
Clemson University Clemson University 

TigerPrints TigerPrints 

All Dissertations Dissertations 

December 2019 

Design and Evaluation of Flow Mapping Systems for Design and Evaluation of Flow Mapping Systems for 

Heterogeneous Wireless Networks Heterogeneous Wireless Networks 

Jianwei Liu 
Clemson University, ljw725@gmail.com 

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations 

Recommended Citation Recommended Citation 
Liu, Jianwei, "Design and Evaluation of Flow Mapping Systems for Heterogeneous Wireless Networks" 
(2019). All Dissertations. 2499. 
https://tigerprints.clemson.edu/all_dissertations/2499 

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been 
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, 
please contact kokeefe@clemson.edu. 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2499&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2499?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2499&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Design and evaluation of flow mapping systems for
heterogeneous wireless networks

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

Jianwei Liu

December 2019

Accepted by:

Dr. Jim Martin, Committee Chair

Dr. Brian Dean

Dr. Kuang-Ching Wang

Dr. James Westall



Abstract

Mobile wireless networks are always challenged by growing application demand. The in-

creasing heterogeneity of both mobile device connection capability and wireless network coverage

forms a general heterogeneous wireless network (HetNet). This type of HetNet contains sub-networks

of different Radio Access Technologies. How to better coordinate the mappings of flows between

Access Points (AP) and User Equipment (UE) inside this type of HetNet to improve system and

user-level performance is an interesting research problem. The flow mapping systems used by off-the-

shelf mobile devices make policy-based decisions from local information. Several global information

based flow mapping systems that use Generalized Proportional Fairness (GPF) as the optimiza-

tion objectives have been proposed to improve the system-level performance. However, they have

not been compared with both the local-policy based approaches and the optimal solution under

the same assumptions with variations of system parameters. Therefore, it is still unclear to the

community whether it is worthwhile to construct a flow mapping system for HetNets composed by

LTE and WiFi networks, even under a simplified assumption of only optimizing throughput related

system performance metrics. In this dissertation, we evaluate three types of flow mapping systems:

Global Information based Flow Mapping Systems (GIFMS), Local Information based Flow Mapping

Systems (LIFMS), and Semi-GIFMS. We evaluate these systems with metrics related to both the

spectrum efficiency and flow-level fairness under the following variations of system parameters: 1)

topologies of UEs; 2) coverage of APs; 3) number of UEs; 4) number of non-participating UEs; 5)

on-off session dynamics; 6) UE mobility. We also discuss options to implement each type of flow

mapping systems and any relevant trade-offs.

From the evaluations, we find that the currently-in-use WiFi preferred local greedy flow

mapping system provides far poorer spectral efficiency and generalized proportional fairness than

all the other tested flow mapping systems, including the local greedy flow mapping systems that

ii



give LTE and WiFi equal opportunities (local-greedy-equal-chance) in most settings. This finding

indicates that the flow mapping system in use has much room for improvement in terms of GPF and

aggregate throughput. The performance of local-greedy-equal-chance is close to that of the global

and AP-level information based systems under some UE topologies. However, their performance is

not as consistent as the global and AP-level based systems when UEs form clusters that produce

AP load imbalance.

We also derive the incremental evaluations of GPF for both proportional and max-min

fair scheduled APs. Based on these derivations, we propose a design for AP-level information

based flow mapping system or Semi-GIFMS. It is an event-triggered flow mapping system based

on minimum AP-level metrics monitoring and dissemination. From our evaluation and analysis,

this flow mapping system performs equivalent to or better than GIFMS in terms of both GPF and

aggregate throughput in all the tested scenarios. It also owns the advantages of lower overhead and

not requiring an additional scheduling server. We think it is the best choice for the next generation

HetNets where APs can be modified to monitor and broadcast the minimum information identified.

Furthermore, we find that the number of UEs, number of non-participating UEs, coverage

of APs, bandwidth sharing types of APs, on-off session and UE mobility dynamics do not have a

major impact on the relative performance difference among various flow mapping systems.
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Chapter 1

Introduction

1.1 Research Motivation

The scarcity of wireless spectrum and the continuous growth of mobile data always challenge

the players of modern Internet. For network operators (such as Verizon and AT&T), Content

Delivery Network (CDN) providers (such as Akamai), and application providers (such as Youtube

and Netflix), how to achieve better system performance using the same amount of resources, and

therefore higher user satisfaction is always an operational objective.

Mobile devices now have both heterogeneous connection capabilities and heterogeneous net-

work coverages. An example of heterogeneous connection capability is the fact that most mobile

phones have both the LTE and WiFi interfaces. Heterogeneous network coverages can have different

meanings in different research contexts. However, the essence of it is always a network that contains

potentially overlapping sub-networks with certain differences. For example, it can be the hetero-

geneous coverage formed by overlapping LTE base stations (BS) with different power levels. This

heterogeneity can also come from the ownership of sub-networks, e.g. multiple overlapping LTE base

stations with the same power level but belonging to different operators. It may also be overlapping

LTE and WiFi Access Point (AP) with the same/different operator(s), which vary in Radio Access

Technology (RAT) used (In this dissertation, we will use the term AP as a generalized representation

for both BS and AP.). These increases in the heterogeneity of connections and coverages create an

opportunity to improve system performance by more carefully coordinating how flows connect to

APs.
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The term flow here refers to an application flow on mobile devices or user equipments (UE)

in general (even though with the simplifying assumption in this dissertation of only one application

flow per mobile device, it is equivalent to a device level flow). Flow mapping refers to deciding which

flow should bound to which interface and which AP. We call this decision a mapping or an association

plan. Because of the heterogeneous connection capability of each UE and their diverse connection

status, an “appropriate” mapping considering the user diversity can potentially boost the resource

utilization rate and/or fairness among mobile devices. A flow mapping system is a system that can

produce a flow mapping. It usually consists of a mapping algorithm and the required protocol for

information collection or association plan enforcement.

The flow mapping systems currently in use and those proposed in the previous literature can

be classified into three categories based on the scope of the information they rely on when making

decisions.

The default flow mapping system currently used by mobile devices is based on local policies.

For example, most Android devices use the policy of “ connecting to WiFi APs whenever they are

available” [17]. IOS devices use a similar policy while further considering the user preference [5, 3].

This type of flow mapping systems only rely on local information. We call it an LTEocal Information

based Flow Mapping System (LIFMS). On the other hand, the flow mapping systems proposed in

previous research such as [13, 33] require global information about the connection status between all

the APs and UEs in the system. Therefore, we call this kind of mapping system a Global Information

based Flow Mapping System (GIFMS). Flow mapping systems such as the ones in [43] and [16] can be

considered as a type of systems in the middle, which only requires AP-level scheduling information.

We call such systems a Semi-Global Information based Flow Mapping System (S-GIFMS) or an

AP-Assisted Flow Mapping System (AAFMS).

Even though recent literature has indicated the policy based approach currently in use is

not ideal [13, 17], and suggested various global/AP level information based methods [13, 43, 33, 16]

to better map the flows, the performance of these methods are not compared under the same

assumptions and settings. Therefore, it is difficult to answer the question of “whether it is worthwhile

to build a flow mapping system using global or AP-level information for HetNets”. We attempt to

answer this question in this dissertation.

The term heterogeneous network (HetNet), as the name indicates, refers to the combined

and coordinated usage of networks that are different in various layers or characteristics. Early work
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on HetNets is limited to the coordinated usage of macrocell and small cells in cellular networks.

The work in [13] has identified, analyzed and proposed solutions for the flow mapping systems for

this type of HetNet using Generalized Proportional Fairness (GPF) as the optimization objective.

GPF is a natural extension of the Proportional Fairness from one AP to multiple APs. We show

its mathematical form in Eq. (3.1). From the results [13] showed, we see that using GPF as the

primary objective has increased both the spectrum efficiency and fairness among users under the

scenarios tested. However, there are several limitations to that work. First, the main algorithm

they propose is highly dependent on the assumption of cellular APs using proportional fairness

schedulers. Because of that, it cannot be extended to a more general HetNet with WiFi networks

involved. The work in [43] aims at the same GPF objective as in [13]. However, they provide a

hybrid solution by forming the problem as a convex optimization problem and use Lagrangian dual

decomposition to break it into two subproblems. The two subproblems can then be solved at UEs

and APs respectively.

ATOM [33] and MOTA [16] proposed solutions for flow mapping systems in a more general

HetNet which involves both LTE and WiFi networks. ATOM proposes a centralized heuristic that

offloads flows from LTE to WiFi APs greedily based on GPF changes. The offloading is batched by

sets of UEs under the same APs. MOTA works on a similar problem, but with the addition of flow

costs. Authors working on MOTA assume APs can be modified to broadcast information related to

the loads similar to [43] in the Single-RAT version of the problem. They designed greedy algorithms

that can be executed on UEs locally based on the flow weights and the received load factors.

The previous work above have the following in common,

1) They use GPF as their optimization objectives (Note that the objective in MOTA is

equivalent to optimizing GPF if the prices are proportional to the logarithm of throughput and

equal for all flows).

2) They assume backlogged traffic. With these the above two assumptions, the objective of

GPF can be expressed as optimizing the sum of the logarithms of user throughputs [26].

1.2 Research Objective and Problem Formulation

This research has two objectives:

1. To evaluate the performance of some representative flow mapping algorithms in all three
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types of flow mapping systems with metrics that can capture both the spectrum efficiency and

fairness among flows under various scenarios and system parameters. This evaluation helps us in

answering the question of whether a GIFMS or S-GIFMS is worth constructing from the perspective

of throughput related system performance.

2. To discuss the implementation options of the various flow mapping systems and their

trade-offs.

However, with the wide range of HetNet types and possible system parameters, we further

make the following assumptions to focus this research.

• The system to be optimized is limited to the scope of a small area, e.g. the size of

an LTETE macrocell. The service providers use a divide and conquer approach as in [13] to

achieve horizontal scalability.

• We assume that the system only has downstream traffic.

• We assume that all the flows are elastic.

• We assume that only two types of radio access technologies are operational in the

system, LTE and WiFi. Each mobile device has one LTE interface and one WiFi interface.

• We do not model the cost of data flows, as the same cost can have different meanings

for various users.

• We assume that only one interface can be used at a time.

Under these assumptions, we evaluate some representative mapping systems from both the

class of Global Information based Flow Mapping System and Local Information based Flow Mapping

System, and compare them with the optimal GPF solution.

1.3 Summary of Methodology

• We test with the static and dynamic simulations. In the static simulation, we assume each

flow is always-on. We run the simulation with multiple runs, and re-initialize the location of

UEs at the beginning of each run. In the dynamic simulation, we add the dynamics from both

the on-off sessions and the UEs’ leaving-and-joining behaviors.
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• We evaluate mapping algorithms with metrics including the GPF value, aggregate throughput,

and several other system-level aggregate metrics. Flow-level throughput statistics are also

added for reference. We show the definitions of these metrics and what they represent in

Chapter 3.

• Our network models are based on LTE and WiFi standards. We use fading models to gener-

ate Signal Noise Ratio (SNR) from distance, and then map SNR to Modulation and Coding

Schemes (MCS) in the standards.

• We assume LTE uses proportionally fair packet scheduling and WiFi uses throughput fair

packet scheduling. We use the models in the literature to model the UE resource contention

under these two types of APs.

• We evaluate the following representative mapping algorithms for GIFMS and LIFMS.

– GIFMS: {ATOM, global-greedy}

– LIFMS: {local-greedy-equal-chance, local-greedy-wifi-preferred, random-assignment}

– S-GIFMS: {load-aware-local-greedy}

We discuss details of these algorithms in Section 5.3.

• We also discuss the possible implementations for both mapping systems in LIFMS and GIFMS.

1.4 Summary of Results and Contributions

From the evaluation results, we find that,

1. The currently-used WiFi-preferred local policy based mapping system has much room for

improvement.

2. Local information based mapping systems can work very well under certain UE placements.

However, with UE placements introducing load imbalance among APs, the advantages of the

global/AP level information based mapping systems over the local information based ones are

noticeable.
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3. Both increasing the coverage radius of APs and changing WiFi AP to PF scheduled can increase

the magnitude of results. However, the relative differences and rankings of algorithms remain

the same.

4. The AP level information based flow mapping system can achieve system performance close

to that from global information based systems while having less deployment cost.

5. Non-participants can potentially degrade system performance. However, the degradation is

almost linear. This linear degradation means that a low ratio of participants can still benefit

the system proportionally. The technique of throughput correction for participants can only

help to improve the system performance in some cases.

6. The tested on-off and user leaving and joining dynamics do not have a significant impact on

system performance.

The main contributions of this dissertation include,

1. We have derived and applied network models for an LTE-WiFi HetNet considering the protocol

overhead and the discrete nature of modulation and coding schemes, which owns higher fidelity

compared to the approach used in the previous literature.

2. We have evaluated the performance of several representative LIFMS, GIFMS, and S-GIFMS

in terms of various metrics related to both spectrum efficiency and fairness among flows. The

evaluations were conducted both with the comparison of the optimal solution on a smaller

scale and without the optimal solution in a larger scale. We have evaluated the flow mapping

systems using both static simulations and dynamic simulations with various system parameters

such as AP power levels and ratio of non-participants in the system. As far as we know, it is

the first time all the representative algorithms in the three types of flow mapping systems have

been systematically evaluated and compared. The results provide useful insights for various

service providers to reconsider their options when trying to optimize the flow mappings under

various scenarios.

3. We have discussed several implementation options for the three types of flow mapping systems.

The system designs and trade-off discussions can help service providers to further think about

the trade-off between the performance we have shown and the cost to implement and deploy

the systems.
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4. We have derived the incremental GPF evaluations for two types of APs, i.e. PF and max-

min scheduled APs, and proposed an implementation option for a Semi-GIFMS based on the

derivation. With this proposal, Semi-GIFMS can be implemented with a simple extension to

the AP metrics monitoring and association protocol, and triggered by off-on transition events.

This implementation will require no additional scheduling server(s), no handover overhead,

and low control overhead compared to GIFMS. The change to the association protocol only

requires the addition of one/two field(s) to beacon frames while the metrics which need to be

monitored are easily measurable for both types of APs. From simulations, we also show that,

in the scenarios considered, this Semi-GIFMS can provide a performance that approximates

or exceeds that of the GIFMS solutions which requires global network knowledge and impose

disruptive reassociations. This result provides important guidance for the minimum informa-

tion that should be monitored and broadcasted for the component APs in the next generation

HetNets.

5. We have verified the evaluation results from two indecently constructed simulators in MATLAB

and C, and provided the code as open-source. This provides tools and a baseline for further

study of this problem.

1.5 Dissertation Outline

This dissertation is organized as follows. We first introduce background knowledge and

review the previous literature in Chapter 2. We then describe the performance metrics we use

in the evaluations in Chapter 3, and the network model we use in Chapter 4. In Chapter 5, we

provide details about our evaluation methods. We show and analyze the static simulation results in

Chapter 6. Then, we show the results for the impact of system dynamics in Chapter 7. In Chapter 8

we discuss possible implementations to the mapping systems and their trade-offs. Finally, we make

our conclusions in Chapter 9.
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Chapter 2

Background and Related Work

2.1 Basic Concepts of Fairness Metrics

In this dissertation, we use variable names with a hat symbol to denote a vector, e.g.

x̂ = (x1, ..., xn). xi can be considered as the throughput/rate of UEi. We call x̂ a throughput/rate

vector.

2.1.1 Max-Min Fairness

Max-min fairness is said to be achieved by a rate vector if and only if the rate vector

is feasible and an attempt to increase the allocation of any participant necessarily results in the

decrease in the allocation of some other participant with an equal or smaller allocation. Or, we can

define it more mathematically as follows,

A rate vector x̂ is max-min fair if and only if, for any other rate vector ŷ that is feasible, the

following is true: if ys > xs for some s ∈ I, then there exists a t ∈ I such that xt ≤ xs and yt < xt,

where I is the set of resource contention participants. In the context of flow mapping systems in

this dissertation, the resource contention participants are the flows to be scheduled in the system.

With the assumption of elastic traffic and equal-weighted flows, max-min fairness implies

all flows have the same throughput. Clearly, this has a significant negative impact on spectrum

efficiency because it limits the throughput of every UE to the one with the poorest connection.
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2.1.2 Proportional Fairness

There are two equivalent definitions to proportional fairness (PF).

Definition 1: Rate vector x̂ is proportionally fair if for any other rate vector ŷ,
∑
i
yi−xi
xi
≤ 0.

Definition 2: The proportionally fair rate vector x̂ maximizes
∑
i log(xi), i.e. maximizing

the sum of the logarithm utility of each component in the rate vector.

The two definitions are equivalent. We provide a brief proof of it as follows,

Let x̂ be the optimal rate vector and ŷ another vector. Let yi = xi + ∆i.

∑
i

log(yi) =
∑
i

log(xi + ∆i)

=
∑
i

log(xi) +
∑
i

∆i

xi
+ o(∆2)

≈
∑
i

log(xi) +
∑
i

∆i

xi

Since x̂i is the optimal solution, we know that,

∑
i

∆i

xi
≤ 0⇔

∑
i

yi − xi
xi

≤ 0

Therefore, the two definitions are equivalent.

Proportional fairness is widely adopted as a scheduling principle for resource allocation

at a single router or access point, such as a cellular base station [11]. It achieves a compromise

between fairness and spectral efficiency, and provides higher spectrum efficiency compared to max-

min fairness [12].

2.2 Types of HetNets

As discussed in the introduction, HetNet is a broad concept because of the wide range

of sub-network types, how the sub-networks differ, and the ways in which the sub-networks are

aggregated. We can classify HetNets into Single-RAT HetNets and Multi-RAT HetNets based on

whether the sub-networks of the HetNet use one or multiple radio access technologies. The survey

in [38] has provided an introduction to the other ways of classifying the existing HetNet literature

and various bandwidth aggregation approaches. We list the most relevant information here.
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2.2.1 Single-RAT HetNet

As the name suggested, Single-RAT HetNet refers to HetNets with only one RAT. If the

single RAT involved is a cellular technology such as LTE, we also call it a Cellular HetNet. A

cellular HetNet combines macrocells with small cells such as picocells, femtocells, and distributed

antenna systems [21]. A small cell is a base station with a lower power level compared with macrocells

that is installed inside/outside buildings to allow better cellular coverage. Distributed antenna

systems is a network of spatially separated antenna nodes connected to a common source to solve

the bandwidth bottleneck problems in ultra-dense environments such as football stadiums. Cellular

HetNets have been well standardized and deployed [42]. If the single RAT involved is WiFi, it

is a Wireless Local Area Network (WLAN). Previous literature such as [10, 37] has explored flow

mapping systems for a WLAN.

2.2.2 Multi-RAT HetNet

Multi-RAT HetNet is a type of HetNet of which the sub-networks use different RATs. In

this dissertation, it refers to a HetNet comprising LTE and WiFi sub-networks, which we also call an

LTE-WiFi HetNet. Since using different RATs, the sub-networks need to be further aggregated.

There are several ways to aggregate the LTE and WiFi sub-networks.

3rd Generation Partnership Project (3GPP) currently has several paths to integrate LTE

and WiFi. In the licensed spectrum, there are IP Flow Mobility (IFOM) [39] and Multiple Access

Packet Data Network Connectivity (MAPCON) [6], while in the unlicensed spectrum, there are LTE

WLAN integration with IPSec tunnel (LWIP), License Assisted Access (LAA) and LTE-WLAN

Aggregation (LWA), etc [35]. The former is also called WiFi offloading, while the latter also called

LTE-WiFi coexistence.

MAPCON offers the UEs to establish multiple connections to different Packet Data Net-

works (PDN) via different access networks and also a selective transfer of PDN connections between

access networks. The usage of multiple PDNs is typically controlled by the network operators poli-

cies. By using MAPCON, offloading can be achieved relatively easily without requiring the UE to

support client-based mobility protocols such as Dual Stack Mobile IPv6 (DSMIPv6). In contrast

to MAPCON, IFOM uses DSMIPv6 to implement UE mobility. It requires both UEs and PDN

servers to support DSMIPv6. However, comparing with MAPCON, its data offloading logic is more
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UE-centric. At mobility between 3GPP and WLAN access, the UEs, instead of servers, determine

which IP flows of a PDN connection are offloaded.

LWIP, LAA, and LWA use the technique called carrier aggregation to solve the coexistence

issues of LTE and WiFi in the unlicensed spectrum. It essentially tunnels the LTE data from certain

network layers through unlicensed media. Among them, only LWA allows the usage of LTE and

WiFi simultaneously.

Besides the above, transport layer protocols such as MultiPath TCP can also be used in

aggregating LTE and WiFi sub-networks, which has been tested in research, and commercial LTE

networks [36, 30].

This dissertation assumes an LTE-WiFi HetNet in which LTE and WiFi use different spectra.

Therefore, we assume there is no carrier aggregation in the system.

2.3 HetNet User Association Optimization

Flow mapping systems can be considered as a HetNet optimization approach that indirectly

controls the resource allocation of a HetNet by only controlling the user/flow associations. This is

in contrast with another group of previous work that assumes control to resource allocation at APs

directly [8, 10, 20]. As stated in [13], this indirect control has the advantage of fewer changes to the

network infrastructure and protocols, and therefore reduces the upgrading cost for network providers.

We introduce more user association control schemes in both cellular HetNets and LTE-WiFi HetNets

as follows.

2.3.1 Cellular HetNets

The cell selection in a 3GPP network without any WiFi network integrated is controlled by

connection status metrics, such as Received Signal Strength (RSS). It is controlled by the Mobility

Management Entity (MME) which has global information over a group of APs [32]. MME usually

connects a UE to the best available AP based on the connection status metrics between APs and

the UE. It is also called “Always Best Connected”, or ABC in the literature.

Since the decision is based on connection status metrics, one way to control the user associ-

ation in a cellular HetNet is based on a technique called Cell Range Expansion. The essence of this

technique is to add a bias factor that boosts UEs’ interpretation to the RSS of small cells compared
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with that of the macrocell. It gives a higher probability for UEs to connect to the small cells. For

example, the works in [31, 43] both rely on this technique. We will call the previous works using

this technique as indirect association control, and those without using it direct association control.

1. Direct association control

Previous works such as [13, 40, 9] control the UE connections directly.

Bu. et al. [13] raised the concept of Generalized Proportional Fairness (GPF) in the context

of an overlapping cellular system managed by one operator. GPF is the proportional rate fairness

among all the UEs across all the APs in a wireless system. By assuming elastic flows and all APs are

PF scheduled, they mapped the GPF problem to a 3-d maximum weight matching problem. This

mapping proves the GPF problem is NP-hard. Based on this simplification, they proposed an offline

algorithm that searches all the possible configurations, and runs maximum weighted matching for

each configuration. Two faster event-based greedy algorithms were also provided. However, they

did not provide how those event-based algorithms can be implemented by incremental calculation

and minimum information at APs as we will describe in this dissertation. Their result shows that

the greedy algorithm is close to the optimal algorithm and better than the Best-Signal and Max-Min

algorithms. Their result is limited to the assumption that all APs are PF scheduled.

[40] explores the benefit to achieve α-fairness in a MultiPath TCP enabled cellular HetNet.

It evaluated a centralized greedy heuristic compared to several local-view random assignment based

approaches. The result suggests that greedy devices that utilize all available interfaces may result in

a non-Pareto optimal allocation. Judiciously enabling multipath connections can achieve potential

gains in fairness.

There are also distributed mapping systems designed based on game theory, such as [15].

[15] made the assumption that APs can send UEs reward feedback based on the UEs’ usage of

resources. They designed a learning algorithm based on a “trial and error” approach considering

the resource contention among users as a non-cooperative game.

2. Indirect association control

Some other work used the SNR bias factors mentioned above to control the user associations

in the cellular HetNet. [31, 43] considered the joint user association and spectrum management

problem. The advantage of this indirect association control is that it requires fewer changes to the

existing network infrastructure, compared with the direct control approaches. However, it can only

control with a rougher granularity.
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[43] used Lagrangian dual decomposition to divide the problem into two sub-problems which

can be solved at the UE and AP separately. Each AP keeps tracks of a parameter µ which is

related to the number of UE connections on it. Then it sends the µ to UEs. Each UE uses µ

and its locally estimated peak rate to decide with which AP it should associate. The authors also

provided one approach to use SINR biasing to control user associations. The Load-aware local

greedy mapping system we will evaluate in Chapter 7 is similar to this approach in broadcasting

load-related information from APs. However, we assume direct user association control.

The work in [31] also relies on range expansion. However, it used stochastic geometry to

derive the theoretical mean proportionally fair utility of the network based on the coverage rate,

and verified the theoretical optimal using numerical evaluation.

2.3.2 LTE-WiFi HetNets

When WiFi offloading is involved, 3GPP standard suggests using an Access Network Dis-

covery and Selection Function (ANDSF) server [1] to control the network selection for UEs. Even

though the standard has defined the protocol to use, the logic of how to select networks are left to

operators. Therefore, there are many research proposals on how to implement that.

ATOM [33] provided a solution for the GPF optimization problem in an LTE-WiFi HetNet.

Their work assumed sub-network aggregation using application layer protocols. The authors of

ATOM provided a greedy algorithm that offloads UEs from LTE to WiFi greedily based on utility

function changes. We will evaluate this algorithm as one of the representative global information

based flow mapping system.

MOTA [16] designed an optimization framework for optimizing application flows over mul-

tiple RATs and multiple providers with assumptions different from [13]. The first difference is that

MOTA included cost in its objective function. Another difference is that MOTA assumed all the

APs can be changed to broadcast certain objective function related information to all the UEs

inside its coverage no matter they are connected or not. This assumption is similar to the assump-

tion in [43] we introduced in Section 2.3.1. The authors of MOTA provided two solutions called

MOTA-STATIC and MOTA-MOBILE. The MOTA-STATIC algorithm assigns the associations of

applications sequentially based on their weights. For each application, it greedily picks the operator

that can maximize that UE’s utility. The difference from the load-aware local greedy algorithm

evaluated in Chapter 7 is that load-aware local greedy takes into consideration both the utility gain
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from the new UE that tries to connect and the utility change from the UEs connected to the target

AP. MOTA-MOBILE essentially treats the problem as a Generalized Assignment Problem (GAP),

and used an iterative heuristic algorithm to solve it. This requires multiple rounds of broadcasting

and communication between UEs and APs to converge for one scenario. We doubt that can be a

good choice for a mobile environment.

