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Computing eigenvalues of ordinary
differential equations

D. L. Harrar II∗ M. R. Osborne†

(Received 1 June 2001; revised 18 October 2002)

Abstract

Discretisations of differential eigenvalue problems have
a sensitivity to perturbations which is asymptotically least
as h→ 0 when the differential equation is in first order sys-
tem form. Both second and fourth order accurate discretisa-
tions of the first order system are straightforward to derive
and lead to generalised eigenvalue problems of the form

(A(h)− λB(h))v = 0 ,

where both A and B are narrow-banded, block bidiagonal
(hence unsymmetric) matrices, and typically B is singular.
Solutions of the differential equation associated with eigen-
values of small magnitude are best determined by the dis-
cretisations. Thus Krylov subspace methods (for example)
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require A to be invertible and seek large solutions of(
µI −A−1B

)
v = 0 .

This already requires rational methods in principle. It fol-
lows that rapidly convergent methods based on inverse it-
eration applied to the original formulation as a nonstan-
dard generalised eigenvalue problem prove attractive for the
narrow-banded systems considered here. Also they have the
advantage that they are applicable under the weaker condi-
tion A⊥∩B⊥ = ∅ . We have had extensive experience with a
method combining aspects of Newton’s method and inverse
iteration and having a convergence rate of 3.56 . Our im-
plementation combines this basic algorithm with a limiting
form of Weilandt deflation to find a sequence of eigenvalues.
It has proved extremely satisfactory in a range of applica-
tions. This formulation has the further advantage that it
is easy to insert the eigenvalue calculation inside an outer
loop to satisfy a constraint on an auxiliary parameter. Ex-
amples to illustrate both the robustness of the deflation and
the flexibility of the approach are provided.
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1 Introduction

Eigenvalue problems for systems of ordinary differential equations
provide a class of problems for which special purpose methods are
frequently appropriate:

• Standard discretization methods cannot, in general, provide
accurate estimates of highly oscillatory eigensolutions so there
is little point in trying to compute them in this way. It is
more important to have methods that can probe regions of
the spectrum in a reasonably controlled manner.

• The discretisations lead to generalized eigenvalue problems
(gevps)

s∗ (A− λB) = (A− λB)u =0 , (1)

where the component matrices A and B are narrow-banded
and typically have the block bidiagonal form

M =


M1,1 M1,k

M2,1 M2,2

M3,2 M3,3

. . . . . .

Mk,k−1 Mk,k

 , (2)

and u, s are the right and left eigenvectors, respectively.

• Frequently the question of interest involves adjusting system
parameters so that a particular eigenvalue satisfies a required
condition — is purely real or purely imaginary, for example.
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• Stability considerations may require that parameter values are
such that no eigenvalues lie in a particular region. This region
may have to be computed as part of the investigation.

The methods discussed are recommended as appropriate in just
these contexts.

We assume that the system is given as a set of first order differ-
ential equations:

dv

dz
+ C(z, λ)v = 0 , (3)

where C : Rm → Rm is a smooth enough matrix function both of
the independent variable z and of the eigenvalue parameter λ. Two
discretization schemes are employed:

Trapezoidal rule This is a second-order scheme and is derived
by integrating (3) between adjacent mesh points using the
trapezoidal rule to obtain[
−I +

h

2
Ci−1

]
vi−1 +

[
I +

h

2
Ci

]
vi = O

(
h3

)
, i = 2, . . . , n .

(4)

Collocation/Simpson’s rule This is a fourth-order scheme which
uses collocation at midpoints of mesh intervals as well as at
mesh points [7]{

−I +
h

6
Ci−1 +

4h

6
Ci− 1
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[
1

2
I − h

8
Ci−1

]}
vi−1

+

{
I +

h

6
Ci +

4h

6
Ci− 1

2

[
1

2
I +

h

8
Ci

]}
vi = O

(
h5

)
,

for i = 2, . . . , n . (5)
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Here h = L/(n − 1) is the mesh spacing, n is the number of
mesh points, and (0, L) is the interval on which the problem is
defined. The mesh spacing is assumed constant, but variable meshes
are certainly possible. The subscript indicates evaluation at the
corresponding mesh value, Cj = C ((j − 1)h, λ) . Note that (5)
involves products of C and conceivably this could force a nonlinear
dependence on λ. However, this possibility can be ruled out in many
cases and does not occur in our examples [3].

