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Abstract

Current biorefineries produce many downstream biomass wastes from conversion of polysac-

charide feedstocks, among which are carbohydrates and oxygenates, which are often not collected

for further processing. Using aqueous catalytic systems can help reduce the waste and add more

value to the entire process. However, this biomass treatment is highly dependent on specialized and

optimized catalysts which are lacking. To-date, most catalyst technology development is done in the

petroleum industry, where the reactions of interest mostly occur in the gas phase or in non-polar

solvents.

Insight into the influence of polar solvents on the conversions of biomass wastes is needed

in order to optimize the catalysts and reaction systems that operate under such conditions. To ac-

quire this insight, it is our goal to elucidate the mechanisms of two practical aqueous phase biomass

conversions on an atomistic/molecular level, specifically methanol oxidation and glycerol reforming.

Methanol and glycerol are important intermediates in biomass processing and can be further con-

verted into hydrogen, alkanes, and specialty chemicals. They are good representations in terms of

computational models of primary and secondary sugar alcohols, which are predominant products in

biomass treatment, for example cellulose conversions. Methanol oxidation and glycerol reforming,

as well as other aqueous biomass conversion reactions, are currently catalyzed by heterogeneous cat-

alysts commonly containing Pt and other noble metals. These materials contribute to high catalyst

costs. Further, without fundamental understanding of the molecular level phenomena that drive

catalytic performance, it will remain difficult to develop catalysts that are active and selective for

desired products. These things inhibit the widespread use of biomass as a feedstock for fuels and

other chemical applications. Further, a major challenge in designing new catalysts for this type of

process, as mentioned above, is that those reactions are carried out in the liquid phase, and the large

density of solvent molecules surrounding the catalyst surface makes it difficult to identify important
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molecular-level phenomena in experimental and computational settings.

Elucidating such phenomena is crucial to designing new low-cost catalysts with desired

metrics such as selectivity, yield, and turnover rates. The catalyst design cycle begins with firstly

getting a firm grip on current catalyst functionality. Due to the complexity in surface chemistry and

indication from experimental results on solvent effects, there is a critical need to incorporate the

aqueous environment into mechanistic studies and catalyst design. In the absence of such efforts,

catalyst development for liquid phase reactions will remain difficult. This project employs a hierarchy

of molecular-level modeling to identify the influence of solvent on the mechanism of glycerol reforming

and the active sites in methanol oxidation. Quantum mechanics combined with molecular dynamics

are used to model how the aqueous environment influences catalytic energetics, and microkinetic

models are used to determine the overall solvent influence on reaction mechanisms. Finally, quantum

simulations are compared with frequencies from attenuated total reflectance infrared (ATR-IR)

spectroscopy in order to identify the precise active sites and present intermediates in the methanol

oxidation pathway.
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Chapter 1

Introduction and Background

1.1 Motivation

In order to transform the energy dependencies from traditional fossil fuel such as coal and

oil, more and more countries and companies are seeking alternative sources of energy, particularly

renewable sources such as biomass. Two biomass feedstocks of interest are methanol (CH3OH) and

glycerol (C3H8O3), as they are byproducts in the production of biodiesel. It was estimated that the

production of glycerol globally would reach 3 megatons in 2020 [1], whereas the world demand for

glycerol would be less than 500 kilotons [2]. With such a great surplus, it is practical to seek ways

to convert glycerol into useful products. One method for converting these feedstocks is aqueous

phase reforming (APR). In APR, polyols [3–9], bio-oil [10, 11], cellulose [12, 13], and different

types of ligno-cellulosic biomass [14, 15] can be converted to H2 (g) and CO2 (g) over supported

metal catalysts in aqueous conditions [16–19]. The H2 produced could be used in a biorefinery,

for example, supplying the H2 (g) needed for hydrodeoxygenation of biomass derivatives such as

phenol (i.e., C6H5OH + H2 → C6H6 + H2O) [20]. A diversity of catalytic systems, mainly based

on transition VIII group metals, have been described in the literature as good candidates for APR

of oxygenated hydrocarbons [21–23]. Pt-based catalysts have been shown to be the most effective

among mono-metallic catalysts in terms of activity and selectivity toward H2- rich gas in terms of

selectivity [18, 23–26].
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1.1.1 Aqueous Phase Reforming

In particular, APR has great potential in making the transition from nonrenewable hy-

drocarbon feedstocks to renewable biomass feedstocks. In addition to the utilization of renewable

feedstocks, this method eliminates the need to vaporize water and the oxygenated hydrocarbon

(which reduces the energy requirements). Further, due to the relatively low temperature, the pro-

duction of H2 and CO2 can be enhanced by water-gas shift reactions (WGS), leading to low levels

of CO [3, 23, 27, 28]. Previous work has laid groundwork of hydrogen production through APR

of biomass-derived oxygenated hydrocarbons (such as methanol, ethylene glycol, glycerol, sorbitol,

and glucose) at low temperatures (e.g., 500 K) over supported Pt catalysts [3, 23]. Pt catalysts

supported on solid basic oxides exhibit excellent activity in APR [29] and most of the publications

on APR are focused on Pt supported on γ-Al2O3, due to its high selectivity to H2 production [3, 30,

31]. However, the expansion of this reforming technique is inhibited by the high cost of the noble

metal based catalysts. Moreover, to date, H2 yields have been low [32]. The APR process is highly

dependent on the catalytic systems and the reaction conditions [5, 33]. A goal within the catalyst

research community is to devise newer catalysts in order to address those problems. In order to

achieve this goal, it requires improved understanding of the APR catalytic mechanism.

From a big-picture standpoint, the mechanism of APR involves three major branches: de-

hydrogenation (R-H* + * → R* + H*, where * are catalyst sites), decarbonylation (R-CO* + *

→ R* + CO*), and WGS (CO* + H2O → * + CO2 + H2). However, elucidating individual steps

in the different branches is not straightforward, even with experimental attempts using operando

techniques [34–36]. Computational work can help shed more light on the reaction mechanism. Do-

ing so requires overcoming issues with respect to large sizes and complex structures of APR feed

molecules (which result in large reaction networks and a great number of possible catalytic interme-

diates) as well as the aqueous reaction conditions themselves [37, 38]. Further, the catalytic support

also impacts the mechanism, with different supports having different effects [39]. In fact, there is a

significant need to identify computational strategies that are able to identify and separate different

phenomena such as catalyst performance, support effects, and influence of an aqueous environment,

in order to gauge their influences on reaction mechanisms, generally.
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1.2 Computational Studies on Catalysis

About 90% of chemical processes use catalysis [40, 41], but there is still great potential for

further catalyst development. Over the last century, the search for novel catalysts was mostly based

on extensive experiments guided by chemical intuition and experience. Developing next generation

catalysts and catalytic processes will require a dedicated effort over an extended period of time.

This effort requires a detailed look at the catalyst performance as a function of many variables such

as catalyst composition, reacting chemical molecular and spatial arrangements, relative energies,

etc. These are fundamental aspects that are central to catalyst design. The use of computational

approaches can provide extensive knowledge on these perspectives and can overcome limitations that

exist in experimental observations, by achieving results based from both qualitative and quantitative

measurements, and making predictions at a detailed often molecular level.

Needless to say, there have been many computational studies that provide insight into a

variety of chemical reactions. In Fig. 1.1, it shows the the exponential growth of publications

citations relevant to computational chemistry.

Figure 1.1: The growth of applications of calculations of metal complexes based on density functional
theory over the past two decades is reflected by the exponentially increasing number of citations.
Adapted from [42] with permission from The Royal Society of Chemistry.

APR process can also benefit from the aid of computational catalyst design. Currently, the
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majority of the commercial catalysts for APR are based on platinum Pt, due to its good level of

activity and selectivity in catalyzing aqueous phase reforming of glycerol and other sugar alcohol

species [18, 37, 43–49]. However, the drawback of the noble metal cost and catalyst deactivation

call for more improvement on existing catalysts and for new catalyst. These efforts require a good

understanding of the complicated kinetics and mechanisms of heterogeneously catalyzed chemical

reactions in the aqueous phase, which are still not fully understood. Previous exploration on this

subject are visionary [34, 35] while current experimental techniques still often face obstacles in

observing chemical species and identifying chemical reaction mechanisms at a molecular level. In

this case, computational catalyst design provides possible solutions to model specific reaction species

and steps in great details, which can provide more insight of reaction mechanism.

1.2.1 Challenges in Aqueous Phase Catalysis Modeling

In aqueous phase catalysis, the reaction mostly occurs at the interface near the solid catalyst

surface, but the experimentally observed quantity is the overall, macroscopic bulk representation of

those micro-level reactions. Moreover, it is unclear how exactly the reactions take place in the actual

aqueous environment, since the water environment can play a role in the aqueous phase catalysis

in the circumstances where water either acts as a solvent or becomes active in reactions. Such

mechanistic and chemical properties of water not only influences elementary steps, but can also

influence the final observable reaction metrics such as turnover rates, making them different than

their analogs carried out in gaseous (vacuum) environment. However, due to the complexity of the

reaction mechanism and reaction conditions, as well as the uncertainty of the constantly fluctuating

water environment, understanding in this area is still lacking. The challenges arises primarily from,

1. These phenomena occur at the molecular level, and they are significantly affected by variability

in catalyst composition, reaction conditions, and other tunable parameters;

2. In aqueous phase heterogeneous catalysis, there are many puzzle pieces in the role of water

left to be elucidated [50, 51]. The aqueous phase environment itself introduces significant

complexity to the system, which needs to be addressed properly, since water molecules influence

binding energies of adsorbate and geometries, hence can alter reaction rates and pathways.

Moreover, when water becomes activated, it can even participate in reactions, which can

influence reaction energies and kinetic energies hence influencing part of the surface chemistry.
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3. The computational techniques that are needed to provide good understanding of molecular

level processes are computationally intensive, due to the needs to use quantum mechanics

to compute system energies accurately (of bond breaking and forming processes) plus the

need to incorporate the configurational disorder of the aqueous phase environment (meaning

calculations of multiple configurations of water are needed) at realistic temperatures.

1.2.2 Overcoming Computational Obstacles

Computational strategies have contributed to understanding the mechanism of APR at

molecular level details. For example, density functional theory (DFT) studies have shown that cat-

alytic glycerol reforming follows the path α-carbon dehydrogenation → β-carbon dehydrogenation

→ hydroxly group dehydrogenation → decarbonlyation under vacuum [52–58]. Our group is partic-

ularly interested in how the water environment influences the catalysis. Water is known to influence

catalysis in multiple ways, including altering the energies of catalytic species via hydrogen bonding

and other interactions (e.g., van der Waals effects) [51, 59–73], influencing the dominant reaction

pathway [60, 61, 68–70, 74–76], and participating in the catalytic chemistry (e.g., by enabling pro-

ton transfer) [74, 77]. These phenomena complicate computational attempts to simulate catalytic

mechanisms under aqueous phase.

To address these challenges, our group has previously developed a multi-scale strategy for

simulating catalysis under aqueous conditions [78]. In our studies, the reacting species, such as

glycerol, are “large” molecules that can have a large number of possible reaction intermediates and

reaction pathways. This raises a practical problem in examining all chemical species and chemical

reactions for each, since each of them needs to average over an ensemble of aqueous phase sur-

roundings. In fact, using the previously developed strategy from our group, even when carried out

in a highly-automated and paralleled way [79], investigating one reaction intermediate would take

about a week to get the thermodynamic energies calculated. Given that glycerol APR can include

dehydrogenation, decarbonylation, dehydration, hydrolysis, water gas shift and other processes [80],

to study the entire reaction network, including multiple configurations of liquid H2O molecules for

each reaction intermediate and transition state, would require a very significant amount of time and

effort. Due to the large reaction network and to the need to properly model and study it in liquid

conditions, we are seeking ways to reduce the computational expense of performing simulations of

heterogeneously catalyzed reactions in the aqueous phase. This thesis presents our efforts aimed
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at solving these puzzles with affordable computational expense by employing multi-scale strategies,

coupled with scaling relations, which significantly reduce the computational expense while main-

taining the results within DFT accuracy. More specifically, we developed linear scaling relations for

rapid estimation of reaction energies of dehydrogenation reactions under glycerol APR and showed

that the estimated results are within DFT accuracy. Further, we developed transition state scaling

relations for rapid estimation of activation energies, (which are often acquired by very computation-

ally intensive calculations) among dehydrogenation, decarbonylation, and hydrolysis reactions under

glycerol APR reaction network, and we also showed this method to retain good DFT accuracy.

1.3 Dissertation Outline

The thesis will introduce our work towards helping reveal the surface chemistry of APR

processes using computational approaches that are novel, accurate and efficient. The thesis contains

five chapters, which are introduction and background chapter that briefly touches upon the motiva-

tion and potential significance of the projects; methodology chapter that explains the methods and

tools that are related to the aqueous phase catalysis research; three technical chapters that aiming

to explore thermodynamics, kinetics using established multi-scale modeling methods that are cou-

pled with scaling relations; and application of multi-scale modeling methods in modeling realistic

systems.

Chapter 2, Multi-scale Simulation Strategy and Its Application, discusses the current cata-

lysts models in great detail. Detailed computational parameters are presented in this chapter. The

goal of this chapter is to lay out the methodology of multi-scale modeling methods, which are used

extensively in the following technical chapters.

Chapter 3, A DFT and MD Study of Aqueous-phase Dehydrogenation of Glycerol on Pt

(1 1 1): Comparing Chemical Accuracy versus Computational Expense in Different Methods for

Calculating Aqueous-phase System Energies, discusses the methodology that is developed to access

thermodynamics of dehydrogenation reactions of glycerol APR. Specifically, the reaction species

and their related energies are assessed by calculating reaction energies using a multi-scale modeling

method named LSR/MD method.

Chapter 4, Insights into the Roles of Water on the Aqueous Phase Reforming of Glycerol,

reaction network and species are assessed by calculating kinetic energies using the multi-scale mod-
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eling method and dimer calculations. Later in this chapter, another type of scaling relation named

transition state scaling relations are introduced and examined for accurate and efficient estimation of

kinetic energies in the aqueous phase. Chapter 3 and Chapter 4 not only address the need to incor-

porate the liquid reaction environment, but additionally propose methods to decrease the expense

of simulating relatively large catalytic intermediates.

Chapter 5, Computational Modeling of Methanol Decomposition on Pt Catalyst Supported

by Alumina, presents our study outcome of reaction thermodynamics of all the chemical species

binding to active sites of the Pt(1 1 1) and supported Pt. In addition, IR spectra data is compared

between computed and experimental results. Conclusions of preferred binding sites and dominant

species on the surface are suggested.

Conclusions and recommendations, along with appendices, can be found near the end of the

thesis.

In all, this dissertation aims to shed more light upon on complicated reactions and reaction

intermediates. The foci of the thesis are addressing practical problems in modeling complicated

aqueous phase systems, reducing computational expense while maintaining the chemical accuracy,

and validating of the computed results against real experimental conclusions. We hope this work can

contribute to the computational catalysis community, in an effort towards guiding and accelerating

new catalyst design.
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Chapter 2

Multi-scale Simulation Strategy and

Its Application

One key rationale behind multi-scale modeling is the notion of bridging different length scales

in different systems. In other words, different length scales set different boundary conditions that can

play an important role in material and process design, etc. However, different research disciplines

(materials science, applied mechanics, atmospheric sciences, etc.) tend to focus on the research at

each pertinent length scale whereas bridging multiple length scales presents a non-straightforward

challenge. As the modern computational work requires more and more cross-discipline efforts, there

is a rising need in academia and industry for multi-scale modeling as cost savings and accuracy in

research and product design are rationalized. A wide variety of tools have been developed at each

length scale level [1], that all share some common goals, which are to reduce costly large systems scale

experiments, increase product quality and performance by providing more accurate predictions [2–4],

and alleviate costly trial-and error iterations [5, 6]. In this thesis, a multi-scale method is applied in

an effort to observe and investigate APR reactions at atomistic and molecular levels, in an effort to

combine the strengths of atomistic and molecular simulations, thus bridging the gap of spatial scales

between atomistic and molecular simulations. With our developed methods, we are able to explore

reaction intermediates and reaction steps in the APR reaction network. Thermodynamic and kinetic

results such as, binding energies, reaction energies, and activation energies are obtained using our

multi-scale simulation methods. By investigating these quantitative energies, one can gain knowledge
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of the dominant reaction pathways, crucial elementary steps, and stable chemical intermediates. All

the effort can contribute to a better mechanistic understanding of the APR reactions of interest,

and ultimately to the design of the next generation catalyst. Details of the multi-scale modeling

strategy will be discussed in the following section.

2.1 Multi-scale Modeling Method

Multi-scale modeling techniques are powerful tools that empower researchers with the ability

to garner their data in different time/length scales, which can be further used for optimization and

development for robust ways to fine tune the computational accuracy and efficiency. Our work also

requires such balance in the computational accuracy and efficiency. In general, since catalysis involves

the breaking and forming of chemical bonds, quantum mechanics must be used to at least some

degree; however, long simulations are challenging in quantum mechanics, as they require significant

computer resources. In fact, the cost of quantum mechanical (QM) simulation scales as O(N3) or

even more [7–9]. (It is to be noted here the scale factor N is not equal to the number of total atoms

but instead it often scales to the total number of basis functions which is a significant number if

heavy atoms are in presence). Since molecules in the liquid phase are under constant thermal motion,

simulations must also include configurational sampling, i.e., they must incorporate multiple spatial

arrangements of the liquid molecules, as each different spatial arrangement has a different energy.

This means that multiple configurations of liquid molecules must be simulated for each catalytic

species of interest. The need to use quantum mechanics and to perform multiple calculations per

catalytic species can render modeling in heterogeneous catalysis under liquid phase computationally

intractable. Force field based molecular dynamics (MD) simulations can be performed to reduce

the time in system equilibration and sampling. MD is thus a good choice that allows to reduce the

dependencies on computationally intensive DFT simulations while capturing bulk properties and

ensemble averages of energies. The cost of employing MD simulations is much lower than for QM

calculations, with the most straightforward cases scaling as O(N2), where N is the total number of

atoms in the system. The cost is associated mainly due to electrostatic interactions term (pairwise

interactions with any other atoms in the system). Since use of both DFT and MD calculations on

our calculations involves complicated reaction systems and large reaction networks, it is impractical

to study each catalytic species in great detail. Instead, our goal is to explore the aqueous phase
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Figure 2.1: Schematic of three scales and a possible hierarchy of models at each scale. Acronyms
from top to bottom: PRF, plug flow reactor; CSTR, continuously stirred tank reactor; ODE, or-
dinary differential equation; PDE, partial differential equation; CG-KMC, coarse-grained kinetic
Monte Carlo; KMC, kinetic Monte Carlo; UBI-QEP, unity bond index-quadratic exponential po-
tential; TST, transition state theory; DFT, density functional theory; GA, group additivity; BEP,
Brønsted-Evans-Polanyi; QM/MM, quantum mechanics/molecular mechanics. Adapted from [10]
with permission from Elsevier.

catalytic phenomena, which can be ahchieved by using a hybrid technique, to operate calculations

at a level between MD and DFT methods (Fig. 2.1 [10]). Doing so will combine the accuracy of

DFT methods with the efficiency of MD methods. In this work, we develop multi-scale simulation

techniques that combine DFT/MD methods as well as linear scaling relations (LSRs) to investigate

APR reactions. The LSR maintains near DFT accuracy while significantly reducing computational

expense [11, 12], making it possible to model the large reaction networks associated with conversions

of biomass waste streams. In these approaches, DFT is mainly used to the optimize geometries and

calculate energies of catalytic species, while MD is used to equilibrate bulk water structures and

provide ensembles of liquid configurations. LSRs are used to rapidly estimate thermodynamic and

kinetic energies for a large number of catalytic species, allowing us to systematically study the

glycerol aqueous phase reforming reaction network.

