envisioned for SCCATS implementation was use of mapping software 

integrated within the electronic reporting hardware that would allow for more accurate 
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reporting of collision locations. The 2015 SHSP specifically states “…proper identification 

of where a collision occurred is of utmost importance to SCDOT for planning purposes.” 

(3)  

Research indicates that accurate crash location data improves reliability of safety 

analyses and evaluation of countermeasure effectiveness (6,7,8 and 9).  Among multiple 

attributes in a crash data set, the location of a crash is of utmost importance because, crash 

records with inaccurate locations cannot be considered in the analysis.  Excluding crash 

records can result in under-reporting crash rates, which creates bias in prediction models. 

This paper provides an assessment of improvements in crash geocoding accuracy in South 

Carolina and how this improved accuracy can benefit safety analysis.  A case study 

approach is used to demonstrate practical applications and analysis techniques based on 

spatially accurate crash data. The emphasis of these case studies is predicated on analysis 

of midblock crashes because locations of midblock crashes are more prone to error 

compared to intersection crashes (16). Intersection crashes are point oriented and 

associated with the intersection of two cross-streets on a map; whereas, locating midblock 

crashes has historically been based on a police officers’ estimate of distance from the 

nearest intersection.  In many cases, officers estimate this distance to the nearest ¼ mile. 

Surveys of state highway agencies are presented that provide the current state of practice 

in crash reporting and crash geocoding across the country. It is anticipated that many states 

can enhance safety analysis by improving their crash report geocoding methods.  A 

discussion is also included on how South Carolina’s crash reporting system can potentially 

be further improved by taking advantage of some of the best practices found in other states. 
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LITERATURE REVIEW 

Many states have replaced old methods of data collection with new technologies 

such as the use of laptops or other electronic devices to collect crash report data and the 

use of barcode scanners to record the licenses of drivers involved in crashes (11). From 

an infrastructure standpoint, systems developed to improve crash location characteristics 

are inherently important, because without a spatial context for the crash problem, it is 

much more difficult to identify potential contributing factors. Understanding the crash 

context is critical to identifying appropriate countermeasures, as well as where the 

improvements should be implemented to have the greatest potential impact.   

For many decades, DOTs have defined crash location using route identifiers along 

with distances to reference points (e.g. route mile post system, route reference point 

system and link node system) (10).  While these methods may appear appropriate, there 

are several problems associated with their use for crash locationing.  For instance, there is 

not always a single universal route identifier used by all agencies within the state and 

often a route has multiple designations (e.g. the section of interstate going through 

downtown Atlanta, Georgia which is designated as both I-85 and I-75). Furthermore, 

some secondary routes have multiple names and numbers, and many change names over 

time.  Distance measurements are similarly difficult.  For example, some police officers 

may not have the proper equipment or time to measure the distance.  They may estimate 

distances using a value such as ¼ mile which may result in a spatially inaccurate cluster 

of crashes exactly 1320 feet from an intersection.   Additionally, when measurements are 

based on reference points or crossing streets, the notation becomes complex and the 
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location may be misconstrued.  Lastly, these methods of identifying crash locations may 

not provide precise locations of crashes in the travelway (or adjacent to the travelway in 

many instances).  Due to drawbacks associated with these methods, many states have 

added coordinate locations using GPS technology. 

By the mid 2000’s, states such as Iowa, Illinois, Kentucky and Massachusetts 

developed and deployed electronic crash data collection systems for widescale use by law 

enforcement officers (11). Iowa’s Traffic and Criminal Software (TraCS) consists of bar 

code scanners, swipe-card readers, digital cameras, GPS technology, a GIS viewer and 

touch pads to aid digital data entry (11) As of 2007, TraCS had been adopted in 18 states 

and 2 Canadian provinces (12). More recently, Alabama combined an electronic citation 

(E-Citation) application with the state’s crash database analysis software into a system 

called Critical Analysis and Reporting Environment (CARE).  The system includes a GIS 

platform where police officers map vehicle crash and traffic citation locations (11). Other 

states including Louisiana and Tennessee have also recently adopted similar systems and 

have achieved improvement in the quality of their crash data (13).  Florida uses a web 

based geospatial crash analytical tool called Signal Four Analytics. It is designed to 

support the crash mapping and analytical needs of law enforcement, traffic engineering, 

transportation planning agencies, and research institution in the state of Florida.  

The transition to the use of GPS technology in crash data collection in South 

Carolina began in 2004 when SCDOT purchased hand-held GPS units for law 

enforcement officers to collect coordinate (latitude, longitude) information for crash 

reports. The use of these hand-held GPS units was not automated, and officers had to 
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read coordinates from the GPS unit and manually record values on the crash report.  

Information from the paper report would later be keyed into a digital database. Although 

use of GPS units was advantageous over traditional location referencing methods, there 

were many issues associated with operation of GPS units, recording of location data on 

paper crash reports and processing of data. (14, 15).   

The deployment of SCCATTS currently used by South Carolina highway patrol 

and nearly half of local jurisdictions has resulted in considerable improvement in crash 

data quality. The system enables law enforcement officers to spatially identify and locate 

crashes via a GIS-based GPS enabled mapping platform operational within police 

vehicles. The GPS displays the vehicle’s location on the GIS map display and officers 

can pinpoint the actual location of the crash rather than where an officer’s vehicle is 

situated (e.g. on the side of the road or in a parking lot, etc.).  Officers can key in all other 

information related to the crash, which is later uploaded to the SCDPS database and later 

transferred to SCDOT. Pinpointing crash locations not only lead to more accurate 

coordinate data provided on crash reports, but also populates other location information 

data fields on the crash report automatically (5). 

SURVEY OF STATES 

             The literature review indicated that numerous states have transitioned to computer-

based crash reporting and geocoding methods, while many others are still using paper-

based systems. In an attempt to better understand data collection and network screening 

methods, the research team developed and distributed a survey that was sent to all state 
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transportation agencies during the Spring, 2019. The survey included 36 questions and was 

subdivided into five sections: 1) contact information; 2) crash report collection methods; 

3) crash data collection training; 4) crash geocoding; and 5) network screening (Appendix

A). In total, 29 responses were received representing 24 different states.  For states 

providing multiple responses, their data was combined into a single response to eliminate 

redundancy. 

Of particular interest regarding basis of comparable crash data, was a survey 

question in Section 1 that asked, “What is the most recent full year of crash data that your 

state department of transportation is working with?”  Of the 24 states responding, 10 (42%) 

indicated 2018, 12 (50%) indicated 2017, and two states indicated 2016 and 2015, 

respectively. 

Crash Report Collection Method                    aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

           The survey included 13 questions related to crash report collection methods.  It also 

indicated that all the states surveyed are using electronic crash report data collection 

methods to some extent with most having transitioned from fully paper-based reporting in 

the last 10 years.  In a “check all that apply” question, the most common reasons for the 

transition were to minimize coding errors, enable consistency checks, and automate 

uploading. Improved geo-locating was also mentioned by some respondents, but to a lesser 

extent. Figure 1 shows the approximate proportion of crash reporting using paper or 

electronic reporting methods.  The figure indicates that all responding states have at least 

50% electronic reporting of crash reports with the majority (17 of 24) having 90% or more 

recorded electronically.  Montana has multiple electronic crash reporting systems however 
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the system used by major cities cannot currently be directly uploaded into the state 

database.  These reports are printed and input manually. Some states indicated other 

methods, such as Oregon which uses self-report for all property damage only crashes.

Figure 1: Proportions of paper based, electronic crash, and other report forms by state 

In terms of the electronic crash reporting systems used by the state, most of the 

states use a system developed by a commercial vendor while some states use a system 

developed in-house.  Five different commercial systems were identified: CAPS, CTA 

SmartCop, LexisNexis, ReportBeam, and TraCS.  South Carolina’s SCCATTS uses the 

ReportBeam platform.    

Crash Geocodingaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

When asked which methods (check all that apply) are used to capture the location of a crash 

in the field, 12 states use Mile Point Method, 18 use Primary/Secondary Street Name and 
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Distance from Intersection, 6 use Handheld GPS (coordinates entered or written on crash 

report manually), 18 said Map-based (with or without integrated GPS), and 6 answered 

other. Two of the “other” responses (Louisiana and Montana) had integrated GPS but not 

map-based fine tuning of the position.  At least one state (Massachusetts), allows entry of 

nearest landmarks. 

For map-based systems, states were asked what map background was used and 18 

responded.  The four answers given were Road Centerline Map [6], Street View Map [5], 

Aerial/Satellite Imagery such as Google Maps [5], and other [5].  Kentucky indicated that 

the officer can use a centerline map background with or without aerial imagery.  

One question asked “For the most recent year, what percentage of crash locations 

are accurately geolocated on the total road network?”  The response indicated that roughly 

1/3 of the respondents believe that less than 80% of crashes in their state are correctly 

geocoded and nearly 1/2 of the respondents believe that greater than 90% of crashes in 

their state are correctly geocoded. Nearly all of the states indicated that they go through a 

process to validate the location accuracy of crashes and indicated that if a poorly geocoded 

crash location was identified a correction would be made.                                          q 

Survey Discussing ------------------------------------------------------------------------------------ 

The survey of state highway agencies indicates that there are disparate crash 

reporting systems used across the country from a crash geocoding standpoint.  All of the 

states have implemented electronic crash reporting to some extent however, geocoding 

methods and accuracy varies by state and also may vary by jurisdiction within a state. 
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SOUTH CAROLINA CRASH DATA EVALUATION AND GEOCODING 

Over the past decade, the major initiatives by SCDOT and SCDPS have 

proven to be effective in improving crash data.  Crash location data accuracies are 

compared and contrasted between data recorded using hand-held GPS units from 2004 to 

2010 and GIS-based map location system data, beginning in 2011.  Comparisons are 

based on geocoding 15 years (2004 – 2018) of South Carolina crash data including an 

analysis of over 1.4 million crashes contained in the statewide geocoding database.  

2004 crash location dataset was first geocoded as a baseline to assess the quality 

of the crash data.  Geocoding results indicated 28% of 2004 crash data was geocoded 

outside of the state boundary, which provide a finding of great concern.  Crash location 

results did not improve considerably until after 2010.  By 2018, nearly all crashes 

geocoded within the state bundary.  A review of the data geocoded by handheld GPS for 

all 15 years resulted in the identification of several systematic errors and erroneous inputs 

that were consistent with findings from a previous study by Sarasua in 2008 (17). 

Common and recurring problems in the crash database include: 

1. Several crash records were in Decimal Degrees (DD), not Degrees-

Minutes-Decimal Seconds (DMS) as referenced in the crash data reporting

manual.

2. Some crash records were in state plane coordinates, not latitude and

longitude

3. Several crash records were missing either longitude or latitude or both

4. Some crash records had their longitude and latitude values swapped
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5. Most of the latitude values did not include a negative sign

6. Several coordinates were recorded with insufficient precision by one or

two decimal places

7. Some crash records had spaces and letters as part of the coordinate entry

8. Some coordinates included additional zeroes to make up for the

insufficient precision

9. Some crash records had erroneous coordinate values

Many crash records contained a combination of errors. For example, a crash 

record could have swapped latitude and longitude and at the same time have insufficient 

precision.  The causes of errors include improper settings of the GPS equipment, errors 

by officers recording the coordinates, and errors by data entry personnel who transcribe 

information from the handwritten crash report into a digital database (17).  A summary of 

the percentages of the geocoded data in each category by year is provided in Table 1. 

Trends in Table 1 indicate significant improvements in the consistency of geocoded crash 

data after 2010.  The use of decimal degrees and state plane coordinates was virtually 

eliminated.  While much of this improvement can be attributed to the use of SCCATTS, 

methods for using handheld GPS by local jurisdictions also improved.  SCDOT indicated 

that this was possibly due to enhanced training. More recent improvements in consistency 

can be attributed in part to the increased proliferation of SCCATTS to local jurisdictions.  

It should be noted that nearly all highway patrol officers were using SCCATTS by the 

beginning of 2012.  
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Table 1: Percent of Crash Data by Geocoded Category and by Year 

A separate analysis was conducted for geocoded crash data collected and recorded 

by highway patrol only.  The consistency of highway patrol data is much better, even before 

the deployment of SCCATTS.  Coordinates in DMS format was 88% and improved 

steadily to reach 96.6% in 2010.  This is most likely due to the highway patrol receiving 

better training in proper use of handheld GPS than local jurisdictions. By 2013, after full 

deployment of SCCATTS within the highway patrol, virtually 100% of crash data was 

consistently geocoded in DMS format. 

GIS ANALYSIS OF SOUTH CAROLINA CRASH DATA 

Additional spatial analysis focused on the accuracy of geocoded crash data was conducted 

to further evaluate the improved spatial accuracy of geocoded crash data. ESRI’s ArcGIS 

was used in all GIS analysis discussed in the paper. Nine years of crash data (2010-2018), 

with systematic errors removed or corrected (e.g. swapped longitude and latitude), were 

used.  The highest-ranking corridors from a crash standpoint were the focus of this study. 
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Highway patrol officers, using hand-held GPS units, collected the majority of 2010 crash 

data. While much of 2011 and nearly all the 2012 data and beyond were collected using 

SCCATTS. An indication of the difference in precision of the two methods can be seen in 

Figure 2.  The US-25 corridor example in Figure 2 shows that while 2010 crashes are 

mostly located on the sides of the roadway, or in parking lots, most of the 2012 crashes are 

shown on the roadway and in the location most likely to be where the crash actually 

occurred. A probable explanation for why 2010 data were mostly off the roadway is that 

most police officers would park their vehicles on the side of the roadway, or in parking 

lots, when filling out parts of the crash report and would read and record GPS coordinates 

on the GPS unit wherever they were parked.  

