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Chapter 1

Preface

What you are about to read is an open textbook written for (and by) students
of Computational Neuroscience at Bates College. This is version 0.0 of a living
document that will be revised, reused, and appended over the course of many
generations of this course. As the instructor of this course, I want to briefly
outline my motivations for undertaking this project in hopes that this idea may
spread.

1.1 This book is free (as in pizza)

It is broadly accepted that college a�ordability is a key challenge for the U.S.
in the 21st century. One of the drivers of increased college cost is the increased
cost of course textbooks. Over the past 40 years, textbook prices have risen
over 1200% over the last 40 years – much higher than the rate of inflation, and
higher even than housing or healthcare! By creating a free textbook, we are
broadening the participation of students in computational neuroscience.

1.2 This book is free (as in speech)

As important as cost-free textbooks is, equally important are the freedoms that
openness provides. We are opening this resource for reuse, revision, and redis-
tribution. We welcome others to remix into other works. It is my belief that
the availability of high-quality resources allows for creativity and innovation to
spring up in others. My teaching and scholarship has benefitted greatly from
openly available sources, and I feel that my success as an academic is to pay
this forward.

5



6 CHAPTER 1. PREFACE

1.3 This book can be revised and disseminated
more rapidly than traditional textbooks

Part of the impetus of this book came from a frustration in finding a tradi-
tional textbook that was appropriate for my undergraduate, 300-level course in
computational neuroscience. Many of the books, though excellent, assumed a
graduate-level sophistication in mathematics. Nearly all were missing some of
the most modern topics. Computational neuroscience is a rapidly-evolving field,
so an open textbook allows for more rapid editing, addition, and dissemination
than is a�orded by a traditional publishing model.

1.4 This book creates a public record of learning
that exists after the semester ends

Part of the educational journey is making the leap between being a consumer of
knowledge to being a generator of knowledge. It is oft-said but nonetheless true
statement that one truly learns by teaching. This assignment places students
in the role of teacher, making the content come alive by explaining it in their
own words. All too often, the writing that we do in college is in the form of the
“disposable assignment” - one that students will spend a few hours working on,
that I will spend a few hours reading and grading, and then is thrown away.
Writing an open textbook is more of a renewable assignment - one that will
have value in the world long after the semester is over.

We hope that you enjoy this book. Please feel free to reach out to me if you
have any questions or comments about our work: mgreene2@bates.edu.

1.5 Authors

Juliet Bockhorst (2022)
Abraham Brownell (2020)
Paloma Noriega Burrill (2021)
Catherine Crossin (2020)
Leo Crossman (2020)
Logan Douglas (2020)
Nick Antonellis (2021)
Robin Kass (2020)
Sasha Cadariu (2021)
Wuyue Zhou (2021)
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Chapter 2

What is Computational
Neuroscience?

2.1 Vocabulary

• Algorithm
• Bottom-up processing
• Computational neuroscience
• Computational theory
• Emergent phenomena
• Hardware and implementation
• Hebbian learning
• Reconstruction
• Reductionism
• Reductionism
• Representation
• Top-down processing
• Turing machine
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10 CHAPTER 2. WHAT IS COMPUTATIONAL NEUROSCIENCE?

2.2 Introduction

Look at this picture of a desk on the page in front of you. As you look at it, your
brain is somehow able to turn the raw sense data coming from your eyes into a
judgment about the identity of the object in the image. If we want to build a
machine that can demonstrate a similar capacity to judge — then we need to
be able to model and understand the mechanisms that are at work when we see
the desk. We are now left with at least two questions: (1) How might we create

a computer program that performs the same cognitive tasks as us humans? And
(2) What can such as program tell us about the mechanisms at work in our own

human brains? While these questions may not be exhaustive of the concerns of
computational neuroscience, they should at least give you a taste of some of the
issues the discipline grapples with on a regular basis.
For more information please explore.

2.3 What is computational neuroscience?

Computational neuroscience is an interdisciplinary field that applies the
principles of mathematics, philosophy, and computer science to study the inner
workings of the brain. Computer models are critical to computational neuro-
science, because they allow experiments to be conducted in a highly controlled
and replicable fashion. In this context, a “model” is a simplified and simulated
version of a system that tries to guess how the actual (simulated) system would
behave in the real world.

For example, suppose a computational neuroscientist wants to understand how
the human brain begins to make sense of sounds. A computer model could be
constructed for this purpose, because many disparate aspects of the hearing
parts of the brain have been measured. Such measurements would make con-
structing a useful computer model possible, because they would constrain the



2.3. WHAT IS COMPUTATIONAL NEUROSCIENCE? 11

design model. In other words, our researcher could design a model where the
simulated features match the measurements of the corresponding real features
of the brain. This model could be useful, because our researcher has access to
all the features of the computer model—including those that could not be easily
and ethically measured in the actual human brain. This utility would be borne
out in plausible inferences about currently unmeasured properties and behaviors
of the brain.

While it is true that the inferences we’ve just discussed can not be made with
complete certainty, they can be instrumental in guiding future research as new
technology (and sources of funding) become available. Even if a given model
ends up not holding up to future data, the model could still prove useful for
developing artificial intelligences. With the potential of computer models of the
brain in mind, it may be tempting to think you could build a model that truly
“understands” in the same way that a person does. The question of whether or
not such a model is possible is a matter of much debate, so su�ce it to say we
will only briefly survey the issues here.

On the side arguing that a computer model could never truly understand some-
thing (e.g. the Chinese language) the way a human does is the philosopher John
Searle. Searle makes use of his famous “Chinese Room Argument” to suggest
that merely following a set of rules to produce a desired result from a given
input is not enough to count as true understanding. For example, Searle would
argue that using a big book of rules for writing Chinese answers that respond
to Chinese questions is not the same thing as having a natural conversation in
Chinese.1

This may seem intuitively true, but many of Searle’s opponents2 argue that
Searle’s alleged argument is only intuitively true. That is to say that Searle is
merely provoking intuitions rather than supplying premises or facts that lead
to his desired conclusion.

The motivations for this debate could be explained in terms of the level of
organization at which Searle and his opponents appear to be thinking.

