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Abstract 

There are many molecules, species and mechanisms that contribute to the overall wear 

and degradation of biometallic alloys like cobalt-chromium-molybdenum (CoCrMo). Following 

implantation, orthopaedic alloys are subject to an encompassing inflammatory response that will 

either lead to foreign body giant cell formation and attachment to the surface or the fibrous tissue 

encapsulation, forming an inflamed periprosthetic joint. In addition to the inflammatory 

response, tribocorrosion-based processes of alloy-on-alloy or alloy-on-polymer couples release 

polymeric wear debris, oxides, hydroxides, and metal ions in response to excessive wear, loading 

and corrosion. It is hypothesized that these processes, biological and triboelectrochemical, are 

linked together in a feedback-loop, and there is reason to believe that there exists a common 

catalyst, reactive oxygen species (ROS), that accelerates the cycle. This dissertation explains 

how ROS are generated in physiological conditions and how they affect electrochemical 

properties, under what circumstances ROS are consumed intracellularly, how different cell types 

respond to ROS-rich conditions, and how ROS interact with solution components native to 

synovial fluid, with a decisive effort and focus on defining their presence and role in the 

inflamed joint space. 

By fluorescently labeling individual ROS like hydroxyl radicals (OH·) and hydrogen 

peroxide (H2O2), we were able to correlate ROS concentrations against time of applied voltage (-

1V vs. Ref) as well as against applied voltage for 2 hours. It was found that there exist thresholds 

for both the production and consumption of ROS, and there is a voltage range for which ROS are 

produced in measurable quantities. Under similar electrochemical conditions, different cell types 

(pre-osteoblast-like MC3T3-E1, monocyte macrophage-like U937) were cultured and exposed to 

an influx of ROS through cathodic excursions. It was found that cells possess a unique 
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‘electrochemical zone of viability’ per phenotype with reduced glutathione (GSH) activity, a 

ROS scavenger molecule produced within inflammatory cells, hypothesized to be the oxidative 

stress suppressor in the U937 cells. This hypothesis was later confirmed when exposing 

macrophages (RAW 264.7) to simulated synovial fluid, where it was found that ROS (H2O2) had 

a significant (p < 0.05) effect on intracellular GSH activity (fluorescent intensity). In addition to 

influencing cell behavior and response, ROS production and exposure was found to alter 

electrochemical properties of CoCrMo surfaces. Using nearfield electrochemical impedance 

spectroscopy (NEIS), CoCrMo retrievals and CoCrMo surfaces damaged by electrocautery and 

ROS-rich solutions were shown to have significantly (p < 0.05) decreased corrosion resistance 

(RP) with increased constant phase element capacitance (CPE Q) and open circuit potentials 

(OCPs), indicating that ROS are major contributors in corrosion susceptibility. 

By interpreting these observations and results, we were able to demonstrate that ROS are 

influential in several aspects of the inflammatory reaction to metallic biomaterials. The 

development of new diagnostics and predictive models centered around ROS can lead to safer 

practices involving orthopaedic alloys and further support our understanding of an inflamed joint 

space. 
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1. Background

1.1. Purpose 

Orthopaedic alloys were implemented in the 19th century1 for the sole purpose of 

restoring the quality of life in a patient suffering from pain due to the degradation of the joint. 

These alloys were initially designed for permanent load-bearing applications such as total hip 

and knee arthroplasties (THA, TKA), however since their initial design and development, they 

have been tailored for a variety of temporary purposes such as bone plates, cardiovascular stents, 

dental procedures, pedicle screws and rods1 with corrosion-resistant superalloys as the standard2. 

The continued use of these long-ago developed alloys would lead us to believe that there are no 

serious adverse reactions or side-effects to having a foreign material in the human body, yet the 

failure and degradation of the alloys3 are becoming more and more prevalent with the increasing 

average age of the population4, as well as patients outliving the life-cycle of the product. The 

clinical success of an implant is directly related to the associated biological response, ranging 

from inert to rejected (failure)5. One of the most common orthopaedic failure modes, infection 

(2% of all primary TKAs as of 2012)6, is not completely the fault of the alloy performance with 

healthy patients subject to airborne pathogens or operating room human error (27.4% of 781 

revisions)7. By contrast, the most common forms of revision are attributed to the performance of 

the alloy: aseptic loosening (39.9% of 781 revisions), instability (7.5%...) and periprosthetic 

fracture (4.7%...)7. The main contributors behind the failure of orthopaedic alloys in an inflamed 

joint space are electrochemical dissolution phenomena, wear and/or the surrounding dynamic 

synovial environment8.  

The purpose of this research is to determine the synergistic role between this inflamed 

joint space and one of its most relevant and harmful constituents, reactive oxygen species (ROS). 
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1.2. Inflammation 

Inflammation is a natural physiological occurrence designed to initiate, maintain and heal 

afflicted tissue9. In response to tissue injury, disruption of the blood vessels and extravasation of 

blood constituents10, the body responds by using a systematic approach to restore homeostasis 

where the surrounding environment undergoes acute inflammation/recruitment to tissues, 

followed by proliferation/differentiation and activation in situ, conversion of suppressive cells 

and then remodeling/homeostasis restoration11. When a medical device is implanted invasively 

like that of total arthroplasties, the site will often transition from acute to chronic inflammation 

over a period of weeks through the assistance of mast cells, lymphocytes and cytokines12. The 

body will continue to attack the implant by recruiting phagocytic cells like monocytes and 

infiltrating neutrophils that eventually mature into macrophages and form into foreign body giant 

cells (FBGCs), which will attack the surface, engulf wear particles and metal ions, leading to 

cytotoxic, genotoxic, and osteolytic effects within the periprosthetic joint12. Inflammation of the 

joint space surrounding metallic total joint implants remains a significant cause for revision and 

replacement with the inflammatory response often attributed to further damage of both tissue and 

implant, however inflammation can be initiated from multiple sources. 

1.3. Lymphocytic Response vs. Wear-Induced Inflammation 

There exists much debate within the orthopaedic community surrounding the true root of 

chronic inflammation surrounding a metallic biomaterial device. Is the prolonged inflammatory 

response due to the host recognizing a foreign material and naturally progressing into a 

lymphocyte-lead defense OR is there a wear particle- and/or debris-induced reaction triggering 

this long-term effect? On one side of the argument is the foreign body reaction, composed of 

macrophages and other inflammatory molecules in response to biomaterials12. The host site 



3 

undergoes a methodical approach to the invasive device: “injury, blood-material interactions, 

provisional matrix formation, acute inflammation, chronic inflammation, granulation tissue 

development, foreign body reaction, and fibrosis/fibrous capsule development”12. Fibrous 

pseudocapsule formation around a hip implant has been theorized to release inflammatory 

mediators, with ROS as causative factors in tissue fibrosis, osteolysis and bone resorption13. The 

morphological progression of FBGCs to fibrous pseudocapsule formation is hypothesized to lead 

to stress-concentrated zones, eventually leading to failure of the device through continuous 

degradation and reduction of mechanical properties12. Inflammatory cell-induced (ICI) corrosion 

of the surface14, 15 initiates the generation and consequent release of ROS and lymphocytic 

cytokines (interleukin (IL)-1β)16, promoting osteoclast differentiation and the formation of a 

fibrous membrane around the implant13, 17. Once bio-corrosion of the alloy surface is initiated3, 

topography of the surface is altered where particles are released and osteoclast-derived surface 

pits develop18, introducing surface roughness as another factor relating to cell response (cytokine 

release) and attack (metal ion dissolution). Macrophages cultured on microrough surfaces have 

been shown to increase the secretion of anti-inflammatory cytokine (IL-10) and pro-

inflammatory cytokines (TNF-α, IL-6 and IP-10) when compared to smooth surfaces19. The 

surrounding biology becomes increasingly concentrated with organic and inorganic material, 

leading to drastic changes in solution chemistry. It has been reported that CoCrMo alloy surfaces 

exposed to electrolytic simulated biological solutions (NaCl, KH2PO4, CaCl2, KCl, MgCl2, 

NaHCO3, Na2SO4) release Co from the surface due to oxidizing conditions leading to 

transpassive dissolution, similar to the effects seen during activation repassivation cycles from 

cyclic potential variation20. This eventually promotes agitation of the inflammatory cells, which 

begins the process over again (feedback-loop hypothesis). 
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The other side of the argument is that the response is dominated and controlled by the 

presence of the metal alloy, specifically metal alloy that is released from continuous use and 

wear. The main hypothesis is that the prolonged inflammatory response is activated as a result of 

micron-sized metallic/polymeric particles released from articulating surfaces21. Particles are then 

engulfed (phagocytized) by inflammatory-cells22 which increases inflammatory and osteolytic 

stress response-factors like high mobility group protein-B1 (HMGB1), cyclooxygenase-2 

(COX2), inducible nitric oxide synthase (iNOS), 4-hydroxynonenal (4-HNE) and nitrotyrosine 

(NT), supporting oxidative stress-induced bone resorption and aseptic loosening of total hip 

replacements23, 24. Metal ion (MX) exposure within the joint space has been extensively 

characterized with focus on cellular uptake and resulting chromosome aberrations and 

aneugenicity25, and other genotoxicity related events due to interactions and formation of ROS 

including hydroxyl radical (OH·) and hydrogen peroxide (H2O2) (Eqn. 1-3)24, 26, 27. 

𝑀𝑀(𝑋𝑋) + 𝑂𝑂2•− → 𝑀𝑀(𝑋𝑋 − 1) +  𝑂𝑂2 [1] 

2𝑂𝑂2•− + 2𝐻𝐻+ → 𝐻𝐻2𝑂𝑂2 + 𝑂𝑂2  [2] 

𝑀𝑀(𝑋𝑋 − 1) + 𝐻𝐻2𝑂𝑂2 → 𝑀𝑀(𝑋𝑋) + 𝑂𝑂𝐻𝐻• + 𝑂𝑂𝐻𝐻− [3] 

Transition metal ions, notably chromium (Cr3+, Cr6+) and cobalt (Co2+), have been shown 

to knock-down or induce antioxidant enzyme transcription and translation factors, affecting the 

overall mitigation of ROS28 while subsequently oxidizing cytoplasm proteins29. Tantalum (Ta, 

regarded as inert) and commercially pure titanium (CpTi) in addition to cobalt and chromium 

ions have also been shown to have a direct dose-dependent response with concentrations 

correlated to amounts of oxidative tissue damage24, 26. In contrast, it has been reported that metal 

ions have a limited capacity to activate macrophages compared to polyethylene (PE) particles, 
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even though metal ions are produced ~13,500 times (count, not volume) more than PE 

particles30. With regards to formation of metal-organic frameworks (MOFs), these ions will 

directly bind to metallo- and non-metalloproteins which leads to a loss of biological function, 

tissue damage, necrosis and inflammation24, 26. 

Furthermore, there even appears to be size-dependent differences in cell morphology and 

damage mechanism after exposure to either nano- or micron-sized particles. Nanoparticles as a 

result of hard articulating surfaces were found to cluster within vacuoles in the cell cytoplasm 

whereas microparticles (primarily from wear of the softer surfaces) were found to surround the 

nucleus in fibroblasts21. The nanoparticles caused more mitochondrial and DNA damage in the 

short-term than the microparticles due to their fast dissolving rate within the vacuoles, however 

the extended release of metal into the nucleus and cytoplasm from the larger microparticles 

resulted in a more complex and longer-lasting damage mode21. These results would suggest that 

there are two wear-induced damage mechanisms with short-term inflammation triggered by 

metal-on-metal (MoM) micromotion and long-term inflammation sustained from the larger 

particulate debris from metal-on-polymer (MoP) coupled interfaces. This duel mechanism 

further supports the sustained wear-induced reactions that trigger a complementary inflammatory 

response (feedback-loop hypothesis) (Figure 1). 
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Figure 1: Schematic illustrating ROS and free radical (FR) generation, leading to inflammatory 
markers (IM), macrophage (M), osteoclast (OC) and histiocyte (H) activation and stimulation, 
with the eventual progress of osteolysis and periprosthetic fibrosis (F) [Adapted from Kinov. et 
al.]13 

Comparing both sides of the argument, there is no long-term solution to avoid these 

interactions within the host. Natural polymers, engineered cytokines and smart materials are 

being developed to manipulate macrophage phenotype (M1, M2) as well as pro- and anti-

inflammatory responses31, however there are certain applications like load-bearing devices that 

will for the time being, require a hard metal component. And while it appears that metal ions and 

debris are at the center of periprosthetic inflammation, there is a class of molecules that are more 

biologically relevant, destructive and present in the absence of metal. 

1.4. Reactive Oxygen Species (ROS) 

Reactive oxygen species (ROS), major players in inflammation, are a source of oxidative 

stress that can harm key cellular components and functions. ROS are a class of oxygen-centered 

reactive molecules that are continuously generated and consumed within all aerobic organisms, 
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predominantly as a result of normal/healthy metabolic activity via the dysregulation of the 

mitochondrial membrane32, 33. ROS is also central to the respiratory burst process associated with 

mononuclear phagocytic derived cells, where NOX catalysts in the cell membrane and 

phagosomes use NADP/NADPH oxidation to convert oxygen into ROS as the main mechanism 

to fight infection and foreign bodies34-39. ROS can also be formed electrochemically as 

byproducts of reduction reactions involving water and oxygen molecules40. There has been a 

significant push in recent years to determine the role of ROS in the inflammatory response 

within the human body36, 37 leading to tissue degradation, aseptic loosening, and ultimately 

rejection of metallic implants23, 41.  

To briefly describe the generation of ROS through mechanical and electrochemical 

processes (Appendix A.1), the passive oxide film formed on metallic implant surfaces is abraded 

during mechanically assisted crevice corrosion (MACC), leading to a potential drop up to -1000 

mV vs. SCE in phosphate buffered saline (PBS)42 and up to -1500 mV vs. SCE in buffered 

solutions containing fetal calf serum43. This MACC-induced cathodic surface effect increases the 

surface electron density and has a resulting lethal effect on adhered cells44-46. The excess surface 

electrons are free to take part in reduction reactions at the surface where water and oxygen 

molecules are reduced as such47: 

𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 + 𝑒𝑒− → 𝐻𝐻𝑂𝑂2∙ + 𝑂𝑂𝐻𝐻− [4] 

𝐻𝐻𝑂𝑂2∙ + 𝐻𝐻2𝑂𝑂 + 𝑒𝑒− → 𝐻𝐻2𝑂𝑂2 + 𝑂𝑂𝐻𝐻∙ [5] 

𝑂𝑂𝐻𝐻∙ + 𝑒𝑒− → 𝑂𝑂𝐻𝐻−  [6] 

𝐻𝐻2𝑂𝑂2 + 𝑒𝑒− → 𝑂𝑂𝐻𝐻∙ + 𝑂𝑂𝐻𝐻−  [7] 

𝑂𝑂𝐻𝐻∙ + 𝑒𝑒− → 𝑂𝑂𝐻𝐻−  [8]



8 

ROS produced at the surface then contribute to measurable adverse effects on material 

properties. Hydrogen peroxide (H2O2) has been shown to increase charge transfer and oxide film 

thickness while decreasing oxide resistance on commercially pure titanium (CpTi) and titanium, 

6-aluminum, 4-vanadium (Ti6Al4V) surfaces48. 316L stainless steel (316LSS) submersed in

H2O2-rich solutions displayed a significantly altered corrosion process, with aggressive localized 

corrosion by ways of increased metal ion release and decreased polarization resistance (RP)49. 

Simulated inflammatory (SI) conditions containing H2O2 and ferrous ions (Fe3+) have been 

shown to raise both the oxidizing power and open circuit potential (OCP) of CoCrMo alloy with 

smaller fretting current densities, indicating a less protective oxide film50. H2O2 increases 

titanium (Ti) release from the surface of Ti6Al4V in cell culture growth media than media 

alone51, and the presence of physiologically-relevant levels of macrophage secreted H2O2, oxide 

ion (O2
-) and nitric oxide (NO) has been shown to enhance film properties by increasing total 

metal oxides through oxidation and nitration reactions52, 53: 

𝑂𝑂2 + 𝑁𝑁𝑂𝑂 → 𝑁𝑁𝑂𝑂3−  [9] 

𝑀𝑀 + 𝑁𝑁𝑂𝑂3− → 𝑀𝑀𝑂𝑂 + 𝑁𝑁𝑂𝑂2− [10] 

In addition to altering surface and material properties, high intracellular concentrations of 

reactive oxygen intermediates (ROIs) and ROS lead to potent levels of oxidative stress54. When 

intracellular oxidative stress surpasses the cell’s natural antioxidant enzymatic capacity, key 

cellular components like the membrane structural integrity are damaged or oxidized (lipids, 

proteins, nucleic acids, etc.)55, leading to a cascade of cell death56. Kalbacova et al. found that 

cathodic polarization of Ti6Al4V increases intracellular (monocyte/macrophages, osteoblasts) 

ROS levels and decreases metabolic activity, in agreement with a cellular response study to 

simulated extracellular solution H2O2
47. While increasing ROS concentrations are concerning 
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enough to the surrounding tissue, the other side of the molar balance, being decreasing oxygen 

concentration, is equally problematic. The surrounding environment deaerates and becomes 

hypoxic which has been shown to affect cell spreading40 in addition to collagen synthesis and 

alkaline phosphatase (AP) activity, both of which are associated with the bone remodeling 

process57. 

Efforts have been made to combat toxic intracellular ROS build-up using scavengers and 

reducing agents54. Yet similar to the decrease in oxygen paradigm, there usually exists a negative 

reaction. Naturally occurring molecules like melanin prevent the degradation of relatively low-

toxic ROS molecules (H2O2) into the highly-toxic radicals (hydroxyl radical), yet when melanin 

reduces solution ferric ions into ferrous ions, a different set of reactions (Fenton Reactions, Eqn. 

12-13) ultimately creates more radicals and more ferric ions27, 58, 59. 

𝐹𝐹𝑒𝑒(𝐼𝐼𝐼𝐼𝐼𝐼) + 𝑂𝑂2•− → 𝐹𝐹𝑒𝑒(𝐼𝐼𝐼𝐼) +  𝑂𝑂2        [11] 

𝐹𝐹𝑒𝑒(𝐼𝐼𝐼𝐼) + 𝐻𝐻2𝑂𝑂2 → 𝐹𝐹𝑒𝑒(𝐼𝐼𝐼𝐼𝐼𝐼) + 𝑂𝑂𝐻𝐻• + 𝑂𝑂𝐻𝐻−       [12] 

 While novel ROS scavenging molecules provide a therapeutic effect to the local tissue, 

the cell contains a native ROS scavenging molecule that is produced as both a combatant to 

oxidative stress, and functions as a cell-signaling molecule in redox propagation. 

1.5. Reduced Glutathione (GSH) 

Reduced glutathione (GSH) is an endogenous antioxidant that suppresses redox reactions 

and maintains cellular homeostasis60. GSH protects cells from lipid peroxidation and DNA/RNA 

fragmentation61. Cellular glutathione redox homeostasis is achieved through oxidation of GSH or 

GSH transport during the apoptotic cascade62, where GSH activity is often correlated to 

oxidative stress. When glutathione thiol production is suppressed or inhibited and intracellular 



10 
 

ROS concentrations increase, the mode of death switches from apoptosis to necrosis63. 

Researchers have used GSH detection in cases of revision where low ratios of reduced 

glutathione (GSH) to oxidized glutathione (GSSG) and high levels of malondialdehyde (MDA) 

indicate high concentrations of oxidative stress13. Alternatively, hypoxic apoptotic cells (U937 

HX) have been shown to retain GSH rather than extrude (apoptotic U937) the metabolite 

following programmed cell death64, indicating that mode of cell death contributes to solution 

chemistry and that retrieved solution GSH content isn’t a definitive measure of oxidative stress. 

Clinically relevant metal ions, such as 1 µM of Cr6+, can decrease macrophage 

glutathione levels and viability via oxidation to its dimer GSSG, leading to the production of 

ROS and signal transduction of the apoptotic pathway and extracellular transport of redox- and 

GSH-catabolites20, 65, 66. GSH is vital to the mitigation of ROS build-up, however it cannot be 

relied upon solely to suppress ROS both intracellularly and extracellularly. 

1.6. Motivation 

From this chapter, we have explained how ROS can be produced from cellular metabolic 

and anaerobic activity, respiratory burst mechanisms, as well as through electrochemical 

reduction reactions by the transfer of mobile metal electrode surface electrons, thereby inducing 

chemical changes to local oxygenated molecules40. It’s accepted that ROS, ROI, reactive 

chemical species (RCS) and reactive nitrogen species (RNS) initiate the cascade of cell signaling 

during oxidative-stress induced inflammation67, however the acceptance of ROS as inflammatory 

signaling molecules through quantification is currently difficult due to detection methods, 

pathway identification, and upregulation68. ROS integrated production rates and steady-state 

concentrations remain mostly a mystery in situ due to their creation from multiple sources69. 

Several groups and studies have characterized the cytotoxic, genotoxic, and material degradation 
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due to ROS, and our study is motivated by assembling all this information into one holistic 

periprosthetic joint model that can better predict and understand inflammation in the joint 

environment. 

There are many additional sources of motivation to complete this work, but none are 

more relevant to the field and our research than the growing population that are outliving the 

lifetimes of implanted devices, in addition to those that will need revision or replacement due to 

the damaging effects of ROS such as aseptic loosening. Aseptic loosening (absence of 

infection)70 is primarily caused by wear debris-initiated chronic inflammation, a pre-cursor to 

inflammatory-mediated bone resorption70. Aseptic loosening of total joint replacement (TJR) 

implants is one of the leading causes in TJR revision surgeries, where 10-20% of all TJR 

surgeries need additional procedures. It is estimated23 that the annual number of TJR surgeries 

worldwide will exceed 4,000,000 by the year 2030. 

In terms of the near future, there is little that can be done to completely halt the 

inflammatory response and it is feasible to imagine that far into the future, there might be a class 

of smarter biomaterials that mitigate and eliminate chronic inflammation. In the present however, 

we possess techniques and capabilities that will help us define the inflammatory response to 

current biomaterials in terms of molecules produced and consumed, specifically ROS. 
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2. Hypotheses, Goals and Specific Aims 

2.1. Hypotheses 

The main theme of this research is located within the proposed positive feedback-loop 

mechanism that our lab has been defining as of recent. One side of the feedback-loop cycle is 

that the initial inflammatory reaction to a medical device drives corrosion through a chronic 

inflammatory response that contributes to the degradation and ultimate failure of the implant via 

metal ion dissolution and wear. The other side of the cycle is the medical device is subjected to 

harsh chemicals and wear in situ, thus releasing debris and particles which sustains the 

inflammatory response lead by FBGC attack of the surface, tissue encapsulation, pressure build-

up, dislocation, etc. The hypothesis of this work isn’t focused on which process precedes the 

other; however, it is fixated on defining what role ROS play within the feedback-loop 

mechanism. We hypothesize that ROS are produced from both the surrounding biology and 

electrochemically-based material interactions, both of which contribute to the overall 

inflammatory response and destruction of the metal surface. Cyclic motion of articulating metal 

surfaces leads to cathodic voltages and debris generation (+ROS), and stimulation of 

inflammatory cells using debris yields a reactive response (+ROS). Increased ROS production 

then compromises the corrosion resistance of CoCrMo alloys, increasing the release of metal 

ions and degrading the passivating properties of the oxide film on their surfaces. Therefore, our 

hypothesized feedback between ROS generation and metal degradation processes will allow us 

to create sophisticated predictive models based on the conditions present at the fluid-cell-metal 

interface. 
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2.2. Goals 

ROS can be produced both physiologically and chemically in the joint space surrounding 

a metallic implant, thus the major critical gap in knowledge is what oxidative source (intra- or 

extracellular) is responsible for cell death, tissue degeneration and/or metallic implant corrosion? 

Does secreted cellular-ROS lead to an increase in catalytic activity involving H2O2 at the surface, 

thus changing electrochemical behavior OR do reduction reaction byproducts permeate cell 

membranes and begin the apoptotic signaling pathway, releasing ROS metabolites and further 

decreasing the corrosion resistance of the implant?  

The major goal of this research is to define this feedback mechanism between 

biochemical species and metallic biomaterials in an electrochemical system. We investigated 

individual components of the system in order to understand this inflammatory-corrosive 

interaction. This is significant to the field of orthopaedic implants because it has advanced our 

understanding of ROS generation in the joint space and may, in the long term, lead to smarter 

biomedical alloys and dynamic implant coatings that have greater corrosion resistance and a 

decreased immune response. This would ultimately lead to more predictable implant lifetimes 

with an increase is efficiency and safety. 