The 2011 and 2012 data collection using the GPS enabled GIS-based map provided the 

police officers the tools to identify the approximate crash location using GPS, and then 

accurately locate (or pin map) the crash at the precise location it occurred on the map, even 

when parked on the side of the road, or in a parking lot. 
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Figure 2: Rear-end and angle crashes on US 25 in Greenville, SC for 2010 (left) and 2012 (right) 
(images from Bing Maps) 

Proximity Analysis 

A proximity analysis was conducted to determine if there was a change in crash 

location relative to a roadway’s centerline before and after the implementation of the 

SCCATTS.  The distance of each crash from its corridor centerline was calculated and 

averaged by corridor using spatial analysis tools in ArcGIS for the 3-years of comparable 

data. Table 2 shows the results of the proximity analysis for the top five selected corridors, 

based on average crash rank. 

Table 2: Average Distance of Crashes from Route Centerline by Year 
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The table clearly shows considerable change in crash locations relative to roadway 

centerlines from 2010 crashes (predominantly recorded with a hand-held GPS unit) to 2011 

(predominantly SCCATTS).  A paired t-test was conducted to test the null hypothesis that 

the difference between the 2010 and 2011 means is zero.  Results of the t-test indicated a 

p-value < 0.001 and thus the null hypothesis was rejected with 99% confidence level

indicating that the means are different.  A similar finding was found for the difference 

between the 2010 and 2012 means.  However, the null hypothesis that the difference 

between the 2011 and 2012 means is zero had a p-value of 0.08 and thus cannot be rejected 

for 95% confidence level (indicating that the difference in the means can be explained by 

random error). 

Underlying Roadway Centerline Map Consistency 

SCCATTS uses a roadway centerline map as a background reference for officers 

to use to geocode crashes.  The centerline map is the same one used for SCDOT’s Roadway 

Information Management System (RIMS).  RIMS is a comprehensive geospatial-based 

database system that accounts for all data for SCDOT’s transportation roadway inventory. 

A closer look at the RIMS centerlines indicates some problematic issues at some locations. 

For example, in some instances the RIMS centerline is erroneously offset from its actual 

location.  Police officers using an erroneous centerline as reference to geocode a crash will 

locate the crash offset from where it actually happened.  SCDOT periodically corrects 

errors it identifies in the RIMS centerline map which are eventually uploaded to officer’s 

laptops however these uploads are currently done manually and very sporadically.  Figure 
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3 shows a RIMS centerline map comparison between 2012 and 2018.  An aerial map is 

shown in the background to provide reference.  In Figure 3(a), the 2012 RIMS centerline 

is offset to one of the roadway directions near the major intersection.  The 2018 crash data 

(shown as black squares) in the westbound direction overlaid on this RIMS centerline does 

not follow the 2012 centerline.  The 2018 RIMS map shown in Figure 3(b) shows corrected 

centerlines and the 2018 crash data for the westbound direction does follow the new 

centerlines (as they should). Changes to the RIMS centerline map used by officers might 

be a problem when comparing crash data between different years that were geocoded using 

different RIMS centerline files.  Inconsistency in using the RIMS data between different 

jurisdictions was also observed. For instance, the 2018 crashes described earlier for the 

westbound approach are pinpointed for both the directions and follows the 2018 RIMS 

centerline map. For the same year, the crashes in the northbound seem to be coded 

referencing the 2012 centerline map. Thus, police officers are not using consistent RIMS 

centerline data for the same years.  

Figure 3: a) 2012 RIMS centerline map; b) Updated RIMS centerline map (image from Google 
Earth) 
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Travelway Analysis 

While results from the proximity analysis indicate a distinct change occurred in 

average distance from centerline for crash data collected after 2010, an additional 

evaluation was conducted to identify the proportion of crashes that fell within the roadway 

corridor’s travelway before and after implementation of SCCATTS.  The same five 

corridors were used in this analysis.  Offset lines such as lane lines, edge of pavement, and 

travelway limits are not included as RIMS GIS data layers, however, travelway width is 

included as a RIMS attribute.  The buffer by attribute capability was used in ArcGIS to 

synthetically generate edge of travelway polygons for all five corridors. Buffering using 

buffer by attribute creates a polygon based on an attribute of individual segments, which 

in this application, buffered the roadway centerline segments using the buffer distance as 

half of the RIMS travelway width attribute value.  

Using GIS point-on-polygon spatial aggregation, the crash data was overlayed with 

the travelway buffer polygons to identify crashes that are geocoded within the travelway 

corridors. Table 3 shows the results of this analysis.  It shows that only 35% of the 2010 

crashes fall within the travelway even though it is likely that nearly all of the types of 

crashes used in this analysis occurred in the travelway.  It should be noted that fixed object 

and run-off-the-road crashes were omitted from the analysis because of the likelihood that 

these crashes could occur outside the travelway.  Further analysis of the sections of the 

routes listed in Table 3 reveals that 2010 crash percentages do not accurately represent the 

potential conflict points where crashes are expected to be most prevalent (in the travelway). 

Conversely, most of the 2011 and nearly all of 2012 crash data do fall within the travelway 
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in locations where potential conflicts are common.  The improved performance between 

2011 and 2012 is because SCCATTS was not fully deployed until the beginning of 2012. 

Table 3: Percent of Highway Patrol Crash Data Identified by Corridor by Year 

Case Study: Analysis of Driveway Related Crash Data 

A recent SCDOT research project focused on developing safety performance 

functions (SPFs) and crash modification factors (CMFs) for commercial driveways in 

South Carolina (16). Spatial analysis focusing on the accuracy of geocoded driveway crash 

data was performed as part of this research. Three years (2010-2012) of crash data was 

used for the geocoded accuracy analysis. Crashes that were potentially driveway related 

(i.e. coded with junction type –‘driveway’ or coded with a ‘manner of collision’ of ‘rear-

end’ or ‘angle’ or ‘side-swipe’ or ‘head-on’) were extracted for use in this study. The 

improved spatial accuracy of crashes makes it possible to pinpoint the locations where 

clusters of crashes occur in relation to a driveway.  This is evident at the location shown in 

Figure 4 on US 17 in Berkeley County, South Carolina.  The image shows a number of 

driveway related crashes (junction type ‘driveway’ shown with stars) occurring when 

vehicles attempt to enter or exit from adjacent high turnover driveways across a left-turn 
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bay. The accuracy of crash data prior to 2010 (Blue Color) would not produce evidence of 

these clusters making it difficult to identify where crashes occur relative to driveways 

unless the sketches made by officers on the original crash reports are analyzed individually. 

Figure 4 Crashes over a three-year period on US highway 17 in Berkeley County, SC  *Coded 
driveway related crashes shown with stars.  Note the proximity of the crashes relative to the left-turn bay. 
(Image from Google Earth) 

To model the CMFs based on driveway characteristics it is necessary to associate 

driveway crashes with driveways.  The junction type code included in the crash report 

includes driveway as one of the options.  Unfortunately, a detailed analysis of the 

driveways along several selected corridors in South Carolina indicated that the driveway 

code was not used for more than 60% of crashes that were clearly driveway related based 

on crash type and proximity to driveways.  Thus, a spatial analysis approach was developed 

to associate crashes with driveways. After querying possible crash types that could be 

associated with driveways (e.g. angle, rear-end, etc), the analysis assumption is that crashes 
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in an influence area of a driveway is a driveway related crash of that driveway.   It is crucial 

that the driveway influence areas are as precise as possible in order to evaluate the 

driveways effectively. One approach is to use ArcGIS buffer techniques to buffer an area 

on the travelway adjacent to each driveway to delineate the influence area.  Once these 

buffers are created, they can be overlaid with underlying crashes to do the association.  One 

problem with this approach is that the resulting driveway buffers would be circles around 

the point that represents the location of the driveway.  This would bias crashes that occur 

closer to the side of the road.  Ideally, rectangular buffers would give a better indicator of 

a driveway’s influence area.  Thus, the researchers developed a model that could make 

rectangular buffers that stretched across the roadway (16).  Two models were created 

depending on driveway type: a model for full access driveways that creates buffers 

extending across all travel lanes; and a model for right-in right-out (RIRO) driveways that 

creates buffers that extend to the roadway centerline.  Both models used the driveway width 

attribute from the driveway database to create the driveway buffer. The driveway buffer 

width is the driveway width plus thirty feet to accommodate about a car length on each 

side of the driveway.  Figure 5 shows resulting driveway influence area buffers along with 

2012 driveway related crash data that fall within the buffers. Note that none of the 2010 

crashes shown in the figure fall within the driveway buffers. 
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Figure 5: Driveway Influence Buffers Overlayed with 2010 and 2012 Crashes (image from Google 
Maps) 

The analysis revealed an average crash incidence of 0.46 crashes per driveway 

using 2012 data.  The analysis showed a much lower crash incidence (less than 0.1) for the 

same corridors using 2010 data.  The 2010 rates are biased because poor geocoding 

precision placed most of the driveway related crashes outside of the driveway buffers.  The 

driveway research made it very apparent that accurate crash geocoding was necessary to 

provide valid statistical results.   
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Case Study: Analysis of Driveway Related Crash Data Within 150 feet of intersections 

A similar illustration of how accurately coded crash data can benefit crash spatial 

analysis is a case study for identifying problem driveways within 150 feet of intersections 

in which the corner clearance of the driveway does not comply with published standards 

in the SCDOT Access Management Guidelines (4).  A travelway polygon layer delineating 

edge of pavements for 5 major corridors were used for this study.  Travelway polygons 

were overlayed with 50 foot buffer polygons of a selection set of driveways that fell within 

150 feet of intersections.  The resulting polygon layers were then overlayed with the 

driveway crash layer to determine the number of driveway related crashes within the 

hatched area shown in Figure 6. This analysis used only highway patrol data to ensure the 

before data (2010 driveway related crashes) was using predominantly GPS coordinates and 

the after data (2018 driveway related crashes) used SCCATTS.  The number of crashes 

that fell within the driveway buffer and within the street travelway buffer for the 5 corridors 

totaled 64 crashes in 2010, and 525 crashes in 2018 (see Table 4).  This represents a 700% 

increase in the quantity of driveway crashes that occurred in the travelway in close 

proximity to intersections.  While some of this increase may be due to changes in landuse 

over this period the dramatic increase is undoubtedly due, in large part, to improved crash 

geocoding rather than a change in actual crash incidence.   A closer look at these locations 

show that many of the 2010 crashes occur outside of the travelway and thus are ignored by 

the GIS operation.   
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While, the analysis shows how a GIS combined with precisely located crash data 

can be used to quickly identify potentially dangerous driveways with inadequate corner 

clearance, the omission of crashes due to poor geocoding will result in bias.   

Table 4: Number of Driveway Crashes Occurring within Close Proximity to Intersections 

Corridor 
# of 

driveways 
2010 Crashes 

2011 
Crashes 

2018 Crashes 

US 1 Richland 219 18 63 97 

US 25 Greenville 177 9 36 167 

SC 146 Greenville 29 8 18 73 

US 176 Richland 102 16 30 88 

US 1 Lexington 167 13 29 100 

Total 694 64 176 525 
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Figure 6: Driveway related crashes on US Highway 176 in Richland County, South Carolina.   (image 
from Bing Maps) 

Case Study: Statewide Screening of Mid-block Crash Locations Using Short Segments 

The AASHTO Highway Safety Manual (HSM) (18) presents a variety of methods for 

quantitatively estimating crash frequency or severity at a variety of locations. The HSM 

recommends a minimum segment length of 0.1 miles for developing predictive models. 

The research discussed in this case study focuses on segment lengths of less than 0.1 miles 

for statewide screening of midblock crashes to identify site specific locations with high 

crash incidence. Famili et al (17) makes an argument that many midblock crashes can be 

concentrated along a very short segment due to undesirable characteristics of a specific 



32 

site.  The use of longer segments may “hide” the severity of a single location, if the 

remaining portion of the segment has few, or no, additional crashes.  In this case study, 

South Carolina’s statewide road network is divided into short segments buffers, 50 to 100 

feet in length.  Intersection crashes were excluded from the analysis through the use of 

intersection buffers. Midblock crash data were aggregated along pre-designated short 

roadway network segments using the spatial overlay (spatial join) operation in ArcGIS 

(17). Figure 5 shows critical 50-foot segments identified along a section of Broad River 

Road in Columbia, South Carolina, with yellow and red polygon segments representing an 

occurrence of 4 or more cashes recorded during 2012. The red polygon segment has 7 or 

more crashes. The 4-crash threshold was chosen based on discussions with SCDOT. 2010 

crashes are mostly located on the sides of the roadway, or in parking lots and were not 

captured by the short segments. Figure 6 shows a location associated with a dangerous 

horizontal curve where a 50-foot segment has 6 crashes in one year.  One critical finding 

from the research described in this case study is short segment roadway network screening 

is viable as a safety analysis approach, only if accurately geocoded crash data is available 
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for use as the basis for this methodology (17).  a ------------------------------------------

Figure 7: A length of Broad River Road in Columbia, SC showing 50 ft road segments with 4 or more 
crashes in 2012 .   (image from Google Earth) 
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Figure 8: Dangerous horizontal curve on Reid School Rd, Taylor, SC .   (image from Google Earth) 

CONCLUSION 

South Carolina has taken considerable strides towards improving crash data quality 

with the implementation of SCCATTS.  Accurate crash data is an essential requirement for 

performing robust safety analysis and developing data-driven programs and policies.  GIS 

spatial analyses methods and case study applications described in this paper would produce 

misleading and biased results if geocoded crash data used in the procedures contained 

systematic locational inaccuracies.  Safety analysis along five major corridors using crash 

data geocoded with handheld GPS (2010 data) revealed that only 35% of the crash 

locations (not including run-off-the-road and fixed object crashes) were geocoded within 

the travelway, while SCCATTS geocoded crash data indicated that the proportion of 
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crashes occurring within the travelway was virtually 100% for the same corridors. In the 

case study analysis estimating driveway CMF, findings revealed dramatically different 

values before and after the implementation of SCCATTS, which upon adopting and using 

2012 produced an average crash incidence of 0.46 crashes per driveway.  For the case study 

of driveways within an 150-foot proximity to intersections, procedures to analyze 

geocoded data failed to identify a substantial number of driveway crash clusters using 2010 

crash data, whereas analysis of 2018 data readily revealed identifiable patterns and 

driveway crash concerns for similar locations.  In the case study of short roadway 

segments, systematic statewide screening of midblock crash locations provided an 

effective approach for identifying problematic locations experiencing 4 crashes on more in 

a 50-foot segment for further evaluation.  Furthermore, use of this method as a viable safety 

analysis approach for effective network screening is largely dependent on availability of 

accurately geocoded systemwide crash data (17). 