Water molecules have significant influence on catalytic phenomena, such as interacting with

catalytic species (e.g., via dispersion forces and hydrogen bonding) [13–34], participating in catalytic

reactions [13, 18–20, 27, 33, 35–39], and influencing reaction pathways and/or catalytic rates [13,
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22, 23, 27, 31, 34, 37, 39–43]. Modeling of these phenomena has been performed using QM ( Fig.

2.2 provides a flowchart showing how a DFT simulation is conducted) and/or ab initio molecular

dynamics (AIMD) [13, 14, 18, 24, 26, 33, 37, 39, 40, 44, 45], force field based molecular dynamics

(MD) [46], and quantum mechanics/molecular mechanics (QM/MM) [21]. In AIMD and MD, the

atoms in the system are moved pursuant to Newton’s equations of motion according to the forces

acting upon them. In AIMD, the system energy and forces are calculated with QM, whereas in MD,

the system energy and forces are calculated using force fields, which are algebraic expressions that

are parameterized based on experimental or QM data. (Fig. 2.3 provides a flowchart showing how

a MD simulation is conducted.)

Figure 2.2: Typical work flow of a DFT simulation [47].
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Figure 2.3: Typical work flow of a force field molecular dynamics simulation.

2.2 Using Linear Correlations to Reduce Computational Ex-

pense

2.2.1 Using Linear Scaling Relationships to Estimate Reaction Energies

A key step in the DFT method is the relaxation of the reaction intermediate, which is often

done under vacuum. It has been shown previously that the energies of ‘large’ surface adsorbates (e.g.

glycerol) in vacuum can be approximated with reasonable accuracy using LSRs [48–55], eliminating

the need to explicitly calculate their energies in DFT. We use an LSR in our developed method [11],

which we call LSR/ MD. In this method, an extended LSR is used to compute the vacuum-phase

binding energies of glycerol dehydrogenation intermediates. Normally, the LSR is able to compute

the binding energies of C, H and O containing adsorbates as linear combinations of the binding

energies of the central atoms (here, C and O). In this work, the LSR is extended into a function of

groups of atoms, in contrast with traditionally of central binding atoms. For instance, the fragment
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of the carbon backbone of dehydrogenated glycerol can be CH2OH, CHOH, COH, CH2O, CHO and

CO, i.e.

Evac
bind(CHy′O—CHy′′O—CHy′′′O) = γ(E(CHy′O) + E(CHy′′O) + E(CHy′′′O)) + ξ (2.1)

where y is the total number of hydrogen atoms in the reaction intermediate, which has stoichiometry

C3HyO3; y ’, y” and y” ’ are the numbers of hydrogen atoms that are bound to the different groups

(y ’ + y” + y” ’ =y); and γ and ξ are the slope and intercept of the fitting, which are obtained via

linear regression.

2.2.2 Using Transition State Scaling Relationships to Estimate Activation

Energies

We established transition state scaling (TSS) relationships [56–63] to estimate the energies

of transition states involved in dehydrogenation and decarbonylation reactions involving C3 catalytic

intermediates. We additionally construct TSS relationships for hydrogenolysis reactions (R-OH* + *

→ R* + OH*) involving C3 species. To investigate the ability of H2O to participate in the catalysis,

we additionally simulate water-mediated dehydrogenation (R-H* + nH2O* → R* + H(2n+1)On*)

and hydrogenolysis steps (R-OH* + H(2n+1)On* → R* + (n+ 1)H2O*).

Without TSS, activation energies would have to be explicitly calculated with DFT. For

example, the activation energy for an aqueous phase reaction, Eaq
act is calculated as

Eaq
act = E(TS*)− E(IS*) (2.2)

where IS stands for initial state and in this work is the reactant species. E(TS*) is the electronic

energy of the transition state, which is calculated with DFT is often hard to obtain. With an existing

TSS, it can be now estimated without needing to perform DFT by

E(TS) = aE(FS) + b (2.3)

where a and b are linear fitting parameters. That is, with a TSS, the transition state energy can

be known as long as the final state (FS) energy, i.e., the energy of the products, is known. This
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greatly reduces the computational expense needed to calculate activation energies, since the cost of

calculating local minima on the potential energy surface is significantly smaller than for transition

states. More discussions and specifications of TSS method we used are presented in Chapter 4.

2.3 MD/DFT Multi-scale Modeling Strategy

In order to emulate the experimental settings and further to ensure the search of important

reaction steps and reaction intermediates that correspond to the reaction conditions of interest,

we reported a protocol involving a multi-scale modeling strategy that combines MD and DFT to

interrogate system properties under realistic reaction conditions. More specifically, the temperature

(T) and pressure (P), and the bulk density of the water (ρ) at the MD stage of the multi-scale

strategy, are determined using a sequence of statistical mechanics ensembles NVE, NPT and NVT

simulations. The role of the first NVE run is to optimize the system structure, to allow the system

to reach a ‘good’ pre-equilibrium state to start NPT simulations. The second run, NPT, regulates

the pressure so that the water stays within liquid phase. The last run, NVT conserves the volume of

the system, and it is used to yield desired liquid water configurations for more detailed examination

in DFT. These three types of MD simulations are used in a sequence in order to determine the

appropriate cell volume/size for both DFT and MD calculations.

In our published work, we present a 6-step work flow that can determine the simulation

cell dimension that is reliable and requires minimal human intervention. This thesis demonstrates

the use of the protocol for generating configurations of liquid H2O that can be used to calculate

quantities of interest in aqueous phase heterogeneous catalysis [64]. A brief scheme of determination

of the simulation cell is as following,

1. Generate the adsorbate structure

2. Add explicit H2O molecules

3. Determine the proper height of the supercell (i.e., the density at the simulation temperature)

4. Generate configurations of H2O molecules using MD

5. Determine the hydrogen bond lifetime for proper time sampling

6. Sample configurations of liquid H2O molecules
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7. Use the configurations in DFT (or AIMD, QM/MM, etc.)

2.4 Pt (1 1 1) Catalyst System

As a common approach to represent the active catalyst component Pt, simulations in Chap-

ters 3 and 4 of this dissertation utilize catalyst surfaces that are modeled as single crystal Pt (1

1 1), created from an optimized bulk structure of pure Pt slab, yielding a DFT calculated lattice

constant of 3.967Å (compared experimental value of 3.924Å [65]). Pt(1 1 1) was created by cleaving

to expose the (1 1 1) facet, as the active terrace sites for aqueous phase heterogeneous catalysis

study. In the following work, 3-layer monoclinic 3 × 3 Pt (1 1 1) and 3-layer orthogonal 4 × 4 Pt (1

1 1) catalyst surfaces are used (see Figure 3.1 and Figure 4.1). Note this is a well-established and

widely-used model for Pt based catalyst systems. More advanced models based on this model that

take into other factors that could also be influential, for example, the catalyst supports and their

effects on the surface chemistry, are discussed in Chapter 5.

Surface species can bind to the Pt (1 1 1) catalyst via various high symmetry sites on the

Pt (1 1 1) terraces, including atop site, bridge site, FCC site and HCP site, as shown in Figure

2.4. Unless otherwise specified, all chemical species in this dissertation were isolated in individual

simulation boxes, and the surface coverages for all adsorbed surface species were modeled at constant

values, i.e. 1/9 or 1/16 monolayer (a monolayer, ML, is defined as a single, closely packed layer of

atoms, where the number of adsorbates per surface metal atom is equal to one – accordingly, the

catalyst systems employed in this work consist of 9 Pt atoms and 16 Pt atoms within the x-y plane).

This means that all the dissociated atoms/fragments were removed from the original cell.
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Figure 2.4: Binding sites across the Pt(1 1 1) surface (unit cell). The large dark grey particles denote
Pt atoms on the surface. The small red circles denote the binding positions of the sites. The letters
H, F, A and B denote the HCP, FCC, Atop and bridge sites, respectively.

2.5 Density Functional Theory and Force Field Molecular Dy-

namics Calculations

In this section, quantum calculations based on DFT are discussed. Commercial software,

The Vienna Ab initio Simulation Package (VASP) [66–69], which is a plane wave based computational

package, is used for atomic scale materials modelling, e.g. electronic structure calculations, from

first principles. Descriptions of DFT calculations will be divided into three subsections, based

on the functionality of DFT calculations: geometry optimization, single point energy calculation,

transition state searches using climbing image-nudged elastic band method (CI-NEB) [70, 71] and

dimer method calculations [72]. An introduction of MD method and specifications are included in

this section.

2.5.1 DFT Simulation Setup

Projector augmented wave (PAW) [73, 74] pseudopotentials were used to model the core

electrons to an energy cutoff of 400 eV. Exchange and correlation of the valence electrons were cap-

tured with the Perdew-Burke-Ernzerhof (PBE) [75] form of the generalized gradient approximation
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(GGA). Gaussian smearing with a smearing factor of 0.1 eV was employed. The D2 dispersion cor-

rection method developed by Grimme et al. [76] was applied to improve the description of long range

dispersion interactions by PBE functional. The choice of dispersion correction has been shown to

influence the energies of adsorption on metal surfaces [77–79]. In our most recent work in Chapter

5, dispersion correction is done by the more advanced D3 method with Becke-Jonson (BJ) damping

implemented [80, 81], which addresses the divergence of the repulsive potential in close distances.

Automatically generated Monkhorst-Pack [82] Γ-centered 7× 7× 1 k-point meshes were applied to

sample the first Brillouin zones. Electronic structure calculations were performed iteratively, and

electronic structures were considered to be converged when the energy difference between subsequent

iterations fell below 10−6 eV. Geometries of catalytic species were located using quasi-Newton based

geometry relaxation [83] and were considered to be converged when the maximum force on all non-

fixed atoms fell below 0.03 eV/Å. The computational time for such procedure to finish varies from

hours to weeks depending on the initial structure, type of the simulations, the system dimensions

and the computational hardware.

2.5.1.1 Single Point Energy Calculation

This procedure differs from regular DFT geometry optimization procedures that a single

point energy calculation calculates the energy, wave function and other requested properties at a

single fixed geometry. It can be done first at the beginning of a study on a new molecule to check out

the nature of its wave function and electronic energy of the system at a low expense, prior to a full

DFT geometry optimization which would require a lot more computational expense and would suffer

if the initial setting are incorrect. It is also frequently carried out after a geometry optimization, or

for a geometry that is prohibitively large to carry out a regular geometry optimization procedure.

2.5.1.2 Climbing Image-nudged Elastic Band Calculation

The Nudged Elastic Band (NEB) method is a technique for finding transition paths (and

corresponding barriers along the energy paths) between given initial and final states [70, 84, 85].

The method involves constructing a “band” of images the system and relaxing those states by adding

spring forces along the band by projecting out the component of the force due to the potential per-

pendicular to the band . Normally there are images created between known reactants and products

through linear interpolation. This method then optimizes these intermediate images along the re-

25



action path. After convergence, each image will find the lowest energy possible while maintaining

equal-spacing to their adjacent images.

The Climbing Image-nudged Elastic Band (CI-NEB) method was firstly developed by Henkel-

man et al. [71], improved based upon the original NEB method. In the CI-NEB method, the highest

energy image is driven up to a single saddle point. By implementing this, the middle image does not

experience the spring forces along the band. Instead, the true force along the tangent is the inverted

force. In this way, the image will land on its maximized energy along the band, and minimize in

all other directions, i.e. near or at the saddle point. After convergence, vibrational frequencies sim-

ulations can be conducted using DFT, to confirm the only existing imaginary reaction vibrational

mode is along the predicted reaction coordinate. With the confirmation from vibrational frequencies

simulations and visualization, a transition state along with the activation barrier, which is illustrate

as in Figure. 2.5.

In this work, we use the CI-NEB method. Electronic structure is converged after the energy

difference between subsequent iterations fall below 10−6 eV. Force convergence is set to be when the

maximum force on all non-fixed atoms fall below 0.5 eV/Å. We use the results to input into a dimer

simulation, which refines the transition state geometry further.

2.5.1.3 Dimer Calculation

Another popular method in searching for transition states is called the dimer method [72].

It is complimentary to the CI-NEB or NEB method because it does not require the knowledge of

the final state to generate the path from a reactant to a product. Instead, in order to locate the

local minimum of a nearby potential energy surface, an initial guess is provided. The dimer method

will evolve the configuration from the given guess structure and converge it to a saddle point. After

convergence, vibrational frequencies simulations can be conducted using DFT, to confirm the only

existing imaginary reaction vibrational mode is along the predicted reaction coordinate. With the

confirmation from vibrational frequencies simulations and visualization, a transition state along with

the activation barrier, illustrated as EA in Fig. 2.5. Alternatively, dimer method is used to reveal

unknown chemical reactions and search in random directions for saddle points. In some simple

systems, reaction endpoints can be guessed, and the NEB can provide reasonable guidelines for

reaction pathways.

In our work, the dimer method is used for searching of transition state species under
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known/proposed reaction paths. Albeit its precision and reliability in transition state searching

and activation energy calculations, dimer simulation can be very time consuming. Additional com-

putational complexity comes from failed simulations and there is little prior information until the

dimer simulation was deemed failed under manual inspections. In fact, simulations of dimer set up

is still dependent on some human intuition, such as proposed reaction paths and simulation param-

eters. In attempt to tackle the computational expense problem on searching for transition states

of chemical reactions, we developed an energy descriptor based approach based on transition state

scaling (TSS). The details of the background, implementation, and results of TSS will be covered in

Chapter 4.

Figure 2.5: Plot for energy variation between the reactant and product for a reaction. In order for
the reactant to be activated, an energy barrier (red vertical line), so-called activation energy EA

must be overcome.

2.5.2 Force Field Based Molecular Dynamics Simulations

MD simulations are performed with the Large-scale Atomic/ Molecular Massively Parallel

Simulator (LAMMPS) [86] in the NVT ensemble. The target temperature is set at 500 K with the

Nose–Hoover thermostat [87]. This temperature is chosen to replicate the experimental conditions of
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aqueous-phase reforming of oxygenated hydrocarbons [27, 88–90]. MD simulations are performed for

5 ns (5 × 10−9 s) with 1 fs (10−15 s) time steps, where the first 2 ns are used for system equilibration

and the remaining 3 ns are used for the production runs. Atomic quantities and thermodynamic

information are reported every 100 fs. Non-bonded water–water, water–adsorbate and water–Pt

interactions are calculated with Lennard-Jones + Coulomb (LJ + C) potentials, with LJ parameters

and partial electronic charges (Coulomb parameters) for adsorbates, H2O and Pt taken from the

optimized potentials for liquid simulations (OPLS) [91], TIP3P [92] and INTERFACE force fields

[93], respectively. Cross-terms for the LJ interactions are computed using Lorentz-Berthelot mixing

rules [94, 95]. A total of 36 H2O molecules are present in the simulation boxes. Note the system

size was limited in order to allow feasible DFT energy calculations. The x-y plane of the simulation

box is set to equal to the dimensions of chosen catalyst model. The vertical dimension is determined

using the sequence of the NVE, NPT and NVE workflow, as previously presented in this chapter.

During MD simulations, these H2O molecules provide an explicit solvation environment as they form

a liquid film ∼ 20 Å, which is stabilized near the surface region. Similar liquid water films were

observed at 500 K using TIP3P water in MD by Ismail et al. [96] and Longhi et al. [97].
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Chapter 3

A DFT and MD Study of

Aqueous-phase Dehydrogenation of

Glycerol on Pt (1 1 1): Comparing

Chemical Accuracy versus

Computational Expense in Different

Methods for Calculating

Aqueous-phase System Energies

3.1 Abstract

Understanding reaction mechanisms is a crucial step to better catalyst design; however,

this understanding is often limited for reactions in the aqueous phase due to uncertainties in how

fluctuations in the structure of liquid water may influence catalytic thermodynamics and kinetics.
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Characteristic quantities for example reaction energies, are among the most investigated list. Know-

ing if a reaction is endothermic or exothermic, and further how does it compare to other parallel

reactions, can be a powerful tool to screen reactions and even materials such as catalysts. In this

chapter, we present a combination of density functional theory (DFT) and classical force field based

molecular dynamics (MD) to simulate the structures of liquid water and to assess its influence on

the catalytic thermodynamics of Pt-catalyzed aqueous phase reforming (APR) of glycerol (C3H8O3).

While this developed multi-scale simulation strategy is used for its balanced chemical accuracy and

efficiency, challenge still exists, that exploring the comprehensive reaction network, including various

reaction branches of glycerol APR requires a significant number of coupled DFT and MD calculations

and pre and post processing. We present the linear scaling relations (LSRs), which can treat ener-

gies of interest of different surface species in terms of linear combination of their energy descriptors.

This not only can greatly reduce the computational effort to calculate such aqueous phase catalytic

thermodynamics, but also enables an alternative way to screen potential dominant reaction species

and reaction pathways. It is shown that this method is both computationally tractable and accurate.

This chapter will cover the derivation of this method, and its application to efficiently interrogate

the structures of liquid water and its energetic contribution to the water- catalyst interface.

3.2 Introduction

In this work, we identify an approach that can be used to study glycerol APR intermediates

in aqueous conditions in a way that captures the liquid environment and the large reaction network

yet remains computationally tractable. Prior studies from the groups of Greeley [1, 2], and Vlachos

[3] have provided detailed information on the geometries and energies of different adsorbates and

transition states in catalytic glycerol decomposition under vacuum conditions. Our group is inter-

ested in how water influences the energies of these reaction intermediates and transition states. The

liquid water environment introduces complexity into the simulations for at least two reasons. One,

water molecules interact with surface intermediates [4–10], which can influence their energies or even

adsorption geometries. Two, in some cases it is necessary to include multiple configurations of H2O

molecules in the calculations, due to configurational disorder in the structure of liquid water. This

increases the cost of the computational analysis, since multiple H2O configurations must be sampled

over for each reaction intermediate [11]. Given that glycerol APR can include dehydrogenation, de-
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carbonylation, dehydration, hydrolysis, water gas shift and other processes [12], to study the entire

reaction network, including multiple configurations of H2O molecules for each reaction intermediate

and transition state, would require a significant amount of effort. Due to the large reaction network

and the need to study it in liquid conditions, we are seeking ways to reduce the computational

expense of performing simulations of heterogeneously catalysed reactions in aqueous phase.

In this work, we use computational strategies to investigate intermediates and reactions

in Pt(1 1 1)-catalysed glycerol dehydrogenation under liquid water. We explore three methods

for calculating the aqueous-phase energies of glycerol and its derivatives of dehydrogenation. In one

method, the adsorbate geometries and binding energies in vacuum are determined with density func-

tional theory (DFT), and H2O configurations are generated in classical molecular dynamics (MD)

simulations. The water–adsorbate interaction energies (needed to compute the binding energies

and reaction energies in aqueous conditions) are then calculated using DFT single point calcula-

tions performed on some of the H2O–adsorbate configurations generated in MD [11]. In the second

method, vacuum-phase binding energies and adsorbate geometries are determined in DFT, H2O

configurations are generated in MD and the H2O–adsorbate interaction energies are calculated from

the classical potentials employed in the MD simulations. In the third method, a linear scaling re-

lationship (LSR) [4, 13–19] is used to compute the adsorbate binding energies, H2O configurations

are generated in MD and the water–adsorbate interaction energies are calculated using the classical

potentials in MD. In the third method, the adsorbate structures needed in the MD simulations

are produced through ‘coarse’ (i.e. partial) geometry relaxations in DFT. We find the second and

third methods achieve good computational efficiency while attaining good accuracy for calculating

reaction energies in the aqueous phase when compared to the results of the first method (which is

an adaptation of a method previously published by our group [11]); however, they give significantly

different results for the H2O–adsorbate interaction energies.