A major obstacle in our field of biomaterial corrosion and failure is the lack of clear 

understanding of the inflammatory joint fluid-based environment during corrosion, making it 

difficult to predict metallic surface response to changing physiological conditions. Another 

obstacle is accurately detecting and quantifying local ROS concentrations due to their high rates 

of reactivity and short half-lives. This obstacle, in addition to ROS generated from multiple 

sources, creates uncertainty in ROS concentrations within the inflamed joint space as well as 

what source contributes the most to prolonged inflammation. Our long-term goal is to understand 
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the extent of ROS generated in inflamed joints with implants, specific types and amounts of ROS 

and how they participate in metallic corrosion behavior. To begin this process, we have 

developed protocols and detection methods for individual ROS and inflammatory molecules in 

the presence of cobalt-chromium-molybdenum (CoCrMo) alloy with the eventual intended use 

for retrieved human joint fluid analysis. Characterization of these species with respect to 

electrochemical behavior of the alloy, cell viability and corrosion mechanisms support our 

feedback-loop hypothesis that ROS in joint fluid enhances corrosion of CoCrMo which boosts 

ROS generation. Our models and testing have advanced our current understanding of the 

interplay between ROS, biology and corrosion with respect to attack of metallic surfaces. 

2.3. Specific Aims 

The specific aims listed below were investigated in order to address the link between 

ROS and the inflammatory environment surrounding the joint space of total prostheses. Each aim 

is made up of both novel methodology and experimental conditions to satisfy the research goals. 

Aim 1. Develop procedures for detecting ROS near a metallic implant surface. 

Fluorescent probes offer an opportunity to tag ROS produced in solution near an implant 

surface in real-time. We hypothesized that we can detect individual ROS produced from 

reduction reactions at a metal surface using fluorescent tagging methods. Predictive models were 

developed to correlate ROS concentrations at applied voltages corresponding to corrosive 

conditions. We also explored how these ROS molecules directly affect the electrochemical 

behavior of CoCrMo implants. These models and methods will help determine clinically-relevant 

levels of ROS near an implant surface, which will be further used in cell culture experiments to 

more accurately represent the inflamed joint space biological response. 
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Aim 2. Classify cellular responses to simulated corrosive and inflammatory conditions. 

Recent reports have shown evidence of inflammatory cell induced (ICI) corrosion on 

metallic implants. We hypothesized that cell behavior, structure and viability on CoCrMo 

surfaces would be affected by inflammatory-like conditions and oxidation. Different cell types 

cultured on metallic alloys during corrosion-like conditions will help identify pathways that lead 

to or contribute to inflammatory responses as well as programmed cell death. We also examined 

a set of synthetic joint fluid formulations (Aim 4) exposed to polished CoCrMo discs as well as 

macrophage cultures in order to determine which factors present in the joint capsule contribute 

most to this inflammatory response. 

Aim 3. Use electrochemical impedance spectroscopy to assess localized surface integrity 

impacted by ROS. 

Electrochemical impedance spectroscopy (EIS) can be used to evaluate the state of a 

metallic surface after wear and corrosion. We hypothesized that different ROS-influenced 

inflammatory and corrosive conditions produce unique EIS responses, influencing both global 

and local oxide film and surface properties. By correlating corrosion type and failure modes with 

specific electrochemical spectra, we can increase our understanding of how the implant surface 

changes electrochemically with environmental factors. 

Aim 4. Define solution and material properties in response to multiple native synovial fluid 

components in a modified factorial array 

There exist several constituents within synovial fluid that influence solution-cell-material 

behavior during normal, inflamed, osteolytic and infectious states of the periprosthetic joint 

environment. We hypothesized that multivariable interactions could be isolated and characterized 

using a Taguchi orthogonal array. Determining which factors dominate corrosion resistance and 
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cell viability in a dynamic environment could lead to more advanced and comprehensive in vitro 

models with increased long-term prediction accuracy. 

2.4. Significance 

A majority of the research dedicated to this subset field of metallic implant-cell 

interactions has investigated phagocytosis of wear particles, the role of wear debris-initiated 

activation of ROS within local inflammatory cells, and oxidation of intracellular proteins and 

lipids by ROS21, 29, 54. Recently, there have been reports of ICI corrosion on retrieved CoCrMo 

implant surfaces believed to be a direct response to inflammatory cell-activated ROS 

regulation14, 15, 71, but these results are inconclusive and could be a result of electrocautery 

methods72. Simulated inflammatory solutions containing ROS such as H2O2, HCl and ferrous 

ions (Fe2+,3+) significantly affect corrosion susceptibility of CoCrMo50, Ti6Al4V and SS316 

surfaces49 by decreasing the oxide film passivity and increasing the surface potential and current 

density. In vitro corrosion rates of CoCrMo14 and Ti6Al4V48 also increase in the presence of 

H2O2, hydrochloric acid (HCl) and Ca2+ ions51. These studies suggest that corrosion and implant 

susceptibility are affected by ROS, however the source of the ROS is not well defined or 

accepted. 

We believe that the research presented here will give new perspectives to the state of 

biometallic surfaces subjected to physiological conditions, and that there isn’t always one cause 

behind inflammation or corrosion. Accurate ROS identification will not only be able to reveal 

what has previously happened to the implant, but perhaps also foreshadow what is to come with 

respect to the inflammatory reaction and degradation of the implant.  
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3. Research Outline 

3.1. Chapter Backgrounds and Citations 

This section will briefly describe how each chapter relates to the overarching goal of 

defining the role of reactive oxygen species within an inflamed joint environment. Rather than 

organizing by specific aim, the research chapters will briefly describe the motivation, primary 

goals and hypotheses of each. All of these research chapters have been accepted or submitted for 

publication, with Chapter 4 and 5 accepted and in-press. All work was completed at the Clemson 

University-Medical University of South Carolina Joint Program at the Medical University of 

South Carolina in Charleston, SC or the Syracuse Biomaterials Institute at Syracuse University in 

Syracuse, NY. 

4. A fluorescent approach for detecting and measuring reduction reaction byproducts 

near cathodically-biased metallic surfaces: Reactive oxygen species production and 

quantification  

There are several different ROS molecules produced at the surface during reduction 

reactions. Water and oxygen molecules are reduced by excess surface electrons when the surface 

potential drops, generating ROS and reactive oxygen intermediates (ROI)40. Common ROS 

include singlet oxygen (1O2), superoxide anion (O2ˉ·), hydrogen peroxide (H2O2) and hydroxyl 

radicals (OH·)73. The two most commonly used ROS fluorescent dosimeters are 2’,7’-

dichlorodihydrofluorescein (DCFH)33 and Amplex Red59, with wide acceptance of their use in 

the biomedical community. However, it has recently been reported that these di-hydro 

compounds are highly photosensitive and autoxidize, generating large background fluorescence. 

These molecules do not differentiate between ROS molecules, and thus lack selectivity73. 
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Terephthalic acid (TA) is an organic aromatic compound that selectively binds to OH· over other 

ROS, yielding 2-hydroxyterepthalate (HTA), a stable fluorescent compound74. 

Pentafluorobenzenesulfonyl-fluorescein (PFF), a non-fluorescent ROS selective molecule, is 

cleaved at the sulfonate linkage in the presence of H2O2, leaving the highly fluorescent 

fluorescein molecule75. This chapter focuses on the development and methods used to capture 

individual ROS concentrations at the surface of metallic biomaterials in conditions associated 

with corrosion and inflammation using the fluorescent dosimeters TA and PFF. Correlating 

individual ROS production near a cathodically-charged biomedical alloy will help answer how 

surface chemistry affects ROS conversion. This work was published in the journal 

Bioelectrochemistry with the following citation: 

Wiegand, MJ, Benton, TZ, Gilbert, JL. 2019. A fluorescent approach for detecting and 

measuring reduction reaction byproducts near cathodically-biased metallic surfaces: Reactive 

oxygen species production and quantification. Bioelectrochemistry 2019: 129: 235-241. 

5. Electrochemical potential zone of viability on CoCrMo surfaces is affected by cell type: 

Macrophages under cathodic bias are more resistant to killing 

As we’ve learned from an electrochemically-biased implant surface, several types of 

ROS are introduced to the local environment with other reaction byproducts including metal 

ions, debris, oxides, and excess surface electrons known to be present as well14. Each of these 

may play a role in initiating the immune response and subsequent recruitment of inflammatory 

cells to the adjacent tissue and joint space surrounding a metallic implant. The infiltrating 

inflammatory cells prompt a series of defense mechanisms that include production and secretion 

of ROS and ROS-scavenging molecules near and on implant surfaces17. 
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Electrochemical stimuli at the cell-metal interface have been shown to influence cell 

viability and behavior. Abrading the oxide film at the surface can decrease the potential to -1V 

(vs. Ref) while the addition of inflammatory species like hypochlorous acid and hydrogen 

peroxide can shift the surface potential upwards of +650 mV (vs. Ref)49, 50 with potential shifts of 

this magnitude dramatically reducing cell viability45. This chapter focuses on observing cell 

viability in response to various electrochemical conditions linked to corrosion and inflammation. 

By determining how different cell types respond to ROS-rich environments, we can better 

predict and explain what cells are present that could be furthering the onset of corrosion and 

inflammation, in addition to necrosis and osteolysis. This work was published in the Journal of 

Biomedical Research Part A with the following citation:  

Wiegand, MJ, Kubacki, GW, Gilbert, JL. 2019. Electrochemical potential zone of viability on 

CoCrMo surfaces is affected by cell type: Macrophages under cathodic bias are more resistant to 

killing. Journal of Biomedical Materials Research Part A 2019: 107A: 526– 534. 

6. Sensing localized surface corrosion damage of CoCrMo alloys and modular tapers of 

total hip retrievals using nearfield electrochemical impedance spectroscopy (NEIS) 

As previously described, ROS are a key component to the associated immune response 

during implantation and are produced as a result of mechanical wear. The ROS-mediated 

response can lead to an attack on the metal surface, eventually inducing severe corrosion and 

aseptic loosening of the joint12, 14. When metallic implants are damaged physically, electrically or 

chemically through various corrosive mechanisms, the damaged surface of the metallic implant 

is altered electrochemically by changing the OCP, impedance and other resistive 

characteristics40, 50. These wear mechanisms contribute to an increase in corrosion susceptibility 
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of the implant surface and indirectly affect how the surface interacts with the surrounding 

environment. We implemented a nearfield electrochemical impedance spectroscopy (NEIS) 

technique to assess the viability of a single implant surface exposed to varying ROS-inspired 

conditions. NEIS protocols were used to measure different forms of electrocautery and hydrogen 

peroxide-induced damage, as well as varying relative Goldberg scored locations on a severely 

corroded retrieved CoCrMo implant surface. This chapter focuses of defining heterogeneous 

surface electrochemical properties in response to corrosion type and damage event. We believe 

this work and technique can be used diagnostically when looking at revisions of metallic 

implants. This work has been submitted to the journal ACS Biomaterials Science & Engineering 

for publication. 

7. Modeling synthetic synovial fluid for comprehensive in vitro testing in simulated 

periprosthetic joints using the Taguchi array approach 

Joint fluid analysis is ordered to help diagnose the root cause of inflammation including 

infection, bleeding, osteoarthritis and other inflammatory diseases60. Simulated inflammatory 

joint fluid (fetal bovine serum, FBS) has been implemented in wear tests and shown to alter the 

passive oxide film on metallic biomaterials, thus affecting the implant’s corrosion 

susceptibility20. We investigated how different natural synovial fluid constituents (hyaluronic 

acid, albumin, globulin, lecithin, ROS and metal ions) interact with one another in a range of 

synthetic formulations using a Taguchi factorial approach and analysis technique. Cellular 

responses such as viability and reduced glutathione (GSH) production were measured in addition 

to the comprehensive electrochemical response relating to the corrosion susceptibility and 

implant performance. This chapter focuses on how CoCrMo electrochemical properties are 
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affected when exposed to synthetic synovial fluid and what molecules and species significantly 

affect cell response, solution, and material properties with ROS as a key component. This work 

has been prepared for publication as is. 

3.2. Overall flow and structure 

Using the results published and presented in this work, we report that ROS are produced 

(Chapter 4) during corrosive conditions which directly affect viability (Chapter 5) and material 

properties (Chapter 6) and by understanding how all components of synovial fluid (Chapter 7) 

including ROS interact with one another and impact cellular and material properties, we will 

advance our in vitro implant simulations and hopefully in situ performance.   
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4.1. Abstract 

During tribocorrosion of biomedical alloys, potentials may shift cathodically across the 

metal-oxide-electrolyte interface resulting in the increased reduction of local oxygen and water 

molecules. The products of reduction are thought to include reactive oxygen species (ROS) as 

well as hydroxide ions. Using fluorescent probes, developed for labeling intracellular ROS-based 

hydroxyl radicals (OH·) and hydrogen peroxide (H2O2), ROS generation due to reduction 

reactions at cathodically biased CoCrMo alloy surfaces was measured directly. Using 

terephthalic acid (TA) and pentafluorosulfonylbenzene-fluorescein (PFF) as fluorescent 

dosimeters, it was found that OH· and H2O2 concentrations increased up to 16 hrs and 2 hrs, 

respectively. Decreases in fluorescence past these time points were attributed to the continuous 

onset of reduction reactions consuming both the ROS and/or dosimeter. It was also found that 

voltages below and including -600 mV (vs. Ag/AgCl) produced measurable quantities of H2O2 

after two hours of polarization, with concentrations increasing with decreasing potentials up to -

1000 mV. The detection and quantification of ROS in a clinical setting could help us better 

understand the role of ROS in the inflammatory response as well as their impact on corrosion 

behavior of biomedical alloys. 

Keywords: Fluorescent probe; CoCrMo; reactive oxygen species; cathodic; hydrogen peroxide  
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4.2. Introduction 

Cobalt-chromium-molybdenum alloy (CoCrMo) is among the most commonly-used 

alloys in orthopaedic, dental and spinal procedures due to its excellent mechanical and corrosion 

properties14. Most biomedical alloys, CoCrMo included, owe their corrosion resistance 

properties to a thin oxide film that forms as a protective barrier during passive behavior12, 20. 

Gilbert et al. demonstrated that when these oxide films are mechanically abraded, repassivation 

currents across the breached sample surface increase orders of magnitude, liberating electrons 

into the metal and resulting in potentials decreasing up to -1000 mV vs. SCE for titanium alloys 

and -800 mV for CoCrMo76. The rapid increase in currents is caused by the repassivation process 

taking place within milliseconds of the film’s abrasion as well as the complementary ion 

dissolution processes43. Repassivation of the oxide film yields excess surface electrons which are 

then consumed in reduction reactions with local water and oxygen molecules, ultimately leading 

to hydroxide ion formation. Charge neutrality is maintained within the system with cathodic 

(reduction) currents compensating for the abrasion-initiated anodic currents40. Intermediates and 

byproducts of these reduction reactions are referred to as reactive oxygen intermediates (ROI) 

and reactive oxygen species (ROS). ROS that are formed as a result of these reactions, in 

addition to respiratory processes generated during immune cell responses stimuli, pose a major 

question: what sources contribute to the presence of ROS within an inflamed joint space? 

Cathodic polarization of Ti6Al4V and CoCrMo alloys with cells cultured directly on the 

metal surfaces have been shown to induce cell death by an apoptotic process45, 77. This cell 

killing effect has been hypothesized to be a result of ROS generation by reduction reactions at 

the electrode surface. Cathodic Ti6Al4V surfaces have been shown to increase intracellular ROS 

levels resulting in a decrease in metabolic activity in osteoblast and monocyte-macrophages47. 
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Dhar et al. found that cathodic voltages and currents were effective in hindering microbial and 

calcareous fouling due to an effective amount of electrochemically generated hydrogen peroxide 

at low current densities (< 100 µA)78. ROS also have damaging effects on the oxide film where it 

becomes porous51, 52 with oxide resistance decreasing compared to commercial PBS solutions48. 

The presence of Fenton reactions (Fe3+ + H2O2) near CoCrMo surfaces can lead to an increase in 

both the oxidizing power of the solution and the open circuit potential (OCP), while also 

affecting the fretting corrosion response and frictional behavior50. As mentioned earlier, ROS can 

be formed through normal respiratory cell behavior and signaling or may be produced during 

respiratory burst processes associated with mononuclear phagocytes (e.g., macrophages, 

neutrophils, etc.) in inflammatory circumstances. 

During respiratory ATP synthesis within the mitochondria, electrons are transported 

along a redox path from NADH and succinate that ends in the reduction of oxygen and water32. 

Water and oxygen molecules undergo reduction reactions using one or two electrons to form 

hydrogen peroxide (H2O2) and superoxide anion (O2
·-)79. The electron-chain transport production 

of ROS can also be activated during the apoptotic process as well as during signaling of 

inflammation and oxidative stress80. Apoptosis can be triggered through wear-particle induced 

inflammation and activation of local and recruited macrophages, where ROS are released 

alongside pro-inflammatory cytokines, chemokines and reactive nitrogen species (RNS)81. Wear-

particle activated macrophages generate intracellular ROS and other species that further 

contribute to macrophage differentiation into osteoclasts, leading to enhanced bone resorption, 

osteolysis, oxidative stress build-up and ultimately aseptic loosening of implants17, 23. Most wear 

particles are released in the form of metal ions and metal oxides, where metal ions like cobalt (II) 

and chromium (III, VI) released from the CoCrMo surface during fretting corrosion have also 
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been shown to induce DNA and protein damage26 in macrophage-like cells by activating the 

formation of ROS and altering the expression of antioxidant enzymes25, 28. All of these processes 

can happen concurrently within the joint space, leading to the formation of a pressurized fibrous 

tissue capsule filled with inflammatory species around the periprosthetic joint space, which can 

eventually cause greater wear and corrosion, and an increase in intraarticular pressure13. 

There are several ways to detect ROS concentrations both in solution and intracellularly, 

with the most consistent and accepted way being fluorescent labeling. The fluorescent-initiated 

probe dichlorodihydrofluorescein (DCFH) has become the accepted fluorescent marker for ROS 

detection, however it cannot differentiate between individual ROS and it is highly 

photosensitive, thus creating a large background fluorescence69, 73. Given that different ROS play 

specific roles in both physiological and clinical settings, there has been a recent effort in 

developing target molecules for quantifying individual ROS. Several fluorescent probes have 

been either discovered or synthesized to combat the downfalls of DCFH for the use of sensitive 

ROS detection. Each biomolecule is dependent on a specific mechanism to produce highly 

fluorescent products. For example, singlet oxygen (1O2) detection methods rely on 

chemiluminescent probes82 as well as fluorescence-induced formation of endoperoxides83. 

Superoxide anion (O2
-·) fluorescent probes have been developed based on non-redox 

mechanisms of large aromatic complexes84, to list a few.  

There have been several probes developed for individual ROS detection and our 

manuscript focuses on measuring two common ROS individually near a cathodically-biased 

CoCrMo surface using selective dosimeters: terephthalic acid (TA) for hydroxyl radical (OH·) 

detection and pentafluorosulfonylbenzene-fluorescein (PFF) for hydrogen peroxide (H2O2) 

detection. TA is a non-fluorescent aromatic compound that binds preferentially to hydroxyl 
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Figure 2: (a) Terephthalic acid in the presence of 
hydroxyl radicals will from the highly fluorescent 2-
hydroxyterephthalate. (b) Pentafluorosulfonylbenzene-
fluorescein is deprotected by hydrogen peroxide, leaving 
fluorescein [Adapted from Soh et al.73] 

radicals over other reactive oxygen species to produce 2-hydroxyterphthalate, a stable 

fluorescent molecule (HTA) (Fig. 2)33, 59. PFF is a large aromatic complex that is deprotected at 

the sulfonyl linkage in the presence of H2O2, yielding the fluorescent fluorescein product75. 

Measuring individual ROS in a clinically relevant setting can lead to significant advances in 

predictive and diagnostic models relating to biomedical alloy lifetime and integrity, as well as 

the progression of the inflammatory response surrounding a metallic implant. 

4.3. Materials and Methods 

4.3.1. Materials 

Terephthalic acid (TA), 2-hydroxyterephthalate (HTA), fluorescein (free acid), 

pentafluorobenzenesulfonyl chloride, 2, 6-lutidine, dichloromethane (CH2Cl2), silica gel, 

acetone, hydrogen peroxide, 30% (H2O2), ferrous chloride tetrahydrate (FeCl2 • 4H2O), cobalt(II) 

chloride hexahydrate (CoCl2 • 6H2O), chromium(III) chloride hexahydrate (CrCl3 • 6H2O), 

hydrochloric acid (HCl), ethanol (EtOH), magnesium sulfate (MgSO4), 1X phosphate buffered 

solution (PBS) and sodium chloride (NaCl) were all used as received (Sigma) without further 

purification. 96-well plates (Grenier) 

were used for standard curve 

calibration with 200 µL working 

volumes, and 24-well plates (Fisher) 

with 1 mL working volumes were used 

in fluorescent spectroscopy protocols. 
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Figure 3: Pentafluorobenzenesulfonyl fluorescein (PFF) 
mass spectroscopy analysis. PFF molecular formula 
(C26H12F5O7S) and mass (563.0216 g/mol) were confirmed 

4.3.2. Fluorescent Probe Synthesis 

TA and HTA were used as received for measurement of hydroxyl radicals (OH·). 

Pentafluorobenzenesulfonyl fluorescein (PFF) was synthesized (Fig. 3) using a method 

established by Maeda et al.75 for measurement of hydrogen peroxide. Briefly (Appendix B.1), 

fluorescein (3 mM) and pentafluorobenzenesulfonyl chloride (3 mM) were dissolved in 2, 6-

lutidine (5 mL)- CH2Cl2 (20 mL) and stirred at room temperature overnight. The solution was 

then diluted to 200 mL with CH2Cl2, washed twice with 1M HCl, brine and then dried over 

MgSO4 crystals. Following solvent evaporation, silica gel chromatography was performed using 

CH2Cl2-acetone (20:1) to yield the final yellow solid PFF product. PFF molecular weight and 

formula (MW = 562.4 g/mol, C26H11F5O7S)75 were confirmed (Fig. 3) using mass spectroscopy 

analysis (Impact II, Bruker, MA). 

4.3.3. Fluorescent Probe Standard Curve Calibration 

Serial dilution (Appendix B.2.) of HTA and fluorescein (Fig. 4) was used to correlate 

final fluorescent intensities with concentrations. Initial concentrations of each fluorescent probe 

(100 µM) were dissolved in 

solvents (DI, 0.9% NaCl, 1X 

PBS) and serially diluted 

down to 0.01 µM (HTA in DI 

or 0.9% NaCl) and 50 pM 

(fluorescein in 1X PBS:EtOH 

at a 1:1 ratio). Relative standard 

curves were calculated by 

dividing the known concentration 
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Figure 4: Standard relative fluorescent intensity curves used in electrochemical experiments 
as a function of known concentrations of (a) HTA (460 nm) dissolved in DI (y = 0.17x0.5051, 
R2 = 0.9875) and (b) 0.9% NaCl (y = 0.2511x0.4569, R2 = 0.9764), and (c) fluorescein (528 nm) 
dissolved in 1X PBS:EtOH, 1:1 (y = 0.2314ln(x) + 2.7708, R2 = 0.9927) 
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intensity average (I) by the average of the initial zero-intensity control (IO = 0 M). The log of the 

relative intensity was reported (log[I/IO]). All standard curve solutions were read on autogain, 

resulting in different intensity values between solutions, therefore direct comparisons between 

solution intensities were not possible and all concentrations are relative. 

4.3.4. Solution Preparation 

Hydroxyl radical measurements were performed using the following solutions: (1) 2 mM 

TA (0.9% NaCl), (2) 2 mM TA + 1 mM FeCl2 (0.9% NaCl), (3) 0.1 mM HTA (0.9% NaCl), and 

(4) 2 mM TA + 15 mM H2O2 (DI). Solution 1 represents TA dissolved in physiological levels of 

saline (0.9% NaCl). Solution 2 was prepared with iron(II) chloride ions acting as catalysts for 

Fenton and Haber-Weiss reactions with H2O2 molecules generated during reduction reactions at 

the implant surface. The Fenton and Haber-Weiss reactions would theoretically reduce the H2O2 

and form reactive intermediates like hydroxyl radicals. Solution 3 was prepared and tested to 

determine if there was a consumption reaction of the fluorescent product, HTA, in the 
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electrochemical test conditions. Solution 4 was prepared with H2O2 in the presence of TA in DI. 

Solution hydrogen peroxide was implemented to test if surface electrons and eluted metal ions 

reduced H2O2, forming hydroxyl radicals and other reactive intermediates. This solution was 

prepared in deionized water to limit ions within the solution that would compete with TA or 

hydroxyl radicals. Metal ion salt solutions in the presence of H2O2, (5) CoCl2 + H2O2 (DI) and 

(6) CrCl3 + H2O2 (DI), were prepared to test an alternate hypothesis that free metal ions drive the 

conversion of H2O2 into hydroxyl radicals and not surface electrons. These solutions were tested 

without applied voltage (OCP) for 2 hrs. Metal salt concentrations were set at 100 mM 

CoCl2/CrCl3 and H2O2 concentrations ranged from 0.1-100 mM.  

Hydrogen peroxide detection using PFF was measured by adding PFF dissolved in 

ethanol to the tested (7) 1X PBS solution. Briefly, PFF (0.9 mM) was dissolved in EtOH at its 

solubility limit75 and any undissolved PFF was filtered through 0.4 µm filters. PFF-EtOH 

solutions (1 mL) were then added to the potentiostatically tested 1X PBS solutions (1 mL) and 

allowed to sit for 1 hr. Hydrogen peroxide is a more stable molecule with a significantly longer 

half-life than hydroxyl radicals, therefore PFF was not added directly to test solutions during 

potentiostatic tests. This omitted the need to test if the experimental conditions consumed the 

fluorescent product (fluorescein). 