Availability of accurately geocoded systemwide crash data is emerging as one of 

the most consequentially important transformational and essential elements for advancing 

roadway safety analysis of crash data in the future. The case studies presented in this paper 

are unique in their methods to aggregate crashes to driveways and short roadway segments. 

These approaches are largely reliant upon availability of accurately geocoded statewide 

crash data.  An important caveat should be noted for the short segment analysis in that the 

HSM does not recommend use of segments less than 0.1 miles, however, the case study 

approach demonstrated use of segment lengths less than 0.1 miles (50-feet) as a viable 
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means for effectively screening network midblock crashes, given accurately geocoded 

crashes.  Specific benefits of enhanced systemwide crash geocoding include: 

• Supports enhanced midblock crash cluster analysis and network screening;

• Provides an ability to associate midblock crashes with systemwide planimetric

roadway features such as driveways, dangerous curves or roadside features;

• Allows efficient network-based analysis for specific types of midblock crashes

and associated causation factors that would have previously required

painstaking review of individual crash report illustrations;

• Promotes systematic network-based safety countermeasure analysis to pinpoint

factors and locations where countermeasures can provide the greatest benefit.

Results from the survey of state highway agencies (n=24) indicates disparate crash 

reporting systems are used across the country with regard to crash geocoding data and 

procedures.  All of the states responding to the survey have implemented electronic crash 

reporting to some extent; however, geocoding methods and accuracy varies from state to 

state, and also varies across jurisdictions within many states.  Best practices for crash 

geocoding centers on providing reporting officers with an aerial image background and 

integrated GPS.  The system should be deployed statewide and extend across all law 

enforcement jurisdictions.  A few states responding to the survey indicated use of 

integrated GPS without a reference map, however, a major concern with this configuration 

is that patrol vehicles record their own location via GPS coordinates and fail to accurately 

geocode the crash location, which is a critical aspect for all GIS analysis methods. 
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While deployment of SCCATTS has led to substantial improvement in crash 

geocoding, there is potential for additional improvement.  Based on assessment of 

SCCATTS crash accuracy and results from the survey of states, South Carolina SCCATTS 

system could be further improved by making an aerial background image available to 

reporting officers in the field.  An aerial image background is an improvement over a 

centerline only background because the officers can use visible landmarks and lane 

geometry to more precisely locate crashes.  For centerline only backgrounds, positional 

errors in the centerline will result in positional errors in crash locations and lead to 

limitations for use of the data in safety analysis.   

Any safety analysis can only be as good as the data being used in the procedures. 

The ability to collect spatially accurate crash data constitutes an essential element in 

enhancing a state transportation agency’s ability to conduct reliable safety analysis, as well 

as foster other transportation related research, resulting in more effective safety programs 

and policies for the traveling public. 
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CHAPTER THREE 

Paper II: Short Segment Statewide Screening of Midblock Crashes in South 

Carolina 

Co-authors of the paper: Afshin Famili, Wayne A. Sarasua, Devesh Kumar, 

Jennifer H. Ogle. 

Paper II was published at the 2018 Annual Meeting of the Transportation 

Research Board.  

ABSTRACT 

The AASHTO Highway Safety Manual (HSM) presents a variety of methods for 

quantitatively estimating crash frequency or severity at a variety of locations. The HSM 

predictive methods require the roadway network to be divided into homogeneous segments 

and intersections, or sites populated with a series of attributes. It recommends a minimum 

segment length of 0.1 miles.  This research focuses on segment lengths of less than 0.1 

miles for statewide screening of midblock crash locations to identify site specific locations 

with high crash incidence.  The paper makes an argument that many midblock crashes can 

be concentrated along a very short segment due to an undesirable characteristic of a specific 

site.  The use of longer segments may “hide” the severity of a single location if the rest of 

the segment has few or no additional crashes.  In actuality, this research does not divide 

sections of roads into short segments.  Instead, a short window approach is used.  The 

underlying road network is used to create a layer of segment polygons using GIS buffering. 
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Crash data are then overlaid and aggregated to the segment polygons for further analysis. 

The paper makes a case for the use of short fixed segments to do statewide screening and 

how accurately geocoded crash data is key to its use.  A comparison is made with a sliding 

window approach (Network Kernel Density).  The benefits of using fixed segments is that 

they are much less complex then using the sliding window approach.  Because the 

segmentation can be the same from year to year, direct comparisons can be made over time 

while spatial integrity is maintained.  

INTRODUCTION 

In Part B of the AASHTO Highway Safety Manual (HSM), a variety of network 

screening methods are presented for identifying and prioritizing sites with potential for 

safety improvement. These range from simplistic approaches such as calculating crash 

rates or severity indices to determining the excess predicted average crash frequency using 

safety performance functions (SPFs). The latter is the approach taken by SafetyAnalyst – 

an AASHTOWare software tool developed to support the safety management process at a 

state agency. Using this method, a site’s observed average crash frequency is compared to 

a predicted average crash frequency found using an SPF.  If the difference between the 

observed and predicted is greater than zero, the site experiences more crashes than 

predicted and might be considered as a candidate for further study.  two represents the 

excess predicted crash frequency.   
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To correctly apply any of the screening methods, the road network and crash data 

needs to be divided into road segments and intersections, and then further grouped into 

reference populations based on select characteristics (e.g., rural two-lane highways, or 

urban three-legged stop-controlled intersections).  Prioritization of sites is made within a 

reference population.  Some common characteristics used to define reference populations 

are listed in Table 1: 

Table 1: Common characteristics used to define reference populations 

Intersections: Segments: 
• Traffic control
• Number of approaches
• Number of lanes
• Functional classification
• Area type
• Traffic volume range
• Terrain

• Number of lanes
• Access density
• Traffic volume range
• Median type
• Operating speed
• Terrain
• Functional classification

Within each reference population, sites may be further disaggregated into 

homogeneous units by factors such as traffic volume, lane width, curve presence, median 

type, etc. Homogeneous, with respect to a roadway segment, implies that all of the 

characteristics of that segment are the same.   

While all state Departments of Transportation maintain a number of roadway 

attributes, few, if any, have a statewide database that contains all of the variables found to 

be of significance in the HSM safety performance functions. Driveway density, for 

example, is only collected by a few DOTS that have extensive asset management programs 

(2). Furthermore, state-specific SPFs tend to be limited to only one or two significant 

parameters either due to the lack of comprehensive data or due to lack of variability in the 
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design parameters. For example, the Safety Performance Function (SPF) for midblock 

segments used by Caltrans (3) only takes average annual daily traffic (AADT) into account 

as an explanatory variable.  The use of just segment AADT will not identify dangerous 

driveway locations regardless of segment length.  Further, if driveway density is 

incorporated in the analysis, high-turnover driveways are treated the same as low-turnover 

driveways. Stokes (4) showed that the characteristics of driveways and the land use they 

serve have a significant impact on crash incidence.  Studies (5, 6) have shown that 

geometric design has a significant effect on safety, especially on rural highways. They 

suggest that there is a relationship between geometric consistency and crash frequencies. 

Although one can find consistency among the effects of segment length and AADT, there 

is a variation in safety performance of horizontal alignment and access management 

strategies (7). When possible, it is best to disaggregate segments to identify such design 

features, and the HSM procedures reflect this strategy. 

The HSM recommends a minimum segment length of 0.1 miles for Safety 

Performance Function (SPF) development. One reason for this is that variability in crash 

location data can allow for incorrect assignment of crashes to the appropriate road segment 

(1). A number of researchers have indicated that spatially inaccurate crash data can 

adversely affect safety analysis (4). In 2008, the South Carolina Department of Public 

Safety undertook a major initiative to improve crash data quality through implementation 

of an automated crash data collection system called the South Carolina Collision and Ticket 

Tracking System (SCCATTS) to be used by law enforcement (8). This system enables 

officers to spatially see and locate crashes via a GIS-based GPS enabled mapping platform 

https://www.sciencedirect.com/science/article/pii/S0001457512003752#bib0010
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in police vehicles. The GPS displays the vehicle’s location on the GIS map display and 

then the officer can pinpoint the actual location of the crash rather than where the officer’s 

vehicle is (e.g. on the side of the road or in a parking lot, etc.).  The deployment of the 

system began in 2010 and as of April 2013, all SC highway patrol vehicles have been 

equipped with SCCATTS (8). SCCATTS has resulted in dramatically improved geocoded 

crash positioning.  An indication of this improvement is shown in Figure 1.  The US-25 

corridor example in Figure 1 shows that while 2010 crashes are mostly located on the sides 

of the roadway, or in parking lots, most of the 2012 crashes are shown on the roadway and 

in the location most likely to be where the crash actually occurred, as they were visually 

verified by officers using a map application.   

Figure 1: Rear-end and angle crashes on US 25 in Greenville, SC for 2010 (left) and 2012 (right) 
(images from Bing Maps) 

This research focuses on segment lengths of less than 0.1 miles for statewide 

screening of midblock crash locations to identify site specific locations with potential for 



46 

safety improvement.  The primary motivation for this research is that precise crash location 

data can overcome previous issues with using short segments.  Further, the use of short 

segments can potentially identify locations with a concentration of midblock crashes that 

may be related to an undesirable characteristic of a specific site. The use of longer segments 

may “hide” the severity of a single location if the rest of the segment have few or no 

additional crashes. In this research, short segment buffers are created from the underlying 

road network to create a GIS layer of segment polygons. Crash data can then be overlaid 

and aggregated to the segment polygons for further analysis. The statewide screening 

methodology presented in this paper has benefits over more complex spatial statistical 

approaches because of its ease to implement within a DOT.  Because the segmentation can 

be maintained from year to year, direct comparisons can be made over time while also 

ensuring spatial integrity. 

LITERATURE REVIEW  

At mid-block segments and on intersection approaches, researchers have evaluated 

the impact of different methodologies and criteria on the accuracy of high risk locations 

(hotspots). The literature review summarizes previous research and studies on hotspot 

identification using segment based analysis methods.  

Crash Screening using Segment Based Analysis Methods 

Crash screening methods are used widely to quickly characterize observed crash 

data from a large study area which will lead to identifying a smaller set of locations 
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(hotspots) that can then be analyzed in more detail. A description of crash screening 

methods is provided in HSM part B (1). The pros and cons of using different types of 

statistical methodologies in hotspot detection is also provided in the manual. 

The expected crash frequency where collision frequency is statistically modeled as 

a function of relevant features (e.g. road characteristics, traffic exposure, and weather 

factors) is a method for identifying potential hot spot locations (9,10,11,12). The Negative 

Binomial approach is one of the popular methods for modeling crash frequency. The 

approach is data intensive and requires significant effort in processing the related data and 

calibrating the corresponding models (13). Expected crash frequency can also be calculated 

through geostatistical techniques such as kernel density estimation (KDE) (14,15,16), K-

means clustering (17), Getis-Ord Gi statistics (14,18), and nearest neighbor clustering (16, 

19). 

Kwon et al (20) evaluated the performances of three different segment analysis 

methods (Sliding Moving Window (SMW), Peak Searching (PS) and Continuous Risk 

Profile (CRP)) to analyze freeways. They used the same input requirements for each of the 

three methods in the evaluation. Each of these methods were used to prioritize the detected 

sites for safety investigation and the lists were compared with previously confirmed 

hotspots. The length of segments defined in the approaches varied from 0.04 to 3.64 miles 

In 2008, Xie and Yan (21) employed a network KDE (NKDE) approach to 

estimating the density of spatial point events. The results showed that the NKDE is more 

appropriate than standard planar KDE for density estimation of traffic crashes because 

KDE covers space beyond the roadway network and is more likely to overestimate the 
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density values.  In follow-up research they conducted a study (22) integrating NetKDE 

with local Moran’I for hotspot detection of crashes. Using the combination of approaches 

with a 328-ft neighbor for Moran’s I computation, they found fewer statistically significant 

“high-high” (HH) segments and hotspot clusters.  

Dai et al. (23) have applied network-based geospatial techniques to identify crash 

clusters on the University of Georgia campus. They used network-based Kernel Density 

Estimation to identify high- density road segments and intersections, then used network-

based K-function to examine the clustering of pedestrian crashes. The results suggested 

that crashes occurred more frequently in road segments with strong street compactness and 

mixed land use present and were significantly (p<0.05) clustered in these high-density 

zones. 

