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Abstract

A nonlinear model of thermoelasticity is solved for a ring-shaped
body with special attention given to the effect of relaxation time on
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the body dynamics. A spectral Galerkin method is used to accu-
rately resolve spatial structures of temperature and displacement. A
sequence of solutions is obtained for gradually increasing initial am-
plitude of the thermoelastic wave, showing a transition from a steady
harmonic wave to singular solutions. Larger values of the relaxation
time are shown to result in smoother temperature profiles. The dy-
namics generated by a localised heat release from an external source
is studied. It is observed that the source excites a standing-like wave
of the displacement while temperature monotonically decays.
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1 Introduction: coupled dynamic thermoe-

lasticity with relaxation times

The classical Fourier law of heat conduction and consequent mathemati-
cal models for temperature dynamics constructed on the basis of parabolic
partial differential equations assume instantaneous propagation of thermal
disturbances to infinitely remote regions. Such an assumption is physically
unrealistic and, in a number of practically important situations, is inade-
quate as a description of heat conduction [2, 3, 16]. A finite speed of thermal
disturbances can be taken into account by using models with thermal relax-
ation time, which are based on hyperbolic-type equations for temperature.
Those are closely connected with so-called theories with second sound which
view heat propagation as a wave-like phenomenon.

The literature dedicated to the hyperbolic thermoelastic models is quite
large and its detailed review can be found in [2, 3]. However, the majority of
the works in this field has been devoted to various aspects of linear models
with some noticeable exceptions such as [10, 8], where simplified (elastically
linear) nonlinear models have been considered, and [18, 19, 12], where well-
posedness issues have been studied.

Our aim in this paper is the numerical study of the fully nonlinear system
of coupled thermoelasticity and the investigation of the influence of the re-
laxation time on the nonlinear dynamic of thermomechanical systems. Most
of the previous contributions to the development of nonlinear models of ther-
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moelasticity (including the above cited papers [18, 19, 12]) have been concen-
trated on the important theoretical issues such as existence and uniqueness
of solutions, and the identification of conditions leading to smooth or singular
solutions. Only few papers report numerical results obtained with nonlinear
models of coupled thermoelasticity (see [1, 9, 20] and references therein).
Using simple sinusoidal waves as initial conditions, in this paper we demon-
strate some important features of such models by the example of ring-shaped
thermoelastic bodies. Our main results concern the nonlinear interaction be-
tween thermal and mechanical fields and the effect of relaxation time.

It is well known [13, 15, e.g.] that the simple nonlinear equation for
a longitudinal displacement u in an elastic bar ∂2u/∂t2 = ∂/∂x[σ(∂u/∂x)]
(σ is the ∂u/∂x-dependent stress) may lead to a singular solution even for
smooth initial data. However, in the case of coupled thermoelasticity the
formation of singularities may be suppressed by the dissipative mechanism
of heat conduction [21]. On the other hand, there may be the opposite
situation where the damping through heat conduction is not strong enough
to guarantee the smooth solution. Which of these situations occurs depends
on the initial amplitudes of temperature and displacement and on the types
of nonlinearities in governing equations.

In the literature addressing linear theories with relaxation times, most at-
tention has been given to models formulated by Lord and Schulman (LS) [14]
and Green and Lindsay (GL) [7]. Both models are encompassed by a sin-
gle system of equations which is written here for the case of homogeneous
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isotropic medium:


ρ
∂2u

∂t2
− µ4u− (λ + µ)∇∇u− β

(
1 + t1

∂

∂t

)
∇θ = 0 ,

ρc(t2 + t0)
∂2θ

∂t2
+ ρc

∂θ

∂t
− K4θ − βT0

(
∇∂u

∂t
+ t0∇∂2u

∂t2

)
= 0 ,

(1)

where θ is the departure of the temperature from some reference value T0, ρ
is the density of the material, c is the thermal capacity, t0, t1 and t2 are the
thermal relaxation times, µ and λ are Lamé coefficients, K is the coefficient
of heat conduction, β is the coefficient of thermal pressure.

The LS model follows from (1) by setting t1 = t2 = 0. Alternatively, if
we set t0 = 0 in (1) we obtain the GL model. The linear hyperbolic models
such as (1) have been intensively studied [22, 21, 11, 5, 17, 6].

The model (1) can be generalised to include nonlinear terms: F1(∇̃u,
∇∇̃u, ∇̃θ,∇∇̃θ) and F2(∇̃u,∇∇̃u, ∇̃θ,∇∇̃θ) in the right-hand sides of the
first and second equations respectively. The operator ∇̃ is defined as ∇̃ ≡
(∂/∂t,∇). Nonlinearities represented by the functions F1 and F2 are deter-
mined by the constitutive relations that couple stresses, deformation gradi-
ents (strains), temperature and heat fluxes.