4.3.5. Electrochemical Experiments 

High-carbon CoCrMo alloy discs (ASTM F-1537) with an exposed surface area of 0.641 

cm² were polished using silica paper up to 600 µm grit, rinsed with deionized water and 

sonicated with 70% ethanol for 30 mins and dried using nitrogen gas. CoCrMo discs were 

assembled in glass chambers using a three-electrode system with the metal disc as the working 

electrode, a platinum wire (Pt) counter electrode and chlorided-silver wire (Ag/AgCl) reference 
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electrode. CoCrMo electrodes in the various solutions (1 mL total volume) were held 

potentiostatically at open circuit potential (OCP) for 30 mins before applied potential (-1V vs. 

Ag/AgCl) for timed trials up to 16 hrs. Voltage-dependent trials were tested for 2 hrs starting at -

1000 (vs. Ag/AgCl) and ending when there was no longer detectable fluorescence. A new set of 

CoCrMo discs (n=3) were used for each timed and voltage-dependent trial. Currents (i) were 

recorded prior to fluorescent spectroscopy analysis. 

4.3.6. Fluorescent Spectroscopy 

HTA (λex = 315 nm, λem = 425 nm) and fluorescein (λex = 485 nm, λem = 530 nm) 

fluorescent intensities were measured following applied potential. Chambers were sonicated in 

order to release any adhered molecules from the metal or glass surfaces into solution. 

Supernatants were removed and placed in 24-well plates in 1 mL volumes. Three control wells 

(IO) were tested alongside the three sample wells (I). Plates were read in the microplate reader 

(Synergy 2, Biotek, Winooski, VT) at a fixed gain with measured light flux falling on 50% using 

a tungsten lamp and appropriate filter sets. Log[I/IO] was plotted against time and voltage. 

Hydroxyl radical and hydrogen peroxide concentrations were calculated by applying regression 

lines of best fit (Excel) from the standard curves to the measured relative fluorescent intensities, 

assuming a one-to-one stoichiometric ratio of HTA:hydroxyl radical and fluorescein:hydrogen 

peroxide. 

Hydrogen peroxide concentrations were also calculated for comparison using the currents 

obtained at each time point during the -1000 mV (vs. Ag/AgCl) potentiostatic trials on CoCrMo. 

Hydrogen peroxide concentration (𝜌𝜌) was calculated using the following density equation and 

reduction reaction 

𝜌𝜌 = 𝑀𝑀𝑤𝑤
𝑛𝑛𝑛𝑛𝑛𝑛 ∫ 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚

0           [13] 
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𝑂𝑂2 + 2𝐻𝐻2𝑂𝑂 + 2𝑒𝑒− → 𝐻𝐻2𝑂𝑂2 + 𝑂𝑂𝐻𝐻− + 𝑂𝑂𝐻𝐻 ∙        [14] 

where 𝜌𝜌 is the concentration of hydrogen peroxide in solution (g/mL), 𝑀𝑀𝑤𝑤 is the molecular 

weight of the species produced (H2O2, 34.0147 g/mol), 𝑛𝑛 is the moles of electrons needed per 

moles of H2O2 produced (2, See Eqn. 14), F is Faraday’s constant (96,485 C/mol e-), V is the 

volume of solution (1 mL), 𝑖𝑖 is the measured current (C/s) after 𝑚𝑚 seconds. The concentration 

(g/mL) can then be converted into a molar concentration (M) by dividing by the molecular 

weight (g/mol). It is estimated that the limited current efficiency for hydrogen peroxide 

production without stirring of the electrolyte is 10%78, therefore we compared the measured 

hydrogen peroxide concentrations with this assumption. 

4.3.7. Statistical Analysis 

All experiments and techniques were repeated in triplicate. Averages and standard deviations 

were reported using one-way ANOVA and Tukey’s post hoc pairwise comparison with simple 

effect. A minimum 95% confidence interval (p < 0.05) was taken to be significantly different. 
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Figure 5: Current (i) measured (absolute) as a function of 
time in the presence of CoCrMo with -1V (vs. Ag/AgCl) 
applied potential: 0.9% NaCl (circle), 1X PBS (cross), 2 mM 
TA (0.9% NaCl) (square), 0.1 mM HTA (0.9% NaCl) 
(diamond), and 2 mM TA + 1 mM FeCl2 (0.9% NaCl) 
(triangle). Currents were measured for NaCl based solutions 
with pure 0.9% NaCl treated as the control. Solutions 
containing FeCl2 currents were significantly higher (p < 0.05) 
in current than all NaCl based solutions up to 8 hrs, 
indicating a change in the reduction reactions at the surface 

 

4.4. Results 

4.4.1. Electrochemistry 

There was a significant 

effect on current (i) with the 

addition of FeCl2 (Fig. 5). 

Measured currents were 

significantly higher (p < 0.01) 

than all other test solutions up to 4 

hrs, and significantly higher (p < 

0.05) up to 8 hrs. Solutions 

containing 2 mM TA and 2 mM 

TA + 1 mM FeCl2 displayed 

decreased currents with time and 

0.1 mM HTA and 0.9% NaCl 

solutions showed no change in currents with time. Currents measured for H2O2 trials before the 

addition of PFF + EtOH solutions decreased initially and then plateaued for the duration of the 

experiments, as expected, up to 16 hours. Solutions containing 2 mM TA + 15 mM H2O2 

currents are not displayed due to lack of conductivity of the solvent (deionized water). During 

potentiostatic trials at -1V with FeCl2 solutions, a bright yellow precipitate formed on the surface 

of the CoCrMo discs. No other solution produced any visible reaction precipitate.  

 

 

** 
** ** 

* 
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Figure 6: HTA and PFF fluorescence vs. time of applied potential (-1V): 2 mM TA (0.9% 
NaCl) (square), 2 mM TA + 15 mM H2O2 (DI) (circle), 0.1 mM HTA (0.9% NaCl) 
(diamond), 0.9 mM PFF (1X PBS:EtOH, 1:1) (cross), and 2 mM TA + 1 mM FeCl2 (0.9% 
NaCl) (triangle). Final fluorescent intensities are relative to initial intensities measured of 
untested solutions at each time point (I/IO), where positive log(I/IO) values indicate an 
increase in fluorescence and negative values indicate a decrease from the starting solution 

 

4.4.2. Fluorescence Spectroscopy 

The log relative fluorescent intensity (Fig. 6) increased for solutions containing TA + 

H2O2 up to 16 hours indicating the generation of hydroxyl radicals. Samples containing only TA 

(0 M H2O2) did not produce a change in relative fluorescence (log[I/IO] ≈ 0, 0 hrs ≤ m ≤ 16 hrs), 

and samples containing TA + FeCl2 and HTA decreased as time increased. The decrease in these 

samples was rapid in the first four hours, after which the log relative fluorescent intensity 

remained constant with increasing time. This indicated that the HTA lost its fluorescent intensity 

or was consumed with continued exposure to the cathodic electrode. Fluorescein detection 

solutions containing 0.9 mM PFF (1X PBS:EtOH, 1:1) increased in relative log fluorescent 

intensity up to 2 hrs and then plateaued in intensity up to 16 hrs. 
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Figure 7: Measured (circle) and calculated (square) H2O2 
[nM] concentrations vs. time of applied potential (-1V) of the 
CoCrMo surface. Calculated concentrations were made using 
measured 1X PBS solution currents and assuming a 10% 
reduction of oxygen and water molecules into hydrogen 
peroxide molecules, and fit to a linear regression 

(y = 1.4343x + 0.7198, R2 = 0.9966) 

Alternate hypothesis tests involving Co(II) and Cr(III) ions did not increase in 

fluorescence intensity with increasing H2O2 concentrations in the absence of applied voltage 

(data not shown). 

The measured H2O2 concentrations increased for solutions containing 0.9 mM PFF (1X 

PBS:EtOH, 1:1) up to 2 hours 

(Fig. 7), followed by a steady-

state up to 16 hours indicating 

that hydrogen peroxide was 

generated and consumed within 

the electrochemical cell. 

Concentrations calculated using 

Eqns. 13-14 were plotted as a 

function of time with an estimated 

10% conversion of oxygenated 

molecules (Fig. 7). Hydroxyl radical 

and hydrogen peroxide relative 

fluorescent intensities were 

converted into concentrations using the standard curves (Table 1).  

Fluorescent intensities of potential dependent trials (Fig. 8) were measured after 2 hrs 

where the log relative fluorescent intensity decreased from -1000 mV to -600 mV (vs. Ref), at 

which point there was no longer any detectable H2O2 in solution. Voltages above -600 mV were 

not tested due to this outcome. 
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Figure 8: Fluorescein fluorescence (528 nm) vs. applied 
potential (E) after 2 hrs. There was a net zero intensity at 
potentials above -600 mV (vs. Ag/AgCl), indicating that 
reduction reactions at these higher voltages do not produce a 
measurable amount of H2O2 under the given experimental 
conditions  

 

4.5. Discussion 

The experimental design 

using TA and PFF as dosimeters 

successfully captured the 

production of ROS near a 

cathodically-charged CoCrMo 

surface. It was found that TA in 

the presence of H2O2 in DI water 

at -1V vs. Ag/AgCl yielded 

increasing amounts of HTA with 

time. We hypothesize that hydrogen 

peroxide is actively produced at 

cathodically biased CoCrMo surfaces in all TA and PFF solutions and is subsequently reduced, 

at least partially, through the excess electrons at the CoCrMo surface to hydroxyl radicals and/or 

hydroxide ions. This can explain the increase in HTA fluorescence as a direct result of the 

addition of H2O2 in solution where hydrogen peroxide molecules are reduced into hydroxyl 

radicals and other reactive intermediates, as well as the increase in fluorescein detection in PFF 

trials in the absence of H2O2 initially in solution. We hypothesize that the fluorescence levels off 

due to a net balance between H2O2 production and consumption within the system. The alternate 

hypothesis tests indicate that surface electrons, not metal ions, are critical for the conversion of 

solution hydrogen peroxide to hydroxyl radicals in the presence of CoCrMo. It is not known at 

this time if metal ions in combination with electrons contribute to the reduction of hydrogen 

peroxide ions. Further tests measuring solution ions after cathodic polarization would help 
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Table 1: HTA [µM] and fluorescein 
[nM] molar concentrations as a 
function of time against -1V (vs. 
Ag/AgCl) in the presence of CoCrMo. 
Molarities were calculated using 
standard curve regression line fits. 
Fluorescent probe molar 
concentrations are assumed to be 
equal stoichiometric ratios with 
corresponding hydroxyl radicals and 
hydrogen peroxide molecules  

 

 

 

   

 

explain if metal ions are produced in the given experimental set-up and to what quantity. The 

hydrogen peroxide concentration results also suggest that there is a significant reduction in 

detected H2O2, assuming the 10% conversion of water and oxygen molecules. This aligns with 

our hypothesis that H2O2 is consumed as reaction time is increased. 

 One of the purposes of this study was to provide evidence of H2O2 production from a 

cathodically-biased CoCrMo surface and use this information to support H2O2-induced cell death 

modes seen during in vivo experiments. Brenner et al. found that C6 glioma cells incubated from 

1 to 24 hrs with H2O2 resulted in median cytotoxic concentrations (EC50) of 500 to 30 µM, 

respectively85. 

Schraufstatter et al. studied alike incubation effects of P388D1 leukocytes exposed to 2.5 

mM H2O2, where cells retained 10% viability after 6 hrs86. Similar to how different cell 

phenotypes display different ranges of viability in response to a spectrum of potentials or an 

‘electrochemical zone of viability’87, it is reasonable to assume that there exists a cell-specific 

lethal dose of H2O2. 

It is also possible that the generation of ROS may impact the corrosion resistance of the 

CoCrMo alloy itself by impacting the oxide film on the surface. Such effects may play a role in 
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ongoing corrosion within biological systems where the alloy electrode potential reaches these 

levels within crevices during mechanically assisted crevice corrosion. 

This methodology is limited by its ability to be translated in vivo as well as understanding 

the individual and overall kinetics of ROS production and consumption, as seen from the 

preliminary hydroxyl radical and hydrogen peroxide trials. In addition, this work did not explore 

the wide range of other ROS-based chemistries that may be generated by cathodic electrode 

surfaces.  The primary goal of this work was to demonstrate the generation of any ROS.  Future 

work will assess the possibility of additional species being generated.  

Other labs have successfully converted H2O2 into hydroxyl radicals and measured output 

using HTA, however these groups explored different experimental conditions and capture modes 

such as liquid-phase pulsed corona discharges, radiation or sonochemical spectroscopy88-90. Tang 

et al. used Co2+ to catalyze the aromatic hydroxylation of TA to HTA in the presence of H2O2 

using flow injection analysis spectrofluorimetry91. Other lab groups have also looked into the 

effects of Fenton-like reactions involving transition metal ions in the presence of TA and H2O2. 

Hassanzadeh et al. found that TA mixed with cholesterol oxidase generated-H2O2, silver 

nanoclusters (AgNC) and MoS2 nanosheets, resulting in high HTA fluorescence emission92. This 

would indicate that silver ions have a greater effect in Fenton-like reactions with H2O2 than 

cobalt(II) and chromium(III) ions.  

Other limitations surrounding the work with TA involve the use of saline based solutions 

where output resulted in either a net zero or decreased fluorescence intensity. We hypothesize 

this is due to free salt or iron ions in solution competing and preferentially binding to the TA 

over hydroxyl radicals, explaining the yellow precipitate in solutions containing FeCl2. It was 

later found that iron(III) chloride-hexahydrate and TA are used to make crystal-like metal 
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organic frameworks (MOF) using basic dissolution93, similar to our solution preparation. Zhao et 

al. first reported the use of disodium terephthalate as a novel electrode for sodium-ion batteries, 

where TA in the presence of sodium ions and electrons rapidly form a high-performance anode 

material94. This confirms our hypothesis that iron(II) and sodium ions were competing with 

hydroxyl radicals, leading to a decrease in fluorescence intensity. It remains unclear why HTA is 

consumed within our experimental set-up as well as why it decays similar to a first-order 

reaction, however we have determined that HTA is not the ideal dosimeter for our experimental 

conditions and other fluorophores are being considered. Consequently, PFF demonstrated that it 

reacts with solution hydrogen peroxide during cathodic potentials likely present during 

mechanical abrasion of the surface and can be a useful probe in the future when simulating in 

vivo environments such as in the presence of retrieved synovial fluids or within tribocorrosion 

experimental chambers. 

4.6. Conclusion 

Reactive oxygen species (ROS) are created during reduction reactions at CoCrMo 

surfaces under cathodic potentials. Such potentials may arise as a result of mechanical abrasion 

of the oxide film on metallic implants during tribocorrosion processes. By applying protocols 

developed for fluorescently labeling individual ROS, it was shown that concentrations of 

hydroxyl radicals and hydrogen peroxide increase with increasing time. Additionally, hydrogen 

peroxide was shown to be both generated and consumed within the electrochemical experiments, 

assisting in the formation of hydroxyl radicals through reduction reactions. Hydrogen peroxide 

concentration gradients were highest in short term potentiostatic trials, indicating that the ROS 

has its greatest effect during the initial applied potential. It has been previously demonstrated that 

cathodic excursions have a significant effect on local cell viability, therefore determining the 
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quantities and vicinity to the implant surface of these reaction byproducts is critical in our 

understanding of the inflamed joint space during mechanically assisted corrosion. 
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5.1. Abstract 

Electrochemical interactions at the cell-metal interface determine cell viability and 

influence behavior in response to different electrode potential conditions, specifically cathodic 

biases. Mechanically assisted crevice corrosion, for example, induces cathodic potentials and the 

associated electrochemical consequences of increased reduction reactions at the implant surface 

may affect cell viability in a manner that is different for various cell phenotypes. Monocyte 

macrophage-like U937 cells were cultured on CoCrMo metal surfaces in vitro for 24 hours to 

assess cell behavior in response to sustained applied voltages. The electrochemical zone of 

viability for U937 cells polarized for 24 hours in vitro was -1000 ≤ mV < +500, compared to -

400 < mV < +500 for MC3T3-E1 preosteoblast-like cells cultured under the same conditions, 

likely as a result of intrinsic apoptosis. Voltages above +250 mV had a lethal effect on U937 

cells that was similar to that seen previously for MC3T3-E1 cells on biased CoCrMo surfaces. It 

appears that cell phenotype directly influences behavior in response to cathodic electrochemical 

stimuli and that the monocyte macrophage-like cells are more resistant to cathodic potential 

stimuli than preosteoblasts. This may be due to a glutathione-based increased ability to quench 

reactive oxygen species and inflammatory-associated radicals hypothesized to be generated 

during reduction of oxygen. 

Keywords: Electrochemical; cell viability; macrophage; CoCrMo; cathodic 
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5.2. Introduction 

Cobalt-chromium-molybdenum (CoCrMo) alloy has been in use as a biomaterial for 

nearly ninety years due to its advanced ability to resist wear and corrosion when compared to 

other alloys19, 44, 95, however, CoCrMo is susceptible to many types of corrosion typically 

associated with mechanically assisted crevice corrosion where the environment may be 

chemically and/or mechanically aggressive2, 40. During mechanically assisted crevice corrosion 

(MACC), electrode potentials at the CoCrMo surface can shift as far negative as -900 mV (vs. 

Ag/AgCl) from an unabraded open circuit potential of about -250 mV (vs. Ag/AgCl)96. On the 

anodic side, surface potentials can reach over +600 mV (vs. Ag/AgCl) in the presence of the 

inflammatory specie hydrogen peroxide50. Potentials of these magnitudes (above the breakdown 

potential for CoCrMo) result in the degradation of the protective oxide film and can result in 

rapid killing of cells cultured on the CoCrMo surface45, 46. The effects of both cathodic and 

anodic potentials on cells cultured on CoCrMo surfaces have important clinical implications that 

require additional study. One such question is related to the cell-specific response to cathodic 

and anodic potential conditions on cell viability. Do different cell types (e.g., immune cells 

versus preosteoblast-like cells) respond differently to cathodic and anodic potentials when these 

cells are cultured on CoCrMo surfaces? 

The study of immune cell responses and interactions with metal alloys has primarily 

focused on the release of pro- and anti-inflammatory species and cellular behavior in response to 

metal ions (oxidation half-cell of corrosion) and particles generated due to tribocorrosion22, 29, 97-

100. Metal ion release due to oxidation or abrasion of the CoCrMo alloy surface has been seen 

extensively when large anodic voltages [e.g., chromium, nickel, cobalt and molybdenum above 

+500 mV vs Ag/AgCl] or cathodic voltages [e.g., chromium at -1000 mV vs Ag/AgCl]45 are 
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developed or imparted. Chromium is potentially released in two forms (Cr+3, Cr+6) and cobalt is 

typically released as cobalt(II)8. Co+2 and Cr+3 ions can permeate the cell membrane and induce 

protein oxidation29, initiating the release of tumor necrosis factor alpha (TNF-α) and interferon 

gamma (INF-γ) within inflammatory cells28, 98, 101, and thereby stimulating the secretion of 

chemokines and cytokines linked as mediators of osteoarthritis and aseptic loosening of 

implants12, 102. Macrophages activated with lipopolysaccharide (LPS) express TNF-α and 

chemokine monocyte chemo-attractant protein-1 (MCP-1) when cultured on CoCrMo alloy103. 

Surface roughness and morphology104 has also been documented to impact inflammatory cell 

activation responses. Anti-inflammatory cytokine (IL-10) production is favored on microrough 

CoCrMo surfaces whereas pro-inflammatory cytokine (TNF-α, IL-6 and IP-10) production is 

favored on smooth CoCrMo surfaces19. 

Reactive oxygen species (ROS) are another set of chemically active molecules that can 

contribute to oxidative stress on the cell as well as structural damage to the alloy surface. ROS 

like superoxide anion (O2
•-) and hydrogen peroxide (H2O2) are naturally produced by a drop in 

the mitochondrial transmembrane potential64 in low concentrations through aerobic respiration 

and are neutralized intracellularly via catalase and superoxide dismutase enzymes105. ROS can 

also be synthesized via respiratory burst processes in immune and inflammatory cells in response 

to foreign bodies and infection. Neutrophils, monocytes, macrophages, foreign body giant cells, 

and even osteoclasts are known to generate ROS in respiratory burst processes when activated106. 

ROS are also produced at electrode surfaces during the reduction of oxygen. Reduction 

reactions must accompany associated anodic processes like the repassivation of the oxide film 

during mechanically assisted crevice corrosion (MACC)96. Molecular oxygen (O2) and water 

(H2O) are reduced near the electron-rich metallic surface reduction half-cell40 during corrosion. 
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These molecules may be converted to hydroxyl radicals (OH.) as well as other electrochemically 

active ROS such as superoxide anions and singlet oxygen radicals as intermediates in the oxygen 

reduction reaction107. Hydrogen peroxide is produced as a catalytically-derived intermediate in 

the conversion of superoxide radicals to water and molecular oxygen via surface electron 

interactions and superoxide dismutase80. ROS build-up results in oxidative stress64, abnormal 

cellular processes, mitochondrial and membrane lipid disruption80, and eventual programmed 

cell death (i.e., apoptosis)63. 

Retrieved CoCrMo alloy hip implant surfaces with damage that is hypothesized to be the 

result of inflammatory cell-induced (ICI) corrosion has been recently reported14, 15, 108. Evidence 

of cellular remnants and biological material on the surfaces of CoCrMo alloy14 was characterized 

as osteoclast resorption and the oxidizing effect of molecules (i.e. cytokines, hydrogen peroxide) 

released from vesicles during necrosis14. While some of these observations were later found to be 

the result of electrocautery effects72, there were other examples where cell-induced corrosion 

appeared to play a role. ICIC has been simulated on stainless steel and titanium alloy surfaces 

using osteoclasts in vitro18, but it has yet to be extensively characterized on CoCrMo alloy 

surfaces.  

ICI damage has also been reported on other biomaterials such as polyurethane insulated 

leads for pacemakers. Ex vivo analysis revealed extracellular hydrogen peroxide permeated 

through the outer silicone insulation due to metal ion oxidation (MIO) of the outer metal 

contacting surface109, and this phenomenon was reproduced in vitro110. The MIO mechanism 

resulted in crack propagation throughout the polyurethane and ultimate failure of the leads. It is 

hypothesized that monocyte derived macrophages and foreign body giant cells are the primary 
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mediators of polyurethane degradation in vivo110, and that these cells release reactive chemical 

species (RCS) and reactive oxygen intermediates (ROI) that accelerate oxidative biodegradation. 

It has been previously reported that pre-osteoblast-like cells (MC3T3-E1) cultured on 

CoCrMo alloy surfaces exhibit an ‘electrochemical zone of viability’45. In this voltage range, 

MC3T3-E1 cells remained viable after 24 hours of applied potential between -400 and +350 mV 

(vs Ag/AgCl). Cells outside this zone experienced cell death in the form of apoptosis (-400 mV 

and below) and necrosis (+350 mV and above)45. Metal ions (Co, Cr, Mo, Ni) are released from 

the surface in large amounts at +500 mV and at -1000 mV (Cr). These ions likely contributed to 

the necrotic cell death mechanism in the upper anodic voltages (> +500 mV), whereas the 

apoptotic MC3T3-E1 cells within the large cathodic voltages (< -400 mV) were thought to be 

subjected to oxidative stress triggered by ROS45. ROS facilitated cellular caspase activation111 

and at cathodic voltages outside the viability range, MC3T3-E1 cells experienced apoptosis 

based on caspase-3 and -9 release45. It was hypothesized from this work that all cell-types 

subjected to an electrochemical bias experience a ‘zone of viability’ however it was not clear 

what the effect of cell phenotype was on the viability range as different cells possess different 

defense mechanisms. 

In this study, monocyte macrophage-like cells (U937 monocytes) were induced to adhere 

to and be cultured on CoCrMo alloy and the resulting viability and cellular morphological 

changes as a function of anodic and cathodic voltages were investigated. It is hypothesized that 

these cells would be able to tolerate a larger electrochemical zone of viability. 
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5.3. Materials and Methods 

5.3.1. Sample Preparation 

CoCrMo high-carbon alloy discs (ASTM F-1537) with an exposed surface area of 5.1 

cm2 were mechanically polished to 600 μm grit followed by 1.0, 0.3 and 0.05 μm alumina polish 

until a mirror finish was obtained. Samples were then rinsed with deionized water and sonicated 

for 30 minutes in 70% ethyl alcohol to remove polishing material. Following sonication, samples 

were UV sterilized for at least 2 hours prior to use. To avoid contamination, samples were 

always handled with sterile tweezers and nitrile gloves. 

5.3.2. Cell Culture 

U937 macrophage monocyte-like inflammatory cells and MC3T3-E1 pre-osteoblast-like 

cells were grown in 90% Gibco’s® RPMI 1640 medium (ThermoFisher) and 10% fetal bovine 

serum (FBS) (ThermoFisher) in separate T-75 flasks (Corning, NY) until confluent. Then, 

200,000 U937 cells were pipetted at a volume of 50 μL (4,000 cells/μL) and seeded on the 

surface. Phorbol 12-myristate 13-acetate (PMA) (Sigma) was added to the media at a 

concentration of 100 ng/mL before cell seeding. This was added for better U937 cell attachment 

and adhesion to the metallic surface. PMA was not included with the MC3T3-E1 media volume 

and cells were seeded at a volume of 20,000 cells/50 μL due to the larger size of the MC3T3-E1 

cells, and in agreement with previously done studies in the lab45. 

