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ABSTRACT 

The role of greenspace in urban areas has become a focus of research as 

municipalities seek to increase the quality of life in cities. Multiple benefits are found to 

be associated with greenspace, but disservices such as crime are often overlooked. 

Studies investigating the link between crime and greenspace have revealed mixed results 

and been limited in geographic scope. This dissertation sought to examine the crime and 

greenspace relationship, extending the analysis to multiple cities in order to describe how 

the relationship may vary in different contexts. Additionally, one possible cause of crime, 

increased temperatures, was investigated to determine how greenspace may moderate the 

impact of hot weather on crime risk. As urban parks are an important type of greenspace, 

the relationship between proximity to parks and crime was examined in four case cities. 

Parks are typically green areas of cities but also encompass less green land uses. This 

broad analysis revealed a more comprehensive understanding of how crime and 

greenspace are related which can inform residents and decision-makers of the benefits 

and possible drawbacks from including greenspace in city and community development.  
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CHAPTER ONE 

Problem Statement 

The world’s population has become majority urban and the number of people 

living in cities is expected to continue to grow (United Nations, 2015). These urban areas 

face many challenges as they plan for the well-being of current and future residents 

(Childers, Pickett, Grove, Ogden, & Whitmer, 2014; Pickett & Cadenasso, 2006). One 

component of a quality living environment is greenspace, which is seen as providing 

numerous benefits to cities (Kabisch, Qureshi, & Haase, 2015; Larson, Jennings, & 

Cloutier, 2016). However, such interventions as natural areas or parks may have negative, 

as well and positive, impacts on people in the city (Escobedo et al., 2018; von Döhren & 

Haase, 2015). 

Many benefits have been identified with greenspace in the city. Encouraging 

greater physical activity (Bedimo-Rung, Mowen, & Cohen, 2005; Kaczynski, Potwarka, 

& Saelens, 2008), reducing the prevalence of obesity (Alexander, Huber, Piper, & 

Tanner, 2013), and improving overall physical and mental health (Besenyi et al., 2014; 

Tsai et al., 2018) are some ways that greenspace may increase the well-being of residents. 

For the community, greenspace is associated with greater social connections (Maas, van 

Dillen, Verheij, & Groenewegen, 2009) and increasing collective efficacy (Cohen, 

Inagami, & Finch, 2008). 

Despite the benefits, greenspaces and parks have also been seen as leading to 

disturbance of the local community, such as providing concealment for criminal activity 
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and limiting visibility (Mak & Jim, 2018; Michael, Hull, & Zahm, 2001). Outsiders and a 

lack of oversight can be seen as inviting minor to major criminal behavior. Researchers 

have attempted to investigate the tie between urban greenspaces and crime in a small 

number of cities and using various methods (Bogar & Beyer, 2016). However, a more 

comprehensive approach has not been taken that could lend evidence to how greenspaces 

and crime might be related. This dissertation seeks to address gaps in this topic by 

extending work on the relationship between greenspace and crime and how that 

relationship may function in regards to weather and type of greenspace. 

What is greenspace? 

One important concept in this dissertation is that of greenspace. This term has 

multiple meanings depending on the research and planning context (Taylor & Hochuli, 

2017). In a broad sense, it covers all green vegetation in the landscape. In this perspective 

both planned and unplanned land uses can be greenspace. Gardens, parks, vacant lots, 

and riparian areas can all be part of urban greenspace. In many cases though, greenspace 

is defined by example, with the most common form given by researches being parks 

(Taylor & Hochuli, 2017). 

The impact of greenspace is often explored through the broad form of all green 

vegetation. This is the approach used when greenspace is assessed through aerial or 

satellite imagery, using a measure called normalized difference vegetation index (NDVI). 

Research in public health has often used NDVI as it provides an efficient means of 

measuring greenness at various spatial scales (Markevych et al., 2017). Other methods of 

greenspace assessment have included ground-based tools and digital data such as Google 
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StreetView imagery (Bader, Mooney, Bennett, & Rundle, 2016; Bedimo-Rung, Gustat, 

Tompkins, Rice, & Thomson, 2006; Gidlow et al., 2017). These ground level tools seek 

to better describe green vegetation in terms of type, structure, or quality. 

Urban greenspace is also defined by types of land use. Parks, gardens, vacant lots, 

and forests are often used in research on urban greenspaces (Taylor & Hochuli, 2017). 

These land use types entail more than just vegetation, but also imply management and 

ownership of areas that allow for vegetation within the city (Forsyth, Musacchio, & 

Fitzgerald, 2005; Rigolon, Browning, & Jennings, 2018; Taylor & Hochuli, 2017). 

In this dissertation urban greenspace will be explored in two forms. The first is 

the general concept of greenspace being all green vegetation. The second form 

investigated will be urban parks, which may or may not be green vegetated spaces, but 

are often referenced as a key example of greenspace in the city. 

Purpose Statement 

The components of this dissertation are intended to address gaps in the research 

regarding the relationship between urban greenspace and crime. The overall purpose of 

this dissertation is to examine how urban greenspace, as well as urban parks, are related 

to crime. Greenspace was analyzed in both a general form of all green vegetation and a 

specific form of urban parks. Guiding the inquiry were the following research objectives: 

1.  To examine the relationship between urban greenspace and crime and how the 

relationship varies across cities. 

2.  To examine if greenspace functions as a moderator between temperature and 

crime. 



 4 

3.  To examine how proximity of neighborhoods to urban parks relates to crime in 

different city contexts. 

Urban greenspace can have beneficial impacts for cities, but disservices such as 

crime are not well understood (Bogar & Beyer, 2016). An improved understanding of 

how greenspace and crime are related can help uncover if these land uses have any 

negative impacts that should be considered in planning and design. For greenspace that is 

in the form of urban parks, the care of existing parks and location of future parks will 

require a full understanding of how these spaces may impact local communities and the 

larger city in order to ensure benefits and costs are equitably distributed among residents. 

Document Structure 

The dissertation consists of three manuscripts intended for publication in peer-

reviewed journals. The first manuscript explored the general relationship between urban 

greenspace and crime. This extended prior research by examining this association across 

cities with population over 100,000 in the US. As green vegetation is related to climate 

conditions, a measure of city climate will be included, a factor that has not been used in 

other research. The target journal for this chapter could be the Proceedings of the 

National Academy of Sciences (PNAS). 

The second manuscript examined how urban greenspace may moderate the 

relationship between weather and crime. Temperature has been viewed as a cause of 

increased crime and greenspace has been suggested as a way to reduce urban 

temperatures. This study used a measure of thermal comfort to examine how urban 
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greenspace may moderate the relationship between temperature and crime in cities. This 

chapter could be targeted for publication in Global Environmental Change. 

The third manuscript focused on urban parks as a specific type of greenspace. 

Four case cities were selected to examine how parks are related to crime using detailed 

data on crimes and land use within each city. Publication of this chapter can be aimed at 

the journal Landscape and Urban Planning. 
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CHAPTER TWO 

MORE GREEN LESS CRIME? THE CRIME AND GREENSPACE RELATIONSHIP 

ACROSS 301 CITIES 

Abstract 

Greenspace provides numerous quality of life benefits to urban residents, 

including areas for physical activity and aiding in mental health. Despite these benefits, 

greenspace can also attract crime and provide cover for criminals. To investigate the 

relationship between crime and greenspace and extend the examination to a wide-range 

of city contexts, Iused a multilevel modeling approach to examine census block group-

level data in 301 cities in the United States. After accounting for potential covariates of 

crime, including socioeconomic and climate variables, more greenspace was associated 

with less property crime risk in block groups within all cities. Violent crime risk also 

exhibited the same relationship, with only three cities having more greenspace in block 

groups associated with increased violent crime risk. In general, higher amounts of 

greenspace were associated with lower crime risk. Further research could investigate 

links between crime and specific types and seasonal variations of greenspace. 

Introduction 

Urban greenspace can be a key component of the city landscape, bringing benefits 

to residents through physical activity, restoration, and improved health (Kaczynski, 

Potwarka, & Saelens, 2008; Kaplan, 1995; Sugiyama, Carver, Koohsari, & Veitch, 2018; 

Tsai et al., 2018). However, negative outcomes of greenspace are often overlooked 

(Crewe, 2001), with exacerbated crime being one detrimental consequence of concern 
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within many communities (Branas, Rubin, & Guo, 2013; Keith, Larson, Shafer, Hallo, & 

Fernandez, 2018; Sreetheran & van den Bosch, 2014). 

Previous research has attempted to understand how greenspace may be associated 

with crime, but this research has focused on a handful of case study locations rather than 

describing how this relationship may vary across cities. If there are negative associations 

between crime and greenspace in one city, would those same associations exist in other 

cities? Additionally, while prior work has included common covariates of crime, such as 

income and family composition, variables that influence the amount of green vegetation, 

such as climate, have not been accounted for (Tsai et al., 2018). The amount of green 

vegetation in block groups within a city is strongly influenced by climatic factors of the 

region a city is situated in, such as precipitation and temperature (Kreft & Jetz, 2007; 

Stephenson, 1990). The objective of this study was to identify how greenspace and crime 

may be related at the block group level across 301 U.S. cities with populations over 

100,000 in order to better describe the crime and greenspace relationship. Specifically, 

this study examined the following research questions: 

How are urban greenspace and crime related at the local level of census block 

groups? 

How does this relationship vary across cities? 

Background 

 Greenspace is considered to be one aspect of the environment that has an 

influence on crime (Kimpton, Corcoran, & Wickes, 2017). Research has focused on 

violent crime due to the perspective that vegetation reduces aggression by providing 
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mental restoration (Branas et al., 2018; Kuo & Sullivan, 2001a). To a lesser degree, 

property crime has also been investigated (Chen, Li, & Li, 2016; Ye, Chen, & Li, 2018). 

Across studies the methods and findings have varied, with improved methodology and 

comparisons of local conditions between cities called for as a means of investigating the 

relationship further (Bogar & Beyer, 2016; Mancus & Campbell, 2018). 

Crime and Greenspace  

A number of studies have investigated how crime and greenspace may be related 

due to crime and the fear of crime being a barrier to greenspace development and use 

(Sreetheran & van den Bosch, 2014). The term ‘greenspace’ is not clearly defined within 

the literature (Taylor & Hochuli, 2017). In the current study, greenspace is considered to 

be all green vegetation assessed through remotely sensed imagery from satellites. This 

technique and definition is commonly used in research on urban greenspace and its 

relationship with human behavior and health (Beyer et al., 2014; Gascon et al., 2016; 

Markevych et al., 2017; Wolfe & Mennis, 2012). 

Greenspace, viewed as all vegetated areas of a city, is found to be both a 

generator and a deterrent of crime. As a cause of crime, greenspace is seen as providing 

cover for criminals (Mak & Jim, 2018; Michael, Hull, & Zahm, 2001). Vegetation can 

also limit visibility which can lead to greater vulnerability to crime and lessen perceived 

safety of residents (Baran, Tabrizian, Zhai, Smith, & Floyd, 2018; Ceccato, 2014; Nasar, 

Fisher, & Grannis, 1993). Uncared for greenspace can communicate a lack of oversight 

and attract criminal activities (Nassauer, 1995; Sampson et al., 2017).  
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Other studies find greenspace associated with reductions in crime. An often-cited 

case is Kuo and Sullivan’s (2001b) study of Chicago public housing which concluded 

that greater vegetation was associated with reduced crime among residents. Further 

research has aligned with these findings, extending the definition of what greenspace is, 

from vegetation in general to specific forms such as street trees (Donovan & Prestemon, 

2010; Kondo, Han, Donovan, & MacDonald, 2017), vacant lots (Branas et al., 2011), and 

tree canopy (Gilstad-Hayden et al., 2015; Schusler, Weiss, Treering, & Balderama, 2017; 

Troy, Grove, & O’Neil-Dunne, 2012). In these studies, greater vegetation tends to 

correlate with decreases in crime. Only one study, in New Haven, CT, found no 

statistically significant difference in crime before and after a community greening 

program (Locke, Han, Kondo, Murphy-Dunning, & Cox, 2017).  

 Greenspace is found to be related to both lower crime and increased crime and 

fear of crime (Sreetheran & Van Den Bosch, 2014), but studies have varied in the crime 

covariates used, methods of measuring greenspace, and in scope. Many studies include 

some measure of income as a covariate of crime, while other variables such as education 

or residential characteristics are used sporadically. The assessment of greenspace has also 

varied, with some research measuring only street trees and others using aerial or satellite 

imagery (i.e. percent area in tree canopy (Schusler et al., 2017) and qualitative vegetation 

rating (Kuo & Sullivan, 2001b). All existing work has focused on single cities and not 

attempted to examine how the relationship between greenspace and crime might differ for 

local areas across different contexts (Bogar & Beyer, 2016). The variety of methods used 

make it difficult to compare findings and gain a clearer understanding of the crime and 



 13 

greenspace relationship (Bogar & Beyer, 2016). This study seeks to incorporate a broad 

sample of cities to extend the understanding of crime and greenspace at the local level 

across city contexts. 