The specification of the eigenvalue problem is completed by
adding boundary conditions. This is discussed separately for each
example considered. The resulting block bidiagonal eigenvalue prob-
lem has dimension nm×nm and bandwidth 2m. Typical values are
2 ≤ m ≤ 8 and n = O (103) . Working with the first-order sys-
tem form has the important advantage that the sensitivity of the
eigenvalue problem, defined as

ρ =
‖s‖ . ‖v‖
|s∗Bv|

, (6)

is typically O (h−1) — this is a consequence of the h-dependence
in (4) and (5). For higher-order equations it is typically O (h−q) ,
where q is the order of the differential equation. It has the dis-
advantage that B is typically both nonsymmetric and indefinite.
Consequently some useful structure may be lost — for example, if
the original equation is of Sturm-Liouville type.

The organization of this paper is as follows: In the next section
we discuss the solution of generalized eigenvalue problems using
inverse iteration, Newton’s method, and deflation. In order to im-
plement these techniques efficiently for block bidiagonal problems
on vector processors we use wrap-around partitioning [4]. We give
examples of how to transform problems in the study of chemical
reactions (§3), and in hydrodynamic stability (§4) into block bidi-
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agonal gevps using both second- and fourth-order accurate discreti-
sations. The numerical results presented were obtained using the
Fujitsu vpp300 at the Australian National University.

2 Newton-based methods for

eigenvalue problems

Let K : Cn → Cn and consider the eigenvalue problem

K(λ)u(λ) = 0 , K(λ) ≡ (A− λB) . (7)

Although K(λ) is assumed to be linear in λ here, the techniques
discussed can also be applied in the case that K(λ) is nonlinear
in λ. The basic idea behind using Newton’s method to solve gevps
is to replace the problem (7) with that of finding zeros of a nonlinear
function. To this end, (7) is embedded in the more general family

K(λ)u(λ) = β(λ)Bx , (8)

s̃∗Bu(λ) = κ . (9)

Then, as λ approaches an eigenvalue, K(λ) becomes singular so the
solution u of (8) becomes unbounded for almost all right-hand sides
β(λ)Bx and choices of the scaling vector s̃ . Hence, (9)—a scaling
condition—can be satisfied only if β(λ) → 0 as λ approaches an
eigenvalue. The vectors s̃ and x can be chosen adaptively as the it-
eration proceeds, and a good strategy is to choose them as the best
current estimates of the left and right eigenvectors, respectively. An
important advantage facilitated by this freedom is the possibility of
exceeding the second-order convergence rate characteristic of pro-
cedures based on Newton’s method [9].
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Differentiating equations (8–9) with respect to λ gives

K
du

dλ
+
dK

dλ
u =

dβ

dλ
Bx , (10)

s̃∗B
du

dλ
= 0 . (11)

Multiplying through on the left by s̃∗BK−1 , (10) becomes

s̃∗B
du

dλ
+ s̃∗BK−1dK

dλ
u =

dβ

dλ
s̃∗BK−1Bx

=
1

β(λ)

dβ

dλ
s̃∗Bu ,

since K−1Bx = β(λ)−1u by (8). The first term on the left drops
out by (11), and, solving for the Newton correction, the Newton
iteration takes the form

λ←− λ+ ∆λ , ∆λ = − β(λ)

dβ/dλ
=

s̃∗Bu

s̃∗BK−1Bu
,

where we have made the substitution dK/dλ = −B . The main
computational component is essentially inverse iteration with the
matrix K. Convergence rates, including conditions under which
third-order convergence is possible, are discussed in [8]. This re-
quires that the iteration function be redefined at each step by up-
dating x so that it corresponds to the best current estimate of the
right eigenvector

x← K−1Bu/‖K−1Bu‖ .