[24] proposed a network-assisted user-centric WiFi-offloading model for maximizing per-

user throughput. It used a discrete-time Markov chain to model the WiFi throughput, and a

trust-region-dogleg algorithm to solve the non-linear optimization problem. [23] worked on intracell

fairness optimization assuming the controls on both the mode selection and bearer-split scheduling.

They proposed greedy algorithms based on bandwidth and delay estimations respectively. From

their results, the proposed LTW-W system has up to 75% improvement compared with the results

with the default Multipath TCP clients in terms of Jainś fairness index.

[27] studied the implication of more heterogeneous throughput models to the game theory

approaches. From their analysis, the mixture of throughput models can lead to an improvement

path that can be repeated infinitely. However, they show that by introducing appropriate hysteresis

policies, the game can still converge to equilibria. [18] used matching games to solve the mode

selection problem in an LTE-WiFi HetNets with LWA enabled APs.

The tests of Global Information Based Flow Mapping System in this dissertation can be

considered as an evaluation of the value of adding a centralized ANDSF server to control UE asso-

ciations for various LTE-WiFi HetNets.

2.4 Centralized Vs. Distributed

Another perspective on the previous work is based on whether they have a centralized

control, no matter they belong to Cellular HetNets or LTE-WiFi HetNets.

For example, the literature we have mentioned above can be classified as follows.

1. Centralized: [13, 33, 23, 24, 31]

2. Distributed: [9, 18, 16, 43]

This dissertation will evaluate some representative mapping systems in both categories.
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Chapter 3

Problem Formulation and

Performance Metrics

3.1 Objective Functions of Mapping Systems

As described in Chapter 1, the Global Information based Flow Mapping Systems have ex-

plicit objective functions. For Local Information based Flow Mapping Systems, even though not

having an explicit objective, their performance will still be measured against the same objective

function. This dissertation focuses on using Generalized Proportional Fairness (GPF) as this ob-

jective function similar to the previous literature [13, 33]. In this section, we introduce some other

options and explain why we choose to use GPF.

First, there are different metrics we can use as the inputs of the objective function, e.g.

user throughput, cost, etc. Most previous literature uses throughput related metrics, such as the

objective functions in [13, 43, 33, 40]. Previous work such as [16] adds cost to the objective functions.

This dissertation focuses on throughput based objective functions. We do not include cost in the

objective because it is very likely the same cost can have different meanings for various users. It is

infeasible to devise a simple model to normalize costs.
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3.2 Why GPF If Using Throughput Based Objectives

Even if we chose to use a throughput based objective, there are many options. A simple

objective can be to maximize the sum of UE throughputs, which is called a utilitarian solution

in [12]. However, as most of previous literature has found, this can easily lead to starvation of

UEs which have poor connections to APs [12, 13]. An improvement to that approach can be

adding starvation-free constraints to the optimization problem. However, as described in [29, 26],

the proportional fairness naturally mitigates this problem by adding a logarithm utility function

to each UE throughput before the sum operation in the objective function. As we have proved in

Section 2.1.2, proportional fairness is equivalent to maximizing the sum of the logarithms of UE

throughputs,

∑
i=1:N

log(Ti)

where Ti is the throughput of the AP to UEi. Section 2.1.2 provides two definitions of

proportional fairness. Intuitively, the logarithm function puts more weight to the smaller throughput

and less weight to the larger throughput. However, proportional fairness still maintains a better level

of spectrum efficiency compared with max-min fairness [12, 13]. The maximization of the sum-of-

logarithms objective is usually approximated at a single AP with the event-based scheme proposed

in [29, 14]. The nice trade-off between the spectrum efficiency and fairness among users, and the

simple event-based approximation that can converge to the optimal, make proportional fairness

widely used in 3GPP cellular systems and the latest WiFi system [14, 28].

The generalized proportional fairness (GPF) is a natural extension to the concept of pro-

portional fairness which tries to maximize the sum of throughput logarithms for UEs across different

APs, i.e.

∑
j=1:M

∑
i=1:N

log(Tij)

where Tij is the throughput from APj to UEi. The index i is for the indices of UEs, while

j is for those of APs. N is the total number of UEs, while M is that for APs. We will use this

convention throughout this dissertation.

GPF has been used in previous HetNet optimization literature such as [13, 43, 33]. Even
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though the evaluation framework is general enough to use other types of fairness metrics as the

objective function, such as alpha fairness [12, 40], we choose GPF because of its simple form and

wide use. The evaluations of other types of objective functions will be considered as future work.

3.3 Mathematical Formulation of the HetNet Flow Mapping

Problem

We model the HetNet flow mapping problem mathematically as follows. It is similar to the

models in [13, 33].

Maximize
∑

j=1...M

∑
i=1...N

log( Tij) ∗ xij

subject to ∑
j

xij = 1,

xij ∈ {0, 1},

rij = u(Sij),

Tij = v(x̂j , rij)

(3.1)

As we can see, the optimization objective is the sum of throughput logarithms, i.e. the

Generalized Proportional Fairness as we discussed in Section 3.2. xij is the association variable that

represents whether the traffic of UEi should come through APj . Tij is the apportioned throughput

of UEi when it is connected to APj after considering resource contention, while rij the throughput

before considering resource contention. We will detail the concepts of different types of throughputs

in Section 3.5.

The first constraint means that every UE can only use exactly one interface at a time. The

second constraint indicates that the association variable xij must be an integer in {0, 1}. This means

there is no flow splitting. The third constraint expresses that rij is a function of the connection

status of the link from APj to UEi (Sij). The fourth constraint shows the resource contention at

APj can be modeled as a function of the effective rate UEi can achieve if connected to APj (rij)

and the associate variable vector for all the UEs under APj (x̂j). Based on the scheduling principle

adopted by an AP of a specific RAT, the function can have different forms, which we will detail in
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Section 3.5.

3.4 Alternative Fairness Metrics

We measure the performance of flow mapping systems using the following alternative fairness

metrics.

3.4.1 Jain’s Fairness Index

Jain’s fairness index is a fairness index introduced by Raj Jain et al. in 1984 [22], which has

been widely used in telecommunication. It is defined as follows,

JFI =
(
∑
i xi/yi)

2

n
∑
i (xi/yi)2

(3.2)

where x̂ = {x1, ..., xn} is a vector of throughput while ŷ = {y1, ..., yn} is the throughput

vector from the optimal solution of a target fairness objective. We will use the same notation for

the descriptions of the rest of the fairness indices.

It has the following good properties,

1. Independent of scale

2. Continuous

3. Applies to any number of users

4. Bounded between 0 and 1. 0 means the most unfair while 1 the fairest, which is intuitive

for interpretation. For example, if all the xi are equal, the system reaches a JFI of 1 from

Eq. (3.2).

For the proof of these properties, please refer to [22]. In our evaluation, we use the optimal

solution which can achieve the best GPF value as the baseline vector ŷ.

3.4.2 Normalized Throughput Fairness Index

The normalized throughput fairness index is used in [13]. It is defined as,

TFI =
(
∑
i Ti)

2

n
∑
i T

2
i

(3.3)
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where Ti is the throughput of UEi. It can be seen as a special case of Jain’s fairness in

which the target fairness objective is equal throughput fairness. Note that the magnitude of TFI is

an indicator of throughput fairness, but does not capture the resource usage efficiency at all. For

example, if all the flows are assigned to a single WiFi AP, TFI will be 1 while the total throughput

can be low.

3.4.3 Max-Min Rate Fairness Index

It is defined as,

MMR =
max(xi)

min(xi)
(3.4)

which is the rate between the maximum and minimum elements of the vector x̂.

3.5 Models and Examples of Bandwidth Sharing Effects

3.5.1 Terms Used for Different Types of Throughput

In this dissertation, we will discuss the following two types of throughputs and use the

following convention to denote them.

1. Effective throughput/bit rate (rij)

It is the throughput before considering the resource contention with the other UEs connected

to the same AP.

2. Apportioned throughput (Tij)

It is the throughput after considering the resource contention with the other UEs connected

to the same AP.

3.5.2 Proportional Fair Sharing

As proved in previous literature [13, 33], under the assumption of elastic traffic, proportional

fair becomes equal time fairness. If there are K UEs connected to a proportional fair AP, the
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normalized time share UEi can get (τij) will be,

τij =
1

K
(3.5)

Since the throughput of a UE equals its effective rate multiplied by the time share it achieves,

the final apportioned throughput of the UE (Tij) can be modeled as,

Tij =
rij
K

(3.6)

where rij is the effective rate from APj to UEi. From Eq. (3.6), we see that the apportioned

throughput of a UE under a PF scheduled AP is only related to its effective throughput (rij) and

the total number of UE connected to that AP (K). For example, if we have two UEs connected

with the effective rates of (4, 8) Mbps, the final apportioned throughput will be (4/2, 8/2) Mbps.

The aggregate throughput of the two UEs will be 6 Mbps.

3.5.3 Max-Min Fair Sharing

As described in Section 2.1.1, when the traffic types of UEs are all elastic, max-min fair is

equivalent to equal throughput fair sharing. Let the set of UEs connected to APj be Aj . Assume

every UE obtains an opportunity to send L bytes in a scheduling round. The total time for a

scheduling round will be ta =
∑
i∈Aj

L
rij

. UEi’s normalized time share τij can be then calculated as

follows,

τij =

L
rij

ta

=

L
rij∑

i∈Aj
L
rij

=

1
rij∑

i∈Aj
1
rij

(3.7)

Therefore, the final throughput of UEi is,

Tij = rij × τij =
1∑

i∈Aj
1
rij

(3.8)
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With the two flows (with the effective rates of (4, 8)) in the example in Section 3.5.2

connected to a max-min fair AP, the final throughput can be calculated as,

Tij =
1

1
4 + 1

8

=
8

3
≈ 2.67

Both UEs will get an apportioned throughput of 2.67 Mbps. The aggregate throughput will

be 5.33 Mbps. Note comparing with the result in Section 3.5.2, the minimum throughput increases

while the aggregate throughput decreases. The results of this example and the one in Section 3.5.2

demonstrate that proportional fair gains higher spectrum efficiency with a slight decrease in mini-

mum throughput, when comparing with max-min fair.

3.6 Incremental GPF Evaluation

In this section, we analyze the impacts when adding/removing a flow to/from an AP in

terms of the objective function value, i.e. GPF value. In general, the change of GPF has two parts,

the GPF change of the existing flows on an AP and the GPF change of the moving flow. We detail

the derivations for the GPF changes when adding/removing a flow on PF scheduled and max-min

fair scheduled APs respectively.

3.6.1 Adding a Flow to a Proportional Fair AP

For a proportional fair APj with K UEs (K ≥ 0) connected to it and an effective throughput

vector of rj = < r1j , r2j , ..., rKj >, if we add another UEq to it with an effective throughput of rqj ,

the delta of the objective function value can be calculated as follows.

Let Aj be the set of UEs connected to APj . Before UEq connects to APj , |Aj | = K. After

UEq is added, |Aj | = K + 1. Based on Eq. (3.6), we know that the new apportioned throughput of

flow k becomes T ′kj = Tkj × K
K+1 , for k ∈ Aj . The change of GPF (∆U) can be calculated as,
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∆U = (
∑
k∈Aj

log(T ′kj)− log(Tkj)) + log(Tqj)

= (
∑
k∈Aj

log(Tkj ×
K

K + 1
)− log(Tkj)) + log(Tqj)

= (
∑
k∈Aj

log(Tkj) + log(
K

K + 1
)− log(Tkj)) + log(Tqj)

= K × log(
K

K + 1
) + log(Tqj)

= K × log(
K

K + 1
) + log(

rqj
K + 1

)

(3.9)

Note K ≥ 0. When K = 0, the first part becomes 0, and the delta will be the utility of

the new flow, i.e. log(rqj). It is also interesting to notice that the GPF delta in this case is not

related to the throughput values of the existing flows at all. It is only related to the number of UEs

connected to the AP (|Aj |) and the effective rate of the moving flow (rqj).

3.6.2 Removing a Flow from a Proportional Fair AP

Similarly, if we are going to remove a flow from the same AP, the new total number of flows

will be K − 1. The objective function value change will be,

∆U = (
∑

k∈Aj−q

log(T ′kj)− log(Tkj))− log(Tqj)

= (
∑

k∈Aj−q

log(Tkj ×
K

K − 1
)− log(Tkj))− log(Tqj)

= (
∑

k∈Aj−q

log(Tkj) + log(
K

K − 1
)− log(Tkj))− log(Tqj)

= (K − 1)× log(
K

K − 1
)− log(Tqj)

= (K − 1)× log(
K

K − 1
)− log(

rqj
K

)

(3.10)

Note Eq. (3.10) only works for K ≥ 2. Since removing a flow, K ≥ 1. If K = 1, the

delta will be −log(rqs). We also notice that the information needed to calculate the GPF delta for

removing a flow is the same as that for adding a flow.
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3.6.3 Adding a Flow to a Max-Min Fair AP

For a max-min fair APj with K (K ≥ 0) UEs connected with effective throughput vector rj

= < r1j , r2j , ..., rKj >, if another UE q is added to it with an effective throughput of rqj , the delta

of total objective function value can be calculated as follows,

Let the round time R =
∑
k=1...K

1
rkj

, the change of objective function value is,

∆U = (K + 1)× log(
1

R+ 1
rqj

)−K × log(
1

R
) (3.11)

Note, if UEq is the first flow on that AP, Eq. (3.11) cannot work as R = 0. In that case,

∆U = log(rqj). We notice that for max-min scheduled APs, besides the number of existing UEs

connected on the AP (K) and the effective rate of the new flow (rqj), it requires one more piece of

information, i.e. the sum of round time of all the existing UEs (R).

3.6.4 Removing a Flow from a Max-Min Fair AP

Similarly, if a flow needs to be removed from a max-min fair AP, the change of objective

function value is,

∆U = (K − 1)× log(
1

R
)−K × log(

1

R− 1
rqj

) (3.12)

Note Eq. (3.12) only works for K ≥ 2. Since we are removing a flow, K ≥ 1. If K = 1,

∆U = −log(rqj). We also find that the information needed to calculate the GPF delta for removing

a flow is the same as that for adding a flow.
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Chapter 4

Network Models for Simulation

4.1 Fading Model

In this dissertation, we use the following fading model that ignores shadowing, antenna

direction and gains, interference among APs, etc. We consider them as a constant factor for all the

flows in the system.

We use the fading model and the parameter value from [25],

S/N =
SP

NP
=

κ

dη
(4.1)

where κ is the constant factor, and η = 2.6. The κ values of various radio access technologies

are usually different. This model has faster fading compared with the free-space model (η = 2), but

not as fast as expected in a dense urban environment.

4.2 Bit Rate Model

Wireless protocols use multiple levels of Modulation and Coding Schemes (MCS) to mod-

ulate and code the raw information. They adapt the level of MCS in various channel conditions

to limit error rates. Table 4.1 shows an example of that. Each row in the table is one MCS. The

second column “Signal State” is how many signal states (Ns) an MCS can code using one symbol.

For example, QPSK can code 4 signal states in one symbol. The third column is the number of bits
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per symbol (Nb). The relation between Ns and Nb is,

Nb = log2(Ns) (4.2)

Table 4.1: Modulation Schemes

MCS Signal States (Ns) Bits Per Symbol (Nb)

BPSK 2 1

QPSK 4 2

16-QAM 16 4

64-QAM 64 6

256-QAM 256 8

For a given wireless protocol, the coding scheme that can encode more bits per symbol

requires higher S/N. This can be observed in the analysis in Section 4.6.2 based on Shannon-Hartley

theorem.

4.3 Common Concepts and Assumptions

Wireless protocols use Error Correction Code (ECC) to further decrease the error rates at

the receiver. For coding Nraw bits of raw information, if the number of ECC bits added is Necc, the

code rate (Cr) of this coding scheme is defined as the Cr = Nraw
Nraw+Necc

. We call the bit rate before

applying the code rate coded bit rate or coded rate (rc), and the one after applying the code rate as

nominal bit rate or nominal rate (rn). From the definition, we know that,

rn = rc ∗ Cr (4.3)

Since both 802.11n and LTE use Orthogonal Frequency-Division Multiplexing (OFDM),

the coded bit rate can be calculated as follows. OFDM broadband channels are subdivided using

frequency division multiplexing into subcarriers of more narrow bandwidth. Data is transmitted in

parallel in all the subcarriers. For example, with a 20 MHz channel, LTE has 1200 data carrying

subcarriers, while WiFi only has 52 data carrying subcarriers. The symbol time (tsym) is defined as

the time that is required to transmit a symbol. The symbol rate (rs) is defined as the number of
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symbols that can be transmitted per time unit. From the definition, we know,

rs =
Nch
tsym

(4.4)

where Nch is the number of data carrying subcarriers. The coded bit rate can be calculated

as,

rc = rs ×Nb =
Nch ×Nb
tsym

(4.5)

Furthermore, there is overhead in various wireless protocols, such as control overhead and

arbitration overhead. We call the bit rate after adding this overhead as the effective rate/throughput

(re).

We define the protocol efficiency as,

e =
re
rn

(4.6)

In the following two sections, we will introduce how to calculate these bit rates and protocol

efficiencies for both 802.11 and LTE.

We assume the bandwidth of 802.11 and LTE are both 20 MHz, no channel bonding unless

otherwise stated. This ensures the results are free from the impact of spectrum bandwidth difference.

4.4 802.11 Model

Even though the evaluation framework we design in this dissertation is general to any 802.11

protocols, we choose 802.11n as the standard to use in our simulation. In this section, we detail how

we model the throughput of 802.11n.

We make the following assumptions in this analysis. The protocol efficiencies of the other

types of 802.11 networks can be derived with minor changes in parameter values.

1. We assume a 20 MHz bandwidth and 400 ns guard interval over 5 GHz.

2. We focus on the analysis of downlink.

3. We use the video traffic category as an example.
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4. We assume unicast messages (instead of broadcast messages).

5. We assume no Transmit Opportunity or Media Access Control (MAC) layer frame aggregation

for this analysis. The analysis can be extended to those cases by multiplying the results by

constant factors.

6. In the Physica (PHY) layer, We assume High Throughput (HT) mixed mode is used which

contains a preamble compatible with HT and non-HT receivers. We make this assumption

because support for HT-mixed format is mandatory for 802.11n. Section 20 of IEEE Std.

802.11-2009 defines and describes the HT modes in the PHY layer [2].

4.4.1 Nominal Rate

In OFDM, subcarrier spacing is deliberately selected to cancel out inter-carrier interference

without the need for guard bands or expensive bandpass filters. This implies that the spacing of the

subcarriers is the reciprocal of the useful symbol time (tusym). For 802.11n OFDM using 64 point

fast Fourier transform (FFT) in a 20 MHz channel, it uses 64 subcarriers spaced 312.5 KHz apart.

The useful symbol time can be calculated as,

tusym =
1

312.5 KHz
= 3.2 µs (4.7)

As we assume a 400 ns guard interval, the symbol time tsym = tusym + tgi = 3.2 µs+0.4 µs

= 3.6 µs.

In the 64 subcarriers, only 52 are used for data. There are 4 of them as pilot subcarriers,

and 8 of them serving as a guard band. Based on the standard, the nominal rate of 802.11n can be

calculated using Eq. (4.3) as shown in Table 4.2.

Table 4.2: 802.11n Nominal Rate (400 ns GI)

Modulation Code Rate Nominal Rate

BPSK 1/2 7.2

QPSK 1/2 14.4

QPSK 3/4 21.7

16-QAM 1/2 28.9

16-QAM 3/4 43.3

64-QAM 2/3 57.8

64-QAM 3/4 65.0

64-QAM 5/6 72.2
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4.4.2 Analysis of 802.11n Protocol Efficiency

Besides the nominal throughput in Table 4.2, other factors can add overhead and therefore

reduce the real throughput measured from the application layer (It is the reason for calling the

throughput in the previous section nominal rate.). For example, those factors can include time gaps

from arbitration, ACKs, frame overhead in the MAC layer, and preambles in the PHY layer.

With different 802.11 variants, there will be minor differences in the calculation process of

the overhead. However, the general process is the same. We demonstrate how the protocol efficiency

of 802.11n can be calculated as an example.

4.4.2.1 Overhead Analysis

There are mainly four types of overheads,

1. PHY layer overhead

2. MAC layer overhead

3. Arbitration overhead

4. Backoff overhead

We detail how we can calculate the efficiency factors for each type of overhead in the

following.

1. PHY layer overhead

PHY layer adds a 16-bit header called the service and a 6-bit tail called the tail. Besides that,

the minimum preamble overhead with HT-mixed format in 802.11n is 9 symbols, which is 32.4

µs when tsym =3.6 µs.

2. MAC frame overhead.

The MAC layer of 802.11n adds a minimum of 28 bytes, which includes 24 bytes of header and

4 bytes of Frame Check Sequence (FCS) at the end. We assume the data from IP layer is 1500

bytes. Therefore, the number of bytes in MAC Protocol Data Unit (MPDU) (nmpdu) is 1528.

3. Arbitration overhead
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The 802.11 family of protocols use the distributed coordination function (DCF) protocol for

controlling access to the physical medium. DCF employs the Carrier-Sense Multiple Access

with Collision Avoidance (CSMA/CA) using a truncated exponential backoff algorithm. A UE

must sense the status of the wireless medium before transmission. If it finds that the medium

is continuously idle for a certain duration, it is then permitted to transmit a frame. If the

channel is found busy during the interval, the UE should defer its transmission with a certain

backoff time. 802.11n, inheriting the Enhanced Distributed Coordination Function (ECDF)

from 802.11e, uses the following two types of inter-frame time intervals,

(a) Short Inter-frame Spacing (SIFS)

(b) Arbitration Inter-frame Spacing (AIFS)

Data Frame SIFS ACK AIFS Data

contention

Time

Figure 4.1: 802.11 arbitration time sequence.

Fig. 4.1 shows the process of MAC layer arbitration. As we can, a UE needs to sense the

medium for an SIFS between any data frame and the ACK frame after it. An Arbitration

Inter-frame Spacing (AIFS) must be added after any ACK frame. The time length of AIFS

varies according to traffic types. Assuming video traffic in this analysis, the time length of

AIFS is defined as,

tAIFS = tSIFS + 2 ∗ tslot (4.8)

In 802.11n over 5 GHz, tSIFS = 16 µs and tslot = 9 µs. Therefore, tAIFS = 34 µs.

The ACK frame is 14 bytes. Adding the 22-bit MAC layer overhead, it is 134 bits. Since the

ACK frame also needs the preamble, the total time for the ACK frame can be calculated as

the following,

tack = d 134

52 ∗Nbpsym
e ∗ tsym + tpre (4.9)
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Using 64-QAM 2/3 as an example, the number of symbols required by the ACK frame is

d 134
52∗4e = 1. Therefore, tack = 3.6 + 32.4 = 36 µs.

4. Backoff overhead

In DCF, a random backoff time is also defined to solve the possible collisions from multiple UEs

which sense the channel busy and defer their access simultaneously. The standard has defined

the range of contention window size for various traffic types. For video traffic, the minimum

(CWMin) and maximum (CWMax) of the window sizes are 7 and 15 time slots respectively.

The mean number of backoff time slots will be CWMin / 2 = 3.5. As the arbitration time slot

in 802.11n is 9 µs, the mean backoff time (tbackoff ) is 3.5× 9 = 31.5 µs.

After the above calculations, the only left part is the time of data frames. The time to send

a Physical Protocol Data Unit (PPDU) can be calculated as follows.

tdata = tsym × d
nphy + nmpdu × 8

nbpsym × nsub
e (4.10)

where nip is the number of data bytes sent from IP layer in one frame, while nphy and nmac

are the number of frame overhead in PHY layer (in bit) and MAC layer (in byte). nbpsym is the

number of bits per symbol. nsub is the number of subcarriers. Using 64-QAM 2/3 as an example,

tdata = 3.6 µs × d22 + (1528)× 8

4× 52
e ≈ 212.4 µs

Based on the analysis above, the efficiency factor (e) can be expressed as,

e =
tdata

tdata + tpre + tarb + tsifs + tack + tbackoff
(4.11)

where tpre is the time for PHY layer preambles, tarb the time for MAC layer arbitration

time, and tbackoff the MAC layer backoff time analyzed above. Using 64-QAM 2/3 as an example,

e =
212.4

212.4 + 32.4 + 34 + 36 + 16 + 31.5
≈ 0.584

The effective rates can be therefore calculated using Eq. (4.6). The resulting effective rates

are shown in Table 4.3.
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Table 4.3: 802.11n Effective Rate (400 ns GI)

Modulation Code Rate Nominal Rate Protocol Efficiency Effective Rate

BPSK 1/2 7.2 0.908 6.560

QPSK 1/2 14.4 0.841 12.143

QPSK 3/4 21.7 0.785 17.008

16-QAM 1/2 28.9 0.732 21.138

16-QAM 3/4 43.3 0.650 28.146

64-QAM 2/3 57.8 0.584 33.740

64-QAM 3/4 65.0 0.552 35.879

64-QAM 5/6 72.2 0.524 37.880

4.5 LTE Model

We assume LTE-Frequency Division Duplex (FDD) over a 20 MHz channel in this analysis.

We conduct the analysis with the downlink user plane Physical Downlink Shared Channel (PDSCH).

The PDSCH is the main data bearing channel in LTE.

4.5.1 Coded Bit Rate

LTE employs Orthogonal Frequency-Division Multiple Access (OFDMA) which is a multi-

user version of the Orthogonal Frequency-Division Multiplexing (OFDM) digital modulation scheme.

In OFDMA, the radio resources are divided into two-dimensional (2D) regions over time and fre-

quency. Each user gets subcarriers grouped in 2D, as shown in Fig. 4.2, compared to only in the

time dimension in OFDM. This allows multiple users to transmit in low rates simultaneously. This

also simplifies the collision avoidance procedure. It does not need a CSMA/CA process as in the

802.11 protocol.

The coded bit rate of LTE without considering code rate or any overhead can be calculated

as follows.

PDSCH carries data in Transport Blocks (TB), which is a MAC Protocol Data Unit. Each

transport block is passed from the MAC layer to the PHY layer once per Transmission Time Interval

(TTI) which is 1 ms. In the time dimension, one LTE frame is 10 ms which consists of ten 1 ms

subframes. Each subframe contains two slots. Resources are assigned on a basis of two slots. One

Physical Resource Block (PRB) is one slot (0.5 ms) long in time and 180 Hz wide in frequency.