Using simple polynomial forms of the functions F1 and F2 and a special
choice of boundary conditions, the authors of the recent works [1, 20] studied
one-dimensional nonlinear problems of thermoelasticity. No relaxation time
effects were taken into account. In our paper we consider a more general
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Figure 1: Steady wave solutions used as initial conditions for the nonlinear
problem (2) in the first and the third groups of experiments.
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situation allowing for the relaxation-time effects.

Various thermomechanical boundary dissipation mechanisms have been
proposed in the literature to obtain the (uniform) stability of the overall
system [12, e.g.]. By considering a “closed” system in ring-shaped form, in
this paper we follow a somewhat different direction. On the one hand, such
a consideration allows us to avoid in our analysis unnecessary complicated
(and often physically unrealistic) boundary conditions. From a formal point
of view, one can view our system as a thermomechanical system subjected
to periodic boundary conditions, satisfied automatically by the Fourier series
form of the solution. On the other hand, ring-shaped configurations are quite
common elements in engineering devices. Finally, the ring is a very conve-
nient object for theoretical study of the thermoelastic dynamics free from
external influences. In this case the boundary thermomechanical dissipation
is absent and we do not have to deal with issues discussed, for example,
in [12].

2 Governing equations and the discretisation

procedure

We consider the model obtained by a “superposition” of the linear GL model
and the nonlinear model [1]. This model is a natural generalisation of the so-
called monomode nonlinear model to the case of non-zero relaxation times.
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A non-dimensional form of this model is obtained by using the scales (see
notation for the systems (1) and (2))

ū =
K

c
√

ρ(λ + 2µ)
, θ̄∗ = T0 , x̄ =

K

c
√

ρ(λ + 2µ)
, t̄ =

K

c(λ + 2µ)
,

and defining non-dimensional parameters

τ1 =
t1c(λ + 2µ)

K
, τ2 =

t2c(λ + 2µ)

K
, β1 =

βT0

λ + 2µ
, a =

β

ρc
.

We have
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∂
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− 1

2
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)
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= 0 .

(2)
For simplicity, hereafter we use the same notations for the dimensionless
quantities as we used earlier for the dimensional ones. The nondimensional
values γ, δ, β1, β2, a, b and α are assumed constants. We consider the
thermomechanical body in the form of a ring characterised by a base wave
number k = 2π/L, where L is the perimeter of the ring.



2 Governing equations and the discretisation procedure C1364

Introduce the field of velocity and the rate of temperature change:

v =
∂u

∂t
, w =

∂θ

∂t
.

Then we seek the solution to (2) in the form of Fourier series

u =

∞∑
n=−∞

Un(t)einkx, v =

∞∑
n=−∞

Vn(t)einkx,

θ =
∞∑

n=−∞
Θn(t)einkx, w =

∞∑
n=−∞

Wn(t)einkx.

(3)

Substituting (3) into (2) and equating coefficients of exp(inkx) leads to an
infinite system of coupled ordinary differential equations for the amplitudes
of the Fourier modes. This system is truncated to a finite number of modes,
typically 32, and integrated in time using the fourth order Runge-Kutta
method. The numerical scheme may be regarded as the spectral Galerkin
method with harmonical basis functions. A number of test runs were organ-
ised in the following way.

The equations (2) were solved with such forcing functions f(x, t) and
g(x, t) that provide the prescribed analytical form of the solution. Then the
analytical and numerical solutions were compared with each other. For exam-
ple, a test was performed with the exact solution u = (1+A/3 sin(kx−ωt))N ,
θ = C cos(kx − ωt) for constant integer N and constants A and ω. Having
substituted these expressions into (2), we calculated the functions f(x, t) and
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g(x, t). Note that the cubic nonlinearity in (2) generates 3N modes after de-
composition into the Fourier series. Consequently, the functions f(x, t) and
g(x, t) are quite cumbersome even for the case N = 3 being composed of
3N = 9 modes. As we have both cosines and sines in the series, this gives 18
terms.

In addition to the forced nonlinear regimes characterised by different
forms of the desired solution, the numerical code reproduced quite well an
exact travelling wave solution of the unforced linearised system (2) with
β1 = γ = δ = β2 = b = α = 0, a 6= 0 (note that a similar wave was also used
in [1] where, however, no relaxation time was taken into account):

u = A sin(k(x − t)),

θ =
(1 − τ2)aAk2

(1 − τ2)2k2 + 1
sin(k(x − t)) +

aAk

(1 − τ2)2k2 + 1
cos(k(x − t)).