Methods 

To explore how greenspace and crime are related, data were collected at the 

census block group and city level for 301 cities with populations over 100,000 in the 

conterminous United States for 2015 (see Appendix A). The unit of analysis was census 

block groups, the smallest geographical unit for which the US Census Bureau collects 

detailed sociodemographic data. Due to the nested nature of the data, with block groups 

nested within cities, Iused a multilevel modeling approach in order to estimate the 

relationship between greenspace and crime across all cities in the study and produce 

population and city level estimates of how greenspace and crime are related. A dataset 

was created for 59,703 block groups across 301 cities.  

Data were sourced from the US Census Bureau to determine the sample cities 

based on population. Values for sociodemographic variables were retrieved from the 

2011-2015 American Community Survey (ACS) 5-year estimates for census block 

groups in R software using the tidycensus (0.4.6) package (Walker, 2018). Spatial data 

were retrieved from Census Bureau TIGER geodatabases for cities, using the census 

designation of ‘places’, which are incorporated municipalities. Iselected block groups that 

were greater than 50% within city boundaries. 
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Greenspace was measured from satellite imagery for 2015. These greenspace 

values were combined with the sociodemographic data into a full dataset of block group 

and city variables. Description and sources for the variables are presented in table 2.2. 

Table 2.1. Data description and sources

 

Dependent Variable – Crime Risk Index 

Crime risk data for census block groups was sourced from Esri, Inc. who provide 

data on the relative crime risk of various geographic areas (Esri, 2016). The measurement 

is an index of crime risk and has been used in similar work on crime and greenspace by 

Troy and Grove (2008). The index is based on a value of 100 being the national average 

crime risk, so that a value of 200 would represent twice the national average. The data are 

provided in 10 categories that align with Federal Bureau of Investigation (FBI) Uniform 
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Crime Report (UCR) Part 1 crimes, covering violent and property crimes (Federal Bureau 

of Investigation, 2004). The study used two crime risk types of all violent crime and all 

property crime as the dependent variable. Violent crime is composed of assault, murder, 

robbery crimes while property crime is composed of burglary, larceny, and auto theft. 

Level 1 independent variables – block group characteristics 

Greenspace - Greenspace was operationalized as the mean normalized difference 

vegetation index (NDVI) for a block group obtained from satellite imagery. NDVI 

provides a measure of vegetation using different wavelengths of light reflected by plants, 

and is a common measure of greenspace used in research across different domains 

(Browning, Kuo, Sachdeva, Lee, & Westphal, 2018; Gascon et al., 2016; Markevych et 

al., 2017). Many other indices are available to assess vegetation from remotely sensed 

imagery, but the ease of calculating NDVI has made it popular as a measure of local 

greenness and greenspace. NDVI is found to be a suitable proxy for greenspace based on 

comparison with expert input and provides an objective assessment of neighborhood 

conditions (Gascon et al., 2016; Rhew, Vander Stoep, Kearney, Smith, & Dunbar, 2011). 

The value for NDVI was calculated based on Landsat 8 imagery for 2015 using the 

Google Earth Engine platform (Gorelick et al., 2017). Values for NDVI range from -1 to 

+1 and roughly translate to bare soil, water, or impervious surfaces below 0.1, grasses 

and shrubs from 0.2 to 0.5, and dense vegetation and forest above 0.6 (Weier & Herring, 

2000). NDVI was transformed by multiplying the values by 10 to convert the unitless 

range from -1:1 to -10:10, so that interpretation of regression results will be more 

meaningful (1-unit change would be equal to a 0.1 change in NDVI). 
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Sociodemographic Covariates - Sociodemographic variables were obtained at the 

block group level. These variables represent the social conditions of an area and are 

found to be related to crime in prior research (Land, McCall, & Cohen, 1990;  Sampson, 

Morenoff, & Gannon-Rowley, 2002). The data used was from the 2012-2015 5-year 

American Community Survey (ACS), which provides demographic sample-based 

estimates between the decennial census at the census block group level. The variables 

used were: 1) median household income, 2) disadvantage index, 3) diversity index, 4) 

percent under 18, and 5) log population density. The disadvantage index and diversity 

index capture variables related to the social disadvantage of an area and its mix of racial 

groups.  

Disadvantage Index - As social disadvantage is associated with crime in the 

literature, an index was created from other demographic variables (Bursik, 1988; Kubrin 

& Weitzer, 2003; Sampson & Groves, 1989). This index composes a factor that 

represents area disadvantage for census block groups (Sampson, Raudenbush, & Earls, 

1997). The disadvantage index was created from the mean z-score of: 1) percentage 

unemployed, 2) percentage of families below poverty, 3) percentage with less than high 

school education, and 4) percentage of households that are female headed with no 

husband (Krivo, Peterson, & Kuhl, 2009). The resulting score indicates if a block group 

is more or less disadvantaged than the average block group in the study. 

Diversity Index - The diversity index was constructed from the percentage of the 

population in each of the 14 racial and ethnic groups recorded in the ACS (Cassal, 2018). 

This value is based on Simpson's index, a diversity index often used in ecological studies 
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(Simpson, 1949). Simpson’s index provides the probability of two randomly selected 

individuals being from the same group and ranges from 0 (homogeneous) to 1 

(heterogeneous), representing the degree of racial and ethnic diversity in the block group. 

Level 2 independent variables – city context 

Crime - Crime data was collected at the city level from the FBI UCR to provide 

an overall measure of crime in each city context, which serves as a large scale view of 

crime in each city that could explain local crime risk (McDowall & Loftin, 2009). Counts 

of the number of offenses and population were obtained for all cities (Federal Bureau of 

Investigation, 2016). Using these counts, a rate per 1,000 persons was calculated for 2015 

for violent and property crimes. 

Police force - The size of city police forces is found to the associated with crime 

in prior research (Levitt, 1997). For this reason, the size of the municipal law 

enforcement agency was used as a measure of the level of policing that exists in a city. 

The number of officers was obtained from FBI law enforcement employment data for 

2015 and divided by the city population (Federal Bureau of Investigation, 2016). This 

police force variable is the number of officers per 1,000 persons. Some cities were found 

to contract out law enforcement to county agencies. In such cases, the police force rate 

for the area served by a county law enforcement agency was used for the city. 

GDP - The economic condition of a city is one contextual variable that is thought 

to contribute to crime (Andresen, 2015). To account for differences in the economic 

context of cities, the per capita metropolitan gross domestic product (GDP) was obtained 

from the Bureau of Economic Analysis. GDP is calculated for metropolitan regions and 
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provides a measure of "the value of the goods and services produced" within an area (U S 

Department of Commerce, 2015). 

Climate type - The city’s climatic region has a direct effect on the amount and 

type of vegetation that can grow there (Grace, 2008). It is key to define climate as the 

long-term trend and variability of weather conditions, different than weather at a specific 

time (IPCC, 2014). Researchers have suggested that a measure of climate be included in 

future greenspace research (Tsai et al., 2018). One way that climate can be incorporated 

in the analysis is through classification based on temperature and precipitation. These 

measures form the basis for the Köppen-Geiger classification, a widely used global 

climate classification system (Peel, Finlayson, & McMahon, 2007). As this study is 

focused only on the contiguous U.S., the Köppen-Geiger classification did not provide 

adequate differentiation for the sample cities. As an alternative, a k-means clustering 

approach was taken that used 1) mean 30-year temperature, 2) mean 30-year 

precipitation, and 3) mean number of days above 90ºF to group cities into four categories 

using the kmeans function in R statistical software version 3.5.0 (PRISM climate group, 

n.d.; R Core Team, 2017). The four regions are conceptualized as being a combination of 

temperature, precipitation, and days above 90ºF - region 1: cool-dry-low, region 2: cool-

wet-low, region 3: warm-dry-high, and region 4: warm-wet-high (see figure 2.1 and table 

2.1).  
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Figure 2.1. City locations and climate classification 

 

Table 2.2. Climate region descriptive statistics 

 

 

 

Analysis 

Initially a bivariate analysis of Pearson’s product moment correlation was 

performed to test for significant associations between crime risk, greenspace, and the 
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chosen covariates. The dependent variable in the modeling was the crime risk index value 

in the census block group, for violent and property crime. The independent variables at 

the block group level were: mean NDVI, median household income, percent of 

population under 18 years, population density (log), disadvantage index, and diversity 

index. At the city level, the independent variables are: crime rate per 1,000 population, 

police officers per 1,000 population, climate region, and per capita GDP.  

Following the suggestion of Hox (2010), statistical models were built from simple 

to more complex. The initial intercept-only null model, model 1, allowed for the 

determination of variability attributable to cities. All variables were grand mean centered 

to allow interpretation in reference to the average for each variable across all block 

groups in the study, with 0 being the mean value for the variable. Model 2 included level 

1, or block group variables. Model 3 added level 2, or city variables, including climate 

region.  

Linear multilevel models were fit in R statistical software using the lmer4 

package (Bates, Mächler, Bolker, & Walker, 2015). Models were compared to the 

baseline model with the Akaike information criterion (AIC) and Likelihood Ratio Test 

(LRT) to determine if additional variables improved model fit. A measure of variance 

“explained’ by the models was calculated as the correlation of the predicted and observed 

values of the response variable to provide an overall pseudo-R2 value for each model 

(Aguinis, Gottfredson, & Culpepper, 2013; Singer & Willett, 2003). 

Both random intercepts and random slopes were specified in the modeling. 

Random intercepts for the dependent variable of crime risk allow for separate estimates 
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of the mean block group crime risk values for the cities. The random slope of NDVI 

allows an estimate of the relationship between block group NDVI and crime to vary 

across cities. 

Model Descriptions 

Model 1(null model): crime risk = 1 + (1|city) 

Model 2: model 1 + NDVI + median income + under 18 + disadvantage index + 

diversity index + population density + (NDVI | city) 

Model 3: model 2 + police force + crime rate + per capita GDP 

Model 4: model 3 + climate region 

Results 

Census Block Groups 

The sample included 62,086 census block groups that were greater than 50% 

within city boundaries by area. Missing values were present due to censoring of 

household income in block groups with low populations and block groups with no 

estimated population, resulting in 59,703 complete cases. Descriptive statistics for level 

one and level two units are provided in table 2.3. 
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Table 2.3. Descriptive statistics of census block groups and cities 

 

Bivariate analysis 

 Correlations between the variables showed significant association between the 

crime risk index and covariates (figure 2.2). The strongest correlations existed between 

disadvantage and median income, and median income and violent crime risk. Total crime 

risk was highly correlated with the two crime subtypes and was excluded from further 

analysis. Violent crime risk was positively correlated with disadvantage, more so than 

property crime risk. Surprisingly, NDVI was positively correlated with violent and 

property crime risk, though weakly. Non-significant correlations existed between NDVI 

and median income, and percent under 18 and city violent crime rate per 1,000. 
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Figure 2.2. Correlation matrix. X cells indicate p > 0.05. 

Model Results 

The initial null model, model 1, provided the variance for the calculation of the 

intraclass correlation (ICC) value for violent crime (0.346), property crime (0.314), and 

the variable of interest, NDVI (0.686). The ICC indicated that there was variation in the 

block group crime variables and the greenspace measure of NDVI attributable to the city 

level, providing support for using a multilevel modeling approach. In the study, 34.6% of 

the variation in the violent crime risk index and 31.4% of the variation in the property 

crime risk index is due to differences between cities. 
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Model 2 introduced the level 1 (block group) variables of median household 

income, disadvantage index, diversity index, percent under 18, log population density, 

and mean NDVI. This model has a pseudo-R2 of 0.326 for violent crime and 0.047 for 

property crime. All variables were statistically significant, except for percent under 18 in 

the violent crime model (see table 2.4). The fixed effect of NDVI was -29.75 for violent 

crime and -44.40 for property crime. As NDVI was multiplied by 10, this coefficient 

indicates that, on average across block groups in all cities, a 0.1 increase in NDVI is 

associated with a decrease of 29.75 in the violent crime risk index; this equates to a 

29.75% decrease in risk, and a decrease of 44.40% in the property crime risk index. 

Including NDVI as a random effect allowed for the relationship between NDVI and 

crime in block groups to be estimated for each city. The variation in the relationship 

across cities ranged from an estimated -158.0 to 21.7 for violent crime, and -189.3 to -9.5 

for property crime. The varying slopes indicated that not all cities had a negative 

relationship between NDVI and violent crime in block groups, while property crime was 

negative in all cities. Model 2 was an improved fit over the baseline model (ΔAIC: 33168 

for violent crime, 27279 for property crime; LRT: χ2 (8) = 33191, p<0.001 for violent 

crime, χ2 (8) = 27307, p<0.001 for property crime). 