A more recent reference is [9] in which the development is in terms
of generalized, rather than standard, eigenvalue problems. Here it is
shown that a convergence rate of 3.56 is obtained if the iteration is
organised to simultaneously compute a rapidly convergent estimate
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of the left eigenvector to use as the scale vector:

w = K−TBT s̃

s̃ ← w/‖w‖ .

Also discussed in this reference are deflation techniques. These are
now sketched in outline.

2.1 Deflation

A suitable approach has proved to be a limiting case of multiplica-
tive Wielandt deflation [10, e.g.]. This involves working with the
matrix

Â = (I − σBvis
∗
i )A ,

where vi and si are the right and left eigenvectors, normalized so
that s∗iBvi = 1 , corresponding to the eigenvalue λi . This maps
λi → (1− σ)λi while leaving the remaining eigenvalues unchanged.
Note that this form of algorithm sits well with accelerated forms
of the Newton algorithm which compute estimates of the right and
left eigenvectors as an integral part of the computation. The basic
iteration (8) is replaced by

K̂(λ)u(λ) = β(λ)Bx , K̂(λ) ≡ (Â− λB) .

Multiplying through by

(I − σBvis
∗
i )
−1 =

(
I +

σ

1− σ
Bvis

∗
i

)
,

(here we have assumed, without loss of generality, that κ = 1 in (9))
it is apparent that the deflated iteration is equivalent to(

A− λ
[
I +

σ

1− σ
Bvis

∗
i

]
B

)
v = β(λ)

[
I +

σ

1− σ
Bvis

∗
i

]
Bx .
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So, letting σ → ∞ effectively moves λi → ±∞ , and, if we define
the (non-orthogonal) projection

Pi ≡ (I −Bvis
∗
i ) ,

then as σ →∞ the deflated iteration becomes

(A− λPiB)v = β(λ)PiBx ,

and the solution v of this equation is the same as that of

(A− λB)v = β(λ)PiBx .

In this form, multiplicative Wielandt deflation preserves the block
bidiagonal structure. Maintenance of special structure is, of course,
highly desirable for banded systems in general. This technique will
be recognised as repeated biorthogonalisation with respect to al-
ready computed eigenvectors. It has proved very satisfactory even
in quite severe tests. For example, eighty eigenvalues have been
found for the discretized Brusselator equation (Section 3). Here the
matrix was 14000× 14000 , and the computation of each eigenvalue
was started from a small random perturbation about λ = 0 . This
requires that each already computed eigenvalue must be bypassed
in order to reach the next in sequence. As Gram-Schmidt orthogo-
nalisation is notoriously unstable when applied to produce a set of
orthogonal vectors it is worth pointing out that this is not how it
is used here. Here it is required to remove components of the al-
ready computed vectors from the inverse iteration right-hand sides,
and this the Gram-Schmidt method does adequately. Problems can
only arise in the initial stage of an iteration through catastrophic
cancellation which could “reflate” unwanted components as a result
of rounding error. We have found the use of randomly generated
vectors satisfactory for initialising each iteration.
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3 Chemical reactions in a tubular

reactor

A frequently used test problem for eigensolvers is solution of the
“Brusselator model” of the Belousov-Zhabotinski reaction in a tubu-
lar reactor. The model comprises a system of two coupled diffusion
equations,

∂φ

∂t
=
νφ
L2

∂2φ

∂z2
+ α− (β + 1)φ+ φ2ψ ,

∂ψ

∂t
=
νψ
L2

∂2ψ

∂z2
+ βφ− φ2ψ ,

where z ∈ [0, 1] is the distance along the tube, φ and ψ are the
chemical concentrations of the two reactants, νφ/L and νψ/L are
diffusion coefficients, and α and β arise from the boundary condi-
tions:

φ(t, 0) = φ(t, 1) = α , ψ(t, 0) = ψ(t, 1) = β/α .