(4)

Figure 1, where both the numerical solution and exact solution (4) are
presented for A = 10.0, a = 0.926, k = 0.05, τ2 = 0.005, confirms that there
is no discrepancy between the numerical and exact solutions. In this graph
and the other graphs below we indicate the coordinate x in conditional units
to show the number of points used to plot the curves. In the next section
we use (4) to set the initial conditions for the first series of experiments with
the nonlinear problem (2). Note that the wave (4) represents asymptotically
neutral state of the system in which the mechanical field is decoupled from
the thermal field.
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Figure 2: Displacement and temperature dynamics in the weakly nonlinear
case ε = 1.0.

3 Numerical experiments: effects of nonlin-

earities and relaxation times

The first group of experiments examines the dynamics of the thermomechan-
ical system excited by the initial wave (4) as the amplitude A is increased
and, consequently, the nonlinear effects become more important. One of the
difficulties here stems from the hyperbolic nature of the problem. Indeed, in
this case the set of initial conditions includes initial values of time-derivatives
of temperature and of displacements. To overcome this difficulty we assume
that these initial values can be altered proportionally to the initial amplitudes
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Figure 3: Displacement and temperature dynamics in the moderately non-
linearcase ε = 5.0 .

which are changed from experiment to experiment.

Using this assumption, our numerical experiments were organised in such
a way that, instead of increasing the initial amplitudes, we gradually in-
creased the coefficients near the nonlinear terms. To determine how the co-
efficients must change, we replace the variables u, θ by new variables marked
by primes, u′, θ′, and defined by u = εu′, θ = εθ′, where ε is a positive scaling
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factor. This leads to a system for u′ and θ′:
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∂x2

(
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∂x
+ 3δε2

(
∂u′
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∂

∂x

(
∂u′

∂x
θ′
)

= 0 ,

τ2
∂2θ′

∂t2
+

∂

∂t

(
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∂u′

∂x
− 1

2
bε

(
∂u′

∂x

)2
)

− ∂

∂x

((
1 + αε

∂u′

∂x

)
∂θ′

∂x

)
= 0 .

(5)

The systems (2) and (5) differ only in the values of the coefficients. As is
evident from (5), the scaled coefficients which we mark by primes are

γ′ = εγ, δ′ = ε2δ, β ′
1 = β1, β ′

2 = εβ2, a′ = a, b′ = εb, α′ = εα.

If ε is infinitely small then the nonlinear terms are negligible compared to the
linear terms. In the zero-order approximation in ε, we therefore recover the
linear system. As we mentioned in Section 2, the linearised system (2) admits
the solution (4). This solution represents a “steady” wave, or, more precisely,
the wave that keeps its shape. This fact makes this wave an attractive
candidatefor the initial conditions in our nonlinear problem. Choosing the
initial conditions in the form of (4), we demonstrate below how the sinusoidal
wave is deformed by the effects of nonlinearities. Any alterations in ε not only
lead to a change in the initial amplitudes of (u, θ), but also to the proportional
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Figure 4: Displacement and temperature dynamics in the strongly nonlinear
case ε = 15.0.

change in their time-derivatives. Thus, depending on the magnitude of ε we
can obtain a range of initial conditions for our problem in terms of (u, θ).
Furthermore, by increasing ε, we can amplify the influence of nonlinear effects
in the thermoelastic system described by (5).

For sufficiently large values of ε, the nonlinearities come into action by
dominating over the linear terms and leading to the formation of nonsmooth
profiles. To demonstrate these nonlinear effects we present the solution of (5)
in the form of 3-D graphs showing time evolution of the whole spatial profiles
of displacement and temperature. Two periods of the profiles are plotted
(thus, left-, middle- and right-hand points of each graph correspond to the
same physical point). In our computations all coefficients near the linear
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Figure 5: Dynamics produced by a pulse-like initial temperature.

terms in (5) were taken for steel, that is a = 0.926, β1 = 5.035 · 10−3. The
rest of the coefficients were scaled respectively from the data presented in [1]:
γ = 1.0, δ = 0.5, β2 = 0.001, b = 0.1, α = 1.0. The reported results were
obtained for 32 Fourier modes with the wave number k = 0.05.