3.3 Methods

3.3.1 Model Structures: General Details

Different model systems in this work are comprised of intermediates in the glycerol decom-

position pathway adsorbed to platinum(1 1 1) at low coverage under vacuum and liquid water. The

total coverage of adsorbates on the Pt(1 1 1) surfaces is held at 1/9 monolayer (ML), where 1 ML
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refers to 1 adsorbate molecule per surface metal atom. Initial guesses for adsorbate geometries

are made by referencing prior work from the Greeley [1, 2], and Vlachos [3] groups. Final adsor-

bate geometries are determined using geometry relaxations in DFT. Configurations of liquid water

molecules are determined using MD.

3.3.2 DFT calculations

DFT calculations were performed based on information provided in Chapter 2 section 5.

3.3.3 MD Simulations

MD simulations are performed with the Large-scale Atomic/ Molecular Massively Paral-

lel Simulator (LAMMPS) [20] in the NVT ensemble. The target temperature is set at 500 K

with the Nose–Hoover thermostat [21]. This temperature is chosen to replicate the experimen-

tal conditions of aqueous-phase reforming of oxygenated hydrocarbons [22–25]. MD simulations

are performed for 5 ns (5 ×10−9 s) with 1 fs (10−15 s) time steps, where the first 2 ns are used

for system equilibration and the remaining 3 ns are used for the production runs. Atomic quan-

tities and thermodynamic information are reported every 100 fs. Non-bonded water-water, wa-

ter–adsorbate and water–Pt interactions are calculated with Lennard-Jones + Coulomb (LJ + C)

potentials, with LJ parameters and partial electronic charges (Coulomb parameters) for adsorbates,

H2O and Pt taken from the optimised potentials for liquid simulations (OPLS) [26], TIP3P [27]

and INTERFACE force fields [28], respectively. Cross-terms for the LJ interactions are computed

using Lorentz–Berthelot mixing rules [29, 30]. All LJ cross-term coefficients and partial charges

used in the LJ + C potentials are given in SI Section 2 of Reference [31], which is available at

https://www.tandfonline.com/doi/abs/10.1080/08927022.2017.1285403. In this chapter, unless oth-

erwise stated, all SI occurrences refer to this electronic source. A total of 36 H2O molecules are

present in the simulation boxes. Note the system size was limited in order to allow feasible DFT

energy calculations. During MD simulations, these H2O molecules provide an explicit solvation en-

vironment as they form a liquid film, which is stabilised near the surface region. Similar liquid water

films were observed at 500 K using TIP3P water in MD by Ismail et al. [32] and Longhi et al. [33].
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3.3.4 Simulation Supercell

In this chapter, a close-pack 3-layer 3 × 3 p(3
√
2
2 × 3

√
2
2 – R60circ) Pt (111) surface is

discussed as the simulated catalyst. The 3
√
2
2 in the p(3

√
2
2 × 3

√
2
2 – R60circ) expression indicates

the corresponding a and b dimensions of the unit cell, with respect to the lattice parameter of the

primitive cell of Pt; the R60circ indicates the angle formed in between lattice vector a and lattice

vector b is 60circ. The lateral dimensions of the mono-clinic Pt (111) slab can be found in Figure

3.1. Surfaces with the same periodicity are reported in various existing literature [34–41] due to easy

implementation and computational efficiency. However, a major concern of applying this model is

the lateral interactions on the x-y plane when the cells are expanded in periodic boundary conditions

(PBC), which is caused by the 3
√
2
2 cell shape. In our published work [31] (SI Section 3), it has been

shown that small adsorbed molecules such as methanol and its derivatives are suitable for this type

of unit cell, as the binding energies for those small chemical species on the 3 × 3 Pt (111) surface

are with in ∼ 0.15 eV (1 eV = 96.49 kJ/mol) of their analogues calculated on a larger 6 × 6 Pt (111)

surface. The distance between the topmost layer of Pt atoms and the bottommost layer of Pt atoms

in the next periodic image is 34 Å, which allows for the incorporation of H2O molecules into the

supercells and minimises the interactions between periodic images in the vertical dimension. The

total size of the super cells is thus a = b = 8.416 Å, c = 38.524 Å, α = β = 90.0circ, γ = 60.0circ

(volume = 2363 Å3). These super cells are used in both the DFT and MD simulations. In DFT

calculations of these super cells, 7 × 7 × 1 Γ-centred Monkhorst-Pack k-point grids [42] are used to

integrate over the first Brillouin zones.
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Figure 3.1: Top view of p(3
√
2
2 × 3

√
2
2 – R 60circ) Pt (111) catalyst model (unit cell). The light grey

circles denote Pt atoms of the surface. Information about a, b, and γ is labeled in the graph.

3.3.5 Gas-phase Molecules and Radicals

Energies of gas-phase molecules, including fully saturated molecules and radicals, are cal-

culated in non-cubic 14.000 Å × 13.014 Å × 13.029 Å super cells. Spin polarisation is included as

appropriate. The k-point grid is 1× 1× 1.

3.3.6 Methods and quantities for calculating energies in aqueous phase

In this work, we compare three ways for computing the energies of reaction intermediates

in the presence of liquid H2O. They are detailed below.

3.3.6.1 Full DFT/MD method

The first method is a modification of the strategy published previously by our group [11].

Briefly, the procedure is as follows:

1. Adsorbate structures are optimised using DFT under vacuum.

2. In our previously published procedure, the converged structures were then placed under sheets

of ice and allowed to re-relax. The intended purpose of introducing the ice sheet was to capture

any geometry differences that might occur in the presence of H2O molecules. In general, we

find that this step has a minor effect on the structures and energies of the adsorbates considered

in work of SI Section 4.
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3. The systems are then simulated in MD. In these simulations, the H2O molecules are allowed

to move according to Newton’s equations of motion, but the adsorbate is held fixed.

4. Ten different configurations of H2O molecules are selected from the MD trajectory. These are

obtained by sampling every 100 timesteps during the production stage. The energies of these

configurations are calculated in DFT as single points (i.e. without relaxing any of positions of

any of the atoms). These DFT energies are averaged, and the result is taken as the averaged

electronic energy of the aqueous-phase system. (As discussed below, in this step, an additional

10 DFT single points need to be performed on the identical H2O configurations but with the

adsorbate removed [11]. These single point energies are needed to compute the water–adsorbate

interaction energies.)

We consider this procedure, which we call full DFT/MD, to be our standard, since the energies

are calculated with DFT. However, since the energies calculated with DFT use H2O configurations

produced with a classical force field, this method could comprise some amount of uncertainty, since

the exact positions of the local minima and the forces along the potential energy surface are different,

depending on whether DFT or the classical force field is used to generate it. We discuss some possible

sources of uncertainty in SI Sections 5 and 6. As shown below, a more useful quantity than the

aqueous-phase system electronic energy is the water-adsorbate (i.e. the water-C3HyO3*) interaction

energy, i.e. Eint(C3HyO3) [27],

∆Eint(C3HyO3) = E(Pt + H2O + C3HyO3)− E(Pt + H2O)− E(Pt + C3HyO3) + E(Pt) (3.1)

where E stands for electronic energy. In this equation, the configurations of H2O molecules used to

calculate E (Pt + H2O) are the same as those used to calculate E (Pt + H2O + C3HyO3). Still, to

obtain Eint requires an additional 10 DFT calculations, needed to calculate E (Pt + H2O). Thus, a

total of 21 DFT calculations are required to calculate the interaction energy for one adsorbate in

the full DFT/MD approach: 1 in step 1 and 20 in step 3. Given that the pathway for glycerol APR

involves hundreds of possible reaction intermediates, this method is too computationally expensive

for routine use.
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3.3.6.2 Vacuum DFT/MD method

In this work, we evaluate two alternative methods for reducing the computational expense

needed to calculate Eint. In the first alternative, which we call the Vacuum DFT/MD method,

we eliminate step 3 from the procedure enumerated above, which requires 20 DFT single point

calculations. In this method, Eint is calculated directly from the MD simulations, using pair- wise

LJ + C interaction energies calculated between the atoms in the adsorbate and the atoms in water.

Note that this direct MD energy calculation method does not attain quantum accuracy; however,

it offers notable computational efficiency since the averaging of Eint in MD simply requires the

completion a MD trajectory, which takes about 1/10th of the time required to perform the 20

DFT single point calculations that would be needed in the full DFT/MD method. In addition, the

ensemble averages of the interaction energies can be calculated using many configurations from the

MD production run, rather than just the 10 that are used in full DFT/MD. (That said, we find

that for the systems studied in this work, the averages and uncertainties of the interaction energies

calculated using LJ + C potentials in MD from 10 configurations versus 30,000 configurations are

nearly identical. See SI Section 7.) Using the LJ + C energies directly from MD, 20 of the 21 DFT

calculations needed to compute Eint are eliminated in this method.

3.3.6.3 LSR/MD Method

This method uses an established linear scaling relashionship (LSR) to obtain binding energies

and correlate them to reaction energies. Detailed derivation of the LSR is discussed in Chapter 2

Section 2.2.

The second part of LSR/MD method uses the MD simulator to eliminate the need to

compute the binding energies of reaction intermediates with DFT. However, the structures of these

intermediates are still needed as input for the MD simulations needed to obtain E int(C3HyO3).

In order to reduce the computational expense associated with obtaining these structures, we use

‘coarsely converged’ structures in our LSR/MD method, i.e. where geometry relaxations of C3HyO3

intermediates are performed until the maximum atomic force falls below 0.5 eV/Å (compared to

0.03 eV/Å needed for full convergence) [31]. In general, geometry relaxations performed using coarse

convergence take 80 fewer iterations to converge than the analogues that are converged to 0.03 eV/Å.

Further, the differences in Eint using these coarsely converged structures in the LSR/MD method
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are found to be within the error bars of the Eint calculated using the fully converged structures in

the vacuum DFT/MD method (SI Section 8). Note that these coarsely converged structures are

only used to provide a reasonable adsorbate structures for the MD simulations and not to obtain

any DFT energies.

3.3.6.4 Derivation of Aqueous-phase Reaction Energies

To evaluate these different methods, we use them to compute binding energies and reaction

energies along the glycerol dehydrogenation pathway. The binding energies of reaction intermediates

under vacuum can be calculated in two ways: with DFT energies or using the LSR. Using DFT

energies, the equation is,

Evac
bind(C3Hy′O3) = E(Pt + C3Hy′O3)− E(Pt)− E(C3Hy′O3(g)) (3.2)

Where E(C3Hy′O3(g)) is the energy of gas-phase C3Hy′O3, which can be either a saturated molecule

or an unsaturated fragment. It is previously reported that Evac
bind can be summed with the wa-

ter–adsorbate interaction energy (Eint) to obtain the aqueous-phase binding energy [11],

Eaq
bind(C3Hy′O3) = Evac

bind(C3Hy′O3) + Eint (3.3)

Which represents the chemical formula C3HyO3(g) + Pt(aq) → C3HyO3–Pt(aq). Similarly, the

reaction energies for aqueous-phase dehydrogenations, i.e. C3HyO3—Pt(aq) + Pt(aq)→ C3Hy−1O3–

Pt(aq) + H–Pt(aq), are calculated by summing the reaction energies in vacuum with the change in

the water–adsorbate interaction energies going from reactants to products. Using values from DFT,

the reaction energies in vacuum are calculated as follows:

Evac
rxn(C3Hy′O3 → C3Hy-1O3) = E(Pt + C3Hy-1O3)− E(Pt + C3HyO3) + E(H) (3.4)

where E (H) is the energy of single adsorbed H atom. When the LSR/MD method is used, DFT

energies are not available, and Evac
rxn(C3Hy′O3 → C3Hy-1O3) can be calculated from the binding

46



energies obtained from the LSR, i.e.

Evac
rxn(C3Hy′O3 → C3Hy-1O3) = Evac

bind(C3Hy-1O3)−Evac
bind(C3HyO3)+E(C3Hy-1O3(g))−E(C3HyO3(g))+E(H)

(3.5)

where E(C3Hy-1O3(g)), E(C3HyO3(g)), and E (H) are calculated with DFT. The derivation of eqn.

3.5 is provided in SI Section 9. The aqueous-phase reaction energy (for both cases) is then given by

Eaq
rxn(C3Hy′O3 → C3Hy-1O3) = Evac

rxn(C3Hy′O3 → C3Hy-1O3) + ∆Eint (3.6)

where ∆Eint the difference between the Eint of the product and the Eint of the reactant.

3.3.6.5 Summary of methods and how Evac
bind and Eint are calculated

We now have three different methods for calculating the energies of aqueous-phase systems:

• ‘Full DFT/MD,’ as reported by Bodenschatz et al. [11] (except that the step (1a), which

re-converges the vacuum structures under ice, is eliminated).

• ‘Vacuum DFT/MD,’ which calculates Eint using pairwise LJ + C potentials in MD.

• ‘LSR/MD,’ which obtains Evac
bind(C3HyO3) from the LSR in eqn. 2.1, uses coarsely converged

adsorbate structures in MD and calculates Eint using pairwise LJ + C potentials in MD.

These methods, along with the associated methods for calculating Eint are summarised in Table 3.1.

The ‘Steps’ are previously discussed in the text.
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3.3.6.6 Adsorbates and reactions used for energy comparisons

There are 84 possible intermediates (including glycerol) in the pathway for the total dehy-

drogenation of glycerol, and 250 possible elementary dehydrogenation reactions, involving both C–H

and O–H dissociation. Table 3.2 categorises the 84 adsorbates into 8 tiers based on their hydrogen

contents, with Tier 1 representing the stoichiometry C3H7O3, and Tier 8 representing C3H0O3. The

analysis below is performed on a subset comprising 35 of these adsorbates, chosen based on the

following criteria. We selected a maximum of five intermediates from each tier, and we focused

on intermediates that exhibited the largest, most exothermic aqueous-phase dehydrogenation reac-

tion energies, calculated using the three approaches discussed above. Starting from the selected

35 intermediates, 70 dehydrogenation reactions were considered, which exhibit different levels of

exothermicity and endothermicity.
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3.4 Results

Vacuum-phase binding energies, aqueous-phase binding energies, interaction energies and

aqueous-phase reaction energies for the 35 intermediates/70 reactions discussed above are calculated

using the three methods discussed above and compared in Figures 1–3 and Tables S10–S12 in SI.

In the remainder of this section, we compare results calculated with the Vacuum DFT/MD

and LSR/MD methods with the full DFT/MD method, since we consider the full DFT/MD method

to be the standard. We use two statistics to evaluate the vacuum DFT/MD and LSR/MD methods:

(1) the correlation coefficient, R2, obtained by creating a best fit line for an energy calculated with

the method of interest versus the same energy but calculated with the full DFT/MD method; and

(2) the mean absolute error (MAE), which is the average of the absolute value of the difference

between an energy calculated with the method of interest and the same energy but calculated with

the full DFT/MD method. A comparison of Eint is provided in Figure 3.2. In calculating Eint,

the main difference between the vacuum DFT/MD and LSR/MD methods and the full DFT/MD

method is whether the interaction energies are calculated with LJ + C potentials (vacuum DFT/MD

and LSR/MD) or with DFT (full DFT/MD). Figure 3.2 shows that the correlation between the

interaction energies calculated with LJ + C potentials and those calculated with DFT is weak, with

R2 values of 0.39 and 0.25 for the Vacuum DFT/MD and LSR/MD methods, respectively. Further,

the MAEs, which assesses the accuracies of the methods, are 0.43 and 0.48 eV, respectively. These

values are larger than our chosen MAE tolerance of 0.3 eV. This value was chosen to be consistent

with the literature [14, 43, 44].
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a) 

 

b) 

 

Figure 3.2: (a) comparison of the water–adsorbate interaction energies calculated using the full
DFT/MD and vacuum DFT/MD methods. (b) comparison of the water–adsorbate interaction en-
ergies of the of 35 reaction intermediates calculated using the full DFT/MD and LSR/MD methods.
For clarity, the graphs only plot the averaged values and do not include error bars. The grey line is
the y = x line, and the black line is the best fit line obtained using the method of least squares.

Figure 3.3 compares binding energies calculated with the different methods. Vacuum-phase

binding energies calculated with the LSR are compared with their DFT-calculated analogues in

Figure 3.3(a). We find good correlation and accuracy, with R2 = 0.98 and MAE = 0.14 eV, indicat-

ing that the LSR is viable for calculating vacuum-phase binding energies. Aqueous-phase binding
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energies calculated with the vacuum DFT/MD and LSR/ MD methods are compared with the full

DFT/MD method in Figures 3.3(b) and (c), respectively. Both of these methods give aqueous-phase

binding energies that are well correlated to the energies calculated with the full DFT/MD method,

with R2 values of 0.98 and 0.96, respectively. However, the MAE values are large, both around

0.5 eV. We find that Eint contributes on average 20% to the aqueous-phase binding energies, and

it is likely the scatter in Eint that leads to the large MAEs in the aqueous-phase binding energies

calculated with the vacuum DFT/MD and LSR/ MD methods.
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a) 

 

b) 

 

c) 

 

Figure 3.3: (a) comparison of vacuum-phase binding energies of the selected 35 reaction intermediates
calculated with DFT vs. with LSR. (b) comparison of aqueous-phase binding energies calculated
using the vacuum DFT/MD method vs. the full DFT/MD method. (c) comparison of aqueous-phase
binding energies calculated using the LSR/MD method vs. the full DFT/MD method. For clarity,
the graphs only plot the averaged values and do not include error bars. The grey line is the y = x
line, and the black line is the best fit line obtained using the method of least squares.

Vacuum-phase reaction energies calculated using values from the LSR are compared with
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the analogous values calculated with DFT in Figure 3.4(a). We find reasonable correlation with R2

= 0.79 and good accuracy, with MAE = 0.17 eV. Aqueous-phase reaction energies calculated with

the vacuum DFT/MD and LSR/MD approaches are compared with the analogous values calculated

with the full DFT/MD method in Figure 3.4(a) and (b), respectively. We find that even though

these methods give Eint that are only loosely correlated to and remarkably different from the Eint

that are calculated with the full DFT/MD approach, they are viable for calculating Eaq
rxn. The

R2 values for these methods are 0.88 and 0.84, respectively, and the MAEs are 0.24 and 0.28 eV,

respectively. Notably, the MAEs are within our tolerance value of 0.3 eV.
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a) 

 

b) 

 

c) 

 

Figure 3.4: (a). comparison between vacuum-phase reaction energies calculated with DFT vs. the
LSR. (b). comparison between the aqueous-phase reaction energies calculated using the vacuum
DFT/MD method vs. the full DFT/MD method. (c). comparison between the aqueous-phase
reaction energies calculated using the LSR/MD method vs. the full DFT/MD method. For clarity,
the graphs only plot the averaged values and do not include error bars. The grey line is the y = x
line, and the black line is the best fit line obtained using the method of least squares.
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3.5 Discussion

The interaction energy Eint is an important quantity in computational catalyst of aqueous-

phase reaction studies. This is because it describes the strength of interaction between the water

and the adsorbate, which can lead to different binding phenomena than in vacuum. Additionally,

the interaction energy contributes to the reaction energy and thus the free energy difference in

chemical reactions. However, this quantity is computationally expensive to obtain [11]. In this work,

we evaluated using classical LJ + C potentials to obtain the water–adsorbate interaction energies

instead of DFT, in order to reduce the computational expense. We found that the LJ + C method

used in this work gives significantly different Eint than DFT does. However, when relative values

of Eint are needed, as in the calculation of Eaq
rxn, the LJ + C method gives results that are in line

with DFT. In part, this is because the vacuum-phase reaction energy, which yields good statistics, is

the dominant contribution to the aqueous-phase reaction energy. The other contribution to Eaq
rxn is

∆Eint, which gives better statistics than Eint due to cancellation of error. This is discussed further

in SI Section 13.