Nie et al. (24) applied NKDE with Network-constrained Getis-Ord Gi* to detect 

spatial cluster patterns and identify hotspots in midblock segments. The methods were 

applied to one-year crash data in China. The results indicated that both methods performed 

well in identifying risky segments.  

Pande et al. (25) presented a classification tree based alternative to crash frequency 

analysis for analyzing crashes on mid-block segments of multilane arterials. The 

classification tree models provided a list of significant variables as well as a measure to 

classify crash cases. They provided the safety analysis community an additional tool to 

assess safety without having to aggregate the corridor crash data over arbitrary segment 

lengths. 
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Segmentation Length (Window size for the Peak Search Method) 

In the Peak Search method, the roadway network is divided into equal length 

segments and then each segment is examined using one of the hotspot identification 

methods. Previous researches (26) show that segment length has significant impact on 

identifying high crash locations and can affect the consistency of high crash locations (27). 

The results of a study conducted by Green and Agent (28) showed that up to 8 percent of 

crashes may be incorrectly located by over 500 ft because of the accuracy of recorded crash 

location. Hence, the accuracy of recorded crash location should be considered in defining 

the segment length.  

Lu et al. (29) employed a Negative Binomial model for divided segments using fixed 

length, variable length, and Fisher’s clustering methods. They applied a minimum segment 

length of 0.05 mile (264 ft) in Fisher’s clustering approach. In this approach, the roadway 

section can be considered as a set of samples while, the crash frequency can be considered 

as the crash indices. This study found that the relationship between crashes and 

independent variables is facilitated using Fisher’s clustering which improves the precision 

of SPF calibration over variable length and fixed length methods. 

Medury et al. (30) proposed a dynamic programming-based hotspot identification 

approach, which provides efficient hotspot definitions for pedestrian crashes. They 

compared the proposed approach with the sliding window method and an intersection 

buffer-based approach. The results suggested that the dynamic programming method 

generates more hot spots with a higher number of crashes using small hot spot segment 
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lengths. In addition, the sliding window method was shown to suffer from shortcomings 

due to a first-come-first-serve approach in hot spot identification. 

Literature Review Summary 

It is very clear from the literature that the research consensus is that short segments 

should be avoided in segment based safety analysis. Clemson University has done a great 

deal of research on the accuracy of crash geocoding. Based on this prior research, the 

authors contend that one of the reasons that short segment crash analysis does not provide 

meaningful results is in part because of the inadequacy of the locations of crashes. This 

research explores how spatially accurate crash locations can facilitate short segment crash 

analysis. 

METHODOLOGY 

South Carolina has made great strides to improve crash data quality within the state 

with the implementation of SCCATTS. The methodology for this research involved two 

approaches including 1) segmentation through polygon buffers of the underlying roadways 

at different intervals and 2) Network KDE/Sliding Window method. For this analysis 

multiple years of crash data was used. 

Segmentation (Peak Search) Approach using Polygon Buffers 

Crash Accuracy 

The deployment of a map-based crash geocoding system has greatly improved the 

quality of crash location data in South Carolina. Improved crash data helps to improve the 
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reliability of crash location identification and evaluation of countermeasure effectiveness. 

Among multiple attributes in a crash data set, the location of the crash has special value 

because in many cases, crash records with the wrong location cannot be considered in the 

analysis. Before 2011, the South Carolina highway patrol used hand-held GPS units to 

geocode crash locations.  This led to many systematic errors when officers transcribed the 

coordinates to the crash report.   The current SCCATTS system has now made virtually all 

crash data usable for safety analysis from a spatial location standpoint (Figure 2). 

Figure 2: Geocoded Crashes in South Carolina: a) 2004 all; b) 2012 Highway Patrol 

Short Segment Buffers 

In the first method, the research team initially used a variable buffer using the 

roadway width attribute in the SCDOT road characteristics database to create a GIS layer 

representing the road surface.  After careful examination, the SCDOT GIS centerline in 
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many cases was found to be displaced from its exact position. In this scenario, creating 

buffers with surface width might result in displaced buffers which might not be able to 

cover the whole roadway width. An example of this is presented in Figure 3. The green 

dots symbolize 2016 crashes while the orange colored strip represents the roadway. After 

experimenting with different buffer widths a fixed buffer of 50 ft on each side of the 

centerline was used to help ensure that all crashes along the roadway are accounted for in 

the analysis. 

Figure 3: Roadway Buffer created using Roadway Width 

Once the 50 foot wide roadway buffers were created in ArcGIS, the buffered layer 

was segmented using different fixed segment lengths.  The first segment length used was 

50 ft.  Once created, crash data could be overlaid with the buffers to identify critical 

segments with unusual number of high crashes. This was done using the spatial join 

operation in ArcGIS. Because the analysis focused on midblock crashes segments within a 
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150 ft radius of intersections were removed before the spatial join operation was 

performed. Figure 4 shows continuous as well as critical crash segments as created using 

the methodology. On the left side, continuous 50 ft buffer segments are shown while on 

the right side, critical crash segments with a crash count of 4 or more crashes are presented. 

The remaining segments were turned off in the right-side image. 

Figure 4: Continuous vs Critical Crash Segments (50 ft) in Anderson County, SC 

The total network length assessed with this approach is 41,282 miles. The initial 50 

ft segment length was due to Stokes (4) who found that a driveway’s primary influence 

area is roughly equal to the driveway width plus a car length before and after the driveway. 

Subsequently, the length was increased with an increment of 50 ft up to the recommended 

HSM minimum length of 1/10 mile (~500 ft). Hence, a total of six different segment 

lengths (50 ft, 100 ft, 150 ft, 200 ft, 250 ft and 500 ft) were created with an objective of 

evaluating the different lengths to determine the most appropriate length of fixed segment 

buffers for network screening analysis.  
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Aggregating Crash Data to Segment Buffers 

Once the polygon buffers with different segment lengths were created, the 

midblock crash data was aggregated to the segment buffers. Prior to associating crash data 

with these segment buffers, the crashes within 150 ft of intersections were removed.  The 

150 ft length was used after discussions with SCDOT to identify the intersection area of 

influence.  Crashes within the intersection influence area were not considered as midblock. 

The crashes were aggregated to the segment buffers using the spatial overlay (spatial join) 

operation in ArcGIS. The resulting segments were stratified based on the number of crashes 

they contained. Figure 5 shows critical segments identified for 50 ft polygon segments. 

This is a section of Broad River Road in Columbia, South Carolina and the colored polygon 

segments represent an occurrence of 4 or more cashes occurring in the year 2012.  The 4 

crash threshold was chosen based on discussions with SCDOT.  They identified that 

choosing a crash threshold that produced less than 500 segments would be management 

for network screening purposes. The red polygon segment has 7 or more crashes. 
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Figure 5: A length of Broad River Road in Columbia, SC showing 50 ft Road Segments with 4 or 
more Crashes in 2012. 

Creating these buffers helped in identification of various type of critical midblock 

segments. Figure 6, 7, and 8 show how the short segment overlay analysis identified 

locations with unusually high number of crashes.  Figure 6 shows a location associated 

with a dangerous horizontal curve.  Figure 7 shows a partial clover interchange ramp using 

2012 data.  A look at 2016 data showed a significant drop in the number of crashes.  The 

2016 imagery shows that the ramp was realigned which served as a successful 

countermeasure.  Figure 8 shows a midblock driveway location with an unusually high 

incidence of crashes. 
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Figure 6: Dangerous horizontal curve at Reid school Rd towards Wade Hampton Blvd, Taylor 

Figure 7: Partial clover interchange ramp using 2012 and 2016 data at Liberty Highway, Anderson 
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FIGURE 8: Midblock driveway location with an unusually high incidence of crashes at Dick Pond 
Rd / Strand Market Dr. near Myrtle Beach 

Network KDE 

Planar KDE considers a planar area of influence for each crash. However, in NKDE 

each crash has impact on a chosen distance (bandwidth) along the network. In other words, 

a 0.1 mile bandwidth on a network means 0.1 mile from a crash in shortest path distance. 

The NKDE estimators are as follows: 

Where: 

h: defined bandwidth 
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k=function of network kernel density 

d: shortest path distance from the center of the bandwidth along the network 

Multiple models can be used to estimate the distance in the NKDE function 

including Gaussian, Quartic, Conic, negative exponential, and epanichnekov (31, 32). The 

Gaussian function of k is defined as: 

It is often that the density values calculated from NKDE are considered to be 

positively spatially auto-correlated, and nearby density values considered to be similar to 

each other since neighboring points within the distance of a bandwidth are used in the 

NKDE process. Therefore, it is assumed that there is no need to carry out additional spatial 

auto-correlative analysis on density values. One of the main limitations for KDE and 

NKDE is that no statistical inference can be evaluated in the process and there is no 

indication of a density threshold which a hot spot can be confidently stated. It might be 

guessed that locations with high density values could possibly be hot spots, but no 

mechanism has been available in KDE to assess their statistical significance. By conducting 

a statistical significance analysis on density values it is possible to evaluate formally the 

statistical significance of the extensiveness of locations with high density values, and to 
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determine if hot spots of traffic accidents actually exist consistently along certain portions 

of a roadway network (33). 

RESULTS AND DISCUSSION 

Peak Search Method Using Small Window Size 

In this approach, whole South Carolina’s road network (41,282 miles) was 

assessed. The initial use of 50 ft segment buffers produced 274 segments with 4 or more 

crashes using 2016 data.  This turns out to be 0.000062% of the total midblock 50 ft 

segments. This was deemed manageable to look at on a case by case basis by SCDOT.  A 

closer look indicated that many of the segments did not include crashes that were probably 

associated with the driveway (see Figure 9 for example).  This finding justified trying 

longer segment lengths with the intent of identifying roadway midblock locations with an 

unusual number of crashes.  Thus, the researchers tried a series of segment lengths in 50 ft 

increments up to the recommended HSM minimum of 1/10 mile.  For each increment, the 

researchers tabulated the number of segments with a range of crashes (see Table 2). A 

segment length of 100 ft with 4 or more crashes increased the number of segments to 554 

out which is 0.00025% of the total 100 ft midblock segments.  This was close to the 

threshold identified by SCDOT as manageable for network screening purposes.  A closer 

look at these segments showed that in nearly all cases, the crashes seem to be concentrated 

at a single driveway or a geometric event such as a curve (see Figure 10).  

 The increase to 150 ft identified 1,017 segments, 0.00068% of the total 150 ft 

midblock segments. A closer look at these showed many segments with more than 1 
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driveway.  Further, many of the 50 ft segments and even the 100 ft segments with the 

highest number of crashes were not as highly ranked when 150 ft was used.  This indicated 

that a combination of locations was beginning to play a role in the crash incidence. 

Increasing the segment length to 1/10 mile (500 ft) and ranking the top segments from a 

crash incidence standpoint resulted in only 23% of the 100 ft segments and less than 14% 

of the 50 ft segments were included in the highest ranked 1/10 mile segments.  This 

indicates that the longer segment length diluted the effect of a dangerous driveway or 

geometric situation.  Our segment length analysis indicated that 100 ft would be an ideal 

segment length for short fixed segment analysis.  

Figure 9: Woodruff Road, Greenville 

Table 2: Critical Crash Segments for various lengths of segments 
Buffer Length 
(ft) 50 100 150 200 250 500 

Crash Segments 
(>=4 crashes) 274 554 1017 1,243 1,437 1,911 

Total Segments 4,415,467 2,221,710 1,49,7088 1,132,157 913,038 475,049 
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Figure 10: Crashes concentrated at a single driveway (Woodruff Road, Greenville) 

NKDE Method 

In this approach, the road network in Anderson County (1,302 miles) was selected 

on a sample basis for the assessment. NKDE has been adopted as a practical method for 

decision making in this research. Combination of SANET 4th Edition and ArcGIS pro has 

been used to implement NKDE.  To make it comparable with peak search method, this 

study used the same window size (50 ft, and 100 ft bandwidth) and 5 ft lixel size and a 

Gaussian kernel function. The method calculates the density at the center of each lixel and 

the whole lixel will have that value. Figures 11a and b illustrates the spatial pattern of 

crashes for Anderson County with these two chosen bandwidth.  

The red circle on the figure represents the identified high crash locations. As it can 

be noticed, the bandwidth plays significant role in structuring the network density pattern. 

The density pattern showing longer segments as high density with increasing search 

bandwidth (50 ft and 100 ft, respectively), when the kernel function is the same (Gaussian) 
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and at the same lixel size (5 ft). It appears that the narrow bandwidths (50 ft) may produce 

patterns suitable for presenting local effects or “hot spots” at smaller scales. As the search 

bandwidth increases from 50 ft to 100 ft, the high crash locations are gradually combined 

with their neighbors, and larger clusters appear. A high bandwidth might affect a safety 

professional’s decision as it suggest longer segments for improvement. 

Figure 11: NKDE method with bandwidth of a) 50 ft  b) 100 ft 

Comparison of two methods 

Figure 12a and b represents a hotspot locations identified using the peak search 

method (100 ft window size) and NKDE method (100 ft bandwidth) respectively. As can 

be seen, the NKDE method will identify continuous local hotspots. However, the short 

segmentation approach will result in discrete identification. As visible in Figure 4, the 

NKDE method generated continuous corridors while peak search method generated 

discrete locations which can be attributed to single driveways or other geometric feature 
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which is not possible in former method. Also, due to discrete locations being short in length 

(100 ft segments) it may be more economical to make improvements as compared to 

improving a whole corridor. However, proper analysis of prioritized corridors should also 

enable discovery of these point issues. 