In Figure 2–4 we present the dynamics of the thermoelastic ring under
different degrees of nonlinearity. The relaxation times for all three cases pre-
sented in Figure 2–4 were fixed at τ1 = τ2 = τ = 0.005. Figure 2 (ε = 1)
demonstrates a sharpening of certain sections of the displacement and tem-
perature profiles caused by nonlinearities. Both profiles gradually approach
nonsmooth phases with discontinuous derivatives. Starting from sinusoidal
waves shown in Figure 1, displacement and temperature distributions are
transformed into distinctly different shapes according to the laws governing
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Figure 6: Dynamics produced by a pulse-like initial displacement.

their coupled dynamics. Figure 3 (ε = 5.0) and Figure 4 (ε = 15.0) demon-
strate the increasing influence of the effects of nonlinearities. The nonlinear
dynamics observed in this group of experiments has the following features.
As demonstrated by Figure 3 and Figure 4, the main peak of the tempera-
ture distribution is split into two unequal peaks. In the meantime, with the
increasing role of nonlinear effects the displacement profile assumes almost
a triangular shape, as demonstrated in the strongly nonlinear case by Fig-
ure 4. Remarkably, with the nonlinear effects coming into play, the solution
approaches the nonsmooth phase faster. Consequently, in order to avoid the
rippled profiles indicating that the number of modes (32 in this work) is no
longer sufficient to represent the solution accurately, we have to shorten the
limiting time t∗ in our computational experiments. Since the existence of
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smooth solutions for our mathematical model is limited by some finite in-
terval of time [1, 13, 19, 20], these numerical difficulties are intrinsic to the
nonlinear thermoelastic regimes under investigation.

The second group of experiments was organised as follows. First, using a
pulse-like thermal and identical-zero mechanical initial conditions (Figure 5)
and then, using a pulse-like mechanical and identical-zero thermal initial con-
ditions (Figure 6), we studied the nonlinear interaction between thermal and
mechanical fields. The scaling parameter was taken ε = 1, while all other
parameters of the model remained unchanged. Figure 5 shows that the initial
heat pulse brings about a standing-like elastic wave while temperature grad-
ually fades. A more detailed analysis reveals that the displacement profile
gradually sharpens under the action of nonlinearity. By contrast, the initial
displacement-pulse generates substantially more complicated structures dis-
played in Figure 6. Elastic oscillations excite small-amplitude thermal waves
and under the influence of nonlinearities their profile become sharper. Due
to the coupling phenomenon, this complicates the thermal dynamics.

Finally, our last group of experiments deals with the influence of the re-
laxation time on the nonlinear dynamics of thermoelastic bodies. The range
of reported values of relaxation times for different materials is quite wide,
10−15 s < t0 < 10−10 s [2]. When going from material to material, not only do
τ1 and τ2 change but also so do all the other coefficients of the thermoelastic
equations. Regrettably, among those, only the values of the coefficients of
the linear terms in our model (5) are well tabulated in the literature, and
no reliable data is available on the coefficients of the nonlinear terms. With
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Figure 7: Displacement and temperature profiles at moment t∗ = 32.5 (the
case of moderate relaxation times, τ = 5.0).

this in mind, we explored how the relaxation time affects the solution pro-
vided that the rest of the coefficients are fixed. The initial conditions for
this series of computations were again taken in the form shown in Figure 1.
After the non-dimensionalisation based on the characteristics for steel, the
above interval for t0 converts into 5 · 10−3 < τ < 5 · 102. In the series of
numerical experiments we adopted τ1 = τ2 = τ and used fixed ε = 1. Fig-
ure 7 shows the limiting profiles in the case of the relaxation time τ = 5.0.
There are minor differences between these profiles and the profiles in Fig-
ure 2 (τ = 0.005) corresponding to the same moment t∗. In both cases
the temperature profiles are quite distorted by nonlinear effects accelarating
the transition to the nonsmooth phase. A different situation is observed for
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large relaxation times. For example, in Figure 8 we present the result of com-
putation for τ = 500.0, where the temperature profiles are nearly sinusoidal
during the whole experiment. This confirms that larger relaxation times pro-
vide smoother temperature profiles formed by a fixed moment of time. To
interpret this effect, recall that the major consequence of the relaxation-time
effect is either fast (in the case where τ is small) or slow (in the case where τ
is large) transitions of the thermomechanical system to certain regimes, typ-
ically characterised by solution discontinuities or nonsmooth phases of the
solution with discontinuous derivatives. For larger τ , transitions from the
sinusoidal wave to the nonsmooth phase slow down. Figure 8 demonstrates
that a large value of τ makes the transition extremely slow. In this case no
sign of the formation of nonsmooth profiles is observed during the numerical
experiment.

4 Conclusions

Using models with relaxation times, we analysed numerically nonlinear ther-
moelastic waves propagating through a ring. Starting with harmonic and
pulse-like distributions for displacement and temperature, we conducted a
series of numerical experiments demonstrating the influence of nonlinearities
and the effect of the relaxation time. By analysing the process of formation
of sharp and asymmetric profiles of temperature and displacement distribu-
tions, we showed that such profiles can be smoothed out with larger values
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Figure 8: Displacement and temperature dynamics in the case of large
relaxation times (τ = 500).

of the relaxation time.
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