While Searle published his paper on the “Chinese Room Argument” in 1980,
the conversation of whether computers would be able to fully understand hu-
mans had been ongoing for many decades prior. In 1936, Alan Turing, created
the theory of the Turing test to find when there was an equivalence between
artificial intelligence and humans. Turing found the limitations of computation
by understanding the limitations of humanity, and thus he created the Turing

Machine. This machine paved way for the turing test, that tested whether a
human could determine whether they were interacting with another machine or
another human. Hence, the question of how to tell when artificial intelligence
will be comparable to human intelligence is an ongoing problem today.

1See https://plato.stanford.edu/entries/chinese-room/ for more on this thought experi-
ment.

2E.g. Dennett, Thagard, and Pinker to name a few.
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Figure 2.1: Example of Conway’s Game of Life

Exercise: Try out Conway’s Game of Life to explore more into the implications
of the Turing Machine and computer simulations.

2.4 Levels of organization

In 1982, David Marr, introduced a new approach to analysis. He believed that
there were three levels in the model of the brain. The first level is the com-

putational theory, , which is a description of the information going into the
system, and the corresponding output desired from the system. An example of
this is addition. The input is two numbers, and the desired output is the sum
of those numbers. The second level consists of the representational scheme and
the algorithm. The representational scheme is the description of the func-
tional elements that are used in the computation, while the algorithm is the
set of operations that are performed with or by those elements in order to carry
out the transformation specified by the computational theory. One example is a
cookbook recipe; this will define a step by step process (an algorithm) for how to
produce a product given a set of clearly defined ingredients (a representational
scheme). The third level is hardware implementation, which refers to the
physical machinery that realizes the algorithm.

Exercise: Are you smarter than a computer?
Let’s think about simple addition using two di�erent implementation levels.

• Take a piece of paper and use it to add 5 to 5.

• Now, instead of using paper, add 3 to 7 with your fingers.
Now consider how you solved these two problems. The method in which
you performed the computation di�ered (on an implementation level), but
the mental math and process of addition is the same. You took the input
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(the two numbers), processed them through an algorithm (symbolized by
the addition symbol), and your output, hopefully, was 10.
The goal of computational neuroscience is to be able to replicate the func-
tions of the brain, such as the one you just performed, in a non-organic
setting. One of the ways to do this is through computer programming
software, such as the application Python.
Consider the following basic code:

Here is an example of an addition problem coded in Python. We can see the
input, the algorithm which is transforming the input, and then the correct out-
put of 4. Given the properties of coding software such as Python, which takes
input, and runs it through a set algorithm. Is this similar to the way we humans
do it? If so, how? If not, why not?
## Applications of computational neuroscience
As we delve deeper into Computational Neuroscience, we will find that the field
has a variety of potential applications when it comes to understanding how cog-
nition happens. Computational Neuroscience, perhaps most importantly, allows
us to create models of our cognitive processes, such that they are able to capture
the basis of complex phenomena in a simple way. The brain is an extremely
complex organ, and while we may not always understand all of its architecture
and functionality, by using methods of Computational Neuroscience we are able
to abstract certain notions to the extent that they become comprehensible. In
doing so, we develop the ability to understand interactions between neurons in
the brain and begin seeing the nature of certain causal relationships. Further-
more, we can begin to predict how complex systems in the brain will behave
when presented with particular stimuli. This may all seem rather abstract, so
let’s think of an example we often take for granted: Vision. How is it that we
are capable of recognizing a variety of highly specific things and distinguishing
them from one another? What constitutes recognition and the neural processes
behind it? How do we decide what deserves recognition and what doesn’t? Why
is it so di�cult to replicate these seemingly innate processes in a robot? All
these questions can be addressed using Computational Neuroscience. We must,
however, keep one thing in mind. When creating models, the correct level of
simplicity is di�cult if not impossible to discern. So, it is important to engage
in criticism and scrutiny when developing the simplest and most e�cient model
one can think of.

You may be saying to yourself, “Ok, well all this is great in theory, but where do
we begin?”. We start by trying to establish Emergent Phenomena. Emer-
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Figure 2.2: One example of emergent phenomena are the flight patterns of geese.
One goose alone flies as it wishes but a collection of geese come together to form
a v-shaped pattern that a�ects the overall movement of the geese.
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gent Phenomena allow us to reframe composite systems such that we are able
to understand their underlying mechanisms in simpler terms. To clarify, an
Emergent Phenomenon can highlight both the mechanics and the nature of a
particular system. For instance, a normal car cannot function properly unless
it has four wheels. However, the car also derives part of its “car-ness” from
the fact that it has four wheels. There are two primary schools of thought in
this domain: Reductionism and Reconstructionism. Reductionism is the
idea that in order to understand a given complex system, we must be able to
reduce it to its simplest form, while Reconstructionism claims that we go in the
opposite direction and reconstruct the system such that we are able to capture
its complexity. After all, when we create models of the brain, it is not su�cient
to explain their architecture. We must also show how the architecture gives rise
to certain relationships and interactions. To do this, we can design our models
using one of the following approaches: Top-down processing or Bottom-up

processing. Top-down processing makes us design our models with a certain
purpose, or goal in mind. Bottom-up processing leads us to establish a base of
information or data before creating the model, and then creating the model and
its purpose o� of what we have collected.

Exercise: Explain the di�erence between the top-down and bottom-up philos-
ophy.

2.5 The future of computational neuroscience

Given all this information, what is the future of Computational Neuroscience?
Interest in the field is increasing steadily and everyday the range of its possible
applications grows. In 2013, the Obama administration began the BRAIN initia-
tive, a program designed to facilitate the development of innovative technologies
that allow for a well-rounded and versatile understanding of brain function. In
2005, a Swiss team of scientists began another initiative called the Blue Brain
project whereby they reconstructed the mammalian brain using simulations in
order to generate a comprehension of the basic underlying principles of brain
function and architecture. Computational Neuroscience becomes more relevant
everyday and allows us to tackle di�cult issues like the complexities of Heb-

bian Learning and Neural Networks. The implications of the field are perhaps
unparalleled by any other fields of scientific inquiry, in that they may hold the
answers to the creation of true Artificial Intelligence and the understanding of
Consciousness and perception in the human brain.