Model 3 included the addition of level 2 (city level) variables of per capita police, 

per capita GDP, and the rate of crime per 1,000 population. Pseudo R2 increased to 0.52 

from the null model for violent crime and 0.119 for property crime with the addition of 

level 2 variables to the model. All variables were statistically significant in the violent 

crime model. In the property crime model, per capita GDP was the only variable not 
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significant. The slope coefficient for NDVI in the violent crime model increased 2.6% 

from -29.75 to -30.53, indicating a stronger relationship, with a 0.1 increase in NDVI 

associated with a decrease of 30.53 in violent crime risk. The slope coefficient for NDVI 

in the property crime model increased 1% from -44.40 to -44.86.  

The addition of climate region in model 4 resulted in a small change in the 

relationship between NDVI and crime risk. For violent crime the NDVI slope increased 

5% from model 3 from -30.53 to -32.07. For property crime the slope changed 2% from -

44.86 to -45.77. The pseudo-R2 increased slightly for violent crime risk to 0.548 and 

substantially for property crime risk to 0.31, indicating better prediction from the model. 

The slope variance indicated that not all cities had a negative relationship in block groups 

between NDVI and violent crime (95% interval -83.7 to +19.5), though with a slightly 

narrower range of variance than model 2. The relationship of NDVI and property crime 

was negatively correlated across block groups in all cities (95% interval – -88.1 to -3.5). 

AIC and LRT showed that model 4 was an improved fit over model 2 with only block 

group level variables (ΔAIC: 332.1 for violent crime, 371.0 for property crime; LRT: χ2 

(6) = 324.99, p<0.001 for violent crime, χ2 (6) = 369.53, p<0.001 for property crime). 

For the reference region – cool-dry-low – the average crime risk was 176.42 for 

violent crime and 105.1 for property crime. For both crime types two other climate 

regions differed from the cool-dry-low region, indicating that block groups in some 

regions do have differences in crime associated with climate. Wetter climates had higher 

average crime risk, with cool-wet-low and warm-wet-high regions having positive 

coefficients. The warm-dry-high region did not differ from the reference region. This 
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result indicates that the mean crime risk index, when all other variables are at their 

average, is different based on climate region. 

Table 2.4a. Model results - Violent crime risk 
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Table 2.4b. Model results - Property crime risk
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Figure 2.3a. Fixed effects for model 4, violent crime risk (estimated unstandardized coefficient and 

confidence interval) 



 29 

 

Figure 2.3b. Fixed effects for model 4, violent crime risk (estimated standardized coefficient and 

confidence interval) 
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Figure 2.3c. Fixed effects for model 4, property crime risk (estimated unstandardized coefficient and 

confidence interval) 
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Figure 2.3d. Fixed effects for model 4, property crime risk (estimated standardized coefficient and 

confidence interval) 

 

 



 32 

The variables with the strongest effects on crime in the final model were the 

disadvantage index, city crime rate, and NDVI (figures 2.3b and 2.3d). As block groups 

became more socially disadvantaged crime increased. Greater NDVI, as the measure of 

greenspace, was associated with less crime. The diversity index flipped signs between 

violent and property crime, indicating that greater ethnic and racial diversity was 

associated with less violent crime and greater property crime. The percent of the 

population under 18 was a weak predictor for violent crime but had a stronger association 

with property crime.  

While the variation in the relationship between block group NDVI and crime risk 

was negative for property crime in all cities, violent crime showed a positive slope for 

some cities, indicating that greenspace was associated with increased violent crime risk in 

block groups for a 1% subset of cities. These cities - Chicago, IL, Detroit, MI, and 

Newark, NJ - had positive coefficients at a significance level of alpha=0.05 for the slope 

estimate (see figure 2.4) 
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Figure 2.4. Slope estimate of NDVI and 95% error bar for cities with positive relationship between 

greenspace and violent crime risk 

Discussion 

Relationship between urban greenspace and crime 

  The results of our analysis suggest that, on average across all cities in the study, 

more greenspace in a block group is correlated with lower crime risk. This relationship 

held for both property and violent crime, accounting for a suite of covariates of crime. 

These findings align with prior research done in single cities, where vegetation was 

associated with less crime (Branas et al., 2018; Kuo & Sullivan, 2001b; Wolfe & Mennis, 

2012), and provide new evidence that this relationship is not unique to specific cities. Our 
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results show that this relationship persists even when including data from a large sample 

of cities that exhibit variation in social and geographic context. 

 The strongest predictors of crime risk within block groups was unsurprisingly 

social disadvantage. Our results confirm prior research on crime where disadvantage has 

been found to have more impact on violent than property crime (Krivo & Peterson, 

1996). The second strongest predictor was NDVI, our measure of greenspace. Other 

studies, though using many different modeling strategies, have often uncovered a 

relationship between greenspace and crime. The results of our work show that this is true 

across cities and that the relationship is predominantly one of lower crime risk with more 

greenspace. 

 Higher greenspace values were related to less property and violent crime in most 

cities, aligning with findings from Philadelphia, PA (Wolfe & Mennis, 2012), New 

Haven, CT (Gilstad-Hayden et al., 2015), and Baltimore, MD (Troy et al., 2012). Many 

of these previous studies used differing methods, while our study has applied the same 

analysis to all cities in the sample. All cities in the study had a negative relationship 

between property crime risk and greenspace, which supports previous work on property 

crime and greenspace (Ye et al., 2018).  

Our work does not support perspectives that view vegetation as a cause of crime 

through cover (Felson & Boba, 2010; Fischer & Nasar, 1992; Michael et al., 2001), 

though it cannot address perceptions or fear of crime that may arise from vegetation 

(Baran et al., 2018). 

Heterogeneity across cities 
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 Though on average more greenspace was correlated with less crime, our modeling 

approach also allowed us to examine the variation that exists between cities. The negative 

relationship, with greater greenspace being correlated with less crime risk, existed in all 

cities for property crime. The estimated variation in this relationship between cities 

ranged from -189 to -9, indicating that the impact of greenspace on property crime was 

not identical in all cities in the study.  

For violent crime, more greenspace was correlated with less crime risk for all but 

3 cities – Chicago, IL, Detroit, MI, and Newark, NJ . In these 3 cities greater block group 

greenspace was related to increased violent crime risk. This suggests that greenspace may 

have a weaker relationship with violent crime than with property crime. The three cities 

which had an increasing crime relationship also exhibited higher values for social 

disadvantage across block groups than many other cities. This positive correlation could 

be the result of a stronger influence of social disadvantage on crime (Wikström & 

Treiber, 2016), overshadowing any impact of greenspace on crime. Detroit and Newark 

have high values on the components of the social disadvantage variable, particularly in 

regard to unemployment, where Detroit was the highest and Newark was third among the 

study cities. Chicago had an above average value on the social disadvantage variable but 

does not stand out from the other cities, suggesting that other variables outside of the 

study may be influencing the positive correlation between violent crime and greenspace. 

Segregation and income inequality have been suggested as predictors of crime and could 

be unaccounted for variables that uniquely impact these three cities (Hipp & Kane, 2017; 

Krivo et al., 2009). 
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Chicago being one city with a positive relationship between violent crime and 

greenspace contradicts other findings where greenspace was associated with less violent 

crime (Schusler et al., 2017). This difference could be the result of differing methods, as 

Schusler et al. (2017) used high resolution land cover data of tree canopy only and 

different covariates (e.g. only poverty for an income measure). They found more tree 

canopy associated with less violent crime and no significant association with property 

crime.  

Effect of climate 

Including climate in studies of greenspace has been called for (Tsai et al., 2018) 

and climate was added as a covariate to examine if it altered the effect of greenspace on 

crime. When climate was included, the effect of greenspace saw little change from the 

identical model excluding climate, indicating that once the climate region is accounted 

for, greenspace still tells us something about crime. The four regions indicated differing 

levels of average crime, with the two dry regions having lower crime risk for both violent 

and property crime.  

Greenspace is more intentional in arid climates, occurring where water and 

resources are applied to grow vegetation (Jenerette, Harlan, Stefanov, & Martin, 2011). 

The decision to promote vegetation in arid cities will alter how greenspace correlates 

with crime. The differing results in arid cities also implies that any approach to include 

greenspace in cities will have to be different based on the climate of the city, with more 

intensive strategies needed where green vegetation does not naturally occur. 

Limitations 
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There are limitations based on the data and methods used in this study. First, the 

crime data is based on modeling of various data sources to estimate the amount of crime 

risk in each area (Pepper, Petrie, & Sullivan, 2010). This approach will contain error 

itself and will also contain error present in crime reporting. Second, sociodemographic 

data from the ACS is comprised of estimates, which in some cases may have large 

margins of error (Spielman, Folch, & Nagle, 2014). Lastly, this study is a cross-sectional 

view of the greenspace and crime relationship. Temporal trends, such as decreasing or 

increasing crime, were not considered. The cross-sectional approach also prevents 

determining any causal effect related to urban greenspace. 

Future research can investigate how different types of greenspace, such as general 

vegetation and spaces like parks, are related to crime. Including climate region in our 

study provided some evidence that the greenspace and crime relationship was weaker in 

warmer and drier climates. These cities could be examined in greater detail to see what 

factors might help explain this. Lastly, greenspace was measured by NDVI in this study 

but humans experience greenness differently than an overhead view. More detailed 

measures of vegetation could be included in future studies of the relationship to 

investigate how the type and structure of greenspace may relate to crime. 

Conclusion 

Due to the variety of ecosystem services that urban greenspace provides, this type 

of land use is in focus as a way to improve urban well-being (Jennings, Larson, & Yun, 

2016). Our study has shown that, on average, increased greenspace is associated with 

decreased violent and property crime. This outcome supports prior research that has 
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examined the greenspace and crime relationship and extends the result to investigate the 

relationship within block groups across 301 cities in the United States.  

While the amount of green vegetation is dependent on climate variables, these 

factors do not have a strong effect on the greenspace and crime relationship. The 

greenspace and crime relationship does vary across cities, illustrating that the strength of 

the association depends on city context. Even in light of differing city conditions, 

property and violent crime were found to have a negative correlation with greenspace in 

block groups, with only three exceptions (Chicago, IL, Detroit, MI, and Newark, NJ). 

Our study reveals one association greenspace has with crime that can be 

beneficial in creating safer neighborhoods and areas for activity, restoration, and 

recreation. The possible benefit of lower crime with increased greenspace supports efforts 

to promote greenspace in city development, improving both the social and natural 

environment. For existing and future residents, greenspace can be seen as a component of 

increased quality-of-life for urban living. 
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CHAPTER THREE 

BEAT THE HEAT: CRIME REDUCTION EFFECTS OF URBAN GREENSPACE 

DIMINISH UNDER EXTREME HEAT CONDITIONS 

Abstract 

An increase in crime can be one detrimental outcome of climate change and 

higher temperatures in urban environments. Urban greenspace is one method that can 

reduce local temperatures. We sought to examine if the amount of greenspace in urban 

neighborhoods moderates the relationship between crime and hot weather, measured as 

thermal comfort (a metric that uses temperature, humidity, wind, and solar radiation to 

represent the human experience of hot weather). Our results, based on 301 cities in the 

United States, indicated that the relationship between crime and the number of hot days 

(days with thermal comfort over 90ºF) was dependent on the amount of greenspace in 

census block groups. Accounting for common covariates of crime, greener block groups 

had lower average crime risk and saw little change in violent crime risk with more hot 

days. Areas with less greenspace saw the strongest relationship between crime and hot 

days, having more hot days associated with less crime. Violent crime was most impacted 

by local greenspace, while property crime saw a small effect of greenspace. The results 

point to the complex interactions greenspace has with social and environmental aspects of 

the city. Future research could examine this relationship in greater detail with the 

availability of higher resolution weather and crime data. 
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Introduction 

 Cities are experiencing more frequent extremes in weather as a result of climate 

change, bringing about multiple challenges (IPCC, 2014). The increasing likelihood of 

extreme hot weather is a threat to urban residents’ health and well-being (Kovats & 

Hajat, 2008) and can lead to increased crime and conflict (Anderson, 2001; Burke, 

Hsiang, & Miguel, 2015; Hsiang, Burke, & Miguel, 2013; Ranson, 2014; Rotton & Cohn, 

2000b). Adding urban greenspace is one response to high urban temperatures, being 

found to reduce localized heat island effects (Bowler, Buyung-Ali, Knight, & Pullin, 

2010; Jenerette et al., 2007) as well as crime (Branas et al., 2018; Kuo & Sullivan, 2001b; 

chapter 2). 

 Crime and weather have been linked both anecdotally and in research. 

Understanding how crime, temperature, and greenspace are related can increase 

awareness among cities and residents of the benefits and disservices greenspace may 

bring. 