Fig. 4.2 shows two PRBs. Each PRB has 12 subcarriers in the frequency domain and 7 symbols (if

with a normal Cyclic Prefix) in the time domain. One subcarrier by one symbol is called a Resource

Element (RE), which is the smallest unit of resources in LTE. Each cell in Fig. 4.2 is a RE. We can
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Figure 4.2: OFDMA of LTE downlink

see that one PRB has 12 × 7 = 84 REs. For LTE with 20 MHz bandwidth, there are 100 PRBs.

Since each subframe has 2 slots, the number of REs in one subframe Nre = 84 × 2 × 100 = 16800.

Therefore, the coded bit rate (rc) can be calculated as,

rc =
Nre ×Nb

tsf

=
16800×Nb

1 ms

(4.12)

where Nb is the number of bits per symbol for a specific MCS and tsf the time length for

a subframe. From the LTE standard [19], we know there are only three modulation schemes, i.e.

(QPSK, 16QAM, 64QAM). The coded bits per symbol for them are (2, 4, 6) respectively. Based

on the number of bits for the MCS, we can obtain the raw rate for each MCS as shown in the 4th

column in Table 4.4.

4.5.2 Nominal Rate

With coded bit rate, we can calculate the nominal rate if we know the code rate using Eq.

4.3. The code rate we use is from the 3GPP documentation [34]. It is showed in the 5th column in

Table 4.4. The resulting nominal rates are shown in the 6th column of Table 4.4.
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4.5.3 Effective Rate

For the effective rates which exclude the overhead, we use the rates derived from the trans-

port block size (TBS) in Table 7.1.7.2.1-1 of 3GPP standard [4]. Transport block size is a limit in

the 3GPP standard that defines how many bits are allowed to be transferred in 1ms, given the MCS

index and number of PRBs. Therefore, given the transport block size (Ttbs), the final effective rate

will be,

Teff =
Ttbs

1× 10−3
bps (4.13)

With the analysis above, we can get the LTE rate table as follows,

Table 4.4: LTE Rate Table

MCS Index Modulation Nb Coded Rate Code Rate Nominal Rate Effective Rate

0 QPSK 2 33.6 0.117 3.938 2.792

1 QPSK 2 33.6 0.153 5.152 3.624

2 QPSK 2 33.6 0.188 6.333 4.584

3 QPSK 2 33.6 0.245 8.236 5.736

4 QPSK 2 33.6 0.301 10.106 7.224

5 QPSK 2 33.6 0.370 12.436 8.761

6 QPSK 2 33.6 0.438 14.733 10.296

7 QPSK 2 33.6 0.514 17.259 12.216

8 QPSK 2 33.6 0.588 19.753 14.112

9 QPSK 2 33.6 0.663 22.280 15.84

10 16 QAM 4 67.2 0.332 22.313 15.84

11 16 QAM 4 67.2 0.369 24.806 17.658

12 16 QAM 4 67.2 0.424 28.481 19.848

13 16 QAM 4 67.2 0.479 32.156 22.92

14 16 QAM 4 67.2 0.540 36.291 25.456

15 16 QAM 4 67.2 0.602 40.425 28.336

16 16 QAM 4 67.2 0.643 43.181 30.576

17 64QAM 6 100.8 0.428 43.116 30.576

18 64QAM 6 100.8 0.455 45.872 32.856

19 64QAM 6 100.8 0.505 50.892 36.696

20 64QAM 6 100.8 0.554 55.814 39.232

21 64QAM 6 100.8 0.602 60.638 43.816

22 64QAM 6 100.8 0.650 65.559 46.888

23 64QAM 6 100.8 0.702 70.777 51.024

24 64QAM 6 100.8 0.754 75.994 55.056

25 64QAM 6 100.8 0.803 80.916 57.336

26 64QAM 6 100.8 0.853 85.936 61.664

27 64QAM 6 100.8 0.889 89.578 63.776

28 64QAM 6 100.8 0.926 93.319 75.376
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Note: all the bit rates are in Mbps.

4.6 Mapping UE-AP Distance to MCS Entry

4.6.1 Searching Strategy

To use the tables we derived from the Sections 4.4 and 4.5 to model UEs’ effective through-

put, we need a mapping from UE-AP distance to MCS entry. Introduced in Section 4.1, we already

have a fading model that can map UE-AP distance to S/N. Then the part missing is only a mapping

from S/N to MCS entry.

If we know the minimum S/N to support each MCS, given the S/N a UE can achieve at a

certain distance (S/Nd), we can use the following searching strategy to determine which MCS entry

should be used. If we search the “Minimum S/N” column of the MCS table from bottom to top, the

entry to use is the one of which the minimum S/N is the closest lower bound for the target S/Nd.

In other words, it picks the first entry that has a minimum S/N less than the target S/Nd.

For example, if the target S/Nd is 31, the entry at the bottom with MCS index 3 is first

checked. The minimum S/N to support it is 50, which can not be used since it is larger than 31.

Then, MCS index 2 with a minimum SNR of 30 is checked. We find it is less than 31 which is the

first one that is less than the target. Therefore, we should use MCS index 2.

Table 4.5: Fake Table to Demonstrate MCS Index Searching

New MCS Index Nominal Rate Minimum S/N

0 0 0

1 5 10

2 10 30

3 15 50

Note to make sure we get a valid MCS index when the target S/N is smaller than the

minimum S/N in the whole table, we add one more entry at the top of the table. Therefore, we

use the term New MCS Index here (and in the tables in Section 4.6.2) to indicate that they are one

larger than the MCS index in the standards.
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4.6.2 Mapping Tables

We derive the mapping tables required for the above searching process for 802.11n and LTE

using the following method.

Given S/N = SP
NP for one UE, we can calculate its max sustainable user data throughput

using,

r = Blog(1 + S/N) = Blog(1 +
SP

NP
) (4.14)

Therefore, if the nominal bit rate associated with an MCS is rn, then the Shannon-Hartley

minimum S/N required to support the nominal rate is,

S/Nmin = 2
rn
B − 1 (4.15)

Since we assume both 802.11n and LTE use 20 MHz bandwidth, S/Nmin = 2rn/20 − 1 in

this case.

It is well-known that the Shannon-Hartley bound is only a theoretical bound that is not

reachable within a single spatial channel. Furthermore, if we use the calculated S/Nmin directly, it

can cause MCS “flapping” when UE is around a distance that maps to SINRs between two MCS

entries. Consequently, the values used in the MCS shadow tables of S/N minima are approximated

as

S/Nmin = φ× ψ × (2
T
B − 1) (4.16)

where φ is a constant factor used to avoid MCS flapping while ψ a factor that approximates

the ratio between the “real world” S/Nmin and the Shannon-Hartley S/Nmin. It is clear that the

effects of φ and ψ can be subsumed in the constant κ in Eq. 4.1.

The resulting table for LTE is shown in Table 4.6.
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Table 4.6: Minimum S/N Table for LTE

New MCS Index Nominal Rate Minimum SINR

0 0.000 0.000

1 3.938 0.146

2 5.152 0.195

3 6.333 0.245

4 8.236 0.330

5 10.106 0.419

6 12.436 0.539

7 14.733 0.666

8 17.259 0.819

9 19.753 0.983

10 22.280 1.164

11 22.313 1.167

12 24.806 1.362

13 28.481 1.683

14 32.156 2.048

15 36.291 2.517

16 40.425 3.059

17 43.181 3.466

18 43.116 3.456

19 45.872 3.903

20 50.892 4.835

21 55.814 5.920

22 60.638 7.179

23 65.559 8.700

24 70.777 10.622

25 75.994 12.926

26 80.916 15.516

27 85.936 18.655

28 89.578 21.299

29 93.319 24.386

The resulting table for WiFi is shown in Table 4.7.
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Table 4.7: Minimum S/N Table for WiFi

New MCS Index Nominal Rate Minimum S/N

0 0.0 0.000

1 7.2 0.284

2 14.4 0.650

3 21.7 1.119

4 28.9 1.722

5 43.3 3.490

6 57.8 6.407

7 65.0 8.514

8 72.2 11.219
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Chapter 5

Simulation Methodology

5.1 Simulation Topologies

Simulation topologies specify the following,

• The locations and coverage of APs

• The locations of UEs

5.1.1 AP Placement

As was stated in the introduction, we assume the system to be optimized is divided into

areas for scalability. The UE mapping systems under consideration in this research only optimize

flows from APs to UEs inside the same area. In our simulations, we use a circle of nominal radius 1

unit to represent this area. We call this area a simulated cell. Note it is a conceptual cell that might

contain multiple LTE cells. The circle is centered at the origin. The long-dashed line in Fig. 5.1

represents a simulated cell. There are M APs located inside the area. They can be either LTE or

WiFi APs.

More specifically, we simulate with the following numbers of LTE APs (Nlte) and WiFi APs

(Nwifi). We use Nlte = 1 and Nwifi = M − 1. The LTE and WiFi APs are placed in the simulated

cell as follows:

1) The LTE AP is always placed at the center/origin;

39



2) The M − 1 WiFi APs are evenly distributed on a circle with the same center as the

simulated cell. The radius of that circle is denoted as aw, where 0 < aw ≤ 1. In polar coordinates,

the location of WiFi APj is (aw, 2π×j
M−1 ), where j = {0, ..., M − 2}.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Figure 5.1: Exemplar topology.

For example, Fig. 5.1 shows a topology we use in our baseline evaluations in Section 6.1

with 1 LTE AP and 3 WiFi APs. We choose aw=2/3 as it is tested that this aw value maximizes

the GPF values of the flow mapping systems in the scenarios with uniform UE topology.

5.1.2 AP Coverage

From the fading model we described in Section 4.1, we know that the coverage of each AP

is determined by the value of κ. Unless otherwise noted, we use the following κ value for all the

LTE and WiFi APs.

As described in Table 4.6, the minimum S/N that supports the lowest-rate LTE MCS is

0.146. To ensure the coverage of the LTE AP is exactly the range of the simulated cell, i.e. the
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coverage radius of the LTE AP Rlte = 1, we can calculate the κ value based on Eq. (4.1) as,

κ = S/Nmin × dη

= 0.146× 12.6

= 0.146

(5.1)

We by default use κ = 0.146 for both LTE and WiFi APs. However, since WiFi has a higher

S/Nmin (0.284) in the analysis for Table 4.7, the coverage radius of WiFi APs are smaller than the

LTE APs, which can be calculated as follows,

Rwifi = (
κ

S/Nmin
)

1
η

= (
0.146

0.284
)

1
2.6

≈ 0.774

(5.2)

5.1.3 UE Placement

5.1.3.1 Placement Strategies

For UE placements, we use two placement strategies,

1. Uniform

UEs are uniformly distributed in the simulated cell.

2. Clustered

We use cluster constraints to represent hot spots where UEs aggregate. Two types of con-

straints are used. With both types of clustered topologies, UEs are distributed inside a selected

cluster constraint following a uniform distribution.

(a) Circular clusters

Circular clusters are used to represent hot spots with differing locations. We form k

clusters with radius (r1, r2, ..., rk), and use different strategies to place the centers of the

clusters inside the circle in a way that all clusters are contained in the simulated cell.
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(b) Rectangular clusters

We use two rectangles to form a T-shaped cluster. It is used to represent hot spots that

are aligned with some major roads in an urban area.

5.1.3.2 Placement Procedure

The UEs are placed into the clusters as follows. For each placement, we generate a random

number s in [0, 1] and compare it with the values in a threshold table to decide into which cluster

the UE should be placed. For example, Table 5.1 is an example of a threshold table.

Table 5.1: Threshold Table for UE Placement to Clusters

Cluster Index Threshold

1 0.1

2 0.4

3 0.7

4 1

We show the placement procedure by way of example using Table 5.1. If 0 ≤ s < 0.1, we

will assign the UE to Cluster1; if 0.1 ≤ s < 0.4, we will assign the UE to Cluster2; if 0.4 ≤ s < 0.7,

we will assign the UE to Cluster3; if 0.7 ≤ s ≤ 1, we will assign the UE to Cluster4.

Let pk be the probability to place the UE to Clusterk at step k. The values in the thresh

table can be seen as the cumulative probability of pk, i.e.
∑

1...k pk. Therefore, the last entry in the

“Threshold” column of the table should always be 1.

5.2 Static/Dynamic Simulations

We use both static and dynamic simulations to evaluate the flow mapping systems.

5.2.1 Static Simulation

We first use a static simulation method which uses a completely new placement for all the

UEs independent of the historical UE placements for each run. This is to represent a system that

periodically runs a scheduling algorithm which potentially can change the associations of all the

UEs. However, this method cannot capture the UEs’ mobility and the on-off session dynamics.

Therefore, we designed and implemented the second dynamic simulation method.
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5.2.2 Dynamic Simulation

The dynamic simulation is event-driven which incorporates both the session on-off dynamics

and UE mobility dynamics. The session on-off events consist of on-event and off -event. An off-event

represents UE stopping receiving data or disassociating with the AP it is connected to. An on-event

represents the resumption of one UE’s data session which implies it must associate with an AP. A

mobility event represents the movement of one UE. There can be other types of events in the system

such as a timer event. Certain events can trigger the re-scheduling according to system requirements

and design. For example, the re-scheduling can be triggered either by an on-event or a timer event.

In our simulation, we use a simplifying exit-and-replacement scheme to model the UE mo-

bility. We further use a Bernoulli process to determine the number of off-on transitions before a UE

exits the system and is replaced. The UE that resumes has a Pm probability of moving. For the

lengths of the on/off sessions, we can use exponential or Pareto distributions to model them.

Since the system states change with sessions of varying lengths, we calculate the weighted

average of the system performance metrics using the session lengths as weights.

5.3 Algorithms to Be Evaluated

We evaluate the following representative flow mapping algorithms in the three types of flow

mapping systems.

1. Global Information based Flow Mapping Systems (GIFMS)

• Optimal (opt)

• ATOM (atom)

• Global greedy (gg, global-greedy)

2. Local Information based Flow Mapping Systems (LIFMS)

• Local greedy - WiFi preferred (lgw, local-greedy-wifi-preferred)

• Local greedy - equal chance(lge, local-greedy-equal-chance)

• Random (rand, random-assignment)

3. Semi-Global Information based Flow Mapping Systems (S-GIFMS)
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• Load-aware local greedy - equal chance (llg, load-aware-local-greedy)

We introduce the details of each algorithm as follows,

1. Optimal (opt)

Both [13] and [41] have proved the problem in Section 1.2 is an NP-hard problem. Therefore,

we use a brute-force method to achieve the optimal solution. It iterates through all the

possible user association configurations, and returns the one with the largest objective function

value. We use the incremental evaluation technique introduced in Section 3.6 to speed up the

GPF value evaluations. The time complexities of all the algorithms listed here except the

random assignment depend on how we evaluate one association plan. A simple evaluation

of an association plan without storing the results of a previous evaluation requires O(MN2),

where M is the number of APs and N the number of UEs. However, if we use the incremental

evaluation as we described in Section 3.6, the time complexity of one evaluation for changing

one UE from or to one AP are both O(1). In the following analysis, we will always assume the

incremental evaluation is used. Note that the time complexity to achieve the optimal solution

is O(MN ) after using the incremental evaluation technique.

2. ATOM (atom)

It is the Algorithm 1 in [33]. We show it in Algorithm 1 below. The algorithm determines

the association plan for one WiFi AP at a time. We first define the terms and notions used

in the algorithm similar to [33]. Let π be the set of undetermined WiFi APs and D the set of

determined WiFi APs. Let U be the set of all UEs. As the convention, we use index j where

1 ≤ j ≤M to denote the AP index. AP1 is the LTE AP while AP2 to APM are the WiFi APs.

Let Sj be the set of UEs that can associate with APj ; and Lj be the subset of Sj in which the

UEs have not been assigned to any APs in D. Let Aj be the set of UEs that are assigned to

APj . In the beginning, π is the set of all the WiFi APs. For Lj , where 2 ≤ j ≤ M , each of

them is initialized to Sj . A1 is initialized to the set of UEs that cannot connect to any WiFi

APs, i.e. U - ∪j=2...M (Sj). Aj where 2 ≤ j ≤M are all initialized to an empty set.

[33] uses the term “outer loop” and “inner loop” to name the two major conceptual loops in

the algorithm. The outer loop tries to find the WiFi AP in the set π which can produce the

largest utility function change based on its offloading plan (This utility function change can
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be negative. But that situation rarely happens when the negative effect of adding UEs to LTE

outweighs the positive effect of adding WiFi UEs to an empty AP.). The inner loop deals with

the offloading plan evaluation for a WiFi AP. Similar to the greedy strategy in the outer loop,

it moves the UE that can produce the largest utility function change from the LTE AP to

the WiFi AP. However, it will stop if the largest one selected has a utility change that is not

positive anymore. This stop condition ensures the “Moving-To-WiFi” operation for each WiFi

AP can only increase the utility function.

Note a UE can have three states, i.e. {Unassigned, Assigned to LTE, Assigned to WiFi} in

this algorithm. If one UE is assigned to WiFi, its plan is permanently fixed. It will be deleted

from Lj for j ∈ π. However, if one UE is assigned to LTE, even though treated as a UE under

the LTE AP when evaluating GPF, it may still appear in an Lj in a later inner loop and have

a second chance to be moved to another WiFi AP, since it is not deleted from Lj for j ∈ π.

We try to analyze the time complexity of the ATOM algorithm as follows.

The time complexity of ATOM is more difficult to analyze compared to the other algorithms

presented here. Because each UE may appear in multiple APs in πj , while the size of πj is

changing over the outer loop iterations. Let denote the outer loop iteration number as t, and

m = M − 1 as the number of WiFi APs. We know the algorithm always needs to run m itera-

tions. Each iteration will set one WiFi AP’s association plan. If we denote the size of πj at iter-

ation t as pjt, evaluating the WiFi APj at iteration t requires pjt + (pjt − 1) + ...+ (pjt − kjt),

where kjt is the number of UEs that needs to be tried before the stop condition is met in the

inner loop. Or, we can express it as
∑
q=0...kjt

pjt − q. Note pjt changes over t. The only thing

we know about pjt is 0 < pjt ≤ N. So, we can only get a rough upper bound for this operation

as O(kN). Additionally, at the beginning of each iteration, the algorithm moves all UEs in πj

to the LTE AP. That operation is O(pjt) which is dominated by the other operations.

In the first iteration, the algorithm evaluates m APs. In the second iteration, since the first

AP is set, it only evaluates m-1 APs. For the kth iteration, it needs m− k+ 1 AP evaluations.

The last iteration only evaluates 1 AP. From this analysis, we find that it requires O(M2) AP

evaluations in total. So, overall the time complexity of the algorithm is O(kNM2). A rough

upper bound for k can be N . Therefore, the final worst-case time complexity for ATOM can

be expressed as O(N2M2). If M is much smaller than N , it can also be expressed as O(N2).
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Algorithm 1: ATOM
// Let B be the set of all the WiFi APs and U the set of all UEs
// Let Aj be the set of UEs that are assigned to APj
// Let Uij be the utility function change if UEi is moved to APj
// Initialization

1 π = B
2 initialize Sj based on effective rates
3 A1 = U - ∪2...M (Sj)
4 Lj = Sj , ∀ j ∈ B

// Outer loop
5 while π 6= φ do
6 for WiFi APj ∈ π do
7 Aj = φ;
8 A1j =A1 ∩ Lj ;
9 Tj = Lj ;

// Inner loop
10 while Tj 6= φ do
11 i∗ = argmaxi(∆Uij);
12 if ∆Ui∗j ≤ 0 then
13 break;
14 end
15 ∆Uj = ∆Uj + ∆Ui∗j ;
16 Aj = Aj ∩ i∗;
17 A1j = A1j − i∗;
18 Tj = Tj − i∗;
19 end

20 end
21 b = argmaxj(∆Uj);
22 π = π - b;
23 Lj = Sj − Ab, ∀j ∈ B, j 6= b;
24 A1 = A1b;

25 end

3. Global greedy (gg)

The algorithm is shown in Algorithm 2. First, there are two conceptual sets of UEs in the

algorithm, the determined set S and the undetermined set R. If the universal set of UEs is

U, S ∪ R = U and S ∩ R = ∅. The set R is initialized to the universal set of UEs while the

set S an empty set. The algorithm runs in multiple iterations. In each iteration, it finds the

(UEi, APj) pair from R that can maximize the total objective function value of the UEs in S,

as if UEi was connected to APj . Then it fixes the association of UEi to APj , and moves UEi

from R to S. The algorithm continues to run until R is empty. Note that it is possible that all

the moves from R to S reduce the objective function value. In that case, the move that least

reduces the objective function value is selected.

The time complexities of the algorithms depend on how we implement the plan evaluation part

of the algorithm. If we use incremental evaluation as we described in Section 3.6, the time

complexity of one evaluation for adding one UE to LTE AP is O(N) while that for WiFi AP

is O(1). For each UE, it needs to try 1 LTE AP and M-1 WiFi APs. So, the time is O(M).

We need to evaluate N , N -1, ..., 1 UEs in the outer loop, which is O(N2) in total. So, overall

the time complexity is O(N2M). If M is much smaller than N, it can be expressed as O(N2).
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Algorithm 2: Global greedy heuristic.
1 R = A
2 S = φ
3 currentT = 0
4 while not isEmpty(R) do
5 maxDiff = -∞;
6 i’ = 0;
7 j’ = 0;
8 for i in R do
9 S’ = S ∪ i;

10 newT =
∑
s∈S′ Tsj ;

11 ∆T = Diff(currentT, newT);
12 if ∆T > maxDiff then
13 i’ = i;
14 j’= j;
15 maxDiff = ∆T;

16 end

17 end

18 S = S ∪ i′;
19 R = R - i′;
20 xi′j′ = 1;

21 end

4. Local greedy - WiFi preferred (lgw)

Each UE selects the WiFi AP with the highest effective rate. If no WiFi available, it will select

the highest-effective-rate LTE BS. In the case of one LTE in the simulated cell, the second

phase becomes trivial. The time complexity for this algorithm to run for one UE is O(M),

since it needs to compare all the APs it is accessible and the worst case is it can connect to

all the APs. If we sum up the time complexity of all the UEs in the system so that it is

comparable to the GIFMS algorithms, the time complexity will be O(MN).

5. Local greedy - equal chance (lge)

Each UE selects the interface that can generate the highest effective throughput based on the

connection status seen locally. This strategy is commonly used in the existing HetNets, but we

will show it performs poorly with respect to generalized proportional fairness and aggregate

throughput. This algorithm has the same time complexity as lgw, i.e. O(M) for one UE and

O(MN) for all the UEs in the system.

6. Random assignment (rand)

Each UE randomly selects from all its accessible APs. APj is accessible by UEi if the effective

throughput from APj to UEi is greater than 0. In all the local greedy algorithms, ties are

broken by random selection among the tie set. The time complexity of this algorithm is O(1)

for one UE, and O(N) for all the UEs.
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7. Load-aware local greedy - equal chance (llg)

This is an algorithm similar to the Greedy-0 algorithm in [13]. It is fundamentally different

from the GIFMS in that it is only triggered by either off-on events or mobility events, instead

of periodically run for all the UEs. In both types of events, only one flow will try to connect to

an AP. We call this flow the coming flow. The flow mapping decision to make is only for the

coming flow. In other words, it has an additional constraint of “no moving of existing flows”

comparing with the GIFMS. This constraint totally eliminates the enforced handovers when

running GIFMS which remaps all the flows. This is one of the advantages of S-GIFMS over

GIFMS.

Even though the algorithm is similar to the one in [13], we further detail how this algorithm

can be implemented with minimum additional information monitored and broadcasted at the

APs. We classify llg to S-GIFMS in the introduction distinguished from GIFMS such as

ATOM and global-greedy since it only requires information from the AP level as opposed to

the information from all the UEs in the global system. It uses the incremental GPF evaluation

procedures we described in Section 3.6.1 and Section 3.6.3 to evaluate the GPF deltas for

PF and max-min schedules APs respectively. As we analyzed in those sections, the AP level

information required for a PF scheduled AP is only the number of UEs connected to the AP.

A max-min fair scheduled AP further entails one more piece of information compared, which

is the round time of all the connected UEs. Section 8.4 discusses more details of how those

AP level metrics can be monitored at APs and broadcasted to UEs for various RATs.

The mapping algorithm evaluates the GPF deltas of adding the coming flow to each AP that

is accessible by the coming flow. It then greedily picks the AP that produces the largest

GPF delta, similar to the local greedy flow mapping algorithms we have introduced. However,

comparing with the local greedy ones, the decision-making is augmented with the AP-level

information mentioned above.

This algorithm has the same time complexity as lge, i.e. O(M) for one flow.
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Chapter 6

Evaluations using Static

Simulations

In this chapter, we first use static simulation to evaluate the performance of the flow mapping

systems under various settings.

6.1 Comparison with the Optimal Solution in Smaller Scale

Simulations

We first simulate the flow mapping systems using the methodology in Chapter 5 with the

following parameters,

• No. of UEs (N): 12

• No. of APs (M): 4

• No. of runs: 16384

• UE placement strategy: uniform (as explained in Section 5.1.3)

• LTE radius: 1 (equivalent to κ = 0.146 as discussed in Section 5.1.2)

• κ value (in Eq. (4.1)) of WiFi APs: the same as that of the LTE AP
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We only use N=12 when comparing the optimal and the other flow mapping systems because

of the high time complexity to generate an optimal solution as analyzed in Section 5.3. We show

results with more UEs in Section 6.2.

6.1.1 Aggregate Results

Among all the metrics in Chapter 3, GPF value and Jain’s fairness are the more important

ones. Because GPF is the optimization objective in all the global flow mapping algorithms while

Jain’s fairness is just another way to express the distance between the flow-level throughput results

of one algorithm and the optimal solution. As we have analyzed in Section 3.2, GPF has a better

balance between spectrum efficiency and fairness among flows. Therefore, we will always list GPF

value first (For Jain’s fairness metric, we can only show the comparison when the optimal solution

is computed).