Of the two methods that use the LJ + C potentials investigated in this work (i.e. vac-

uum DFT/MD and LSR/MD), the LSR/MD method is more efficient, because it only requires one

coarsely converged DFT calculation per adsorbate. However, a hidden source of computational ex-

pense is in the establishment of the LSR itself. LSRs such as the one used in this work are limited to

certain types of species [14, 16, 17], and thus new LSRs must be developed to study different reaction

systems, and maybe even different branches of a reaction network in a single system. Further, calcu-

lating Eaq
rxn with this method requires calculating energies for the gas-phase molecules and radicals

with DFT, which adds to the computational expense. Thus, while it is the most computationally

efficient method that we know of that incorporates explicit solvation and multiple configurations of

H2O molecules for computing reaction energies at quantum-level accuracy, the LSR/MD method

still involves notable computational effort.

Finally, we note that all energies reported in this manuscript are electronic energies. Some

of our ongoing work involves learning how to calculate other quantities (e.g. free energies).
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3.6 Conclusions

Understanding aqueous-phase reforming of glycerol on Pt (1 1 1) remains challenging, due

to the large amount of reactions and intermediates that are involved. Here, we provide a rela-

tively efficient method for computing the reaction energies of surface reactions under aqueous phase.

Specifically, this method uses an LSR to compute adsorbate binding energies and classical Lennard-

Jones + Coulomb (LJ + C) potentials to calculate adsorbate interaction energies with liquid H2O

molecules. This method is efficient, since it only requires one coarsely converged DFT calculation

per adsorbate, while still incorporating the configurational disorder that is present in the liquid wa-

ter structure. It also provides reasonable accuracy for calculating aqueous-phase reaction energies,

with a MAE of 0.28 eV compared to the full DFT/MD method (which requires 21 DFT calcu-

lations per adsorbate). However, this method gives significantly different results for the absolute

water–adsorbate interaction energies and aqueous-phase binding energies. Overall, the LSR/MD is

viable for computing Evac
bind, E

vac
rxn and Eaq

rxn with a good balance of accuracy and expense. Acknowl-
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Chapter 4

Insights into the Roles of Water on

the Aqueous Phase Reforming of

Glycerol

4.1 Abstract

Aqueous phase reforming (APR) of sugar alcohol molecules derived from biomass, e.g.,

CxH(2x+2)Ox (aq) + xH2O→ xCO2 (g) + (2x+1)H2 (g), creates hydrogen gas sustainably, making

it an important component of future bio-refineries; however, problems with the cost, activity, and

selectivity of present precious metal based catalysts impede its broader adoption. Ideally, new cata-

lysts would be designed to optimize activity and selectivity; however, a comprehensive understanding

of the APR mechanism is lacking. This is complicated by the fact that the primary biomass-derived

sugar alcohols are large molecules (meaning that their reaction networks are large) and because

of the presence of liquid water. Water influences catalytic phenomena in multiple ways, includ-

ing altering the thermodynamics of catalytic surface species and participating in catalytic reactions.

Understanding the mechanism of APR requires understanding these various effects; however, compu-

tational strategies based solely on density functional theory (DFT) are computationally prohibitive

for such large and complicated reaction networks. In this work, we investigate the mechanism of

APR reactions in the context of glycerol reforming. To calculate the reaction network, we combine
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DFT calculations, force-field molecular dynamics (MD) simulations, linear scaling relations (LSRs),

transition state scaling (TSS) relationships, and data from the literature into a microkinetic model.

The microkinetic model is run under vacuum and aqueous phases in order to learn about the roles of

water molecules on the mechanism of glycerol APR. We identify four such roles: providing surface

hydroxyl groups, which promote oxidation of surface CO formed in glycerol decomposition; promot-

ing C-H scissions; promoting O-H scissions; and inhibiting the thermodynamics of decarbonylation

of C3 intermediates.
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4.2 Introduction

A goal within the catalyst research community is to solve this problem, which first requires

improving our understanding of the APR catalytic mechanism. From a big-picture standpoint, the

mechanism of APR involves three branches: dehydrogenation (R-H* + * → R* + H*, where * are

catalyst sites), decarbonylation (R-CO* + * → R* + CO*), and water-gas shift (WGS; CO* +

H2O → * + CO2 + H2). However, elucidating the individual steps in the different branches is not

straightforward, for multiple reasons, including the large sizes and complex structures of APR feed

molecules (which result in large reaction networks and numerous possible catalytic intermediates)

and the aqueous reaction conditions themselves.

We use a combination of density functional theory (DFT) calculations, force field molecular

dynamics (MD) simulations, and microkinetic modeling to learn about the mechanism of glycerol

APR under aqueous conditions. Building on the literature, we construct and employ linear cor-

relations for estimating the energies of catalytic C3 species in order to reduce the computational

cost associated with studying such a large reaction network. Specifically, we use linear scaling rela-

tionships (LSRs) [1–9] built in our prior work [9] to estimate the energies of catalytic reactant and

product species. Further, we build transition state scaling (TSS) relationships [10–17] to estimate

the energies of transition states involved in dehydrogenation and decarbonylation reactions involving

C3 catalytic intermediates. We additionally construct TSS relationships for hydrogenolysis reactions

(R-OH* + * → R* + OH*) involving C3 species. To investigate the ability of H2O to participate

in the catalysis, we additionally simulate water-mediated dehydrogenation (R-H* + n’ 1H2O* →

R* + H(2n+1)On*) and hydrogenolysis steps (R-OH* + H(2n+1)On* → R* + (n + 1) H2O*). We

combine all of our calculated energies with energies obtained from the literature [18–21] for reactions

involving C2 and C1 intermediates as well as WGS reactions into a microkinetic model, which we use

to probe the mechanism of glycerol APR. Our results indicate that H2O molecules play at least four

roles in the APR of glycerol: supplying OH* for the WGS reaction, promoting C-H bond scissions,

promoting O-H bond scissions, and inhibiting decarbonylation of C3 catalytic species.

4.3 Methods

We calculate energies for this manuscript in two ways: explicitly and using linear rela-

tionships. In explicit calculations, catalytic species are modeled under structures of liquid water
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using a multi-timescale method that combines DFT calculations and MD simulations. This method

is discussed below and elaborated in the Supporting Information Section 5 of our published work [22],

which is available electronically at https://pubs.rsc.org/en/content/articlelanding/2018/re/c8re00267c/.

In this chapter, unless otherwise stated, all Supporting Information occurrences refer to this elec-

tronic source.

4.3.1 Simulation Supercell

Pt(111) surfaces were modeled using three-layer 4 Pt × 4 Pt orthogonal slabs (i.e., with

symmetries of p
(
2
√

2× 7/4
√

2
)
− R90◦) in periodic supercells. The slabs were constructed by

cleaving a (111) surface from the calculated structure of bulk Pt. Catalytic intermediates and

transition states were optimized on the topmost Pt layers only, and only one catalytic intermediate

or transition state was included per slab, yielding a total coverage of 1/16 monolayer (ML, where 1

ML = 1 catalytic intermediate or transition state per surface Pt atom). The orthogonal supercells

had dimensions of a = 11.22 Å and b = 9.72 Å (shown in Figure 4.1). A total of 36 H2O molecules

were added to the supercell in the space above the Pt(111) surfaces. It has been shown by López

that rigidity in the liquid H2O structure can influence reactivity [23]. To ensure the liquid H2O

is simulated at the correct density for the reaction conditions, i.e., T = 500 K and P = 50 bar,

the c dimension of the supercell was determined using MD simulations performed in the NPT

ensemble. This procedure is elaborated upon in Section 2 of the Supporting Information and in other

publications from our group [24, 25]. Briefly, after the H2O molecules are added to the supercell,

a 5 ns MD simulation is performed in the NPT ensemble at a target temperature and pressure of

500 K and 50 bar, which are maintained by the Nosé–Hoover thermostat and barostat. The first

2 ns of the NPT simulation are used for system equilibration and the remaining 3 ns are used to

determine the average value of the c dimension. The value of the c dimension that yields the proper

H2O density for these supercells is 20.18 Å. The resulting liquid water density is 0.857 g/cm3, which

is similar to the density of saturated liquid water at 500 K as calculated with TIP4P/2005 (0.850

g/cm3 [26]) and as observed experimentally (0.844 g/cm3 [27] and 0.837 g/cm3 [Yoshida2005]).
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Figure 4.1: Top view of p(2
√

2 × 7
√
2
4 – R90◦) Pt (111) catalyst model (unit cell). The light grey

circles denote Pt atoms of the surface. Information about a, b, and γ is labeled in the graph.

4.3.2 Water Configurations from Molecular Dynamics Simulations

Molecular Dynamics (MD) simulations were conducted using the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) [28]. Interactions of water molecules with catalytic inter-

mediates and the Pt surface were calculated using Lennard Jones + Coulomb (LJ+C) potentials. LJ

parameters for adsorbates, H2O molecules, and Pt atoms were taken from the optimized potentials

for liquid simulations (OPLS) [29], TIP4P/2005 [30], and INTERFACE force fields [31], respectively.

Cross terms for the LJ interactions were computed using Lorentz–Berthelot mixing rules [32, 33].

Atomic partial charges used in the Coulomb potentials for the Pt atoms and adsorbates were cal-

culated from density functional theory results using the density derived electrostatic and chemical

(DDEC) package [34–39]. All LJ+C parameters are tabulated in the Supporting Information Section

3.

Configurations of liquid H2O molecules around the catalytic species were generated in the

NVT ensemble. The target temperature was set to 500 K, similar to the conditions employed

experimentally [40–43]. The temperature was controlled by the Nosé–Hoover thermostat [44]. MD

simulations were performed for 5 ns with 1 fs timesteps, where the first 2 ns were used for system

equilibration and the final 3 ns were used for configurational sampling.
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4.3.3 Energies of Catalytic Species from DFT

DFT calculations were performed based on information provided in Chapter 2 section 5.

All transition state structures were confirmed by their vibrational frequencies. The final structures

of all catalytic species calculated in this work are illustrated in Supporting Information Section 6.

Additionally, their coordinates have been uploaded to our group’s GitHub page [45]. VASP INCAR

settings are provided in the Supporting Information Section 1.

4.3.4 Linear Scaling and Transition State Scaling Relationships

Since the reaction network for catalytic APR is rather large, we additionally estimated

energies of catalytic species using linear correlations, as has been done by others working in this

field [46]. Binding energies of C3 intermediates (reactant and product species) were estimated using

an extended linear scaling relationship (LSR) based on the energies of their fragments [18, 47–55],

as in our prior work [9]. In our prior work, we derived linear correlations to calculate the energies of

intermediates with chemical formulas of CHy′O–CHy′′O–CHy′′′O as functions of the binding energies

of their CHy′O, CHy′′O, and CHy′′′O fragments (the subscripts y′, y′′, and y′′′ denote different levels

of saturation of the carbon atoms). Energies of transition states were estimated using transition

state scaling (TSS) relationships [10–17], which are linear functions of the energies of the product

species (commonly referred to as final state (FS) species in the literature). In this work, we input

both DFT calculated FS energies and FS energies that were calculated using LSRs to the TSS

relationships. How we combined LSRs and TSS relationships is demonstrated in the Supporting

Information Section 4.

4.3.5 Reaction and Activation Energy Calculations

Reaction energies for vacuum phase reactions Evac
rxn were calculated using standard formulas.

For example, the reaction energy for adsorbed glycerol C3H8O3* dehydrogenation to C3H7O3*, i.e.,

C3H8O3* + * → C3H7O3* + H* (where * indicates a catalytic site and a *’ed species indicates a

species adsorbed on a Pt(111) catalytic site) is

Evac
rxn = E(C3H7O3*) + E(H*)− E(C3H8O3*)− E(*) (4.1)
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where E(C3H7O3*), E(H*), and E(C3H8O3*) are the electronic energies of C3H7O3*, H*, and

glycerol C3H8O3*, and E(*) is the electronic energy of the clean Pt(111) surface. The energies of

the carbon-containing species can be obtained using DFT calculations or LSRs.

We define the reaction energy in the aqueous phase as being equal to the reaction energy in

vacuum phase plus the change in the water-catalytic species interaction energy, as in our prior work

[9], i.e.,

Eaq
rxn = Evac

rxn + ∆Eint (4.2)

For any catalytic species, the water-catalytic species interaction energy Eint is defined as the total

interaction between the water structure and the catalytic species [56]. For example, the interaction

energy for glycerol is

Eint(C3H8O3*) = E(H2O + C3H8O3*)− E(H2O + *)− E(C3H8O3*) + E(*) (4.3)

Eint are reported as averages over 10 different configurations of water for catalytic species involved

in non-water-mediated steps ± the calculated standard deviation. Eint for catalytic species involved

in water-mediated steps are calculated using a single configuration of H2O molecules.

∆Eint is the change in interaction energy going from reactants to products. For example,

in the reaction C3H8O3* dehydrogenation to C3H7O3*, ∆Eint is

∆Eint = Eint(C3H7O3*) + Eint(H*)− Eint(C3H8O3*)− Eint(*) (4.4)

We found that Eint(H*) is equal to 0. Further, Eint(*), i.e., Eint of the clean Pt(111) surface, is set

to 0 by definition. Therefore, ∆Eint in this case can be calculated as ∆Eint = Eint(C3H7O3*) −

Eint(C3H8O3*). When values of ∆Eint include ± values, they are the propagated uncertainties,

which are determined using standard error propagation rules [57].

Activation energies are calculated analogously. For example, the activation energy for the

glycerol dehydrogenation reaction, C3H8O3* + * → TS*→ C3H7O3* + H* under vacuum is

Evac
act = E(TS*)− E(C3H8O3*) (4.5)
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where TS stands for transition state. Under aqueous phase, the activation energy is

Eaq
act = Evac

act + ∆Eint (4.6)

where ∆Eint is the change of the interaction energy from the reactant to the transition state, i.e.,

∆Eint = Eint(TS*)− Eint(C3H8O3*) (4.7)

The above equations were used to calculate the activation energies in aqueous phase using DFT

data. Since our TSS relationships are derived using transition states under aqueous phase, they

already include the water-catalytic species interaction energy, and hence, the activation energy is

simply

Eact = E(TS*)− E(IS*) (4.8)

where IS stands for initial state and in this work is the reactant species.

4.3.6 Microkinetic Modeling

Microkinetic modeling was performed with the MKMCXX package [58]. Adsorption rate

constants were calculated from the Hertz-Knudsen equation [59–61],

kads =
yPA√

2πmkBT
(4.9)

where y is the mole fraction of either the gas phase or aqueous phase species, P is the total pressure,

A is the surface area of the adsorption site, m is molecular mass, kB is the Boltzmann constant,

and T is the temperature. Here, we set the initial mole fraction of glycerol to 0.1 for both the

vacuum and aqueous phase microkinetic models. In the vacuum phase model, glycerol is supplied

with a balance of inerts, and in the aqueous phase model, glycerol is supplied with a balance of H2O

(water to glycerol ratio of 9). The total pressure in both models is set to 1 atm. This procedure

has been published previously by Heyden’s group [19] for both gas and liquid phase microkinetic

models. Essentially, it computes the adsorption rate constant from gas phase collision theory. To

our knowledge, there is no well-tested theory for simulating the kinetics of chemisorption from liquid

phase onto solid catalyst surfaces. Because of this, and also since our intent in this manuscript is
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to learn about the roles of H2O molecules on surface reactions involved in the reforming of glycerol,

we have treated the adsorption in our gas and aqueous phase models similarly. That said, we stress

that there is some uncertainty embedded into the thermodynamic and kinetic quantities pertaining

to adsorption that are reported in this manuscript.

Desorption rate constants were calculated as [60–62],

k =
kBT

3

h3
A(2πmkB)

σθrot
exp

(
−Edes

kBT

)
(4.10)

where h is the Plank’s constant, σ is the symmetry number, θ is the rotational temperature of the

species, and Edes is the desorption energy. Details about σ and θ are provided in the Supporting

Information Section 7. In this formalism, adsorption and desorption proceed through a mobile

precursor, which is a fluid phase species that has been trapped on the catalyst surface. The mobile

precursor has two translational degrees of freedom (while the fluid phase species has three) and

three rotational degrees of freedom, which are all lost when the species ultimately binds to the

catalyst surface. Desorption energies for all species considered in this work are endothermic (i.e.,

their adsorption energies are exothermic).

Rate constants for surface reactions were calculated with the Arrhenius equation,

k = A exp

(
−Eact

kBT

)
(4.11)

where A is the pre-exponential factor. Pre-exponential factors for surface reactions were set to 1013

s−1.

Reaction energies and activation barriers that were input to the microkinetic model were

obtained as follows. Energetics of reactions involving C3 species were calculated in this work using

a combination of DFT data, LSRs, and TSS relationships, as described above. Modeling the APR

of glycerol also requires energies of reactions involving C2 and C1 species and also water-gas shift.

We obtained energies of these reactions from the literature, using references from Bligaard [18],

Heyden [19], Vlachos [20], and Schneider [21]. During the review stage of this manuscript, we

became aware of a recently published database [63], which houses structures and energies of species

involved in catalytic APR over Pt [46]. An alternative approach would have been to use information

from the database for the reactions involving C2 and C1 species and water-gas shift. All reaction
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energetics that were used in the microkinetic models presented in this manuscript are tabulated in

the Supporting Information Section 7.

The microkinetic models reported in this work employed single site models for simplicity.

We note that due to the large sizes of some of the adsorbates, as well as the fact that on supported

catalysts, interfacial sites are likely important to the catalysis [64], this is an approximation.

The temperature in our microkinetic models was set to 500 K. The MKM solver was iterated

for 108 seconds to ensure convergence, and the absolute and relevant tolerances were both set to

10−8 mol/s.

4.4 Results

4.4.1 Role of H2O on the Energetics of Reactions Involving C3HyO3 Species

Reaction energies and activation barriers for non-water-mediated reactions are summarized

in Table 4.1. Comparing the calculated reaction energies for vacuum and aqueous phases, the

differences for the dehydrogenation steps are slight, indicating little influence of water. In contrast,

reaction energies for decarbonylation steps are more endothermic in aqueous phase than in vacuum.