2.6 Summary

Every person has a brain, but that doesn’t mean we understand what the brain
is, or what it does. The brain is a complex organism with many facets to un-
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Figure 2.3: This image can be approached in two di�erent ways. For bottom-
up processing, we can see the letters first and then figure out the words. For
top-down processing, we can see the words and decide what each letter is.
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Figure 2.4: Applying Hebbian theory to computational neuroscience allows us
to envision the connections between various neurons in the brain, displayed here
is what is called a ‘connectome’.
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derstand, and to fully comprehend; one must understand the mechanics and the
reasoning behind each component. Whether studying in a top-down process,
or a bottom-up process, one must keep in mind Marr’s three levels of inves-
tigation: computational theory, representation and algorithm, and hardware
and implementation. Computers and brains are di�erent organisms, but by
studying them alongside one another, a deeper understanding can be elicited.
Turing introduced the world to the concept of using humans as a test of how
to understand artificial intelligence, but we can now use artificial intelligence to
understand the brain as well.

2.7 Exercises:

1. Which better explains and represents cognitive phenomena: the top-down
approach, or the bottom-up approach?

2. Characterize the concept of emergent phenomena. Is human sentience
that kind of phenomenon?

3. Does artificial intelligence have to have emotions to be sentient?



Chapter 3

Hodgkin and Huxley Model

3.1 Vocabulary

• Depolarization
• Positive Feedback
• Hyperpolarization
• Negative Feedback
• Membrane Potential
• Sodium-Potassium Pump
• Nernst Potential
• Reversal Potential
• Equilibrium Potential
• Driving Force
• Conductance
• Leak Current
• Leaky Integrate and Fire Model
• Absolute Refractory Period
• Gating variable

3.2 Introduction

Before you read this chapter, we would like to draw your attention to this video.
We call this a Zombie Squid because the squid is in fact dead; however, it is
recently deceased. Since the squid passed shortly before, Adenosine triphosphate
(ATP) energy stores are still available to the squid’s muscles. When the soy
sauce, which has a lot of sodium chloride (salt) in it, is poured onto the squid,
the salt in the soy sauce causes a voltage change which causes the squid’s muscles
to contract. Thus, we have a Zombie Squid.

19



20 CHAPTER 3. HODGKIN AND HUXLEY MODEL

So why is the Zombie Squid important? The Hodgkin-Huxley Model, said to
have started the field of computational neuroscience, all hinges on the giant
axons of squid. In the 1950s Alan Hodgkin and Andrew Huxley built a model
that shows us how computers can successfully predict certain aspects of the
brain that cannot be directly studied. The two even won a Nobel Prize in
Physiology or Medicine in 1963 with Sir John Carew Eccles for their model.
The Hodgkin-Huxley Model is now the basis of all conductance-based models.
As a result, we can now understand how an action potential works, and why it
is an all-or-none event.

While Hodgkin and Huxley created their model in the 1950s, the first record-
ing of an action potential was done by Edgar Adrian in the 1920s. However,
the first person to realize that neurons communicate via electrical signals came
much earlier in 1791, when Luigi Galvani found that electricity from lightning
or primitive batteries can cause a dead frog’s leg muscle to contract. This led
to a good amount of Frankenstein-like science with interested parties running
electricity through dead bodies in an attempt to bring them back to life. How-
ever, the next truly scientific discovery came from Hermann Helmholtz in the
19th century. Helmholtz found that he could measure the speed of muscles
contracting when he stimulated the nerve linked to that specific muscle. The
Hodgkin-Huxley Model was then created once Adrian noted that not only were
action potentials discrete, but the firing rate (spike per second) increased as
stimulation to the nerve increased.

Exercise: Briefly explain how the Zombie Squid moves. Why is this important
to understand?

3.3 What is an action potential?

Before going into ways of modelling action potentials, let’s further explore what
an action potential is. Within a cell, there are more sodium ions outside the
membrane, which have a positive charge. Because there are less positive ions
inside the cell compared to the outside, the inside of the cell has a negative rest-
ing potential. When there is a spike of voltage, that causes both voltage-gated
sodium and potassium channels–meaning that these channels activate and in-
activate at certain voltages–to activate on a neuron’s membrane. However, the
sodium channels open much faster than the potassium channels. The flow of
sodium ions into the cell causes the membrane potential to become more posi-
tive. This process of positive ions flowing into the cell is called depolarization.
When depolarization happens, it causes additional sodium channels to open,
which causes further depolarization—this phenomenon is called positive feed-

back, and the positive feedback starts if the depolarization hits a set threshold.
In other words, a positive feedback loop is a process that perpetuates itself. The
positive feedback loop ends once voltage-gated potassium channels also open at
the peak of the action potential and potassium begins flowing out of the cell
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Figure 3.1: A cell at rest has more potassium ions intracellular than extracellular
and more sodium ions extracellular than intracellular. There is a negative net
charge within the cell being maintained by the voltage gradient.
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Figure 3.2: When the cell becomes depolarized sodium ions enter the cell. The
charge within the cell becomes more positive.

and ending depolarization, we call this repolarization. When the voltage is
below the resting potential, we call this undershoot hyperpolarization, which
is when the membrane potential decreases towards a move negative value via
potassium ions flowing out. As the voltage-gated potassium channels open and
the voltage-gated sodium channels to close or become inactivated, there is now
negative feedback. Negative feedback is a process by which an initial change
is opposed by a force caused by the initial change. In this situation, the posi-
tive feedback causes a spike in membrane potential and the negative feedback
stabilizes.
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Figure 3.3: When the cell repolarizes potassium ions leave the cell. The charge
within the cell go from positive to negative as it goes back to the resting state.

Exercise:

Exercise: Explain how depolarization and hyperpolarization relate to posi-
tive/negative feedback.

3.4 Nernst equilibrium potential

The electrical activity generated in a neuron is a result of ions flowing across the
neuron’s membrane which is caused by the following two principles: opposite
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Figure 3.4: Example of an action potential.
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charges attract, and concentration gradients seek to equalize. This potential
di�erence is referred to as the membrane potential. In order for ions to
flow, a concentration gradient must be established because the di�erence in
concentration across the membrane leads it to pass either into the neuron or
out of the neuron. This is accomplished by the sodium-potassium pump,
which uses just below 10% of your body’s daily energy to pump three sodium
ions out of the neuron for every two potassium ions pumped in, thus forming
two respective concentration gradients.