Temperature and Crime 

Among the many possible causes of crime, criminological research has included 

analysis of the effects of weather on criminal behavior, with the pattern of increased 

crime in warmer months being noted in the 1840’s (Harries, Stadler, & Zdorkowski, 

1984; Quetelet, 1842). In the 1960’s temperature was thought to be a cause of increased 

riots in the later part of the decade (U S Kerner Commission, 1968). These ideas 

supported anecdotal evidence that crime increased in hot weather (Baron & Richardson, 

1994; Brunsdon, Corcoran, Higgs, & Ware, 2009). 
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Empirical research on the relationship between heat and aggression sought to 

determine if heightened aggression could be the mechanism that leads to increased crime 

(Cohn, 1990; Horrocks & Menclova, 2011). By manipulating temperature, laboratory 

studies found that in warmer conditions aggressive behavior increased. When 

temperatures were manipulated over 90ºF aggression was then found to decline 

(Anderson, 2001; Baron & Bell, 1975; Bell & Baron, 1977). This result suggested that at 

high temperatures participants were more concerned with escaping the heat than acting 

out aggression. Rather than a linear relationship, where aggression keeps increasing with 

temperature, the laboratory experiments point to a curvilinear relationship, with an 

increase in aggression until 92º-95ºF then a decrease beyond these temperatures (Baron & 

Bell, 1975; Bell, 1992). This curvilinear trend is called the negative affect escape model 

(Anderson, 1989). 

Research outside of the laboratory has focused on studies of crime and weather 

data, often taken from archival sources. In all studies, crime is seen to increase as 

temperatures increase. Depending on methods of analysis, the pattern has shown both a 

linear trend (Anderson & Anderson, 1984; Anderson, Bushman, & Groom, 1997; 

Carlsmith & Anderson, 1979; Cotton, 1986) and a curvilinear trend (Bell & Fusco, 1986; 

Rotton & Cohn, 2000a) in the temperature and crime relationship (figure 2.1). Some 

debate remains based on variation in findings, but both laboratory and field research 

suggest that extreme high temperatures may work to depress crime and criminal 

behavior. 
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Additional research on longer term climate impacts on crime have predicted an 

increase in crime as temperatures rise (Hsiang et al., 2013; Mares, 2013; Ranson, 2014). 

While monthly or yearly trends do not allow specific analysis of weather impacts, the 

effects of reduced crime with extreme temperatures have been noticed, supporting a non-

linear relationship between temperature and crime (Mares & Moffett, 2019). 

 

Figure 3.1. Linear and curvilinear perspective of temperature and crime relationship (Illustration by 

author). 

 

If the negative affect escape model points to a crime decrease at high temperature, 

knowing the temperature where the inflection occurs could contribute to our 

understanding of crime. An exact threshold is difficult to identify, but in studies the 

inflection is found to occur anywhere from 85-86ºF (Mavroudeas et al., 2018; Rotton & 

Cohn, 2000a) to 90-92ºF (Baron, 1972; Gamble & Hess, 2012).  

The concept of people seeking relief at high temperatures bears out in other 

research on outdoor activity, park visitation, and tourism demand (Fisichelli, Schuurman, 
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Monahan, & Ziesler, 2015; Graff Zivin & Neidell, 2014; Rosselló-Nadal, 2014). In these 

studies, a decrease in activity is found at extreme high temperatures, suggesting that 

people are finding relief elsewhere from the discomfort of hot weather. 

Regardless of the pattern of association, it is believed that a relationship exists 

between increased temperatures and increased crime (Bell, 2005). With episodes of high 

heat predicted to increase in the future, the crime and temperature relationship contributes 

an additional detrimental outcome of changing climate (IPCC, 2014; Ranson, 2014). 

Greenspace and Crime 

Greenspace encompasses all vegetated areas of a city (Taylor & Hochuli, 2017) 

and is found by researchers to be both a generator and a deterrent of crime. As a cause of 

crime, greenspace can provide cover and concealment for criminals (Felson & Boba, 

2010; Mak & Jim, 2018; Michael, Hull, & Zahm, 2001). Vegetation can also limit 

visibility of greenspace users, which can lead to greater vulnerability to crime and lessen 

perceived safety of residents (Baran, Tabrizian, Zhai, Smith, & Floyd, 2018; Nasar, 

Fisher, & Grannis, 1993). Uncared for greenspace can also communicate a lack of 

oversight and attract criminal activities (Nassauer, 1995; Sampson et al., 2017). 

 Other research has found that greenspace contributes to a reduction in crime (see 

chapter 2). This outcome is thought to stem from the effect of greenspace to provide 

restoration (Kaplan, 1995), reduce mental fatigue (Kuo & Sullivan, 2001a; Tsai et al., 

2018), and increase social cohesion (Holtan, Dieterlen, & Sullivan, 2014; Maas et al., 

2009). In Chicago, IL, public housing with more vegetation was associated with fewer 

crime incidents (Kuo & Sullivan, 2001b). Other research in Chicago also found lower 



 51 

crime rates in areas with more trees (Schusler, Weiss, Treering, & Balderama, 2017). 

Other work connecting greenspace to crime reduction has examined street trees 

(Donovan & Prestemon, 2010; Kondo, Han, Donovan, & MacDonald, 2017), vacant lots 

(Branas et al., 2011), and tree canopy (Gilstad-Hayden et al., 2015; Schusler et al., 2017; 

Troy, Grove, & O’Neil-Dunne, 2012). In these studies, greater vegetation tends to 

correlate with decreases in crime. Only one study, in New Haven, CT, found no 

statistically significant difference in crime before and after a community greening 

program (Locke, Han, Kondo, Murphy-Dunning, & Cox, 2017). 

 The existing research depicts a complex relationship between greenspace and 

crime. Studies generally point to benefits flowing from greenspace in the form of reduced 

crime, though the mechanisms remain unclear. As greenspace is promoted based on the 

multiple benefits it provides to urban residents (including, potentially, crime reduction), it 

is important to better understand how greenspace interacts with other environmental 

conditions to influence those social benefits. 

Greenspace and Temperature 

Urban heat islands (UHI) are a phenomenon where cities become warmer than the 

surrounding areas due to their increased amount of pavement and buildings, features that 

absorb thermal energy and raise temperatures (Wong, Akbari, Bell, & Cole, 2011). These 

UHI effects are threats to human health through the impact they have vulnerable 

populations, especially the young and elderly (McGregor, Bessemoulin, Ebi, & Menne, 

2015; McGregor & Vanos, 2018; Meehl & Tebaldi, 2004). Those concerns escalate as 



 52 

climate change is anticipated to increase extreme heating events, particularly in urban 

areas (Hajat, O’Connor, & Kosatsky, 2010).  

Greenspace can be one response to increased heat by lowering local temperatures 

through mechanisms such as shading and evapotranspiration (Bowler et al., 2010) and by 

aiding in air movement within local settings. When composed of trees, greenspace is 

found to reduce temperatures and also provide benefit through shade (Brown, Vanos, 

Kenny, & Lenzholzer, 2015). This phenomenon is called the ‘park cool island’ effect and 

moderates local extremes in temperature, both during the day and at night (Chow, Pope, 

Martin, & Brazel, 2011; Declet-Barreto, Brazel, Martin, Chow, & Harlan, 2013). The 

effect of urban greenspace on temperatures could play a role in the relationship between 

thermal conditions and crime, with greenspace influencing temperature, humidity, wind, 

and sun to create a more comfortable thermal environment (Armson, Stringer, & Ennos, 

2012; Bowler et al., 2010).  

Thermal comfort 

Temperature is the primary weather variable that humans sense, but it does not 

capture the full measure of the weather that is experienced. Key to understanding how 

environmental conditions are felt is the concept of thermal comfort, a term that represents 

a combination of weather variables that make up the sensation of the thermal 

environment (Parsons, 2014). While straightforward, this definition captures that aspect 

of the environment which influences human behavior through how comfortable a person 

feels with regard to the weather. Only when a person becomes uncomfortably cold or hot 

do they begin to seek out how to get back to a comfortable situation. 
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Thermal comfort is made up of four basic variables: air temperature, humidity, air 

movement, and radiant temperature (Parsons, 2014). The full complement of these 

variables act on humans in outdoor situations and should be taken into account when 

assessing how the environment impacts behavior (McGregor & Vanos, 2018; Verbos, 

Altschuler, & Brownlee, 2017). 

It is important to differentiate between climate and weather in regards to crime. 

Weather is the atmospheric conditions of a particular setting at a certain time. These are 

the environmental conditions that humans encounter in daily life. Climate is the longer 

term aggregation of weather, typically over 30 years (de Freitas, 2003). The temporal 

scale of human actions that lead to crime is short, so weather is the more relevant 

environmental condition to be examined. It is the variables of weather that form the 

inputs for thermal comfort. 

Numerous thermal comfort indices have been proposed over the last 100 years 

(Epstein & Moran, 2006). A more recent addition is the Universal Thermal Comfort 

Index (UTCI), developed in the early 2000’s (Jendritzky, Maarouf, & Staiger, 2001). The 

UTCI seeks to incorporate an improved model of how humans experience weather 

conditions, taking into account clothing and the heat balance between a person and their 

immediate environment. Using measures of air temperature, relative humidity, wind, and 

solar radiation, a temperature value can be calculated that represents the thermal 

conditions being experienced. The resulting temperatures can be categorized according to 

the cold or heat stress that a person would experience (Błażejczyk et al., 2013). 
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Despite its recent introduction, the UTCI has been used in studies across various 

climates and in comparison to existing thermal indices. The results are found to be useful 

for many applications that attempt to understand human response to thermal 

environments, particularly for studying thermal conditions of open space (Bröde et al., 

2012) and in assessing heat-related health risks (Di Napoli, Pappenberger, & Cloke, 

2018). The UTCI is used by researchers in the fields of urban design (Reinhart, Dhariwal, 

& Gero, 2017), tourism (Rutty & Scott, 2015), and public health (Di Napoli et al., 2018; 

McGregor & Vanos, 2018), but have seen little application to studies of crime.  

While previous research links higher temperatures with increased crime, 

greenspace with decreased crime, and greenspace with decreased temperatures, no work 

has explored the interrelationship that might exist between these phenomena. To address 

this gap we examined the following research question - Does greenspace, defined by 

remotely sensed vegetative cover (Markevych et al., 2017; Pearsall & Christman, 2012; 

Wolfe & Mennis, 2012), moderate the relationship between temperature, measured by 

thermal comfort, and crime risk in census block groups? If so, how and in what direction? 

Methods 

To investigate how greenspace may moderate the relationship between crime and 

thermal comfort, data were collected for census block groups in 301 cities in the U.S. 

with populations over 100,000 (see Appendix A). The unit of analysis was census block 

groups, with block groups greater than 50% within city boundaries selected, as census 

and administrative boundaries do not match exactly. This resulted in a sample of 62,068 

block groups in 301 cities. 
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Dependent Variable 

Crime Data - A crime risk index was used to assess violent and property crime in 

block groups (Esri, 2015). This index represents the crime risk in an area, and is derived 

from data reported by law enforcement agencies and statistical models to determine crime 

risk at the block group level. The index is based on 100 being the national average and a 

one-unit change being a percent change in risk (i.e. 120 equals a 20% increase in risk 

from the national average) (Esri, 2015). The data are provided that align with the Federal 

Bureau of Investigation (FBI) Uniform Crime Report (UCR) Part 1 crimes, covering 

violent and property crimes (Federal Bureau of Investigation, 2004).  

Level 1 - census block groups 

Greenspace measure - Greenspace was operationalized as the measure of 

vegetation, assessed through the normalized difference vegetation index (NDVI). This 

calculated measure is widely used in the study of public health, crime, and environmental 

behavior, where greenspace is viewed as all remotely sensed vegetation (Markevych et 

al., 2017; Wolfe & Mennis, 2012; Younan et al., 2016). NDVI is a unitless measure 

ranging from -1 to 1, with an approximate translation of values to equal bare soil, water, 

or impervious surfaces below 0.1, grasses and shrubs from 0.2 to 0.5, and dense 

vegetation and forest above 0.6 (Weier & Herring, 2000). For this study, NDVI is 

multiplied by 10 to aid in the interpretation of model results. The input imagery was from 

the Landsat 8 satellite for 2015 processed within the Google Earth Engine platform 

(Gorelick et al., 2017). 
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Sociodemographic data - Social covariates of crime were sourced from the 2011 - 

2015 5-year American Community Survey (ACS). Variables used at the block group 

level include 1) median household income, 2) percent under 18 years old, 3) population 

density, 4) percent housing vacant, and 5) percent housing renter occupied.  

Two indices were generated to capture local social disadvantage and ethnic/racial 

diversity within block groups. The disadvantage index is the averaged z-scores of four 

variables: 1) percent unemployed, 2) percent with less than a high school diploma, 3) 

percent of households that are female headed, and 4) percent of families below poverty 

(Krivo, Peterson, & Kuhl, 2009; Sampson, Raudenbush, & Earls, 1997). The diversity 

index is a measure of ethnic or racial diversity in a block group using demographic 

variables of race and hispanic origin. This is calculated using Simpson’ Index for the 14 

population categories provided in the ACS data (Cassal, 2018; Simpson, 1949). 

Simpson’s index represents the probability of two randomly selected individuals being 

from the same group and ranges from 0 (homogeneous) to 1 (heterogeneous). 