After cells were plated, discs were assembled in glass-chambers (Fig. 9) using a standard 

three electrode system where the CoCrMo disc served as the working electrode, and a graphite 

rod and chloride silver wire (Ag/AgCl) served as the counter and reference electrodes, 

respectively. The glass chamber was then carefully filled with RPMI media + FBS (20 mL total) 
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Figure 9: Experimental glass electrochemical 
chamber used in cell viability experiments 

 

 

 

   

 

down the side of the glass as to not disturb the cells on the metal surface. The chamber was then 

capped with a rubber stopper where the chloride silver wire and graphite counter electrode were 

inserted into the media. The rubber stopper had an additional air hole to allow for gas exchange 

between the chamber and incubator. After the chamber was placed in the incubator (37°C, 5% 

CO2), a potentiostat was connected to the electrodes and the incubator was sealed. Samples were 

held at the open circuit potential (OCP) with no applied voltage for 1 hour before cell viability 

experiments.  

5.3.3. Cell Viability 

U937 cell viability experiments were tested using CoCrMo discs (n=3) and potentials 

ranging from -1000 to +1000 mV (vs. Ag/AgCl) for 24 hours in increments of 250 mV. Cells 

were not tested at -250 mV, as this potential is similar to OCP and we did not expect to see a 

killing effect of cells. U937 cells at 0 mV served as the control group for cell viability 

experiments since it lies in the middle of the 

already established MC3T3-E1 ‘zone of 

viability.’ MC3T3-E1 cells were only tested at -

1000 and -750 mV to confirm total cell death data 

at large cathodic voltages seen previously45. After 

applied voltages, samples were washed with 

phosphate buffered saline (PBS) three times 

before fluorescent imaging stains were applied.  

A live/dead/ viability/cytotoxicity kit for 

mammalian cells (L3224, Invitrogen, Oregon) was 
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used to confirm cell death at the predetermined voltage after 24 hours (vs. Ag/AgCl). After PBS 

washing, 3.33 μM of calcein AM and 4 μM of ethidium homodimer-1 in 3 mL of PBS was 

pipetted into each sample chamber. The chambers were then covered with aluminum foil and left 

in the bio-safety cabinet at room temperature with the lights off for 30 minutes to prevent 

photobleaching. The dye solution was then removed from the discs and the surfaces were then 

washed three times with PBS. Chambers were then disassembled, and discs were inverted on top 

of rubber O-rings in PBS filled petri dishes to avoid contact with the bottom of the dish. The 

dishes were then covered and transported for imaging. 

Fluorescent imaging for live/dead assessment of cells was performed using an inverted 

microscope (Leica DFC 340 FX, Leica, GER) with a CCD mono-12 bit camera (Q-imaging, 

Canada) and an X-Cite 120 light source (EXFO America, TX). Leica application suite (LAS) 

version 4.1 (Leica Microsystems, GER) was used to capture live and dead images, and 

subsequently overlay images for further analysis. Live and dead cells were imaged using 

fluorescein bandpass filter (FITC) and Texas red dye filter, respectively. Discs were imaged in 

successive magnifications from 5X to 40X, and 10 images were taken at 20X at random areas on 

the surface for cell viability calculations. Dead cells were stained red-fluorescent from the 

ethidium homodimer-1 solution binding to the free or fragmented DNA, and live cells were 

stained with calcein AM. Calcein AM is converted to green-fluorescent calcein due to hydrolysis 

of the acetoxymethyl ester bonds (Invitrogen). Total cells of each image were counted, and the 

number of live and dead cells were reported for each image. Averages and standard deviations 

were reported for each potential and cell type. 
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5.3.4. Cell Size  

ImageJ software (NIH) was used to measure cell size averages from live-dead images. 

U937 cells at 0 mV were used as the control group for cell size measurement, similar to cell 

viability experiments. Using previous techniques45, cell size as a function of voltage was 

calculated by converting fluorescent images to 8-bit gray-scale images, conversion to binary 

images, and then subtracting the background using the sliding paraboloid method. Fast Fourier 

Transform (FFT) of all images using a bandpass filter to filter structures smaller than 3 pixels 

and larger than 10 pixels and a threshold inverse filter were performed prior to cell size analysis. 

ImageJ analyzed all cells within the image reporting a circularity between 0.4-1.0. 

5.3.5. Scanning Electron Microscopy Analysis 

Samples were sterilized and dehydrated with 70% ethyl alcohol before scanning electron 

microscopy analysis following fluorescent imaging. The morphology of the cells after cell 

viability tests was investigated using a scanning electron microscope (SEM; Jeol JSM-5600, 

Tokyo, Japan). Following dehydration, samples were dried and sputter coated with gold at 50 

mTorr chamber pressure (Model Desk II, Denton Vacuum, NJ). Images were taken in secondary 

emission from 2.1 kV to 5.0 kV. Visual inspection was used to categorize cell morphologies and 

biological surface remnants. 

5.3.6. Statistical Analysis 

Results were reported as averages and standard deviations (SD) and each experiment was 

repeated in triplicate unless otherwise stated. Two-way ANOVA and Tukey’s post hoc pairwise 

comparison with simple effect were performed to compare the effect of voltage on cell viability 

and size with a p < 0.05 taken to be significantly different. 
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Figure 10: Live/dead images of U937 cells cultured on CoCrMo at (A) -1000 mV, (B) -750 
mV, (C) -500 mV, (D) 0 mV, (E) 250 mV and (F) 500 mV for 24 hours in vitro.  There were 
more cells in the anodic voltages (+250, +500 mV) when compared to the cathodic voltages 

 

 

   

 

5.4. Results 

5.4.1. Cell Viability 

Cell live/dead results, (Fig. 10-11), show that U937 cells retained viability from -1000 

mV to +250 mV in these tests whereas MC3T3-E1 cells at -1000 mV to -400 mV were 

completely dead. There were statistically significant differences in the percent viable between 

the two cell types through the range of -500 mV to -1000 mV (p < 0.05) with decreasing viability 

as cathodic potentials increased. Above + 250 mV, again, and a statistically significant decrease 

in cell viability was observed (p < 0.05) for both cell types. The cell viability curve (Fig. 11) is 

similar to the one previously reported by Haeri et al.45 in reference to MC3T3-E1 cells cultured 

on CoCrMo discs in vitro, with U937 cells surviving to larger cathodic bias. There were no 

significant differences (p < 0.05) in cells counted per 20X image between any two groups. The 

average number of cells counted per 20X magnified fluorescent image ranged from 
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Figure 11: U937 and MC3T3-E1 cell viability 
cultured for 24 hours on the surface of CoCrMo 
disks at different voltages. U937 cells are shown 
with black circles and MC3T3-E1 cells are 
shown with grey circles 

 

 

   

 

Figure 12: U937 cell size distributions 
of fluorescent stained images. Cells 
were separated into two groups, live and 
dead, and size was plotted as a function 
of voltage. There were no dead cells 
measured at 0 mV or alive cells 
measured above +250 mV 

 

 

   

 

0.95 ± 0.6 (-500 mV) to 29 ± 26.4 

(+1000 mV) with cell counts increasing 

with increasing cathodic and anodic 

potentials (away from OCP). Test 

groups between -500 mV and +250 mV (‘90% zone of viability’) resulted in the lowest cell 

count groups. 

5.4.2. Cell Size 

Average live cell size was at 0 mV (vs. Ag/AgCl) was 120.7 ± 56.2 µm² and was in the 

65 µm to 103 µm range for the dead cells. There were no statistically significant differences in 

average cell size with potential (Fig. 12).  The total number of cells analyzed per test group after 

PBS rinsing, fluorescent staining and image processing varied between 25 and 200 cells with the 

exception of -500 mV (n=7). 
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5.4.3. Scanning Electron Microscopy Analysis 

Dead U937 cells at the lower limit (-1000 mV, Fig. 13A) exhibited evidence of 

extracellular remnants around central balled-up nuclei, consistent with apoptosis morphologies 

previously reported using this protocol45. This included fibrous remnants around a central 

cellular ball-like structure.  U937 cells cultured between the potentials of – 500 mV and +250 

mV remained 90% viable after potentiostatic trials for 24 hours.  These cells appeared to have a 

round shape with no indications of cell migration, extensive apoptosis, fibrous perimeter, or 

degradation of the cell membrane on the CoCrMo surface in this potential range. The cell 

morphology at anodic voltages within the lethal range, > +250 mV, were disrupted with many of 

the cells exhibiting the appearance of spillage of the cellular content and the lack of visible 

cellular components including the nucleus, ECM and other vesicles. 

5.5. Discussion 

Shifts in electrode potential across metallic surfaces can arise from several different 

sources including abrasion of the oxide film5, 112 or due to solution changes that can include the 

presence of ROS due to inflammatory cell-based responses50. Both anodic and cathodic 

potentials are feasible depending on the circumstances (highly tribocorrosive conditions vs. high 

inflammation). A zone of electrochemical viability has been defined within which cells remain 

viable and outside of which they will die over time. This work has shown that the 

electrochemical zone of viability is influenced by cell type, where U937 cells, emulating 

macrophage-like cells had a wider cathodic range of potentials under which they could remain 

viable than was observed previously for MC3T3-E1 preosteoblast-like cells45. For anodic 

potentials, both cell types exhibited cell death starting at about +350 mV (vs. Ag/AgCl) and were 

100% dead by +500 mV.     
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Figure 13: Scanning electron micrographs of U937 cells cultured on CoCrMo after 24 hours 
of polarization at (A) -1000 mV, (B) -500 mV, (C) 250 mV and (D) 500 mV in vitro. The 
dead cell in (A) appears to be balled up with a damaged cell membrane and cell components 
spread out in the near vicinity. The cells in the cathodic voltages (B, C) have a definitive 
shape, while the cells (D) appear to be damaged with evidence of extracellular remnants on 
the surface 

 

 

   

 

The viability graph (Fig. 11) and SEM images (Fig. 13) show very different responses to 

cathodic vs. anodic voltages and the resulting U937 cellular structure after electrochemically-

induced cell death. At the extreme cathodic voltages (i.e., -1000 mV), some U937 cells were still 

viable, but at a diminished percentage compared to behavior near OCP (± 250 mV) where > 90% 

viability was observed. Unlike MC3T3-E1 cells which exhibited a discrete fall in viability at -

400 mV (vs. Ag/AgCl), there was a slower fall off in viability below -400 mV with retained 
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viability for some U937 cells even at -1000 mV (vs. Ag/AgCl). Cells within the electrochemical 

zone of viability reported higher size averages than those outside the range. These data (Fig. 11) 

suggest that the immune cells react differently to cathodic and anodic conditions where the dead 

cell morphology and cellular remnants are distinctly different in appearance with a more fibrous 

appearance around the cell perimeter at cathodic potentials and a more blotted appearance in the 

anodic images. These differences may reflect different modes of cell death taking place. This can 

also explain the number of cells present on the surface as a function of voltage. There were more 

cells imaged per area at the cathodic and anodic bounds of the test (-1000 mV, +750 mV and 

+1000 mV), with the fewest cell counts paralleling the highest viability groups. This would 

indicate that the dead cells outside the zone of viability were able to remain adhered to the 

surface with decreased surface area maybe playing a factor in adhesion. Perhaps the cells 

decreasing in size activates increased adhesion on the basal surface of the cell. Overall, there 

were more cells present on the surface during applied anodic potentials compared to cathodic 

potentials. It has previously been reported that reactive oxygen species and cathodic potentials 

affects cellular adhesion, specifically how the membrane proteins and actin are denatured113, 114. 

It is unclear, however, if the cells exhibit the same phenotype as they did at OCP. 

Phenotypic measures were not undertaken in this study, but changes in cell behavior may be 

inferred by the differences in the cell morphology on the metal surface. At these negative 

potentials, oxygen is being reduced at the surface and generating ROS (hydroxyl ions, singlet 

oxygen, super oxide anion, hydroxyl radicals, peroxyl radicals, alkoxyl radicals and hydrogen 

peroxide)40, 115, 116. High concentrations of ROS and low oxygen concentrations can alter cell 

behavior and damage internal organelles eventually leading to cell death62, 117, 118. Oxidative 

stress has been shown to alter cellular adhesion113, 114, which could explain the low and variable 
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cell count at cathodic potentials when compared to anodic potentials. Cells in high cell density 

images were difficult to measure due to overlapping or weak RGB signals below the processing 

threshold. Also, several intact cells that were reported in our viability data did not filter 

successfully through our uniform rendering process for size measurements. 

We hypothesize that there are defense mechanisms within U937 inflammatory-like cells 

that help maintain viability at extreme cathodic voltages. Common inflammatory cells (i.e. 

macrophages, hepatocytes) synthesize reduced glutathione (GSH) when stimulated by oxidative 

stress119-122. GSH is an antioxidant and functions as a ROS scavenger63 protecting the cell from 

ROS-driven apoptotic processes such as reduction in cell growth, increased cell permeability and 

nuclear/internucleosomal DNA fragmentation121. GSH has been shown to protect macrophage 

(RAW 264.7) and monocyte macrophage-like (U937) cells from apoptosis induced by 

triptolide123, 7-ketocholesterol124, ceramide80 and tert-butylhydroperoxide (t-BOOH)125. Ghibelli 

et al. reported GSH loss from cells before irreversible morphological changes in U937 cells 

before apoptosis119 with GSH expulsion from the cell being one of the final stages in the 

apoptotic pathway in macrophage monocyte cells. By preserving viability of many of the key 

cellular components126, GSH extrusion and intracellular oxidation62 may explain the increased 

cathodic viability when compared to preosteoblast-like cells (Fig. 14). 
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Figure 14: Schematic displaying the role of GSH during ROS production both within and 
outside the cell during polarization tests. GSH attacks hydrogen peroxide within the cell and 
is oxidized to its dimer and water. During the final stages of apoptosis, GSH is expelled 
through the cell membrane and then scavenges for nearby oxidative radicals 

 

 

   

 

Nitric oxide (NO) is another reactive chemical species (RCS) released by macrophage 

cells in inflammatory conditions52, 127. Lin et al.16, 53 found that macrophages (TIB-71, RAW 

264.7) stimulated to release nitric oxide (NO) enhanced the CoCrMo surface oxide layer through 

oxidation and nitration reactions. Maintaining the surface oxide at cathodic potentials due to NO 

production in addition to GSH extrusion may have contributed to the increase in U937 cell 

viability in the presence of ROS.  

Fenton and Haber-Weiss reactions occur as a result of metal ion elution26 from the 

surface and these processes can significantly damage cellular proteins, lipids and DNA62. Above 

+500 mV, Cr+3 ions are oxidized to Cr+6 ions which can readily be taken through cellular 

membrane anion transport systems128. When Cr+6 is metabolized within the cell, glutathione 

reductase (GR) activity is inhibited and GSH is oxidized to its dimer glutathione disulfide 

(GSSG) using glutathione peroxidase (GPx)66. While the cells expelling GSH are in the final 

stage of the apoptotic pathway, GSH functions as a scavenger to react with nearby ROS, 

decreasing the ROS concentration surrounding the nearby viable cells. We hypothesize that both 
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the synthesis of GSH within the cell and depletion across the cell membrane contributed to the 

added U937 resistance to cathodic polarization. 

It should be noted that these cells were only tested for 24 hours and there might exist a 

narrower electrochemical zone of viability as time is increased, and vice versa for shorter test 

periods. It should also be stated that surface roughness was not measured but all samples were 

prepared and polished to the same mirror finish. The extent to which the surface is polished 

might play a role in adhesion and viability characteristics of the different cell types, and this 

work should be further characterized. Future work will include the characterization of intra- and 

extracellular GSH during cathodic and anodic polarization. This will give better insight into this 

proposed immune cell defense mechanism during ROS production along the alloy surface. 

While the data presented here is a good indicator of cell activity with response to 

electrochemical stimuli, there are limitations to this work that would impact its physiological 

relevance. During active corrosion of the implant surface, several cell types are recruited 

(neutrophils, M1/M2 macrophages, etc.) with eventual foreign body giant cells developing at the 

site of inflammation. Constructing a complex model using these cells would not be feasible due 

to lack of material and survival rate of some of the cell types outside the human body. Our model 

displays that there is a difference in the electrochemical zone of viability between different cell 

types.  

These results raise possible in vivo implications that merit further consideration.  It is 

clear that mechanically assisted corrosion processes, whether within modular taper crevices or 

associated with any oxide film disruption process (e.g., fretting at screw-countersink interfaces, 

bear wear of metal surfaces, etc.) will result in associated drops in electrode potential of the 

implant.  The amount of potential drop will depend on the severity of the abrasion-oxidation 
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processes and the area of the implant exposed to the environment. If these processes are 

sufficiently large, then the potential of the alloys may fall outside of the zone of viability for 

some cell types (e.g., osteoblasts) whereas other cells with an ability to defend themselves 

against these potential excursions, may be better protected. Whether such potential excursions 

play a role in clinically observed effects like adverse local tissue reactions associated with total 

hip replacements experiencing tribocorrosion processes is unknown, however, these results 

imply that such conditions may be possible. Sub-lethal exposure conditions may also modify cell 

phenotype and drive macrophages into specific reactive pathways. Such effects remain to be 

explored at this time. 

Further studies should be conducted using other cell phenotypes in order to further 

quantify these observed cellular interactions. Voltage-induced cell death on metallic implants 

could be advantageous in designs of metallic biomedical devices and understanding cell-metal 

interface behaviors will further advance this area of research. Targeting the glutathione 

metabolic pathway could be the next step in suppressing ROS accumulation as well as other 

harmful radicals within and near inflammatory cells. 

5.6. Conclusion 

The electrochemical potential zone of viability for U937 cells, a monocyte macrophage-

like cell, was shown to extend to more negative (cathodic) potentials compared to MC3T3-E1 

cells but was the same for each at positive potentials. These results support our hypothesis that 

there are internal defense mechanisms responsible for monocyte macrophage-like inflammatory 

U937 cells’ resistance to impressed cathodic voltages. Metallic biomaterials and medical devices 

can experience voltage excursions in both anodic and cathodic potential direction and these 

excursions have demonstrable effects on macrophage-like cell viability. Control of the surface 
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potential of metallic biomaterials relative to the zone of viability allows certain cells to remain 

viable while other cells can be killed.  This approach may provide therapies that can monitor or 

affect the immune response to the metallic biomaterial.  
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6.1. Abstract 

Wear and corrosion damage of biomedical alloys alters the structure and electrochemical 

properties of the surface heterogeneously. It was hypothesized that local regions on the same 

surface systematically differ from one another in terms of their impedance characteristics. To test 

this hypothesis, CoCrMo discs exposed to electrosurgical and inflammatory-species driven 

damage were characterized using a novel impedance technique, nearfield electrochemical 

impedance spectroscopy (NEIS), to assess local surface integrity in response to applied damage. 

It was found that electrosurgical damage, as may arise during primary arthroplasty and revision 

surgeries, and hydrogen peroxide concentrations of 5-10 mM significantly alters the corrosion 

susceptibility of the local surface compared to the as-polished CoCrMo surface. A CoCrMo 

retrieved neck taper (Goldberg score of 4) was scored in different local regions relative to one 

another, and it was found that there is a direct relationship between increasing local relative 

Goldberg score and decreasing impedance, with the global surface impedance closest to the most 

severe-scored local region. This non-invasive method, which uses a milli-electrode configuration 

to test localized regions, can measure the heterogeneous electrochemical impedance of an 

implant surface, and specifically associate the response to damage mechanisms such as fretting 

corrosion, femoral cracking and intergranular corrosion.  

Keywords: electrochemical impedance spectroscopy (EIS), CoCrMo, electrosurgery, 

inflammation, polarization resistance 
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6.2. Introduction 

Biomedical alloys, including cobalt-chromium-molybdenum (CoCrMo) alloys used in 

total hip (THA) and total knee (TKA) arthroplasties, may experience a range of normal wear and 

tear initiated by several damage mechanisms during their use such as assembly forces during 

initial implantation71 or cyclic fretting of two articulating surfaces within the prostheses43. Total 

hip replacements (THRs) have advanced in their materials since their initial conception with 

several alloys protected by a thin oxide layer that spontaneously forms on its surface20, 53, 129, 130, 

and the most impactful design parameter has been the implementation of modularity. While the 

functionality and ease of use of modular junctions has increased mobility, cost effectiveness and 

has addressed patient-specific needs, the additional interfaces of modular junctions may increase 

the need for revision surgeries and replacements among THRs. 

 Modular junctions are subjected to mechanically assisted crevice corrosion (MACC) 

where metal ions, oxides and tribocorrosion debris are released from the alloy surface40, 48, 50, 76. 

Recently, it has been shown that the addition of molybdenum (Mo) within CoCrMo alloy may 

reduce the effect of wear loss compared to commercially pure CoCr alloy131, however CoCrMo 

devices are more susceptible to the effects of MACC due to microstructure132 and detachment of 

the metal carbides during wear133. These damage processes are thought to be associated with 

immune and inflammatory responses, often referred to as an adverse local tissue reaction 

(ALTR)12, 14, 24. 

During wear, the passivity of the surface is dependent on the electrochemical properties 

of the passive oxide film134 with surface potentials dropping as low as -900 mV (vs. SCE) during 

disruption of the oxide film43. In addition, potential drops of this sort significantly increase 
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reduction reactions present at metal surfaces which includes increasing the generation of reactive 

oxygen intermediates (ROIs) directly at the implant surface135. These reduction products have 

been shown to induce killing of cells in proximity to the metal surface42, 45. Immediately 

following this potential drop, biological material31 including immune cells, foreign body giant 

cells (FBGCs), host tissue, reactive oxygen species (ROS) and dysregulated enzymes can 

penetrate and attack crevices which then furthers the breakdown of the implant surface as well as 

the loosening of the joint prostheses17, 70. Corrosion of this nature may facilitate other responses 

from the surface such as intergranular corrosion and fatigue crack nucleation, ultimately leading 

to the failure of the implant, however these links have not yet been demonstrated. 

In addition to mechanical, electrochemical and biological-based damage, implant 

surfaces can also be exposed to electrical-based injury as a result of electrocauterization 

techniques. Previous reports of inflammatory cell-induced (ICI) corrosion14 noted pitting features 

with trail-like evidence of cellular artifacts on metal surfaces, however many of these 

topographies have since been reproduced using electrocautery72, 136. 

 During surgery, clinicians must cauterize local blood vessels to minimize bleeding and 

achieve hemostasis.  However, the electrical energy from electrocautery can propagate plasma 

arcs from the electrosurgical pencil to the metal surface, resulting in localized flash melting and 

plasma-field induced wave-like pitting72 of metal implant surfaces. Electrosurgical generators 

can achieve potentials up to 5 kV with frequencies of 500 kHz72. When the plasma arc is 

transmitted from the pencil to the surface, wave-like surface defects resulting from localized 

melting are created and cause a drop in the overall corrosion resistance of the metal by 

decreasing the impedance and altering the oxide film137. Electrosurgical damage has also been 
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documented to travel through up to 3 mm of simulated tissue, making it very feasible that 

multiple electrosurgical melted pits are generated during surgery without the pencil ever making 

physical contact with the surface. It has been hypothesized that these contact points could lead to 

an accumulation of stress within the surface layers, eventually leading to femoral cracking of the 

implant with future full mechanical failure72, 136. 

One of the greatest challenges surrounding orthopaedic alloys is assessing levels of 

damage and documenting sources of implant failure. There are certain types of wear and 

corrosion mechanisms closely associated with failure of implants including aseptic loosening, 

crack propagation within the neck or stem, or tribocorrosion debris generation. However, there is 

no single diagnostic method which can easily quantify the extent of damage outside of a visual 

subjective inspection by the surgeon. Two questions that are becoming more relevant during 

implant assessment are 1) is there an in situ diagnostic measurement method that can 

quantitatively assess the integrity of implant surfaces?, and 2) can such a method be applied in 

real-time during surgery without compromising the safety of the patient? 

One approach, considered here, is to utilize EIS methods on a nearfield basis where only 

a small region of the surface is analyzed for its impedance properties (resistive and capacitive 

character). EIS typically investigates large areas of an electrode where a wide range of surface 

structures and properties may be present, and a surface area averaged response will be obtained40, 

42, 48, 138-143. In addition, for evaluation of orthopaedic implants, EIS is generally an ex vivo 

practice with limited capability for in situ evaluation. 

We hypothesized that if we can control the working electrode area by limiting the cell 

geometry to fit inside a standard pipette tip, we could record local EIS spectra wherever we 
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choose on the surface such as a severely corroded point on an otherwise undamaged surface. 