One of the advantages of using fixed segments is the same window slots with 

potential minor updates can be used for subsequent years facilitating temporal analysis. 

Different window sizes can be created once and can be used to find an optimal size for the 

study area. This can help state DOTs in terms of implementation because of the simplicity 

of the short segment method. Further, the result of the segmentation is easier for safety 

professionals to interpret and implement countermeasures.  

Figure 12: (a) NKDE using 100 ft bandwidth (b) Peak Search using 100 ft window size 
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NETWORK SCREENING USING 100 FOOT SEGMENTS STRATIFIED BY ROADWAY 

TYPE 

To evaluate the accuracy of short-window peak search method, three specific road 

configuration has been stratified (rural two lane, rural multilane and urban and suburban 

arterial). The urban arterial includes undivided two-lane and a three-lane and five-lane 

section with a center of TWLTL (U2U, U3T and U5T respectively). Rural sites include 

two way two lane undivided and rural 4 lane divided (R2U and R4D respectively).  

Comparison of Highest Ranked Segments Based on Excess Predicted Frequency and 

Absolute Crash Frequency  

SPFs and CMFs for driveways have been calculated based on data obtained from 

(4). The “Excess predicted average crash frequency using SPFs” method is compared 

against absolute crash frequencies obtained at each site.  Using the excess prediction 

method, a site’s observed average crash frequency is compared to a predicted average crash 

frequency found using an SPF.  If the difference between the observed and predicted is 

greater than zero, the site experiences more crashes than predicted and might be considered 

as a candidate for further study.  The reasons of choosing this method are more accurately 

calculating the potential for safety improvement and acknowledging the complex, non-

linear relationship between crash frequency and volume (1). Figure 13 represents the 

comparison of highest ranked 100’ segments based on excess predicted and absolute crash 

frequencies stratified by roadway type. Since most DOTs do not collect detailed data 

regarding driveway and geometric design features throughout the state, finding an 
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alternative to use of SPFs can be cost effective and can save time in data processing. The 

results show that short-segment absolute frequency method can fairly accurately obtain the 

top 20% of sites with accuracies ranging from 76.9%-100% when compared to the robust 

approach of using excess predicted average crash frequency.  The exception to this was in 

the rural four-lane divided reference population where sample sizes were small. However, 

as you move down the priority list, the short window approach becomes less effective.     

Figure 13 Comparison of highest ranked 
segments using 100 ft segments stratified by 
roadway type. 

Note: numbers in parentheses shows the 
number of short segments which are top ranked 
in “excess predicted average crash frequency 
using safety performance functions” technique. 
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CONCLUSIONS 

This paper focused on using short fixed length segments for statewide screening of 

midblock crash locations.  In this analysis, segmentation is only accomplished through 

polygon buffers of the underlying roadways at different intervals.  Thus, varying link based 

attributes are not necessary.  Crash data is aggregated to the buffers through a spatial 

overlay (spatial join) operation in ArcGIS and buffer segments with the highest number of 

crashes can be identified.   This research indicated that fixed length segments are a viable 

alternative to sliding window approaches.  There are two benefits of using short fixed 

segments:  1) the GIS polygon layer consisting of the segments can be used from year to 

year to allow for temporal comparisons; and 2) the use of fixed segments combined with a 

spatial join is a much simpler screening approach than using the sliding window approach. 

Further, the results of the fixed segment approach are easy to interpret. A prioritized 

ranking of the most hazardous segment locations can be easily tabulated and can be 

displayed thematically on a GIS map. 

The ideal segment length for identifying candidate locations for counter measures 

was found to be 100 ft. At this resolution, crashes can usually be associated with a single 

location specific characteristic such as the presence of a hazardous driveway or geometric 

characteristic.   Longer segment lengths were found to dilute the impact of point source 

crash location. It is noteworthy that application of location specific countermeasures might 

be more cost effective than trying to do corridor length improvements.  

Network screening using stratified 100 ft segments of different roadway types 

showed that SPF method (using excess predicted average crash frequency) and the peak 
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search method (using short window size) reveals the similar results at the highest priority 

level and the later can be used as an alternative in case of insufficient data on detailed 

driveway and roadway characteristics. 

One significant finding of this research is that short segment screening is only 

viable if accurately geocoded crash data is available.  This is likely only possible with GIS 

based crash management approaches combined with high accuracy GPS data locations.  
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of South Carolina 
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Paper III is in the process of being submitted to scholarly journal. 

ABSTRACT 

The primary objective of this research is to evaluate the predictability of a short 

segment peak search method with lengths of less than 0.1 miles for the statewide screening 

of midblock crash locations. Three different approaches, based on Highway Safety Manual 

Manual (HSM) Safety Performance Functions (SPFs), are used to evaluate reliability of 

the short segment method to identify problematic network crash sites. These approaches 

include, 1.) state specific SPFs, 2.) driveway SPFs (using only AADT) and 3.) driveway 

SPFs with adjusted crash modification factors (CMFs). Frequency based identification of 

short segments stratified by six different roadway types (R2U, R4D, U2U, U4D, U3T, and 

U5T) was compared with three SPF based screening methods to identify short segments 

with the highest excess predicted average crash frequency. For short segment sites with 

highest crash frequencies (3 for U3T, U4D and U2U; 4 for U5T, and 2 for R4D and R2U) 

comparisons indicated similar results (Top 90% agreement). Thus, in the event sufficient 

data in not available to apply SPFs, a frequency-based short segment approach provides an 



75 

effective means to identify problematic top sites exhibiting highest number of crashes. As 

we move down the list, the reliability of this method wanes. 

INTRODUCTION 

South Carolina consistently ranks among the highest rates for fatalities per VMT 

and fatalities per 100,000 population in the United States. Furthermore, South Carolina 

incurs over two billion dollars in economic loss annually due to roadway traffic crashes. In 

2018, 158,448 motor vehicle crashes were recorded in South Carolina (1), resulting in 977 

fatalities and 38,393 injuries. There is considerable body of research and guidance on 

network screening methods for identifying and prioritizing sites with potential for safety 

improvement, however much of the focus is placed on reducing intersection-related 

crashes. While the largest proportion of all crashes in 2018 occur at intersections (51%), 

more than half of the fatal crashes (62%) occur along midblock highway sections (1).  

In 2008, the South Carolina Department of Public Safety (SCDPS) embarked upon 

a major initiative to improve crash data quality through implementation of an automated 

crash data collection system entitled the South Carolina Collision and Ticket Tracking 

System (SCCATTS) to be used by law enforcement agencies (2). One of the principal 

objectives of SCCATTS is to obtain more timely, accurate, and complete crash and citation 

data, resulting in improved quality in law enforcement crash data. Deployment of the 

system began in 2010, and as of April 2013, all SC highway patrol vehicles were equipped 

with SCCATTS (2). SCCATTS has resulted in dramatically improvement in geocoded 

crash positioning data. Currently, South Carolina collects 80 percent of its crash reports 
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electronically, and this effort will continue to reduce submission of  paper crash reports on 

an incremental basis with the ultimate goal of eventual elimination  (3). With the benefit 

of obtaining precisely geocoded locations of midblock crashes, a new opportunity emerged 

in network safety analysis to identify short road segments with a high incidence of crashes. 

Network screening methods for midblock crashes range from simplistic approaches 

such as calculating crash rates to advanced methods using Empirical Bayes (EB) to 

determine the excess predicted average crash frequency using safety performance functions 

(SPFs). The latter is the approach used by SafetyAnalyst – an AASHTO software tool 

developed to support the safety management process within state agencies. A SPF consists 

of two primary elements: (1) Estimates of the mean of the expected number of crashes (μ) 

of each unit (road segments, intersections, grade crossings, etc.) in each population and the 

standard deviation of this estimate; (2) the standard deviation of the μ’s in each population, 

which considers the diversity of within the population unit (4). For SPF application, one 

has to include important population defining traits (variables including traffic, geometry, 

operation, etc.) for practical applications (4). 

Although traditional methods using crash frequencies needs minimal requirements 

for input data, values may be biased to regression-to-the-mean (RTM). This bias may result 

in overestimating the need for a countermeasure at a location with a high amount of crashes  

experiencing extreme random events within a single year due to random fluctuations in 

crash occurrences (5). While Empirical Bayes method focuses on use of expected average 

crash frequencies for both the before and after periods to address RTM bias, use of longer 

segments may “hide” the severity of a single location, if the remaining portion of the 
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segment has few or no additional crashes. The use of short segments in roadway corridor 

safety analysis can potentially resolve this issue by identifying locations with a 

concentration of midblock crashes that may be related to undesirable characteristics of a 

specific site. Furthermore, application of fixed length short segments may have additional 

benefits over more complex spatial statistical approaches (e.g. moving windows) within 

state DOT agencies, due to relative ease of implementation (6). However, adoption of 

segmentation definition parameters for this method may need to be revised to reflect 

common roadway geometry characteristics. 

This research focuses on evaluating the predictability of a short segment peak 

search method with lengths of less than 0.1 miles for a statewide network screening of 

midblock crash locations. Short segment buffers are created based on the underlying road 

network to create a GIS layer of short segment polygons. Specifically, geocoded crash data 

is overlaid based on superimposing crash locations onto the short segment polygon 

projections and aggregated for further analysis through the use of roadway classifications 

and application of network screening criteria (6). The primary objective of this research is 

to perform test of applications investigating the effectiveness of the short segment approach 

for network safety analysis screening, using existing HSM SPF methods to demonstrate 

methodology feasibility and to document research results. 
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LITERATURE REVIEW  

Numerous hotspot identification procedures or network screening techniques are 

used by agencies responsible for highway safety to identify and prioritize problematic crash 

locations for potential safety improvement. Some of the most common methods include 

“sliding moving window”, “Peak Searching”, “Continuous Risk Profile”, and “Latent 

Class Clustering”. The literature review summarizes previous research and studies 

conducted on evaluation of peak search methods using safety performance functions, the 

choice of segmentation length, and examples of segmentation studies conducted in South 

Carolina. 

Evaluation of Network Segmentation with Other Safety Methods 

The use of segmentation of roadways has been applied successfully to effectively 

address safety analysis criteria with regard to producing meaningful results. Casifo et al. 

(7) compared the peak search segmentation method based on five different safety traits

(traffic volume, radius of curvature, vertical gradient, type of section, roadside attributes) 

and used goodness of fit of the SPF to evaluate each approach. Their evaluation determined 

that a fixed length segment with two tangents and two curves resulted in the best fitting 

SPF. They also used a fixed length segmentation technique by dividing the roads sample 

into segments in which all the highway characteristics (exposure, geometric, consistency 

and context-related variables) were constant and used to establish a minimum length of 

significant for accident expectation. 
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Kwon et al. (8) evaluated the performances of three different segment analysis 

methods (Sliding Moving Window (SMW), Peak Searching (PS) and Continuous Risk 

Profile (CRP)) to analyze freeways. They used similar input requirements for each of the 

three methods in conducting the evaluation. Each of these methods was used to prioritize 

the detected sites for safety investigation, and the lists were compared with previously 

confirmed hotspots. The length of segments defined using these approaches varied from 

0.04 to 3.64 miles. The study concluded that the Continuous Risk Profile (CRP) screening 

method out-performed the Sliding Moving Window and 13 Peak Searching methods. Qin 

and Wellner (9) conducted research concluding that a sliding window (variable) method 

provides more reliable predictive results than use of fixed length. They explained the 

impact of segmentation technique on traffic safety with the prevalence of Empirical Bayes 

(EB) methods.  

The Impact of Segment Length in Peak Search Method 

For application of the peak search method, the roadway network is divided into 

equal segment lengths, after which each segment is examined using one of the safety 

analysis methods. Several studies (10, 11, 12) have shown that the choice of segment length 

significantly affects the consistency in identifying high-crash locations, which adversely 

influences reliably estimating safety analysis outcomes. Results from studies such as this 

have led to wide-ranging professional discussions and debates within highway safety 

analysis fields on criteria and outcome thresholds for selecting and applying optimal 

roadway segmentation lengths for network-based midblock crash analysis.  
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Conversely, findings from similar safety analysis studies (9, 13, 14) have shown 

that using short segment lengths exhibit tendencies of producing undesirable results of high 

crash variation leading to uncertainties in SPF performance. However, it should be noted 

for the purpose of this research, only a small portion of midblock segments may require 

improvement, while choosing long segmentation intervals may be economically 

impractical. Additionally, a number of common safety countermeasures are likely to only 

be feasible if applied over relatively short distances, such as an increased turn radii for 

driveways/intersections, shielding for protection from roadside hazards, or a host of other 

safety countermeasures due to associated absorbent cost of improving longer segments. 

Examples of Segmentation Studies in South Carolina 

Beginning in 2010, South Carolina has made great strides in improving crash data 

quality within the state through the systematic implementation and roll-out of South 

Carolina Collision and Ticket Tracking System (SCCATTS).  Deployment of the system 

began in 2010 and as of April 2013, all SC highway patrol vehicles have been equipped 

with SCCATTS (1). The primary goal of this research is to examine how precisely 

geocoded crash locations in SCCATS can potentially be used to screen, investigate and 

evaluate safety analysis outcomes based on use of short segments. 

Famili et al. (6) conducted an evaluation of evaluation midblock safety based on 

fixed-short segment length (less than 0.1 mile) using 2016, 2017 and 2018 crash data in 

South Carolina. A premise of the research was focused on address the occurrence of 

midblock crashes clustered along a very short segment length due to undesirable 
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characteristics of a specific site within a predetermined longer segment length. Researchers 

used the underling road network to create a layer of segment polygons using GIS buffering. 