6.1.1.1 GPF Value and Jain’s Fairness

1. GPF value

Table 6.1 to 6.3 show the performance of GPF for each algorithm. Table 6.1 lists the

raw values while the other two tables further display the relative performance comparing the local-

greedy-equal-chance and the optimal solution respectively. Relative difference results, as the one

in Table 6.2, are useful for comparison among different algorithms in one scenario. They can also

show the relative performance comparison across scenarios when parameters such as the number of

UEs or coverage of APs can boost/degrade the performance of all the algorithms. We will show the

results of the other metrics in a similar way for the following sections. The relative difference rate

Dr is calculated as follows,

Dr =
other method result− baseline result

(|other method result|+ |baseline result|)/2
(6.1)

The reason we use the above form of relative difference is the rudimentary form of

other method result− baseline result
baseline result

can have problems when baseline result is negative or 0. In our evaluation, the GPF value of
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baseline algorithms may become negative. Note the resulting Dr values are bounded to [-2, 2]. If

the two results in comparison have different signs or one of them is 0, the results will be ± 2. We

will notice that in the later sections.

Table 6.2 shows the comparison using the local-greedy-equal-chance as the baseline algo-

rithm. Table 6.3 shows the comparison using the optimal as the baseline algorithm.

From the tables, we can see that the random-assignment has the worst performance. It can

only achieve about half of the mean GPF value achieved by the ATOM and global-greedy. The

local-greedy-wifi-preferred, which is the strategy used in current systems, is only slightly better than

random assignment (14.29 compared with 10.57). The local-greedy-equal-chance has much better

performance than the local-greedy-wifi-preferred and random assignment. However, it is still slightly

worse than ATOM and global-greedy. ATOM and global-greedy have the best GPF performance,

which is very close to the optimal solution. However, the difference of the mean values between

the local-greedy-equal-chance and the three GIFMS algorithms is very small. With a magnitude of

around 20, the GPF difference is only around 1.

Table 6.1: GPF Value [Compare-With-Opt]()

mean sd median min max

lgw.v 14.29 2.41 14.32 2.61 24.13
lge.v 18.92 2.92 19.00 5.75 28.96

atom.v 19.73 2.56 19.77 7.91 28.96
gg.v 19.62 2.62 19.67 8.38 28.96

rand.v 10.57 4.05 10.87 -8.47 24.14
opt.v 19.82 2.53 19.85 9.29 28.96

Table 6.2: GPF Value Compared with lge [Compare-With-Opt]()

mean sd median min max

lgw.v -0.28 -0.19 -0.28 -0.75 -0.18
atom.v 0.04 -0.13 0.04 0.31 0.00

gg.v 0.04 -0.11 0.03 0.37 0.00
rand.v -0.57 0.33 -0.54 -2.00 -0.18

opt.v 0.05 -0.14 0.04 0.47 0.00

Table 6.3: GPF Value Compared with opt [Compare-With-Opt]()

mean sd median min max

lgw.v -0.32 -0.05 -0.32 -1.12 -0.18
lge.v -0.05 0.14 -0.04 -0.47 0.00

atom.v -0.00 0.01 -0.00 -0.16 0.00
gg.v -0.01 0.04 -0.01 -0.10 0.00

rand.v -0.61 0.46 -0.58 -2.00 -0.18
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From Table 6.1, we also notice, as for the standard deviations, all the algorithms except

the random-assignment have similar performance. By further looking at the min and max values in

Table 6.1, we see that the min value of random-assignment is much lower than the other algorithms

while the max values being similar. This means that the non-random algorithms do better than

rand-assignment in avoiding bad solutions. Meantime, the mean and median of each algorithm are

very close. This implies that the GPF results of each algorithm over all the runs have a symmetrical

distribution. The same applies to the means and medians of the other metrics below.

Fig. 6.1 shows the cumulative distribution function (CDF) of the GPF values achieved by

all the algorithms over the 16K runs. Fig. 6.2 further uses a time series diagram to show the GPF

value comparison in the first 256 runs. From Fig. 6.1, we observe the same performance ranking as

we observed in the tables. For all CDF figures, we add two horizontal dashed lines, which help to

show the 5% and 95% percentiles of the plotted results. The dotted horizontal grid line at y=0.5

further shows the medians of the results. We see that the performance of ATOM, global-greedy and

local-greedy-equal-chance are apparently much better than the other two. The performance of local-

greedy-equal-chance is somewhat worse than ATOM and global-greedy. However, we should note

this is the result of uniform UE placement. We know the APs are located symmetrically inside the

simulated cell as we described in Section 5.1.1. If UEs all greedily select the AP based on effective

throughput under the circumstance of uniform UE placement, this tends to equalize the AP loads

while trying to maximize the total throughput given the only available local information. We will

show the results of local-greedy-equal-chance under various UE placement strategies with clusters

in Section 6.4.

From Fig. 6.2 we can see similar performance ranking among the algorithms. But it further

shows the noise or deviations in separate runs. For example, we can see, around the run sequence

number 110, global-greedy achieves a GPF value that is even worse than that of the local-greedy-

wifi-preferred. It shows even if one algorithm owns a better average performance result, it can still

occasionally have a lower performance metric than another algorithm with an inferior average. From

this type of time series graph, we can also more directly observe the standard deviation difference

among algorithms.
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Figure 6.1: CDF of GPF values over multiple runs.
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2. Jain’s Fairness Index (JFI)

The Jain’s fairness index can be used to measure the flow-level throughput difference/dis-

tance as achieved by one mapping algorithm when compared with the optimal mapping. Even

though we can also calculate relative differences in the mean throughputs of algorithms differences

as in Table 6.9, the differences in the results of individual flows may cancel out when calculating the

mean values. By using quadratic functions, the JFI better captures the distance between solutions

with flow-level difference details.

Interestingly, the JFI results are consistent with the GPF value results after scaling to [0,

1]. The random-assignment is still about half of the optimal solution, ATOM and global-greedy

are still the best ones. We can see that ATOM is very close to the optimal solution in this case

as its median of the Jain’s fairness for 16K runs is 1. From Table 6.4, we observe that ATOM

achieves an average JFI of 0.96 while global-greedy achieves 0.92, which are both very close to 1.

local-greedy-wifi-preferred achieves 0.72 which is similar to the scale of distance from the optimal

as in the GPF comparison. Fig. 6.3 further shows the CDF of JFI for various algorithms. We can

see more than 70% of ATOM results are the same as the optimal. Global-greedy only has about

half of the solution the same as the optimal. Local-greedy-equal-chance only has about 20% in this

case. We list the relative difference compared with the local-greedy-equal-chance and the optimal

in Table 6.5 and Table 6.6 respectively. We will use them to compare with the similar tables when

the parameters like the number of UEs changed. Note the entries in the standard deviation column

of Table 6.6 are all with a value of 2. This is caused by the baseline result in Eq. (6.1) being 0.

Table 6.4: Jain’s Fairness Index [Compare-With-Opt]()

mean sd median min max

lgw.nj 0.72 0.16 0.75 0.15 1.00
lge.nj 0.81 0.16 0.85 0.22 1.00

atom.nj 0.96 0.10 1.00 0.24 1.00
gg.nj 0.92 0.12 0.97 0.22 1.00

rand.nj 0.53 0.17 0.53 0.12 1.00
opt.nj 1.00 0.00 1.00 1.00 1.00
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Table 6.5: Jain’s Fairness Index Compared with lge [Compare-With-Opt]()

mean sd median min max

lgw.nj -0.12 0.01 -0.12 -0.36 0.00
atom.nj 0.16 -0.48 0.17 0.06 0.00

gg.nj 0.12 -0.30 0.13 -0.01 0.00
rand.nj -0.42 0.08 -0.45 -0.62 0.00

opt.nj 0.21 -2.00 0.17 1.27 0.00

Table 6.6: Jain’s Fairness Index Compared with opt [Compare-With-Opt]()

mean sd median min max

lgw.nj -0.33 2.00 -0.29 -1.46 0.00
lge.nj -0.21 2.00 -0.17 -1.27 0.00

atom.nj -0.05 2.00 0.00 -1.24 0.00
gg.nj -0.08 2.00 -0.03 -1.28 0.00

rand.nj -0.61 2.00 -0.61 -1.58 0.00
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Figure 6.3: CDF of Jain’s Fairness Index values over multiple runs.
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6.1.1.2 Other Metrics

1. Aggregate Throughput

Maximizing aggregate throughput is not a desirable objective function because it can pro-

duce extreme unfairness including starvation. Nevertheless, it remains a useful metric to be consid-

ered.

Table 6.7 to Table 6.9 shows the results of aggregate throughput for all the algorithms.

Similar to the GPF results, local-greedy-wifi-preferred and random-assignment are still much worse

than the other four methods. It is interesting to observe that the mean of random-assignment is

even higher than the local-greedy-wifi-preferred. However, the result of the random-assignment has

a much higher standard deviation.

The aggregate throughput difference between local-greedy-equal-chance and the algorithms

of the GIFMS, i.e. ATOM and global-greedy is so small (as shown in Table 6.2) that we would argue

that the difference may not make any sensible difference to users in practical deployments under

this setting.

Table 6.7: Aggregate Throughput (Mbps) [Compare-With-Opt]()

mean sd median min max

lgw.t 46.11 10.20 45.02 18.28 94.32
lge.t 78.16 20.01 76.99 23.14 155.77

atom.t 78.50 16.55 77.62 29.52 150.48
gg.t 79.59 16.80 78.83 31.92 155.77

rand.t 50.43 15.88 48.77 10.03 121.25
opt.t 78.58 16.46 77.68 31.78 150.48

Table 6.8: Aggregate Throughput (Mbps) Compared with lge [Compare-With-Opt]()

mean sd median min max

lgw.t -0.52 -0.65 -0.52 -0.23 -0.49
atom.t 0.00 -0.19 0.01 0.24 -0.03

gg.t 0.02 -0.17 0.02 0.32 0.00
rand.t -0.43 -0.23 -0.45 -0.79 -0.25

opt.t 0.01 -0.19 0.01 0.31 -0.03
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Table 6.9: Aggregate Throughput (Mbps) Compared with opt [Compare-With-Opt]()

mean sd median min max

lgw.t -0.52 -0.47 -0.53 -0.54 -0.46
lge.t -0.01 0.19 -0.01 -0.31 0.03

atom.t -0.00 0.01 -0.00 -0.07 0.00
gg.t 0.01 0.02 0.01 0.00 0.03

rand.t -0.44 -0.04 -0.46 -1.04 -0.22
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Figure 6.5: CDF of aggregate throughput values over multiple runs.
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2. Throughput Fairness Index (TFI)

The TFI ranking of algorithms is different from that of GPF and aggregate throughput.

This is because it only measures the distance of a throughput vector to a throughput vector that

has all equal elements independent of the magnitude of the elements. We notice local-greedy-wifi-

preferred has the highest TFI. After further investigating the runs that local-greedy-wifi-preferred

produces the top 5 highest TFI values, we find the reason is as follows. Each WiFi AP gives equal

throughput to UEs connected to it. If all the UEs connect to the same AP, the system will certainly

achieve a TFI of 1. However, even if the UEs are connected to multiple WiFi APs, as long as they are

almost equally divided into the WiFi APs, they will receive very similar throughput too. Fig. 6.8 and

Fig. 6.9 show the two runs that generate the highest two TFIs for the local-greedy-wifi-preferred. As

we can see, they are the cases when UEs are almost evenly divided into two or three APs. We could

expect that, as the number of UEs increases, they will be more likely to be more evenly distributed

to the WiFi APs which leads to a better JFI. This will be verified in the experiment result using 32

UEs in Section 6.2.2.
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Figure 6.8: The run that lgw produces the highest Throughput Fairness Index.
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Figure 6.9: The run that lgw produces the highest Throughput Fairness Index.

Table 6.10: Throughput Fairness Index [Compare-With-Opt]()

mean sd median min max

lgw.TFI 0.78 0.19 0.84 0.17 1.00
lge.TFI 0.63 0.18 0.64 0.14 1.00

atom.TFI 0.71 0.14 0.73 0.22 1.00
gg.TFI 0.69 0.14 0.71 0.18 1.00

rand.TFI 0.54 0.18 0.54 0.11 1.00
opt.TFI 0.72 0.14 0.73 0.22 1.00

Table 6.11: Throughput Fairness Index Compared with lge [Compare-With-Opt]()

mean sd median min max

lgw.TFI 0.22 0.04 0.28 0.22 0.00
atom.TFI 0.12 -0.24 0.13 0.44 -0.00

gg.TFI 0.10 -0.24 0.10 0.28 -0.00
rand.TFI -0.15 0.02 -0.16 -0.26 -0.00

opt.TFI 0.14 -0.27 0.14 0.46 -0.00

Table 6.12: Throughput Fairness Index Compared with opt [Compare-With-Opt]()

mean sd median min max

lgw.TFI 0.09 0.31 0.13 -0.25 0.00
lge.TFI -0.14 0.27 -0.14 -0.46 0.00

atom.TFI -0.01 0.03 -0.01 -0.02 -0.00
gg.TFI -0.04 0.04 -0.04 -0.19 0.00

rand.TFI -0.29 0.29 -0.30 -0.70 0.00
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Figure 6.10: CDF of Throughput Fairness Index over multiple runs.
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Figure 6.11: Performance of the first 256 runs.
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3. Min-Max Fairness

Min-max fairness can be considered as another form of the distance measurement between

one solution’s throughput vector to that of an equal-throughput vector. However, comparing with

the TFI, it only takes into consideration the ratio of the minimum to the maximum, ignoring the

detailed difference of the values in the middle. As we can see from Table 6.13 to Table 6.15, the local-

greedy-wifi-preferred still has the highest mean in this metric, similar to the ranking in TFI. It has

the same reason as local-greedy-wifi-preferred’s high TFI value. Basically, it is the combined effect of

the following two reasons: 1) with uniform UE placement, it is highly likely to almost evenly divide

UEs to WiFi APs when APs are located symmetrically; 2) WiFi APs are throughput fair which will

make the throughputs of UEs under each WiFi AP the same. The combined effect of the two is

that all the UEs have similar throughput values, therefore a high min-max fairness value. Fig. 6.12

shows the CDF of this metric for all the algorithms. We see that the local-greedy-wifi-preferred has

a higher min-max fairness value overall. The other algorithms have similar performance in general.

Fig. 6.13 shows the time series of min-max for all the algorithms in the first 256 runs. From it, we

can see, even though local-greedy-wifi-preferred has higher min-max fair values, those values have

a large standard deviation. This can also be observed from the standard deviation numbers in the

tables.

Since it shows similar information as the TFI and may produce invalid results when the

maximum value is 0, we will only show the TFI results in the experiments after this one.

Table 6.13: Min-Max Fairness [Compare-With-Opt]()

mean sd median min max

lgw.mm 0.38 0.21 0.36 0.02 1.00
lge.mm 0.15 0.12 0.12 0.01 0.98

atom.mm 0.14 0.10 0.11 0.01 0.83
gg.mm 0.12 0.10 0.09 0.01 0.85

rand.mm 0.07 0.06 0.05 0.01 0.93
opt.mm 0.14 0.10 0.11 0.01 0.84

Table 6.14: Min-Max Fairness Compared with lge [Compare-With-Opt]()

mean sd median min max

lgw.mm 0.85 0.52 1.00 0.91 0.02
atom.mm -0.11 -0.18 -0.09 0.34 -0.17

gg.mm -0.22 -0.23 -0.24 0.29 -0.14
rand.mm -0.81 -0.62 -0.89 -0.32 -0.05

opt.mm -0.10 -0.18 -0.08 0.34 -0.16
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Table 6.15: Min-Max Fairness Compared with opt [Compare-With-Opt]()

mean sd median min max

lgw.mm 0.94 0.68 1.07 0.62 0.17
lge.mm 0.10 0.18 0.08 -0.34 0.16

atom.mm -0.00 -0.00 -0.00 0.00 -0.01
gg.mm -0.12 -0.06 -0.16 -0.05 0.02

rand.mm -0.72 -0.45 -0.82 -0.64 0.10
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Figure 6.12: CDF of Throughput Fairness Index over multiple runs.
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Figure 6.13: Performance of the first 256 runs.
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6.1.2 Flow Level Results

We use the following methodology to collect flow level performance results. For each flow, we

measure the percentage of runs among the 16384 runs that the throughput achieved by an algorithm

is larger than/equal to/less than that achieved by a baseline algorithm. Then, we calculate the

statistics of this percentage metric over all the flows. We only show the average of this metric here

since the standard deviations are all under 0.01. These low standard deviations show 16K runs is

enough to make each flow statistically the same over all the runs.

We use two baseline algorithms, i.e. local-greedy-equal-chance and local-greedy-wifi-preferred.

Table 6.16 shows the flow-level comparison result over the local-greedy-equal-chance while

Table 6.17 displays that for the local-greedy-wifi-preferred. For example, in Table 6.16, the column

Pgreater shows, the average percentage of runs in which the resulting throughput of one flow by one

algorithm is larger than that by the local-greedy-equal-chance. Pgreater and Pless show the average

percentages when that statistic of one algorithm is equal to and less than that of local-greedy-equal-

chance respectively. From this table, we can perceive the small difference between local-greedy-

equal-chance and the algorithms in the GIFMS category from another perspective. We see, for each

flow, it experiences the same throughput about half of the runs/time. The algorithms in GIFMS

only show a slight advantage with about 33% versus 17% in the Pgreater and Pless respectively.

However, from Table 6.17, the algorithms in GIFMS show a much larger advantage over

local-greedy-wifi-preferred. We see Pgreater, Pequal and Pless are about (70%, 20%, 10%) respectively.

Table 6.16: Flow Level Comparison over lge

Pgreater(%) Pequal(%) Pless(%)

lgw 7.49 33.10 59.41
lge 0.00 100.00 0.00

atom 33.26 48.89 17.85
gg 32.86 46.41 20.73

rand 27.26 5.63 67.11
opt 33.18 49.64 17.18
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Table 6.17: Flow Level Comparison over lgw

Pgreater(%) Pequal(%) Pless(%)

lgw 0.00 100.00 0.00
lge 59.41 33.10 7.49

atom 69.58 20.29 10.14
gg 69.16 18.84 12.00

rand 44.82 4.45 50.74
opt 69.77 20.32 9.91

6.2 Baseline Evaluation Without the Optimal

In this section, we evaluate the algorithms with more UEs without running the optimal. We

use the same system parameters as those in the last section except changing the number of UEs to

32.

6.2.1 GPF Value

Table 6.18 and Table 6.19 show the raw values of GPF for all the algorithms and their

relative differences compared with the local-greedy-equal-chance. The first thing we observe is

the algorithms in the leading group (i.e. ATOM, global-greedy, local-greedy-equal-chance) still

have the best and similar GPF values around 20, as in the 12-flow baseline result in Table 6.1.

However, comparing with the results in Table 6.1, the GPF values of local-greedy-wifi-preferred

and random-assignment have a much larger decrease. Random-assignment decreases 11.69 (10.57

→ -1.12) while local-greedy-wifi-preferred decreases 6.13 (14.29 → 8.16). The reason for random-

assignment’s significant decrease in GPF value is as follows. As the number of UE increases, the

problem space grows exponentially. It will be more and more difficult for the random-assignment

to “accidentally” obtain a correct solution. From Table 6.1, we also observe a rapid decrease in

the GPF value of local-greedy-wifi-preferred. It is because lgw prefers WiFi AP whenever they are

available. Therefore, as the number of UE increases, it may produce more mappings that lead to

congested WiFi APs. This degrades the performance of all the flows under those congested APs,

and also the aggregate performance metrics.

From Table 6.19, we can see that the GPF value of local-greedy-equal-chance is still very

similar to that of ATOM and global-greedy as in the 12-flow baseline. Comparing with the relative

difference table of the 12-flow experiment in Table 6.2, we see that the values for ATOM and global-

greedy only change slightly. This means, if the UEs are distributed uniformly, the local-greedy-
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equal-chance will have similar performance as ATOM and global-greedy no matter how many UEs

in the scenario.

Table 6.18: GPF Value [Uniform-Baseline]()

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 21.93 4.25 21.93 6.53 40.30
gg.v 21.74 4.34 21.72 5.01 40.18

rand.v -1.12 6.22 -0.90 -28.00 21.40

Table 6.19: GPF Value Compared with lge [Uniform-Baseline]()

mean sd median min max

lgw.v -0.88 -0.19 -0.88 -2.00 -0.56
atom.v 0.05 -0.04 0.05 0.44 0.00

gg.v 0.04 -0.02 0.04 0.18 0.00
rand.v -2.00 0.33 -2.00 -2.00 -0.61

Fig. 6.14 shows the CDF of the GPF values. We can clearly see the curves for random-

assignment and local-greedy-wifi-preferred have shifted towards the left to a large extent while the

other three algorithms remain almost the same comparing with those in Fig. 6.1. The performance

of the random assignment is very bad with most of its curve on the negative side of the x-axis.

Fig. 6.15 further shows the time series graph of the GPF values. We can clearly see three layers

in this graph comparing with Fig. 6.2. ATOM, gg and lge form the first layer. lgw is the second

layer while random-assignment is the last layer. This is mainly because of the GPF performance

degradation of random-assignment and local-greedy-wifi-preferred compared to their performance in

the 12-flow experiment result.
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Figure 6.14: CDF of GPF value over multiple runs.
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6.2.2 Aggregate Throughput

Table 6.20 and Table 6.21 show the aggregate throughput performance of the algorithms.

The first we notice is, even though the GPF of the lgw and random-assignment has decreased

significantly, the mean aggregate throughput of those two algorithms have not changed notably.

This is because the logarithm of a small number in [0, 1] generates a negative number and decreases

more rapidly than linear.

Secondly, even the means of all the algorithms are similar to the values in the 12-flow

experiment in Table 6.7, the standard deviations of the algorithms decrease by a large extent.

From Table 6.20 , we can see they all have lower max and higher min comparing with the values

in Table 6.7. This is because, with more UEs, the uniform placement of UEs will have a higher

probability to fill the whole simulated cell more evenly. It can reduce the chance of extreme cases

which can make a significant throughput difference. For example, the case of only one UE at one

AP versus no UE at the same AP.

Table 6.20: Aggregate Throughput (Mbps) [Uniform-Baseline]()

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 76.71 10.01 76.36 46.01 125.29
gg.t 76.46 10.23 76.01 44.52 123.92

rand.t 48.75 8.25 47.67 23.58 93.06

Table 6.21: Aggregate Throughput (Mbps) Compared with lge [Uniform-Baseline]()

mean sd median min max

lgw.t -0.53 -0.70 -0.53 -0.26 -0.60
atom.t 0.02 -0.08 0.02 0.21 -0.06

gg.t 0.01 -0.06 0.02 0.18 -0.07
rand.t -0.43 -0.27 -0.44 -0.45 -0.36
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Figure 6.16: CDF of aggregate throughput over multiple runs.
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6.2.3 TFI

Table 6.22 and Table 6.23 show the TFI performance results of algorithms. The first we

notice is lgw owns a mean TFI of 0.9, which is much higher than the TFI of 0.78 achieved by lgw in

the 12-flow experiment in Table 6.10. This agrees with our expectation and verifies the explanation

for the reason for the high TFI of lgw we observed in Section 6.1.1.2. Secondly, we see the mean TFI

values of the other algorithms remain almost the same as those in the 12-flow experiment as shown

in Table 6.10. From Table 6.23, we also notice that the standard deviation of ATOM, global-greedy

and lgw have all decreased. This has a similar reason as the decrease of GPF standard deviation.

Fig. 6.18 visualizes the CDF of TFI values. Fig. 6.19 further shows the time series graph of

the TFI values. We can see the same rankings among algorithms as we analyzed above.

Table 6.22: Throughput Fairness Index [Uniform-Baseline]()

mean sd median min max

lgw.TFI 0.90 0.09 0.93 0.09 1.00
lge.TFI 0.64 0.15 0.66 0.07 1.00

atom.TFI 0.74 0.09 0.74 0.15 0.97
gg.TFI 0.75 0.08 0.76 0.15 0.98

rand.TFI 0.59 0.14 0.62 0.09 0.96

Table 6.23: Throughput Fairness Index Compared with lge [Uniform-Baseline]()

mean sd median min max

lgw.TFI 0.34 -0.53 0.34 0.27 0.00
atom.TFI 0.14 -0.52 0.12 0.76 -0.03

gg.TFI 0.16 -0.55 0.14 0.78 -0.02
rand.TFI -0.08 -0.03 -0.07 0.23 -0.04
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Figure 6.18: CDF of aggregate throughput over multiple runs.
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Figure 6.19: Performance of the first 256 runs.
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6.2.4 Flow Level Results

Table 6.24 and Table 6.25 show the flow-level results with the 32-flow uniform placement

baseline experiment. Interestingly, even though the difference between lge and the algorithms in the

GIFMS is very small in the aggregate results, the difference between them in flow-level results is

still noticeable in this 32-flow experiment, as compared to the 12-flow experiment in Section 6.1.2.

We see the Pequal of ATOM and global-greedy is only about 25% now as opposed to around 50%

in the 12-flow baseline experiment. Pgreater and Pgreater are now about (45%, 30%) compared to

(33%, 17%) in the 12-flow baseline. We think this means even though the mean of lge is close

to those achieved by the GIFMS algorithms, it owns larger per-flow deviations over all the runs

as the number of UEs increases. These per-flow differences can be averaged or smoothed in two

aggregation processes. First, it can be smoothed when the aggregate metrics are calculated over

all the flows such as GPF value and aggregate throughput. Second, when calculating the means

of these metrics over multiple runs, those differences can be further smoothed. Flow level results

can convey information that is not available in aggregate results. This is the reason we report the

flow-level results. If we look back to the TFI tables in Table 6.10 and Table 6.22, we can find some

traces to this difference over runs. We see that even though the means of lge is close to the GIFMS

algorithms in both 12-flow and 32-flow results, its standard deviation is noticeably higher than that

of the GIFMS algorithms in the 32-flow result.

Table 6.24: Flow Level Comparison over lge

Pgreater Pequal Pless
lgw 8.01 7.60 84.39
lge 0.00 100.00 0.00

atom 44.36 26.98 28.66
gg 45.63 23.43 30.94

rand 29.96 0.39 69.65
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Table 6.25: Flow Level Comparison over lgw

Pgreater Pequal Pless
lgw 0.00 100.00 0.00
lge 84.39 7.60 8.01

atom 85.00 3.04 11.96
gg 84.01 2.75 13.24

rand 51.66 0.13 48.21
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6.3 Sensitivity to AP Power Levels

In this section, we evaluate the sensitivity of the results to AP power levels. We simulate

the increase of AP power level by varying the κ value in Eq. (4.1). We use κ values in Table 6.26.