This would allow us to compare site-specific electrochemical properties to that of the entire 

system. Therefore, the goals of this study were to expose CoCrMo surfaces to various known and 

characterized types of damage and to use nearfield electrochemical impedance spectroscopy 

(NEIS) to characterize localized impedance responses. CoCrMo retrievals were assessed for 

damage and the NEIS techniques were used to correlate Goldberg score and corrosion type with 

electrochemical behavior. Non-destructive evaluation (NDE) techniques of implant surfaces may 

advance our knowledge of corrosion mechanisms within the human body, specifically how 

different damage modes contribute to the overall failure of a device. 

6.3. Materials and Methods 

6.3.1. Sample Preparation 

High-carbon CoCrMo alloy discs (ASTM F-1537) were polished up to 1.0 µm alumina 

until a mirror finish, rinsed with deionized water, sonicated with 70% ethyl alcohol for 30 

minutes and dried using nitrogen before electrocautery and inflammatory species-induced 

damage. The surface was damaged using the electrosurgical generator and pencil with the disc 

placed on a MacrolyteTM dispersive pad to complete the circuit (Conmed System 2450, Conmed, 

Utica, NY). Standard coagulation mode at power 50 was used to produce all electrosurgical 

damage with the pencil lowered until close proximity but not touching (< 1 mm) at each location 

for less than a second, producing plasma arcs as a result of circuit activation. The polished as-is 

CoCrMo surface served as the control group. The four groups tested (Fig. 15A) were adapted 

from ones previously explored72, where electrosurgical damage was induced on a 1) dry surface, 

2) a phosphate buffered saline (PBS)-wetted surface, and through 3) 1 mm and 4) 3 mm of PBS-
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Figure 15: CoCrMo electrosurgical damage discs (A) and neck taper retrieval (B). Taper 
retrieval base around where local Goldberg score NEIS measurements were recorded  

 

soaked agar. The varying thicknesses of agar mimicked local tissue and the PBS group mimicked 

blood likely present during primary and revision arthroplasty procedures. CoCrMo surfaces were 

cleaned and dried of PBS and agar remnants prior to NEIS measurements.  

The inflammatory test disc was assembled by gluing a Teflon chamber with 3-openings 

to the surface. Each opening was then filled with deionized water containing a varying level of 

hydrogen peroxide (H2O2) (1, 5, 10 mM) and then sealed with Parafilm (Bemic Company, 

Neenah, WI) at room temperature. Solutions were replaced with newly prepared solutions every 

7 days to account for potential dissolution or degradation of H2O2 in solution. Teflon discs were 

carefully pulled away from the surface following 21 days and NEIS was performed on the test 

locations. The polished as-is surface not exposed to solution served as the control group. 

A retrieved CoCrMo neck taper with an overall Goldberg score of 4 (severe corrosion, 

Fig. 15b) was tested in four locations within the neck taper region. The Goldberg scoring system 

(GB 1-GB 4) in brief is as follows144: no visible signs of corrosion (GB 1), less than 30 percent 
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Figure 16: Test set-up used in all nearfield 
electrochemical impedance spectroscopy (NEIS) 
measurements 

 

of the area is discolored (GB 2), greater than 30 percent of the area is discolored or less than 10 

percent of the area is black material, etched or pits (GB 3), and greater than 10 percent of the 

area is covered with black material, etches or pits (GB 4). The neck taper surface was scored 

locally in four areas all relative to one another for corrosion and electrochemically analyzed 

using NEIS. Therefore, the relative score of 1 (Rel. GB 1) is not a true Goldberg score of 1, it is 

however the least corroded area on the surface in comparison to the other sites measured (Rel. 

GB 2-Rel. GB 4). The neck taper region was also measured as a whole and referred to as the 

global surface (GS) in the results and discussion. 

6.3.2. Electrochemical Experiments 

Previously-developed techniques145 were used to define the NEIS protocol. Briefly 

(Appendix C.1), a PBS-filled pipette tip with an area of 1.96×10-3 cm2 (I.D. = 0.5 mm) was 

placed flush against the CoCrMo surface (Fig. 16) to prevent PBS leakage onto the surface and 

limited the working electrode area to that of the pipette tip opening. Counter and reference 

electrodes were inserted through 

holes along the side of the tip 

where platinum (Pt) and 

chlorided-silver wire (Ag/AgCl) 

served as the counter and 

reference electrodes, 

respectively. The top of the pipette tip was 

then covered with Parafilm to create a 

partial-vacuum seal. Previous reports146 
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regarding cell geometry determined that the counter and reference electrode tips be placed a 

minimum dimensionless distance of 2P from the working disk electrode where P = p
ro

, (p = 

distance between the reference or counter electrode tip and working electrode, ro = radius of 

working electrode area). This distance was found to eliminate frequency dispersion in the local 

impedance response and support steady-state calculations147. The tip recorded open circuit 

potential (OCP) for all test groups for 30 mins, allowing for potential stabilization prior to NEIS 

across a frequency range of 20,000 to 0.01 Hz. Impedance magnitude (|Z|) at the lowest 

frequency recorded (0.01 Hz) was used for assessing impedance differences and all other 

electrochemical properties including constant phase element (CPE) capacitance response (Q) and 

CPE exponent (α) were fit to the most appropriate model made up of resistors and constant phase 

elements using a non-linear least squares fitting program in ZView (Scribner, Southern Pines, 

NC). 

6.3.3. High Magnification Microscopy 

Following NEIS, different modes of corrosion and surface damage were identified and 

captured for the experimental groups (electrocautery, retrieval) using digital optical microscopy 

(DOM, Keyence VHX-6000, Japan) and scanning electron microscopy (SEM, Hitachi S-3700N, 

Japan). DOM and SEM images were taken at the exact points of NEIS measurements for 

comparison with NEIS spectra. 

6.3.4. Statistical Analysis 

All experiments and techniques were repeated in triplicate. Averages and standard 

deviations were calculated and one-way ANOVA and Tukey’s post hoc pairwise comparison 
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Figure 17: NEIS measurements (n=3) of open circuit potential (OCP). All test groups were 
significantly higher (p < 0.05) in OCP (mV) when compared to the as-polished control 
CoCrMo surface, indicating a change in surface electrochemical characteristics following 
damage conditions. Brackets indicate multiple groups with significantly different OCP 

 

with simple effect was performed to assess statistically significant differences between groups. A 

95% confidence interval (p < 0.05) was taken to be significantly different. 

6.4. Results 

6.4.1. Electrochemical Experiments 

Open circuit potential (OCP) was measured for 30 mins prior to NEIS measurements for 

all samples and test groups (Fig. 17). OCP (mV) was significantly (p < 0.05) higher for all test 

groups when compared to the as-polished CoCrMo control surface. Per sample, the dry 

condition, 10 mM H2O2, and global surface had the greatest effect on OCP for the electrosurgical 

disc, H2O2 treated disc, and CoCrMo neck taper retrieval, respectively.  
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Impedance magnitude (|Z|) and phase angle (θ) were recorded and plotted against log of 

the frequency (Hz) for all samples and test groups (Fig. 18-23). |Z| was significantly decreased (p 

< 0.05) compared to control for all electrocautery (Fig. 18A) and surfaces treated with 5 and 10 

mM H2O2 relative to PBS (Fig. 18C). There appeared to be a strong correlation between 

decreasing |Z| and increasing concentrations of H2O2 as well as conditioned electrocautery 

surfaces (Wet, 1mm Agar, 3mm Agar). The dry contact region on the electrocautery disc was 

significantly lower in |Z| than all other groups and an order of magnitude lower than the control 

group. It should be noted that the jump in |Z| below 1 Hz in several impedance plots is an artifact 

of the EIS system that appeared in some, but not all scans.  

Phase angle (θ) plots (Fig. 18B, 18D) were able to reveal the electrochemical state of the 

surface, with some groups fit to a constant phase element (CPE) Randles circuit and others fit to 

one of two coated models as opposed to the standard Randles circuit (control). The presence of a 

shifted rise in the high frequency domain (5 mM, 10 mM), multiple peaks (Dry), or delayed 

decrease in phase angle (Wet, 3 mm Agar) when compared to the control indicates that the 

surface response behaves like a coated model. 

  The Bode plot responses for the retrieval groups displayed the largest coated model 

behavior and direct correlations between increasing levels of damage and impedance 

characteristics (Fig. 19-22). SEM micrographs of each Relative Goldberg score were placed 

adjacent to the Bode plots to better visualize the impedance curves. All of the Relative Goldberg 

score groups (Rel. GB 1-4) displayed a bimodal peak within the phase angle plot with peaks 

aligned with inflection points in the |Z| vs. frequency plot. This response is revealing of a coated 

model behavior, with the response appearing to be more pronounced with increasing Relative 
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Figure 18: Impedance magnitude (|Z|) (Ω·cm2) and phase angle (θ) plotted against frequency 
(Hz) of the electrosurgical damaged CoCrMo disc (A, B) and hydrogen peroxide treated disc 
(C, D). Each line represents one continuous measurement across the frequency range, and the 
‘hitches’ in the |Z| plots between 1E-02 and 1 Hz are gain delays within the software (ZView). 
These plots (A, C) display the differences in impedance magnitude, specifically in the lower 
frequencies that are representative of the sum of the solution and polarization resistances (RS, 
RP). The phase angle plots (B, D) display noticeable changes in rise of the phase angle in the 
higher frequencies, as well as the presence of multiple peaks, indicating multiple time 
constants and states of the surface/oxide film. These changes also align with the |Z| plots, 
where the inflection point of the impedance curve matches up with the inflection point of the 
phase angle at the same frequency 

 

Goldberg score associated with greater amounts of corrosion debris present. The global surface 

(GS) Bode plots (Fig. 23) are a holistic electrochemical response with the behavior alike to the 

most severely corroded region (Rel. GB 4). It appears the GS phase angle response has one peak 

with the overall magnitude and shape of the curve like that of a coated model. 
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Figure 19: Scanning electron micrograph taken in secondary (SE) with corresponding Bode 
impedance magnitude (|Z|) and phase angle (θ) plots of Relative Goldberg 1 test location. The 
micrograph displays evidence of perpendicular machining marks with minimal debris on the 
surface. The phase angle plot displays two peaks that align with the inflection points in the 
impedance magnitude plot, representative of a coated model with two separate CPE exponent 
constants  

 

Figure 20: Scanning electron micrograph taken in backscatter (BS) mode with corresponding 
Bode impedance magnitude (|Z|) and phase angle (θ) plots of Relative Goldberg 2 test 
location. The heterogeneity of the surface is clearly displayed by the dispersed black 
carbonaceous material and grey oxides atop the bright metallic surface. The phase angle has a 
more prominent high frequency peak when compared to the Rel. GB 1 location, with a 
decreased overall |Z| 
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Figure 21: Scanning electron micrograph taken in secondary (SE) with corresponding Bode 
impedance magnitude (|Z|) and phase angle (θ) plots of Relative Goldberg 3 test location. 
This location has more debris of varying sizes than the less severe test groups, with 
differences in the oxide topography in the micrograph. The phase angle plot bimodal peaks 
are more distinct than the Rel. GB 1-2 locations, in addition to a lower |Z| response. This is 
reflective of a more coated response with decreased resistive properties 

 

Figure 22: Scanning electron micrograph taken in secondary (SE) with corresponding Bode 
impedance magnitude (|Z|) and phase angle (θ) plots of Relative Goldberg 4 test location. The 
severity of the corrosion can be seen in the micrograph, where the highlighted oxide/debris is 
dispersed across the surface with large pieces of the oxide decayed in appearance. The phase 
angle and |Z| plots are similar to previous test groups, with a bimodal phase angle response 
and two inflections points in the |Z| curve. The phase angle and |Z| curves are both lower in 
magnitude than the other test groups, signifying the greatest effect on the resistive properties 
of the CoCrMo surface 
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Figure 23: Scanning electron micrograph taken in secondary (SE) with corresponding Bode 
impedance magnitude (|Z|) and phase angle (θ) plots of the global surface in low 
magnification. The difference in oxide film build-up, debris, machining marks and visible 
bare metal all contribute to a ‘smearing’ effect in the electrochemical responses, where the 
phase angle plot has one large distorted peak with a delayed decrease in intensity. The |Z| 
response has only one inflection point to match up with the phase angle, and the data taken 
from this response are most closely associated with the most severely corroded location (See 
Discussion, 6.6) 

 

CPE exponent (α), capacitance (Q) and impedance magnitude (|Z|) were measured and 

calculated using the non-linear least squares fitting algorithm within the impedance software 

(ZView) and the log of Q was plotted against the log of |Z| at 0.01 Hz (Fig. 24). α is a measure 

than relates to the non-ideal behavior of the CPE, where the closer α is to 1, the more the CPE 

behaves like a true capacitor. |Z| at 0.01 Hz was taken to be representative of the impedance of 

the surface, as opposed to the polarization resistance (RP) of the surface, due to the fact that the 

low-frequency plateau in the |Z| vs. frequency plots (Fig. 18-23) was not fully captured within 

the frequency range (20,000-0.01 Hz). The algorithm in the software extrapolates the |Z| 

response to an estimated RP value. Hence, we used |Z| at 0.01 Hz to better explain shifts in 

behavior using recorded data at a uniform frequency, rather than estimated/extrapolated results.  
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Figure 24: Constant phase element (CPE) exponent (A) and Q vs. |Z| (B-D) from CPE 
Randles and coated model non-linear least squares algorithm fit (ZView) of test groups. 
Exponent (α) group averages that are significantly different (p < 0.05, *) from the other 
sample sets are indicated. It should be noted that α for the control and 1 mM H2O2 groups are 
above 1, which is not possible, however the fitting algorithm can return such values and this is 
taken into consideration during analysis. CPE capacitance (Q) is plotted against impedance 
magnitude (|Z|) at 0.01 Hz of the electrosurgical damaged CoCrMo disc (B), hydrogen 
peroxide treated disc (C) and severely corroded CoCrMo neck taper (D). The samples treated 
with the highest concentrations of H2O2 and the most corroded retrieval surfaces (Rel. GB 4, 
GS) displayed the largest decrease in α.There are strong correlations between decreasing |Z| 
and increasing Q, where increasing the Q shifts the high frequency domain of impedance 
values towards the lower frequencies, thus decreasing the |Z| value  

 

There were no observable trends between levels of retrieval damage or electrocautery 

damage conditions and CPE exponent (Fig. 24A). Higher concentrations (5 mM, 10 mM) of the 

inflammatory-species resulted in lower CPE exponents. The wet surface had a significantly 

lower (p < 0.05) α than all other electrocautery test groups and the 1 mM H2O2 group had a 

significantly higher α than all other H2O2 groups, indicating that the wet surface and higher 

inflammatory-species concentrations lead to more of a non-ideal behavior. 
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CPE Q significantly increased and the |Z| decreased for all electrocautery and retrieval 

experimental groups (Fig. 24B, 24D), and for the 5 mM and 10 mM H2O2 test groups (Fig. 24C) 

when compared to the control surface (p < 0.05). There existed a strong inverse correlation 

between the two variables with calculated measures of fit confirming this observed trend (R2 = 

0.9544 for electrocautery, R2 = 0.8956 for H2O2, R2 = 0.8928 for retrieval). This behavior is due 

to when the Q increases, it shifts the transition point between resistive and capacitive response 

towards lower frequencies (left shift in the Bode plots, Fig. 18), which directly results in a 

decrease in |Z| at 0.01 Hz. This electrochemical phenomenon is most prominently seen in the dry 

contact test group with a significantly higher Q and lower |Z| than all other electrocautery test 

groups and the control (see Fig. 24B).  

6.4.2. High Magnification Microscopy 

Scanning electron micrographs of the electrocautery disc (Fig. 25) and severely corroded 

taper (Fig. 19-23) were taken in both secondary and backscatter modes at the sites of NEIS 

measurements. The surface topographies following electrocautery induced damage were 

consistent with what has been previously reported72, with appearances of flash melting, wave-

like features around a centralized pit with balled-up metal debris. The wet and agar-treated 

surfaces appeared to result in less microscopically apparent damage than the dry condition, 

indicating that the resistance and barrier provided by the PBS or agar limited the electrocautery 

induced damage.  
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Figure 25: Scanning electron micrographs taken in secondary (SE) at 2,000X magnification of 
the four different test conditions on the electrosurgical damaged CoCrMo disc. Micrographs are 
similar to previous reports of electrosurgical damage72 with localized melting and surface 
deposits, characterized by central pits and fluttering features. The four damage conditions 
appear to present different surface morphologies and states, agreeing with the unique spectra 
obtained during NEIS measurements 

Microscopic observations of the retrieved neck taper surface show nominal differences in 

the differently scored regions, which forms an interface with the stem taper, and, therefore, 

experiences assembly and subsequent fretting corrosion damage. Scanning electron microscopy 

(SEM) shows further evidence of micro-scale differences within the Relative GB scores from 1-4 

(Fig. 19-22). Assembly scratches are seen at the distal edge of the taper, which are longer in 

length and do not have parallel scars which is a feature of fretting damage. The central, Rel. GB 
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1 region (Fig. 19) shows more fretting type damage, with parallel scarring and shorter lengths (< 

100 µm). In backscatter mode, dark deposits (carbon-rich, confirmed by energy dispersive x-ray 

spectroscopy (EDS)) and intermediate contrast (oxide-based) deposits are seen in region 2 (Rel. 

GB 2, Fig. 19) which act as a coating on the original taper surface. Rel. GB 3-4 (Fig. 21-22, 

respectively) demonstrate more extensive damage, with the underlying microstructure revealed 

in some parts and a larger surface area covered by similar deposits as Rel. GB 2. The various 

states of the retrieval surface can further explain the differences in NEIS spectra, indicating that 

there might be specific conditions and materials that influence and bias impedance 

characteristics. 

6.5. Discussion 

In furthering our understanding of how different damage modes might affect 

electrochemical performance of CoCrMo surfaces, the NEIS technique offers some useful 

context to visual observations. The presence of an asymmetrical phase angle plot or a change in 

slope in the |Z| plot is an indication of the surface’s deviation from ideal or CPE Randles circuit 

(Fig. 18-23). Multiple peaks in the coated model correspond with multiple Randles-CPE 

elements (i.e., coated model) and two distinct states of the surface, usually build-up of debris in 

the high frequency domain and the thin native oxide film in the low frequency domain. 

Electrosurgery damage is characterized by flash-melting local areas where the plasma arc 

makes contact with the alloy surface (Fig. 25). Oxide defects are therefore a consequence, 

however the addition of material (PBS and/or agar, to mimic blood and tissue) forms a semi-

protective coating on the surface, which is corroborated by the impedance and phase angle plots 

in Figure 18B-C. Except for the 1 mm agar gel condition (CPE Randles), all three conditions 
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(Dry, Wet, 3 mm Agar) seem to exhibit a coated model-like impedance behavior. It is unclear at 

this time why the thinner agar test group (1 mm) appears to be less damaged (Fig. 25) with 

decreased electrochemical characteristics when compared to the thicker group (3 mm) with more 

prominent indications of surface damage. 

Regions of the disc exposed to different concentrations of H2O2 exhibited closer to a CPE 

Randles type behavior, as seen in Figures 18C-D. This is to be expected since hydrogen peroxide 

did not microscopically alter the passivating oxide film (based on SEM imaging analysis) on the 

disc surface, nor did it form a film or coating of any sort (images not shown). 

The retrieved neck taper demonstrates the benefits of this approach most explicitly. All 

four Relative Goldberg score regions exhibit a coated model behavior, even though physical 

deposits are only seen in Rel. GB 2-4 (Fig. 20-22). Rel. GB 1 region still shows oxide defects, 

and formation of irregular features on the surface, which can induce local capacitive or resistive 

characteristics, thereby altering the overall impedance characteristics of the surface. Overall, the 

use of imaging techniques and nearfield impedance measurements can be useful in describing the 

nature of the surface and its corrosion resistance properties. The electrochemical characteristics 

(OCP, |Z|, Q) of the retrieval global surface (GS) (A = 0.110 cm2) were measured or calculated 

and most closely associated with the locally scored region of 4. This is due to the fact that the 

overall |Z| of the surface is determined by the integral over the area of the reciprocal of |Z| i.e. the 

lowest |Z| regions will bias and shift the signal towards the most severely damaged regions. OCP 

and Q were highest in the GS compared to all other test groups, and the GS had the lowest 

measured |Z| for the retrieval group. 



81 
 

It was the goal of this study to develop reproducible protocols that could capture key 

electrochemical-surface properties in a location-specific manner and assist in the subjective 

retrieval assessment, i.e. Goldberg scoring system. Our data agrees with previous studies on the 

heterogeneities that exist on metallic biomaterial surfaces. For example, CoCr wallstent wires 

have reported nonuniform electrochemical properties, such as interfacial resistance and 

capacitance148, where significant changes in impedance values were associated with premature 

fracture of the wallstent. Indira and Nishimura149 similarly observed an impedance drop over 

scratched Cr-steel surfaces compared to the unabraded areas, with increasing chromium content 

resulting in higher impedance values and increased corrosion resistance in oxidized scratched-

locations. It was also reported that chloride ions and oxygen molecules, serving as reactive 

species during reduction, accelerated the corrosion process based on EDS spectra of the corroded 

Cr-steel surfaces. Balusamy et al.150 also studied  scratched surfaces and noted that abraded 

epoxy on top of carbon steel resulted in a decrease in |Z| due to an accumulation of intermediate 

corrosion products as opposed to decreased |Z| from water induced adhesion loss. 

The NEIS protocol also provides an alternative technique in capturing the area-

normalized electrochemical impedance data with respect to other reported localized 

electrochemical impedance spectroscopy (LEIS) methods151. Others like Bayet et al.152 have used 

a scanning vibrating electrode technique (SVET) to measure local potential and current to define 

impedance during simulated corrosion. Wittmann et al.153 detected chemical and physical defects 

like absorbed oil and subsurface bubbles of organic coatings on steel using a five-electrode 

system with a split microreference electrode. Using a scanning electrochemical microprobe, 

Zhong et al.154 found that impedance properties of oxide film defects are both size and time 

dependent. The oxide film repassivation is affected by the accumulation of localized corrosion 
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byproducts over time for defects measuring under 200 µm in diameter, whereas defects larger 

than this were resistant to the effects of byproduct accumulation and time due to the larger open 

geometry of the defect.  

The NEIS protocol could be used to further investigate the breakdown conditions at the 

grain boundary within several alloys susceptible to intergranular corrosion. Annergren et al.154, 

155 successfully used LEIS protocols to study pit initiation and growth on iron-chromium alloys, 

specifically noting how the EIS response at the active sites differed from the global spectra with 

location and time-influenced contributions from the passive areas. Baril et al.156 used LEIS 

techniques on as-cast AZ91 magnesium alloy in Na2SO4 electrolyte, noting how the alloy 

corrodes at the grain boundaries with significantly decreased impedance properties before the 

rest of the alloy body. We would expect to see similar results using our NEIS techniques during 

tribocorrosion of the CoCrMo surface due to the alloy’s microstructure with metal carbides 

corroding preferentially during wear133.  

The limitations of this technique exist in the feasibility of integrating it as a real-time 

diagnostic during revision surgery. Ideally, NEIS could be applied by a clinician in the operating 

room to determine the integrity of the surface in a very short time-scale with specific spectra 

ranges corresponding to a failed or near-failed implant. Measuring frequencies in the lower range 

corresponding to the state of the thin oxide plates is not currently practical in a surgery 

environment given the current time allotted per run (~ 2 hrs to measure down to 0.01 Hz at 10 

points per decade). Also, the spectra obtained from the NEIS technique is to an extent, a function 

of the properties of the test method itself. Solution resistance and pH, ambient temperature, and 

time removed from physiological conditions will all impact the electrochemical properties and 
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oxide film physical properties. It is also possible that various corrosion mechanisms and 

materials on the surface share similar ranges of measured impedances, thus requiring secondary 

confirmation for failure-associated corrosion types via high magnification imaging. Currently, 

this technique presents itself as a powerful alternative and/or supplement to visual inspection of 

retrievals given the correlations between higher corrosion scores (Goldberg scale) and decreased 

impedance measurements. 

6.6. Conclusion 

Impedance monitoring using NEIS techniques provides a complementary way to assess 

surface heterogeneities that are otherwise estimated subjectively. The NEIS results suggest that 

wetted surfaces damaged by electrocautery-induced plasma arcs, higher concentrations in 

hydrogen peroxide, and higher relative Goldberg scores result in significant changes in 

impedance and other electrochemical properties compared to the as-is polished CoCrMo surface. 