With the concentration gradient established, the sodium and potassium ions
will flow down the concentration gradients when their respective channels open,
generating an electrical current that propagates down the axon. We must also
take into account the fact that each ion possesses a charge–or charges in the case
of Ca++ and Mg++–and that as this charge is built up on one side of the cell,
this will generate an electrical force that will begin to repel ions with similar
charge as they try to flow down their concentration gradient. When the force
of the concentration gradient matches the electrical force attracting or repelling
the ion, this is known as the Nernst potential for that ion, also referred to
as the reversal potential. This means that means that both sodium and
potassium possess their own respective Nernst potentials. Nernst potentials are
especially important because they allow us to calculate the membrane voltage
when a particular ion is in equilibrium, which helps to define the role it plays
in an action potential.

The Nernst potential for an ion can be derived from the following equation:

Eion = RT

zF
ln( [out]

[in] )

Expression Meaning
E_ion Nernst Potential
R Gas constant: 8.314 J/mol*K
ln() Natural log
z Valance
T Temperature in Kelvin
F Faraday’s constant: 96485.336512 C/mol
[out] Concentration of ions outside the membrane
[in] Concentration of ions inside the membrane

While the Nernst potential will give the equilibrium point for a single ion, it
also has a relation to the equilibrium potential or the resting potential the
membrane, which is potential at which there is no net flow of ions, leading to a
halt in the flow of electric current. The equilibrium potential is really a weighted
average of all of the Nernst potentials and is modeled by the Goldman-Hodgkin-
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Katz equation which is shown below:

Vm = RT

F
ln(PK [K+]out + PNa[Na+]out + PCl[Cl≠]in

PK [K+]in + PNa[Na+]in + PCl[Cl≠]out
)

This equation utilizes the membrane permeability, P, in conjunction with the
concentration of each ion inside and outside of the cell to produce the equilibrium
potential of a membrane. Using this equation alongside the Nernst potential,
the driving force, which is a representation of the pressure for an ion to move
in or out of the cell, can be calculated using the following equation:

DF = Vm ≠ Eion

The Nernst Potential, the Goldman-Hodgkin-Katz equation, and the driving
force present necessary calculations that allow for better understanding of the
flow of ions in relation to an action potential.

Exercise: Why does depolarization not continue indefinitely once voltage-gated
Na+ channels have opened?

Exercise: Briefly explain the concept of driving force.

Exercise: Explain the di�erence between the membrane potential, Nernst po-
tential and equilibrium potential.

3.5 The Hodgkin and Huxley model

Alan Hodgkin (pictured left) and Andrew Huxley (pictured right) were two
Cambridge University undergraduates who eventually found themselves working
in a marine biology laboratory with the axon of a giant squid. The two men
were able to derive the necessary information for their influential model of an
action potential using the massive axon of the giant squid.

Hodgkin and Huxley developed a series of equations that could accurately pre-
dict and depict action potentials. Their work is a cornerstone for computational
modeling as computer modelling can now be used to mimic the biological prop-
erties of a neuron that we are unable to directly observe.

Really the Hodgkin-Huxley Model is just an elaboration on the Integrate and
Fire Model. The Integrate and Fire model was generated by French neurosci-
entist Louis Lapicque, who in 1907 sought to generate a mathematical model
that could be used to predict and graph an action potential. In his e�orts to
understand action potentials, Lapicque chose to model the flow of ions as a
single leak current.

Hodgkin and Huxley took the single conductance term from the Integrate and
Fire Model is broken up into three separate conductance terms, each relating to a
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Figure 3.5: Alan Hodgkin (left) and Andrew Huxley (right).
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di�erent ion channel. These conductance terms are known as gating variables

and are labeled m, n, and h. Voltage-gated sodium channel activation is modeled
by the letter ms. Voltage-gated sodium channels have three subunits, as these
three subunits are involved in the channels activation, m is raised to the third
power. Voltage-gated sodium channel also inactivate at the peak of the action
potential and this variable is modeled by the letter h. The combination of m

and h gives rise to the conductance of Voltage-gated sodium channel which is
modeled below:

ḡNam
3
h(V (t) ≠ ENa)

Voltage-gated potassium channels are modeled by the letter n. Voltage-gated
potassium channels have four subunits, and thus the gating variable, n, is raised
to the fourth power. The conductance of Voltage-gated potassium channels is
modeled below:

ḡKn
4(V (t) ≠ EK

The final conductance taken into account by Hodgkin and Huxley is the leak
potential of all the ions. The Leak conductance is taken into account for the
instance when all ion channels are open. This conductance is represented below:

ḡL(V (t) ≠ EL)

These three conductance variables are combined together to form the Hodgkin-
Huxley equation which is written as follows:

C
dV

dt
= Ie(t)≠ [(ḡNam

3
h(V (t)≠ENa))+(ḡKn

4(V (t)≠EK))+(ḡL(V (t)≠EL))]

Expression Meaning
*n* Activation of potassium channels
*m* Activation of sodium channels
*h* Inactivation of sodium channels
*C* Capacitance
$I_{injected}$ Injected current
$\bar{g}_{Na}$ Maximum sodium conductance
$\bar{g}_{K}$ Maximum potassium conductance
$\bar{g}_{L}$ Maximum leak conductance
*V* Membrane voltage
$E_{Na}$ Sodium Nernst potential
$E_{K}$ Potassium Nernst potential
$E_{L}$ Leak Nernst potential

Additionally, we can calculate the value of each gating variable over di�erent
voltages and times:

m
dV

dt
= –m(V )(1 ≠ m) ≠ —m(V )m
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Both n and h can be substituted for m in the above equation in order to
calculate values for each gating variable. Additionally, note the – and — in the
equation are rate constants that govern the opening and closing (respectively),
of their channels. Here are their values:

–n(Vm) = 0.01(Vm + 55)
1 ≠ exp(≠0.1(Vm + 55))

–m(Vm) = 0.1(Vm + 40)
1 ≠ exp(≠0.1(Vm + 40))

–h(Vm) = 0.07exp(≠0.05(Vm + 65))

—n(Vm) = 0.125exp(≠0.0125(Vm + 65))

—m(Vm) = 4exp(≠0.0556(Vm + 65))

—h(Vm) = 1
1 + exp(≠0.1(Vm + 35))

Expression Meaning
$\alpha_{n}$ Rate constant for potassium channel activation (open)
$\alpha_{m}$ Rate constant for sodium channel activation (open)
$\alpha_{h}$ Rate constant for sodium channel inactivation (open)
$\beta_{n}$ Rate constant for potassium channel activation (close)
$\beta_{m}$ Rate constant for sodium channel activation (close)
$\beta_{h}$ Rate constant for sodium channel inactivation (close)