Investigation of the linear stability of this system at the station-
ary solution (φ, ψ) = (α, β/α) leads to a coupled ode eigenvalue
problem,

νφ
L2

d2φ

dz2
+ (β − 1)φ+ α2ψ = λφ ,

νψ
L2

d2ψ

dz2
− βφ− α2ψ = λψ ,

and corresponding boundary conditions given by

φ(0) = φ(1) = 0 , ψ(0) = ψ(1) = 0 .

Let

ωφ ≡
√
νφ

L
, ωψ ≡

√
νψ

L
,
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and set

u = ωφ
dφ

dz
, v = ωψ

dψ

dz
,

then this is written as the first-order system

D
dv

dz
+ Cv = 0 , (12)

where

v =


φ
ψ
u
v

 , D =


ωφ

ωψ
ωφ

ωψ

 ,

C =


0 0 −1 0
0 0 0 −1

(β − 1)− λ α2 0 0
−β −α2 − λ 0 0

 .

Second and fourth order discretisations have been implemented, and
details can be found in [3]. The matrices of the resulting gevps
are 4n × 4n . In the second order case the form of B ensures that
at most 2n − 2 distinct eigenvalues can be found, and this is the
number that would be obtained by solving the eigenvalue problem
obtained by direct second-order discretization of the higher-order
system. In the fourth order discretization B drops rank only in the
equations corresponding to the boundary conditions with the result
that the gevp possibly has as many as 4n− 4 distinct eigenvalues.
However, the difference between the two forms of B is only O (h2) ,
so the additional eigenvalues depend on a form of singular pertur-
bation of relative magnitude O(h) . It has been reported that the
spurious eigenvalues tend to ∞ with h−1 as h → 0 in a related
application [11].
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3.1 Numerical results

In this case the generalized eigenvalue problem is actually a two
parameter problem having the form

s∗M (λ, L) = M (λ, L)v = 0 . (13)

where s and v are the left and right eigenvectors respectively. Two
different types of problem are considered:

1. Determine the value of L such that the right-most conju-
gate eigenvalue pair is purely imaginary; this corresponds to
a Hopf bifurcation and signals the onset of periodic behavior.
Newton-based procedures can be used to compute the bifurca-
tion parameter L. This computation proves to sit nicely with
our eigenvalue solver and hence provides a good illustration
of the flexibility of our approach.

2. The Brusselator example has proved a very popular test prob-
lem for eigenvalue codes. The basic idea is to take the value
of L associated with the Hopf bifurcation and to compute,
say, the twelve eigenvalues nearest zero. The eigenvalues are
not hard to compute and give small values of the sensitivity
parameter (6), but the resulting plot of the spectrum is most
attractive (Figure 1). As noted in Section 2.1 it is not a bad
test of the deflation procedure when carried out in the manner
indicated. Of course, in a practical computation it would be
much more satisfactory to start the computation of each new
eigenvalue beginning from a perturbation about the previous
eigenvalue computed.

The Newton correction to a guess at the bifurcation parameter L
is

L← L− < (λ)

< (dλ/dL)
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where λ = λ (L) is obtained by solving the eigenvalue problem (13)
for λ, v, s. Note that our approach permits the current solution
to the eigenvalue problem to be used as a first approximation for
the next iteration. Calculation of the Newton correction requires a
knowledge of dλ/dL which is obtained by differentiating the eigen-
value problem. This gives(

∂M

∂L
+
dλ

dL

∂M

∂λ

)
v +M

dv

dL
= 0 .

Multiplying by the left vector gives

dλ

dL
= −

s∗ ∂M
∂L

v

s∗ ∂M
∂λ

v
.

The parameter values used are taken from [10]:

νx = 0.0008 , νy =
1

2
νx , α = 2 , β = 5.45 .

Our computations give L ≈ 0.51302 in agreement with [10].

Results for the second set of calculations are summarized in Fig-
ure 1, where a portion of the spectrum is shown, and the twelve
eigenvalues of interest shown as solid circles. The results are identi-
cal to those obtained using, for example, the block Arnoldi method
reported on in [2].