Level 2 - cities 

Weather data - Weather inputs used to calculate the UTCI were sourced from the 

North American Land Data Assimilation System (NLDAS-2)(NASA/GSFC, 2013) which 

provides hourly estimates of weather variables based on observed measures and modeled 

data. The hourly data were used to obtain the weather variables at the time of maximum 

temperature for each day in 2015 for all block groups in the study to capture the hottest 

thermal condition a person might encounter during the day. These variables — air 

temperature, relative humidity, wind speed, and solar radiation — were used to calculate 
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the UTCI based on the equation provided by the International Society of Biometeorology 

Commission (Bröde, 2009; Bröde et al., 2012) in R Statistical Software (R Core Team, 

2017). 

UTCI values were categorized into thermal stress levels according to Błażejczyk 

et al (2010) (see table 3.1), then aggregated to a measure of the number of days in each 

category for each city. To capture the total number of days that were in high heat stress, 

the categories of strong, very strong, and extreme heat stress were combined. The 

combined number of days in heat stress is represented as “hot days” and reflects the 

number of days in 2015 in each city where the UTCI was greater than 90ºF. 

 

Crime. Crime data was collected at the city level from the FBI UCR to provide a 

measure of crime in each city context, which serves as a large-scale view of crime in each 

city that could explain local crime risk (McDowall & Loftin, 2009). Counts of the 
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number of offenses and population were obtained for all cities (Federal Bureau of 

Investigation, 2016). Using these counts, a rate per 1,000 persons was calculated for 2015 

for violent and property crimes. 

Police force. The size of city police forces is found to the associated with crime in 

prior research (Levitt, 1997). For this reason, the size of the municipal law enforcement 

agency was used as a measure of the level of policing that exists in a city. The number of 

officers was obtained from FBI law enforcement employment data for 2015 and divided 

by city population (Federal Bureau of Investigation, 2016). This police force variable is 

the number of officers per 1,000 persons. Some cities were found to contract out law 

enforcement to county agencies. In such cases, the police force rate for the area served by 

a county law enforcement agency was used for the city. 

GDP. The economic condition of a city is one contextual variable that is thought 

to contribute to crime (Andresen, 2015). To account for differences in the economic 

context of cities, the per capita metropolitan gross domestic product (GDP) was obtained 

from the Bureau of Economic Analysis. GDP is calculated for metropolitan regions and 

provides a measure of "the value of the goods and services produced" within an area (U S 

Department of Commerce, 2015). 

Select variables were rescaled to aid in interpretation. As stated above, NDVI was 

multiplied by 10 so that 1 unit corresponded to 0.1 change. The same approach was used 

with diversity index multiplying the range from 0 to 1 to result in a range of 0 to 10. Per 

capita GDP, median household income, and population density were divided by 1,000. 
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City populations were divided by 100,000. All rescaling converted variables into similar 

ranges to facilitate modeling. 

All variables were grand mean centered so that a value of 0 indicates the average 

across all block groups in the study. The dependent variable used in the analysis was the 

crime risk index in block groups. The independent variables at level 1 (block groups) 

were 1) median household income, 2) disadvantage index, 3) racial/ethnic diversity 

Index, 4) percent under 18, 5) population density, 6) percent housing vacant, 7) percent 

housing renter occupied, 8) mean NDVI. Independent variable at level 2 (cities) were: 1) 

crime rate per 1,000 population, 2) police officers per 1,000 population, 3) per capita 

GDP, and 4) hot days - number of days with UTCI greater than 90ºF. Description and 

sources for the variables are presented in table 3.2. 
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Analysis 

To examine the associations between crime risk, hot days, greenspace, and 

covariates, a bivariate analysis was conducted. Significance of correlations were tested by 

Pearson product at alpha = 0.05. 

A multilevel modeling approach was used to account for the similarity that may 

exist between block groups within the same city, which would violate the assumption of 

independence in ordinary least squares regression (Snijders & Bosker, 2012). Models 
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were constructed from simple to more complex as suggested by Hox (2010). The initial 

intercept-only null model, model 1, allowed for the determination of variability 

attributable to cities. Model 2 added level one, or block group, variables. Model 3 added 

level two, or city level, variables. The final model added the interaction of hot days and 

NDVI. All models were compared using Akaike's Information Criterion (AIC) and 

likelihood ratio tests to examine if the added variables improved model fit. As a measure 

of “explained” variance the overall pseudo-R2 was calculated by squaring the correlation 

between predicted and observed values for the response variable (block group crime risk 

index) in each model (Aguinis, Gottfredson, & Culpepper, 2013; Singer & Willett, 2003). 

Linear multilevel models were fit in R statistical software (version 3.5) using the 

lme4 package (Bates, Mächler, Bolker, & Walker, 2015). The Crime Risk Index response 

was included as the dependent variable and fixed effects were added for covariates, 

NDVI, hot days, and the interaction between NDVI and hot days. City was included as a 

random effect to allow for intercepts to vary across the cities. The final model 

specification and moderation relationship are as follows:  

Model 1: Crime Index ~  α + (1|City) 

Model 2: Model 1 + Median Income + % Renter + % Vacant + Population Density + 

Disadvantage + Diversity + % under 18 + NDVI 

Model 3: Model 2 + Per capita GDP + Per capita Police + Hot days + City crime rate 

Model 4: Model 3 + (NDVI × Hot Days) 
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Figure 3.2. Conceptual diagram of greenspace moderation on thermal comfort and crime risk 

Results 

Descriptive statistics 

Descriptive statistics for the level 1 (block groups) and level 2 (cities) variables 

are given in table 3.2. The city mean of the block group violent crime index varied from 

12.5 in Irvine, CA to 525 in Detroit, MI. The block group property crime index varied 

from 34.7 in Irvine, CA to 327 in Spokane, WA. Hot days ranged from 3 to 236 (Daly 

City, CA; Oxnard, CA) across all cities in the study. 
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Bivariate analysis 

 Pearson product moment correlations between the crime risk index, hot days, 

greenspace, and covariates showed significant associations at alpha = 0.05 level. The 

strongest correlations existed between median income, percent renter, violent crime risk, 

and disadvantage. The number of hot days was negatively correlated with violent and 

property crime risk, though weakly. The greater the number of hot days the lower NDVI, 

violent, and property crime were in the data. Correlations that were not significant were 
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median income with NDVI and population density, population and per capita GDP, 

percent under 18 and violent crime rate. 

The relationship between crime and thermal comfort is predicted to be non-linear 

based on the negative affect escape model (Bell & Baron, 1977). Despite only focusing 

on the high temperature region of the relationship, linearity between crime risk and hot 

days was checked. Non-linear association did not provide improved fit over linear 

assumptions so the model was fit with a linear multilevel approach. 

 
Figure 3.3. Correlation matrix. X cells indicate p > 0.05. 



 65 

 

Model results  

The initial null model, model 1, was fit for violent and property crime. The results 

served as the baseline for further model development and for observing changes in 

variance as more variables are added. The variance measures of the null model provide 

for the calculation of the intraclass correlation for both crime types, which provides a 

measure of the variation in the block groups that is attributable to cities and an indication 

if a multilevel modeling approach is appropriate. Intraclass correlation (ICC) for violent 

crime was 0.316 and property crime was 0.313. These indicate that 31.6% of the variation 

in violent crime and 31.3% of property crime is at the level of cities, supporting the use 

of a multilevel modeling approach.  

Model 2 adds the level 1, or block group level, variables. The pseudo R2 was 

0.452 for violent crime and 0.080 for property crime. All block group level variables 

were significant (see table 3.3), with NDVI also negative (-14.78 in violent crime, -24.91 

in property crime). The coefficients indicate that a 0.1 increase in NDVI is associated 

with a decrease in the crime risk index of 14.78 and 24.91. A likelihood ratio test (LRT) 

was carried out to examine model improvement between model 1 and 2. The result 

showed an improved fit by model 2 (Violent: DAIC- 36600, 𝜒2(8)=36641, p= < 

0.001/Property: DAIC- 23273, 𝜒2(8)=23231, p= < 0.001). 

Model 3 added the level 2, or city level, variables. Approximation of the variance 

explained increased from the previous model with only block group level variables, with 

a pseudo R2 of 0.601 for violent crime and 0.372 for property crime. With the addition of 
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city variables, the coefficient for hot days in the violent crime model was negative at -

0.19, so that one additional day with UTCI above 90ºF was associated with a decrease of 

0.19 in the crime risk index. For property crime the hot days variable was significant and 

negative at -0.26. NDVI remained negatively associated with violent and property crime 

(2% change for violent crime and 1% change for property crime). Model 3 had better fit 

over model 2 based on the result of the LRT (violent crime: 𝜒2(4)=422.03, p= < 

0.001/property crime: 𝜒2(4)	=336.28, p= < 0.001). Without the interaction of NDVI and 

hot days each variable had an inverse relationship with crime. 

The interaction of NDVI and hot days addresses the question of how greenspace 

moderates the crime and thermal comfort relationship, with model 4 adding the 

interaction term between hot days and NDVI. This final model accounted for a small 

increase in the pseudo R2 from model 3 (violent crime: 0.605, property crime: 0.380). 

The interaction term was significant with a coefficient of 0.10 for violent crime and 0.03 

for property crime, indicating that an increase in NDVI was associated with a weakening 

in the relationship between crime and hot days (figure 3.3). In the violent crime model 

the interaction indicates that a greater amount of greenspace weakens the relationship 

between hot days and crime. At one standard deviation above the mean NDVI value the 

relationship approaches 0, or no change as there are more hots days. For property crime, 

the coefficient for hot days remained significant at -0.26 when NDVI is at the mean. The 

interaction indicates that above average NDVI will result in the slope for hot days 

weakening by a small amount for property crime risk. The model with the interaction was 
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a better fit over model 3 based on the LRT (violent crime: 𝜒2(1)=107.97, p= < 0.001, 

property crime: 𝜒2(1)=21.86, p= < 0.001).  
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Figure 3.4a. Estimated fixed effects for violent crime risk, model 4 (unstandardized coefficients). 
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Figure 3.4b. Estimated fixed effects for violent crime risk, model 4 (standardized coefficients). 
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Figure 3.4c. Estimated fixed effects for property crime risk, model 4. 
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Figure 3.4d. Estimated fixed effects for property crime risk, model 4 (standardized coefficients). 
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Figure 3.5a. Interaction plot of NDVI by Hot Days for violent crime 

 

Figure 3.5b. Interaction plot of NDVI by Hot Days for property crime 

Discussion 

 Our modeling results indicate that the association between hot days and crime 

depends on the level of greenspace in a block group. Areas that are greener have less 

crime on average and see little change in violent crime as hot days increase. For property 
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crime, both green and not green areas see the same decreases in crime with more hot 

days. 

 The cross-level interaction of NDVI and hot days is significant and has a positive 

value, indicating that an increase in greenspace is associated with an increase in the slope 

between hot days and crime. As the relationship was already negative, this points to the 

correlation weakening as there is greater greenspace. The initial association between hot 

days and crime suggests that more days in high heat are correlated with decreases in 

crime risk. Adding NDVI to this relationship reduces the amount of change in crime as 

the number of hot days increases (see figure 3.3). 

 For violent crime this relationship points to different results for block groups with 

higher and lower greenspace. A greener area will have lower crime risk on average than a 

less green area. With covariates accounted for, the association between hot days and 

violent crime risk was -0.17 at the average level of NDVI. As more hot days are 

experienced, areas with above average greenspace would see no change in crime, while 

areas with below average greenspace would see a greater decrease in crime risk. This 

suggests that for violent crime, as block groups become greener, the effect of more hot 

days moves from a crime reduction towards no effect. This shift only varies by a small 

amount as the interaction coefficient is 0.10 (at one standard deviation increase in NDVI, 

one additional hot day would be associated with a 0.15 increase in the violent crime risk 

index, or 0.15 % change). 

 For property crime, the relationship between hot days and crime at average NDVI 

was significant, suggesting that average greenspace was associated with a decrease in 
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crime risk with more hot days. The effect of changes in NDVI was smaller than for 

violent crime. At higher and lower than average NDVI values crime would maintain a 

similar relationship, with an increase in hot days correlated with a decrease in property 

crime risk (see figure 3.3). In this case, block groups had a small difference in the 

relationship regardless of the amount of greenspace. 