Further, the energies of hydrogenolysis reactions 15, 16, and 18 are more exothermic in aqueous

phase than in vacuum. To investigate the influence of water on the calculated activation barriers,

Figure 4.2 plots the activation energies for the three types of reactions in both vacuum and aqueous

phases. As shown in Figure 4.2a, the activation barriers for dehydrogenation reactions are for the

most part similar in aqueous and vacuum phases. The activation barriers in the aqueous phase for

decarbonylation reactions are larger than those under vacuum, with the exception of the activation

barrier for Reaction 13 (CO-COH-COH* + * → COH-COH* + CO*), suggesting that there is a

kinetic penalty for removing a carbonyl group from a C3HyO3 catalytic intermediate under aqueous

phase until a certain degree of dehydrogenation has occurred. Similarly, there is a kinetic penalty for

removing a hydroxyl group from a C3 catalytic species under aqueous phase until a certain degree

of dehydrogenation has occurred.

TSS relationships derived for non-water-mediated dehydrogenation, decarbonylation, and

hydrogenation steps under vacuum and aqueous phases are shown in Figure 4.3. Comparing the

TSS relationships derived for vacuum phase to those derived for aqueous phase, the dehydrogena-

tion trends are only minorly different, whereas the decarbonylation and hydrogenolysis trends are
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Figure 4.2: Comparison of activation energies calculated in vacuum (gray) and aqueous phases
(white) for the non-water-mediated dehydrogenation (a), decarbonylation (b), and hydrogenolysis
steps (c) calculated in this work. Bar labels are the transition states species with the species that
is being removed in parentheses. Error bars denote the standard deviations of the average energies
(caused by configurational fluctuations of the liquid H2O molecules).
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Table 4.1: Reaction energies (Erxn) and activation energies (Eact) of non-water-mediated dehydro-
genation (1 - 7), decarbonylation (8 - 13), and hydrogenolysis steps (14 - 18) under vacuum (vac)
and aqueous phases (aq). Reaction numbers of the analogous water-mediated reactions are given in
parentheses where applicable, the results for which are given in Table 4.2. All values are in unit of
eV.
Number Reaction Evac

rxn Eaq
rxn Evac

act Eaq
act

1 CH2OH-CHOH-CH2OH* + * → CH2OH-COH-CH2OH* + H* -0.45 -0.44±0.10 0.36 0.30±0.10
2 (19) CH2OH-COH-CH2OH* +* → CHOH-COH-CH2OH* + H* -0.35 -0.39±0.14 0.60 0.48±0.11
3 (20) CHOH-COH-CH2OH* + * → CHOH-COH-CHOH* + H* -0.08 -0.10±0.10 1.01 1.09±0.10
4 (21) CHOH-COH-CHOH* + * → COH-COH-CHOH* + H* -0.19 -0.11±0.11 0.38 0.35±0.14
5 (22) COH-COH-CHOH* + * → COH-COH-COH* + H* -0.33 -0.38±0.12 0.47 0.45±0.14
6 (23) COH-COH-COH* + * → CO-COH-COH* + H* 0.20 0.24±0.10 0.40 0.38±0.12
7 (24) CO-COH-COH* + * → CO-COH-CO* + H* 0.26 0.26±0.09 0.67 0.66±0.08

8 CO-CHOH-CH2OH* + * → CHOH-CH2OH*+ CO* -0.94 -0.52±0.17 1.08 0.90±0.18
9 CO-COH-CH2OH* + * → COH-CH2OH* + CO* -0.61 -0.34±0.16 0.30 0.43±0.10
10 CO-CHOH-CHOH* + * → CHOH-CHOH* + CO* -1.17 -1.03±0.14 0.56 0.60±0.14
11 CO-COH-CHOH* + * → COH-CHOH* + CO* -0.61 -0.55±0.10 0.46 0.72±0.12
12 CO-CHOH-COH* + * → CHOH-COH* + CO* -0.34 0.15±0.12 0.37 0.70±0.15
13 CO-COH-COH* + * → COH-COH* + CO* -0.96 -0.81±0.13 0.14 0.01±0.16

14 (25) COH-CHOH-CH2OH* + * → C-CHOH-CH2OH* + OH* 0.30 0.37±0.10 0.96 1.12±0.12
15 (26) CHOH-COH-CHOH* + * → CHOH-C-CHOH* + OH* 0.68 0.49±0.14 1.55 1.65±0.18
16 (27) COH-COH-CHOH* + * → C-COH-CHOH* + OH* 0.40 0.20±0.13 1.05 0.94±0.12
17 (28) COH-CO-CH2OH* + * → C-CO-CH2OH* + OH* 0.72 0.81±0.11 0.93 0.99±0.16
18 (29) COH-COH-COH* + * → C-COH-COH* + OH* 2.53 2.07±0.15 2.92 2.43±0.13

significantly different. This means that the Eint for the transition states involved in dehydrogena-

tion reactions are similar to the Eint of the product species, whereas the Eint for the transition

states involved in decarbonylation and hydrogenolysis reactions are different than the Eint of the

product species for those reactions. Thus, water interacts with the reactants, transition states, and

products involved in dehydrogenation of C3 species similarly, whereas water interacts with the reac-

tants, transition states, and products involved in decarbonylation and hydrogenolysis of C3 species

differently. Specifically, the water environment stabilizes the reactants and transition states of the

decarbonylation reactions more so than the products, and the water environment stabilizes reactant

and product species of hydrogenolysis reactions more so than the transition states.

4.4.2 Role of H2O on the Mechanisms of Reactions Involving C3HyO3

Species

Mechanistically, H2O molecules can mediate catalytic dehydrogenation reactions, forming

H2n+1On complexes at either the transition state or as the product [65–73], and H2n+1On complexes

can act as reactants in hydrogenolysis steps [74]. We calculated the energetics of 15 such water-

mediated reactions, and they are presented in Table 4.2. The reaction energies for the water-
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Figure 4.3: Regression training data (points) and linear TSS relationships (lines) for non-water-
mediated dehydrogenation (a), decarbonylation (b), and hydrogenolysis steps (c) calculated under
vacuum (solid lines and unfilled points) and aqueous phases (dotted lines and filled points). MAE
stands for mean absolute error. Units on all values are eV.
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Table 4.2: Reaction energies (Erxn) and activation energies (Eact) of water-mediated dehydrogena-
tion (19 - 25) and hydrogenolysis steps (25 - 29). Reaction energetics were calculated using one
and/or two water molecules in the reactants. Numbers in parentheses are for the non-mediated
analogues from Table 1. All values are in units of eV

Number Reaction Erxn Eact
19 (2) CH2OH-COH-CH2OH* + H2O* → CHOH-COH-CH2OH* + H3O* 0.25 1.42
19 (2) CH2OH-COH-CH2OH* + 2H2O* → CHOH-COH-CH2OH* + H5O2* + * 0.26 1.18
20 (3) CHOH-COH-CH2OH* + H2O* → CHOH-COH-CHOH* + H3O* 0.27 1.67
20 (3) CHOH-COH-CH2OH* + 2H2O* → CHOH-COH-CHOH* + H5O2* + * 0.26 1.75
21 (4) CHOH-COH-CHOH* + H2O* → COH-COH-CHOH* + H3O* 0.29 1.14
21 (4) CHOH-COH-CHOH* + 2H2O* → COH-COH-CHOH* + H5O2* + * 0.37 1.20
22 (5) COH-COH-CHOH* + H2O* → COH-COH-COH* + H3O* 0.07 0.87
22 (5) COH-COH-CHOH* + 2H2O* → COH-COH-COH* + H5O2* + * -0.15 0.57
23 (6) COH-COH-COH* + 2H2O* → CO-COH-COH* + H5O2* + * -0.39 0.01
24 (7) CO-COH-COH* + 2H2O* → CO-COH-CO* + H5O2* + * -0.19 0.02
25 (14) COH-CHOH-CH2OH* + H3O* + * → C-CHOH-CH2OH* + 2H2O* 0.30 0.23
26 (15) CHOH-COH-CHOH* + H3O* + * → CHOH-C-CHOH* + 2H2O* 0.62 0.64
27 (16) COH-COH-CHOH* + H3O* + * → C-COH-CHOH* + 2H2O* 0.38 0.31
28 (17) COH-CO-CH2OH* + H3O* + * → C-CO-CH2OH* + 2H2O* 0.70 0.28
29 (18) COH-COH-COH* + H3O* + * → C-COH-COH* + 2H2O* 2.03 1.51

mediated C-H dehydrogenation steps are in general more endothermic than their non-water-mediated

analogues, whereas the reaction energies for water-mediated O-H dehydrogenation steps are more

exothermic than their non-water-mediated analogues, going from being endothermic to exothermic

in both cases that we explicitly calculated (Reactions 23 and 24, i.e., COH-COH-COH* + H2O* →

CO-COH-COH* + H3O* and CO-COH-COH* + H2O* → CO-COH-CO* + H3O*). The reaction

energies for water-mediated hydrogenolysis steps are for the most part similar to their non-water-

mediated analogues, with the exception of Reaction 27 (COH-COH-CHOH* + H2O* → C-COH-

CHOH* + H3O*), which is 0.18 eV more exothermic.

Activation energies for water-mediated versus non-water-mediated reactions are shown in

Figure 4.4. The activation energies for the water-mediated C–H scissions are all larger than their

non-water-mediated analogues. In fact, with the exception of Reaction 22, the activation barriers

for the water-mediated C-H scissions are all greater than 1 eV. The barrier for Reaction 22, i.e.,

COH–COH–CHOH* reacting to COH–COH–COH*, is 0.57 eV, compared to 0.45 eV for its non-

water-mediated analogue. The barriers for water-mediated O-H scissions (Reactions 23 and 24)

are essentially equal to 0, which is lower than their non-water-mediated analogues. Barriers ≈ 0

are expected for proton transfer reactions in liquid H2O [75]. The activation energies for water-

mediated hydrogenolysis reactions are lower than their non-mediated analogues, suggesting that

hydrogenolysis steps could occur via water mediated routes, if sufficient concentration of H2n+1On
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Figure 4.4: Comparison for activation energies for non-water-mediated (gray bars) reactions to their
water-mediated (white and hashed bars) analogues. White bars indicate participation of 1 H2O
molecule, and hashed bars indicate participation of 2 H2O molecules. Sets of bars are labeled by
their reaction numbers. The first row of numbers are the reaction numbers for the water-mediated
reactions (from Table 4.2), and the second row of numbers are the reaction numbers for their non-
water-mediated analogues (from Table 4.1).

species is available.

4.4.3 Microkinetic Modeling Results

The reaction energetics calculated in this work, along with the TSS relationships that were

derived, as well as reaction energetics available in the literature [18–21] allow for microkinetic mod-

eling of catalytic glycerol reforming. We ran microkinetic models under both vacuum and aqueous

phases. In vacuum phase, the initial water concentration was set to 0, so the water-gas shift reaction

did not occur. Hence, the main products were H2 and CO. In aqueous phase, the water supplied

OH* to the surface, which reacted with CO* through water-gas shift steps [21]. The primary prod-

ucts in the aqueous phase model were H2, CO2, and CH2OH–CH2OH (ethylene glycol). Assuming

the gas phase products are H2 and CO2, the mole fraction of H2 in the gas phase was 65.6%, which

agrees well with the experimental value of 64.8% observed by Cortright et al. [76]. Further, the

selectivity to H2 was 89.1%, compared to the experimental value of 85.0% reported by Davda et al.

[77]. 32.8% of the carbon was converted to CO2, in agreement with the experimentally observed

value of 29.7% reported by Cortright et al. [76]. Reactions that contributed to the observed phe-

nomena in both models along with their net rates are tabulated in Supporting Information Section

8. Under vacuum, glycerol decomposition proceeds through dehydrogenation steps until reaching

the CO–COH–COH* intermediate, which then proceeds through a decarbonylation step to form
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COH–COH*. This intermediate is then further dehydrogenated to CO–CO*, which is finally de-

composed into 2 CO*. The pathway in aqueous phase is similar, with dehydrogenation occurring

until reaching the CO–COH–COH* intermediate. However, water-mediated reactions become com-

petitive with non-water-mediated reactions for both O–H and C–H scissions. Specifically, the rates

of water-mediated COH–COH–CHOH* dehydrogenation to COH–COH–COH*, COH–COH–COH*

dehydrogenation to CO–COH–COH*, and CO–COH–COH* dehydrogenation to CO–COH–CO* re-

actions are competitive with their non-water-mediate analogues. The CO–COH–COH* intermediate

that is formed from water-mediated COH–COH–COH* dehydrogenation is decarbonylated to COH–

COH*, which is dehydrogenated to CO–CO* and then decomposed to 2 CO*, like under vacuum.

Similarly, the CO–COH–CO* that is formed from water-mediated CO–COH–COH* dehydrogena-

tion is dehydrogenated to CO–CO–CO* and then decomposed into 3 CO*. In both microkinetic

models, carbon atoms must be significantly dehydrogenated before the rates of O–H scissions start

to become appreciable. Hydrogenolysis steps do not participate in the dominant reaction pathways

for either the vacuum or aqueous-phase models. However, we note that our microkinetic model of

the aqueous phase reforming of glycerol was carried out at neutral pH, which resulted in insufficient

concentration of H2n+1On species to carry out water-mediated hydrogenolysis to any remarkable

degree, despite that the rate constants for these reactions are larger than the non-water-mediated

analogues.

4.5 Discussion

From the results of the last section, H2O plays at least four roles in the aqueous phase

reforming of glycerol. One, H2O molecules dissociate on the catalyst surface, supplying the OH*

and H* that are needed to promote oxidation of CO* and production of H2. Two, H2O molecules

promote C–H scission. We find that the activation barrier for water-mediated COH–COH–CHOH*

dehydrogenation to COH–COH–COH* is within 0.12 eV (although still higher) of its non-water-

mediated analogue. The reaction energy of the water-mediated reaction is less exothermic than its

non-water-mediated analogue by more than 0.2 eV; however, owing to the large concentration of

H2O, the rate of the water-mediated COH–COH–CHOH* dehydrogenation to COH–COH–COH*

is competitive with its non-water-mediated analogue. Three, water molecules mediate O–H scis-

sion. The activation barriers of H2O-mediated O–H scissions are ≈ 0 and their reaction energies
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are exothermic. Thus the rates of water-mediated O-H scissions are higher than their non-water-

mediated analogues, by up to five orders of magnitude. Four, water inhibits the thermodynamics

of catalytic decarbonylation. Specifically, in both microkinetic models, decarbonylation occurs at at

the CO-COH-COH* species. The activation energy for the decarbonylation step to COH–COH* is

quite low in both vacuum and aqueous phases (0.14 eV in vacuum versus 0.01 eV in aqueous phase);

however, the reaction energy is 0.17 eV more endothermic in aqueous phase than it is in vacuum.

This is due to the loss of hydrophillicity that occurs over the course of the reaction. Specifically, Eint

for CO–COH–COH* is more negative than for the combination of COH–COH* and CO* (with Eint

for CO* being essentially equal to zero [56]). In fact, comparing the reaction energies in vacuum

versus aqueous phase for all of the decarbonylation reactions calculated in this work, there is always

an energy penalty associated, ranging from 0.06 eV (CO–COH–CHOH* → COH–CHOH*) to 0.49

eV (CO–CHOH–COH* → CHOH–COH*).

4.6 Conclusions

In this work, we have used DFT calculations, MD simulations, linear scaling relationships,

transition state scaling relationships, and data from the literature to construct microkinetic models

of catalytic glycerol reforming under vacuum and aqueous phases. We have specifically calculated

steps in the pathways for dehydrogenation, decarbonlyation, and hydrogenolysis of C3 species, and

we have included steps where H2O molecules and H2(n+1)On species explicitly participate in the

reactions. Results from our microkinetic models identified four roles of water on the catalytic mech-

anism of aqueous phase reforming of glycerol: supplying OH* needed in water-gas shift to oxidize

CO*, promoting C-H scissions, promoting O-H scissions, and thermodynamically inhibiting decar-

bonylation of C3 species. Our results also suggest that protons in solution could mediate catalytic

hydrogenolysis reactions if the reaction were run under sufficient pH. (In practice, hydrogenolysis

reactions are likely promoted by acid sites on the catalyst or its support [78].) In this manuscript,

we have attempted to present only the “big-picture" conclusions. This is because, even with the

inclusion of an explicit liquid water environment and an extensive network of catalytic reactions,

limitations in our models prevent us from providing a comprehensive mechanism of glycerol APR.

For example, methods to properly model adsorption and desorption at a liquid water/catalyst inter-

face and models that properly incorporate the participation of interfacial sites are needed to more
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fully understand the mechanism of glycerol APR. We are presently working on addressing both

issues.
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Chapter 5

Computational Modeling of Methanol

Decomposition on Pt Catalyst

Supported by Alumina

5.1 Abstract

In this chapter, a more advanced catalyst model than pure Pt metal is introduced as the

active Pt catalyst component is modeled as a tetrahedral Pt4 cluster, and it is supported on a γ

alumina surface. This surface is constructed in a way in order to simulate a more realistic surface

rather than the model that only captures the properties of pure Pt metal. Most importantly, the

model is more representative for edge sites and sites at the metal support interface. By doing so, roles

of alumina support in methanol decomposition can be examined. This advanced model is capable

of simulating the type of binding site formed by under-coordinated metal atoms at the Pt/support

interface, which is named as “edge” site. Results show distinctive thermodynamics phenomena of

reactions and reaction intermediates on the edge sites with respect to the “terrace” sites. Studying

those phenomena can shed light upon how to investigate and determine the most thermodynamically

favored reaction pathway and most stable binding, i.e. it gives information of how likely a species is

to stay on one type of the binding sites, or it is susceptible to diffuse onto a different type of binding

site. The reaction pathways, that cover all chemical species in methanol decomposition reaction
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network, which is based on reaction thermodynamics are presented. Reaction pathways on Pt(1 1

1) terrace model and the supported Pt4/Al2O3 are included and compared. Results pertaining to

vibrational IR spectra are also presented and put in comparison with our collaborator’s experimental

outcome. Our calculated results can agree with previous published findings and conclusions by our

collaborator.

5.2 Introduction

In order to devise better catalysts for reactions related to aqueous phase reforming of sugars

and polyols, we use computational methods to model current working catalyst systems. Methanol is

chosen as the starting model compound. Despite methanol molecule is a small and simple molecule,

its significant in the industry for example from syngas applications, it is important to have good un-

derstandings of the mechanism on the the currently working catalysts and related surface reactions.

Unfortunately, the complexity of surface reactions, along with the number of possible intermediates

and competitive branches of reaction pathways, has limited the amount of mechanistic insight that

can be obtained [1]. On Pt, for example, several researchers suggested that a direct reaction path

of methanol oxidation is possible [2–6]. However, if the catalyst composition changes, the reaction

mechanism can differ drastically, with limited mechanistic information available [3]. One compli-

cation is simply understanding the natures of the catalytically active sites. For example, in APR

carried out on supported catalysts, questions still remain unanswered as whether certain reactions

prefer proceeding on sites on the metal catalyst components (terrace) or sites at the metal/support

interface (edge). Previous study showed that the rate of CO formation from dehydrogenation of glyc-

erol is limited by the lack of available Pt active sites and COB (bridge bound to Pt) is preferentially

more active over COL (linear bound to Pt) in water–gas shift at room temperature [7].

In this chapter, we present results of computational studies aimed at learning the active sites

for reaction steps in the dehydrogenation of methanol over alumina-supported platinum catalysts.