4 Hydrodynamic stability

The next application considered here is the computation of the neu-
tral curve for the Orr-Sommerfeld equation. This equation is of
considerable importance in studies of transition to turbulence and
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Figure 1: Right-most eigenvalues for the Brusselator model.

has been used to predict instability in a variety of fluid flow config-
urations including boundary layers, jets, and shear layers, as well
as other flows on unbounded domains; for a survey see [5]. Each of
these types of flows is amenable to solution using the computational
techniques presented here, but we restrict our attention to two ex-
amples for which the respective velocity profiles are quite different:
Poiseuille flow between parallel flat plates and Blasius (boundary
layer) flow over a flat plate.

The Orr-Sommerfeld equation has the form of a fourth-order
ode eigenvalue problem,

i

αR

{
d2

dz2
− α2

}2

φ+ (U(z)− λ)

{
d2

dz2
− α2

}
φ− d2U

dz2
φ = 0 , (14)

where U(z) is the velocity profile for the flow to be investigated, α is
the wave number, R is the Reynold’s number, and the eigenvalue
parameter λ is the wave speed. This differential equation is complex
and hence our numerical solution techniques for this problem have
used complex arithmetic throughout.

The ode (14) can be written as a system of four first-order odes
in a variety of ways. Noting that d2

dz2
− α2 = ( d

dz
− α)( d

dz
+ α) , the
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first-order system is formulated as follows:1

dφ

dz
+ αφ− u = 0 , (15)

du

dz
− αu− v = 0 , (16)√

i

αR

(
dv

dz
+ αv

)
− w = 0 , (17)√

i

αR

(
dw

dz
− αw

)
− d2U

dz2
φ+ U(z)v = λv . (18)

The first problem we consider is that of Poiseuille flow which
models the flow of a fluid between infinite parallel plates. The
Poiseuille velocity profile is

U(z) = 1− z2 , −1 ≤ z ≤ 1 , (19)

so that the coefficient for φ in the last term of (14) is constant:

d2U

dz2
= −2 .

The boundary conditions in this case are

φ =
dφ

dz
= 0 ,

at the surfaces of the plates. The second problem we consider is asso-
ciated with transition to turbulence in flow over a flat plate. Strictly
speaking it is a similar [1, e.g.] rather than a parallel flow, and this

1Here we have used a factor of
√

i/(αR) in the last two equations, rather
than a factor of i/(αR) in the last only, solely due to numerical stability consid-
erations — this artifice should in some cases result in a smaller range of values
in matrix elements.
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has practical implications in terms of problem scaling as well as
raising theoretical questions. The Blasius velocity profile U(z) is
assumed to have the form

U(z) = f ′(η) (20)

where η is the similarity variable, and f satisfies the Blasius differ-
ential equation

f ′′′ + ff ′′ = 0 , (21)

subject to the boundary conditions

f (0) = f ′ (0) = 0 , f ′ (∞) = 1 ,

where the prime indicates differentiation with respect to η. Values
of f , f ′, and f ′′ are obtained by solving the Blasius equation (21)
using a fourth-order Runge-Kutta scheme in our computations. The
boundary conditions in the case of boundary layer flow are taken to
be

φ(0) =
dφ

dz

∣∣∣∣
z=0

= 0 , φ ∼ e−αz
(
A+

B

z
+
C

z2
+ · · ·

)
, z →∞ .

Evaluating the asymptotic condition at z = L and ignoring terms
that are O

(
e−αL/L3

)
we obtain terminal boundary conditions

2α
dφ

dz
+
d2φ

dz2
= 0 , (22)

d3φ

dz3
= 0 . (23)

The setting up of the discretized equations is discussed in detail
in [3]. The weight matrix B is distinctly sparse in the second order
case, and the resulting gevp has at most n − 1 distinct eigenval-
ues. This agrees with the number that would be obtained by direct
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discretization of the Orr-Sommerfeld equation. Again there is a rela-
tion of singular perturbation type between the spectra derived from
the second and fourth order discretisations, with a richer spectrum
(at most 2n−2 eigenvalues) being obtained for the fourth-order dis-
cretization for all finite h. The difference between the B matrices
in the two cases is again O(h2) .