The work in this study provides a simple method for useful and reliable feedback for inspecting 

mixed damaged mode metallic surfaces. Developing relationships between extent of local 

damage and locally measured electrochemical properties is advantageous to the field of 

orthopaedics because it will lead to better diagnostics during retrieval analysis, supplementing 

the often subjective and qualitative clinician-based assessment. 
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7.1. Abstract 

Previous models of synthetic synovial fluid have been developed to address specific 

questions related to tribological interactions with implant materials in the absence of cells. These 

models have generally included one single organic additive variation with the intended goal of 

measuring wear properties. This has resulted in a gap in knowledge of the interplay between 

multiple joint fluid species, tribocorrosion processes and cell processes that more closely 

represent the periprosthetic joint environment. The purpose of this work was to determine which 

synovial fluid components greatly influenced solution and material properties in the presence of 

cells with the intended development for future use in cell culture-tribocorrosion experiments of 

orthopaedic alloys. Using a Taguchi orthogonal array design of experiment, we were able to 

investigate individual contributions from five independent variables at 2 or 4 levels (ratios or 

concentrations) on 13 individual responses. The responses measured consisted of cell and 

solution response, as well as the direct current and impedance response. Using level average 

analysis, it was found that altering the hyaluronic acid (HA) to lecithin (PL) ratio resulted in the 

greatest effect on 12 of the 13 responses, with significant effects (p < 0.05) on the means (cell 

viability (%), reduced glutathione (GSH) intensity output (I/IO), pH, constant phase element 

(CPE) capacitance (Q)) and signal-to-noise (S/N) ratios (GSH I/IO, pH, solution resistance (RS), 

Q). No single factor significantly affected each response, therefore reduced models can be made 

from our data set depending on the desired response. Solution 13 (HA: PL 4 (level), A:G 1, 

[H2O2] 2, [Co2+] 2, [Cr3+] 1) resulted in the greatest decrease in cell viability in addition to 

relatively (compared to all other solutions) large increases in pH and GSH I/IO. Given this 

information and how it relates to the joint fluid environment, this solution is recommended to 

mimic severely inflamed joint fluid in a cell culture-tribological setting. Synthetic synovial fluid 
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is very difficult to model as the system surrounding a joint is dynamic in nature, and by using a 

condensed factorial design (Taguchi approach), we were able to study and determine which 

factors might be contributing to the overall behavior at the solution-metal interface. 

Keywords: synthetic synovial fluid, CoCrMo, Taguchi methods, cell viability, electrochemical 
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7.2. Introduction 

There have been approximately one million metal-on-metal (MoM) total hip 

arthroplasties (THAs) implanted worldwide with the primary goal of restoring patient quality of 

life157. The most common cases for revision within a THA are infection, aseptic loosening, or 

painful inflammation due to adverse local tissue reactions (ALTR)158. ALTR is hypothesized to 

originate from degradation of the material’s bearing surfaces where soluble wear particles are 

engulfed by surrounding tissue159 leading to fibrosis, necrosis and aseptic lymphocytic vasculitis-

associated lesions (ALVAL)160, however the exact origin of ALTR remains unknown or is not 

universally accepted. Revision and removal of implants associated with ALTR can be assessed 

through pain, discomfort and detailed visual inspection of the implant surface, however retrieved 

synovial fluid analysis can reveal in much more detail the unhealthy state environment of the 

periprosthetic joint.     

Synovial fluid plays a critical role within joints by providing lubrication, both 

hydrodynamic and boundary161 and reducing friction between articular cartilage during 

movement162. Healthy synovial fluid is principally made up of hyaluronic acid (HA), proteins, 

proteoglycans and phospholipids, in addition to other smaller constituents163. Synovial fluid 

diagnosis can be both quantitative and qualitative by assessing the fluid’s color, viscosity, and 

white blood cell count, amongst other factors, with strong correlations existing between wear 

damage and metal ion concentrations in serum and synovial fluid164, 165. Inflamed, osteoarthritic, 

infected and otherwise unhealthy joint fluid can contain a variety of indicators such as high metal 

ion, ROS, phospholipid and protein concentrations, oxide and wear debris, as well as degraded 

proteoglycans such as lubricin and most notably, lower molecular weight HA166-169. 
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The standard for simulating synovial fluid during in vitro wear tests is fetal bovine serum 

(FBS) due to its viscosity and lubricating characteristics, however there has arisen concerns as 

far as the simplicity of this solution, degradation and precipitation of proteins, and 

electrochemical characteristics and accuracy of joint simulation170. It has been reported that 

retrieved synovial fluid has electrochemical properties that differ drastically from FBS, chiefly 

hypothesized due to the effects of ROS, with open circuit potentials (OCPs) related to the color 

of the fluid and corrosion rates much larger than expected171. These properties were also shown 

to have a direct impact on CoCrMo alloys after immersion when compared to phosphate buffered 

saline (PBS) and water, where the retrieved synovial fluid created a thin oxide-hydroxide 

layer172. 

It is well documented that some of the major constituents of synovial fluid not found in 

FBS such as HA and metal ions directly impact inflammation properties, surface-solution 

interactions and organometallic composite layer formation surrounding an artificial joint. HA in 

addition to proteoglycans and proteins competitively adsorb to the surface, contributing to a 

multilayer film composite on top of the metal-oxide film and underneath a much thicker 

albumin-phosphate layer173. Albumin and phosphates adsorb to the surface, thus altering the 

passive conditions and capacitive electrochemical behavior, and ultimately the corrosion 

susceptibility of the implant. Amino acids react with metallic surfaces to form another type of 

organometallic oxide composites that aid in lubrication properties, specifically reducing friction 

and wear174. MoM hip replacements elevate local levels of cobalt (Co2+, 30 µM) and chromium 

(Cr3+, 25 µM) ions in the synovial fluid with wear compared to normal whole blood levels (0.005 

µM) while having a direct impact on human osteoclast and osteoblast viability in vitro175, 176. In 

comparison, metal-on-polyethylene (MoP) hip replacements release far less polyethylene (PE) 
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particles than metal ions from MoM hip replacements, however the actual volume of PE particles 

is much higher due to their relative size with respect to metal ions30. Similarly, a metal ion dose-

dependent non-linear lymphocytic response produced by the bearing surface contributing to 

surface necrosis and inflammation has been studied and defined177. 

While the above studies have explored the role of synovial fluid interactions with 

metallic surfaces in vivo, there is little work focused on developing appropriate simulated 

synovial fluid compositions for in vitro analysis of tribocorrosion and cell response/interaction.  

This coupling of the tribocorrosion processes with living cell systems in vitro will further 

advance our ability to assess the interactions between biomaterials-focused degradation 

processes and the associated biological inflammatory and cell-killing processes associated with 

ALTR. Such an in vitro test approach could assist in asking and answering fundamental 

questions about tribocorrosion degradation and ALTR. 

Therefore, the goal of this study was to create synthetic synovial fluid using a simplified 

factorial design (Taguchi) that could be tailored for tribocorrosion-based experiments involving 

cell culture. By applying a Taguchi design using multiple factors and levels, we were able to test 

a range of compositions representing healthy and diseased or inflamed joint fluid in order to 

determine which components of synovial fluid most significantly influence material and 

electrochemical properties while minimizing experimentation time and supplies used. This work 

explores specifically the effects of HA to phospholipid (lecithin) (HA:PL) and albumin to 

globulin (A:G) ratios, as well as the presence of metal ions (Co2+, Cr3+) and ROS (H2O2). Factors 

were assessed using a level average analysis technique on 13 different dependent variables, split 

into three categories (cell and solution response, direct current (DC) response, and alternating 
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current (AC) response). Analysis methods were used to determine significant and insignificant 

competing factors for use in future tribocorrosion formulations. 

7.3. Materials and Methods 

7.3.1. Taguchi DoE 

The Taguchi method was invented by Genichi Taguchi for assessing how different 

factors and levels within the factors influence the overall mean and variance178. Taguchi methods 

are systematically designed into three components: orthogonal design, experimentation and 

analysis. The experimental design is set-up to collect data in order to determine which factors 

and levels have the greatest influence on the output while minimalizing experimentation. The 

correct array is assembled based on same-level factors or a mixed model. The statistical 

independence of these arrays allows for the separation of confounding variables in an accurate 

and reproducible manner. Arrays can be identified in the form LA(BC) where A denotes the 

number of experiments, B represented the number of levels per any given factor, and C 

symbolizes the number or factors or columns within the array (array dimensions, A×C). For 

mixed level models (multiple factors with different levels), a secondary designator can be 

applied within the parentheses as such LA(BC×DE). 

There are several techniques within Taguchi array analysis that can be used to report 

statistical significance and differences within individual trials. Level average analysis determines 

the average effect of each factor within the array specific to the level chosen, with the overall 

goal of determining the independence or mixed-factor interaction effects. Level average (Lm) can 

be calculated as such 
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𝐿𝐿𝑚𝑚 = 𝐴𝐴𝐴𝐴𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒(𝑇𝑇1 + 𝑇𝑇2 + ⋯𝑇𝑇𝑛𝑛)        [15] 

where T1 is the first trial result, T2 is the second trial result, etc., and n is the number of trials. 

For example, if there were four trials run (T1, T2, T3, T4) and factor A consisted of two levels 

(A1, A2), then the level average calculations would be 

𝐿𝐿𝐴𝐴1 = 𝑇𝑇1+𝑇𝑇2
2

           [16] 

𝐿𝐿𝐴𝐴2 = 𝑇𝑇3+𝑇𝑇4
2

           [17] 

where LA1 is the average effect of factor A at level 1 and LA2 is the average effect of factor A at 

level 2. The impact of each factor or range (Δ) is the difference between the highest and lowest 

average response, or in this given example, 

Δ𝐴𝐴 = |𝐿𝐿𝐴𝐴1 − 𝐿𝐿𝐴𝐴2|          [18] 

All the factors within the array can be arranged and analyzed using this method in order 

to separate out the strongest and weakest factors within the design where the larger the range, the 

stronger the effect of that level. 

7.3.2. Taguchi DoE L16(42•23) 

Sixteen trials composed the Taguchi orthogonal array (Table 2) to investigate the effects 

of two four-level variables: HA:phospholipid (HA:PL) and albumin:globulin (A:G) ratio; and 

three two-level variables: [Co2+], [Cr3+] and [H2O2] concentration. The four-level factors were 

set-up to mimic healthy, early osteoarthritic/inflamed (EOA), late osteoarthritic/inflamed (LOA) 

and severely inflamed/infected joint fluid material ratios found in supporting literature. Factor 
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Table 2: Taguchi experiments layout (levels), L16(42•23) 

 

levels were influenced by previous studies and reports regarding composition of retrieved and 

synthetic synovial fluid as well as cell and material effects due to inflammatory-species and 

metal ions. 

 It has been reported that healthy synovial fluid contains 20 g/L proteins, an albumin to 

globulin ratio range of 1.6 to 1.8, 2-3 wt % HA and 300 nmol/mL phospholipids163, 170. Of the 

components listed, only protein concentration has a current ISO standard (20-40 g/L) for 

mimicking joint fluid properties in knee joint wear simulators179. Unhealthy joint fluid increases 

in protein and phospholipid content to around 60 g/L and 750 nmol/mL, respectively, with a 

decreasing albumin to globulin ratio of 1 and decreased HA wt % (0.3-1.8)163, 170. There have 

been several studies reporting metal ion concentrations (Co2+, Cr3+) of retrieved joint fluid from 

primary revisions (0.005 µM) to end of product life-cycle (25-30 µM, 54-113 µg/L)164, 165, 175-177. 

Previous work in our lab has tested the killing effects of hydrogen peroxide on cells cultured on 
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Table 3: Designed Taguchi factors and levels 

 

CoCrMo discs, where at 0.8 mM H2O2, 50% of U937 monocyte macrophage-like cells were 

viable with a complete lethal effect at 1 mM180. 

Using this collected information, four levels of HA:PL and A:G were created with 2 

levels of [H2O2], [Co2+] and [Cr3+] (Table 3). For levels 1-4, HA and albumin content decreased 

with lecithin and globulin content increasing. HA wt% decreased with increasing level, with 

successive levels 

signifying decaying HA 

or increase 

inflammation. Total 

protein concentration 

(A+G) increased with 

increasing level, where 

level 1 was consistent 

with healthy joint fluid 

protein levels and level 4 was consistent with severely inflamed protein levels. The three 

inflammatory-species factors were tested at either a zero concentration (level 1) or 1 mM for 

H2O2 and 0.1 mM for [Co2+] and [Cr3+] (level 2). It should also be noted that we chose to apply 

dynamic ratios for HA:PL and A:G rather than separating the factors into 4 concentrations 

([HA], [PL], [A], [G]). This was justified by several supporting reports detailing concentrations 

of these constituents in retrieved joint fluid, and our goal of developing the most comprehensive 

and repeatable model.  
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The desired effects (13 dependent variables) were measured in the presence of polished 

CoCrMo surfaces and separated into three categories: cell and solution response [cell survival 

rate (viability) of RAW 264.7 macrophages, induced macrophage reduced glutathione (GSH) 

production intensity (I/IO) and solution pH], direct current (DC) response [OCP, corrosion 

potential (ECORR) and current (iCORR), passivating current (iPASS), breakdown potential (EBREAK), 

current at -800 mV (vs. Ref)] and alternating current (AC) response [solution resistance (RS), 

polarization resistance (RP), constant phase element (CPE) capacitance (Q) and CPE exponent 

(α)]. 

7.3.3. Materials 

Phosphate buffered saline solution (PBS 1X), Dulbecco’s Modified Eagle’s Medium 

(DMEM 1X), fetal bovine serum (FBS), penicillin/streptomycin (PSG), hyaluronic acid (HA), 

lecithin (PL), bovine serum albumin (A), bovine gamma globulin G (G), cobalt(II) chloride 

hexahydrate (CoCl2 • 6H2O), chromium(III) chloride hexahydrate (CrCl3 • 6H2O), hydrogen 

peroxide (H2O2) and anhydrous ethyl alcohol (EtOH) were all used as received (Fisher 

Scientific). Cell viability (MTT) and glutathione detection (ThiolTracker Violet) assays were 

used as received and operated using recommended instructions (Fisher Scientific). 

Solutions were synthesized by adding 1% (v/v) PSG to DMEM 1X, then adding factors 

(HA, PL, A, G, H2O2, Co2+, Cr3+) one at a time until fully dissolved and mixed. pH was 

measured (n=3) prior to all cell culture and electrochemical experiments. 
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7.3.4. Sample Preparation 

High-carbon CoCrMo alloy discs (ASTM F-1537) were polished up to 600 µm grit, 

rinsed with deionized water, sonicated with 70% ethyl alcohol for 30 mins and dried using 

nitrogen before each polarization and impedance scan. 

7.3.5. Cell Culture 

The principle cell types found in the synovium (lining of the cartilage) and synovial fluid 

are macrophage-like cells responsible for phagocytic and inflammatory functions, and fibroblast-

like cells (chondrocytes) responsible for structural support and molecule transport phenomena 

such as the rapid diffusion of glucose throughout the joint space or enhancing the lubrication by 

decreasing the surface friction181, 182. For the purposes of this work, macrophages were chosen to 

represent the overall cell response. RAW 264.7 macrophages (ATCC, Rockville, USA) were 

cultured in 75 cm2 Falcon T-flasks in DMEM 1X medium with 10% (v/v) FBS and 1% (v/v) 

PSG at 37°C (5% CO2) until confluent. Cells were seeded at a density of 1×105 cells/mL in 24 

well tissue culture-treated plates, and all tests were conducted using cells of the same passage for 

consistency. Test solutions (1 mL) were added to wells and three control wells (1 mL DMEM + 

10% FBS + 1% PSG) were incubated for 48 hours. 

7.3.6. MTT Assay 

Test solutions were removed and fresh growth media + 10 µL of 12 mM MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was added to each well following 48 

hours incubation. The resulting mixture was then incubated for 4 hours at 37°C (5% CO2). The 

blue crystals were then dissolved in 50 µL of DMSO, thoroughly mixed using the pipettor and 
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incubated for 10 minutes. Absorbance was measured at 540 nm. All measurements were repeated 

in triplicate and cell viability (%) was calculated as such: 

𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶 𝐴𝐴𝑖𝑖𝑟𝑟𝑣𝑣𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑣𝑣 (%) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑜𝑜 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠 𝑡𝑡𝐴𝐴 𝐴𝐴𝑠𝑠𝑚𝑚𝑠𝑠𝑐𝑐𝐴𝐴𝑡𝑡𝐴𝐴𝑠𝑠 𝐴𝐴𝑠𝑠𝑛𝑛𝐴𝐴𝑠𝑠𝑠𝑠𝐴𝐴𝑐𝑐 𝑜𝑜𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 ×100%
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑜𝑜 𝑡𝑡ℎ𝐴𝐴 𝐴𝐴𝐴𝐴𝑛𝑛𝑡𝑡𝐴𝐴𝐴𝐴𝑐𝑐 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴

  [19] 

7.3.7. Glutathione Detection Assay 

Test solutions were removed and 100 µL ThiolTracker Violet dye solution (dissolved in 

DMSO) in thiol free buffer (1 mL) was added to wells. Following incubation for 30 minutes, cell 

fluorescence (IGSH) measured using the appropriate excitation and emission wavelengths (λex = 

404 nm, λem = 526 nm) against the control (IO). Fluorescence was calculated as such: 

log �𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺 𝐼𝐼𝑂𝑂� �  =  log �𝑛𝑛𝑐𝑐𝑠𝑠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑜𝑜 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠 𝑡𝑡𝐴𝐴 𝐴𝐴𝑠𝑠𝑚𝑚𝑠𝑠𝑐𝑐𝐴𝐴𝑡𝑡𝐴𝐴𝑠𝑠 𝐴𝐴𝑠𝑠𝑛𝑛𝐴𝐴𝑠𝑠𝑠𝑠𝐴𝐴𝑐𝑐 𝑜𝑜𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑐𝑐𝑠𝑠𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴 𝐴𝐴𝑜𝑜 𝑡𝑡ℎ𝐴𝐴 𝐴𝐴𝐴𝐴𝑛𝑛𝑡𝑡𝐴𝐴𝐴𝐴𝑐𝑐 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴

�   [20] 

7.3.8. Electrochemical Experiments 

CoCrMo discs with an exposed surface area of approximately 4 mm2 were submersed 

into solution within an electrochemical chamber. Silver chloride-silver (Ag/AgCl) and platinum 

(Pt) wires served as the reference and counter electrodes, respectively. Samples were held at 

open circuit potential (OCP) for 60 mins, allowing for potential stabilization prior to EIS 

measurements (±0 V vs. OCP) across a frequency range of 20,000 to 0.01 Hz using a cyclic 10 

mV sinusoidal wave. Interfacial polarization resistance (RP), constant phase element (CPE) 

capacitance (Q), CPE exponent (α), and solution resistance (RS) were fit to the Randles circuit 

model made up of basic resistors and capacitors using a non-linear least squares fitting program 

in ZView (Scribner, Southern Pines, NC). CoCrMo surfaces with complex responses were fit to 

one of two electrically equivalent coated models where two resistors and CPE capacitors are 
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used to model the impedance behavior. The larger reported resistance represents the thin plated 

oxide layer in the lower frequency range (interfacial oxide resistance, ROX) whereas the smaller 

resistance is the thick material evident in the higher frequency range (corrosion resistance, 

RCORR). Following impedance measurements, anodic polarizations were performed from -0.2 

VOCP to 1VREF on samples at a scan rate of 0.5 mV/sec. Cathodic polarization scans were 

performed from +0.2 VOCP to -1VREF  at a scan rate of 0.5 mV/sec. Corrosion potential (ECORR) 

and current (iCORR) were calculated using Tafel slopes about the OCP. The passive current 

density (iPASS) was defined as the current density in the anodic region where increase in applied 

potential did not change the measured current density. The breakdown potential (EBREAK) of the 

protective oxide was defined as the potential at which the current density increased abruptly 

beyond the passive current density. EBREAK and iPASS were calculated by extrapolating the passive 

region and transpassive anodic lines of the polarization scan and determining the intersection 

point. Current at -0.8 VREF was used as a proxy for cathodic kinetics. 

7.3.9. Statistical Analysis 

Experimental techniques were repeated in triplicate (cell viability, GSH I/IO, pH), 

duplicate (OCP, ECORR, iCORR, RS, RP, Q, alpha) or single measurement (iPASS, EBREAK, i @ -800 

mV). Averages and standard deviations (SD) were reported and comparisons between solutions, 

factors and levels were made using Taguchi methods and Analysis of Variance (ANOVA). 

Signal-to-noise (S/N) ratios were reported where the larger the effect (maximized desired effect 

against low noise) was taken to be better. S/N ratios where the response is maximized was 

calculated using the following equation in the analysis software (Minitab) 
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𝑆𝑆
𝑁𝑁� = −10 × log10 �

∑ 1
𝑌𝑌2

𝑛𝑛
�         [21] 

where Y is the observed outcome for each of n trials. ANOVA was performed on all calculated 

means and S/N ratios. A 95% confidence interval (p < 0.05) was taken to be significantly 

different. 

7.4. Results 

The effects of five factors in synthetic joint fluid at different levels were assessed by cell 

and solution response, DC and AC electrochemical properties using a Taguchi orthogonal array. 

Taguchi analysis methods were compiled into various tables and charts (means and standard 

deviations, level average impact range table, and S/N ratio intensity and statistical significance 

tables) to determine the effect and significance of individual factors and levels. Tables 4-6 

display the means and standard deviations for properties relating to cell and solution response 

(Table 4), the DC response (Table 5) and the AC response (Table 6) for polished CoCrMo alloy 

exposed to the solution. 
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Table 4: Taguchi results, cell and solution response 

 

The effect of solution chemistry on cell culture response was assessed by comparing 

variables shown in Table 4. The cell viability (%) ranged from 118 to 55. The viabilities 

measured over 100% are explained by test solution wells having more surviving cells (greater 

absorbance) than the control wells, not an increase in cell proliferation. The GSH fluorescent 

intensity ranged from 1.47 to 1.11, indicating that all solutions produced a reduced glutathione 

intensity response. All solution pH values were slightly basic with a measured range of 7.98 to 

7.66. 

The effect of solution chemistry on CoCrMo corrosion performance was assessed by 

comparing variables shown in Table 5 (for DC response) and Table 6 (for AC response). The DC 

responses can be seen in Figure 26, where schematic lines indicate where EBREAK and iPASS were 

measured for all solutions with a 1X PBS control comparison. The measured stable OCP ranged 

from -300 mV to -450 mV. The corrosion current density at ECORR was measured to be between 
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Table 5: Taguchi results, DC response 

 

27.5 and 50 nA/cm2. The passive current density was between 1.50 and 2.50 µA/cm2. The 

breakdown potential was measured between +250 mV and +325 mV. These results were lower 

than those recorded for 1X PBS (iPASS: 3.70 µA/cm2, EBREAK: +500 mV).  
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Table 6: Taguchi results, AC response 

 

For EIS results, only constant phase element Q was affected by the solution chemistry. Q 

is a measure of interfacial capacitance and presence of albumin, phospholipids, etc. in solution is 

expected to change. The change in solution resistance RS is expected due to the presence of metal 

ions (Co2+ and Cr3+). 
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Figure 26: Passivation curves for all 16 test solutions and 1X PBS as a reference or control 
comparison. The synthetic solutions are not affected at the open circuit potential when compared to 
PBS, however during anodic polarization, the breakdown potentials and passivating currents 
decrease when compared to the control. It’s possible the solution additives have no effect on the 
resting electrochemical properties, however once polarized, the species have interacting affects 
with the CoCrMo surface and structure of the oxide film. 

 
Table 7 shows the ranked impact range (Δ) of the level average analysis of each factor (HA:PL, 

A:G, [H2O2], [Co2+], [Cr3+]) from 1-5, where 1 indicates the largest range for that individual 

response. The level average was calculated by averaging all the responses for that specific level, 

and the range signifies the difference between the highest and lowest average response for that 

factor. Overall impact range was also averaged per factor, where HA:PL had the greatest average 

impact (1.23) and H2O2 had the smallest averaged impact (4.23). Table 8 is a color-map with 

respect to the S/N ratio of all dependent variables where green indicates the highest S/N ratio and 

red indicates the lowest S/N ratio for each variable. Table 8 allows for the visualization of how 

each solution affected each response in terms of a measured signal. The maximized effects 

(largest numbers per response) are in in green with the lowest numbers in red. Because we 
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Table 7: Taguchi results, ranked impact range (Δ) 

 

 

weren’t trying to optimize any particular response, we chose to analyze all variables using the 

same S/N ratio calculation even though there are clear differences in meaning between high and 

low values when comparing variables (i.e. cell viability, pH, iCORR, Q, etc.). Tables 9-10 display 

any statistically significant (p < 0.05) associations between the factors and response (boxed and 

highlighted in red) based on the means (Table 9) and S/N ratios (Table 10) calculated. Some 

responses are not present in the table due to limited sample size (n=1). HA:PL ratio had a 

statistically significant effect (p < 0.05) on the most response means (cell viability, GSH, pH, Q) 

and S/N ratios (GSH, pH, RS, Q), while the presence of Cr3+ only had a significant effect on the 

RS means. OCP, ECORR, iCORR, RP and alpha means and S/N ratios were not significantly affected 

by any factor and Cr3+ did not significantly affect any S/N ratio. There exists a strong correlation 

between significantly affected means and S/N ratio. 
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Table 8: Taguchi results, S/N ratio. The heatmap visualizes the S/N ratio per individual 

response ranging from red (lowest S/N ratio) to green (highest S/N ratio) 

 

 

7.5. Discussion 

Using Taguchi methods, our design of experiment has allowed us to analyze individual 

effects from five different factors (2 or 4 levels) on 13 solution and material responses of 

CoCrMo alloy exposed to simulated joint fluid. By applying ANOVA to the means and signal-

to-noise (S/N) ratio responses as well as ranking the level average analysis impact range, it was 

found that the ratio of HA:PL had the greatest effect on nearly every response, followed by the 

ratio of A:G and the inflammatory-species/metal ion presence. This agrees with previous studies 

on organic additives in addition to mechanical processes influencing both solution and material 

properties in synthetic joint fluid (Figure 27). 
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Table 9: Taguchi results, Analysis of Variance on means (p < 

0.05, red) 

 

 

It has been reported that HA, bovine serum albumin (BSA) and a phospholipid 

(dipalmitoyphosphatidylcholine (DPPC)) increased third body wear and volume loss, and altered 

friction coefficients in ultra-high molecular weight polyethylene (UHMWPE) bearings against 

titanium alloys during pin-on-disc abrasion tests in Hank’s balanced salt solution183. Other 

studies have found that when albumin adheres to the biometallic surface, there is a decrease in 

wear184 and decrease in transfer of polymeric material into solution during tribocorrosion with 

increased lubrication 

properties185. Alternatively, 

other reports have confirmed 

that albumin increases the 

wear rate of CoCrMo surfaces 

during mechanical testing in 

‘biomimetic’ solutions 

containing HA and alendronic 

acid sodium186. Park et al.187 

found that CoCr femoral head microfrictional response was dependent on HA and DPPC 

concentrations, with the optimal concentration for lubrication within the synovium (minimal 

wear loss) being 3-4 g/L HA (close to physiological levels) and 0.2 g/L DPPC, however there 

were no combinatory studies on the effects of both variables on lubrication. With respect to 

electrochemical properties, the current density of CoCrMo surfaces immersed in HA-rich 

solutions decreases while a thick layer of calcium phosphate precipitates on the surface as a 

result of local reactions at the surface with calcium ions cleaving hyaluronic chains188. Lewis et 
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Table 10: Taguchi results, Analysis of Variance on S/N ratios 

(p < 0.05, red) 

 

 

al. found that the surface protein-ligand film formed in the presence of synovial fluid triggers a 

release of Cr proportional to the oxide film thickness172. 