3.6 Summary

An action potential is the electro-chemical signal that propagates down a neu-
ron. Action potentials are facilitated by the electrochemical gradient that is
maintained through the action of the Sodium-Potassium Pump. The role that
each ion plays within the action potential can be determined through the use of
the Nernst Equation, which allows us to understand the movement of a specific
ion at a specific membrane voltage. Understanding the role of ions, is impor-
tant, but this is not how we actually graph an action potential. One of the
first modules developed to graph an action potential was the integrate and fire
module. This equation disregarded all of the biomechanical features of an ac-
tion potential and focused on the subthreshold membrane dynamics of a neuron.
This model was relatively e�ective, until Hodgkin and Huxley reassessed it and
changed the single leak resistance in integrate and fire to three separate resis-
tance terms. Hodgkin and Huxley in doing this created an equation that more
thoroughly analyzed and depicted the very action potential that is displayed to
this day.
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##Exercises:## Here is a code that models the Hodgkin-Huxley model. Fill
in the blanks and try to understand what each line of code does. Why does the
code calculate – and — values first?

import numpy as np

import matplotlib.pyplot as plt

# Define model parameters
dt = 0.1 # time step (ms)
tFinal = 1000 # total time of run (ms)
tStimStart = 250 # time to start injecting current (ms)
tStimEnd = 750 # time to end injecting current (ms)
c = 10 # capacitance per unit area (nF/mm^2)
gMaxL = 3 # leak maximal conductance per unit area (mS/mm^2)
EL = -54.387 # leak conductance reversal potential (mV)
gMaxK = 360 # maximal K conductance per unit area (mS/mm^2)
EK = -77 # K conductance reversal potential (mV)
gMaxNa = 1200 # maximal Na conductance per unit area (mS/mm^2)
ENa = 50 # Na conductance reversal potential (mV)

# set up data structures to hold relevant variable vectors
timeVec = np.zeros(0, tFinal, dt)

voltageVec = np.zeros(len(timeVec))

Ivector = np.zeros(len(timeVec))

# Fill in the BLANK!
mVec = np.zeros( )

hVec = np.zeros( )

nVec = np.zeros( )

# assign the initial value of each variable
# For initial voltage, we set the resting potential to -65 mV
voltageVec[0] = -65

Ie = 200

mVec[0] = 0.0529

mVec[0] = 0.5961

nVec[0] = 0.3177

# For-loop to integrate equations into model
# Can you see why we are subtracting 1 here?
for i in range( ):

# Calculate alpha values for m, h, and n
# These functions are fit from empirical data
alpha_m = 0.1 * (voltageVec[i]+40)/(1-np.exp(-0.1*(voltageVec[i]+40)))

alpha_h = 0.07 * np.exp(-0.05*(voltageVec[i]+65))

alpha_n = 0.01 * (voltageVec[i]+55) / (1-np.exp(-0.1*(voltageVec[i]+55)))
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# Calculate beta values
beta_m = 4*np.exp(-0.05556*(voltageVec[i]+65))

beta_h = 1 / (1+np.exp(-0.1*(voltageVec[i]+35)))

beta_n = 0.125 * np.exp(-0.01125*(voltageVec[i]+55))

# Calculate tau values for m, h, and n
tau_m = 1 / (alpha_m + beta_m)

tau_h = 1 / (alpha_h + beta_h)

tau_n = 1 / (alpha_n + beta_n)

# Calculate inf values for m, h, and n
infM = alpha_m / (alpha_m + beta_m)

infH = alpha_h / (alpha_h + beta_h)

infN = alpha_n / (alpha_n + beta_n)

# Calculate and store values in m, h, and n vectors
mVec[i+1] = infM + (mVec[i] - infM) * np.exp(-dt/tau_m)

hVec[i+1] = infH + (hVec[i] - infH) * np.exp(-dt/tau_h)

nVec[i+1] = infN + (nVec[i] - infN) * np.exp(-dt/tau_n)

# Calculate and store values in the tau voltage vector
tauVec = c/(gMaxK*nVec[i]**4+gMaxNa*mVec[i]**3 * hVec[i]+gMaxL)

vInf = (gMaxK*nVec[i]**4 * EK + gMaxNa*mVec[i]**3 * hVec[i]*ENa + gMaxL*EL + IVector[i])

/ (gMaxK*nVec[i]**4+gMaxNa*mVec[i]**3 * hVec[i]+gMaxL)

voltageVec[i+1] = vInf + (voltageVec[i]-vInf) * np.exp(-dt/tauVec[i])
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Chapter 4

Reverse Correlation and
Receptive Field Mapping

4.1 Vocabulary

• Poisson process

• Spike train

• Peri-stimulus time histogram

• Spike count rate

• Interspike interval

• Fano factor

• Coe�cient of variation

• Spike-triggered average

• White noise
• Reverse correlation

4.2 Introduction

Throughout our everyday lives, we receive an enormous amount of sensory in-
puts from our surrounding environment: the color of the clouds before sunset,

33
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Figure 4.1: Example of a spike train. Graph A shows the recorded stimulus and
graph B shows the recorded actions potentials during the stimulus.

the melody played by an old record player, the smell of apple pie, or the taste of
your favorite dish. Our brain, with its incredible computational capacity, suc-
cessfully encodes all these sensory inputs from di�erent modalities to something
we can perceive and understand, in the language of neurons. Our discussion
from previous chapters noted that the language of neurons–or the neural code–
consists of action potentials that are all-or-none events, and we learned how
neurons fire an action potential. In this chapter, we are going to talk about
why neuron fires and how to characterize and analyze these action potentials
using spike trains. Based on this, we are going to discuss ways to study the
relationship between outside stimuli and neural responses.

4.3 Spike Trains

Assume that we measured a neuron firing in response to a sensory stimulus,
and we recorded its voltage changes and displayed the signal in an oscilloscope.
How should we analyze the information encoded in these action potentials? As
we mentioned before, the action potential is an all-or-none event. This binary
characteristic gives us a way to simplify the complicated voltage response curve:
for every time point in our measurement, if there is a spike firing, denote its
value as 1; if not, denote it as 0. After the recording, we get a sequence of 0s
and 1s in a time-dependent order. We commonly refer to this sequence as a
spike train, shown in Figure 1, part B.
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Since all action potentials fire to the same voltage level, there is no di�erence in
their intensities. Thus, in order to have action potentials that convey meaningful
information, neurons can only vary on timing of firing, including varying firing
rates or varying the time intervals between each firing. Although this seems
super-simplified, our spike train contains mostly the information we need to
analyze if we want to know what causes the original neuron to fire. In order to
systematically analyze these data in spike trains, we first need to define some
statistics.