4.1 Numerical results

One goal is to compute the “neutral curve”, or curve of neutral
stability, which separates the stable and unstable regions in the
(α,R)-plane. Computationally, this is the locus of points in the
(α,R)-plane with vanishing imaginary part:

={λ(α,R)} = 0 .

(α,R)-regions outside the neutral curve correspond to combinations
of α and R for which the flow is stable, while those within the neutral
curve correspond to unstable flow. Newton’s method is used to find
a zero of ={λ} either as a function of α or of R using

∂λ

∂α
=
s∗ ∂A

∂α
v

s∗Bv
,

∂λ

∂R
=
s∗ ∂A

∂R
v

s∗Bv
.

To decide which of α or R to vary, a comparison of the magnitude
of the respective derivatives is made; for example, R is varied if it
passes the scale-invariant test,∣∣∣∣R0

∂λ

∂R

∣∣∣∣ ≥ ∣∣∣∣α0
∂λ

∂α

∣∣∣∣ (24)

where α0 and R0 are typical parameter values. To move on the neu-
tral curve, the alternate variable is incremented by a fixed amount
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Figure 2: Neutral stability curve for Poiseuille flow.

(due consideration must be given to the correct choice of sign) and
the computation sequence restarted. The advantage of the 3.56 rate
of convergence is very much in evidence — no more than two itera-
tions are required at any stage in order to compute the next λ.

In Figures 2 and 3 we show the neutral curves for the Poiseuille
velocity profile (19) and for the Blasius profile (20–21), respectively.
Computations were carried out in parallel on three processors of the
vpp300, each one computing different portions of the curves (top,
bottom, left). All results used 5000 finite difference grid points, cor-
responding to complex banded matrices of dimension n = 20, 000 .
The solution of the block bidiagonal linear systems achieved about
92% vectorization for n = 5000 . We ran experiments using up to
750, 000 points, that is, complex matrices of order n = 3, 000, 000 ,
for which a (complex) matrix factorization takes about ten seconds
(in shared mode) and achieves 99.6% vectorization.

An interesting feature of the Poiseuille computation is that some-
what large numbers of grid points are required before the trapezoidal
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Figure 3: Neutral stability curve for Blasius flow (logarithmic
scale).

rule gives adequate accuracy. This is an indication that the differ-
ential equation is approaching a singular perturbation problem for
the parameter values of interest (also that the limiting equation is
a singular differential equation). Experiments have been initiated
using the higher-order differencing scheme (5), and it proves useful
in the case of large R. The value of the Reynold’s number at the
turning point, R = 5772 , is to four significant digits the value given
in [1] and has been confirmed experimentally [6].

To conclude, we illustrate the 3.56 rate of convergence of the
Newton-based eigensolver by showing in Table 1 the convergence
history for the beginning of the computation of the neutral curve
for Blasius boundary layer flow. Tolerance for the computation of λ
is 10−12 and for R or α is 10−6 . For this choice of initial data it
is R which is updated at each step according to the test (24). The
3.56 rate of convergence of the Newton procedures is evident.
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Table 1: Convergence history in computing a first point on the
neutral curve for Blasius boundary layer flow using an initial guess
of {α0, R0} = {0.27, 1000.0} .

Iter ={λ} = {∆λ}
0 R = 1000.0 ∆R = 0.0
1 2.2796675864805e-03 1.0296675864805e-03
2 2.2818890819293e-03 2.2214954488240e-06
3 2.2818890819283e-03 -9.837883193987e-16
* R = 892.335200 ∆R = 107.66480
1 -2.222756013814e-04 -2.504164683309e-03
2 -2.222756013806e-04 8.2926469548662e-16
* R = 901.048651 ∆R = −8.713450
1 -1.708633408248e-06 2.2056696797234e-04
2 -1.708633413609e-06 -5.3607273978914e-15
* R = 901.116680 ∆R = −0.068030
1 -6.756906093322e-12 1.70862665677034e-06
2 -6.759492083016e-12 -2.5859896939883e-15
* R = 901.116681 ∆R = 0.
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