The κ values in the table are calculated using Eq. (5.1) with the distance d in the equation equal to

the LTE radius in Table 6.26. Since we use the same κ for LTE and WiFi, increasing κ essentially

increases the coverage radiuses of all the APs. Since the simulated cell remains the same, it is also

equivalent to shifting the UEs to use higher MCS indices.

Table 6.27 shows the change of GPF values as the κ value increases. We can see that all

the statistics of GPF values for all the algorithms increase as expected. However, the ranking of

algorithms remains the same for all three settings. Table 6.28 to Table 6.30 further show the relative

differences of algorithms’ GPF performance compared to that of local-greedy-equal-chance. We

see that the relative differences of the mean, median and maximum GPF for the GIFMS algorithms

compared to local-greedy-equal-chance do not change significantly as the κ value increases. However,

the standard deviation of the relative differences does increase slightly. Looking back to the raw

values in Table 6.27, we find even though the max values of the three algorithms are similar all

the time, the min value for local-greedy-equal-chance does not increase as fast as the other two as

the κ value increases. This means it does not handle a few bad cases as well as the other two.

This is expected since the increased coverage makes more space for global optimization. The global

optimization algorithms using GPF as the objective can show a slight advantage in these extreme

cases. However, the average performance of local-greedy-equal-chance is still similar to the GIFMS

algorithms with higher κ values.

Table 6.26: Kappa Values

LTE Radius Kappa Value

1 0.146

1.1 0.187

1.2 0.235

Table 6.31 and Table 6.32 compare the performance of aggregate throughput and throughput

fairness index for all the algorithms as the κ value increases for reference. From Table 6.31, we see

all the statistics of the aggregate throughput increase similar to those of GPF. In Table 6.31, we

can better observe the increase of the standard deviation for local-greedy-equal-chance. We can see

even the max values of lge have noticeable increases compared with ATOM and global-greedy. The
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Table 6.27: Comparison of the GPF Value with Different Kappa Values

kappa=0.146

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 21.93 4.25 21.93 6.53 40.30
gg.v 21.74 4.34 21.72 5.01 40.18

rand.v -1.12 6.22 -0.90 -28.00 21.40

kappa=0.187

mean sd median min max

lgw.v 11.33 3.58 11.31 -7.54 27.37
lge.v 25.07 4.40 25.16 6.91 42.36

atom.v 26.63 3.92 26.68 11.96 42.54
gg.v 26.45 3.99 26.51 10.34 42.36

rand.v 3.53 5.57 3.77 -24.83 22.89

kappa=0.235

mean sd median min max

lgw.v 15.21 3.45 15.22 0.96 29.04
lge.v 28.95 4.20 29.06 8.38 45.49

atom.v 30.61 3.57 30.64 17.00 45.77
gg.v 30.48 3.64 30.51 16.46 45.81

rand.v 6.89 4.98 7.03 -18.67 26.96

Table 6.28: GPF Value Compared with lge [Kappa](kappa=1.0)

mean sd median min max

lgw.v -0.61 -0.17 -0.61 -2.85 -0.44
atom.v 0.05 -0.04 0.05 0.56 0.00

gg.v 0.04 -0.02 0.04 0.20 0.00
rand.v -1.05 0.40 -1.04 -7.71 -0.47

Table 6.29: GPF Value Compared with lge [Kappa](kappa=1.1)

mean sd median min max

lgw.v -0.76 -0.20 -0.76 -2.00 -0.43
atom.v 0.06 -0.11 0.06 0.54 0.00

gg.v 0.05 -0.10 0.05 0.40 0.00
rand.v -1.51 0.24 -1.48 -2.00 -0.60

Table 6.30: GPF Value Compared with lge [Kappa](kappa=1.2)

mean sd median min max

lgw.v -0.62 -0.20 -0.62 -1.59 -0.44
atom.v 0.06 -0.16 0.05 0.68 0.01

gg.v 0.05 -0.14 0.05 0.65 0.01
rand.v -1.23 0.17 -1.22 -2.00 -0.51
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GPF values do not show this trend because of the logarithm function makes the difference smaller

at a magnitude around 140.

From Table 6.32, we can see the statistics of TFI for all the algorithms remain the same.

This is because TFI is independent of the magnitude of throughput.

Table 6.31: Comparison of the Aggregate Throughput (Mbps) with Different Kappa Values

kappa=0.146

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 76.71 10.01 76.36 46.01 125.29
gg.t 76.46 10.23 76.01 44.52 123.92

rand.t 48.75 8.25 47.67 23.58 93.06

kappa=0.187

mean sd median min max

lgw.t 48.03 5.47 47.62 31.35 76.61
lge.t 85.64 11.21 85.12 43.96 140.42

atom.t 86.28 10.15 86.00 51.99 133.42
gg.t 86.22 10.36 85.93 51.36 133.50

rand.t 50.83 8.28 49.76 26.82 94.81

kappa=0.235

mean sd median min max

lgw.t 54.09 5.82 53.83 35.76 80.33
lge.t 94.84 11.29 94.41 42.83 147.37

atom.t 95.52 10.21 95.30 61.84 140.96
gg.t 95.55 10.28 95.36 59.93 139.18

rand.t 52.47 8.34 51.38 28.76 97.75
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Table 6.32: Comparison of the Throughput Fairness Index with Different Kappa Values

kappa=0.146

mean sd median min max

lgw.TFI 0.90 0.09 0.93 0.09 1.00
lge.TFI 0.64 0.15 0.66 0.07 1.00

atom.TFI 0.74 0.09 0.74 0.15 0.97
gg.TFI 0.75 0.08 0.76 0.15 0.98

rand.TFI 0.59 0.14 0.62 0.09 0.96

kappa=0.187

mean sd median min max

lgw.TFI 0.91 0.09 0.94 0.10 1.00
lge.TFI 0.63 0.15 0.65 0.07 0.98

atom.TFI 0.77 0.08 0.77 0.36 0.97
gg.TFI 0.78 0.07 0.78 0.37 0.98

rand.TFI 0.64 0.14 0.66 0.09 0.98

kappa=0.235

mean sd median min max

lgw.TFI 0.92 0.08 0.94 0.22 1.00
lge.TFI 0.66 0.15 0.68 0.09 1.00

atom.TFI 0.78 0.08 0.79 0.39 0.98
gg.TFI 0.80 0.07 0.80 0.38 0.99

rand.TFI 0.68 0.14 0.70 0.09 0.97

6.4 Impact of UE Clusters

We show the results of two types of UE clusters as we introduced in Section 5.1.3.1, i.e.

circular clusters and rectangular clusters. Circular clusters are used to represent localized hot spots,

and rectangular clusters represent UEs distributed along intersecting streets.

6.4.1 Circular Clusters

6.4.1.1 Circular Cluster Baseline Comparison

We first test the scenario with the following circular clusters. We use 3 circular clusters.

The center of the first cluster is at (2/3, 0). The centers of the other two clusters are achieved by

a rotation of the center of the first cluster about the origin by ±45 degrees. We use the method

described in Section 5.1.3.2 to place UEs into the three clusters. The probabilities of placing UEs into

the three clusters are always equal. Each of the clusters has a radius of 0.25. In addition, we refer to

the entire simulated cell the base cluster in this context. We denote the fraction of UEs in the base
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cluster as Pb. In the following baseline study, we first test the scenario when Pb=0. We will test with

various Pb values in the next section. Table 6.33 to Table 6.44 show the performance comparison

between this circular cluster scenario with Pb = 0 and the uniform UE placement scenario. We use

cCluster as an abbreviation for Circular Cluster. It is used in the captions of the tables. As the

convention, we first show the comparison of raw data, and then that for the relative difference rates

compared with the local-greedy-equal-chance.

As we can see from the GPF value tables, the GPF values of all the mapping algorithms

have decreased significantly. However, lge and lgw have a much larger decrease. We previously

showed lge to have a similar mean GPF value of around 21 as ATOM and global-greedy under the

uniform distribution scenario. However, in the circular cluster scenario, the mean GPF value of lge

has dropped to -8.58, while GIFMS such as ATOM and global-greedy manage to achieve a GPF

value around 6. We can also see the GPF value of lgw has a decrease of a similar magnitude as lge.

From the aggregate throughput tables, we can see a similar ranking and trend as the GPF

values. Interestingly, the TFI values for lgw are very low under this clustered scenario. Intuitively,

if all the UEs connect to the same WiFi AP, they should get the same throughput which leads to

high TFI. After further investigating the results, we find that the specific topology can generate very

low TFI because of the cases similar to the one shown in Fig. 6.20. As we see, almost all the UEs

connect to one WiFi AP while one UE connects to the other one. This will result in an extreme

imbalance of throughputs between the two sets of UEs under the two WiFi APs and therefore low

TFI.

We also notice the TFI of lge has a slightly smaller decrease than lgw but a much larger

decrease than the ATOM and global-greedy.

Table 6.33: GPF Value [cCluster-Baseline]()

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v 6.52 3.51 6.65 -10.82 18.35
gg.v 6.82 3.69 7.00 -11.75 18.41

rand.v -10.83 4.94 -10.78 -34.15 7.65
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Figure 6.20: The case that lgw achieves the worst TFI when Pb value is low

Table 6.34: GPF Value [Uniform-Baseline]()

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 21.93 4.25 21.93 6.53 40.30
gg.v 21.74 4.34 21.72 5.01 40.18

rand.v -1.12 6.22 -0.90 -28.00 21.40

Table 6.35: GPF Value Compared with lge [cCluster-Baseline]()

mean sd median min max

lgw.v -0.73 -0.13 -0.74 -0.24 -2.00
atom.v 2.00 -0.45 2.00 0.93 0.63

gg.v 2.00 -0.40 2.00 0.87 0.63
rand.v -0.23 -0.12 -0.24 -0.14 -0.23

Table 6.36: GPF Value Compared with lge [Uniform-Baseline]()

mean sd median min max

lgw.v -0.88 -0.19 -0.88 -2.00 -0.56
atom.v 0.05 -0.04 0.05 0.44 0.00

gg.v 0.04 -0.02 0.04 0.18 0.00
rand.v -2.00 0.33 -2.00 -2.00 -0.61
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Table 6.37: Aggregate Throughput (Mbps) [cCluster-Baseline]()

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 45.79 3.77 45.65 24.70 58.25
gg.t 47.16 4.08 47.07 29.21 60.65

rand.t 30.55 4.78 31.19 15.14 49.86

Table 6.38: Aggregate Throughput (Mbps) [Uniform-Baseline]()

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 76.71 10.01 76.36 46.01 125.29
gg.t 76.46 10.23 76.01 44.52 123.92

rand.t 48.75 8.25 47.67 23.58 93.06

Table 6.39: Aggregate Throughput (Mbps) Compared with lge [cCluster-Baseline]()

mean sd median min max

lgw.t -0.34 -0.22 -0.29 -0.25 -0.32
atom.t 0.31 -0.37 0.31 0.64 0.04

gg.t 0.34 -0.29 0.34 0.79 0.08
rand.t -0.09 -0.14 -0.06 0.18 -0.11

Table 6.40: Aggregate Throughput (Mbps) Compared with lge [Uniform-Baseline]()

mean sd median min max

lgw.t -0.53 -0.70 -0.53 -0.26 -0.60
atom.t 0.02 -0.08 0.02 0.21 -0.06

gg.t 0.01 -0.06 0.02 0.18 -0.07
rand.t -0.43 -0.27 -0.44 -0.45 -0.36

Table 6.41: Throughput Fairness Index [cCluster-Baseline]()

mean sd median min max

lgw.TFI 0.44 0.21 0.36 0.12 1.00
lge.TFI 0.46 0.15 0.44 0.10 1.00

atom.TFI 0.75 0.12 0.78 0.35 0.99
gg.TFI 0.78 0.10 0.80 0.37 0.98

rand.TFI 0.52 0.16 0.47 0.22 0.98

Table 6.42: Throughput Fairness Index [Uniform-Baseline]()

mean sd median min max

lgw.TFI 0.90 0.09 0.93 0.09 1.00
lge.TFI 0.64 0.15 0.66 0.07 1.00

atom.TFI 0.74 0.09 0.74 0.15 0.97
gg.TFI 0.75 0.08 0.76 0.15 0.98

rand.TFI 0.59 0.14 0.62 0.09 0.96
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Table 6.43: Throughput Fairness Index Compared with lge [cCluster-Baseline]()

mean sd median min max

lgw.TFI -0.05 0.37 -0.20 0.19 0.00
atom.TFI 0.48 -0.24 0.56 1.10 -0.01

gg.TFI 0.52 -0.38 0.59 1.14 -0.02
rand.TFI 0.12 0.07 0.08 0.73 -0.02

Table 6.44: Throughput Fairness Index Compared with lge [Uniform-Baseline]()

mean sd median min max

lgw.TFI 0.34 -0.53 0.34 0.27 0.00
atom.TFI 0.14 -0.52 0.12 0.76 -0.03

gg.TFI 0.16 -0.55 0.14 0.78 -0.02
rand.TFI -0.08 -0.03 -0.07 0.23 -0.04

2. Flow level statistics

Table 6.45 and Table 6.46 show the flow-level statistics under the circular cluster scenario.

Comparing with the tables under the uniform baseline in Table 6.24, we can see ATOM and global-

greedy win the local greedy algorithms by a larger margin compared to the flow-level results of the

uniform UE placement in Section 6.2.4. The Pgreater increases from 45% to 70%. This is consistent

with the aggregate results. It also has the same reason as the aggregate results.

Table 6.45: Flow Level Comparison over lge

Pgreater Pequal Pless
lgw 6.91 4.82 88.27
lge 0.00 100.00 0.00

atom 72.77 1.93 25.30
gg 69.69 0.70 29.61

rand 52.41 0.59 47.00
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Table 6.46: Flow Level Comparison over lgw

Pgreater Pequal Pless
lgw 0.00 100.00 0.00
lge 88.27 4.82 6.91

atom 81.78 2.13 16.09
gg 78.31 1.32 20.37

rand 65.04 0.89 34.07

6.4.1.2 Scenario When UEs Cluster around WiFi APs

We have also tested with the scenario when two WiFi APs on the left side of the simulated

cell are moved to the same locations as the UE clusters. Table 6.47 to Table 6.49 show the results.

Table 6.47: GPF [cCluster-Move-APs]()

mean sd median min max

lgw.v 37.32 1.18 37.53 28.62 40.17
lge.v 37.34 1.17 37.53 28.62 40.17

atom.v 33.76 2.64 33.93 22.44 41.45
gg.v 41.58 0.95 41.70 34.32 43.95

rand.v 8.78 4.93 8.81 -16.49 28.15

Table 6.48: Aggregate Throughput (Mbps) [cCluster-Move-APs]()

mean sd median min max

lgw.t 106.15 2.00 106.24 97.59 112.96
lge.t 106.14 2.01 106.23 97.59 112.96

atom.t 110.86 5.42 110.98 85.32 126.16
gg.t 120.21 2.63 120.38 105.75 128.03

rand.t 54.54 9.88 52.65 26.45 105.23

Table 6.49: Throughput Fairness Index [cCluster-Move-APs]()

mean sd median min max

lgw.TFI 0.93 0.07 0.96 0.40 1.00
lge.TFI 0.94 0.07 0.96 0.23 1.00

atom.TFI 0.64 0.08 0.64 0.34 0.90
gg.TFI 0.95 0.04 0.96 0.55 1.00

rand.TFI 0.68 0.17 0.72 0.09 0.99

From the results, we find that the system performance for all the flow mapping systems

increases in this scenario, as opposed to the performance decrease in the baseline circular cluster

scenario. This is because the specific topology tends to produce balanced loads to APs. ATOM and

global-greedy still have the best GPF performance. The algorithms in LIFMS have GPF performance

close to the algorithms in GIFMS. For the performance in terms of aggregate throughput, the
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algorithms in LIFMS are also close to the best in GIFMS, and even slightly better than ATOM.

This means even under UE clustered scenarios, if the clusters have spatial consistency with the AP

locations producing balanced loads to APs, the algorithms in LIFMS will have similar performance

as the algorithms in GIFMS in terms of both GPF and aggregate throughput.

Another noticeable difference to both the circular and uniform baseline results is that local-

greedy-wifi-preferred has much better performance in this case, which is almost identical to the

local-greedy-equal-chance. This is because the UEs are clustered around the three WiFi APs, which

makes 1) choosing the closet WiFi AP a good option; 2) the local-greedy-equal-chance always choose

WiFi APs which general identical solution as local-greedy-wifi-preferred. Fig. 6.21 shows one example

of the association plan generated from local-greedy-equal-chance under this scenario. As we can see,

UEs only select the closest WiFi APs since the LTE AP has a lower effective rate compared with

that of the WiFi APs as UEs cluster very close to the WiFi APs.
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Figure 6.21: Why lgw and lge achieve almost identical results
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6.4.1.3 Different Number of UEs in the Base Cluster

In the baseline evaluation, we put 0 UEs in the base cluster. We wonder how the performance

will change as we allow more UEs to be placed in the base cluster.

In this evaluation, we test with 11 levels of Pb values from 0 to 1 with an increment step

of 0.1. If Pb=0, it is the circular cluster scenario we tested in Section 6.4.1.1. If Pb=1, it is the

uniform placement scenario we tested in Section 6.2.

Fig. 6.22 to Fig. 6.24 show the performance results of various mapping algorithms as the

Pb increases. We can see lge is very close to ATOM and global-greedy when Pb = 1. However, as

we put more and more UEs into clusters, the performance of lge degrades much faster than ATOM

and global-greedy.

Section A of Appendix shows the detailed statistics, including the standard deviation, min,

max and median of the results when using different Pb values.
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Figure 6.22: Mean GPF as a function of Pb values (circular cluster)

lgw has good TFI performance as it tends to generate solutions with WiFi only. All the

WiFi APs in the simulated system use the same MCS table. If a solution further makes loads of

WiFi APs similar, all the UEs will have similar throughput. Fig. 6.25 shows this phenomenon when

lgw achieves maximum TFI.
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Figure 6.23: Mean aggregate throughput as a function of Pb values (circular cluster)
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Figure 6.24: Mean TFI as a function of Pb values (circular cluster)
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Figure 6.25: The case that lgw achieves the best TFI when Pb value is high
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6.4.2 Rectangular Clusters

We use the method described in Section 5.1.3 to form a T-shaped region comprised of two

rectangular clusters. The first rectangular cluster is centered at (0, 0) with a width and height of

(2, 0.1). The second one is centered at (0, 0.5) with a width and height of (0.1, 1). The probability

of UEs being placed into the first cluster is always twice as that of the second one.

6.4.2.1 Rectangular Cluster Baseline Comparison

We first conduct the baseline experiment when the probability to place UEs in the base

cluster Pb equals to 0. We compare the baseline results in this clustered UE topology with those

with a similar setting under uniform UE placement.

Table 6.50 to Table 6.61 show the detailed comparison results. We use tCluster as an

abbreviation for T-shaped Rectangular Cluster. It is used in the captions of the tables. The first thing

we see is that all the flow mapping systems have increased GPF values and aggregate throughput

compared with the uniform baseline scenario. From this and the results in the circular cluster case,

we know that some clustering types can decrease the overall performance while the other clustering

types can increase it. Nevertheless, the GPF values of the GIFMS algorithms increase more than

those of the LIFMS algorithms. Both ATOM and global greedy have a GPF value increase around

9 while all the LIFMS algorithms only have an increase of around 5. We think it is because of the

natural advantages of more information and using GPF as the objectives in the GIFMS algorithms.

From the aggregate throughput tables, we can more clearly see the performance increase has

three levels. ATOM and global-greedy have increased for around 28. lge has increased for around

17. random-assignment and lgw have only increased for around 5. This better reveals the three

performance levels when handling this type of clustering scenario from the algorithms.

From the TFI tables, we notice that the TFI of the GIFMS algorithms remains almost the

same. However, the lge has a noticeable TFI decrease from the T-shaped cluster scenario to the

uniform scenario. From Fig. 6.29, we observe that this decrease only happen starting from around

Pb = 0.7. After further investigations, we think this is caused by the greedy nature of lge. Fig. 6.26

shows an example when lge achieves the lowest TFI under the uniform placement. We see it is

because the greedy selection can sometimes form this extreme case of only one UE is connected to

the LTE. This will cause highly unbalanced throughput among UEs and therefore low TFI. However,
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under T-shaped cluster, there will be a cluster of UEs around the LTE AP which will greatly reduce

the chance of that kind of extreme case.

The TFI value has decreased when T-shaped cluster is used. It is because the uniform

placement can help to form more evenly divided UEs to three WiFi APs, which can help lgw to

boost TFI value. The T-shaped cluster has higher probability of placing UEs inside the areas that

only LTE is available, which will give lgw low TFI.
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Figure 6.26: The case that lge achieves the worst TFI when Pb value is high

Table 6.50: GPF Value [tCluster-Baseline]()

mean sd median min max

lgw.v 3.73 4.06 3.79 -12.84 17.91
lge.v 25.15 5.00 25.41 -2.87 41.46

atom.v 30.59 4.08 30.85 10.33 44.20
gg.v 30.52 4.24 30.80 9.65 44.20

rand.v 4.12 5.42 4.21 -19.65 27.83
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Table 6.51: GPF Value [Uniform-Baseline]()

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 21.93 4.25 21.93 6.53 40.30
gg.v 21.74 4.34 21.72 5.01 40.18

rand.v -1.12 6.22 -0.90 -28.00 21.40

Table 6.52: GPF Value Compared with lge [tCluster-Baseline]()

mean sd median min max

lgw.v -1.48 -0.21 -1.48 -1.27 -0.79
atom.v 0.19 -0.20 0.19 2.00 0.06

gg.v 0.19 -0.17 0.19 2.00 0.06
rand.v -1.44 0.08 -1.43 -1.49 -0.39

Table 6.53: GPF Value Compared with lge [Uniform-Baseline]()

mean sd median min max

lgw.v -0.88 -0.19 -0.88 -2.00 -0.56
atom.v 0.05 -0.04 0.05 0.44 0.00

gg.v 0.04 -0.02 0.04 0.18 0.00
rand.v -2.00 0.33 -2.00 -2.00 -0.61

Table 6.54: Aggregate Throughput (Mbps) [tCluster-Baseline]()

mean sd median min max

lgw.t 40.92 5.27 40.33 25.83 61.56
lge.t 92.66 8.20 92.75 57.21 126.27

atom.t 103.39 8.31 103.61 69.15 132.88
gg.t 104.91 8.69 105.14 69.33 133.60

rand.t 51.74 8.91 50.77 27.21 96.05

Table 6.55: Aggregate Throughput (Mbps) [Uniform-Baseline]()

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 76.71 10.01 76.36 46.01 125.29
gg.t 76.46 10.23 76.01 44.52 123.92

rand.t 48.75 8.25 47.67 23.58 93.06

Table 6.56: Aggregate Throughput (Mbps) Compared with lge [tCluster-Baseline]()

mean sd median min max

lgw.t -0.77 -0.44 -0.79 -0.76 -0.69
atom.t 0.11 0.01 0.11 0.19 0.05

gg.t 0.12 0.06 0.13 0.19 0.06
rand.t -0.57 0.08 -0.58 -0.71 -0.27
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Table 6.57: Aggregate Throughput (Mbps) Compared with lge [Uniform-Baseline]()

mean sd median min max

lgw.t -0.53 -0.70 -0.53 -0.26 -0.60
atom.t 0.02 -0.08 0.02 0.21 -0.06

gg.t 0.01 -0.06 0.02 0.18 -0.07
rand.t -0.43 -0.27 -0.44 -0.45 -0.36

Table 6.58: Throughput Fairness Index [tCluster-Baseline]()

mean sd median min max

lgw.TFI 0.80 0.13 0.82 0.21 1.00
lge.TFI 0.71 0.11 0.73 0.12 0.94

atom.TFI 0.75 0.07 0.76 0.25 0.96
gg.TFI 0.74 0.08 0.75 0.26 0.96

rand.TFI 0.61 0.11 0.62 0.09 0.95

Table 6.59: Throughput Fairness Index [Uniform-Baseline]()

mean sd median min max

lgw.TFI 0.90 0.09 0.93 0.09 1.00
lge.TFI 0.64 0.15 0.66 0.07 1.00

atom.TFI 0.74 0.09 0.74 0.15 0.97
gg.TFI 0.75 0.08 0.76 0.15 0.98

rand.TFI 0.59 0.14 0.62 0.09 0.96

Table 6.60: Throughput Fairness Index Compared with lge [tCluster-Baseline]()

mean sd median min max

lgw.TFI 0.12 0.14 0.12 0.57 0.06
atom.TFI 0.06 -0.47 0.04 0.72 0.02

gg.TFI 0.04 -0.38 0.02 0.74 0.03
rand.TFI -0.15 -0.01 -0.17 -0.32 0.01

Table 6.61: Throughput Fairness Index Compared with lge [Uniform-Baseline]()

mean sd median min max

lgw.TFI 0.34 -0.53 0.34 0.27 0.00
atom.TFI 0.14 -0.52 0.12 0.76 -0.03

gg.TFI 0.16 -0.55 0.14 0.78 -0.02
rand.TFI -0.08 -0.03 -0.07 0.23 -0.04
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6.4.2.2 Different Number of UEs in the Base Cluster

Fig. 6.27 to Fig. 6.29 further show the results of the flow mapping algorithms as we vary the

Pb values the same way as in Section 6.4.1.1. We can see that even if all the algorithms in the leading

group (ATOM, gg, lge) have similar GPF values and aggregate throughput, increased UE clustering

can make the performance of lge much worse than that of the ATOM and global-greedy. Comparing

with the uniform baseline scenario, the performance of lge is still much worse than the other two

algorithms in the leading group. This demonstrates that the GIFMS can be useful comparing with

local-greedy-equal-chance when the sites have a clear UE-clustering characteristic.

From Fig. 6.27, We notice lgw has a different trend compared to the algorithms in the

leading group as Pb value increases. It is because of the cases as shown in Fig. 6.30. Due to the

”WiFi preferred” nature and the T-shaped cluster, lgw can produce association plans that congest

only one WiFi AP while leaving the other APs nearly idle. This can produce low GPF and aggregate

throughput. The other algorithms in the leading group avoid this by putting more flows to the LTE.