Specifically, we calculated relative energies of intermediates in the methanol dehydrogenation path-

way on Pt(1 1 1) “terrace site” models and Pt4/Al2O3 “edge site” models(sites illustrated in Figure

5.1), in order to provide insight of which sites different species along the methanol dehydrogenation

pathway prefer. Further, we compute infrared vibrational spectra for different intermediates and

compare them with our experimental collaborator’s results. We find our techniques can reproduce
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Figure 5.1: Illustration of two types of available catalyst sites available on a supported Pt catalyst
particle, terrace and edge (kink) sites near the interface of Pt and Al2O3 [8]. Silver: Al, Red: O,
White: Pt. Courtesy of Dr. Steven Pellizzeri, Department of Chemistry and Biochemistry, Eastern
Illinois University.

signature peaks and help interpret the experimental spectra data well. On top of that, our calculated

energies can reveal reactions thermodynamics and arrive at useful understandings, such as preferred

binding on certain active sites, preferred reaction pathways, and dominant species.

5.3 Methods

5.3.1 Simulation Supercell

In this section, the catalyst model was constructed by loading Pt particles on a γ-Al2O3

surface. This model is intended to simulate realistic catalyst systems that have been studied experi-

mentally [9, 10]. Including the support is a key step towards more realistic catalyst system modeling

because it not only addresses the active component (here Pt particles) but also takes the support

which is commonly hard to model and ignored into consideration. Studies based on this model

can now yield insights of the support effects, which can include stabilization in adsorption from

dispersion effects and participation of Lewis acid sites [11]. Additionally, this supported catalyst

model can help elucidate initial steps of reactions which are suggested occur on edge sites instead of

directly on Pt terrace sites [8]. The γ-Al2O3 surface was created by cleaving from the structure of
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bulk Al2O3, which was taken from the literature [12, 13]. Specifically, we created a 2×2×2 cell with

the (1 0 0) facet exposed of γ -Al2O3. The monoclinic surface has the planar lattice parameters a =

b = 10.325 Åand an angle of 55.3 ◦. On the topmost layer of the γ-Al2O3 surface, a tetrahedral-like

Pt4 island was stabilized, the bond distance of Pt-Pt is 2.85 Å. The top view of the model can be

view at Fig. 5.2. This Pt4 cluster choice was made based on information from the literature, which

indicates that a Pt4 cluster is large enough to avoid significant influence from small size effects.

Previously, Chao et al. evaluated Pt islands of size up to 13, reported flat lying bi-planar clusters

with strong interaction energies are stabilized on the dehydrated (1 0 0) surface [14]. Cheng et al.

investigated electron density of Pt clusters of size from Pt1-Pt12 on the Al2O3 support and found

that the clusters can be stably anchored on the surface at the oxygen sites [15]. Majumder et al.

investigated reactions in the oxygen reduction reaction on alumina supported Pt clusters with sizes

ranging from Pt1 to Pt10. Results indicated that there is limited difference in reaction enthalpies

between a Pt4 cluster and a Pt10 cluster [16]. Further, Christophe et al. investigated electronic

electronic properties of small nanometer-sized Ptn clusters (n ≤ 13). Results showed that partial

charges of the Pt atoms stabilize after Pt reaches a size of 4 [17], further suggesting that a size of

4 is sufficient to avoid small size effects. Combining these conclusions and the consideration of the

computational expense, the Pt4 metal cluster model is chosen in this thesis. This is in line with our

goal that is to create a sufficiently realistic model to reflect our experimental collaborator’s catalyst

and to simulate methanol decomposition on various active sites with reasonable chemical accuracy

and computational expense.
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Figure 5.2: Top view of γ-Al2O3 supported Pt4 catalyst model (unit cell). Light grey circles denote
Pt atoms in the Pt4 cluster. Information about a, b, and γ and inter-Pt distance is labeled in the
graph. Color key: Grey: Pt, Red: O, Light brown: Al.

5.3.2 Energy Calculation

5.3.2.1 Binding Energy Calculation

The binding energy ∆Eb, is an energy of interest that describes the binding strength of a

certain adsorbate, defined in Eqn. 5.1

∆Eb(CHxO) = E(CHxO∗)− E(∗)−
(
Eg(CH3OH)− 4− x

4
Eg(H2)

)
(5.1)

Where the energy terms on the right hand side of the equation refer to the electronic energies of

the system containing the adsorbate, the clean catalyst model, and the gas phase energy of the

adsorbate before adsorption. Note that binding energies are defined with respect to CH3OH (g)

and H22(g).ThegasphaseenergyEg(CHxO) is calculated by relating the electronic energy referring

to the full gas molecule [18, 19]. For example,

Eg(CHxO) = Eg(CH3OH)− 4− x
4

Eg(H2) (5.2)

Where the Eg(CH3OH) and Eg(H2) terms on the right hand side are the electronic energies of the

the gas CH3OH molecule and of the gas H2 molecule.
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5.3.2.2 Diffusion Energy Calculation

Diffusion of adsorbates is an important phenomena that needs attention. Our advanced

model enables the investigation relative binding strengths in an attempt to learn whether diffusion

between terrace sites and edge could be important. Energetics of these two types of sites shall

be considered dynamically, that is to say, besides seeking for the lowest energy wells exist in the

potential energy in terms of the binding energy ∆Eb, the diffusion heat shall also play a role in

determining whether a species is stable on the surface, or on a particular type of binding site. In

our diffusable model, reaction intermediates are allowed to diffuse between edge sites and terrace

sites. Take adsorbate CO* as an example, the chemical equation that describes CO diffuses from the

terrace site to the edge site can be written as in Eqn. 5.3 and the diffusion heat of this process can

be defined as in Eqn. 5.4. Upon this consideration, the most stable binding will be chosen on the

binding site that exhibits the most exothermicity, meanwhile counting the diffusion heat towards or

against the binding energy.

CO ∗terrace +∗edge → CO ∗edge +∗terrace (5.3)

In which CO*terrace and CO*edge correspond to CO adsorbate on terrace site of Pt(1 1 1) surface

and CO adsorbate on edge site of Pt4/Al2O3 surface, respectively. And *terrace and *edge correspond

to unoccupied terrace site of Pt(1 1 1) and unoccupied edge site of Pt4/Al2O3 surface, respectively.

E(CO∗terrace→edge) = E(CO∗edge)− E(CO∗terrace) + E(∗terrace)− E(∗edge) (5.4)

Which the diffusion heat of CO adsorbate diffuses from a terrace site to an edge site E(CO∗terrace→edge)

is calculated based on the total electronic energy of CO adsorbate and the Pt(1 1 1) surface

E(CO∗edge), the total electronic energy of CO adsorbate and the Pt4/Al2O3 surface E(CO∗terrace),

the electronic energy of clean Pt(1 1 1) surface E(∗terrace), and the electronic energy of clean

Pt4/Al2O3 surface E(∗edge). Note that current analyses are based off thermodynamics.
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5.3.2.3 Reaction Energy Calculation

Energies of all catalytic species of methanol dehydrogenation were calculated using DFT,

as discussed in Chapter 2. Reaction energies were calculated via Eq.(5.5) below,

∆Erxn = E(product*)− E(reactant*) (5.5)

Since the studied species undergo dehydrogenation reactions, the reaction energy can be written as,

∆Erxn = E(CHx−1O*) + E(H*)− E(CHxO*) (5.6)

Where the x (ranging from 0-4) denotes the remaining hydrogen in the product CHx−1O and reactant

CHxO, and the energies in the right hand side of equation denote the electronic energy of the system

containing the product, adsorbed hydrogen atom, and reactant, respectively. The calculation of the

reaction energy is carried out in a fashion which isolates the adsorbates in their separate unit cells,

as in other similar studies [16, 18, 20–34].

Note that the geometries of all the reaction intermediates are created under vacuum and

optimized to their local minima. The configurations shown later in this chapter are the most favorable

geometries on the surface based on the total electronic energy of system and their binding energies.

The geometries on Pt(1 1 1) terrace sites are examined and found to be in consistency with existing

literature [18, 31]. The the most favorable geometry on the Pt4/Al2O3 surface are examined with

electronic structure convergence and vibrational frequencies studies, that ensures that the found

geometries are stable and at their corresponding local minima.

5.3.2.4 Infrared Frequencies Calculation

Infrared (IR) frequencies of all converged structures from DFT can be estimated by a nu-

merical method of calculating the gradient of the dipole moment of atoms in all six spatial degrees

of freedom, i.e., the +x, -x, +y, -y, +z, and -z directions, using a step size of 0.01 Å. The vibrational

modes and IR frequencies are calculated from the dynamical matrix [35–45]. All finite-difference

based frequency calculations are performed in VASP using the the Atomic Simulation Environment

(ASE) interface [46]. Precision is set to be accurate. Energy cutoff is set as 400 eV. The electronic

convergence and force convergence are consistent with the criteria discussed in Chapter 2. Note
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that this method shares the same principle that VASP originally offers which is commonly used to

obtain vibrational modes [47–50] and also has the added functionality of including intensities which

are calculated by calculating eigenfrequencies and eigenvectors of the Hamiltonian. This is also

frequently done in regular VASP routines. Detailed mathematical implementation can be found at

https://gitlab.com/ase/ase/blob/master/ase/vibrations/infrared.py. The ASE python interface is

responsible for generating the workflow and communicating with VASP to generate a series of DFT

calculations that iterate over all the chosen atoms and perturb them in finite displacement in all

degrees of freedom and then run single point calculations on all images containing perturbed atom

positions until electronic convergence. Details about how to carry out such calculation are described

in Appendix D.

5.4 Results

5.4.1 Structures and Binding Energies of Reaction Intermediates

Chemical species CH3OH*, CH2OH*, CHOH*, COH*, CH3O*, CH2O*, CHO*, CO* are

chosen for this study since they are all possible species that complete the methanol dehydrogenation

network [28, 31]. The adsorbates marked with asterisk sign indicate that the chemical species are

in their adsorbed states to the catalyst surface, e.g. CH3OH* refers to the CH3OH and catalytic

site complex. Computed and optimized structures with the lowest total electronic energy for each

intermediate of these adsorbates on the terrace Pt(1 1 1) catalyst surface and on Pt4/Al2O3 edge

surface are presented in Figure 5.3 and Figure 5.4, respectively. For clarity, views are zoomed in for

viewing adsorbates structures.

We noticed that almost all the -OH containing adsorbates (except for CH3OH), when ad-

sorbed on edge sites, their most stable configurations prefer orientations that are nearly parallel to

the surface. While C-O/C=O containing adsorbates (except for CHO), their most stable config-

urations prefer binding through O to Al atom of the alumina support, forming an angle between

the C-O/C=O bond to the surface. These binding patterns are different than the ones we observed

for terrace sites bound intermediates, that most of them (except for CH2O) form ‘angular’ binding

configurations, either through C or O atoms.
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(a) Top view of CH3OH* (b) Top view of CH2OH*

(c) Top view of CHOH* (d) Top view of COH*

(e) Top view of CH3O* (f) Top view of CH2O*

(g) Top view of CHO* (h) Top view of CO*

Figure 5.3: Visualization of CH3OH*, CH2OH*, CHOH*, COH*, CH3O*, CH2O*, CHO*, CO* on
Pt(1 1 1) terrace sites. Color key: Grey: Pt, Red: O, Dark grey: C, White: H.
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(a) Front view of CH3OH* (b) Front view of CH2OH*

(c) Front view of CHOH* (d) Front view of COH*

(e) Front view of CH3O* (f) Front view of CH2O*

(g) Front view of CHO* (h) Front view of CO*

Figure 5.4: Visualization of CH3OH*, CH2OH*, CHOH*, COH*, CH3O*, CH2O*, CHO*, CO* on
Pt4/Al2O3 edge sites. Color key: Grey: Pt, Red: O, Light brown: Al, Dark grey: C, White: H.
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Table 5.1: Binding energies for terrace and edge sites and calculated diffusion heat from terrace sites
to edge sites. Energy unit in eV (1 eV = 96.485 kJ/mol). Note: Binding energies of CH2O and CO
in parentheses are the energies using CH2O(gas) CO(gas) as their reference species.

Chemical Species Name
Binding Energy

(Terrace)

Binding Energy

(Edge)
Diffusion Heat(terrace→edge)

CH3OH -0.72 -0.48 0.24

CH2OH -0.58 -0.19 0.39

CHOH -0.34 0.27 0.61

COH -0.39 0.35 0.74

CH3O 0.25 -0.37 -0.62

CH2O 0.29 (-1.14) 0.27 (-1.10) -0.02

CHO 0.11 -0.69 -0.80

CO -0.26 (-2.24) -0.46 (-2.40) -0.20

5.4.2 Calculated Energies

5.4.2.1 Binding Energies

DFT calculated binding energies of all possible dehydrogenated species of methanol decom-

position on both terrace Pt(1 1 1) sites and on Pt4/Al2O3 edge are listed in Table 5.1. It lists

the binding energy of intermediates on terrace sites and edge sites, and the third column lists the

calculated diffusion heat of each stable intermediate diffusing from terrace sites onto edge sites. If

the diffusion direction is reversed, i.e. from edge sites to terrace sites, the signs of the diffusion

heat are reversed correspondingly. This reported quantity measures the driving force of diffusion

from the point view in thermodynamics. By including the diffusion heat into the binding energy,

we can observe the preferable binding sites of all adsorbates. For CO and CH2O, since they are

saturated, we are able to calculate their binding energies that refer to their own gas phase energies,

which are tabulated in the table with parentheses. More information of different binding modes of

CO can be found in Appendix C. We found CH2O exhibit the diffusion heat of a magnitude of 0.02

eV, implying it has no significant thermodynamic preference in binding on edge and terrace sites.

Species containing OH groups, i.e. CH3OH, CH2OH, CHOH, and COH prefer binding on terrace
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sites since all the diffusion heat to edge sites is endothermic. This is also suggested in the reaction

pathways in Figure 5.5, that terrace sites of Pt(1 1 1) preferentially catalyze C-H bond breaking

[3, 22, 28, 51, 52]. Species containing ether/carbonyl groups, i.e. CH3O, CH2O, CHO, and CO

prefer binding on edge sites since all the diffusion heat to terrace sites is endothermic. This is also

suggested in the reaction pathways in Figure 5.6, that edges sites of Pt4/Al2O3 initially catalyze

O-H bond breaking and stabilizes methoxy and its dehydrogenated derivatives.

5.4.2.2 Reaction Energies

DFT calculated reaction energies of elementary dehydrogenation reactions of methanol de-

composition on both terrace Pt(1 1 1) sites and on Pt4/Al2O3 edge sites with the diffusion heat

of the final product are listed in Table 5.2. The 2nd column of the data, which corresponds to

the reaction energies on terrace sites, shows a general trend that on terrace sites, dehydrogena-

tion on alkyl hydrogen initially is more favorable than dehydrogenation on hydroxyl hydrogen:

CH3OH* + * → CH2OH* + H* having -0.48 eV of reaction heat vs CH3OH* + * → CH3O* + H*

having 1.12 eV of reaction heat. The subsequent dehydrogenation on alkyl hydrogen also shows

favorable reaction thermodynamics. Same favorableness is found for derivatives of methoxy, al-

though the methoxy group is unlikely to form at first place due to very endothermic reaction en-

ergy on terrace sites. The 3rd column includes the reaction energies on edge sites, shows that the

initial dehydrogenation over the oxygen atom becomes facilitated. That is to say, the inhibited

CH3OH* + * → CH3O* + H* reaction on terrace site becomes just slightly endothermic, the re-

action energy goes down from 1.12 eV on the terrace site to 0.15 eV on the edge site. In fact,

this reaction energy is less than half of the energy of the competing reaction that dehydrogenates

alkyl hydrogen on the edge site, CH3OH* + * → CH2OH* + H*, which shows 0.32 eV. Upon the

consideration of reaction energies in the table, steps of

• CH3OH + * → CH3OH* favors reaction on a terrace site,

• CH2OH* + * → CHOH* + H* favors reaction on a terrace site,

• CH2OH* + * → CHOH* + H* favors reaction on a terrace site,

• CHOH* + * → COH* + H* favors reaction on a terrace site,

• COH* + * → CO* + H* favors reaction on an edge site,
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• CH3OH* + * → CH3O* + H* favors reaction on an edge site,

• CH3O* + * → CH2O* + H* favors reaction on a terrace site,

• CH2O* + * → CHO* + H* favors reaction on a terrace site,

• CHO* + * → CO* + H* favors reaction on an edge site,

• CH2OH* + * → CH2O* + H* favors reaction on a terrace site,

• CHOH* + * → CHO* + H* favors favors reaction on an edge site.

A general observation can be made that dehydrogenation of –CH are favored on terrace sites

and dehydrogenation of –OH can be initiated on edge sites.

Table 5.2: Reaction energy for elementary dehydrogenation reactions of methanol decomposition on
terraces sites on Pt(1 1 1) surface and edges sites on Pt4/γ -Al2O3 surface. Energy unit in eV (1 eV
= 96.485 kJ/mol).

Reaction Erxn
terrace sites

Erxn
edge sites

CH3OH + * → CH3OH* -0.53 -0.41

CH3OH* + * → CH2OH* + H* -0.48 0.32

CH2OH* + * → CHOH* + H* -0.39 0.53

CHOH* + * → COH* + H* -0.65 1.98

COH* + * → CO* + H* -0.51 -2.57

CH3OH* + * → CH3O* + H* 1.12 0.15

CH3O* + * → CH2O* + H* -0.58 0.70

CH2O* + * → CHO* + H* -0.73 1.41

CHO* + * → CO* + H* -1.08 -1.99

CH2OH* + * → CH2O* + H* 0.26 1.41

CHOH* + * → CHO* + H* -0.08 -2.57
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5.4.3 Identification of Reaction Pathways

By examining the listed reaction energies along different pathways in methanol decompo-

sition on on Pt(1 1 1) terrace sites and Pt4/Al2O3 edge sites. It is found that the initial steps

of dehydrogenation that occur on Pt(1 1 1) terrace sites are likely to be in the order of depleting

alkyl hydrogen atoms first, leaving the alcoholic function group -OH intact until the very last step

of dehydrogenation to CO. Consequently, the reaction route are likely to be CH3OH → CH2OH →

CHOH→ COH→ CO (as highlighted in bold arrows in Fig. 5.5). This finding is in good agreement

with existing literature [18, 31]. As a result, we expect CH3OH, CH2OH, CHOH, COH, CHO, and

CO species to be the present species on terrace sites.

On the other hand, the initial steps of dehydrogenation that occur on Pt4/Al2O3 edge sites

are likely to be in the order of depleting alcoholic function group -OH first, then starting depleting

alkyl hydrogen atoms. Consequently, the reaction route are likely to be CH3OH → CH3O (as

highlighted in bold arrows in Fig. 5.6). Unlike the preferred reaction route on terrace sites, this

reaction route is likely to end at CH3O due to the endothermic reaction energies for further steps.

As a result, we expect CH3O to be present on edge sites but not as dominant species compared to

CO and CHxOH derivatives.

We found that the reaction energies for the Pt4/Al2O3 edge sites provide a different energy

landscape than the one from the terrace sites. This result suggested that the edge site may play a

role in initial step and provided competency of dehydrogenation of O-H group instead Pt terrace

sites which are known for promoting C-H bond breaking [3, 22, 28, 51, 52]. Similarly, published

work addressed the importance of edge sites in oxygenation oxidation and reforming, for example,

it is suggested that the edge site may serve a crucial role in C-O bond activation according to

Wieckowski et al [51]. It was also suggested that edge sites of Pt/Al2O3 catalyst is preferentially

promoting decarbonylation reactions, by Sievers et al [53] and Tornquist et al [54]. Our results

show that as the reaction proceeds on the edge sites, further dehydrogenation along the preferred

pathway becomes significant endothermic after the first step, which indicates that the reaction may

seek alternative routes to proceed, that is to say, the most thermodynamically favorable reaction

pathway may very well not all occur on a standalone type of sites. In fact, after combining the point

view of reaction and diffusion, the last step of the thermodynamically favored reaction pathway of

terrace sites, can end with an extra diffusion step, which corresponding to an exothermic heat of
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CO diffusing from a terrace site to an edge site.