4.4 Spike Statistics

Now we have a sequence of 0s and 1s which represent neural firing, the next step
is to calculate the spike count rate, which is the number of spikes divided over
a given time interval. This parameter directly shows the firing rate, but it cannot
reflect variation. Assume that we have two neurons that have the same spike
count rate. One is a regular-firing neuron and the spikes are evenly distributed
along the time axis, while the other is a bursting neuron that fires sets of spikes
with longer intervals between individual sets. How can we distinguish between
these two spike trains? Here, we want to introduce another parameter called the
interspike interval (ISI) or in other words, the time interval between every
pair of spikes. In Figure 2, there is a histogram that shows the distribution of
ISIs from an artificial spike train. The ISI histogram can be characterized by
coe�cient of variation (CV), which is the standard deviation of ISIs divided
by the mean of it. Apart from that, we can also use the Fano factor to measure
the spike variability. It is calculated by the variance of the number of spikes
divided by the mean number of spikes in a given time interval. Compare to
CV, Fano factor is less dependent on the intervals between spikes but more on
the number of spikes in a given time bin. If the underlying firing rate varies
or the spike firing in irregular time points, both CV and Fano factor increase.
Thus, CV and Fano factors are useful secondary statistics that helps to measure
variability in spike trains.

We can do a lot with a single spike train. However, in vivo, neural responses
are highly variable and the response of a neuron to the same stimulus may even
vary from trial to trial. E�ectively, to account for the cross-trial variability,
we need to analyze results from multiple trials to get a better estimate of the
average neural response. A peristimulus time histogram (PSTH) can be
generated by averaging across trials. The most direct method is to put trials
in small time windows that correspond to each time point and calculate the
spike count rate in window for each time point. By implementing this process,
each time point is assigned an average rate, and by plotting we get a continuous
frequency curve. One example is shown in the Exercise 1, in the “spike density”
section, in which spikes are averaged in time windows, and then averaged across
trials. In this case, all trials are run on the same neuron, which reduces the
cross-trial variability and increases the time resolution. The response, however,
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Figure 4.2: Distribution of ISIs from a randomly firing artificial neuron.

may be a�ected by adaptation. Furthermore, we can also assess the firing
pattern of a population of neurons by calculating the average spike counting
rate for all the time points, and then averaging across trials. At this point,
di�erent trials are run on di�erent neurons, and the generated response curve
accounts for the response pattern of a population of neurons in the area that was
tested. This method, while it generates better time resolution, omits the possible
variability across neurons in the population. Choosing di�erent time windows
influences the characteristics of the frequency curve, as shown in Figure 3. In
general, PSTH is essential because it transforms a discontinuous spike train
into continuous response curves, which allows us to calculate the correlation
between stimulus and response. This will be further elaborated upon in the
later sections.

Exercise 1: What are the pros and cons for each type of histogram?

Name Algorithm Input Output
Spike Count Rate Calculate the number of spikes per time interval ![](~/Dropbox/teaching/computationalNeuroscience/book/images/spikeTable0.png) ![](~/Dropbox/teaching/computationalNeuroscience/book/images/spikeTable1.png)
Spike Density Use a single neuron to compute di�erent trials ![](~/Dropbox/teaching/computationalNeuroscience/book/images/spikeTable2.png) ![](~/Dropbox/teaching/computationalNeuroscience/book/images/spikeTable3.png)
Population Density Use di�erent neurons during a single trial ![](~/Dropbox/teaching/computationalNeuroscience/book/images/spikeTable4.png) ![](~/Dropbox/teaching/computationalNeuroscience/book/images/spikeTable5.png)
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Sometimes, instead of collecting data from real neurons, we need to simulate
spike trains from given statistics. The artificial spike trains can be compared
with real data, or used to reconstruct possible firing patterns with a given
stimulus. Here, we will discuss the homogeneous Poisson process, or the simplest
way of generating artificial spike train. The homogeneous Poisson process

entails that for every small interval on the timeline, the probability of an event
happening (in our case, action potential) will be proportional to the length of
the time interval, while the proportionality constant r is fixed. To understand
this abstract definition, think about a timeline whereby at each time point, we
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throw a coin and record the head as 1. Try to visualize that timeline. We
agree that all 1s will be randomly spread along the timeline, and the interval
between when we get a pair of heads, varies along the timeline. This will look
very similar to an artificial spike train generated by the Poisson process, whose
distribution can be expressed by the following formula:

p(q spikes in �t) = e
≠⁄ ⁄

n

n!

Exercise 2: Explain the qualifications for a poisson spike train?
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Figure 4.3: The spike triggered average can be used to calculate both the stim-
ulus and the spike train.

4.5 Spike-triggered Average

An essential tool for describing neurons, and how they respond to certain stim-
uli, is the spike-triggered average (STA). The STA is the average value of
the stimulus during some time interval before a spike occurs. Researchers record
a neuron’s activity as it responds to various stimuli. First, the researchers must
determine the amount of time before a spike they want to analyze. Once the
data has been obtained and the time step determined, the value of the one-time
step before a spike is recorded, and averaged across trials. This value ultimately
characterizes the level of stimulus necessary for the neuron to fire. It is impor-
tant to note that the spike-triggered average is measuring the average level of
the stimulus, not of the neuron. This calculation is based on the probability of
a neuron spiking due to stimuli activity to occur in the recent past.

The spike-triggered average can be utilized to determine the receptive fields of
individual neurons. However, when using the STA to determine receptive fields,
the stimulus presented to the recording neuron must be su�ciently random. If
it isn’t, any correlation in stimuli will be presented in the generated receptive
field, thus skewing the result. A white noise, is a type of stimulus with random
variation where the value at each time point is independent of all other points.
White noise can be employed in these instances to provide a receptive field
without bias. White noise stimuli can look di�erent based on the neuron and the
system being observed, from a series of random auditory frequencies to randomly
generated pixels stimulating the visual cortex. For each set of stimuli, the value
at each time point does not correlate with the values around it. For more
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Figure 4.4: Example of a white noise stimulus using gray scale.

information on spike-triggered average analyses, especially concerning receptive
fields,read this experiment.