 These findings lend support to the perspective of Negative Affect Escape theory, 

where more uncomfortable conditions would discourage criminal activity (Anderson, 

2001; Baron & Bell, 1975; Bell & Baron, 1977). In the case of violent crime, we see that 

block groups with less greenspace are associated with decreasing crime risk with more 

hot days. With less green vegetation, these areas would be expected to become much 

warmer and less comfortable than other areas containing tree canopy and green 

vegetation (Armson et al., 2012). Having less vegetation to cool local conditions through 

shade and evapotranspiration, the uncomfortable thermal conditions would reduce 

outdoor activity and lead to less interaction among people (Graff Zivin & Neidell, 2014; 

Huang, Lin, & Lien, 2015; Lin, 2009; Zacharias, Stathopoulos, & Wu, 2001). Areas with 

greater amounts of greenspace would have more comfortable thermal conditions, and 

therefore lead both to people leaving their homes and to social interactions that could 

increase the chance of becoming a target of criminal activity. As property crime showed 

the same relationship regardless of the amount of greenspace, uncomfortable hot weather 

would result in residents staying indoors at home, where most property crime occurs, and 

reducing the likelihood of property theft (The Bureau Of Justice Statistics, 2011). 
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 It should be noted that there are realistic bounds to variables in the study that give 

some context to the amount of change that may be expected. The number of hot days are 

predicted to increase in the future, so a decrease is less likely (IPCC, 2014). This increase 

in the number of hot days would be expected to occur gradually over time so that changes 

year-to-year might be slight. NDVI is already bound at -1 to +1 with realistic values for 

vegetation existing between 0 and +1, so changes in greenspace are not likely beyond 3 to 

4 units in the modeling (0.3 to 0.4 on the NDVI scale). 

Limitations - There are some limitations with this research that hinge primarily on 

data availability for such studies. The crime data only provided a measure for the year, 

and lacked specific geographic or time details. A tradeoff was made to get a consistent 

measure applicable to a wide sample of cities, but this has the cost of not being able to 

capture temporal detail. The measure of greenspace also lacks temporal resolution as it 

captures the greenest period for the year. Using NDVI to assess greenspace has become 

common in multiple disciplines, but as a measure of just green vegetation it omits many 

nuances of accessibility and use (Dadvand et al., 2012; Fan, Das, & Chen, 2011). Lastly, 

weather data was used at the city level and does not capture microclimatic situations that 

would exist in neighborhoods due to urban structures like buildings. 

Future research - Future research on this topic should look to incorporate a more 

detailed view of the processes related to urban greenspace. Using data with greater spatial 

and temporal resolution would allow for investigating seasonal and place specific 

attributes of the relationship. Greenspace could also be broken down into different types 
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of data on land uses like parks were used. Both the formal and informal green areas of a 

city might play different roles in the relationship with crime. 

Conclusion 

Cities face an uncertain future in regards to extreme heat as climate changes. By 

reducing the urban heat island effect, greenspace can be one way to make neighborhoods 

more pleasant places to live under these future scenarios (Bowler et al., 2010; Brown et 

al., 2015; Harlan, Brazel, Prashad, Stefanov, & Larsen, 2006). In this study, however, we 

demonstrate how greenspace’s capacity to improve thermal comfort can counteract the 

effect of unpleasantly hot thermal conditions to reduce crime. The results lend support to 

crime models that suggest decreases in crime at extreme temperatures, but they also show 

that improving local conditions through greenspace may have unintended (and perhaps 

unwanted) effects on crime. 

Does this mean extreme heat should be a method of crime reduction? If the goal is 

to improve communities, then high heat is not the answer. Extreme heat events lead to 

more problems than solutions due to increased risks to residents’ health (Harlan et al., 

2007, 2006; Klinenberg, 1999). Our results show that greenspace makes communities 

more thermally pleasant, but also places that have less crime on average compared to 

areas with little greenspace. Adding and maintaining greenspace can reduce crime and 

improve many other aspects of life, making neighborhoods desirable places to live. 

With interest in the effect of urban greenspace on public health and quality of life 

continuing to grow (Becker, Browning, Kuo, & Van Den Eeden, 2019; Engemann et al., 

2019), it will be important to consider the complex interactions greenspace may have on 
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other processes. These side effects and unintended outcomes, such as gentrification 

(Cole, Garcia Lamarca, Connolly, & Anguelovski, 2017), added costs for maintenance of 

greenspace (Pataki et al., 2011; Shackleton et al., 2016), or changes in crime, can impact 

city residents in ways that are difficult to predict. In efforts to improve cities and increase 

their resilience to anticipated climate changes, greenspace should be seen as one tool 

among a choice of interventions that can make the city a better place in the future. 
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CHAPTER FOUR 

PARKS AS SAFE HAVENS OR CRIME MAGNETS: PROXIMITY TO PARKS AND 

CRIME IN FOUR CITIES 

 

Abstract 

Urban parks, as a type of greenspace, provide benefits to residents, but can also be 

attractors for undesirable activities and crime. We examined the relationship between 

crime and proximity to parks within four cities during 2016 to investigate how parks and 

crime are related. Results point to higher amounts of violent and property crime closer to 

parks, considering covariates of crime such as income, population density, and social 

disadvantage. The research highlights how amenities such as parks can also have 

drawbacks that should be considered when seeking to improve the quality of life for 

urban residents. Future research could explore specific local effects of parks and combine 

such research with qualitative studies on park quality and the perception of crime. 

Introduction 

Crime is a threat to well-being and quality of life (Jackson & Stafford, 2009), and 

with expected growth in urban areas, ensuring safe and high-quality communities will be 

important for current and future residents (United Nations, 2015). Researchers and city 

leaders suggest that greenspace is one way to improve local neighborhoods, providing 

space for physical activity and improved health (City Parks Alliance, 2019; Kaczynski, 

Potwarka, & Saelens, 2008; Sugiyama, Carver, Koohsari, & Veitch, 2018). While 

greenspace can include many types of urban land uses, such as private yards, gardens, or 
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vacant lots, parks are an often-cited example in the literature, representing a type of 

greenspace managed for public use (Taylor & Hochuli, 2017). 

Research on the interaction of urban parks and crime points to parks being 

associated with both increases and decreases in crime (Bogar & Beyer, 2016; Han, 

Cohen, Derose, Li, & Williamson, 2018). Prior studies have focused on isolated cities 

and used a variety of research methods, making comparison of findings difficult and not 

considering contextual factors that may vary across cities. To address this gap, we 

examined four cities using detailed spatial data on land use and crime incidents to address 

the question of how proximity to urban parks and crime are related.  

Background 

Greenspace and parks are ambiguous terms in the literature, often being used 

interchangeably (Taylor & Hochuli, 2017). Greenspace connotes areas in vegetation 

which can include public and private lands. Parks may or may not contain vegetation and 

are primarily public lands with space for activity or relaxation (Forsyth, Musacchio, & 

Fitzgerald, 2005; Konijnendijk, Annerstedt, Nielsen, & Maruthaveeran, 2013).  

Urban parks are a subset of land use within the concept of open space and are 

frequently provided as an example of greenspace (Taylor & Hochuli, 2017). 

Traditionally, urban parks contain some measure of 'greenness' or vegetation that can be 

seen as representing a natural condition, though parks are often highly designed 

landscapes (Forsyth et al., 2005). This is reflected in common definitions of park such as, 

"a large public green area..." and “an area maintained in its natural state as a public 

property” (Jewell & Abate, 2001; Merriam-Webster Dictionary, n.d). Parks are 
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historically portrayed as a necessary part of cities to combat the ills of urban life (K. 

Jones & Wills, 2005). Today urban parks continue to be viewed as remedies to the stress 

of living in dense areas, providing places for activity, socializing, and relaxation 

(Boulton, Dedekorkut-Howes, & Byrne, 2018; Harnik, 2012; Keith, Larson, Shafer, 

Hallo, & Fernandez, 2018).  

Urban parks are typically accessible to the public and managed by a municipal 

agency (Forsyth et al., 2005). Further definition is offered by those involved in the 

promotion and study of urban parks to include aspects such as: 

“...land owned by regional, state, and federal agencies ...including school grounds 

formally open to the public and greenways that function as parks.” (The Trust for 

Public Land, 2017) 

“... delineated open space areas, mostly dominated by vegetation and water, and 

generally reserved for public use. Urban parks are mostly larger, but can also have 

the shape of smaller ‘pocket parks’. Urban parks are usually locally defined (by 

authorities) as ‘parks’.” (Konijnendijk et al., 2013) 

While parks are used as an example of greenspace, it is clear that they can be 

separate types of land use within a city. A conceptual view of urban open space, 

greenspace, and parks is represented in figure 4.1. As illustrated, greenspace and parks 

are forms of urban open space. Parks themselves can be greenspaces, but are not always 

vegetated places. 
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Figure 4.1 - Conceptual figure of open space, greenspace, and parks (source: author) 

Urban parks and crime 

As a type of greenspace, urban parks provide many benefits to the community, 

but are also perceived as the setting for undesirable behaviors and activities such as 

attracting the homeless, drug markets, prostitution, and idle youth (Harnik, 2012; 

Stodolska, Acevedo, & Shinew, 2009). The reputation of urban parks as crime magnets 

has also been sensationalized by news media, placing an over emphasis on crime in parks 

despite equal or greater amounts of crime outside of them (K. Jones & Wills, 2005). 

Crime, both real and perceived, can be a barrier to community members visiting and 

benefiting from urban parks (Han et al., 2018; Ou et al., 2016).  

An alternative viewpoint to parks as crime magnets frames parks as deterrents of 

crime. Criminological theory provides some perspective on how parks can deter crime 
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through the Routine Activity Theory. This theory proposes that crime is the result of 

three elements: “likely offenders, suitable targets and the absence of capable guardians 

against crime” (Cohen & Felson, 1979, p. 588). Parks can be seen through the lens of 

Routine Activity as attracting people through events and activities, increasing the number 

of guardians keeping watch and therefore discouraging crime. This is captured by the 

term “eyes on the street” where more people can increase surveillance of public spaces 

(Jacobs, 1961). In contrast, park activities could also increase the number of targets for 

criminals.  

Social disorganization theory provides another view of how parks can reduce 

crime, suggesting that crime results from low socio-economic conditions and breakdowns 

in social control (Shaw & McKay, 1972). Parks are thought to help build and support 

social connections in a neighborhood thereby increasing informal control that deters 

crime (Cohen, Inagami, & Finch, 2008). Alternatively, parks could be victims of their 

surroundings, with disadvantaged neighborhoods attracting crime to common spaces like 

parks (Boessen & Hipp, 2018) 

Crime prevention through environmental design (CPTED) is another perspective 

that can help explain the relationship between parks and crime through residents’ ability 

to maintain control over public areas (Newman, 1972). The design and programming of 

parks can lead to natural surveillance that can help deter crime and provide guardianship 

over space (Casteel & Peek-Asa, 2000). If parks limit visibility or provide many routes of 

movement they could conversely become spaces that encourage crime (Mair & Mair, 

2003). 
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Parks and recreational areas are one urban land use that can influence that amount 

of crime in a community or city (Blair, Wilcox, & Eck, 2017; Brantingham & 

Brantingham, 1995). Prior research finds the relationship between crime and parks to be 

uncertain, with parks leading to increases or decreases in crime.  

Neighborhood parks in Philadelphia were found to be places that generated crime, 

having higher concentrations of crime in the park vicinity versus other parts of the city 

(Groff & McCord, 2012). This same conclusion was made in a similar study comparing 

parks in Louisville, KY and Philadelphia (McCord & Houser, 2015). Parks can lead to 

increases in perceived (Baran, Tabrizian, Zhai, Smith, & Floyd, 2018) and real crime 

(Ceccato, 2014) when vegetation contributes to reduced visibility by park users. 

Alternatively, an earlier study in Boston found no increase in crime for residents 

living near a popular greenway compared to neighboring streets (Crewe, 2001). An 

analysis of land uses and crime concluded that green areas and parks served more as 

deterrents of crime when compared to other land uses (Sypion-Dutkowska & Leitner, 

2017). Other research finds that the relationship depends on the context of the 

surrounding neighborhood. In areas of higher deprivation and visible physical disorder, 

parks may not provide the same level of crime deterring benefits, becoming sources of 

criminal activity or displacing crime (Demotto & Davies, 2006; Harris, Larson, & 

Ogletree, 2017; Tower & Groff, 2014). The relationship with crime can also vary by type 

of criminal activity, with parks in Chicago found to have an association with property 

crimes but not other crime types such as assault or robbery (Harris et al., 2017; Schusler, 

Weiss, Treering, & Balderama, 2017). These many different conclusions point to the 
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complex association that parks have with crime in the city (Kimpton, Corcoran, & 

Wickes, 2016).  

To investigate how crime and parks are related within urban areas, we examined 

the relationship between proximity to parks and crime in four cities. As parks are viewed 

as a type of greenspace, we included measures of greenness at both the park and census 

block group level. 

Methods 

To examine how crime and urban parks are related, data were collected in four 

cities in the contiguous U.S. that represent different regions of the country. Census block 

groups that are greater than 50% within the city boundaries were used as the unit of 

analysis, totaling 3,373 block groups across the four cities. Missingness in some variable 

occurred due to block groups having 0 population or censored income values, resulting in 

3,199 block groups used in the analysis. Data collected included crime incidents, 

sociodemographic variables, park spatial features, and greenspace measures.  