Section B of the Appendix shows the detailed statistics including the standard deviation,

min, max and median of the results when using different Pb values. We can see the standard

deviation of all the metrics remains stable as the Pb increases.
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Figure 6.27: Mean GPF as a function of Pb values (rectangular cluster)
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Figure 6.28: Mean aggregate throughput as a function of Pb values (rectangular cluster)
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Figure 6.29: Mean TFI as a function of Pb values (rectangular cluster)
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6.5 Impact of Changing WiFi APs to PF Scheduled

In this section, we evaluate the impact of changing WiFi APs to use PF scheduling for the

performance of flow mapping systems. It is evaluated under both the uniform UE topology and

circular cluster UE topology.

6.5.1 Uniform UE Topology

We first test with uniform UE topology similar to the uniform baseline in Section 6.2.

Table 6.62 to Table 6.64 show the results of GPF, aggregate throughput and TFI respectively. As

expected, the performance of both GPF and aggregate throughput for all the mapping algorithms

has increased while that of TFI has decreased. This is because proportional fairness trades for higher

spectrum efficiency with a larger distance to an equal throughput allocation. We also note that the

relative difference and ranking of all the mapping algorithms do not change.

Table 6.62: GPF [WiFi-PF]()

mean sd median min max

lgw.v 13.04 3.51 13.09 -1.97 25.45
lge.v 24.91 4.10 24.97 9.13 41.39

atom.v 25.42 3.91 25.44 9.96 41.91
gg.v 25.38 3.93 25.43 10.10 41.88

rand.v 1.55 6.66 1.90 -33.85 23.06

Table 6.63: Aggregate Throughput (Mbps) [WiFi-PF]()

mean sd median min max

lgw.t 58.25 5.85 58.14 36.80 82.39
lge.t 91.01 10.75 90.54 52.88 146.71

atom.t 89.04 9.94 88.65 54.14 131.96
gg.t 89.71 10.30 89.27 54.32 130.41

rand.t 62.50 9.24 62.13 27.12 109.93

Table 6.64: Throughput Fairness Index [WiFi-PF]()

mean sd median min max

lgw.TFI 0.73 0.07 0.75 0.11 0.89
lge.TFI 0.65 0.11 0.67 0.09 0.89

atom.TFI 0.70 0.07 0.71 0.37 0.89
gg.TFI 0.69 0.07 0.70 0.18 0.89

rand.TFI 0.47 0.10 0.47 0.09 0.80
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6.5.2 Circular Cluster UE Topology

We then evaluate with a similar setting as the circular cluster baseline in Section 6.4.1.1.

Table 6.65 to Table 6.67 show the results of GPF, aggregate throughput and TFI respectively. We

observe similar system performance boost as in the uniform topology case. The ranking of all the

flow mapping algorithms does not change either in this case.

Table 6.65: GPF [WiFi-PF]()

mean sd median min max

lgw.v -12.41 4.50 -12.31 -32.18 3.83
lge.v -3.39 5.03 -3.25 -23.98 12.44

atom.v 8.10 3.26 8.26 -8.23 18.03
gg.v 8.72 3.25 8.90 -7.86 18.71

rand.v -7.97 5.09 -7.84 -32.64 8.64

Table 6.66: Aggregate Throughput (Mbps) [WiFi-PF]()

mean sd median min max

lgw.t 30.59 4.48 31.10 14.77 46.14
lge.t 40.15 5.57 40.18 18.79 59.74

atom.t 48.83 3.18 48.98 29.21 59.23
gg.t 49.03 3.39 49.22 32.52 59.76

rand.t 36.75 4.99 37.16 19.13 51.45

Table 6.67: Throughput Fairness Index [WiFi-PF]()

mean sd median min max

lgw.TFI 0.51 0.14 0.46 0.19 0.88
lge.TFI 0.54 0.13 0.53 0.14 0.90

atom.TFI 0.75 0.10 0.77 0.40 0.95
gg.TFI 0.78 0.09 0.81 0.40 0.96

rand.TFI 0.52 0.10 0.50 0.25 0.86

6.6 Impact of Non-Participants

If the service provider of a GIFMS can only incrementally enroll users to participate in the

system, there will be non-participants in the system. In this dissertation, we assume the following

type of non-participant. The non-participants do not report scheduling information as required

for the GIFMS as we detailed in Chapter 8. They will neither receive nor comply with the com-

mands from the mapping system. They use certain policy-based LIFMS. For the results reported

here, the non-participants were assumed to use local-greedy-equal-chance. Because this type of non-
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participants do not report the necessary information such as its effective rates from all the APs to

the GIFMS, it is impossible to optimize the GPF of the whole system including the non-participants.

In this case, the optimization objective of the mapping system can only be optimizing the perfor-

mance metrics (in our case the Generalized Proportional Fairness) for all the participants. However,

when evaluating system performance, we need to include both participants and non-participants.

Therefore in the following evaluations, we optimize the GPF of participants while measuring the

GPF of the whole system including both participants and non-participants.

Concerning the system performance in terms of GPF, there are two major impacts from the

non-participants.

1. The final association plan in a scenario with non-participants can be seen as a concatenation of

the solution of the participants using a GIFMS solution and that of the non-participants using

an LIFMS solution. As we have seen in the evaluations in Chapter 6, the performance of LIFMS

can have various performance distances to the GIFMS under different system parameters.

2. Additionally, having a part of users use LIFMS while another part of users use GIFMS is

similar to have two brains in a system giving commands to two parts of users. The commands

can conflict if no appropriate communications between the two brains.

For example, the non-participants can produce “hidden traffic” that is not known by the flow

mapping system. The hidden traffic competes for resources on the APs in the system with

participants. This renders the calculation process in Section 3.5 inaccurate when estimating

the apportioned throughput of participants.

The combined effect of the two factors above is unknown. It is the reason that we evaluate

the impact of the non-participants to the flow mapping systems using the following experiments.

6.6.1 Impact of Non-Participants under Clustered UE Topology

We experiment with the same system parameters as the baseline circular cluster experiment

in Section 6.4.1.1, while varying the number of non-participants as {0, 4, 8, 12, 16, 20, 24, 28, 32}.

We call the ratio between the number participants and the total number of UEs in the system as

deployment ratio (dRatio). The corresponding deployment ratios are {1, 0.875, 0.75, 0.625, 0.5,

0.375, 0.25, 0.125, 0}.
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Fig. 6.31 to Fig. 6.33 show the performance metrics of GPF, aggregate throughput and TFI

respectively. The x-axes of the figures are the deployment ratio. We can see, as the deployment

ratio increases, the performance of local greedy algorithms do not change as expected. However, the

performance of both GIFMS algorithms have a clear increasing trend as more UEs participate. We

can see the increase is close to linear from dRaio=0 to dRatio=0.75. This shows the performance of

GIFMS is superior to that of LIFMS under certain clustered scenarios, while the improvement ratio

is nearly linear to the participating ratio.
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Figure 6.31: GPF of the flow mapping algorithms with various deployment ratios (circular cluster)
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Figure 6.32: Aggregate throughput of the flow mapping algorithms with various deployment ratios
(circular cluster)
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Figure 6.33: TFI of the flow mapping algorithms with various deployment ratios (circular cluster)

6.6.2 Impact of Non-Participants under Uniform UE Topology

Fig. 6.34 to Fig. 6.36 show the performance metrics similar to the ones in Section 6.6.1,

but with a uniform UE placement. As we can see, the performance of GIFMS barely increases

as the deployment ratio increases. It is because the performance difference between the lge and

106



the GIFMS algorithms is small under the uniform UE placement. We can see both the GPF and

aggregate throughput have even decreased slightly when the dRatio is small (e.g. dRatio=0.125).

The performance of adding few participants can be worse than all of them using LIFMS. We believe

this shows the possible performance degradation from the concatenation of two solutions or conflict

of the commands from two “brains”.
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Figure 6.34: GPF of the flow mapping algorithms with various deployment ratios (uniform)
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Figure 6.35: Aggregate throughput of the flow mapping algorithms with various deployment ratios
(uniform)
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Figure 6.36: TFI of the flow mapping algorithms with various deployment ratios (uniform)

6.6.3 Possible Improvement to the Throughput Estimation Accuracy of

Participants

The following improvements to the throughput estimation of the participating UEs can be

conducted for GIFMS by inferring the hidden loads generated by the non-participants. We assume

the mapping system knows the following information of each participating UE from its reporting as

detailed in Section 8.3.

1. Real throughput from APj to UEi, denoted as T ′ij

2. The effective peak rate from APj to UEi, denoted as rij

Intuitively, if there was hidden traffic under one AP, the reported T ′ij will be smaller than

the apportioned throughput Tij calculated using Eq. (3.6) and Eq. (3.8) based on rij . The idea is

to use this difference to infer certain measure of the non-participants, and then use that information

to correct the throughput estimation. We call this technique throughput correction.

We derive the general formulas for throughput corrections for UE under both the propor-

tional and max-min fair scheduled APs. We also show the inference procedure by way of example.

In the example, we assume there are 5 flows with rij (6, 3, 9, 18, 24 ). Only the last two flows are

hidden flows.
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6.6.3.1 Proportional Fair APs

According to how we model the bandwidth sharing effect of a proportional fair AP in

Eq. (3.6), if there was any hidden traffic on it, all it takes to correct the throughput of non-

participants is to know the total number of non-participants connected to it (Nnon) and adds it

to the number of flows in Eq. (3.6) as follows,

T ∗ij =
rij

N +Nnon
(6.2)

where T ∗ij is the throughput of APj to UEi after correction. N is the total number of flows

can be seen by the mapping system.

If the AP has a PF scheduler, the real throughput T ′ij that the three participants measure

will be (6/5, 3/5, 9/5) respectively according to Eq. (3.6). They report to the GIFMS with the

following rij and T ′ij pairs, < (6, 6/5), (3, 3/5), (9, 9/5) >. The mapping system only sees three

flows. It calculates the Tij using Eq. (3.6). The resulting Tij for the three participating flows will

be (6/3, 3/3, 9/3), or (2, 1, 3). We can see the reported T ′ij = (6/5, 3/5, 9/5) are smaller than the

calculated Tij = (2, 1, 3). Note using the pair of throughput information from any participating

flow, we can infer the number of non-participants on this AP. Using the first flow as an example, we

know 6
3+Nnon

= 6/5. Therefore, Nnon =2, which means there are 2 hidden flows on this AP.

We can then use the Eq. (6.2) to correct the throughput estimations of all the participants

on that AP.

Note to speed up the mapping algorithms, we use the incremental GPF function evaluation

technique described in Eqs. (3.9) and (3.10) to calculate the objective function value change instead

of doing an O(MN2) evaluation of the throughput of each UE every time. Those calculations can

also be corrected with the information inferred about the non-participants.

For example, if we try to add a flow to a PF AP, Eq. (3.9) can be corrected as follows,

∆U∗ = K ∗ log(
K +Nnon

K +Nnon + 1
) + log(

rqj
K +Nnon + 1

) (6.3)

Note, the first K in Eq. (6.3) does not need to be corrected, as the objective function only

considers the participants.
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6.6.3.2 Max-Min Fair APs

For a max-min fair AP, according to the bandwidth sharing equation in Eq. (3.8), the only

information needed to correct the throughput estimation for participants is the round time of non-

participants on it (Rnon). For k non-participants with effective rates ˆrkj , Rnon =
∑
k

1
rkj

. Let the

round time of participants be R while that for non-participants be Rnon. The throughput estimation

can be corrected as

T ∗ij =
1

R+Rnon + 1
rqj

(6.4)

We use the same 5-flow example in Section 6.6.3.1 to illustrate this process. The real

throughput the three participants measured will be 1.412 as the round time is around 0.708. However,

from the reported effective rates of participants, the mapping system gets a round time of 0.55.

Therefore, we know the round time contributed by the non-participants (Rnon) is around 0.708 -

0.55 ≈ 0.158. Then we can use Eq. (6.4) to correct the throughput of participants.

Similar to the PF AP, we also use the incremental evaluation technique in Eqs. (3.11)

and (3.12) to speed up the mapping algorithms. The calculation procedures can also be corrected

using the inferred Rnon. For example, if we are going to add one flow to a max-min fair AP, Eq. (3.11)

can be corrected as the following,

∆U∗ = (K + 1)× log(
1

R+Rnon + 1
rqj

)−K × log(
1

R+Rnon
) (6.5)

6.6.3.3 Summary

The scheme described in this section can be considered as adding a one-direction communi-

cation channel from the LIFMS used by non-participants to GIFMS used by participants, or creating

a one-direction information flow between the two “brains” in the system. Because the GIFMS now

considers the effects from the LIFMS while LIFMS does not consider that from GIFMS. However,

this technique can only improve the accuracy of the throughput estimation of the participants. As

for the system performance, it is still unpredictable because the combined effect of this improvement

and the other factors such as the possible performance degradation from the LGFMS solution is still

unknown.
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6.6.4 Results with Throughput Correction for Participants

6.6.4.1 Clustered UE Topology

Section C.1 shows the detailed comparison between the results with and without throughput

correction for participants under a circular cluster UE topology the same as that in Section 6.4.1.

As we can see, the throughput correction can help to improve performance in some cases. However,

it does not always the case. For example, for ATOM, both the GPF and aggregate throughput can

get slightly worse after the throughput correction.

6.6.4.2 Uniform UE Topology

Section C.2 shows the detailed comparison between the results with and without throughput

correction for participants under a uniform UE topology the same as that in Section 6.2. We can see

a similar trend as in the cluster case. However, since the difference of lge to the GIFMS algorithms

is much smaller in this case, it is more difficult to tell the combined effects in this case.

6.7 Discussion on How to Model Inelastic Traffic

Even though this dissertation only evaluates the scenarios when all the UEs have elastic

traffic, it is still possible to model the inelastic traffic when the demands of traffic are known. If

there was no hidden traffic from non-participants, the mapping system can estimate the demand

information of UEs by collecting UEs’ throughput measurements. The scenarios with both non-

participants and elastic traffic is more complicated, which we will brief at the end of this section.

If a flow is inelastic, let us denote its demand as D and its apportioned rate if connected to

APj with elastic traffic as Tij , which can be calculated using Eq. (3.6) or Eq. (3.8). There are two

cases to consider,

1. D ≥ Tij

In this case, the flow can be modeled the same as an elastic flow. There is no impact of this

kind of elastic flows to the throughput of other flows on APj .

2. D < Tij

We call the inelastic flow in this case a low-demand inelastic flow. Since it does not use all of

its proportional or max-main fair share of the resources, the other flows will get more resources
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and therefore higher throughput. Note the throughput of each low-demand inelastic flow is

exactly its demand. We will detail how to conduct the throughput estimation corrections for

the other flows which is not a low-demand inelastic flow on the same AP for proportional and

max-min fair scheduled APs respectively.

6.7.1 Throughput Estimation Correction for Flows under PF Scheduled

APs

Under a PF scheduled AP, if the number of active UEs connected is K, the time share used

by UEi with inelastic traffic on APj (τ∗ij) can be expressed as,

τ∗ij = τij ×
T ′ij
Tij

(6.6)

where T ′ij is the real/measured throughput APj to UEi while Tij is the apportioned through-

put. From the analysis for Eq. (3.5), we know that the time share of a UE under a PF scheduled

AP (τij) is 1/K. Therefore,

τ∗ij =
1

K
×
T ′ij
Tij

The part of time share not used by that UE (uij) can be expressed as,

uij = τij × (1−
T ′ij
Tij

) =
1

K
× (1−

T ′ij
Tij

)

Let us denote the set of inelastic traffic UEs on APj as Ij while that of elastic traffic UEs

as the Ej . The total of unused fractional time share (Uj) can be calculated as,

Uj =
∑
i∈Ij

uij =
∑
i∈Ij

(
1

K
× (1−

T ′ij
Tij

))

The fractional time share taken by the flows that are not low-demand inelastic flows (tni)

can be calculated as,

tni = Uj +
∑
i∈Ej

τij (6.7)
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or

tni = 1−
∑
i∈Ij

τ∗ij (6.8)

Let us denote the number of UEs with inelastic traffic on APj (|Ij |) as y. The number of

UEs with elastic flows x = K − y. The corrected throughputs of the other flows T ∗ij can then be

calculated as,

T ∗ij = f(tni)× rij (6.9)

where f is the bandwidth sharing function. For PF scheduled AP, f is only related to the

number of actively connected UEs. Therefore,

T ∗ij =
tni × rij

x
(6.10)

6.7.2 Throughput Estimation Correction for Flows under Max-Min Fair

Scheduled APs

We can use a similar procedure to conduct the throughput estimation corrections for the

flows that are not a low-demand elastic flow on an AP.

We use the same way to calculate the time share used by UEi with elastic traffic as in

Eq. (6.6) except that the τij is based on the time sharing formula for max-min fair scheduled APs

in Eq. (3.7) here.

τ∗ij =

1
rij∑

i∈Aj
1
rij

×
T ′ij
Tij

where Aj is the set of UEs connected to APj . uij can be calculated as,

uij =

1
rij∑

i∈Aj
1
rij

× (1−
T ′ij
Tij

)

and,

Uj =
∑
i∈Ij

uij =
∑
i∈Ij

(

1
rij∑

i∈Aj
1
rij

× (1−
T ′ij
Tij

))
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Then, we can calculate tni using either Eq. (6.7) or Eq. (6.8). The corrected throughputs

of the other flows T ∗ij can also be calculated using Eq. (6.9) except the bandwidth sharing function

is based on Eq. (3.8). Therefore,

T ∗ij = f(tni)× rij

=

tni
rij∑

i∈Ej
1
rij

× rij

=
tni∑
i∈Ej

1
rij

(6.11)

6.7.3 Solution If Low-Demand Elastic Traffic and Non-Participants Co-

Exist in the System

If there were both non-participants and low-demand elastic traffic in the system, UEs may

report their demands directly. Then, the mapping systems can do the throughput correction for

low-demand elastic traffic followed by the throughput correction for non-participants.
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Chapter 7

Evaluations using Dynamic

Simulations

In this chapter, we consider potentially more realistic scenarios in which UEs have dynamic

behavior. We use the methodology in Section 5.2.2 to conduct event-driven simulations, which

simulate both on-off session dynamics and UE mobility dynamics. The mapping algorithms tested

in the dynamic simulations include:

1. ATOM (atom)

2. Global greedy (gg)

3. Local greedy - equal chance (lge)

4. Local greedy - WiFi preferred (lgw)

5. Load-aware local greedy - equal chance (llg)

Note the most important difference from the list of the algorithms we tested in the static

simulation is that we can simulate the llg algorithm now, which requires the simulation of on/off

events.

We use exponential distribution as the model of session lengths. Both the session lengths

of on and off events follow this distribution with a mean value of 1 nominal time unit. In our

evaluation, we run the dynamic simulations for multiple runs with different initial UE placements to
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get statistically stabilized mean performance results. The initial placements use the same placement

strategies as the strategies used in the static simulations in Section 5.1.3.1, i.e. the uniform and

clustered placements. The results shown in this chapter uses 1250 runs for each experiment. Each

run has 32768 on/off events. As described in Section 5.2.2, we calculate the weighted average of

performance metrics for each run. Then we report the statistics of the 1250 weighted averages across

the runs.

We show the results when the movement probability (Pm) is equal to 1/4. We have also

tested with other probabilities of movement in [0, 1] with a step size of 0.1. The results are basically

identical. Therefore, we will only show the results of Pm = 1/4 here.

We still use 4 APs in the dynamic simulations, as in the static simulations. Since the on-off

dynamics reduces the number of online UEs that participates, we increase the total number of UEs

to 64. As the means of the duration of the on and off states are identical, the mean number of

UEs in the on state is still 32. It is the same as the number of UEs in all the static simulations

without the optimal solution (Section 6.2 to Section 6.6). Since the state transition process is i.i.d

distributed across all UEs, it is common for short bursts of predominantly on transitions and short

bursts of predominantly off transitions to occur. It has been observed that for approximately 95%

of the simulated time the number of UEs in the on state is between 24 and 40. But occasionally as

few as 16 and as many as 48 UEs have been observed in the on state. Since there are 64 UEs, each

run consumes a mean simulated time of 32768 / 64 = 512 nominal time units.

In the dynamics simulations, the GIFMS mapping systems perform remapping only at

each on events. We have also evaluated time-driven remapping for GIFMS. Performance degrades

significantly as the rate approaches 1 remapping per nominal time unit. The S-GIFMS mapping

system also reschedules at on event. However, it only decides and changes the association of the

flows that are changing to the on state. The LIFMS mapping systems do not change their mapping

solutions unless there is a UE movement.

7.1 Dynamic Simulation Results under Uniform UE Topol-

ogy

Table 7.1 to Table 7.6 show the results of dynamic simulation under the uniform UE topology.

For each metric, we always show the table with Pm = 0 first followed by that with Pm = 0.25. We
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have three observations from the tables.

1. The results from the dynamic simulations are very similar to those from the static

simulations in terms of all three metrics in Section 6.2. For example, the GPF values of all the

algorithms only differ from the values in Table 6.18 by no more than 0.4. The ranking of mapping

algorithms remains the same. As the dynamic simulations conduct more remappings, we see the

standard deviation decreases as expected.

2. The performance of the load-aware local greedy algorithm (llg) is very close to the

performance of the GIFMS algorithms. We see from Tables 7.1 and 7.2, in terms of mean GPF, llg

can achieve about 99% of the highest GPF value achieved by the GIFMS algorithms.

3. The mobility does not have a major impact to the results, as the results with and without

mobility are statistically the same.

Table 7.1: GPF of Dynamic Simulation (Uniform, Pm=0)

mean sd median min max

lgw.v 7.83 2.54 7.82 0.64 16.62
lge.v 20.51 2.98 20.57 11.95 29.19

atom.v 21.54 2.90 21.57 13.04 30.39
gg.v 21.36 2.96 21.40 12.76 30.29
llg.v 21.13 2.91 21.13 12.48 29.95

Table 7.2: GPF of Dynamic Simulation (Uniform, Pm=0.25)

mean sd median min max

lgw.v 7.79 2.54 7.81 0.48 16.77
lge.v 20.51 2.98 20.56 11.71 29.27

atom.v 21.54 2.89 21.57 12.98 30.48
gg.v 21.36 2.96 21.39 12.71 30.38
llg.v 21.13 2.91 21.14 12.46 30.03

Table 7.3: Aggregate Throughput (Mbps) of Dynamic Simulation (Uniform, Pm=0)

mean sd median min max

lgw.t 43.72 3.47 43.51 34.48 57.67
lge.t 75.32 7.00 75.42 53.73 96.65

atom.t 76.62 6.56 76.81 56.70 97.37
gg.t 76.31 6.69 76.46 55.86 97.13
llg.t 75.10 6.78 75.11 54.72 96.95
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Table 7.4: Aggregate Throughput (Mbps) of Dynamic Simulation (Uniform, Pm=0.25)

mean sd median min max

lgw.t 43.71 3.47 43.48 34.39 57.81
lge.t 75.32 6.99 75.25 53.64 96.57

atom.t 76.63 6.54 76.84 56.57 97.51
gg.t 76.32 6.67 76.48 55.66 97.68
llg.t 75.11 6.76 75.12 54.31 96.95

Table 7.5: Throughput Fairness Index of Dynamic Simulation (Uniform, Pm=0)

mean sd median min max

lgw.TFI 0.90 0.04 0.91 0.63 0.96
lge.TFI 0.64 0.09 0.65 0.33 0.86

atom.TFI 0.74 0.05 0.74 0.57 0.86
gg.TFI 0.75 0.05 0.75 0.60 0.87
llg.TFI 0.73 0.05 0.73 0.56 0.87

Table 7.6: Throughput Fairness Index of Dynamic Simulation (Uniform, Pm=0.25)

mean sd median min max

lgw.TFI 0.90 0.04 0.91 0.64 0.96
lge.TFI 0.64 0.09 0.65 0.33 0.87

atom.TFI 0.74 0.05 0.74 0.56 0.86
gg.TFI 0.75 0.05 0.75 0.60 0.86
llg.TFI 0.73 0.05 0.73 0.56 0.87

7.2 Dynamic Simulation Results under Clustered UE Topol-

ogy

Table 7.7 to Table 7.12 show the results of dynamic simulation under the clustered UE

topology. As can be seen in the tables, the values of all three metrics are very similar to those

obtained in the static simulations and reported in Section 6.4. Interestingly, we see that llg even

obtains sightly better GPF performance compared with ATOM and gg in this scenario, although

it achieves marginally lower aggregate throughput. We think it is because llg uses the AP-level

proportional fair objective and its changes to the flow mapping each time is limited to the flow that

has an off-on transition. This provides less opportunity for the heavy flows to take up more resources

as compared with the GIFMS using a global GPF objective and a global rescheduling. This helps

to boost the fairness metrics, even though slightly decreasing the aggregate throughput. We also

see that lgw still has much worse performance compared to the other flow mapping algorithms.

It confirms that, in the scenarios with dynamics, the currently-used policy based flow mapping

algorithm still has poor performance with much room for improvement.
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Table 7.7: GPF of Dynamic Simulation (Cluster, Pm=0)

mean sd median min max

lgw.v -21.71 3.29 -21.78 -30.33 -11.44
lge.v -11.83 3.73 -11.80 -23.34 0.39

atom.v 6.07 2.41 6.22 -1.80 14.83
gg.v 6.37 2.56 6.54 -2.69 15.07
llg.v 7.32 2.23 7.49 -0.09 15.09

Table 7.8: GPF of Dynamic Simulation (Cluster, Pm=0.25)

mean sd median min max

lgw.v -21.99 3.27 -22.04 -30.79 -11.88
lge.v -11.88 3.73 -11.82 -23.41 0.18

atom.v 6.02 2.42 6.13 -1.78 14.72
gg.v 6.32 2.56 6.54 -2.44 14.95
llg.v 7.27 2.24 7.41 -0.03 14.97

Table 7.9: Aggregate Throughput (Mbps) of Dynamic Simulation (Cluster, Pm=0)

mean sd median min max

lgw.t 21.78 2.83 22.22 12.86 28.57
lge.t 30.41 3.43 30.34 21.11 39.84

atom.t 45.65 2.42 45.70 38.08 54.79
gg.t 47.10 2.60 47.10 37.82 56.10
llg.t 45.58 2.57 45.61 37.55 55.03

Table 7.10: Aggregate Throughput (Mbps) of Dynamic Simulation (Cluster, Pm=0.25)

mean sd median min max

lgw.t 21.61 2.80 22.00 12.84 28.61
lge.t 30.44 3.43 30.47 21.13 39.86

atom.t 45.61 2.42 45.65 38.10 54.74
gg.t 47.06 2.60 47.09 37.96 56.08
llg.t 45.55 2.58 45.59 37.54 54.93

Table 7.11: Throughput Fairness Index of Dynamic Simulation (Cluster, Pm=0)

mean sd median min max

lgw.TFI 0.44 0.11 0.41 0.29 1.00
lge.TFI 0.46 0.09 0.45 0.24 0.86

atom.TFI 0.75 0.07 0.76 0.54 0.93
gg.TFI 0.78 0.06 0.79 0.58 0.93
llg.TFI 0.84 0.04 0.84 0.66 0.93

Table 7.12: Throughput Fairness Index of Dynamic Simulation (Cluster, Pm=0.25)

mean sd median min max

lgw.TFI 0.44 0.11 0.41 0.29 1.00
lge.TFI 0.46 0.09 0.45 0.25 0.86

atom.TFI 0.75 0.07 0.76 0.53 0.92
gg.TFI 0.78 0.06 0.79 0.58 0.93
llg.TFI 0.84 0.04 0.84 0.65 0.92
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Chapter 8

Discussion on Possible

Implementations for the Mapping

Systems

In this chapter, we first discuss common modules needed for all three types of flow mapping

systems (LIFMS, GIFMS, and S-GIFMS). We then propose options to implement each type of

system. The trade-offs among different types of systems and among the options of each system are

also discussed.