4.6 Reverse Correlation

When ana-
lyzing neurons and neuronal responses, there are two main factors: the
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inputs (controlled by researchers), and the outputs (measured by researchers).
The process of reverse correlation implements the analysis of outputs to
determine the inputs that the neuron will respond to with a spike. The
spike-triggered average is an application of this process as it looks back at the
stimuli preceding a spike to determine information about the sensitivity and
response of the neuron. In addition to spike-triggered average, a calculation
known as spike-triggered covariance can be used to analyze neuronal responses.
Spike-triggered covariance (STC) can be used to identify multi-dimensional
inputs to a neuron and is especially useful in linear-nonlinear Poisson models
that will be discussed later in this section. STC uses the covariance, variability
between two factors, of stimuli that trigger spikes in a neuron to determine a
neuron’s response characteristics to multi-dimensional stimuli.

The basic model for reverse correlation is a Linear Single Input Single Output
system (LSISOS). Such linear systems assume the two principles of homogene-
ity. First, the neuron will not undergo processes such as habituation and will
always respond in the same way to the stimulus. Second, superposition: the
response from multiple stimuli will be equal to the sum of the individual stim-
uli. In this model, the LSISOS response is the sum of the spikes scaled to time.
Similar to spike-triggered averages, it is best to input a white noise stimulus and
then cross-correlate it with its output, which will give you the spike-triggered
average. In cross-correlation, the higher the similarity between the two values
(the stimulus value and the output value), the greater the correlation value (the
spike-triggered average).

The LSISOS model assumes a linear activity of neurons that is not entirely ac-
curate due to neuron characteristics such as a spike threshold and a refractory
period. A new model, known as the linear-nonlinear-Poisson model takes these
factors into account. There are three stages to this model: linear stage, nonlin-
ear stage, and the Poisson spike generator stage. The linear stage considers how
a neuron responds to a specific feature in a spatio-temporal linear sense. The
second stage takes the linear output and input through a nonlinear function to
give a neuron’s instantaneous spike rate. The nonlinear function can either be
a logistic curve or a rectified linear (ReLU) function. The final step translates
the output of the initial steps into spikes using an inhomogeneous Poisson pro-
cess. The final result from the Poisson generator demonstrates the areas of the
stimulus where a spike is more likely to occur.
Reverse correlation is a technique used for understanding what neurons are re-
sponding to, and the spike-triggered averages discussed earlier are one example
of how reverse correlation is implemented.

4.7 Summary

Reverse correlation and all the concepts that play a role in this widely imple-
mented technique, from di�erent modes of spike statistics to various types of
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Figure 4.5: Spike-triggered covariance shows how two di�erent stimuli dimen-
sions can be calculated together.
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stimuli, can be an intimidating topic in computational neuroscience. Analyzing
the relationship between inputs and outputs to understand the e�ect each has
on the activity of a neuron is the root of this topic. These analyses can move
in both directions: input to output, or output to input. One can manipulate
the stimulus and measure the resulting spike train through various statistical
methods, or one could use reverse correlation by utilizing the known output of a
spike to look back and understand the input necessary to create such a response.
These analyses are working on grasping what stimuli the neuron does, or does
not, “like”. In other words, they help us predict the neuron’s responses.

Exercise 3 (Challenge!) Match each concept to the Python function.

Concepts:

• Fano Factor
• Spike Count Rate
• Interspike Interval

# Function 1
prob = 45/1000

spikeMatrix = np.zeros((1000,1000))

for i in range(1000):

for j in range(1000):

if np.random.rand() < prob:

spikeMatrix[i,j] = 1

spikeCountRates = np.sum(spikeMatrix, 1)

plt.figure(figsize=(8,8))

plt.subplot(2,1,1)

plt.hist(spikeCountRates, 40, edgecolor=�black�)

plt.xlabel("Average firing rate (Hz)")

plt.ylabel("Frequency")

# Function 2
np.var(spikeCountRates) / np.mean(spikeCountRates)

# Function 3
spikeCountRates = np.sum(spikeMatrix, 1)

totalSpikes = int(np.sum(spikeMatrix, axis=None))

isi = np.zeros(totalSpikes - 1)

count = -1

for i in range(1000):

spikes = np.nonzero(spikeMatrix[i,:])[0]

for j in range(len(spikes)-1):

count += 1

isi[count] = spikes[j+1] - spikes[j]

plt.subplot(2,1,2)
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plt.hist(isi, 100)

plt.xlabel("ISI (ms)")

plt.ylabel("Frequency")



Chapter 5

Neural Networks

5.1 Vocabulary List:

• Neural network

• Supervised Learning
• Unsupervised Learning
• Reinforcement Learning
• McCulloch-Pitt (MCP) neuron
• Perceptron
• Step function
• Linearly separable
• Activation function
• Sigmoid activation function
• Hidden layers
• Back propagation
• Cost

5.2 Introduction/Background

Imagine for a moment that you wake up, groggy and not looking forward to
your commute, when you ecstatically remember that you don’t have just any
car, you have a self-driving car. You slide into the driver’s seat of your Tesla and
faintly pay attention as your car does the heavy lifting and drives you to work.
When one considers the concept of a neural network, a biological definition
may first come to mind in the sense of the neuronal connections in the brain;
however, this chapter delves into how we can recreate the learning apparent
in our biology through computational models. Although this may sound like
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a slightly intimidating goal, neural networks have become a commonly used
method. They are found in a wide variety of technologies from Tesla’s self-
driving cars to Go playing robots. Overall, the goal of a neural network is to
identify existing patterns in stimuli or inputs and produce an output that would
mirror the output of our own brain through a set of determined algorithms.
This allows us to create complex neural networks that can allow algorithms
with the ability to learn. In this chapter, we aren’t going to delve into the deep
complexities of neural networks required to fully understand how a self-driving
car works, but we will outline the basics of how machines learn through neural
networks.

Neural networks identify existing patterns in stimuli. This means that based on
a series of inputs, a neural network identifies whether or not the input conforms
to a specific group or definition. In other words: a computer learns to perform
a particular task by analyzing sets of examples. Take for example a technology
that recognizes whether or not there is a face in a photograph. The neural
network may ask if a stimulus has eyes, a nose, and a mouth. If the answer is
yes, it will recognize the input as a face. If the stimulus lacks these features,
the model will give an output to convey that there is no face. The output in
this situation is the binary answer of whether or not a face exists. The more
questions asked and the more layers in the neural network, the more complex
stimuli and patterns we can look for. The initial example given here is a highly
simplified idea of a neural network. In this chapter, we will start with the
most simple building block of a neural network and build up to a more complex
network.