Case Cities - Cities were chosen that capture different contexts that parks may 

exist in. The cities chosen were Austin, TX, Philadelphia, PA, Phoenix, AZ, and San 

Francisco, CA. Requirements included that the cities be based in one of the four climate 

regions, have similar total population, and have adequate crime data available (see table 

4.1 and figure 4.1). To capture different conditions of greenness that parks may exist 

under, the four cities fall into one of four climate regions defined by clustering mean 

temperature, mean precipitation, and the number of days with maximum temperatures 

over 90ºF. These weather variable averages are derived over the years 1981 - 2010, 
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effectively representing the climate of a city (PRISM climate group, n.d.). K-means 

clustering was applied with the kmeans function in R statistical software version 3.5.0 (R 

Core Team, 2017) to determine four categories of climatic conditions based on 

precipitation (wet-dry), temperature (warm-cool), and number of days over 90ºF (high-

low). 
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Figure 4.2. Map of cities and their parks 
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Data 

Crime data - Crime incident data was obtained from each city, for the year 2016. 

This data contained date and location information, providing temporal and spatial 

attributes that allow analysis across the city landscape. Many cities have begun to provide 

data through open data platforms that include information on crimes. This approach to 

providing crime data is more prevalent in larger municipalities (Goldstein, Dyson, & 

Nemani, 2013). Despite the availability, the crime data required substantial cleaning to 

get all four cities into a common format. This included processing to common variables 

across cities, geocoding incidents missing latitude and longitude data, and removing 

crimes not included in the analysis (using only FBI Part 1 crimes (Federal Bureau of 

Investigation, 2004)). In the case of Phoenix crime data did not contain coordinate 

information and required the geocoding of address location in ArcGIS software (Hipp et 

al., 2016). 

Crime points were aggregated to census block groups to produce crime counts for 

total, violent, and property crimes. The crime types are based on the classification used in 

the Uniform Crime Reporting systems with violent crimes composed of murder, 

aggravated assault, and robbery, and property crimes composed of larceny, burglary, auto 

theft, and arson (Federal Bureau of Investigation, 2004). Crimes relating to rape and 

sexual assault were omitted as they lack location information due to censoring by law 

enforcement agencies. 

Park data - Data on parks was obtained from the Trust for Public Land (TPL) 

ParkServe database, which includes spatial data on parks for over 13,000 municipalities 
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in the US (The Trust for Public Land, 2019) . Proximity to parks was calculated for block 

groups as the Euclidean distance to the nearest park using the sf package (version 0.6.4) 

in R (Pebesma, 2018). Once the nearest park was identified, the attributes of that park’s 

size and NDVI value were added to the block group. 

Greenness - Including a measure of greenness through a vegetation index allowed 

for the greenspace component of parks to be included in the analysis. The normalized 

difference vegetation index (NDVI) was used as the measure of greenness to assess both 

block groups and parks. NDVI is calculated from remote sensing imagery that captures 

the red and near infrared wavelengths of light. Green vegetation reflects these light bands 

in a unique combination that can be used as a measure of greenspace (Weier & Herring, 

2000). The resulting values range from -1 to 1, with corresponding values: less than 0.0 

water or impervious surface, 0.0 - 0.2 dry soil, 0.2-0.4 shrub and grasslands, 0.4-0.8 

dense vegetation, 0.8+ forests (H. Jones & Vaughan, 2010; Weier & Herring, 2000). 

NDVI is regularly used within the social sciences and public health fields for assessing 

greenspace in urban areas (Beyer et al., 2014; Gascon et al., 2016; Taylor & Hochuli, 

2017; Wolfe & Mennis, 2012; Younan et al., 2016). 

Data for NDVI was sourced from Sentinel-2 imagery for 2016, which has a 10-

meter spatial resolution (Copernicus, 2016). The imagery was processed within the 

Google Earth Engine platform (Gorelick et al., 2017) to obtain the greenest pixel for the 

entire year. NDVI was averaged within block groups and within park features, then 

multiplied by 10 to aid in interpretability.  



 101 

Sociodemographic - Social variables were sourced from the 2012-2016 American 

Community Survey (ACS) at the census block group level. These included 1) median 

household income, 2) population density, 3) percent under 18, 4) percent of housing 

vacant, 5) percent renter occupied housing, 6) a racial/ethnic diversity index, and 7) a 

disadvantage index. The diversity index was composed of 14 group categories as 

measured by the ACS and represents the probability of 2 selected individuals belonging 

to different groups (Cassal, 2018). The disadvantage index was constructed from 1) 

percent unemployed, 2) percent with less than a high school diploma, 3) percent female 

headed households, and 4) percent of families below the poverty line, being the mean of 

the standardized value of each variable (Krivo, Peterson, & Kuhl, 2009; Sampson, 

Raudenbush, & Earls, 1997). 

The independent variables used in the analysis were: median household income, 

percent under 18, percent of housing vacant, percent renter occupied housing, diversity 

index, disadvantage index, population density per square kilometer, block group NDVI, 

size of nearest park in acres, nearest park NDVI, and distance to the nearest park. The 

dependent variables were the count of violent crime and property crime in block groups. 

Missing values occur due to censoring of median household income or block groups with 

zero population, resulting in a total number of block groups used in the analysis being 

3,199 across the four cities. 

Analysis Strategy 

Due to the dependent variable of crime being the count of incidents, a generalized 

linear model was used with a poisson distribution. Overdispersion was observed in the 
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poisson model, indicating that a negative binomial model may better fit the data. Models 

were fit with the glm.nb function from the MASS package in R statistical software (R 

Core Team, 2017; Vernables & Ripley, 2002). The model estimates if a block group has 

more or less violent or property crime. Exponentiating the coefficients from the negative 

binomial regression provides a rate of change in the dependent for one unit change in a 

predictor, when all other variables are held constant in the model.  

To account for differences in crime counts due to different sizes of block groups, 

block group area was used as an offset within the models. This results in the model 

predicting crime densities, being crimes per square kilometer, as incident rate ratios 

(IRR) for the rate of change in crime for a one unit change in the predictor variable. 

Models were fit to each city for violent and property crime.  

Independent variables were mean centered within each city. This results in the 

model intercept being the predicted count of crimes per square kilometer for block groups 

that are average on all variables. 

Results 

Descriptive statistics of data 

Descriptive statistics for the cities are presented in table 4.2. The city with the 

highest green vegetation measure was Austin, with a mean NDVI value across the block 

groups of the city of 0.533. The city with the lowest green vegetation measure was 

Phoenix at 0.212. The number of parks ranged from 217 in Phoenix to 558 in 

Philadelphia. Austin and Phoenix had similar densities of total crime across the city, 
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approximately 93 per square kilometer, while San Francisco had the highest at 889 

crimes per square kilometer.  
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Model results 

Model results indicated a decrease in crime as the distance to parks increased 

accounting for covariates. The relationship was significant in all cities for violent crime 

and in all cities except Phoenix for property crime (see table 4.3).  

 In the violent crime model, the largest effect was in San Francisco (IRR = 0.34, 

p< 0.05), where being 1 km (approximately a 10 minute walk (Harnik & Martin, 2016)) 

farther from a park was associated with a 66% decrease in violent crime. The smallest 

effect of park proximity was in Phoenix (IRR = 0.82, p< 0.05), or an 18% decrease in 

violent crime. Auston and Philadelphia were both associated with a 32% decrease in 

violent crime (IRR = 0.68 for Austin and IRR = 0.67 for Philadelphia). Park size and 

NDVI were included in the model, with park size having essentially no association with 

violent crime amounts. Park NDVI was only significant in Phoenix, where parks with 

higher NDVI values were associated with an increase in violent crime densities, and San 

Francisco, where parks with higher NDVI values were associated with decreased violent 

crime. 

 In the property crime model, distance to parks was significant in all cities. The 

largest effect was in San Francisco (IRR = 0.30) indicating that a 1 kilometer increase in 

distance from a park crime decreases 70%. Phoenix had the smallest effect (IRR = 0.90), 

associated with a 10% decrease in property crime for a 1 kilometer increase in distance 

from a park. Park size was significant in Philadelphia, Phoenix, and San Francisco, but at 

small values. Park greenness was statistically significant only in Phoenix where greener 

parks were associated with an 8% increase in property crime densities (IRR = 1.08). The 
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non-linear relationship between proximity to parks and crime can be seen in the plots of 

model predictions (figure 4.3). 
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Figure 4.3a. Marginal effects of distance to park on violent crime 
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Figure 4.3b. Marginal effects of distance to park on property crime 

Discussion 

In addressing the question of how proximity to parks and crime are related, we 

found that in all four cities, when a statistically significant relationship existed, the 

relationship indicated higher levels of crime closer to parks. As one moves farther from 

parks, crime densities decrease. This finding is taking into account common covariates of 

crime and characteristics of the park nearest to a block group, such as park size and 
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greenness. 

 Finding higher amounts of crime associated with proximity to parks supports 

prior research that found increased crime close to parks (Boessen & Hipp, 2018; Groff & 

McCord, 2012; McCord & Houser, 2015). Possible causes for this result can be found in 

Routine Activities theory, framing urban parks as places where residents make 

themselves more vulnerable to potential crimes. The activity and common space of parks 

provides a place for people to come together, and as a side effect, increase the number of 

targets for property and violent crime (Harp & Karnauskas, 2018). 

 While disadvantage, income, and diversity are accounted for in the models, it 

cannot be ruled out that parks may be the victims of their surroundings (Boessen & Hipp, 

2018). The location of parks in a city is the result of public and political decisions, from 

which contemporary perspectives see parks as a tool for the revitalization of neglected 

sites or underserved communities (De Sousa, 2003; O’Sullivan, 2011). During these 

transitions the level of crime may remain high due to earlier socioeconomic conditions 

that existed in a neighborhood (Harris et al., 2017). Additionally, many parks are located 

to provide benefit to residents in dense residential areas. Though population density was 

also accounted for in the modeling, areas with greater population are found to have 

higher crime rates (Nolan, 2004).  

Urban parks are often mentioned as an example of greenspace in cities. We 

included a measure of park greenness, NDVI, in our model to examine how this aspect of 

parks may influence the relationship to crime. Examining the effect of this variable, we 

see that in Phoenix and San Francisco park NDVI has a significant relationship with 
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crime. Phoenix has an increasing amount of violent and property crime near greener 

parks, while San Francisco had a decrease in violent crime with greener parks. Both cities 

had low NDVI among the case cities and their block groups in general are low in NDVI 

value compared to parks (see figure 4.4 for Phoenix). It could be that the contrast of 

green parks to the typically non-green city landscape offers more of an attraction in 

Phoenix than it would provide in cities that are greener overall, such as Austin or 

Philadelphia (Jenerette, Harlan, Stefanov, & Martin, 2011). In an arid climate these green 

parks can attract more people leading to a higher likelihood of being a victim of crime.  

 

Figure 4.4. Contrast in NDVI between parks and block groups in Phoenix. 

 

 



 112 

Limitations 

There are limitations to note within the current research. One common issue with 

crime data is that it will not include all crimes, as consistency in the reporting of crime 

varies, leading to the omission of some crimes (Levitt, 1998; MacDonald, 2001; Maltz, 

1999; Myers, 1980). The location of crime incidents is typically modified by law 

enforcement in the name of victim privacy, including the complete censoring of locations 

or generalization to street blocks. Additionally, error can appear in the socioeconomic 

variables due to the sampling methodology of the ACS data (Spielman, Folch, & Nagle, 

2014). Lastly, data on parks is gathered by the Trust for Public Land, sourced from city 

agencies which may vary in their ability to provide accurate and current data on parks 

(The Trust for Public Land, 2019). 

Urban parks are not located randomly within cities, but exist as a result of public 

and political decision-making over many years. Future research can try to capture these 

processes when investigating how parks influence social and physical conditions. 

Additional considerations can also include park quality and an assessment of green 

vegetation beyond what can be determined by NDVI measures. 

Conclusion 

Urban parks are one intervention that cities can implement to improve the quality-

of-life for residents, but their influence on crime should be taken into consideration when 

locating future park spaces and managing existing ones. Both violent and property crime 

was found to be higher near parks. Our study shows how this relationship was consistent 

across cities where typical descriptions of greenspace differ due to climate. The 
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proximity to parks was found to be related to higher crime, but cannot be taken as a 

cause. The role of parks in the surrounding community, by increasing activity and 

interaction among people, plays one part in existing theories of crime, such as Routine 

Activities, where more users equals more opportunities. This negative outcome should be 

considered in relation to the benefits that arise from parks and greenspace, such as 

improved public health, social interaction, or environmental conditions (Chiesura, 2004; 

Dustin et al., 2018; Gobster, 1998; Hartig, Mitchell, de Vries, & Frumkin, 2014). 