Figure 5.5: Schematic view of the reaction pathways of methanol dehydrogenation towards CO
on Pt(1 1 1) terrace sites. Arrows indicate the reaction proceeding direction. Arrows in bold are
preferred reactions in perspective of reaction energy (labeled, unit in eV). For clarity, top view of
each configuration of the adsorbate is attached next to the chemical name of the adsorbate. Color
key: Grey: Pt, Red: O, Dark grey: C, White: H.
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Figure 5.6: Schematic view of the reaction pathways of methanol dehydrogenation towards CO
on Pt4/Al2O3 edge sites. Arrows indicate the reaction proceeding direction. Arrows in bold are
preferred reactions in perspective of reaction energy (labeled, unit in eV). For clarity, top view and
front view of each configuration of the adsorbate are attached next to the chemical name of the
adsorbate. Color key: Grey: Pt, Red: O, Light brown: Al, Dark grey: C, White: H.

5.4.4 Experimental and Calculated Infrared Vibrational Frequencies

Dipole moment based IR frequencies are calculated in DFT for all possible intermediates

within the methanol decomposition reaction network. The set of spectra can be found in Figure

5.7. Each sub-figure represents the calculated IR spectra of a certain chemical species adsorbed on

a terrace site and on an edge site.

Figure 5.8 shows our experimental collaborator’s findings on IR spectra of the catalyst after

ramping the temperature from 50 C◦ to 450 C◦. At low temperatures, (50 C◦ to 250 C◦), methanol

did not undergo full decomposition, possibly due to insufficient kinetic energies to overcome reaction
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barriers. The broad shoulder in the 3500 - 3000 cm −1 that corresponds to O-H stretching and

strong peaks in 3000 - 2750 cm −1 that corresponds to C-H stretching also indicate the incompletion

of the methanol decomposition. C=O stretching peak at 2000 cm −1 was not well pronounced.

Whereas at high temperatures, (350 C◦ to 450 C◦), reaction can undergo thoroughly to arrive at

CO, by overcoming kinetic barriers. From the obtained spectroscopy, the O-H stretching shoulder

and C-H stretching peaks significantly decreased and the intensity of C=O stretching peak at 2000

cm −1 significantly increased. This indicates that after the temperature reached 350 Co and above,

methanol went though a more thorough decomposition than the ones at low temperatures. More

evidence comes from the peak near 2000 cm −1, which intensified with the increase of temperature,

as the major product CO is produced and accumulated on the surface. Combining the observation

from the computational and experimental spectra, we can hypothesize the following:

For simplicity all the binding sites are abbreviated in parenthesis following the chemical

names of the adsorbates, for example, CH3OH(edge) refers to CH3OH adsorbate on an edge site,

same for CH3OH(terrace) refers to CH3OH adsorbate on a terrace site.

• Peaks between 3000 cm −1 to 2700 cm −1 corresponding to C-H stretching, indicating C-H

containing species may exist on the catalyst surface. We found intermediates CH3O(edge),

CH2O(edge), CHO(edge), CH2OH(edge) and CHOH(edge), along with CH3O(terrace) can

have well pronounced peaks at this location therefore can be present at the catalyst surface.

• Peaks near 2000 cm −1 corresponding to C=O stretching, indicating C=O containing species

may exist on the catalyst surface. Our calculations predict that only CH3OH(edge) and

COL(terrace) can exhibit such peaks therefore they can be at presence on the surface.

• Peaks between 2000 cm −1 and 1700 cm −1 corresponding to C=O stretching. Calculated

frequencies show that all bridge binding COB, (i.e. hcp, fcc and bridge of terrace sites) they

all fall in this region. While the CO(edge) exhibits the peak near 1450 cm−1. This ether like

CO stretching peak is from the oxygen atom binding to an Al atom of the alumina support

thus behaves as saturated O.

• Peaks between 1300 cm −1 and 1000 cm −1 corresponding to C–O stretching. Our cal-

culated frequencies imply that adsorbates CH2OH(terrace), CHOH(terrace), COH(terrace),

CH2O(terrace), along with CH3O(edge), CH2O(edge) are the possible sources of the peaks.
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Assumptions about which chemical species are at presence on the surface are made based on

the information of the peaks of functional groups such as C-O, C=O, and C-H and their intensities

are made, and on the comparison between the experimental and computational spectra. It can be

deduced that, CH2OH, CHOH, COH and CO on terrace sites are likely to be dominant species on

terrace sites. On the other hand, CH3O and CO are likely to be dominant species on edge sites.

These assumptions can reflect the major peak locations on the experimental IR spectra. Moreover,

the peak slightly below 1500 cm−1, the source can be related to the ether peak from CO(edge)

species. The assumptions are well in line with the results in previous subsection that the alkyl

dehydrogenation preferentially occur on terrace sites and dehydrogenation involving methoxy and

its derivatives preferentially occur on edge sites.
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(a) Calculated Infrared Spectra of CH3OH

(b) Calculated Infrared Spectra of CH2OH
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(c) Calculated Infrared Spectra of CHOH

(d) Calculated Infrared Spectra of COH
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(e) Calculated Infrared Spectra of CH3O

(f) Calculated Infrared Spectra of CH2O
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(g) Calculated Infrared Spectra of CHO

(h) Calculated Infrared Spectra of CO

Figure 5.7: Calculated IR spectra of all possible species of methanol dehydrogenation on terrace and
edge sites
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Figure 5.8: Experimental IR spectra of MeOH on 1% Pt/Al2O3 (reduced at 500 Co) at different
temperatures.
Courtesy of Bryan Hare and Dr. Carsten Sievers, School of Chemical and Biomolecular Engineering,
Georgia Institute of Technology.

5.5 Discussion

Our studies of methanol dehydrogenation on an advanced catalyst model along with a tradi-

tional catalyst model, allow us to reflect terrace sites and edge sites that can exist in real catalyst of

Pt/Al2O3, and to investigate thermodynamics that can be used to shed light upon preferred binding

sites, dominant surface species, and preferred reaction pathways. The binding energy combined with

diffusion energy between terrace sites and edge sites are taken into consideration to determine the

preferred binding sites. In general, the diffusion will not change the binding preference on the type

of active sites of adsorbates. In a scenario where the surface coverage is low, i.e. the surface is

not crowded with intermediates, species containing –OH group will prefer terrace binding since all

the diffusion heat to edge sites is endothermic; Species containing –CO groups prefer edge binding

since all the diffusion heat to terrace sites is endothermic. Future work can refer to literature from

Mavrikakis’s systematically presented adsorption and diffusion of atomic and diatomic species (H,

C, N, O, CO, and NO) on nanometer-sized Pt and Cu. They showed that there can be a BEP

(Brønsted-Evans-Polanyi) type linear correlation established between the transition diffusion state
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energy and the initial state energy for adsorbate diffusion across the edges of Pt and Cu nanoparti-

cles [55]. Though the R2 value of 0.62 is far from being perfect, the explicitly calculated activation

barrier of CO diffusion across the edges is found to be 0.41 eV. With CO being possibly the strongest

bound species on the surface (See binding energies of CO on terrace and edge sites in Table 5.1), the

diffusion barriers for other species are likely to have an upper bound value equal to 0.41 eV. This

barrier could be due to the small size of the Pt4 cluster, and other species sterically blocking the

edge sites.

From the study of IR spectra of terrace site bound and edge site bound CO, we found that

terrace site bound COL is more dominant on surface that is matching with the experimental spectra.

This is possibly a consequence of terrace sites being more available than edge sites. It could also be

from the used generalized-gradient-approximation exchange-correlation failed to accurately capture

the correct binding mode of CO [56–60]. Speculations are also made for other possible dominant

species on both terrace and edge sites. CH2OH, CHOH, COH and CO on terrace sites are likely

to be dominant. While CH3O and CO on edge sites are likely to be dominant. This information is

useful to gain insights of the surface chemistry and help interpret our experimental collaborator’s

results in depth.

5.6 Conclusions

In this work, we investigated thermodynamics of reactions pertaining to methanol decom-

position, on two type of catalytic sites that exist in realistic supported catalyst: terrace sites and

edge sites. The binding energies of intermediates on these two sites show distinctive hierarchy. Inter-

mediates that contain intact –OH group have lower binding energies on terrace sites than those on

edge sites, meaning they are more stable on terrace sites. Intermediates that do not contain intact

–OH group have lower binding energies on edge sites than those on terrace sites, meaning they are

more stable on edge sites. One exception being formaldehyde CH2O, shows nearly identical binding

hierarchy on terrace and edge sites. Binding hierarchy can be useful for further study since it enables

the study of diffusion of intermediates between terrace and edge sites, which likely to occur in real

experiments. Reaction energies are also calculated to propose reaction pathways that are thermody-

namically favored. Proposed reaction pathways of methanol decomposition on both terrace Pt(1 1

1) sites are presented. On the terrace site, the most thermodynamically favored pathway is CH3OH
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→ CH3O→ CH2O→ CHO→ CO. On the edge site, the most thermodynamically favored pathway

is CH3OH → CH3O. The steps after CH2O on the edge sites are unlikely to occur, possibly due

to the endothermic reaction thermodynamics and the tendency of CH2O desorption. Our result of

CO binding to the edge site compared to the terrace site, which exhibit a exothermic diffusion heat,

can be an evidence that linking to the tendency of CO crowding the edge sites, which is observed

by our experimental collaborator [53]. Computationally derived IR spectroscopy data is generated

for all possible intermediates on terrace and edge sites. It is used to hint the present species when

compared to real IR spectroscopy data. We propose CH2OH, CHOH, COH and CO are likely to be

present on terrace sites; and CH3O and CO are likely to be present on edge sites.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The protocol presented in Chapter 2 - Multi-scale Simulation Strategy and Its Application,

is capable of modeling quantum and thermal phenomena in liquid phase heterogeneous catalysis. It

is the first to our knowledge to incorporate quantum mechanics with complete sampling of an explicit

liquid environment. Configurations of liquid molecules generated from this method represent those

expected under actual reaction conditions and can be used to explore molecular-level phenomena

that depend on the spatial arrangements of molecules, which can provide insight into the roles that

solvent plays on liquid phase heterogeneous catalysis. For example, these obtained configurations

can be used in a quantum mechanics or QM/MM simulation, or they could be used to analyze

statistics related to the spatial positions of the molecules. This technique paves the way for future

research to explore the roles that liquid reaction environments have on catalysis by generating

realistic configurations of liquid molecules at catalytic interfaces.

The methods provided in Chapter 3 -A DFT and MD Study of Aqueous-phase Dehydro-

genation of Glycerol on Pt (1 1 1): Comparing Chemical Accuracy versus Computational Expense

in Different Methods for Calculating Aqueous-phase System Energies, presents a multi-scale mod-

eling strategy that employs a linear scaling relationship to compute adsorbate binding energies and

classical Lennard- Jones + Coulomb (LJ + C) potentials to calculate adsorbate interaction energies

with liquid H2O molecules. It is the first to our knowledge in adapting linear scaling relationship

in aqueous phase reaction energy calculation. This method decreases the dependency of extensive
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DFT calculations per adsorbate, while still incorporating the configurational disorder that is present

in the liquid water structure. It also provides reasonable chemical accuracy in calculating aqueous-

phase reaction energies of a MAE of 0.28 eV compared to the full DFT/MD method [1]. Overall,

the LSR/MD is established to overcome the computational expense problems that exist in aqueous

phase catalysis modeling, and it can be extended to thermodynamic intermediates and reactions

screening of aqueous phase reactions.

In the work presented in Chapter 4 - Insights into the Roles of Water on the Aqueous Phase

Reforming of Glycerol, presents our work towards further extending our usage of our developed multi-

scale modeling ttechniquesto investigate various types of reactions that exisit within glycerol APR

reaction network, which are dehydrogenation, decarbonlyation, and hydrogenolysis. We have used

DFT calculations, MD simulations, linear scaling relationships, transition state scaling relationships

to explore the thermodynamics and kinetics perspectives of those reactions. Combined with data

from the literature, we constructed microkinetic models to simulation catalytic glycerol reforming

under vacuum and aqueous phases. To gain insight of the roles of water molecules in glycerol APR,

we calculated and included steps where H2O molecules and H2(n+1)On species explicitly participate

in the reactions. We concluded four roles of water molecules on the catalytic mechanism of aqueous

phase reforming of glycerol from our microkinetic modeling results, they are: supplying OH* needed

in water-gas shift to oxidize CO*, promoting C-H scissions, promoting O-H scissions, and inhibiting

decarbonylation of C3 backbone. Our results also suggest that hydrogenolysis reactions would be

facilitated in a low pH environment.

In the work presented in Chapter 5 - Computational Modeling of Methanol Decomposition

on Pt Catalyst Supported by Alumina, expands our scope of study to more realistic catalyst mod-

eling aimed to reflect two types of catalyst active sites exist in real catalyst, i.e. terrace and edge

sites. We used the advanced model investigated thermodynamics of binding, diffusion, and reactions

within the dehydrogenation reaction network of methanol. Furthermore, our routines of vibrational

frequency calculation is more robust than the commonly used method and matches key locations

from experimental spectra. By analyzing computationally and experimentally yielded spectra data,

we can deduce the dominant species on a particular type of binding sites which is a question that is

still outstanding in the literature. Our studies on thermodynamic energy calculations on chemical

binding and reactions on terrace sites can successfully relate to other published results while supply-

ing more perspectives to the overall chemistry with our findings on chemical binding and reactions on
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edge sites. Our generated IR spectra from vibrational frequency calculations can achieve good agree-

ment with our experimental collaborator’s past and current findings. This is an important step that

brings our methods closer to our long term goal, which is using computational approaches to gain

insights of the catalytic species and reactions, and facilitate new catalyst research and development.

To summarize, in this thesis, different multi-scale simulation methods are assessed, among

which the LSR/MD method was chosen to calculate reaction thermodynamics due its tested balance

in accuracy and efficiency. Additionally, TSS relations are implemented to fast estimate kinetics of

various types of reactions within DFT accuracy. Once thermodynamics and kinetics information are

gathered, microkinetic modeling simulations are conducted, in attempt to simulate a total over 300

hundred elementary reaction steps of glycerol APR under realistic reacting conditions, i.e. initial

composition, temperature and pressure. The results from microkinetic modeling can reach good

agreement in production distribution and selectivity of experimental results from existing literature.

These results show that the multi-scale modeling, LSR, and TSS approaches are able to capture

experimentally observed phenomena. Further, the development of the LSR and TSS is what makes

this possible, since simulating such a large reaction network would be computationally intractable

using the multi-scale modeling approach alone. Last but not least, a more advanced catalyst model

that includes support in the catalyst surface is used for the study of methanol decomposition. This

more advanced model features two types of active sites, allowing us to gain more knowledges of

preferred binding, preferred reaction pathways, and dominant surface species on different active

sites. Our results can reproduce and agree with existing literature and findings by our experimental

collaborator.

6.2 Recommendations

6.2.1 Apply Different Force-Field Current Multi-scale Modeling Method

Our current multi-scale modeling method the first to our knowledge that combines DFT and

MD calculations which has the capability to sample and calculate varying system configurations in

the aqueous phase and their corresponding energies. This method is based on the work flow of DFT

→ MD → DFT simulations. Extra steps can be taken to atone the difference in energy potentials

between DFT and MD methods, such as a re-optimize step after the MD sampling. However, the

concern of fixating the surface during MD simulations is still in need of remedy. The current state
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of undertaking this method is from the lack of appropriate force fields (FFs) in MD. In future

work, I recommend applying ReaxFF (Reactive Force Field), which is a bond order-based force field

developed by Adri van Duin, William A. Goddard, III, and co- workers at the California Institute of

Technology [2]. In contrast to traditional force fields are unable to model chemical reactions because

of the requirement of breaking and forming bonds, ReaxFF eschews explicit bonds in favor of bond

orders, which allows for continuous bond formation/breaking. ReaxFF aims to be as general as

possible and has been parameterized and tested for hydrocarbon reactions, alkoxysilane gelation,

transition-metal-catalyzed nanotube formation, and high-energy materials. Recently, ReaxFF has

been developed to study oxygen interactions with realistic silica surfaces. This version of ReaxFF

is based on highly accurate and benchmarking density functional studies. Highly accurate density

functional results are achieved by employing Minnesota Functionals [3–6].

Another recommendation is to develop in-house FFs. Dr. Paul Meza-Morales in our group

made great progress in realizing methanol adsorption and desorption on Pt(1 1 1) surface as regards

the FFs predicted and DFT calculated energies under aqueous phase environment. Indeed this is

a painstaking step in the work but the results are rewarding. In his most recent report the FFs

reached great accuracy in reproducing the binding energies of methanol on Pt(1 1 1) as the RMSE

for in-plane configurations remains as low as 0.0628 eV when compared to DFT calculated energies

(The out-of-plane configurations have not been included as of the writing of this dissertation).

6.2.2 Exponential Pre-factor Calculation

Complete representation of the reaction kinetics requires knowledges of reaction heat, re-

action barriers and pre-exponential factos. Pre-exponential factors, as one of the key information

needed in Arrhenius equation [7, 8], are often estimated. If a more precise description is in need,

it can be calculated from construction of eigenfrequencies based on Vineyard equation [9–11]. The

methodology is decribed in equation in the following Eqn (6.1),

A =

∏i=1
3N−6 vi∏i=1
3N−7 v

′
i

(6.1)

where vi are the eigenfrequencies of vibrations of the cluster in the state corresponding to the

minimum of the potential energy for all 3N - 6 normal coordinates, and v′i are the frequencies of

vibrations at the saddle point corresponding to the maximum of potential energy for one normal
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coordinate and to the minimum for all the other coordinates.

6.2.3 Workflow in Thermochemical and Kinetic Parameter Estimation

Estimating the thermo-chemical properties of systems is important in many fields such as

material science and catalysis. D.G. Vlachos and his team has developed a Python based multiscale

thermochemistry toolbox, named pMuTT [12]. It is a Python software library aimed to stream-

line the conversion of ab-initio data to thermo-chemical properties using statistical mechanics, to

perform thermodynamic analysis, and to create input files for kinetic modeling software. The core

classes developed include a statistical mechanical model in which energy modes can be included or

excluded to suit the application, empirical models for rapid thermodynamic property estimation,

and a reaction model to calculate kinetic parameters or changes in thermodynamic properties. In

addition, pMuTT supports other features, such as Brønsted–Evans–Polanyi (BEP) relationships,

coverage effects, and even ab-initio phase diagrams.

Adaptation of this package can increase the productivity and possibly bring more stability

in the thermo-chemical and kinetic parameters that will be used in microkinetic modeling, since the

package is equipped with statistical mechanical and empirical handlers.