While there is a vast catalogue of synthetic synovial fluid-based studies in addition to the 

ones mentioned previously, most to date have focused singularly on the improvement of 

mechanical or wear properties 

of the solution, with a limited 

scope in the presence of cell 

culture material. Wimmer et 

al.189 found that there exists a 

“mechanical mixing” process at 

the tribochemical reaction 

layers on the contact surfaces in 

MoM bearings, where organic 

composite material (nanocrystalline in structure initiated from the synovial fluid) hinders direct 

metal contact, which in turn limits wear and adhesion during sliding motion. Patterned 

microtexture designed to decrease the contact area has been shown to decrease wear loss of the 

polyethylene component and improve the longevity and anti-inflammatory properties159, 

however this model hasn’t tested the effects of elastic deformation or the in vivo 

elastohydrodynamic lubrication of the synovial fluid. Due to the complexity of all the different 

components present within synovial fluid that influence both mechanical and biological 

interactions, a Taguchi factorial design approach had to be adapted in order to determine which 

variables, concentrations and ratios have the greatest effect on the cell response and 

electrochemical properties of the synthetic synovial fluid. 
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Figure 27: Schematic of how biology (left) and tribological-induced electrochemical processes 
(right) affect surface characteristics surrounding a biometallic implant. Components of synovial 
fluid like proteins will bind to calcium ions as well as create a thicker organometallic film on top 
of the thin oxide film. The remaining calcium ions then react with surface electrons to cleave 
hyaluronic acid chains, thus decreasing the overall current density188 and decreasing the average 
HA molecular weight, as well as viscosity. There have been several reports detailing the 
outcomes of individual variables such as organic solution additives like albumin and hyaluronic 
acid (HA) or “mechanical mixing”189 and disruption of the oxide film, however the combination 
of all factors likely influences the solution and material properties in unpredictable ways. Our 
model takes into account principal synovial fluid and electrochemical characteristics and is able 
to differentiate between significant and insignificant variables for a given response   

 

 

Similar to our study, the Taguchi method has been applied to determine the optimal 

variable levels and combinations for desired effects with an overall focus on decreasing the time 

and cost of the study compared to a full factorial design190, 191. Ghalme et al.178 studied the effects 

of applied load and hexagonal boron nitride concentration (hBN) in silicon nitride (Si3N4) pins 

abraded against stainless steel (316L SS) discs. It was found that the interaction between the two 

factors resulted in the greatest effect on wear volume, followed by volume % of hBN and lastly 

the load. The optimal load + % hBN combination found in the orthogonal array analysis was 
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used to further validate a simulated annealing (SA) technique. Others have studied the 

interactions between multiple variables on the cytotoxicity (cytokines, growth factors, hormones, 

etc.) in K562 cells192 as well as the aging behavior (temperature, heating rate, humidity, gamma 

irradiation exposure, etc.) of UHMWPE193 using a Taguchi orthogonal array. Kallel et al.194 

applied an L8(24) array to measure the effects of stirring speed, nature of serum, concentration of 

serum and nature of media on cell proliferation and monoclonal antibody (mAb) production from 

a spinner flask hybridoma culture. 

Analyzing the data collected from our Taguchi approach for optimizing synthetic 

synovial fluid, we can accurately predict the cell, solution and material behavior given dynamic 

solution concentrations. Due to the complexity of all interacting and competing variables, it is 

difficult to make a recommendation for one given solution to represent healthy, mildly 

inflamed/corroding, or severely inflamed/infected/corroding. Alternatively though, we can report 

what factors significantly affect individual responses linked to clinical significance. In addition 

to this, factors that don’t have a significant effect on the S/N ratio indicate that the strength of the 

signal is not impacted by the changing level of the factor, and thus a reduced model can be made. 

For example it was found that that HA:PL and [Co2+] significantly influenced cell viability while 

all other factors (A:G, H2O2, Cr3+) did not. Therefore, only HA:PL and [Co2+] should be 

considered when testing solutions for cell viability. Additionally, HA:PL was the only variable 

with an effect on Q, indicating that there could be an adhered layer containing quantities of HA 

and/or PL that controls the CPE capacitance of the CoCrMo surface. These results agree with the 

previously mentioned reports on the effects of hyaluronic acid188. 
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 We hypothesize that we did not observe significant effects of the hydrogen peroxide or 

metal ions on many of the responses tested due to interacting effects with the organic molecules 

as well as differences in the RAW 264.7 macrophages compared to previously used cell types. It 

is possible that the metal ions are forming organometallic frameworks that are too large to be 

phagocytized by the macrophages, and thus only affected solution resistance. Our group has 

previously reported that 1 mM H2O2 in 1X PBS had a complete lethal effect on U937 cells 

cultured on CoCrMo discs180, while the lowest viability achieved in these experiments when 

using 1 mM H2O2 was 55%. The GSH I/IO results suggest that the RAW 264.7 cells were 

effectively metabolizing ROS using GSH, with several high viability readings corresponding 

with larger GSH intensities. This would imply that the larger cell viabilities are associated with 

high thiol concentrations and decreased intensities are associated with lower intracellular levels 

of non-oxidized GSH, however there were no definitive correlations between these two 

responses. It is also possible that the many solution ions and molecules reacted with the H2O2 

molecules, cleaving the highly toxic ROS into the more reactive hydroxyl radicals as well as the 

less potent hydroxide ion (OH-) and water molecules. This agrees with reports of enzymatically 

generated superoxide radicals from phagocytizing polymorphonuclear leukocytes reacting with 

hydrogen peroxide, forming hydroxyl radicals that then depolymerize hyaluronic acid in bovine 

synovial fluid195, 196. 

Analyzing the electrochemical properties with respect to the 1X PBS control comparison, 

it also remains unclear why the OCP was unaffected compared to the breakdown potentials and 

passivating current. Breakdown potential was the only response where HA:PL ratio did not have 

the largest impact range, but rather Co2+ ions did. Chromium ions also only had a significant 

effect on the solution resistance. We hypothesize that once the synovial solution components are 
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polarized, there are solution-material interactions involving the different metal ions and organic 

additives that directly impact the properties of the surface and oxide film. Others have similarly 

documented the effects of surface adsorption, where increased potentials increase the rate of 

adsorption and consequently, the breakdown of the passive film197. It remains unclear at this 

moment from a chemical and electrochemical interaction viewpoint why H2O2, Cr3+ and Co2+ 

didn’t have a more significant effect on cell response and further studies should be conducted on 

these variable interactions. These effects will need to be characterized to better understand the 

kinetics and composition at the surface. 

There exists several physical limitations when simulating inflamed joint fluid that cannot 

be accounted for in vitro such as tissue-induced systematic expression of matrix-degrading 

enzymes (metalloproteinases, aggrecanases), cytokines, chemokines and pro-/anti-inflammatory 

markers60 and pressure gradient flow and exchange with circulating blood198. These factors, in 

addition to several others, make it nearly impossible to accurately predict local concentrations of 

synovial components within the joint space. It is likely that there are much higher concentrations 

of metal ions, ROS, and metabolites near and surrounding the local space around the articulating 

surfaces within the periprosthetic joint that dominate solution and surface properties, eventually 

diffusing into the greater solution volume. This presents a challenge that has yet to be 

extensively characterized in an in vivo setting. 

The solution set tested is still elementary in terms of components present within a 

periprosthetic joint, however it is more advanced and comprehensive in terms of native 

constituents than pure FBS or saline-buffered solutions. There is no one solution tested that we 

can recommend that would simulate native joint fluid in a normal setting or an inflamed 
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environment. The purpose of this work was to categorize interacting effects between variables at 

different levels, and it was shown that HA:PL has the greatest overall effect on both material and 

biologics response. That being said, Solution 13 (HA: PL 4 (level), A:G 1, [H2O2] 2, [Co2+] 2, 

[Cr3+] 1) showed the greatest decrease in cell viability (55%) with complimentary large S/N 

values in pH, GSH I/IO, and current at -800 mV (vs. Ref). This indicates that this solution set in 

addition to being the most cytotoxic, produces the best signal when capturing GSH activity and 

pH response as well as current at fretting-like cathodic voltages. Compiling all these responses, 

this solution most accurately represents the inflamed joint environment compared to all other 

solution tested in this study. 

7.6. Conclusion 

Retrieved synovial fluid surrounding a periprosthetic joint can describe the condition of 

both the joint and the implant, ranging from normal functioning to corroding and failing. The 

fluid can contain several markers such as metal ions, ROS and degraded organic material like 

hyaluronic acid chains, however it is not widely studied the effects of changing synovial fluid 

against biometallic alloys. Our work provides a preliminary study measuring the effects of 

organic solution additives and inflammatory-species on both solution and material properties. 

We believe that our solution set and analysis have provided key information as to what factors 

influence implant performance in vitro, however we expect that these properties would change in 

vivo due to the sheer complexity and dynamic nature of the native joint space. 
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8. Discussion 

8.1. Summary 

Orthopaedic biomaterials have been developed, refined and implemented for the intended 

purpose of restoring the quality of life of an individual suffering from pain, discomfort or any 

number of issues associated with failing joints. These biometallic materials provide excellent 

load-bearing properties in addition to their natural corrosion resistance by ways of a thin passive 

oxide film that forms on the surface. This film provides protection from the local tissue and 

synovial fluid, however it can be damaged through mechanical, biological, and electrochemical 

forces, leading to the cell-based attack and dissolution of the surface. One class of molecules that 

are present during this systematic physiological response are reactive oxygen species (ROS). The 

purpose of this dissertation was to characterize, define, and report clinically relevant levels of 

ROS produced and consumed in various aspects of the inflamed joint space. There are vast 

amounts of literature that define ROS in terms of mitochondrial and metabolic production, pro-

/anti-inflammatory cell signaling and in response to stimuli, chemokines/chemotaxis and foreign 

particles. Yet, the shortcomings of our understanding of ROS are how these processes are 

intertwined within the chronically inflamed periprosthetic joint. The work presented here, in 

addition to previous work within the Gilbert Lab, supports the feedback-loop hypothesis where 

inflammation and corrosion drive each other in a physiological setting. The significance of the 

body of work presented in this dissertation is that if corrosion and inflammation are the vehicles 

that drive this feedback-loop to its final destination (failure of metallic biomaterials and devices), 

ROS are the fuel. 
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The key techniques and models developed in this work are fluorescently labeling 

individual ROS near a cathodically-polarized CoCrMo surface, establishing the ‘electrochemical 

zone of viability’, NEIS and the synthetic synovial fluid repository. The current technology 

(DCFDA) for ROS detection is widely accepted, yet it autofluoresces and cannot differentiate 

between individual ROS. These shortcomings magnify the significance of our results because we 

are combining established protocols into a new technique that can be applied to various 

experiments in our lab-group without affecting experimental set-ups or solution chemistry.  

The ‘electrochemical zone of viability’ provides a basic understanding that in the low-end 

of the cathodic range that implants could be subjected to, macrophage-like cells are viable and 

pre-osteoblast-like cells are not. We believe this information is fundamental to our understanding 

of possible electrochemical-induced osteolysis surrounding an implant as well as the state of 

inflammatory cells during fretting corrosion-like cathodic excursions.  

The refined nearfield electrochemical impedance spectroscopy (NEIS) method was 

developed in this dissertation to establish local surface heterogeneities with respect to 

electrochemical properties, and it successfully characterized different CoCrMo alloy surfaces 

subjected to a range of corrosion and damage conditions. This technique can be applied to any 

surface, curved or flat, with the ability to control working area and solution properties with an 

emphasis on real-time damaging effects of ROS, ROI, RCS and RNS. There have been recent 

developments with regards to impedance analysis, and once a shorter timescale is achieved, the 

limits of this method won’t end in the lab. The instantaneous non-subjective (i.e., quantitative) 

assessment of retrievals will significantly reduce the time required and will limit the risk and bias 

when determining if an implant needs a revision or full replacement. Finally, the design of 
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simulated synovial fluid improves upon current technology and standards with respect to our 

understanding of material and solution interactions. Introducing more elements into experimental 

models like the synthetic synovial fluid study will introduce more room for interpretation, 

however it will also lead to more complex data analysis, reports, and new findings. The synthetic 

synovial fluid set tested is rudimentary in its concept and can include many more components, 

yet from our preliminary findings alone we have established the significant effects of HA, 

phospholipids and ROS on cell behavior and material properties using Taguchi methods.    

Combining all the methods studied and established in this dissertation, we now have the 

ability to experimentally measure ROS concentrations during specific potentials within the 

‘electrochemical zone of viability’ (while incorporating synthetic synovial fluid) and correlate 

cell death with individual ROS concentrations and solution parameters. Furthermore, we can 

analyze the surface following these tests using NEIS and see if the cell covered areas respond 

differently to NEIS AC signals than the surface not exposed to cells. We also have the ability to 

add ROS directly within the NEIS tip and further explore localized ROS contributions to 

corrosion behavior. This will provide further insight and build a more comprehensive benchtop 

model of ROS within a simulated periprosthetic joint environment. 

 Scientifically, the presence of ROS can be separated into three stages with respect to its 

presence and life-cycle in the joint space: 1) production, 2) consumption, and 3) reaction. In the 

collected research presented in this dissertation, we have defined the mechanisms and factors that 

contribute to ROS production (Chapters 4-5). We have measured by what means ROS are 

consumed (Chapters 4, 5, 7). And finally, we have investigated the lasting effects of ROS 

exposure on metallic surfaces (Chapters 6-7).  
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8.2. ROS Production 

 ROS production (OH·, H2O2) was measured using fluorophores through cathodic 

polarization of CoCrMo surfaces at varying potentials and time-scales. It was found that OH· is 

formed in detectable quantities using terephthalic acid as a dosimeter in the presence of solution 

hydrogen peroxide and surface electrons, confirming basic electrochemistry principles where 

hydroxyl radicals are one byproduct of hydrogen peroxide reduction47. Furthermore, hydrogen 

peroxide is produced in measurable quantities from the surface and detected using 

pentafluorosulfonylbenzene-fluorescein, where the fluorescein group is cleaved by hydrogen 

peroxide molecules at the targeted sulfonyl linkage75. This is also in agreement with 

electrochemistry techniques where solution water and oxygen are reduced using one of two 

electrons to form hydrogen peroxide and superoxide anion (O2
·-)79, although superoxide anion 

has not yet been detected using our protocol (See Future Work). Our results also indicate that 

H2O2 is produced in detectable limits at and below -600 mV (vs. Ag/AgCl) after 2 hours of 

polarization. While cells were not a part of this study (Chapter 4), it is likely that these results 

had a direct impact and are linked with those obtained from the cell electrochemical zone of 

viability study (Chapter 5), where we hypothesize that U937 cells mitigated electrochemically 

produced H2O2 using reduced glutathione (GSH) while MC3T3-E1 cells went into programmed 

cell death at voltages below -600 mV. This is in direct agreement with our electrochemical zones 

of viability established for the two cell lines, where MC3T3-E1 were not able to survive below -

450 mV (vs. Ag/AgCl). 

 Monocyte macrophage-like cells (U937) were exposed to a range of cathodic voltages in 

direct comparison to previous studies45, where it was found that cell phenotype directly 

influences the electrochemical zone of viability. U937 cells were able to survive (~25% viable) 
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from -1000 mV (vs. Ag/AgCl) to +250 mV (~93% viable) after 24 hours of polarization on 

CoCrMo surfaces, with a ‘90% zone of viability’ between -500 and +250 mV. These results 

suggest that the U937 cells are more resistant to the killing effects of ROS, metal ion elution, and 

deaerated solutions than pre-osteoblast-like cells (MC3T3-E1) that had a much narrower 

‘electrochemical zone of viability’ under the same test conditions (-400 < mV < +500)87. ROS 

were hypothesized to be the main killing agent behind the decreases in viability and that different 

cells contain different ROS-based defense mechanisms such as GSH. 

 Analyzing the broad spectrum of potentials that CoCrMo could be subjected to in vivo (-

900 mV vs. Ag/AgCl during abrasion96 < -250 mV at OCP < +600 mV during simulated 

inflammation using hydrogen peroxide50), there are several interacting mechanisms that are 

being influenced by ROS concurrently, with our results at the center of the discussion and in 

agreement with those previously reported. 

To better visualize what is happening (theoretically and from our data), we will briefly 

describe the events happening in the lower and upper potential ranges that metallic biomaterials 

may experience during normal activities. In the lower range of the potential spectrum (< -500 

mV): hydrogen peroxide and other ROS/ROI are produced continuously through reduction 

reactions, local oxygen concentrations are near-zero40, metal ions are released from the surface 

(mechanically)21 as well as through hydrogen peroxide interactions with the passive oxide film 

which decreases the polarization resistance of the surface. At the upper range of the potentials (> 

+500 mV), the passive barrier (oxide film) thickens, loses compactness and thus coefficient of 

friction is altered50, charge transfer kinetics increase and metal ions are actively 

electrochemically eluted from the surface8, and Cr3+ is oxidized to chromium(VI)128 when the 

potential is above the transpassive potential (ca. 500 mV vs Ag/AgCl). 
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ROS plays an integral part in redox kinetics (altering the oxide and raising the oxidizing 

potential of the solution) in addition to triggering the onset of several systematic reactions 

(described above). While it is important to consider how ROS are produced and interact with the 

oxide film, it is equally important to understand how they are consumed within the solution-cell-

metal composite interface and may affect the biological processes of the cells.  

8.3. ROS Consumption 

 Using similar fluorescent probing techniques developed to measure ROS production, we 

were also able to measure ROS consumption. Terephthalic acid (TA) binds to OH· preferentially 

compared to other ROS, however it was found in our trials that it binds to free sodium and 

iron(II) ions over TA. Therefore, H2O2 in deionized water (DI) was introduced as the source of 

ROS with the polarized surface free to cleave solution H2O2. It was from these trials that we 

were able to capture hydroxyl radicals through the degradation of hydrogen peroxide, a 

phenomena that is known to occur at the surface and can be confirmed from our data. Hydrogen 

peroxide and TA were tested in the absence of polarized surfaces and there was no net increase 

in fluorescence, indicating that the charged surface was necessary in the conversion of H2O2 

molecules into OH·. While it is crucial to understand how molecules like H2O2 are consumed by 

electrochemical reactions, the biological consumption of ROS is the concern of our research, 

hypotheses, and ultimate goals. 

  As previously stated, we hypothesized that the monocyte macrophage-like cells cultured 

on CoCrMo during cathodic polarization were subject to an influx of ROS produced from the 

surface, as well as intracellular ROS due to the oxidative stress-induced state of the cell. 

Reduced glutathione (GSH) activity within the cell can be correlated to the oxidative stress 

activity present with decreased glutathione activity indicating that GSH molecules are being 



118 
 

oxidized to their dimer (GSSG). Of the synthetic synovial fluid compositions tested (Chapter 7), 

the two solutions (Solution 9-10) with the highest measured cell viability (105% and 118%, 

respectively) also had the two highest GSH measured fluorescent intensities (1.40 and 1.47, 

respectively). Compared to Solutions 9-10, all other solutions had decreased cell viability and 

GSH intensity, although there was not a strong correlation (regression not reported) between the 

two responses. It should be noted though that H2O2 had a significant effect on the GSH I/IO 

means as well as the signal-to-noise (S/N) ratio, confirming that ROS play a significant role in 

synovial fluid-linked oxidative stress. It is very possible that there exist interacting factors within 

the orthogonal array leading to compounding and varying effects on the data, which is why 

future work (See Chapter 10) will include reduced models to determine the correlation between 

cell viability and GSH activity. 

8.4. ROS Reaction 

   ROS production and consumption have long been studied in the context of a 

periprosthetic joint, but the aftermath of ROS-induced damage is still a relatively new and 

incomplete topic of research. As stated previously, the consensus is that mechanical wear and the 

associated immune response are the primary causes of orthopaedic alloy surface damage. Our 

data has shown that ROS not only have measurable effects on cell behavior and viability, but on 

material performance as well.  

Using our nearfield electrochemical impedance spectroscopy (NEIS) set-up, we were 

able to measure the localized corrosion and damage from common surgical techniques 

(electrocautery) as well as defined heterogeneities on non-articulating retrieval surfaces. 

CoCrMo discs exposed to H2O2 (1-10 mM) displayed changes in electrochemical properties, 

most notably at 5 and 10 mM with significant (p < 0.05) increases in OCP and Q and decreases 
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in alpha and |Z|. This agrees with previous statements reporting the effects on surfaces exposed 

to hydrogen peroxide.  

The retrieved severely corroded CoCrMo neck tested using the NEIS approach 

experienced fretting motion and crevice corrosion conditions (i.e., was subjected to MACC) 

Therefore, it is reasonable to assume that this micro-motion induced a spike in currents, a 

decrease in potential and the production of detectable quantities of ROS at the interfaces in vivo.  

ROS generation may have occurred within the crevice region and outside of it as well, with 

greater amounts generated closer to the crevice/taper junction due to solution resistance effects.  

ROS production then, in theory, may be a stimulating factor driving the attraction of 

inflammatory cells and triggered the onset of chronic inflammation. That is, this work implies 

that ALTR effects may not be driven by metal debris only, and that ROS generation by the 

implant may be another important factor to consider both in terms of the biological effects as 

well as the changes to the corrosion resistance of the alloys. 

 ROS and metal ions were key components in our Taguchi orthogonal array to determine 

solution and material effects of simulated synovial fluid components. H2O2 had a significant (p < 

0.05) effect on the GSH I/IO and RS means and S/N ratios. Co2+ ions significantly affected cell 

viability and pH means and S/N ratios, as well as RS S/N ratios. Cr3+ ions also significantly 

affected RS means. We also know from our trials that Co2+ and Cr3+ ions in the presence of H2O2 

do not partake in Fenton-like reactions without applied potential. Looking at this information 

holistically, the presence of ROS and metal ions alter solution properties and as a result, cell 

behavior. Linking this information with the electrochemical properties obtained from retrieval 

surfaces and CoCrMo discs exposed to H2O2, it is clear the relationship ROS plays in cell death, 
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signaling of inflammation through GSH activity, and damage to the resistive properties of the 

material.  

8.5. ROS ↔ Inflammatory Cells 

The main functions of ROS produced by inflammatory cells (neutrophils, macrophages) 

have been well defined in the scope of cell signaling and killing through respiratory bursts. The 

respiratory burst by neutrophil mediated phagocytosis results in superoxide formation through 

the transfer of electrons across the vacuole wall via the nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase (NOX) protein complex39. While one-electron reactions 

predominate NADPH regulated generation of ROS, two-electron reactions where molecular 

oxygen is directly reduced to hydrogen peroxide exist within the mitochondria37. The rapid burst 

superoxide formation in the presence of nitric oxide in macrophages leads to the production of 

peroxinitrite radicals, which perform physiologically similar to hydroxyl radicals where they 

contribute to defense-related targeted apoptosis of foreign cells, tumors and pathogens199. 

NADPH is also required for the regeneration of GSH from GSSG through the activation of 

glutathione reductase35. In addition to killing, macrophage NOX enzymes activate kinases, 

transcription factors, gene expression and regulate programmed cell death and proliferation38. In 

signaling, ROS specifically activate the inflammasome to mark ‘danger’ with the subsequent 

release of pro-inflammatory cytokines such as interleukin (IL)-1β or the apoptosome is triggered 

to mark impending cell death200. The activation of the non-cell death key signaling complexes 

“turn-off” and “turn-on” complimentary mechanisms that result in the reversible oxidation of 

critical thiols (GSH→GSSG), which eventually return to their prestimulation steady-state 

levels34. 
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ROS are linked with several signaling processes and are secreted from so many cellular 

sources/interactions that the study of their involvement in inflammation is partial to date, which 

contributed as the main influence on this body of research.  