 Urban greenspace is associated with numerous benefits, in contrast this work 

shows that the type and use of greenspace may be associated with disamenities such as 

crime. This potential association of parks and crime will require management and 

planning beyond simply planting vegetation, such as design, maintenance, and 

programming, to mitigate negative outcomes on communities (D. Cohen et al., 2015, 

2010; Lapham et al., 2015). As cities continue to grow, it will be important to ensure that 

the potential drawbacks of parks are minimized and weighed against the benefits to local 

residents. 
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CHAPTER FIVE 

SUMMARY AND CONCLUSIONS 

  

Urban greenspace has gained attention as a means to improve the quality of life 

for city residents through benefits to mental and physical health, social cohesion, and 

restoration (Kaczynski, Potwarka, & Saelens, 2008; Kaplan, 1995; Tsai et al., 2018), but 

disservices such as crime have not been explored in detail. As crime is a serious threat to 

well-being (Lorenc et al., 2012; Mahuteau & Zhu, 2016), I examined how greenspace and 

crime are related within a large sample of cities. The relationship showed differences 

depending on the type of greenspace, but presented a consistent outcome across cities. 

My goal was to enrich the understanding of the benefits and drawbacks of 

greenspace in a community and to fill gaps in the current knowledge. To date research 

has been isolated to single case studies and used a variety of methods and crime 

covariates to describe how crime and greenspace are associated. I examined the 

greenspace and crime relationship through three research questions. 

How are crime and greenspace related? 

How might greenspace moderate the relationship between temperature and crime? 

How is proximity to parks, as a type of greenspace, related to crime? 

I have extended the analysis to 301 cities in chapter 2, using the same 

methodology to understand the direction and strength of association between crime and 

greenspace. Additionally, in chapter 3 I examined one way that greenspace may influence 

crime, through its impact on a potential environmental cause of crime – temperature. 
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Lastly, greenspace is often operationalized as all vegetation, but there are many different 

types, with urban parks being one type aimed at public use. In chapter 4 the proximity to 

parks was investigated in four cities to both examine this relationship and compare across 

differing city contexts. 

Findings 

The results of chapter 2 pointed to a greater amount of greenspace being 

associated with less property and violent crime risk. This result held across cities, with 

only three exceptions for violent crime. These findings support prior research that has 

pointed to less crime with greener neighborhoods, and extends this result to a large 

number of cities in the US using a common methodology. This study lends support to 

including greenspace in city development with crime impacts being one additional 

benefit for urban residents. 

Increasing green vegetation can then be seen as one way to help reduce crime. 

There is evidence that vegetation has an effect on mood and aggression (Kuo & Sullivan, 

2001), which can be a mechanism through which greenspace contributes to reduced 

crime.  

In chapter 3 the study explored how greenspace may impact the relationship 

between temperature, measured by thermal comfort, and crime. Hotter weather has been 

found to be related to increases in crime, with extreme heat then leading to decreases in 

crime. The analysis revealed that as the number of high heat days increased in 2015, 

crime decreased. Including the interaction between greenspace and thermal comfort 

revealed that neighborhoods with less greenspace had higher crime but saw a stronger 
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decrease as there were more hot days. Green neighborhoods had less crime and saw little 

change in crime as there are more hot days. 

The ability of greenspace to lower temperatures appears to have the effect of 

dampening the impact of more hot days on crime. By contributing to a more comfortable 

environment, greenspace creates conditions that do not reach a point of unbearableness 

where the only recourse is to seek relief from the heat. 

These findings show that including greenspace can be beneficial for residents in 

reducing the impact of extreme heat and lowering overall crime levels. The effect of 

extreme heat on reducing crime cannot be seen as a crime reduction method due to the 

negative effects on well-being and mortality that come from high heat. 

In chapter 4 parks, as a subset of greenspace, were found to be associated with 

higher crime in areas near them. Reasons for this can be found in theories such as 

Routine Activities, describing crime as the result of targets, lack of guardians, and likely 

offenders (Cohen & Felson, 1979). Parks are spaces that attract residents and visitors and 

therefore increase the chance for interpersonal conflict or victimization.  

These three studies expand our understanding of how greenspace impacts cities 

by describing the relationship with crime across a broad sample of cities. Greenspace 

should be cultivated due to its association with lower crime and ability to make 

neighborhoods more thermally comfortable, along with benefits to well-being. While 

green vegetation is found to lower crime, urban parks may lead to increased crime, an 

outcome that will require management to minimize. 
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Considering these findings, it is important for residents, planners, and decision-

makers to fully understand the impacts of placing greenspace and parks within the city. 

These landscapes can provide numerous benefits, but can also lead to disservices such as 

crime, increased costs (Pataki et al., 2011; Shackleton et al., 2016), or gentrification 

(Cole, Garcia Lamarca, Connolly, & Anguelovski, 2017; Curran & Hamilton, 2012). As 

more people move to cities it will be key that the greenspace environment be carefully 

designed and maintained to provide the maximum benefit to local quality of life. 

Limitations 

While this study sought to describe the crime and greenspace relationship across a 

broad set of cities, there are some limitations. First, the measurement of greenspace used, 

NDVI, is a general view of green. Remote sensing provides a large-scale picture of green 

as vegetation, but does not allow for details to be determined such as accessibility, 

ownership, or quality. These detailed characteristics could have an influence on how 

residents perceive greenspace and in how greenspace is used. Second, crime data 

introduces uncertainty due to modeling in the crime risk index and under reporting or 

recording errors in the crime incident data. Lastly, this dissertation examined the crime 

and greenspace relationship at a large scale, across 301 cities or across a whole city, in 

order to understand broad patterns. This perspective does not allow for local or ground 

level characteristics to be incorporated. 

Further Research 

This research points to the relationship greenspace can have with crime in cities. 

Further research could start to look at specific characteristics of greenspace that are 
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related to crime and other disservices. Many different types of greenspace exist across 

cities and understanding how these subtypes interact with crime could provide greater 

understanding of crime and greenspace relationship. 

Crime has a distinct spatial pattern and advanced spatial analysis methods could 

be applied to examine how crime and greenspace are related. Techniques such as 

geographically weighted regression or point pattern analysis could be used to describe 

details in how crime and greenspace are related. Additionally, examining the temporal 

changes in crime could reveal how greenspace influences crime at different times of the 

day or year. 

  

This dissertation examined how crime and greenspace are related and extended 

the analysis to a broad sample of cities. The results reveal part of the complex 

relationship greenspace has with crime. The association of greenspace with reduced 

crime, and parks with increased crime, illustrates the importance of greenspace in cities 

but also points to the need to make considered decisions on its placement, design, and 

care. 
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APPENDIX 

Appendix A 

Cities in Chapter 2 and Chapter 3 
 
Abilene, TX  El Monte, CA  Lowell, MA  Rochester, NY 
Akron, OH  El Paso, TX  Lubbock, TX  Rockford, IL 
Albuquerque, NM Elgin, IL  Macon, GA  Roseville, CA 
Alexandria, VA  Elizabeth, NJ  Madison, WI  Round Rock, TX 
Allentown, PA  Elk Grove, CA  Manchester, NH  Sacramento, CA 
Amarillo, TX  Escondido, CA  McAllen, TX  Salem, OR 
Anaheim, CA  Eugene, OR  McKinney, TX  Salinas, CA 
Ann Arbor, MI  Evansville, IN  Memphis, TN  Salt Lake City, UT 
Antioch, CA  Everett, WA  Mesa, AZ  San Angelo, TX 
Arlington, TX  Fairfield, CA  Mesquite, TX  San Antonio, TX 
Arvada, CO  Fargo, ND  Miami Gardens, FL San Bernardino, CA 
Athens, GA  Fayetteville, NC  Miami, FL  San Diego, CA 
Atlanta, GA  Fontana, CA  Midland, TX  San Francisco, CA 
Augusta, GA  Fort Collins, CO  Milwaukee, WI  San Jose, CA 
Aurora, CO  Fort Lauderdale, FL Minneapolis, MN  San Mateo, CA 
Aurora, IL  Fort Wayne, IN  Miramar, FL  Sandy Springs, GA 
Austin, TX  Fort Worth, TX  Mobile, AL  Santa Ana, CA 
Bakersfield, CA  Fremont, CA  Modesto, CA  Santa Clara, CA 
Baltimore, MD  Fresno, CA  Montgomery, AL  Santa Clarita, CA 
Baton Rouge, LA  Frisco, TX  Moreno Valley, CA Santa Maria, CA 
Beaumont, TX  Fullerton, CA  Murfreesboro, TN Santa Rosa, CA 
Bellevue, WA  Gainesville, FL  Murrieta, CA  Savannah, GA 
Berkeley, CA  Garden Grove, CA Naperville, IL  Scottsdale, AZ 
Billings, MT  Garland, TX  Nashville, TN  Seattle, WA 
Birmingham, AL  Gilbert, AZ  New Haven, CT  Shreveport, LA 
Boise, ID  Glendale, AZ  New Orleans, LA  Simi Valley, CA 
Boston, MA  Glendale, CA  New York, NY  Sioux Falls, SD 
Boulder, CO  Grand Prairie, TX Newark, NJ  South Bend, IN 
Bridgeport, CT  Grand Rapids, MI Newport News, VA Spokane, WA 
Broken Arrow, OK Greeley, CO  Norfolk, VA  Springfield, IL 
Brownsville, TX  Green Bay, WI  Norman, OK  Springfield, MA 
Buffalo, NY  Greensboro, NC  North Charleston, SC Springfield, MO 
Burbank, CA  Gresham, OR  North Las Vegas, NV St. Louis, MO 
Cambridge, MA  Hampton, VA  Norwalk, CA  St. Paul, MN 
Cape Coral, FL  Hartford, CT  Oakland, CA  St. Petersburg, FL 
Carlsbad, CA  Hayward, CA  Oceanside, CA  Stamford, CT 
Carrollton, TX  Henderson, NV  Odessa, TX  Sterling Heights, MI 
Cary, NC  Hialeah, FL  Oklahoma City, OK Stockton, CA 
Cedar Rapids, IA  High Point, NC  Olathe, KS  Sunnyvale, CA 
Centennial, CO  Hillsboro, OR  Omaha, NE  Surprise, AZ 
Chandler, AZ  Hollywood, FL  Ontario, CA  Syracuse, NY 
Charleston, SC  Houston, TX  Orange, CA  Tacoma, WA 
Charlotte, NC  Huntington Beach, CA Orlando, FL  Tallahassee, FL 
Chattanooga, TN  Huntsville, AL  Overland Park, KS Tampa, FL 
Chesapeake, VA  Independence, MO Oxnard, CA  Temecula, CA 
Chicago, IL  Indianapolis, IN  Palm Bay, FL  Tempe, AZ 
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Chula Vista, CA  Inglewood, CA  Palmdale, CA  Thornton, CO 
Cincinnati, OH  Irvine, CA  Pasadena, CA  Thousand Oaks, CA 
Clarksville, TN  Irving, TX  Pasadena, TX  Toledo, OH 
Clearwater, FL  Jackson, MS  Paterson, NJ  Topeka, KS 
Cleveland, OH  Jacksonville, FL  Pearland, TX  Torrance, CA 
Clovis, CA  Jersey City, NJ  Pembroke Pines, FL Tucson, AZ 
College Station, TX Joliet, IL  Peoria, AZ  Tulsa, OK 
Colorado Springs, CO Jurupa Valley, CA Peoria, IL  Tyler, TX 
Columbia, MO  Kansas City, KS  Philadelphia, PA  Vallejo, CA 
Columbia, SC  Kansas City, MO  Phoenix, AZ  Vancouver, WA 
Columbus, GA  Kent, WA  Pittsburgh, PA  Ventura, CA 
Columbus, OH  Killeen, TX  Plano, TX  Victorville, CA 
Concord, CA  Knoxville, TN  Pomona, CA  Virginia Beach, VA 
Coral Springs, FL Lafayette, LA  Pompano Beach, FL Visalia, CA 
Corona, CA  Lakeland, FL  Port St. Lucie, FL Vista, CA 
Corpus Christi, TX Lakewood, CO  Portland, OR  Waco, TX 
Costa Mesa, CA  Lancaster, CA  Providence, RI  Warren, MI 
Dallas, TX  Lansing, MI  Provo, UT  Washington, DC 
Daly City, CA  Laredo, TX  Pueblo, CO  Waterbury, CT 
Davenport, IA  Las Cruces, NM  Raleigh, NC  West Covina, CA 
Davie, FL  Las Vegas, NV  Rancho Cucamonga, CA West Jordan, UT 
Dayton, OH  League City, TX  Reno, NV  West Palm Beach, FL 
Denton, TX  Lewisville, TX  Renton, WA  West Valley City, UT 
Denver, CO  Lexington, KY  Rialto, CA  Westminster, CO 
Des Moines, IA  Lincoln, NE  Richardson, TX  Wichita Falls, TX 
Detroit, MI  Little Rock, AR  Richmond, CA  Wichita, KS 
Downey, CA  Long Beach, CA  Richmond, VA  Wilmington, NC 
Durham, NC  Los Angeles, CA  Riverside, CA  Winston-Salem, NC 
El Cajon, CA  Louisville, KY  Rochester, MN  Worcester, MA 
Yonkers, NY 
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