Findings supported use of 100-foot length polygons as an ideal length to best identify 

individual candidate locations for application of safety countermeasures, which can be 

associated with specific physical problematic roadway characteristics such as the presence 

of hazardous driveways or undesirable geometric characteristics. 

Rajabi et al. (15) collected and compiled a comprehensive data set needed to 

calibrate each of the 18 SPFs, identified in the HSM, for the state of South Carolina. The 

study developed a robust database and calibration factors for all roadway segment and 

intersection combinations commonly occurring throughout the state. State geography is 

best described by three distinct subregions, coastal, midlands, and upstate, with each 

exhibiting unique terrain, weather conditions, and traffic patterns; specific SPF calibration 

factors were developed for each of the three subregions. 

Another study conducted for SCDOT (16) created an estimation of CMFs 

determined directly from coefficients developed from a negative binomial model, based on 

a sample size of 3,774 driveways. The method used for developing CMFs was based on 

multiple studies referenced in a US DOT/FHWA study reviewing methods for developing 

CMFs including overview of procedures, sample size considerations and strengths and 

weaknesses of each approach (17). Variables considered for use in developing CMFs 

include driveway spacing, driveway class, roadway AADT, driveway access, number of 

entry lanes, driveway width, and corridor speed limit. 
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Literature Review Summary 

As identified in the literature, use of short-length segments need to address safety 

analysis concerns that results from the approach may be adversely affected by inconsistent 

results for high crash locations. Conversely, use longer segments may also be economically 

impractical to use due to a host of practical considerations pertaining to implementation of 

cost effective and targeted site-specific safety countermeasures.  With an overarching 

objective of finding an optimal medium between these two methodological limitations, this 

research provides a framework to evaluate and investigate the predictability of using a short 

segment approach based on HSM SPF prediction method as the basis for identifying 

network-level midblock crash locations exceeding specified threshold criteria. 

METHODOLOGY 

This section provides a comparative overview of the frequency-based identification 

approaches using short segments with three SPF-based screening procedures for evaluating 

application of a short segment methodology for conducting network-level safety analysis. 

Approaches include, state specific SPFs, Driveway SPF (using AADT data only) and 

driveway SPFs with adjusted CMFs (for specific driveway characteristics), all 

methodologies of which are adopted for this use in conducting research and described 

individually. Figure 1 provides a visual conceptual representation steps in the procedures 

identified in a flowchart of the study. 
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Figure 1: Flowchart of the study 

The AASHTO Highway Safety Manual (HSM) recommends segmenting 

roadways/highways based on their geometric characteristics to generate homogenous 

segment lengths. HSM Part C includes the division of roadway segment models based on 

geometric characteristics such as the number of lanes, lane width, median etc. Segments 

are classified and identified by road type, number of lanes and median type. The first 

character represents the type of land use, U for urban areas and R for rural areas. A second 

character is a number that represent the total number of lanes in both directions and the last 

character is the median type for the specific roadway ‘D' for divided medians, ‘U' for 

undivided median and ‘T' for two way left turn lane. For this research, the roadways were 

also divided as suggested in the HSM. Based on the state DOT’s classification system in 

South Carolina, roadways are divided into six distinct categories summarized in Table 1.  
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Table 1: Roadway Types by Definitions 

Roadway type Definition No. of lanes Median Mileage 

R2U Rural 2 Undivided 16,055 

R4D Rural 4 Divided 829 

U2U Urban 2 Undivided 8,761 

U4D Urban 4 Divided 357 

U3T Urban 3 TWLTL 278 

U5T Urban 5 TWLTL 795 

Three years of crash data (2016, 2017 and 2018) was used as the basis for 

conducting the analysis.  Prior to applying any of these network-screening methods, it is 

essential to create buffers and identify driveway locations. All midblock crashes within a 

150- foot radius of intersections were eliminated for this research in GIS platform (See

Figure 2). Fixed polygon buffers start at the beginning point of network and continue along 

the entire route until the ending point of network roadway. Researchers collected and 

entered data describing driveway characteristics such as width, access type, class, etc. that 

was used as the basis for screening methods included analysis. 
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Figure 2: Comparison of 3 methods 
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Short Segment Network screening method 

Uniform short segments of 100-feet in length were established using specialized 

buffer routines in ArcGIS. Depending on roadway type, buffer widths of either 75-feet or 

125-feet were used in the transverse direction to encompass the entire road right-of-way 

(ROW) and roadside limits.  Researchers initially used a variable buffer based on roadway 

width obtained from the SCDOT’s Roadway Information Management System (RIMS), 

however, systematic positional issues of the roadway centerline resulted in portions of the 

actual roadway not being included in the buffers.  Thus, larger buffer widths were tested. 

After several trial and error investigations, a 75-feet and 125-feet width buffered on either 

side of the centerline were determined to provide the best fit for roadway group types of 

R2U, U2U, U3T and U5T, U4D, R4D. These adopted buffer widths would capture all the 

crashes occurring along any particular segment in question. These roadway buffers were 

established using GIS using the basis of fixed 100-foot length. The 100-foot segment length 

was selected based on reflecting delineation results from Rajabi et al. (15) asserting that 

the influence area of a driveway is most nearly equal to the driveway width, plus a car 

length before and after the driveway. After the buffer creation process, crashes were 

overlaid for each year (2016, 2017, 2018) individually to identify high-risk locations. To 

ensure that the crashes influenced by the intersections were not included in the analysis, 

crashes occurring within 150-foot radius of an intersection were eliminated from the 

database. The 150-ft segment length was used after discussions with SCDOT to best reflect 

representative intersection influence areas (17). 
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The total network length included in the database and assessed in this short segment 

network screening approach was 41,282 miles of roadways. In overlaying crashes with 

short segment buffers, each segment was ranked based on the absolute number of crashes 

occuring within each preestablished 100-foot long segment buffer. Through application of 

this method researchers were able to effectively identify the most critical midblock crash 

segment locations extracted for an expansive statewide network, in a relatively short period 

of time.  

South Carolina Calibrated SPFs 

Statewide calibrated SPFs developed by Rajabi et al. (15) were used as the basis 

for predicting average crash frequency. It is important to note that SPF's are state-specific 

and site-specific for locations sharing similar characteristics. A site's observed average 

crash frequency is compared to a predicted average crash frequency using an SPF.  If the 

difference between the observed and predicted was greater than zero, then it was concluded 

that a site experiences more crashes than predicted, indicating the need for consideration 

as a candidate location for further study. Candidate sites identified using this screening 

method represent locations experiencing observed crash frequency exceeding predicted 

crash estimated values.  To appropriately apply any of these identified screening methods, 

the road network and accompanying crash database needs to be subdivided into 

predetermined midblock segments, and then further grouped into descriptive reference 

populations based on selected roadway geometric characteristics (e.g., rural two-lane 

highways, or urban 4-lane with TWLTL).  Table 2 represents site-specific coefficient 
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values for each specific segment facility types that were obtained from (15) and used to 

calculate the predicted number of crashes.  

Table 2: Shows the Different Coefficient Values Used for Each Roadway Types 
Facility Type Variable Estimate p-value

R2U AADT 0.6441 <0.00 
R4U AADT 1.3841 <0.00 
U2U AADT 0.5612 <0.00 
U3T AADT 2.7995 <0.00 
U4U AADT 1.2514 <0.00 
U4D AADT 0.979 <0.00 
U5T AADT 0.8943 <0.00 

Average predicted crash frequencies calculated for each segment were determined 

based on equation 1. 

  𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒𝛽𝛽�0+𝛽𝛽�1×ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)+ln(𝐿𝐿)+ � 𝛽𝛽�𝑖𝑖
𝑛𝑛
𝑖𝑖=1 (𝑋𝑋𝑖𝑖−𝑋𝑋𝑏𝑏𝑖𝑖)                                            (1) 

Where: 

L= Segment Length 

AADT = Average annual daily traffic 

�̂�𝛽0, �̂�𝛽1: Coefficients of regression 

Predicted Crash for each driveway Based on segment AADT 

A separate ranking of buffers was performed based on predicted crashes for each 

driveway using segment Average Annual Daily Traffic (AADT) data (see equation 2). The 

predicted SPF was calculated based on findings identified in the study conducted by Rajabi 

et al. (15). The purpose of this analysis was to create a comparison for predicted driveway 

crashes within the context of the short segment method. Predicted SPFs for each driveway 
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were determined based on roadway segment AADT values.  Within each reference 

population, driveways were further disaggregated into homogeneous subdivisions based 

on traffic volume factors. The results from this safety analysis model approach can also be 

directly compared with the State Specific SPFs as both are based upon the same parameter 

(roadway segment AADT). Furthermore, results of this analysis would also be useful in 

determining the effectiveness of traffic volume for estimating predicted crash frequency. 

This method allows researchers to assess if predicted crashes for the driveway, using only 

AADT, function as a deterministic factor for predicted crashes. 

Nspf= e (-16.52+1.668*Log ( [AADT])  (2) 

Predicted Crash for each Driveway Based on Driveway Characteristics 

Another analysis approach used to predict crash frequency was determined based 

on CMFs that include driveway characteristics. Multiple studies support the use of this 

method as an effective means for conducting network-based safety analysis (14, 15). The 

CMF for this approach accounts for AADT, driveway class, and driveway access. These 

safety-related characteristics were collected for driveways exhibiting high crash 

frequencies. CMFs for continuous variables are estimated using equation 2 (16). 

 (3) 

Where: 

xj = range of values or a specific value investigated (e.g., lane width, shoulder 

width, etc.) for CMFj; 
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yj = baseline conditions or average conditions for the variable xj (when needed or 

available); and 

βj = regression coefficient associated with the variable j. 

The CMF model is based on the assumption that each variable is independent and 

therefore, not influenced by other values. The method also assumes the relationship 

between the change in the variable value and change in crash frequency is exponential (as 

a negative binomial model). Table 3 summarizes  derived crash modification functions 

(CMF) for driveway class and access within indicated confidence interval limits (16). 

Driveway access and class were collected for high ranked crash frequency buffer 

locations as identified based on application of the short segment method. Predicted crash 

frequency for each driveway, based on segment AADT, was adjusted based on CMFs. A 

segment’s observed average crash frequency was compared to a predicted average crash 

frequency using an SPF.  If the difference between observed and predicted crashes was 

greater than zero, then it was concluded that a driveway experiences more crashes than 

predicted, indicating the need for consideration as a candidate location for further study. 

Table 3: Crash Modification Factors (14) 

Variables CMF 95% Confidence Bounds 

Median (1 for raised, 0 for all others) 0.49 0.00 1.12 
D_Class4 2.12 1.94 2.30 
D_Class5 2.31 2.01 2.60 
D_Control 4.08 3.73 4.44 
RIRO 1.26 0.37 1.72 
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RESULTS AND DISCUSSION 

Validation of short segment method using South Carolina Calibrated SPFs 

Midblock segmentation from intersection to intersection have been created 

throughout the state for six different roadway type. Segments were established using 

statewide roadway network information from the SCDOT RIMS dataset that includes 

AADT and SPFs using AADT for segments calculated based on data obtained from (15). 

Excess predicted average crash frequency using SPFs was compared against absolute crash 

frequencies observed for each segment.  Using the excess prediction method, a segment’s 

observed average crash frequency was compared to a predicted average crash frequency 

using an SPF.  If the difference between observed and predicted was greater than zero, a 

segment was determined to experience more crashes than predicted and indicating the need 

for consideration as a candidate location for further study.  Reasons supporting use of 

approach as an effective method include: more accurately calculating the potential for 

safety improvement and acknowledging the complex, non-linear relationship between 

crash frequency and volume (6). Table 4 provides a comparison of highest ranked 100-

foot short segments based on excess predicted and absolute crash frequencies stratified 

with regard to roadway type. A segment length of 100-feet with selected 2, 3 and 4 or more 

crashes for different roadway types were determined based on threshold criteria identified 

by SCDOT as practical values for network screening purposes. Figure 3 presents U5T top 

short segments for crash data from 2017. Using a frequency of four observed crashes as 

the screening criteria for evaluation of U5T short segments, 358 of the locations of concern 

were identified through use of this method as candidate locations for further study. 
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Additional top crash segments for other roadway types, similarly identified through 

application of this screening method are compiled in Appendix B.  