8.6. ROS ↔ Inflammation 

This dissertation provides direct evidence of in vitro ROS-mediated inflammatory 

mechanisms and electrochemical ROS activity, however there is still a lot to be discovered with 

respect to ROS. To understand the role of ROS in inflammation, we must understand the life-

cycle of ROS (ideally the molar balance in response to certain stimuli) and how it affects every 

step of the feedback-loop hypothesis. As previously mentioned, ROS are produced in measurable 

quantities during mechanical abrasion of the oxide film, inherently leading to cathodic voltages8, 

43, 44. Cathodic polarization of a metallic surface will lead to the production of hydrogen peroxide 

(H2O2) through the reduction of water and oxygen molecules, effectively killing strains of 

bacteria that can lead to infection on an implant surface78. There is also reason to believe that 

bacteria are not the only species attacked by the ROS influx. During cathodic excursions 

between -100 and -500 mV (vs. Ref), the volume-space 2 µm surrounding the implant surface 

becomes hypoxic with oxygen concentrations decreasing up to 25% (~100% O2 reduction below 

-600 mV)40. In addition to voltage drop, mechanical abrasion will often lead to metal ion and 

particle release from the bearing surfaces with the resulting particles/ions phagocytized by local 

inflammatory cells12. After phagocytosis, ROS are generated intracellularly after the metal 

content is oxidized in association with Fenton-like reactions27 and in combination with 

dysregulation of the mitochondrial membrane32. The cells then extrude reduced glutathione 

(GSH), a ROS scavenger, which catabolizes ROS into oxidized GSH (GSSG) as well as other 

metabolites62. These metabolites then permeate the cell membrane, signaling to the local tissue 
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the onset of inflammation, where upon the host will recruit more neutrophils, mast cells and 

macrophages leading to the formation of foreign body giant cells (FBGCs) and fibrous tissue 

capsulation surrounding an implant12. This is a simplified version of ROS involvement in wear-

induced inflammation. 

 Alternatively, beginning with the foreign body inflammatory response, proteins adhere to 

the biomaterial surface and the development of a blood-based transient provisional matrix 

(preliminary blood clot/thrombus at the material-tissue interface) forms around the biomaterial12. 

Monocytes and neutrophils are then recruited as a part of the acute inflammatory process and 

eventually mature into macrophages11. Macrophages on the surface will produce nitric oxide 

(NO) to protect the host from infections with the surrounding tissue experiencing either an 

increase in protectiveness (picomolar concentrations) or damaging effects (nanomolar 

concentrations)201. In response to the secreted growth factors, proinflammatory cytokines and 

NO31, FBGCs will form from macrophages and grow in number, releasing more ROS as 

signaling molecules in addition to enzymes19 that trigger the differentiation of osteoclasts, 

promoting bone resorption and osteolysis18. The protective film becomes oxidized, porous and 

thickens, leading to metal ion release and dissolution of the surface during 

activation/repassivation cycles20. This results in microrough surfaces that are more conducive to 

macrophage activation and NO release19. This cycle is hypothesized to lead to further metal ion 

release and ROS production/consumption, which at last will accelerate metal ion release and the 

metal material-induced inflammatory reaction. 

 Using the background information presented as well as the original reports in this 

dissertation, we have identified and described several specific roles of ROS in the inflammatory 

and corrosion response of metal-biology contacts. In small quantities, ROS can prove beneficial 
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to local tissue in the form of cell communications and disease/bacteria/infection prevention, but 

just like any molecule in excess, ROS can have adverse effects on both biological response and 

material behavior. 

8.7. Clinical Significance 

 It’s been estimated that 90% of the population over 40 suffers from some kind of bone 

degenerative disease brought about by excessive loading or the absence of normal biological 

healing processes, with musculoskeletal disorders costing around 254 billion dollars to 

society202. Increases in life expectancy and ageing populations are hypothesized to contribute to 

rising numbers of osteoarthritic patients, which currently affects 9.6% of men and 18% of 

women over the age of sixty4. Between 2002 and 2004, hip replacements in Sweden rose 6.0% in 

patients under 50 years old, and by 11% in Canada for patients under 45 years of age30. The 

demand for longer-lasting implants is on the rise with an estimated increase (from 2005) in 

THAs and TKAs by 2030 to be around 174% (572,000 procedures) and 673% (3.48 million 

procedures), respectively203. 

 Given the staggering numbers of anticipated THAs and TKAs that will be implemented 

in the next 10 years (not including revisions and replacements), it is clear that material-biological 

interactions in the periprosthetic joint space will be of great importance. While the work in this 

dissertation does not provide direct in vivo solutions to ROS-induced damage, therapies or 

smarter biomaterials, it sheds new light on how ROS contribute to the inflammatory response 

and corrosion of metallic surfaces in vitro using more advanced predictive models in terms of 

ROS produced both from the surface as well as inflammatory cells response. These models can 

be further advanced and applied towards our ultimate goal (See Future Work) of simulating a 

physiologically relevant in vitro inflamed joint environment.  
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 There are two clinically relevant findings within the work presented here that need to be 

further discussed. First, electrocautery damage has a significant impact and should be continued 

to be explored. Early reports of inflammatory cell induced (ICI) corrosion14, 15 are now believed 

to be more closely associated with electrocautery induced damage. The surface asperities’ 

appearances are similar with pitting and trailing features, and it was found that even single 

electrosurgical burns can reduce both the global137 and local resistive properties. Surgeons use 

this technique in excess while cauterizing blood vessels during both primary and revision 

surgeries72, therefore it is reasonable to assume that the corrosion resistance is dramatically 

reduced compared to what was reported in this work. This information alone is of great 

importance because it supports a new type of damage that isn’t widely studied or accepted at this 

point, and there is a range of properties from the aftermath of electrocautery that has yet to be 

defined such as surface deposits and debris from the electrosurgical pen, ROS generation and 

how it affects cell behavior (both locally and globally). 

The other clinically relevant finding is the NEIS technique. As previously mentioned, 

implant viability is often subjective and up to the discretion of the operating surgeon during 

revision and replacement surgeries. The development of a location-based diagnostic method like 

NEIS will allow for quantitative confirmation of the surgeon’s visual assessment. There do 

currently exist limitations with the NEIS technique such as the time required to capture the low 

frequency data in addition to multiple damage modes with similar impedance spectra. However, 

the significance of this work is its preliminary findings and feasibility. It has confirmed the 

electrochemical differences in damage modes and locations on a single surface using a simple 

pipette tip and wire electrodes. It’s reasonable to assume that this method could eventually 

advance in its engineered design to that of a marketed medical device. That, in combination with 
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a new fast-acquisition data method, would make this method very clinically relevant. There are 

still several corrosion-based damage modes and effects that need to be explored using NEIS (See 

Future Work) that will expand on the results presented here.  
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9. Conclusion 

 The inflamed joint space is one that is dynamic, complex, and very difficult to model and 

predict. There are many contributing factors to the state of the periprosthetic joint, all of which 

can be traced back to material-biological interactions. These interactions can trigger a prolonged 

immune response based on the body’s natural defense to a foreign body, or by ways of 

particulate release and accumulation from persistent attack and wear of the surface. This 

dissertation characterized reactive oxygen species, specifically hydroxyl radicals (OH·) and 

hydrogen peroxide (H2O2), and their effect on cellular and material behavior. CoCrMo surfaces 

were extensively characterized during the production and consumption of ROS, as well as how 

the electrochemical properties were altered. 

 CoCrMo surfaces were cathodically stimulated to simulate corrosion-like potentials 

achieved during abrasion of the oxide film. H2O2 was produced in measurable quantities at -1000 

mV (vs. Ag/AgCl) up to 16 hrs and at voltages -600 mV (vs. Ag/AgCl) and below after 2 hours 

of polarization. Hydroxyl radicals were found to be produced through electrochemical 

interactions with surface electrons and solution hydrogen peroxide at -1000 mV (vs. Ag/AgCl) 

up to 16 hrs. Based on current monitoring, the recorded amount of H2O2 was significantly below 

the calculated amount, indicating that there is a constant production and consumption of ROS in 

the experimental set-up. The experimental set-up also discovered that surface electrons are vital 

in the breakdown of H2O2, with solution metal ions not conducive to hydroxyl radical production 

in the absence of the charged surface. 

Polarized CoCrMo surfaces with different cell lines cultured exhibited a direct influence 

of phenotype on survival, referred to as an ‘electrochemical zone of viability’. It was found that 
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monocyte macrophage-like cells survived a wider range of potentials (-1000 ≤ mV < +500) than 

pre-osteoblast-like cells (-400 < mV < +500), indicating that the inflammatory cells are surviving 

in larger cathodic biases due to an internal cell-specific defense mechanism absent in the pre-

osteoblast-like cells. 

Implant surfaces (CoCrMo) subjected to electrocautery- and ROS-induced damage, as 

well as a severely corroded neck retrieval were assessed electrochemically using nearfield 

electrochemical impedance spectroscopy (NEIS), and it was confirmed that single surfaces can 

have dramatically different resistive properties. Resistive properties including OCP, CPE Q, 

alpha and |Z| were all affected by varying damage conditions and severity on the same surface. 

Surfaces displayed dramatically reduced corrosion resistance characteristics, with dry 

electrocautery burns, 10 mM H2O2, and a relative Goldberg score of 4 producing the greatest 

decrease in all populations tested (with all test groups except for 1 mM H2O2 exposure resulting 

in a significant drop in impedance magnitude and increase in CPE Q). This work confirmed that 

the global surface of the implant behaves like the most damaged region and discovered that even 

single asperities can have significant effects. 

A repository of simulated synovial fluid compositions was tested using a reduced 

factorial approach (Taguchi method) where individual factors could be separated out in analysis 

and determined if they had a significant effect on response means and signal-to-noise (S/N) ratio. 

Cell behavior, solution characteristics and electrochemical response (DC and AC) were 

monitored in the presence of polished CoCrMo. It was found that certain components native to 

synovial fluid like hyaluronic acid (HA) and phospholipids (PL) dominated material and solution 

response, while others like Cr3+ and Co2+ ions did not. Solutions likely experienced 
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compounding molecular interactions that are unknown to our experimental results and the field 

of simulated joint fluid at this time. Moreover, ROS like H2O2 was found to significantly impact 

GSH activity, indicating a direct interaction between thiol regulation and exterior ROS 

concentrations. Using the information collected, we now have a comprehensive and predictable 

set of solutions that better simulate the periprosthetic joint setting.  

This dissertation highlights the capabilities that exist within ROS detection and response, 

and this research provides methodology that can be implemented in ways not yet investigated or 

discussed. ROS are not thought of as the main instigator in the failure of biometallic devices or 

the inflammatory response, which is why the information presented here is critical for 

developing future considerations about the inflamed joint environment. 
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10. Future Work 

 The ubiquity of studying the inflamed joint space is that there will always be future work 

involving the characterization of molecules and material interactions. This dissertation has gone 

into detail reporting ROS production produced from cathodic excursions, the effects of ROS on 

cell and solution properties, and the electrochemical effects of ROS exposure. The future work 

stemming from this collected research could include fluorescently defining other individual ROS 

known to form during reduction reactions, continuation of the NEIS protocol and synthetic 

synovial fluid study, and integration of cell culture and tribological experiments. 

10.1. Fluorescent Detection of Singlet Oxygen and Superoxide Anion 

 There are many ROS produced during the reduction of water and oxygen molecules. Our 

work explored the fluorescent detection of two of the most common ROS, hydroxyl radicals and 

hydrogen peroxide, yet there are several other ROS to consider including singlet oxygen (1O2) 

and superoxide anion (O2
-•). Singlet oxygen can be fluorescently detected in one of two ways, 

endoperoxide formation or chemiluminescence73. Recent groups have developed fluorescent 

probes for singlet oxygen traps using fluorescein fused with 9,10-diphenylanthracence, rather 

than singular 9,10-diphenylanthracence which relies on conventional absorbance 

measurements83. The former molecule has proven to be selective over other ROS including 

superoxide anion, hydrogen peroxide and nitric acid, and our group already has experience with 

fluorescein fluorescent intensity measurements and analysis. This approach is favorable 

compared to the reported chemiluminescent probes that are unsuitable in biosample fluorometric 

detection of singlet oxygen204. Recent reports of superoxide anion fluorescent detection have 

relied on similar methods that we utilized in H2O2 detection, where the ROS deprotects the 
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fluorophore, in this proposed case bis(2,4-dinitrobenzenesulfonyl)fluorescein, at a target linkage, 

leaving a highly fluorescent fluorescein endproduct73. The group that developed this probe 

stimulated neutrophils with phorbol myristate acetate (PMA) and measured cell produced 

superoxide anion75. The main issue that could arise from this method is that superoxide anion is 

highly reactive like hydroxyl radicals, and therefore not stable. This would require a similar 

approach to TA detection of hydroxyl radicals, where the probe is in solution during the 

electrochemical processes. The main issue that arose from TA detection was the electrochemical 

consumption of the fluorescent probe. One possible experimental protocol could be culturing 

cells in media with the fluorophore over a period of time, and then stimulating the cells with 

electrochemically tested media or shorter timescale trials directly in the electrochemical chamber 

(< 1 min). If the probe was to permeate the cell membrane, then perhaps it would be shielded to 

the electrochemical effects that consumed the HTA probe. Intracellular fluorescent detection 

methods should be explored with the possibility of simultaneously detecting multiple individual 

ROS using the dosimeters described or previously used (Chapter 4). 

After developing probes for singlet oxygen and superoxide anion, we can then be able to 

plot and predict individual ROS concentrations as a function of voltage, time of applied 

potential, material tested, fretting, etc. With respect to cell culture work, it would also be helpful 

to determine which fluorescent molecules trigger the greatest drop in GSH activity. This would 

provide direct insight as to which molecule is directly impairing cell viability with the possibility 

of developing selectively scavenging ROS molecules to preserve normal cell functions. 
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10.2. Continuation of NEIS 

The NEIS method has provided preliminary information about the damaging effects of 

electrocautery burns, ROS exposed CoCrMo discs, and a severely corroded CoCrMo neck taper. 

There are many more experiments where NEIS should be applied to add to our knowledge of 

surface heterogeneities. First, cells should be cultured in a concentrated area with NEIS 

performed over the covered area. This will help us understand how small-area cell populations 

influence resistive properties. This experiment should be performed across a range of potentials 

within the cell’s ‘electrochemical zone of viability’. This will address if the cells are actively and 

electrochemically affecting the oxide film/surface. The solution used in the NEIS should also 

vary between 1X PBS, FBS, and the synthetic joint fluid compositions. We hypothesize that the 

cells will respond differently to the synthetic joint fluid when plated on CoCrMo as opposed to 

the tissue culture plastic in addition to added presence of an applied potential. 

NEIS should also be performed on alloys subjected to varying concentrations of other 

ROS, similar to the hydrogen peroxide submersion trials. Two potential physiologically relevant 

reactive species to include are hypochlorous acid (HClO)137 and nitric oxide (NO). Kubacki 

detailed HClO produced from neutrophils in simulated inflammatory environments with an 

emphasis on corrosion and tribocorrosion behavior of CoCrMo alloys. From the background 

literature cited, we know of reports that detail the effects of NO on oxide film composition on 

CoCrMo alloys where it has been shown to increase the thickness through oxidation and nitration 

reactions16. 
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10.3. Continuation of Simulated Joint Fluid 

 The Taguchi orthogonal array proved to be helpful in determining interacting effects 

within simulated joint fluid consisting of some of the most relevant species present like 

hyaluronic acid and albumin. The analysis helped determine which factors had a significant 

impact on cell and solution responses as well as direct current (DC) and alternating current (AC) 

responses. Equally important, the analysis also reported which factors did not have a significant 

effect on responses. Therefore, it would be useful for future work involving these solution sets to 

utilize reduced models for targeted responses. For example, only HA:PL and [Co2+] significantly 

affected the cell viability measures. One possible experiment would be to create a range of 

solutions containing varying levels of only these two factors and/or testing cell viability across 

multiple cell types or co-cultures of cells. This would prove useful in determining which type of 

cells are more resistant to the main killing agents in synthetic synovial fluid, which cells lose 

viability first, if cells release specific cytokines/chemokines/chemotaxis in response to HA, PL 

and Co2+, etc. It would also provide insight as to what specific concentrations (thresholds) of 

HA, PL, and Co2+ lead to abnormal cell behavior. This strategy could be applied to every 

response that triggered a significant effect on the means or S/N. Reduced models will be able to 

provide a more precise understanding of the effects of that specific factor that the comprehensive 

Taguchi model couldn’t. 

 It is also suggested that perhaps the Taguchi model be re-evaluated for components used. 

We hypothesized that we would see more a response on cell behavior from the incorporation of 

ROS and metal ions, however it is likely that these molecules were interacting with the organic 

materials, effectively neutralizing the desired effects like cytotoxicity or GSH fluorescent 
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intensity. A similar Taguchi orthogonal array is recommended using either non-periprosthetic 

synovial fluid species (i.e. HA, PL, A, G) or different metal ions and/or ROS. This would be 

helpful in understanding which of these components has the greatest influence on cell behavior 

without competing solution interactions. It is known that metal ions with large d-orbitals and 

organic materials will form metal organic frameworks (MOFs)33, 93, HA chains can be cleaved by 

many factors including ROS167, 186, 188 and that protein-ligand bonds will release Cr proportional 

to the oxide film thickness over time172. It is likely that our Taguchi set-up experienced 

interacting variables of this nature during culturing of cells as well as during polarization scans, 

leading to decreased and insignificant effects. 

Furthermore, a solution set of synthetic joint fluid should be tailored to represent multiple 

facets of clinically relevant joint fluid. Retrieved synovial joint fluid is classified under five 

categories: normal, noninflammatory, inflammatory, septic and hemorrhagic61. Each type is 

accompanied by unique classifying molecules like cytokines or specific organic molecule 

concentrations (See Chapter 7). Similar responses should be measured to test the validity of the 

solutions such as GSH activity, pH, HA molecular weight, pro-/anti-inflammatory cytokine 

assays, etc. Completion of this solution set would be invaluable to the advancement of in vitro 

testing a simulated inflamed joint. 

10.4. Electrocautery-Cell Interactions 

The results presented here in combination with those obtained in previous studies137 

highlight a form of surface damage that has yet to be extensively characterized or has had its 

importance conveyed to the biomedical and orthopaedic communities. This dissertation has 

simply reported the basic electrochemical affects immediately after a single electrocautery burn 
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in four different physiologically relevant conditions. It is theorized that the surgeons burn the 

surface multiple times during both primary and revision surgeries, with several incidents on 

retrievals located away from the articulating and bearing surfaces72. 

There are several experiments that can be performed that will help better visualize the 

damaging and early on-set corrosive conditions that are caused by electrosurgical techniques. 

First, it would be advantageous to record surface characteristics (oxide film composition) before 

and after electrocautery burns with the added measure of collecting debris is various conditions 

(dry, wet, etc.). This will further compliment that electrochemical data reported in this 

dissertation. Next, cell cultures (osteoblasts/macrophages) should be cultured on burns directly 

after plasma-arc exposure and in locations surrounding the burn. This will give a comparison as 

to the cell behavior and activity as a result of electrocautery damage. Parameters like cell 

viability, GSH intensity and pro-/anti-inflammatory cytokines should be monitored in 

accordance with distance, type of burn (coagulation, cutting, bipolar), length (time) of contact, 

etc. Cells should also be cultured on the surface during burns and various chemotaxis should be 

reported in an effort to better understand the cell signaling and transduction of electrocautery-

induced inflammation. 

We have merely reported the electrochemical properties following electrocautery 

techniques when in reality, the cell interactions are equally important to our understanding. It is 

not an exaggeration to state that we have just begun discovering the destructive effects of 

electrocautery, and we have reason to believe that the remnants and surface evidence from this 

technique will become more apparent in retrievals in studies to follow.  
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10.5. Cell-Tribology Interactions 

The long coveted in vitro experiment in our field has been replicating the inflamed joint 

space using physiologically relevant concentrations of materials under normal cyclic loading 

conditions. There a lot of variables (not including cell or solution constituents) that could 

contribute to the material-solution interactions including CO2 and O2 content, temperature 

(solution and of the device from cyclic testing), ionic strength, osmolality, circulating blood and 

serum, load fluctuations/delays/amplitude from interrupted movement (walking/sitting/jumping), 

etc. All of these could contribute significantly to excessive or diminished ROS production and 

resulting cell behavior.  

Many lab groups have developed tribology systems using pin-on-disc, rotating electrodes, 

and multi-ball fretting chambers. All have advantages and disadvantages depending on the 

intended response, however there is a serious gap in advancements towards incorporating cell 

culture and synthetic synovial fluid into these systems. There are several challenges that are 

presented with advancing these systems, however our lab possesses the capabilities to address 

these challenges systematically. For instance, our in-house custom tribology set-up can be placed 

within an incubator, which would address thermal and gas content-related issues (to an extent). 

Once a synthetic synovial fluid mimicking various types of inflammatory processes is developed, 

that can be incorporated within the pin-on-disc system. Cells can be cultured on the discs with 

real-time electrochemical properties controlled and measured. This stand-alone experiment 

would be much closer to in situ corrosive conditions than have been previously been studied 

within the lab. Additionally, the detection of ROS in the proposed experimental design would be 

more physiologically and clinically relevant than prior in vitro tribological experiments.  
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10.6. Summary 

 This dissertation has provided our lab and field with a variety of new techniques 

(fluorescent detection of ROS in the presence of an electrochemical bias, nearfield 

electrochemical impedance spectroscopy) as well as new approaches to existing gaps in 

knowledge (synovial fluid component interactions, electrochemical zone of viability). The 

protocols described in the various methods/appendices will provide the background needed to 

help achieve the proposed future work and will hopefully guide ROS characterization towards a 

more clinical setting. 
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Appendix A: Presentation figure adaptation 

A.1. 

Reduction reactions leading to ROS production via dissolution of the oxide film and interactions 
involving surface electrons and local water and oxygen molecules [Adapted from Gilbert, 
2016]205  
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Appendix B: Fluorescent probe techniques 

B.1. Pentafluorobenzenesulfonyl fluorescein synthesis 

[Adapted from Maeda et al. 2004, Angew. Chem. Int. Ed., doi: 10.1002/anie.200452381] 

1. Mix fluorescein (acid free) (1.0 g, 3.0 mmol) and pentafluorobenzenesulfonyl chloride 

(1.1 eq) in 5 mL 2, 6-lutidine, 20 mL dichloromethane overnight at room temperature 

2. Dilute with dichloromethane to 200 mL 

3. Wash twice with 1M HCl (200 mL) 

4. Wash once with brine (200 mL) 

5. Dry yellow-amber solid over MgSO4 to remove solvent via evaporation 

6. Purify with silica gel chromatography eluted with dichloromethane-acetone (20:1) 

7. Confirm with mass spectroscopy, C26H12F5O7S MW (g/mol): 563.0224 

8. Store in dry location 

B.2. Standard curve serial dilution and calibration 

1. Dissolve final product (HTA, fluorescein) in appropriate solvent (DI, 0.9% NaCl, 1X 

PBS, EtOH + 1X PBS, etc.) at a known concentration 

2. Serially dilute mixture by adding equal parts volume of the original concentration to new 

pure solvent 

3. Dilute down using Step 2 until lower concentration limit of expected product obtained 

4. Measure fluorescent intensity of each concentration (n = 3) using black 96-well plates 

with clear bottoms to remove incidental fluorescence at the appropriate excitation and 

emission wavelengths [HTA (λex = 315 nm, λem = 425 nm), fluorescein (λex = 485 nm, λem 

= 530 nm)] 
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5. Plot fluorescent intensity ratio (I/IO) against known concentrations and obtain regression 

line with Excel 

6. Use regression equation to calculate unknown concentrations during electrochemical 

experiments 
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Appendix C: Nearfield electrochemical impedance spectroscopy (NEIS) protocol 

C.1. Experimental set-up 

1. Puncture a 1 mL (1.5 mL capacity) pipette tip using a syringe needle about half-way up 

through both sides 

2. Prepare chlorided silver-chloride wire by applying flame to the wire to burn off any 

residue, submerge in bleach for at least 1 hour 

For flat surfaces: 

3. Feed the platinum wire counter electrode and chlorided silver-chloride wire reference 

electrode through opposite puncture holes (wires cannot touch) 

4. Fill pipette with ionic solution of choice 

5. Cover top with Parafilm to create partial vacuum seal 

6. Hold pipette in place using a ring-stand clamp, lower to surface and apply a press-fit and 

remove any residual solvent from the surface using a Kimwipe 

7. Attach potentiostat leads to working, counter and reference electrodes 

For curved surfaces: 

8. Fill bottom of pipette tip with PBS soaked agar gel (Note: this will create an ionic bridge 

between the surface and solution without any leakage due to the curved nature of the 

surface) 

9. Repeat Steps 3-7 
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