8.1 Common Modules

8.1.1 Handover Module

A handover module assists UEs in switching their interfaces for existing flows. It makes sure

the existing flows are not disrupted when mapping systems command to switch connections. This

reduces the cost of handovers.

All the flow mapping systems in GIFMS require a handover module, as they remap all the

UEs periodically and can enforce existing flows to change their connections. LIFMS and S-GIFMS

do not require a handover module if they are only triggered by on events. However, if they are also
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triggered by mobility events, they require a functional handover module too.

We think there are at least three network layers in which the flow mapping systems can

implement the handover module.

1. Application Layer

A scheme similar to [33] can be used. Basically, an HTTP proxy can be added to handle flow

handovers.

2. Transport Layer

The flow mapping systems can use Multipath TCP, which has proved to support handover

between LTE and WiFi [36].

3. IP Layer

We can also use Mobile IP based solution similar to the solution in the 3GPP standard such

as the solution in IP Flow Mobility [39].

The trade-offs in the implementation selection of the handover module are as follows. The

application layer solution requires neither changes to the network infrastructure nor mobile devices.

It only relies on a proxy server which can be set up by a 3rd-party provider other than network

providers, and proxy server configurations on mobile devices. The transport layer solution does

not require any changes to the network infrastructure. However, it requires network stack upgrades

at both the mobile devices and corresponding nodes. The IP layer solution involves changes to the

network infrastructure. Depending on the implementation, it may also entail changes to the network

stacks on mobile devices.

8.1.2 Information Collection Module

In all three types of flow mapping systems, each UE needs to locally collect information

needed as the inputs of the flow mapping algorithms (For the following discussion, when we say all

the mapping systems, we will not consider random-assignment. It is because, for random-assignment,

each UE only needs to know the total number of accessible APs locally.).

For all the mapping algorithms, there are two types of information that must be collected

locally,
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1. Information of all the available connections and its radio access technology (RAT) type (LTE

or WiFi, and their versions);

2. Information about the connection status of UEs to all the APs in the system. “Not accessible”

is one of the statuses. If an AP is reachable by a UE, either received signal strength or MCS

index works for this purpose.

There is other information that can be optionally collected such as the measured throughput

on the connected interface, as we will mention in Section 8.3.

8.2 Implementation Options for LIFMS

With connection status information locally collected and converted into effective rates of

UEs, the local-greedy-equal-chance is easy to implement (local-greedy-wifi-preferred is already in

use, even though most current systems do not support handover very well). It only needs to run the

algorithms we described in Section 5.3. If any UE’s connection needs to be changed, it can enforce

them without breaking the existing connections using the schemes in Section 8.1.1.

8.3 Implementation Options for GIFMS

To make GIFMS work, the global information on the connection status between all the

UEs and all the APs in the system needs to be aggregated at network components at a certain

network level. For example, the information can be aggregated at a top-level server, a set of APs,

or all the UEs in the system. The flow mapping algorithms will then be run at the same set of

network components. That is why we call it a conceptually centralized approach. However, as

the information aggregated into lower levels, more new protocol designs are needed to share and

synchronize scheduling information. This is not the focus of this dissertation. Therefore, we assume

a centralized flow mapping server in the following description.

UEs or APs must periodically send to the server a message that includes the following fields,

(UE ID, AP ID, RAT TYPE ID, CONNECTION STATUS METRICS). UE ID and AP ID are

unique IDs for UEs and APs respectively. The RAT TYPE ID and CONNECTION STATUS METRICS

correspond to the two types of locally collected information we described in Section 8.1.2. The server
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can convert the CONNECTION STATUS METRICS for each RAT type to an effective rate using

the method we described in Section 4.6.

After collecting information from the received messages, the server runs the flow mapping

algorithms and sends the association plans back to UEs. UEs then enforce the association plan using

the handover module.

8.3.1 Some Optional Optimizations

Usually, more information can be achieved from one UE’s current connection compared to

a potential connection. We think at least the following two types of information can be obtained

and used for some optional optimizations to the flow mapping systems.

1. Measured throughputs of the current connections

This information can be helpful for the optimization when there are non-participants in the

system as described in Section 6.6.3.

2. MCS indices used by the current connections

The SINR-to-MCS-Index mapping can be inaccurate for a specific site since the mapping tables

in the deployment can be different from the mapping tables derived from fading models. If

MCS indices of the current connections can be collected and reported together with the SINRs

of those connections, a site-specific SINR-to-MCS-Index mapping can be learned from the

reported information, which can alleviate the impact of the error aforementioned.

8.4 Implementation Options for S-GIFMS

We have already discussed that certain AP level information should be monitored and

broadcast to UEs for the S-GIFMS to work in Section 5.3. Since an S-GIFMS does not require

UEs to send report messages and receive association plans, it has less control overhead compared

with GIFMS. Additionally, as analyzed in the description of llg in Section 5.3, it does not have any

enforced handover as GIFMS if only triggered by on events. Therefore, it can work without the

implementation of a handover module.

We discuss how the information can be monitored and broadcast for PF scheduled APs and

max-min scheduled APs with various RATs.
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8.4.1 Information Monitoring

It is trivial for APs to monitor the number of UEs connected to it. For the round time

required by max-min fair scheduled APs, the APs can record the timestamps at the beginning and

end of each round. The difference between the two timestamps will be the round time.

8.4.2 Information Broadcasting

For an 802.11 AP, it only requires adding AP level information to the broadcast beacons of

the AP. Those beacons can be received by UEs even if they have been associated with some other

802.11 APs.

For cellular APs, if the system contains only APs from one provider, the APs can broadcast

the information via either Master Information Block (MIB) or System Information Block (SIB)

messages [7]. If there were multiple providers, the schemes described in the Section 7.2 of [16] can

be used.

Alternatively, APs can report this information to an ANDSF [1] server which can then send

the required information to UEs. However, this will make the S-GIFMS have the same overhead

for sending association plan messages to UEs as GIFMS, while only saving the control messages of

UEs’ reporting.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

We make the following conclusions from the conducted evaluations:

1. Local-greedy-wifi-preferred is far less effective than all the other mapping systems in terms

of both generalized proportional fairness and aggregate throughput, in most environments

tested. Local-greedy-equal-chance, which provides equal opportunity to LTE and WiFi, has a

significant performance improvement compared to the WiFi-preferred version. This means, for

both network providers and individual users, if the information about local connection status

and AP scheduling types is properly utilized, even local greedy flow mapping systems giving

LTE and WiFi equal opportunity can greatly improve system performance. This improvement

requires neither changes to the network infrastructure nor additional scheduling servers. It

incurs the least control overhead. However, its performance is not as consistent as GIFMS and

S-GIFMS under various circumstances.

2. Local-greedy-equal-chance has performance close to that of GIFMS and S-GIFMS when UEs

are distributed more evenly relative to AP coverages. However, its performance in terms of

both GPF and aggregate throughput is significantly inferior to that of GIFMS and S-GIFMS

under scenarios when there are imbalanced loads among APs. The imbalanced loads can be

introduced by UEs clustered around hot spots.

3. GIFMS have more consistent GPF and aggregate throughput improvement with lower standard
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deviations under all the environments tested compared with the local greedy mapping systems.

The performance of ATOM and global-greedy is very close to the optimal solution in terms

of both GPF and aggregate throughput. However, they require an additional conceptually

centralized server and impose more control and handover overhead.

4. S-GIFMS can, on average, achieve similar performance as the GIFMS under all the settings

in terms of both GPF value and aggregate throughput. It also does not have any enforced

handover and requires less overhead. However, some minor modifications to the broadcasted

beacons for all the APs are needed to implement it. We have identified the minimum informa-

tion needed for both proportional and max-min fair scheduled APs. The suggested minimum

information can serve as a guide for the next generation HetNets.

Executive Summary: From the evaluations, we observe the following trade-offs a provider

should consider when deploying a flow mapping system for a HetNet. Both the flow mapping

systems using local and global information can work with the current wireless systems. The local

information based ones require fewer system changes and overhead. However, they suffer from

inconsistent system performance improvement under various scenarios. The AP-level information

based flow mapping system with the implementation we propose, even though not applicable to the

current wireless systems, is ideal for the next generation HetNets in which APs can be modified to

monitor and broadcast certain scheduling information related to optimization objectives. The shared

information can help mobile devices to make better AP association decisions incorporating the AP

load information, when compared with purely local information based decisions. It can achieve

performance close to the flow mapping systems using global information while having low overhead

and deployment cost comparing to the global information based ones. The identified minimum

scheduling information that must be monitored and shared by APs provide important guidance for

the minimum information sharing in the next generation HetNets.

9.2 Future Work

Several interesting future directions of this research include:

1. To use other types of fairness as the objective;

2. To evaluate non-elastic traffic;

126



3. To evaluate the scenarios when flow splitting is allowed;

4. To evaluate the impact of an increasing level of upstream traffic;

5. To evaluate other types of session dynamics and mobility patterns;

6. To evaluate the impact of not-fully-synced information data as the mapping systems become

more distributed;

7. To evaluate the impact of various on-off session characteristics to various rescheduling policies

for S-GIFMS;

8. To define and evaluate the security and authentication mechanisms required for new control

messages for GIFMS and S- GIFMS.
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Appendix A Circular Cluster Detailed Test Result Summary
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Pb=0

mean sd median min max

lgw.v -18.55 5.25 -18.49 -37.57 -0.20
lge.v -10.78 5.44 -10.73 -32.49 9.22

atom.v 6.52 3.51 6.65 -10.82 18.35
gg.v 6.82 3.69 7.00 -11.75 18.41

rand.v -10.74 5.09 -10.59 -33.28 6.13

Pb=0.1

mean sd median min max

lgw.v -13.13 5.61 -13.01 -34.27 12.78
lge.v -4.64 6.16 -4.51 -30.95 20.85

atom.v 8.77 3.68 8.83 -6.12 24.83
gg.v 9.00 3.79 9.14 -6.24 24.73

rand.v -8.73 5.34 -8.57 -32.67 12.09

Pb=0.2

mean sd median min max

lgw.v -8.62 5.62 -8.44 -35.00 10.36
lge.v 0.53 6.21 0.70 -24.89 24.97

atom.v 10.99 3.92 11.03 -6.71 28.25
gg.v 11.08 3.96 11.20 -5.99 27.66

rand.v -7.22 5.60 -6.97 -29.62 15.87

Pb=0.3

mean sd median min max

lgw.v -4.78 5.41 -4.64 -33.61 14.22
lge.v 4.92 6.14 5.15 -21.92 25.96

atom.v 13.09 4.08 13.10 -4.82 28.68
gg.v 13.05 4.10 13.10 -4.82 28.80

rand.v -5.81 5.66 -5.63 -27.78 13.13

Pb=0.4

mean sd median min max

lgw.v -1.53 5.19 -1.33 -26.07 16.57
lge.v 8.74 5.81 8.92 -15.95 29.50

atom.v 15.00 4.18 15.03 -2.06 30.11
gg.v 14.86 4.20 14.92 -3.03 29.51

rand.v -4.53 5.81 -4.31 -32.68 17.22

Pb=0.5

mean sd median min max

lgw.v 1.20 4.88 1.31 -20.35 19.59
lge.v 11.93 5.50 12.05 -15.96 37.92

atom.v 16.68 4.23 16.67 -0.98 38.20
gg.v 16.49 4.25 16.48 -2.08 38.20

rand.v -3.53 5.91 -3.22 -27.87 17.10

Table 1: Comparison of the GPF Value with Different Pb (I)
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Pb=0.6

mean sd median min max

lgw.v 3.57 4.54 3.62 -15.45 20.54
lge.v 14.73 5.21 14.87 -10.63 32.29

atom.v 18.25 4.26 18.27 -0.28 33.71
gg.v 18.03 4.30 18.06 -0.31 33.52

rand.v -2.70 5.97 -2.46 -32.21 15.72

Pb=0.7

mean sd median min max

lgw.v 5.43 4.28 5.51 -11.86 21.00
lge.v 17.07 4.95 17.25 -6.07 37.30

atom.v 19.61 4.31 19.63 3.10 37.65
gg.v 19.40 4.37 19.43 2.52 37.65

rand.v -1.95 6.08 -1.71 -35.45 19.76

Pb=0.8

mean sd median min max

lgw.v 6.74 4.00 6.74 -10.05 22.52
lge.v 18.74 4.68 18.85 -1.94 37.65

atom.v 20.57 4.26 20.62 4.49 38.14
gg.v 20.36 4.34 20.40 3.24 37.95

rand.v -1.63 6.07 -1.40 -30.76 20.02

Pb=0.9

mean sd median min max

lgw.v 7.72 3.80 7.65 -7.43 24.95
lge.v 20.15 4.53 20.15 2.70 35.75

atom.v 21.45 4.27 21.42 5.72 36.85
gg.v 21.25 4.36 21.24 4.94 36.69

rand.v -1.11 6.20 -0.83 -35.54 18.80

Pb=1

mean sd median min max

lgw.v 8.14 3.70 8.11 -5.73 22.66
lge.v 20.84 4.44 20.83 4.51 38.54

atom.v 21.88 4.26 21.84 5.50 38.86
gg.v 21.69 4.34 21.67 5.40 38.73

rand.v -1.20 6.23 -0.92 -31.47 18.81

Table 2: Comparison of the GPF Value with Different Pb (II)
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Pb=0

mean sd median min max

lgw.t 23.79 4.58 24.79 9.89 37.74
lge.t 31.24 5.53 31.17 11.59 50.16

atom.t 45.79 3.77 45.65 24.70 58.25
gg.t 47.16 4.08 47.07 29.21 60.65

rand.t 30.81 4.91 31.38 14.57 52.52

Pb=0.1

mean sd median min max

lgw.t 33.21 9.61 31.35 10.97 94.85
lge.t 48.87 15.18 46.00 12.16 135.84

atom.t 53.36 9.50 50.88 32.08 108.70
gg.t 52.05 7.25 50.93 33.24 103.21

rand.t 36.17 8.81 34.83 15.12 94.94

Pb=0.2

mean sd median min max

lgw.t 37.21 8.91 35.40 10.72 96.46
lge.t 57.77 15.18 55.79 15.77 144.73

atom.t 58.58 10.22 56.64 34.84 108.64
gg.t 56.64 8.82 54.94 35.02 108.49

rand.t 39.60 9.71 37.76 15.03 101.20

Pb=0.3

mean sd median min max

lgw.t 39.50 8.03 37.99 11.19 88.06
lge.t 62.96 14.47 61.55 20.94 132.70

atom.t 62.83 10.41 61.64 37.40 120.83
gg.t 60.82 9.59 59.21 35.85 107.24

rand.t 42.27 9.84 40.32 14.94 99.83

Pb=0.4

mean sd median min max

lgw.t 40.69 7.15 39.52 17.25 89.69
lge.t 66.10 13.52 64.79 26.50 144.83

atom.t 66.09 10.28 65.38 36.28 111.13
gg.t 64.37 9.97 63.11 36.21 112.13

rand.t 44.23 9.74 42.30 16.45 95.85

Pb=0.5

mean sd median min max

lgw.t 41.40 6.45 40.46 20.81 79.00
lge.t 68.30 12.74 67.18 24.84 136.27

atom.t 68.59 10.09 68.00 38.05 119.65
gg.t 67.20 10.02 66.21 37.56 119.65

rand.t 45.48 9.41 43.77 17.26 101.07

Table 3: Comparison of the Aggregate Throughput (Mbps) with Different Pb (I)
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Pb=0.6

mean sd median min max

lgw.t 42.12 6.01 41.30 23.64 78.70
lge.t 70.07 12.16 69.16 32.62 138.16

atom.t 70.93 10.01 70.43 40.32 117.88
gg.t 69.93 10.10 69.20 40.10 114.37

rand.t 46.47 9.02 44.87 23.21 95.93

Pb=0.7

mean sd median min max

lgw.t 42.72 5.68 42.14 23.15 79.14
lge.t 71.93 11.66 71.02 33.10 131.14

atom.t 73.02 10.09 72.52 41.99 120.41
gg.t 72.29 10.27 71.79 43.56 120.36

rand.t 47.41 8.73 45.99 20.03 101.10

Pb=0.8

mean sd median min max

lgw.t 43.04 5.46 42.51 27.81 79.79
lge.t 72.99 11.27 72.29 36.31 133.05

atom.t 74.39 10.02 74.02 44.89 116.31
gg.t 73.86 10.20 73.41 44.61 119.78

rand.t 47.78 8.41 46.53 21.63 99.67

Pb=0.9

mean sd median min max

lgw.t 43.45 5.34 42.99 27.89 71.67
lge.t 74.32 11.00 73.70 40.98 136.65

atom.t 75.78 10.12 75.42 42.75 116.45
gg.t 75.44 10.31 74.94 41.77 120.78

rand.t 48.57 8.35 47.43 23.87 91.03

Pb=1

mean sd median min max

lgw.t 43.71 5.22 43.30 29.66 69.80
lge.t 75.28 10.78 74.70 41.67 127.37

atom.t 76.62 9.99 76.32 41.81 116.83
gg.t 76.29 10.22 75.86 40.41 121.63

rand.t 48.65 8.23 47.56 22.28 94.31

Table 4: Comparison of the Aggregate Throughput (Mbps) with Different Pb (II)
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Pb=0

mean sd median min max

lgw.TFI 0.43 0.21 0.36 0.12 1.00
lge.TFI 0.45 0.16 0.42 0.10 1.00

atom.TFI 0.75 0.12 0.78 0.35 0.99
gg.TFI 0.78 0.10 0.80 0.37 0.98

rand.TFI 0.52 0.16 0.48 0.20 0.99

Pb=0.1

mean sd median min max

lgw.TFI 0.38 0.18 0.37 0.05 1.00
lge.TFI 0.33 0.16 0.32 0.05 1.00

atom.TFI 0.65 0.21 0.71 0.09 0.98
gg.TFI 0.74 0.16 0.78 0.11 0.99

rand.TFI 0.48 0.18 0.47 0.06 0.98

Pb=0.2

mean sd median min max

lgw.TFI 0.43 0.18 0.44 0.05 1.00
lge.TFI 0.34 0.15 0.33 0.05 1.00

atom.TFI 0.63 0.19 0.66 0.10 0.97
gg.TFI 0.72 0.16 0.75 0.11 0.99

rand.TFI 0.47 0.18 0.48 0.06 0.95

Pb=0.3

mean sd median min max

lgw.TFI 0.51 0.19 0.52 0.06 1.00
lge.TFI 0.39 0.16 0.38 0.06 0.94

atom.TFI 0.63 0.17 0.65 0.11 0.99
gg.TFI 0.70 0.16 0.73 0.11 0.99

rand.TFI 0.48 0.19 0.49 0.07 0.94

Pb=0.4

mean sd median min max

lgw.TFI 0.59 0.19 0.61 0.07 1.00
lge.TFI 0.44 0.16 0.44 0.06 0.98

atom.TFI 0.65 0.15 0.67 0.12 0.98
gg.TFI 0.71 0.14 0.73 0.12 0.98

rand.TFI 0.50 0.18 0.52 0.07 0.96

Pb=0.5

mean sd median min max

lgw.TFI 0.67 0.18 0.69 0.07 1.00
lge.TFI 0.49 0.16 0.49 0.07 0.97

atom.TFI 0.68 0.13 0.69 0.11 0.97
gg.TFI 0.72 0.12 0.74 0.13 0.98

rand.TFI 0.52 0.18 0.54 0.07 0.98

Table 5: Comparison of the Throughput Fairness Index with Different Pb (I)

134



Pb=0.6

mean sd median min max

lgw.TFI 0.75 0.16 0.77 0.08 1.00
lge.TFI 0.54 0.16 0.54 0.06 0.99

atom.TFI 0.70 0.11 0.71 0.14 0.98
gg.TFI 0.73 0.11 0.74 0.14 0.97

rand.TFI 0.54 0.17 0.57 0.08 0.95

Pb=0.7

mean sd median min max

lgw.TFI 0.81 0.14 0.84 0.09 1.00
lge.TFI 0.57 0.16 0.58 0.07 0.98

atom.TFI 0.72 0.10 0.73 0.14 0.97
gg.TFI 0.74 0.10 0.75 0.16 0.97

rand.TFI 0.56 0.16 0.59 0.07 0.96

Pb=0.8

mean sd median min max

lgw.TFI 0.86 0.12 0.89 0.10 1.00
lge.TFI 0.60 0.16 0.62 0.07 1.00

atom.TFI 0.73 0.09 0.74 0.19 0.97
gg.TFI 0.75 0.09 0.76 0.19 0.96

rand.TFI 0.58 0.15 0.60 0.08 0.96

Pb=0.9

mean sd median min max

lgw.TFI 0.89 0.10 0.92 0.10 1.00
lge.TFI 0.63 0.15 0.65 0.07 1.00

atom.TFI 0.74 0.09 0.74 0.28 0.96
gg.TFI 0.75 0.08 0.76 0.15 0.97

rand.TFI 0.59 0.15 0.61 0.08 0.95

Pb=1

mean sd median min max

lgw.TFI 0.90 0.09 0.93 0.20 1.00
lge.TFI 0.65 0.15 0.66 0.07 1.00

atom.TFI 0.74 0.09 0.74 0.30 0.96
gg.TFI 0.75 0.08 0.76 0.31 0.96

rand.TFI 0.59 0.14 0.61 0.08 0.94

Table 6: Comparison of the Throughput Fairness Index with Different Pb (II)