Figure 3: Top U5T Short Segments for 2017 

Furthermore, results indicate that use of the short-segment absolute frequency 

method obtained 98.5%, 99% and 99.3% of site screening for 2018, 2017 and 2016 crash 

data, respectively. One limitation of this method exists for U3T for which screening 

methods captured a lower percentage of short buffers that were occurring as indicated from 

crash data within the excess intersection to intersection segments. 
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Table 4: Validation of Short Segment Method Using Roadway Predicted SPF 

Roadway 
Type 

Total Int 
to Int 

Segments 
Year 

Actual > 
Predicted 

SPF 

Excess 
Percentage 

100’ Short 
Segments 

Segments 
within 
excess 

# Crashes 
considered 

in Short 
Segments 

Segments 
within 
excess 

(%) 

U5T 9430 
2018 2896 31% 392 392 

≥4 
100% 

2017 2572 27% 358 358 100% 
2016 2501 27% 329 329 100% 

R2U 62376 
2018 7613 12% 316 316 

≥2 
100% 

2017 7443 12% 337 337 100% 
2016 7634 12% 312 312 100% 

U3T 3832 
2018 711 19% 62 57 

≥3 
92% 

2017 690 18% 79 74 94% 
2016 680 18% 79 76 96% 

U4D 3587 
2018 1002 28% 125 124 

≥3 
99% 

2017 945 26% 191 191 100% 
2016 903 25% 182 182 100% 

R4D 3847 
2018 902 23% 93 93 

≥2 
100% 

2017 896 23% 144 144 100% 
2016 886 23% 147 147 100% 

U2U 82214 
2018 6055  7 % 208  208 

≥3 
100% 

2017 5901 7% 204 204 100% 
2016 5715 7% 191 191 100% 

Validation of short segment method using Driveway SPF (considering only AADT) 

SPFs for driveways calculated based on AADT only AADT data, obtained from 

(16),  driveway characteristics were omitted from the screening, so results could be directly 

compared with results from the previously described method using short segments 

calibrated from SPFs. Furthermore, results reflect the effect of driveway characteristics 

through inclusion of “Driveway class” and “Driveway access” on SPF. Similar to the 

previous described short segment SPF method, “Excess predicted average crash frequency 

using driveway SPFs” method was compared against absolute crash frequencies observed 

for each segment. Table 5 represents the comparison of highest ranked 100-foot segments 

based on excess driveway SPF predicted and absolute crash frequencies stratified by 

roadway type. Results indicate that use of the short-segment absolute frequency method 

can obtain 99%, 98.5% and 98.5% of screening sites for 2018, 2017 and 2016 crash data, 

respectively. Considering top ranked location identified from application of both screening 
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methods, driveway SPF produces higher values, than short segment SPF for the same 

locations.  

Table 5: Validation of Short Segment Method Using Driveway SPF (Including Only AADT) 

Roadway 
Type Year 

Total # 
of Short 
Segment 
Buffers 

# of 
Short 

Segment 
in Top 

100 SPF 
Excess 

% of 
Short 

Segments 
in Top 

100 SPF 
Excess 

# of Short 
Segment 
in Excess 
DW AADT 

SPF 

% of Short 
Segment 
in Excess 
DW AADT 

SPF 

# of Top 
SPF 

AADT 
Compared 

# of Short 
Segment 

in Top SPF 
AADT 

% of 
Short 

Segments 
in Top 
SPF 

AADT 

R2U 
2018 316 97 31% 312 99% 

100 
88 28% 

2017 337 90 27% 336 99% 84 25% 
2016 312 78 25% 309 99% 78 25% 

U2U 
2018 208 112 54% 204 98% 

100 
107 51% 

2017 204 96 47% 202 99% 92 45% 
2016 191 106 56% 188 98% 103 54% 

U5T 
2018 392 198 51% 391 99% 

100 
193 49% 

2017 358 186 52% 353 99% 176 49% 
2016 329 170 52% 327 99% 163 50% 

U3T 
2018 62 45 73% 61 99% 

100 
52 84% 

2017 79 62 79% 78 99% 65 82% 
2016 79 65 82% 79 100% 71 90% 

U4D 
2018 141 89 63% 140 99% 

100 
81 58% 

2017 135 99 73% 130 99% 81 60% 
2016 182 128 70% 173 95% 110 60% 

R4D 
2018 93 67 72% 93 100% 

30 
61 66% 

2017 74 53 72% 73 99% 49 66% 
2016 85 62 73% 85 100% 59 69% 

Validation of short segment method using Driveway SPF (considering driveway 

characteristic) 

Since most DOTs do not collect detailed data regarding driveway characteristics on 

a statewide basis, identifying an effective alternative to use of SPFs can be cost effective 

and can save time in data processing. Driveway class and access were collected manually 

for the high ranked buffer locations as defined form the short segment approach (Table 4 

summarizes the number of crashes considered in short segment method). SPFs and CMFs 

for driveways were calculated considering segment AADT data only as obtained from (16). 

Similar to previously described methods, a site’s observed average crash frequency is 

compared to a predicted average crash frequency using an SPF. The short segment buffers 
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with the “observed value more than predicted” were used as the basis for comparison with 

short segment method. Figure 4 summarizes a comparison of highest ranked 100-foot 

segments based on excess predicted and absolute crash frequencies, stratified by roadway 

type. Results indicate that short-segment absolute frequency method can fairly accurately 

identify more than 60% of sites compared to the robust approach of using excess predicted 

average crash frequency. Lowest matches occur for lower ranges of crash frequencies.  

Figure 4: Comparison of year 2018 highest ranked segments using 100’ segments stratified by 
roadway type with driveway SPF (Blue: percentages matched with driveway SPF)  
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CONCLUSIONS 

This research focused on validation of fixed short length segments for statewide 

network screening of midblock crash locations using three different HSM recommended 

approaches. Methods include roadway SPF, driveway SPF considering only AADT, and 

driveway SPF using driveway characteristics.  

Network screening was based on preestablished stratified 100-foot segment lengths 

used along different roadway types.  Research findings indicated that in comparing three 

SPF methods (using excess predicted average crash frequency) and the peak search method 

(using short window size) representative and comparable results are achievable at the 

highest priority level, and the later can be used as the basis for effective safety alternative 

analysis, in the event of insufficient data on detailed driveway and roadway characteristics. 

Since most state DOTs do not collect detailed driveway characteristic, identifying an 

alternate means to serve as the basis of SPFs application provides safety focused agencies 

with an approach offering cost effective results and time savings in data processing.  
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                                             CHAPTER FIVE 

CONCLUSION 

As alluded in Chapter One, this research focuses on evaluating how crash 

geocoding has improved over the years and how this enhanced spatial accuracy of crashes 

can potentially lead to a new paradigm on midblock crash safety analysis.   

There were three main objectives established and achieved over three research 

papers in this dissertation that helped to reach the research objectives. The three research 

papers presented in this dissertation covered several geospatial analysis methods and 

HSM methods that could be used in various stages in the analysis process. 

A survey of state highway agencies conducted as part of this research and discussed 

in the first paper indicates that there are disparate crash reporting systems used across the 

country from a crash geocoding standpoint.  The survey indicates that not only does the 

geocoded accuracy of crash locations vary by state, the accuracy can even vary by 

jurisdiction within each state. Accurate crash data is essential for robust safety analysis. 

The GIS spatial analyses and case studies described in the first paper gave biased results if 

the geocoded crash data is poorly located.  

The analysis along five major corridors using crash data geocoded with handheld 

GPS (2010 data) showed that only 35% of the crash locations (not including run-off-the-

road and fixed object crashes) geocoded inside the travel way while the SCCATTS crash 

data indicated that the proportion of crashes occurring within the travel way is nearly 

100% for the same corridors. The first paper concluded that any safety analysis can only 
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be as good as the data being used.  The ability to collect spatially accurate crash data will 

enhance a state transportation agency’s ability to conduct reliable safety analysis as well 

as foster other transportation related research resulting in more effective safety programs 

and policies. 

The second paper focused on using short fixed length segments for statewide 

screening of midblock crash locations.  In this analysis, segmentation is accomplished 

through polygon buffers of the underlying roadways at different intervals.  Crash data is 

aggregated to the buffers through a spatial overlay (spatial join) operation in ArcGIS and 

buffer segments with the highest number of crashes can be identified.  In this approach, 

whole South Carolina’s road network (41,282 miles) was assessed. The initial use of 50 ft 

segment buffers produced 274 segments with 4 or more crashes using 2016 data.  This 

turns out to be 0.000062% of the total midblock 50 ft segments. Our segment length 

analysis indicated that 100 ft would be an ideal segment length for short fixed segment 

analysis. This was deemed manageable to look at on a case by case basis by SCDOT.  The 

research clearly indicates that the use of segments of 0.1 miles (or greater) in many 

instances  “hides” the severity of a single location if the rest of the segment has few or no 

additional crashes.  Different analysis methods were used to look at short segments 

including a peak search method with fixed segments and a sliding window approach 

(Network Kernel Density).    Based on the analysis, the short segment peak search method 

is recommended for use by state agencies as a network screening approach because it is 

much less complex to implement than the sliding window approach and locations can be 

easily ranked.   Because the segmentation can be the same from year to year, direct 
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comparisons can be made over time while spatial integrity is maintained. One significant 

finding of this research is that short segment screening is only viable if accurately geocoded 

crash data is available.  This is likely only possible with GIS based crash management 

approaches combined with high accuracy GPS data locations.  

The third paper focused on validation of short fixed length segments for statewide 

screening of midblock crash locations using three different HSM recommended 

approaches. These methods include roadway SPF, driveway SPF considering only AADT 

and driveway SPF using its characteristics. Network screening using stratified 100’ 

segments of different roadway types showed that comparing three SPF methods (using 

excess predicted average crash frequency) and the peak search method (using short window 

size) reveals similar results at the highest priority level and the later can be used as an 

alternative in case of insufficient data on detailed driveway and roadway characteristics. 

Since most state DOTs do not collect detailed driveway characteristics, finding an 

alternative to use of SPFs can be cost effective and can save time in data processing.  

Overall, the research in this dissertation document has added to the body of knowledge 

in the field of transportation safety and geospatial science. The research also applied 

innovative GIS analysis methods that have not been used before in safety analysis based 

on the literature review. These include the use of variable buffers to generate roadways 

from centerlines and pavement width attributes; creation of driveway buffers to determine 

the influence area of driveways; creation of short segments buffers for use in midblock 

network screening; the use of spatial join and overlay operations to aggregate crashes to 
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the various buffers;  and applying NKDE using a shorter window size than what has been 

used in previous research.  

This research has shown that improvements in crash geocoding can enhance safety 

analysis.  By using short segment network screening, segments of high crash incidence can 

be identified and displayed with ovelayed crashes at their actual crash locations which can 

minimize the need for developing collision diagrams. Further, one of the findings of the 

research is that the current intersection to intersection process aggregates crashes to long 

segments which can mask the crash severity of point locations. 

Specifically, this research could help guide state officials to make decisions with 

regard to selecting and implementing transportation safety programs and strategies for the 

safety emphasis areas in South Carolina’s current strategic highway safety plan, ‘Target 

Zero’ at midblocks. The findings of this research showed how improvements in crash 

geocoding can enhance safety analysis which could potentially lead to a changing paradigm 

of how network screening of midblock crashes is done by state agencies. Future research 

could possibly focus on a more detailed analysis of high crash segments by stratifying data 

based on manner of collision, crash severity, and environmental conditions.   
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Survey of States

Survey of State Crash Location Reporting and Statewide Network Screening Analysis
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States
Arkansas State (ARDOT)
Colorado State (DOT)
Connecticut State (DOT)
Delaware State (DelDOT)
Georgia State (DOT)
Idaho State (Idaho Transportation Department)
Indiana State (DOT)
Iowa State (DOT)
Kentucky State (University of Kentucky)
Louisiana State (Department of Transportation and Development)
Maine State (Maine DOT)
Massachusetts State (MassDOT)
Michigan State (DOT)
Mississippi State (DOT)
Missouri State (MoDOT)
Montana State (DOT)
Nevada State (NDOT)
New York State (NYSDOT)
Oregon State (DOT)
Texas State
Vermont State (Vtrans)
Wisconsin State (Bureau of Transportation Safety)
Wyoming State (DOT)
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2. We will be asking you a series of questions about crash data
collection and network screening analysis for safety programs in your
state. In regard to these types of questions, what is the most recent
full year of crash data that your state department of transportation is
working with?
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3. Did your agency transition from a paper‐based data collection
instrument to a digital/electronic method in the last ten years?
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5. Was the transition based on? Please select all that apply.
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5. Was the transition based on? Please select all that apply.

Answer Count

A crash report form change 6

Minimizing coding errors 13

Enabling consistency checks 10

Automate uploading 14

Improve geolocating 8

Legislative mandate 0

Other (please specify) 2

Total 53
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5. Was the transition based on? Please select all that apply.

Other (please specify) ‐ Text

We are in the process of converting to electronic reporting. This process has been going on for at 
least 6 years. (NYSDOT)

Providing timely data to our county Traffic Safety Commissions. (Wisconsin DOT)
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8. For your electronic crash report form, was the form developed in‐
state or adopted from a commercial vendor?
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9. For either, commercial vendor or hybrid vendor please indicate vendor or system name.

Statewide Traffic Accident Records System (STARS) – MoDOT

Lexis Nexis – Vtrans, MaineDOT, University of Kentucky

The final form is a product of the state, but the crash software interface is unique to the software 
vendor. We work with the vendors to ensure the data elements are in alignment with the state’s 
requirements. –GDOT 

CAPS University of Alabama eCrash – ARDOT 

TraCS – NYSDOT, Iowa DOT

Don't have information on hand – Colorado DOT

Brazos, Tyler Technology – Nevada DOT

ReportBeam – Mississippi DOT

CTA Smart Cop – Montana DOT

CRIS – Texas 

No Answer. Michigan State police developed this – Michigan DOT
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10. For electronic data collection methods, is the electronic form being 
used throughout the entire state, by highway patrol only, or just 
voluntarily by jurisdiction?