6.2.4 Parameter Tuning for Faster Electronic Structure Convergence

Electronic structure convergence can be an issue for DFT calculations of systems of large

size and complicated atom compositions. For example, during the calculations of the IR spectra of

different species based on different catalyst models, it is observed that same chemical species bound

to the terrace Pt(1 1 1) can reach electronic convergence a lot faster than that from the Pt4/Al2O3

surface. Technically the latter system contains a lot less heavy Pt atoms and thus less plane-waves are

needed to describe the system (given the two catalyst system cells have similar volume). Changing

the mixing rules of eigenvalues of the charge dielectric matrix from conjugate gradient algorithm

preconditioned rule [13] to a linear rule can yield a good speed boost for Pt4/Al2O3 surface. The

following are the changes to make in INCAR input file for VASP calculations,

AMIX = 0.2,

BMIX = 0.0001,

AMIX_MAG = 0.8,
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BMIX_MAG = 0.0001,

This is particularly good for metal oxides but will still struggle for metals like conjugate

gradient preconditioned rule. Since the Pt4/Al2O3 catalyst model consists primarily of Al2O3 rather

than pure Pt metal. Adaptation of the linear mixing rule was made. As a result, the convergence

speed achieved about 2x of boost, therefore for future studies on systems containing considerable

metal oxides, the linear mixing rule is recommended.
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Appendix A GPU Parallelization in VASP

A.1 Hardware Requirement

It is generally recommended to use GPU architecture with Kepler or newer: Tesla K40 or

Tesla K80, with 12 and 24 GB memory respectively, are strongly recommended.

Tesla K20 and Tesla K20, with 5 GB and 6 GB respectively, may run out of memory on

larger problems. In fact, a small system (27 Pt atoms) will often run into K20 memory issues.

Therefore K40 or newer GPU is strongly recommended.

The most important thing to make VASP run efficiently is to make sure that you have the

MPS system active on the node. MPS is the “Multi Process Service” – it virtualizes the GPU so

that many MPI ranks can access the GPU independently without of having to wait for each other.

Nvidia has an overview on their web site describing MPS and how set it up. Basically, the user need

to check if the nvidia-cuda-mps-control process is running. If it is not, user can manually start such

process in their bash script when submitting a new GPU-VASP job.

$mkdir /tmp/nvidia-mps

$ export CUDA_MPS_PIPE_DIRECTORY=/tmp/nvidia-mps

$mkdir /tmp/nvidia-log

$ export CUDA_MPS_LOG_DIRECTORY=/tmp/nvidia-log

$ nvidia-cuda-mps-control -d

A.2 VASP Input

It is also important to set input parameters in the INCAR file correctly, details of the

parameterization regarding parallelization will be discussed later. GPU-VASP requires

LREAL = .TRUE.

LCALCEPS = .FALSE.

LSCAAWARE = .FALSE.

NCORE = 1.

The GPU version of VASP has no gamma point optimizations therefore no gamma point

settings in the KPOINTS file should appear.

If the GPU-VASP is initialized successfully, a message in the output file should be expected:

WARNING: The GPU port of VASP has been extensively
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tested for: ALGO=Normal, Fast, and VeryFast.

Other algorithms may produce incorrect results or

yield suboptimal performance. Handle with care!

POSCAR, INCAR and KPOINTS ok, starting setup

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUDA streams...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...
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creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

creating 32 CUFFT plans with grid size 100 x 48 x 56...

FFT: planning ...

A.3 Optimization on Parallelization

KPAR parallelization is strongly recommended since it is well tested and it exhibits almost

linear boost in the performance. It is adviced to use the KPAR number as high as possible, but

the consequence of this practise is that the memory demand increases significantly with high KPAR

numbers.

The parameter that affects the performance of parallelization next to KPAR is NPAR,

normally a good recommendation of setting NPAR is,

NPAR = ≈
√
number of cores

The parameter that affects the performance of parallelization next to NPAR is NSIM. A

good approximation of NSIM tag is,

NSIM = NBANDS / (2*cores)

The settings of KPAR and NPAR are not tribute, that often the optimal combination of

these two are determined by running benchmark tests. Jonathan Skelton from University of Bath

has developed an excellent repository on Github that can benchmark the above three parameters in

an automated workflow,

https://github.com/JMSkelton/VASP-GPU-Benchmarking/tree/master/Scripts

Only minor changes are needed to conduct such benchmark testings, and it can be submitted

as a regular PBS job. The ket modification needed is to set up the arrays for the iteration of KPAR,

NPAR and NSIM. Detailed settings are set in GPUTest.py in the repository. The array controlling

KPAR iteration is at Line 20; the array for controlling NPAR iteration is at Line 6; and the array

for controlling NPAR iteration is at Line 10.
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Appendix B Supplemental Materials for DFT Calculations in

VASP

The following VASP input INCAR parameters are attached as following, for geometry op-

timization simulations. Note that the D2 values appeared in the INCAR are intended for a system

consisting of Pt, C, O, and H atoms.

NWRITE = 1

LWAVE = .FALSE. ! write WAVECAR?

LCHARG = .FALSE. ! write CHGCAR?

LVTOT = .FALSE. ! write LOCPOT?

Electronic relaxation

IALGO = 48 ! 8: CG, 48: DIIS algorithm for electrons

ENCUT = 400

ALGO = Fast

ISMEAR = 0 ! 0: Gaussian, electron smearing

SIGMA = 0.100

PREC = accurate

LREAL = Auto

ROPT = 2e-4 2e-4 2e-4 2e-4

ISTART = 0

ADDGRID = T

NELM = 1000

NELMIN = 6

EDIFF = 1e-6

ISPIN = 1 ! polarization

IDIPOL = 3

Ionic relaxation

NSW = 300 ! # of steps in optimization (default 0!)

ISIF = 2 ! 0: relax ions, 1,2:relax ions,calc stresses, 3:relax ion+cell

IBRION = 1 ! 1: quasi-NR, 2:CG algorithm for ions

NFREE = 10 ! number of DIIS vectors to save
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POTIM = 0.35 ! reduce trial step in optimization

EDIFFG = -0.03

Dispersion

LVDW = .TRUE.

VDW_C6 = 42.440 1.750 0.700 0.140

VDW_R0 = 1.750 1.452 1.342 1.001

DOS

RWIGS = 1.300 0.770 0.730 0.320 ! Wigner-Seitz radii

The following VASP input INCAR parameters are attached as following, for geometry opti-

mization simulations with D3 dispersion correction with Becke and Johnson damping (BJ-damping)

[14]. Note that the D3 values are implemented in VASP executable by default. If customization of

the parameters is needed, https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/

dft-d3/get-the-current-version-of-dft-d3 has the information.

NWRITE = 1

LWAVE = .FALSE. ! write WAVECAR?

LCHARG = .FALSE. ! write CHGCAR?

LVTOT = .FALSE. ! write LOCPOT?

Electronic relaxation

IALGO = 48 ! 8: CG, 48: DIIS algorithm for electrons

ENCUT = 400

ALGO = Fast

ISMEAR = 0 ! 0: Gaussian, electron smearing

SIGMA = 0.100

PREC = accurate

LREAL = Auto

ROPT = 2e-4 2e-4 2e-4 2e-4

ISTART = 0

ADDGRID = T

NELM = 1000

NELMIN = 6
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EDIFF = 1e-6

ISPIN = 1 ! polarization

IDIPOL = 3

Ionic relaxation

NSW = 300 ! # of steps in optimization (default 0!)

ISIF = 2 ! 0: relax ions, 1,2:relax ions,calc stresses, 3:relax ion+cell

IBRION = 1 ! 1: quasi-NR, 2:CG algorithm for ions

NFREE = 10 ! number of DIIS vectors to save

POTIM = 0.35 ! reduce trial step in optimization

EDIFFG = -0.03

Dispersion

IVDW = 12

DOS

RWIGS = 1.300 0.770 0.730 0.320 ! Wigner-Seitz radii

VASP provides the functionality for regular NEB calculation. Recent developed vtstool by

Henkelman XXX implented climibing image to the VASP package. Below is a typical VASP setting

for a cNEB simulation for system that consists of Pt, C, O and H atoms. It is to be noted that

the dimer simulation utilizes the vtstool extension, thus requiure VASP to be re-compiled with the

vtstool source codes.

NWRITE = 1

LWAVE = .FALSE. ! write WAVECAR?

LCHARG = .FALSE. ! write CHGCAR?

LVTOT = .FALSE. ! write LOCPOT?

Electronic relaxation

ENCUT = 400

ALGO = Fast

ISMEAR = 0 ! 0: Gaussian, electron smearing

SIGMA = 0.100

PREC = med

LREAL = Auto

LCLIMB = .TRUE.
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IMAGES = 5

ISTART = 0

NELM = 40

EDIFF = 1e-6

ISPIN = 1 ! polarization?

IDIPOL = 3

Ionic relaxation

NSW = 500 ! # of steps in optimization (default 0!)

ISIF = 2 ! 0: relax ions, 1,2:relax ions,calc stresses, 3:relax ion+cell

IBRION = 1 ! 1: quasi-NR, 2:CG algorithm for ions

NFREE = 40 ! number of DIIS vectors to save

POTIM = 0.5 ! reduce trial step in optimization

EDIFFG = -0.5

Dispersion

LVDW = .TRUE.

VDW_C6 = 42.440 1.750 0.700 0.140

VDW_R0 = 1.750 1.452 1.342 1.001

DOS

RWIGS = 1.300 0.770 0.730 0.320 ! Wigner-Seitz radii

The following INCAR parameters are intended for dimer simulations in search for saddle

points in VASP, for a system consists of Pt, C, O, and H atoms. It is to be noted that the dimer

simulation utilizes the vtstool extension (same as seen for cNEB simulations), thus requiure VASP

to be re-compiled with the vtstool source codes.

NWRITE = 1

LWAVE = .FALSE. ! write WAVECAR?

LCHARG = .FALSE. ! write CHGCAR?

LVTOT = .FALSE. ! write LOCPOT?

LSCAAWARE = .FALSE.

Electronic relaxation

IALGO = 48 ! 8: CG, 48: DIIS algorithm for electrons

ENCUT = 400
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ALGO = Fast

ISMEAR = 0 ! 0: Gaussian, electron smearing

SIGMA = 0.100

PREC = normal

LREAL = Auto

ISTART = 0

NELM = 40

EDIFF = 1e-7

ISPIN = 1 ! polarization?

IDIPOL = 3

Ionic relaxation

NSW = 500 ! number of steps in optimization (default 0!)

ISIF = 2 ! 0: relax ions, 1,2:relax ions,calc stresses, 3:relax ion+cell

IBRION = 3 ! 1: quasi-NR, 2:CG algorithm for ions

NFREE = 4 ! number of DIIS vectors to save

EDIFFG = -0.03

Dimer setup

ICHAIN = 2

IOPT = 2

POTIM = 0.0 ! reduce trial step in optimization

DRotMax = 1 ! max rotation step each dimer iteration

Dispersion

LVDW = .TRUE.

VDW_C6 = 42.440 1.750 0.700 0.140

VDW_R0 = 1.750 1.452 1.342 1.001

DOS

RWIGS = 1.300 0.770 0.730 0.320 ! Wigner-Seitz radii

The following INCAR parameters are intended for vibrational mode simulations in cal-

culating vibrational frequencies in VASP, for a system that is previously converged from dimer

calculations.

NWRITE = 1
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LWAVE = .FALSE. ! write WAVECAR?

LCHARG = .FALSE. ! write CHGCAR?

LVTOT = .FALSE. ! write LOCPOT?

Electronic relaxation

IALGO = 48 ! 8: CG, 48: DIIS algorithm for electrons

ENCUT = 400

ALGO = Fast

ISMEAR = 0 ! 0: Gaussian, electron smearing

SIGMA = 0.100

PREC = normal

LREAL = Auto

ISTART = 0

NELM = 40

EDIFF = 1e-6

ISPIN = 1 polarization?

IDIPOL = 3

Ionic relaxation

NSW = 1 ! # of steps in optimization (default 0!)

ISIF = 2 ! 0: relax ions, 1,2:relax ions,calc stresses, 3:relax ion+cell

IBRION = 5 ! 1: quasi-NR, 2:CG algorithm for ions

NFREE = 2 ! number of DIIS vectors to save

POTIM = 0.015 ! reduce trial step in optimization

EDIFFG = -0.03

Dispersion

LVDW = .TRUE.

VDW_C6 = 42.440 1.750 0.700 0.140

VDW_R0 = 1.750 1.452 1.342 1.001

DOS

RWIGS = 1.300 0.770 0.730 0.320 ! Wigner-Seitz radii

The following INCAR parameters are intended for single point DFT calculations in calcu-

lating system electronic energies without perturbing the geometries in VASP.
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NWRITE = 1

LWAVE = .FALSE. ! write WAVECAR?

LCHARG = .FALSE. ! write CHGCAR?

LVTOT = .FALSE. ! write LOCPOT?

Electronic relaxation

IALGO = 48 ! 8: CG, 48: DIIS algorithm for electrons

ENCUT = 400

ALGO = Fast

ISMEAR = 0 ! 0: Gaussian, electron smearing

SIGMA = 0.100

PREC = accurate

LREAL = Auto

ROPT = 2e-4 2e-4 2e-4 2e-4

ISTART = 0

ADDGRID = T

NELM = 1000

NELMIN = 6

EDIFF = 1e-6

ISPIN = 1 ! polarization

IDIPOL = 3

Ionic relaxation

NSW = 0 ! # of steps in optimization (default 0!)

ISIF = 2 ! 0: relax ions, 1,2:relax ions,calc stresses, 3:relax ion+cell

IBRION = 1 ! 1: quasi-NR, 2:CG algorithm for ions

NFREE = 10 ! number of DIIS vectors to save

POTIM = 0.35 ! reduce trial step in optimization

EDIFFG = -0.03

Dispersion

LVDW = .TRUE.

VDW_C6 = 42.440 1.750 0.700 0.140

VDW_R0 = 1.750 1.452 1.342 1.001

139



DOS

RWIGS = 1.300 0.770 0.730 0.320 ! Wigner-Seitz radii

Likewise in the previous chapter, the INCAR for single point calculation, with D3 dispersion

correction (BJ damping enabled) is attached.

NWRITE = 1

LWAVE = .FALSE. ! write WAVECAR?

LCHARG = .FALSE. ! write CHGCAR?

LVTOT = .FALSE. ! write LOCPOT?

Electronic relaxation

IALGO = 48 ! 8: CG, 48: DIIS algorithm for electrons

ENCUT = 400

ALGO = Fast

ISMEAR = 0 ! 0: Gaussian, electron smearing

SIGMA = 0.100

PREC = accurate

LREAL = Auto

ROPT = 2e-4 2e-4 2e-4 2e-4

ISTART = 0

ADDGRID = T

NELM = 1000

NELMIN = 6

EDIFF = 1e-6

ISPIN = 1 ! polarization

IDIPOL = 3

Ionic relaxation

NSW = 0 ! # of steps in optimization (default 0!)

ISIF = 2 ! 0: relax ions, 1,2:relax ions,calc stresses, 3:relax ion+cell

IBRION = 1 ! 1: quasi-NR, 2:CG algorithm for ions

NFREE = 10 ! number of DIIS vectors to save

POTIM = 0.35 ! reduce trial step in optimization
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EDIFFG = -0.03

Dispersion

IVDW = 12
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Appendix C CO Binding on Terrace and Edge Sites

This appendix is intended for examination of CO and its binding on various terrace and edge

sites. The representative bound CO, the ones show the strongest binding strength on the surfaces

are reported in Chapter 5.

C.1 Binding Geometries

Configurations of CO bound on various types of sites are shown in the graph below. For the

illustration of the geometries for CO bound on terrace sites, the top view is rendered for the best

result. For the illustration of the geometries for CO bound on edge sites, the side view is rendered

for the best result.

(a) Terrace-bridge (b) Terrace-HCP

(c) Terrace-FCC (d) Terrace-Atop

(e) Edge-Atop (f) Edge-HCP

Figure 1: Visualization of CH3OH*, CH2OH*, CHOH*, COH*, CH3O*, CH2O*, CHO*, CO* on
Pt(1 1 1) terrace sites. Color key: Grey: Pt, Red: O, Dark grey: C, White: H.

It is found that CO approaches the Pt atoms via C on both terrace sites and edge sites. CO

bound on terrace sites will always have a upward configuration, while CO bound on edge sites will

tend to have a flat configuration due to the interaction of O atom with Al atom from the support.

142



C.2 Binding Energies

Specifications of how DFT calculations are conducted are discussed in Chapter 2. The top

layer of Pt and the CO adsorbate are unfixed. Binding energies are calculated according to Eqn

(5.1) in Chapter 5. The gas phase energy is calculated in reference to CO molecule since CO itself

is considered a saturated species. The binding energies of CO on different binding sites are listed in

the following table.

Table 1: Binding energies for CO on terrace and edge sites. Energy unit in eV (1 eV = 96.485
kJ/mol).

Binding Site Binding Energy

Terrace-bridge -2.24

Terrace-HCP -2.23

Terrace-FCC -2.23

Terrace-Atop -2.10

Edge-Atop -2.30

Edge-HCP -2.40

By observing the calculated binding energies, it can be concluded that CO on terrace-bridge

site exhibits the strongest binding strength among all terrace sites, and CO on edge-HCP site exhibits

the stronger binding strength between the edge sites. Therefore the CO on terrace-bridge and CO

on edge-HCP are of the strongest binding strength therefore they are chosen as the representative

CO binding configuration for more studies in Chapter 5.
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Appendix D Vibrational Frequency Calculations in VASP with

ASE Interface

D.1 Environment Requirement

It is generally recommended to use CPU-VASP to conduct vibrational frequency calcula-

tions, espeically when VASP interfaces with ASE, it is not well know how GPU-VASP would behave.

The prerequirets are VASP, Python and OpenMPI support.

export VASP_COMMAND should be defined in the submission script for functions from ASE

sourcing the VASP executable.

export VASP_PP_PATH should be also defined in the submission script for functions from

ASE locating various pseudopotential (PPs).

The submission script should also activate the dependencies of ASE. This can be easily

achieved by installing ASE under an Anaconda virtual environment and activating Anaconda after

installation.

D.2 ASE Script in Python

A Python script that sources ASE libraries can be as following,

from mpi4py import MPI

from ase.io import read

from ase.calculators.vasp import Vasp

from ase.vibrations import Infrared

import ase.io.vasp

import os, sys

system = read(’POSCAR’,format="vasp", parallel = False) # read pre-relaxed structure of system

calc = Vasp(prec=’Accurate’,

ialgo = 48,

ediff = 1E-6,

encut = 300.0,

isym = 0,
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icharg = 1,

pp = ’PBE’, # will automatically construct POTCAR, INCAR, KPOINTS

idipol = 4, # calculate the total dipole moment

kpts = [7,7,1], # need to change for gas or adsorbed state

gamma = True,

dipol = system.get_center_of_mass(scaled=True),

npar = 4,

nsim = 4,

ldipol = True,

lcharg = True,

lwave = True,

nelm = 200,

ivdw = 12)

system.set_calculator(calc) # run VASP

ir = Infrared(system,indices = [27,28])

ir.run()

ir.summary()

ir.write_spectra()

The system step defines the input of POSCAR;

The calc step defines calculator as VASP executable in ASE, and ASE initializes other VASP input

as specified in this line;

The system.set_calculator(calc) and ir steps initialize iterative workload for the vibrational fre-

quency calculations;

The ir.run() runs VASP iteratively by perturbing the geometry and recording all the force matrices;

The ir.summary() and ir.write_spectra() output the final projected IR spectra data in a .dat file.
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