135



Appendix B T-Shaped Rectangular Cluster Detailed Test Re-

sult Summary
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Pb=0

mean sd median min max

lgw.v 3.73 4.06 3.79 -12.84 17.91
lge.v 25.15 5.00 25.41 -2.87 41.46

atom.v 30.59 4.08 30.85 10.33 44.20
gg.v 30.52 4.24 30.80 9.65 44.20

rand.v 4.12 5.42 4.21 -19.65 27.83

Pb=0.1

mean sd median min max

lgw.v 4.18 3.96 4.23 -14.51 18.16
lge.v 25.51 5.00 25.71 3.88 41.07

atom.v 29.72 4.24 29.93 10.82 42.36
gg.v 29.72 4.36 29.92 9.42 42.43

rand.v 3.56 5.43 3.62 -21.55 23.38

Pb=0.2

mean sd median min max

lgw.v 4.68 3.93 4.70 -10.55 19.19
lge.v 25.70 4.99 25.96 6.01 41.91

atom.v 28.93 4.35 29.11 10.36 42.35
gg.v 28.95 4.45 29.16 10.41 42.35

rand.v 3.01 5.54 3.11 -27.25 21.97

Pb=0.3

mean sd median min max

lgw.v 5.13 3.86 5.14 -12.65 20.90
lge.v 25.71 4.87 25.90 2.17 43.38

atom.v 28.16 4.39 28.32 10.18 43.77
gg.v 28.17 4.46 28.37 9.32 43.81

rand.v 2.49 5.64 2.66 -21.37 22.70

Pb=0.4

mean sd median min max

lgw.v 5.59 3.84 5.59 -10.05 19.73
lge.v 25.39 4.79 25.49 3.20 41.09

atom.v 27.27 4.45 27.38 6.94 41.87
gg.v 27.26 4.52 27.36 5.84 41.87

rand.v 1.86 5.76 2.02 -29.40 21.67

Pb=0.5

mean sd median min max

lgw.v 6.04 3.80 6.04 -8.79 22.29
lge.v 25.01 4.69 25.13 5.55 40.97

atom.v 26.47 4.44 26.58 9.03 41.06
gg.v 26.42 4.51 26.53 6.45 41.06

rand.v 1.43 5.77 1.58 -24.83 23.24

Table 7: Comparison of the GPF with Different Pb (I)
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Pb=0.6

mean sd median min max

lgw.v 6.50 3.74 6.47 -8.37 21.26
lge.v 24.49 4.61 24.55 1.75 40.54

atom.v 25.65 4.44 25.68 6.40 41.18
gg.v 25.57 4.52 25.60 4.89 41.14

rand.v 0.95 5.85 1.16 -27.28 21.57

Pb=0.7

mean sd median min max

lgw.v 6.88 3.76 6.82 -8.29 22.56
lge.v 23.76 4.57 23.86 1.73 40.74

atom.v 24.75 4.45 24.84 7.65 41.66
gg.v 24.62 4.53 24.72 7.04 41.66

rand.v 0.47 5.94 0.67 -26.66 21.58

Pb=0.8

mean sd median min max

lgw.v 7.35 3.73 7.29 -6.96 22.70
lge.v 22.92 4.49 22.95 4.07 41.01

atom.v 23.83 4.37 23.85 7.42 41.01
gg.v 23.67 4.45 23.69 5.11 41.01

rand.v -0.11 6.01 0.16 -25.23 20.41

Pb=0.9

mean sd median min max

lgw.v 7.80 3.70 7.76 -9.68 21.64
lge.v 22.04 4.47 22.08 4.65 40.27

atom.v 22.97 4.32 23.01 6.38 40.27
gg.v 22.79 4.41 22.86 6.07 40.27

rand.v -0.60 6.10 -0.29 -35.79 21.09

Pb=1

mean sd median min max

lgw.v 8.19 3.70 8.13 -8.51 24.44
lge.v 20.93 4.46 20.99 2.07 37.85

atom.v 21.97 4.27 22.05 6.04 38.09
gg.v 21.78 4.36 21.87 4.83 38.09

rand.v -1.13 6.19 -0.88 -26.79 18.37

Table 8: Comparison of the GPF with Different Pb (II)
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Pb=0

mean sd median min max

lgw.t 40.92 5.27 40.33 25.83 61.56
lge.t 92.66 8.20 92.75 57.21 126.27

atom.t 103.39 8.31 103.61 69.15 132.88
gg.t 104.91 8.69 105.14 69.33 133.60

rand.t 51.74 8.91 50.77 27.21 96.05

Pb=0.1

mean sd median min max

lgw.t 41.03 5.31 40.50 24.55 74.14
lge.t 93.51 11.76 92.93 52.58 150.60

atom.t 100.71 9.10 100.75 57.88 133.05
gg.t 102.05 9.39 102.17 58.15 135.14

rand.t 51.27 8.86 50.22 23.60 101.09

Pb=0.2

mean sd median min max

lgw.t 41.19 5.29 40.69 26.14 75.76
lge.t 92.87 12.51 92.34 52.48 146.73

atom.t 98.27 9.82 98.38 59.58 136.80
gg.t 99.37 10.12 99.56 59.86 135.52

rand.t 50.79 8.82 49.67 26.14 103.58

Pb=0.3

mean sd median min max

lgw.t 41.37 5.27 40.77 26.50 71.42
lge.t 91.24 12.12 90.88 51.28 143.80

atom.t 95.70 10.23 95.72 57.64 140.96
gg.t 96.58 10.49 96.61 56.00 145.14

rand.t 50.34 8.77 49.19 23.19 103.62

Pb=0.4

mean sd median min max

lgw.t 41.57 5.25 41.02 26.73 73.18
lge.t 89.20 12.01 88.57 50.19 139.09

atom.t 93.00 10.62 92.84 54.19 134.88
gg.t 93.67 10.86 93.53 54.67 134.88

rand.t 49.77 8.63 48.70 26.47 105.99

Pb=0.5

mean sd median min max

lgw.t 41.84 5.25 41.31 26.99 75.85
lge.t 87.20 11.68 86.65 46.10 144.44

atom.t 90.48 10.80 90.42 52.76 135.74
gg.t 91.01 10.99 90.99 52.51 137.82

rand.t 49.61 8.61 48.56 21.12 102.99

Table 9: Comparison of the Aggregate Throughput (Mbps) with Different Pb (I)
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Pb=0.6

mean sd median min max

lgw.t 42.17 5.19 41.71 24.64 67.70
lge.t 85.13 11.39 84.60 43.98 128.68

atom.t 87.90 10.84 87.73 48.51 130.28
gg.t 88.30 10.99 88.09 48.32 130.28

rand.t 49.24 8.35 48.14 26.54 92.25

Pb=0.7

mean sd median min max

lgw.t 42.39 5.21 41.90 24.85 70.53
lge.t 82.82 11.17 82.38 45.76 132.47

atom.t 85.20 10.84 85.08 46.05 132.33
gg.t 85.36 11.01 85.20 46.10 132.33

rand.t 49.09 8.40 48.04 27.24 92.65

Pb=0.8

mean sd median min max

lgw.t 42.84 5.21 42.36 26.74 72.04
lge.t 80.70 10.99 80.30 37.98 129.87

atom.t 82.56 10.66 82.32 46.22 129.87
gg.t 82.57 10.82 82.37 47.52 129.87

rand.t 48.88 8.29 47.85 24.68 94.62

Pb=0.9

mean sd median min max

lgw.t 43.33 5.19 42.93 29.03 68.78
lge.t 78.34 10.90 77.87 40.73 132.21

atom.t 79.83 10.44 79.55 44.19 126.76
gg.t 79.68 10.62 79.39 44.72 125.74

rand.t 48.92 8.31 47.81 24.66 93.21

Pb=1

mean sd median min max

lgw.t 43.77 5.21 43.37 28.70 72.59
lge.t 75.46 10.74 74.93 36.43 129.88

atom.t 76.82 10.08 76.52 42.45 119.76
gg.t 76.55 10.27 76.19 42.67 123.74

rand.t 48.72 8.28 47.51 23.78 94.38

Table 10: Comparison of the Aggregate Throughput (Mbps) with Different Pb (II)
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Pb=0

mean sd median min max

lgw.TFI 0.80 0.13 0.82 0.21 1.00
lge.TFI 0.71 0.11 0.73 0.12 0.94

atom.TFI 0.75 0.07 0.76 0.25 0.96
gg.TFI 0.74 0.08 0.75 0.26 0.96

rand.TFI 0.61 0.11 0.62 0.09 0.95

Pb=0.1

mean sd median min max

lgw.TFI 0.82 0.13 0.84 0.08 1.00
lge.TFI 0.69 0.14 0.73 0.15 0.94

atom.TFI 0.75 0.07 0.75 0.24 0.94
gg.TFI 0.74 0.07 0.74 0.25 0.96

rand.TFI 0.61 0.11 0.62 0.09 0.94

Pb=0.2

mean sd median min max

lgw.TFI 0.83 0.12 0.86 0.11 1.00
lge.TFI 0.69 0.14 0.73 0.16 0.94

atom.TFI 0.74 0.07 0.74 0.24 0.95
gg.TFI 0.73 0.07 0.74 0.22 0.95

rand.TFI 0.61 0.12 0.62 0.07 0.97

Pb=0.3

mean sd median min max

lgw.TFI 0.84 0.12 0.87 0.07 1.00
lge.TFI 0.70 0.13 0.73 0.17 0.94

atom.TFI 0.73 0.07 0.74 0.25 0.96
gg.TFI 0.73 0.07 0.74 0.26 0.95

rand.TFI 0.61 0.12 0.63 0.08 0.97

Pb=0.4

mean sd median min max

lgw.TFI 0.86 0.11 0.88 0.10 1.00
lge.TFI 0.70 0.12 0.73 0.15 0.94

atom.TFI 0.73 0.07 0.73 0.20 0.94
gg.TFI 0.73 0.07 0.74 0.20 0.94

rand.TFI 0.61 0.12 0.63 0.08 0.97

Pb=0.5

mean sd median min max

lgw.TFI 0.87 0.11 0.90 0.08 1.00
lge.TFI 0.70 0.11 0.72 0.16 0.95

atom.TFI 0.72 0.07 0.73 0.34 0.95
gg.TFI 0.73 0.07 0.73 0.29 0.94

rand.TFI 0.61 0.13 0.63 0.08 0.96

Table 11: Comparison of the Throughput Fairness Index with Different Pb (I)
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Pb=0.6

mean sd median min max

lgw.TFI 0.88 0.10 0.90 0.10 1.00
lge.TFI 0.70 0.11 0.72 0.07 0.96

atom.TFI 0.72 0.07 0.72 0.18 0.94
gg.TFI 0.73 0.07 0.73 0.17 0.96

rand.TFI 0.61 0.13 0.63 0.09 0.95

Pb=0.7

mean sd median min max

lgw.TFI 0.89 0.10 0.91 0.17 1.00
lge.TFI 0.69 0.11 0.70 0.12 0.97

atom.TFI 0.72 0.08 0.72 0.34 0.95
gg.TFI 0.73 0.07 0.73 0.30 0.95

rand.TFI 0.61 0.13 0.62 0.09 0.98

Pb=0.8

mean sd median min max

lgw.TFI 0.90 0.09 0.92 0.16 1.00
lge.TFI 0.67 0.12 0.68 0.07 0.97

atom.TFI 0.72 0.08 0.72 0.30 0.96
gg.TFI 0.73 0.08 0.74 0.27 0.97

rand.TFI 0.60 0.13 0.62 0.09 0.95

Pb=0.9

mean sd median min max

lgw.TFI 0.90 0.09 0.92 0.19 1.00
lge.TFI 0.66 0.13 0.67 0.07 0.97

atom.TFI 0.73 0.08 0.73 0.29 0.96
gg.TFI 0.74 0.08 0.74 0.29 0.97

rand.TFI 0.60 0.14 0.62 0.09 0.96

Pb=1

mean sd median min max

lgw.TFI 0.90 0.09 0.93 0.09 1.00
lge.TFI 0.65 0.15 0.66 0.07 0.99

atom.TFI 0.74 0.09 0.74 0.32 0.96
gg.TFI 0.75 0.08 0.76 0.30 0.97

rand.TFI 0.59 0.14 0.62 0.08 0.94

Table 12: Comparison of the Throughput Fairness Index with Different Pb (II)
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Appendix C Detailed Comparison Results of the Impacts

from Non-Participants

C.1 Clustered UE Topology

We list the detailed results of the impact of non-participants under the cluster topology here

for reference.
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dRatio=0.0

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v -8.58 5.55 -8.44 -29.67 9.59
gg.v -8.58 5.55 -8.44 -29.67 9.59

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=0.125

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v -5.51 4.75 -5.52 -24.47 11.08
gg.v -5.44 4.75 -5.44 -24.47 11.06

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=0.25

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v -4.42 4.65 -4.42 -24.41 12.65
gg.v -4.03 4.54 -4.01 -23.33 12.65

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=0.375

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v -2.94 4.66 -2.90 -23.22 13.08
gg.v -2.06 4.48 -2.02 -22.81 13.18

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=0.5

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v -0.96 4.52 -0.88 -19.68 15.06
gg.v 0.62 4.35 0.70 -17.78 15.67

rand.v -10.83 4.94 -10.78 -34.15 7.65

Table 13: Comparison of the GPF with Different dRatio using Throughput Correction (I)
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dRatio=0.0

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v -8.58 5.55 -8.44 -29.67 9.59
gg.v -8.58 5.55 -8.44 -29.67 9.59

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=0.125

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v -6.94 5.01 -6.89 -26.95 10.37
gg.v -6.98 5.16 -6.89 -26.95 10.37

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=0.25

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v -5.43 4.64 -5.41 -23.91 10.37
gg.v -4.42 4.74 -4.39 -24.27 12.13

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=0.375

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v -2.57 4.33 -2.55 -21.62 13.08
gg.v -1.62 4.70 -1.61 -22.15 14.32

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=0.5

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v 0.97 4.29 1.10 -18.67 14.49
gg.v 1.66 4.62 1.77 -17.70 17.82

rand.v -10.83 4.94 -10.78 -34.15 7.65

Table 14: Comparison of the GPF with Different dRatio (I)
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dRatio=0.625

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v 1.05 4.24 1.15 -19.45 17.82
gg.v 3.32 4.18 3.41 -17.01 17.65

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=0.75

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v 3.45 4.13 3.56 -15.24 16.67
gg.v 5.80 4.00 6.03 -12.84 18.38

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=0.875

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v 5.60 3.62 5.87 -12.61 17.45
gg.v 7.25 3.58 7.52 -11.54 18.50

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=1.0

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v 6.52 3.51 6.65 -10.82 18.35
gg.v 6.82 3.69 7.00 -11.75 18.41

rand.v -10.83 4.94 -10.78 -34.15 7.65

Table 15: Comparison of the GPF with Different dRatio using Throughput Correction (II)
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dRatio=0.625

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v 3.94 4.08 4.20 -17.01 16.17
gg.v 4.60 4.39 4.79 -17.01 18.02

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=0.75

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v 5.69 3.66 5.92 -12.84 17.45
gg.v 6.59 3.90 6.93 -12.84 18.38

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=0.875

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v 6.36 3.52 6.50 -11.16 17.45
gg.v 7.14 3.60 7.35 -11.71 18.55

rand.v -10.83 4.94 -10.78 -34.15 7.65

dRatio=1.0

mean sd median min max

lgw.v -18.49 4.86 -18.44 -37.57 -1.08
lge.v -8.58 5.55 -8.44 -29.67 9.59

atom.v 6.52 3.51 6.65 -10.82 18.35
gg.v 6.82 3.69 7.00 -11.75 18.41

rand.v -10.83 4.94 -10.78 -34.15 7.65

Table 16: Comparison of the GPF with Different dRatio (II)
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dRatio=0.0

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 33.35 5.49 33.26 12.70 55.84
gg.t 33.35 5.49 33.26 12.70 55.84

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=0.125

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 34.38 4.89 34.15 16.86 57.22
gg.t 34.25 4.87 34.02 16.86 57.22

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=0.25

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 35.52 4.71 35.33 19.08 53.34
gg.t 35.24 4.69 35.06 18.34 53.34

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=0.375

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 37.47 4.72 37.87 18.56 55.03
gg.t 37.09 4.74 37.45 17.91 53.51

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=0.5

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 39.73 4.16 39.96 20.47 55.08
gg.t 39.27 4.23 39.45 20.33 55.55

rand.t 30.55 4.78 31.19 15.14 49.86

Table 17: Comparison of the Aggregate Throughput (Mbps) with Different dRatio using Throughput
Correction (I)
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dRatio=0.0

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 33.35 5.49 33.26 12.70 55.84
gg.t 33.35 5.49 33.26 12.70 55.84

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=0.125

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 34.49 4.99 34.26 17.04 56.61
gg.t 33.97 5.28 33.80 17.04 56.61

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=0.25

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 35.40 4.69 35.19 18.23 55.03
gg.t 35.19 4.89 35.00 17.07 57.22

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=0.375

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 36.95 4.76 37.24 17.73 55.03
gg.t 37.04 4.92 37.35 17.54 54.46

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=0.5

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 39.60 4.29 39.79 19.07 54.98
gg.t 39.60 4.62 39.79 20.18 57.07

rand.t 30.55 4.78 31.19 15.14 49.86

Table 18: Comparison of the Aggregate Throughput (Mbps) with Different dRatio (I)
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dRatio=0.625

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 40.95 3.67 40.93 21.00 57.07
gg.t 40.72 3.96 40.58 21.15 56.81

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=0.75

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 41.63 3.69 41.54 23.96 55.37
gg.t 42.46 4.23 42.37 25.73 58.23

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=0.875

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 42.87 3.62 43.03 25.22 56.69
gg.t 44.90 4.03 45.06 26.30 58.93

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=1.0

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 45.79 3.77 45.65 24.70 58.25
gg.t 47.16 4.08 47.07 29.21 60.65

rand.t 30.55 4.78 31.19 15.14 49.86

Table 19: Comparison of the Aggregate Throughput (Mbps) with Different dRatio using Throughput
Correction (II)
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dRatio=0.625

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 41.81 3.91 41.90 21.79 55.15
gg.t 41.84 4.44 41.74 21.86 58.23

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=0.75

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 43.46 3.66 43.65 24.07 56.69
gg.t 44.07 4.38 44.33 25.73 58.93

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=0.875

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 44.68 3.57 44.62 24.07 57.21
gg.t 45.88 4.08 45.87 26.19 59.55

rand.t 30.55 4.78 31.19 15.14 49.86

dRatio=1.0

mean sd median min max

lgw.t 23.73 4.40 24.79 9.89 40.47
lge.t 33.35 5.49 33.26 12.70 55.84

atom.t 45.79 3.77 45.65 24.70 58.25
gg.t 47.16 4.08 47.07 29.21 60.65

rand.t 30.55 4.78 31.19 15.14 49.86

Table 20: Comparison of the Aggregate Throughput (Mbps) with Different dRatio (II)
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C.2 Uniform UE Topology

We list the detailed results of the impact of non-participants under the uniform UE topology.
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dRatio=0.0

mean sd median min max

lgw.v 8.16 3.68 8.11 -7.03 22.56
lge.v 20.87 4.44 20.89 5.06 40.18

atom.v 20.87 4.44 20.89 5.06 40.18
gg.v 20.87 4.44 20.89 5.06 40.18

rand.v -1.17 6.24 -0.87 -34.22 20.05

dRatio=0.125

mean sd median min max

lgw.v 8.16 3.68 8.11 -7.03 22.56
lge.v 20.87 4.44 20.89 5.06 40.18

atom.v 20.80 4.37 20.79 4.58 40.03
gg.v 20.83 4.37 20.81 4.58 40.03

rand.v -1.17 6.24 -0.87 -34.22 20.05

dRatio=0.25

mean sd median min max

lgw.v 8.16 3.68 8.11 -7.03 22.56
lge.v 20.87 4.44 20.89 5.06 40.18

atom.v 20.74 4.33 20.71 4.58 40.03
gg.v 20.82 4.33 20.79 4.58 40.03

rand.v -1.17 6.24 -0.87 -34.22 20.05

dRatio=0.375

mean sd median min max

lgw.v 8.16 3.68 8.11 -7.03 22.56
lge.v 20.87 4.44 20.89 5.06 40.18

atom.v 20.70 4.31 20.69 5.77 39.91
gg.v 20.83 4.30 20.82 5.73 39.91

rand.v -1.17 6.24 -0.87 -34.22 20.05

dRatio=0.5

mean sd median min max

lgw.v 8.16 3.68 8.11 -7.03 22.56
lge.v 20.87 4.44 20.89 5.06 40.18

atom.v 20.71 4.29 20.70 5.01 39.59
gg.v 20.89 4.28 20.86 5.73 39.59

rand.v -1.17 6.24 -0.87 -34.22 20.05

Table 21: Comparison of the GPF with Different dRatio using Throughput Correction (I)
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dRatio=0.0

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 20.87 4.44 20.89 4.17 40.18
gg.v 20.87 4.44 20.89 4.17 40.18

rand.v -1.12 6.22 -0.90 -28.00 21.40

dRatio=0.125

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 20.67 4.39 20.69 4.17 40.03
gg.v 20.68 4.38 20.69 4.17 38.03

rand.v -1.12 6.22 -0.90 -28.00 21.40

dRatio=0.25

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 20.80 4.36 20.80 4.98 40.18
gg.v 20.78 4.37 20.76 5.07 40.18

rand.v -1.12 6.22 -0.90 -28.00 21.40

dRatio=0.375

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 21.00 4.33 20.99 5.29 40.16
gg.v 20.95 4.34 20.94 5.07 40.16

rand.v -1.12 6.22 -0.90 -28.00 21.40

dRatio=0.5

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 21.18 4.31 21.18 5.32 40.05
gg.v 21.13 4.33 21.12 4.35 40.05

rand.v -1.12 6.22 -0.90 -28.00 21.40

Table 22: Comparison of the GPF with Different dRatio (I)
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dRatio=0.625

mean sd median min max

lgw.v 8.16 3.68 8.11 -7.03 22.56
lge.v 20.87 4.44 20.89 5.06 40.18

atom.v 20.77 4.29 20.75 5.47 39.59
gg.v 21.00 4.27 20.99 5.79 39.59

rand.v -1.17 6.24 -0.87 -34.22 20.05

dRatio=0.75

mean sd median min max

lgw.v 8.16 3.68 8.11 -7.03 22.56
lge.v 20.87 4.44 20.89 5.06 40.18

atom.v 20.92 4.29 20.93 5.95 40.05
gg.v 21.21 4.27 21.18 6.42 40.16

rand.v -1.17 6.24 -0.87 -34.22 20.05

dRatio=0.875

mean sd median min max

lgw.v 8.16 3.68 8.11 -7.03 22.56
lge.v 20.87 4.44 20.89 5.06 40.18

atom.v 21.19 4.29 21.18 5.75 39.59
gg.v 21.49 4.28 21.46 6.28 40.17

rand.v -1.17 6.24 -0.87 -34.22 20.05

dRatio=1.0

mean sd median min max

lgw.v 8.16 3.68 8.11 -7.03 22.56
lge.v 20.87 4.44 20.89 5.06 40.18

atom.v 21.93 4.25 21.93 6.53 40.30
gg.v 21.74 4.34 21.72 5.01 40.18

rand.v -1.17 6.24 -0.87 -34.22 20.05

Table 23: Comparison of the GPF with Different dRatio using Throughput Correction (II)
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dRatio=0.625

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 21.37 4.29 21.35 6.21 40.18
gg.v 21.29 4.33 21.28 5.78 40.18

rand.v -1.12 6.22 -0.90 -28.00 21.40

dRatio=0.75

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 21.56 4.27 21.55 6.42 40.06
gg.v 21.45 4.32 21.45 5.63 40.06

rand.v -1.12 6.22 -0.90 -28.00 21.40

dRatio=0.875

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 21.75 4.26 21.73 6.53 40.18
gg.v 21.59 4.33 21.60 5.76 40.18

rand.v -1.12 6.22 -0.90 -28.00 21.40

dRatio=1.0

mean sd median min max

lgw.v 8.16 3.68 8.13 -7.73 22.56
lge.v 20.87 4.44 20.89 4.17 40.18

atom.v 21.93 4.25 21.93 6.53 40.30
gg.v 21.74 4.34 21.72 5.01 40.18

rand.v -1.12 6.22 -0.90 -28.00 21.40

Table 24: Comparison of the GPF with Different dRatio (II)
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dRatio=0.0

mean sd median min max

lgw.t 43.70 5.20 43.23 28.96 68.25
lge.t 75.47 10.83 74.77 38.36 133.51

atom.t 75.47 10.83 74.77 38.36 133.51
gg.t 75.47 10.83 74.77 38.36 133.51

rand.t 48.81 8.36 47.61 23.88 96.92

dRatio=0.125

mean sd median min max

lgw.t 43.70 5.20 43.23 28.96 68.25
lge.t 75.47 10.83 74.77 38.36 133.51

atom.t 74.44 10.60 73.81 40.61 124.57
gg.t 74.43 10.57 73.79 39.65 124.57

rand.t 48.81 8.36 47.61 23.88 96.92

dRatio=0.25

mean sd median min max

lgw.t 43.70 5.20 43.23 28.96 68.25
lge.t 75.47 10.83 74.77 38.36 133.51

atom.t 74.35 10.62 73.71 42.65 124.57
gg.t 74.52 10.63 73.91 42.95 124.57

rand.t 48.81 8.36 47.61 23.88 96.92

dRatio=0.375

mean sd median min max

lgw.t 43.70 5.20 43.23 28.96 68.25
lge.t 75.47 10.83 74.77 38.36 133.51

atom.t 74.57 10.67 73.92 42.66 120.28
gg.t 74.87 10.70 74.24 43.09 120.28

rand.t 48.81 8.36 47.61 23.88 96.92

dRatio=0.5

mean sd median min max

lgw.t 43.70 5.20 43.23 28.96 68.25
lge.t 75.47 10.83 74.77 38.36 133.51

atom.t 74.98 10.78 74.28 42.33 123.14
gg.t 75.29 10.80 74.77 44.13 122.70

rand.t 48.81 8.36 47.61 23.88 96.92

Table 25: Comparison of the Aggregate Throughput (Mbps) with Different dRatio using Throughput
Correction (I)
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dRatio=0.0

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 75.46 10.83 74.80 37.33 133.51
gg.t 75.46 10.83 74.80 37.33 133.51

rand.t 48.75 8.25 47.67 23.58 93.06

dRatio=0.125

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 74.49 10.62 73.90 42.05 133.51
gg.t 74.56 10.62 73.96 41.46 133.51

rand.t 48.75 8.25 47.67 23.58 93.06

dRatio=0.25

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 74.30 10.46 73.74 41.64 123.92
gg.t 74.33 10.53 73.73 42.75 123.92

rand.t 48.75 8.25 47.67 23.58 93.06

dRatio=0.375

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 74.34 10.36 73.82 43.48 119.12
gg.t 74.30 10.45 73.73 44.04 119.12

rand.t 48.75 8.25 47.67 23.58 93.06

dRatio=0.5

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 74.44 10.29 73.93 43.93 120.62
gg.t 74.46 10.42 73.87 43.45 120.62

rand.t 48.75 8.25 47.67 23.58 93.06

Table 26: Comparison of the Aggregate Throughput (Mbps) with Different dRatio (I)
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dRatio=0.625

mean sd median min max

lgw.t 43.70 5.20 43.23 28.96 68.25
lge.t 75.47 10.83 74.77 38.36 133.51

atom.t 75.44 10.85 74.88 42.33 125.79
gg.t 75.64 10.83 75.08 43.12 122.70

rand.t 48.81 8.36 47.61 23.88 96.92

dRatio=0.75

mean sd median min max

lgw.t 43.70 5.20 43.23 28.96 68.25
lge.t 75.47 10.83 74.77 38.36 133.51

atom.t 75.93 10.87 75.43 42.89 123.14
gg.t 75.82 10.75 75.35 44.13 119.12

rand.t 48.81 8.36 47.61 23.88 96.92

dRatio=0.875

mean sd median min max

lgw.t 43.70 5.20 43.23 28.96 68.25
lge.t 75.47 10.83 74.77 38.36 133.51

atom.t 76.36 10.80 75.97 42.89 122.70
gg.t 76.02 10.55 75.55 43.59 124.88

rand.t 48.81 8.36 47.61 23.88 96.92

dRatio=1.0

mean sd median min max

lgw.t 43.70 5.20 43.23 28.96 68.25
lge.t 75.47 10.83 74.77 38.36 133.51

atom.t 76.71 10.01 76.36 46.01 125.29
gg.t 76.46 10.23 76.01 44.52 123.92

rand.t 48.81 8.36 47.61 23.88 96.92

Table 27: Comparison of the Aggregate Throughput (Mbps) with Different dRatio using Throughput
Correction (II)
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dRatio=0.625

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 74.74 10.24 74.14 43.93 123.92
gg.t 74.72 10.37 74.18 43.87 123.92

rand.t 48.75 8.25 47.67 23.58 93.06

dRatio=0.75

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 75.17 10.18 74.61 44.95 120.27
gg.t 75.13 10.32 74.60 44.35 120.27

rand.t 48.75 8.25 47.67 23.58 93.06

dRatio=0.875

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 75.86 10.11 75.39 44.63 123.92
gg.t 75.71 10.27 75.21 44.35 123.92

rand.t 48.75 8.25 47.67 23.58 93.06

dRatio=1.0

mean sd median min max

lgw.t 43.70 5.21 43.24 28.78 71.92
lge.t 75.46 10.83 74.80 37.33 133.51

atom.t 76.71 10.01 76.36 46.01 125.29
gg.t 76.46 10.23 76.01 44.52 123.92

rand.t 48.75 8.25 47.67 23.58 93.06

Table 28: Comparison of the Aggregate Throughput (Mbps) with Different dRatio (II)
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