114



12. Of the total crash reports received for the most recent year in your 
state, which methods are used to capture data in the field? Please 
select all that apply.
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Other (please specify) ‐ Text

Road segments with offsets from nearest intersection. – Maine DOT

Integrated GPS (not map‐based) – Louisiana DOT

Auto Capture from PD vehicle – GDOT 

MDOT relies on Michigan Sate Police for this – Michigan DOT 

Address, Exit number (distance and direction from point of gore), landmarks (we can add them in 
based on frequency of use).  we just built a new system with an API for vendors and a map‐based 
"form“ – MassDOT

ODOT assigns a lat‐long themselves, using a custom GIS interface with all the info above and aerial 
imagery to confirm crash site location. – ODOT 
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13. For Mile Point method, is the distance generated automatically or 
manually estimated by the police officer/other?
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14. For your "Map‐Based" system what map background do you use?
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Other (please specify) ‐ Text

Road centerline map with imagery behind. Imagery can be toggled off – MoDOT

Road centerline and aerial in some cases – Kentucky Transportation Center

N/A – Colorado DOT

In development, not yet in use – Louisiana DOT

Aerial/Satellite Imagery – Vermont Agency of Transportation, Idaho DOT, Vtrans, ODOT

Michigan State Police developed the system – Michigan DOT

Location Reference System (LRS) based map – Wisconsin DOT

Laptop computer has a gps unit that locates the crash location – Montana DOT

Linework and Aerial and other as layers can be selected – MassDOT
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15. If possible, please upload a sample screenshot of the map.
Idaho Transportation Department, Google Maps Road Centerline with Aerial Imagery 
for the GPS coordinates

120



Kentucky Transportation Center, Road Centerline (Aerial optional)
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Maine DOT, Road Centerline Map
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ARDOT Street View Map, CAPS University of Alabama eCrash
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Iowa DOT, Road Centerline Map
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16. Is there a training program in place for police officers on crash data 
collection?

125



16. Is there a training program in place for police officers on crash data collection?

Other (please specify) ‐ Text

Developing training for new crash form – Colorado DOT

There is a guidance document/handbook. – Iowa DOT

Training is provided. Not sure if it is mandatory or optional. Training has also been provided at 
safety conferences and via a podcast that is available online ‐NYSDOT

I'm not positive. I know there is training, but I'm unsure how frequent/required – Mississippi DOT

Don't know the answer to this one. – Montana DOT

Mandatory training at police academy.  Additional training is available when requested – Wyoming 
DOT

Again MSP does training – Michigan DOT

Yes, however frequency and requirement is unknown, as it is not administered through DelDOT –
DelDOT 

Not really but our Law Enforcement Liaison offers as needed in AdHoc way – MassDOT

Recently the basic crash report training has been reduced from 16 hours to a total of 6 hours at the 
police academy and that may result in more errors or omissions. Basic traffic crash report training 
is brief, there is optional certification and reconstruction investigation training available at a cost.
That course will teach skills for conducting a thorough crash investigation and properly 
documenting findings for court room presentations. Measuring, photographing and preparing 
physical evidence learn fundamentals of mathematics, engineering and physics to accurately 
analysis crash factors and evidence. – ODOT 
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17. Please describe the training program.

Basic Training Course provided by department/training school – CTDOT 

In development – Colorado DOT

In ‐ person training at police departments is offered for updates and new employees.  We also are 
part of the crash reporting training at the police academy. – Vermont Agency of Transportation

new cadet training for most officers, while some larger agencies have their own training. State 
Police have their own training. – Kentucky Transportation Center

All officers receive training at the Maine Criminal Justice Academy as part of their initial training. –
Maine DOT

The eCrash system is taught at the Police Academies as part of their curriculum. – ARDOT 

I am not sure of mandatory training, but there is a handbook located on the internet for them to 
use when using the software. – Iowa DOT

The training primarily consists of covering information within the Missouri Uniform Crash Report 
Preparation Manual. That information includes definitions and crash classification standards from 
the ANSI.D16 Manual on Classification of Motor Vehicle Accidents publication, instructions for 
completing each field on the Missouri Uniform Crash Report form and specifics for locating motor 
vehicle crashes. ‐ MoDOT

All officers attend the training academy that includes crash reporting. The PDs then provide 
training using the Field Training Officers and most software vendors provide training.  ‐ GDOT
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17. Please describe the training program.

Training is provided. Not sure if it is mandatory or optional. Training has also been provided at 
safety conferences and via a podcast that is available online. The Governors Traffic Safety 
Committee could provide more detailed information on the specific training provided to law 
enforcement – NYSDOT

Depends on agency, but usually about an hour at multiple week training academy. DOTD has a Law‐
Enforcement Expert (LEE) who provides additional training to agencies based on issues. – Louisiana 
DOT

Training is in person and as needed at this point.  When we went electronic it was an in‐person 
training also at each department or regionally. VTrans

Agencies request training or trainer contacts agencies with common problems.  Training covers a 
step by step description of fields and values of fields, including why they should be filled in certain 
ways. – Idaho Transportation Department

I am unsure of the training program – Mississippi DOT

All officers receive training at the MCJA as part of their basic training. – Bureau of Highway Safety 
Maine

Beginning in late 2016 we did statewide training – Wisconsin DOT

MSO does training – Michigan DOT
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17. Please describe the training program.

Unknown – Indiana DOT, Colorado DOT, Montana DOT

Short term refresher course is 8 hr course on training for police officers when requested.  All law 
enforcement trains at the academy when hired. – Wyoming DOT

TCOLE approved training for the CRASH application is offered and consists of a 2 hours Configure 
(User Management) training and a 4 hours CRASH (User submission) training; it is not required as 
an agency can opt out and receive the Quick Training session in which they only receive a quick 
overview of the application and does not receive the TCOLE credit, or they can opt out of the 
CRASH training and only receive the Configure portion to get their agency kicked off on the CRASH 
application.  This too they do not receive TCOLE credit. ‐ Texas

Unknown, as it is not administered through DelDOT – DelDOT 

It is more AdHoc as needed. We do have some powerpoint presentations that we have provided 
on common issues – MassDOT

Training is included at the Peace Officer standard training (POST) academy – Nevada DOT
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18. For the most recent year, what percentage of crash locations are 
accurately geolocated on the total road network? (23 Responses)
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5.3 ‐ 20. Do you validate the accuracy of geolocation processes in any 
way? (23 Responses)
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5.4 ‐ 21. What processes or metrics do you use? Please select all that 
apply.

132



21. What processes or metrics do you use? Please select all that apply.

Other (please specify) ‐ Text

Manual review is conducted of each crash location. – Maine DOT

This is only done on KA crashes. ‐ ARDOT

Manual review of crash locations of state roads. – Wisconsin Department of Transportation

Manually as reports are pulled/read. – Montana DOT

Spot check locations on map vs crash report data – Wyoming DOT

We have a whole post process geocoding system (the new system actually runs a compare betwen
police provided GPS and derived coordinates – MassDOT

location contained in the crash report – Nevada DOT

Aerial imagery, snapped to linework, city limits, etc. ‐ ODOT
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22. Is there any attempt to fix poorly geolocated crash data? (20 
Responses)
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23. Please describe processes/methods used to correct poorly geolocated crash data.

We have queries and spatial maps that we use to help identify crashes that are incorrectly located. 
‐ MoDOT

We have a contract that includes a team of mappers that correct/validate crash locations. We 
sample their work and grade. – GDOT 

Locate – Texas 

Crash data users will submit issues to the data's owner (DelJIS), and corrections will be made, 
usually within 24‐48 hours. – DelDOT 

About 86% of crashes are automatically geocoded.  MassDOT staff manually review the remainder.  
Even if State police crashes are automatically geocoded, before the crash file closes, some crashes 
meeting specific criteria (flagged as conflicting linked road attributes with information provided like 
speed limit below 45 but linked onto an interstate)are manually reviewed – MassDOT

manually located so low error rate – NDOT 

GIS FME workbench. We do not use the police collected coordinates as they are not often 
collected properly at the POI and not precise enough to aid accurate engineering analysis and 
development of productive and cost efficient safety countermeasures – ODOT 

As we are make aware of poorly located crashes (by end users), we correct that data if is not more 
than 3‐years old. – LADOT 
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23. Please describe processes/methods used to correct poorly geolocated crash data.

Use of linear reference system to check or populate geolocations on state highways only –
Colorado DOT

We have a team of personnel who review and correct where necessary the location of each and 
every crash that is reported.  ‐ Maine DOT

We have built an in house system to manually correctly geo locate crashes – Mississippi DOT

manual review and correction – Wisconsin DOT 

Human review – CTDOT 

We are in the process of changing the base map of the road network for the software.  The current 
linework is outdated and we are currently updating it to our version of ESRI's Roads and Highways. 
– Iowa DOT

Crash data is updated when errors are found – Wyoming DOT

Crashes found to be inaccurate are corrected. – Idaho DOT

It is checked and if the location is wrong, it is then updated in the system and the database. ‐
ARDOT

Crash report is read, state plane XY coordinates are found and then updated in the database. –
Montana DOT 
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24. Please give a reason why there is no attempt for validation of accuracy.

It has been recommended but not implemented. – Kentucky Transportation Center

I don't know. – VTrans
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26. In your state, do you maintain data (e.g. roadway, crash, AADT) for 
safety network screening on? (22 Responses)
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27. Do you do safety network screening? (22 Responses)
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6.3 ‐ 28. What measures do you typically use for safety network 
screening? Please select all that apply.
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6.3 ‐ 28. What measures do you typically use for safety network screening? Please select all that 
apply.

Answer Count

Average Crash 
Frequency

11

Crash Rate 11

Equivalent Property 
Damage Only (EPDO) 
Average Crash 
Frequency

1

Relative Severity Index 8

Critical Rate 5

Excess Predicted 
Average Crash 
Frequency using 
Method of Moments

0

Level of Service of 
Safety

6
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6.3 ‐ 28. What measures do you typically use for safety network screening? Please select all that 
apply.

Answer Count

Excess Predicted 
Average Crash 
Frequency Using 
Safety Performance 
Functions (SPFs)

7

Probability of Specific 
Crash Types Exceeding 
Threshold Proportions

3

Excess Proportion of 
Specific Crash Types

3

Expected Average 
Crash Frequency with 
EB Adjustment

2

Equivalent Property 
Damage Only (EPDO) 
Average Crash 
Frequency with EB 
Adjustment

2
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6.3 ‐ 28. What measures do you typically use for safety network screening? Please select all that 
apply.

Answer Count

Excess Expected 
Average Crash 
Frequency with AB 
Adjustment

2

Other (please specify) 5

Total 66

143



6.3 ‐ 28. What measures do you typically use for safety network screening? Please select all that 
apply.

6.3_14_TEXT ‐ Other (please specify)
Other (please specify) ‐ Text

We are updating our network screeening process to make this integrated into our whole system –
MassDOT

predictive method out of the HSM – NDOT 

KA crash rate – ARDOT 

# of % of crashes within a half mile segment. – Montana DOT

Not sure as engineers do the screening but assume most of the the above – ODOT 
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29. Which methods do you use for network screening? Please select all 
that apply. (43 Responses)
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30. Which methods do you use to separate segment crashes from 
intersection crashes? (22 Responses)
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Distance from intersection (please specify distance) ‐ Text

100 ft – Colorado DOT, Maine DOT

varies based on facility type – Kentucky Transportation Center

Safety Priority Index System (SPIS) – ODOT 

Within 132 ft of the intersection or officer designated intersection

1/10th of a mile on each leg is counted as part of the intersection unless it encompasses another 
intersection. – ARDOT 

Depends on the intersection type (75ft, 150ft, 300ft). – Iowa DOT

250 ft

40m

Varies based on speed

There is an Intersection‐Related field used to separate the crashes – Idaho Transportation 
Department

Intersection crash: Intersection is True & Intersection ID is not Null. Segment crash: Intersection is 
False – Louisiana DOT

Sliding 0.3 miles. – VTrans
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31. For network analysis, which segmentation methods do you 
typically use?  Please select all that apply.
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Other (please specify) ‐ Text

Not sure as engineers do the screening but assume Fixed – ODOT 

based on changes in attributes – MassDOT
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33. What methods do you use for the network segmentation? Please 
select all that apply.
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Other (please specify) ‐ Text

unsure what this question is asking – Kentucky Transportation Center

Variably length roadway segments and intersections. – Maine DOT

Sliding window on defined segment lengths. – ARDOT 

segment based upon similar highway class and similar (less than 200% difference) AADT –
Louisiana DOT

AADT, Speed are used for defining separate segments – Idaho Transportation Department

Homogeneous segment – Wisconsin DOT

Don't under the question in relation to our process. – Montana DOT

This is becoming automated – MassDOT

Downstream of intersection A to upstream of intersection B – Indiana DOT

Not sure I believe fixed radius buffer and all crashes that fall into that, crash severity, frequency –
ODOT 
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34. Have you adopted new safety predictive methods for any road or 
intersection types? (21 Responses)
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34. Have you adopted new safety predictive methods for any road or intersection types?

Answer Count

Yes 10

No 11

Total 21
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35. Which safety predictive method do you use? Please select all that 
apply. (17 Responses)
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6.10 ‐ 35. Which safety predictive method do you use? Please select all that apply.

Answer Count

Highway Safety 
Manual (HSM)

7

Interactive Highway 
Safety Design Model 
(IHSDM)

3

Safety Analyst 2

Other (please specify) 5

Total 17

155



35. Which safety predictive method do you use? Please select all that apply.

Other (please specify) ‐ Text

Vision Zero Suite.  Traffic Engineering Software by DiExSys – Colorado DOT

MoDOT continues to develop it's own tool similar to safety analyst.

But we developed our own sreening level SPFs for segmeents and design level SPFs for 
intersections

Standard deviations from norm factoring in exposure (traffic volume), facility type (e.g. freeway), 
and setting (i.e. urban or rural), among others.

I think HSM ‐ ODOT
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36. Have you developed calibration factors for any road or intersection 
types? (21 Responses)
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37. Do you have state‐specific safety performance functions for any
road or intersection types? (21 Responses)
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Appendix B 

HSM Methods Comparison Tables

Please see supplemental file 
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