5.3 Di�erent Types of Learning

Before defining a neural network, first, let’s take a moment to consider the
concept of learning. Learning is something that can be defined in a variety of
ways. One definition is the acquisition or modification of knowledge, behav-
ior, skills, values, or preferences. What does this mean in the context of deep
learning and neural networks? It may be di�cult to use just one definition of
learning to understand neural networks, so instead let’s consider three di�erent
types of learning: supervised, unsupervised, and reinforcement learning.
Supervised learning is where a teacher provides input and the expected outputs
to a student for the student to better predict future problems. This is a system
of learning which you may be familiar with, one example is when a teacher gives
you both the problem and the answer for you to be able to do future problems.
Another example is computer vision learning. Giving a computer examples of
di�erent visual stimuli, such as handwriting, it can learn to distinguish between
di�erent letters using a neural network. Unsupervised learning is learning that
occurs in the absence of a teacher. A student simply looks at patterns and
tries to maximize correlations or find a basic understanding. Hebbian learn-

ing is an example of unsupervised learning. Finally, reinforcement learning is
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the shaping of behavior through reward and punishment. It is learning shaped
through interactions with the environment. An example of this would be the
robot AlphaGo which was taught how to beat humans at the game of Go. The
neural networks we will be discussing in this chapter primarily use supervised or
unsupervised deep learning, but if you are interested in reinforcement learning,
this video on AlphaGo is a great resource. As you continue to read through this
chapter, keep the goal of neural networks in mind as well as the various types
of learning which can be used to achieve this goal.

Exercise 1: Briefly describe the di�erent kinds of learning. Can you provide a
real-world example for each? (one not mentioned in the reading.)

Exercise 2: Are certain kinds of learning more capable of tackling complex
issues, why or why not? What kind of questions can be addressed by individual
kinds of learning?

5.4 McCulloch-Pitt (MCP) Neurons

MCP neurons were some of the first examples of artificial neurons that can
be used to build networks. MCP neurons are named after Warren McCullough
and Walter Pitts, who together proposed the model in 1943. Pitts self-taught
logic and mathematics. He eventually ended up doing research at the University
of Chicago, despite adverse conditions growing up. When he met Warren Mc-
Cullough, a professor at the university, McCullough suggested that Pitts come
to live with him and the two began a research partnership through which they
produced their concept of the MCP neuron. The MCP neuron is a simple analog
of its biological counterpart. The neuron receives one or multiple inputs which
are then summed up to produce an output. These summed inputs essentially
tell the neuron whether or not to fire.

It is, however, slightly more complicated than a yes or no question as to whether
the neuron fires. Each input is multiplied by an assigned weight. These resulting
values are then added up. The model then compares the actual summation to an
already existing threshold value. If the sum of the various inputs multiplied by
the weights is greater than the threshold, the neuron is considered to be firing.
If the sum is less than the threshold, the neuron does not fire. The equation is
shown below:

Output = 1 if

ÿ
xiwi < threshold

Output = 0 if

ÿ
xiwi Ø threshold

Exercise 3: How does an MCP neuron work? How similar is it to a real-life
neuron?

Exercise 4: Before we delve into further details about neural networks, what
do you think could be some of the potential limitations of MCP neurons?
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MCP neurons function as e�ective and simple building blocks but they do have
certain limitations. Let’s consider a neural network designed to recognize a
human face again. MCP neurons can ask certain types of questions to answer
the question of whether or not something has a human face, such as:

• Does this stimulus have eyes and a mouth?

• Does this stimulus have eyes or a mouth?

• Does this stimulus not have fur covering the entirety of its skin?

These AND, OR, and NOT questions can be answered in a binary (yes or no)
manner and thus can be modeled by an MCP neuron. MCP neurons cannot,
however, answer what are called exclusionary, also known as XOR questions.
Let’s consider the example of a neural network that suggests movies. You have
two hours to watch a movie and cannot decide between a romance or horror
film. You can’t watch both due to your time constraints so you need a neural
network that will suggest either a romance movie or a horror movie but not both
movies. This is an example of a situation in which asking an XOR question is
necessary. In this case the question specifically is:

Romance Horror Possible.Picks
1 1 0
1 0 1
0 1 1
0 0 0
. . .

The MCP neuron lacks the ability to ask an XOR question due to the nonlin-
ear nature of its question. Earlier it was mentioned in this chapter that MCP
neurons are based upon binary inputs and outputs. In the case of the XOR
question, the complexity of the input-output relationships, due to the nonlin-
earity apparent in the question, prevents the neural networks from being able
to produce an answer. Despite this drawback, there are ways to produce more
complex neural networks which we will elaborate on later in this chapter.

Coding exercise: Fill in the input and output for an AND gate in the following
code, implement it in a Jupyter Notebook.

# Import useful packages
import numpy as np

import matplotlib.pyplot as plt

# Define Output and Input
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X1 = np.array([ [ , ], [ , ],[ , ],[ , ] ])

Y1 = np.array([ [], [], [], [] ])

5.5 Perceptron

Before we dive into neural networks and discuss how they work and what they
do, we will introduce the concept of a perceptron and discuss its relevance. A
perceptron is an algorithm for performing binary classification based on a step
function. A trivial perceptron functions as follows:

1. Consider a set of inputs and a corresponding set of weights:

Output = f(x) =
I

1, if
q

wixi + b Ø 0
0, if

q
wixi + b < 0

2. Take the dot product of these two sets.

3. Add another predetermined number called bias.

4. 4. If the result is greater than or equal to 0, the output is 1; otherwise,
the output is 0. This is the step function:

Output = f(x) =
I

1, if
q

wixi Ø threshold

0, if
q

wixi < threshold

Note that in this step function , we compare the result of part 3 to 0. Alter-
natively, we can subtract b from both sides so that -b is a threshold value to
compare with instead of adding bias and comparing to 0.

Code Exercise (continued): Assume that bias equals to -1. Define the initial
weights randomly by sampling from a uniform distribution between -1 and 1.
Use the code below to get started.

# Initialize parameters
# eta is the learning rate for your model
eta = 0.01

output = np.zeros(4)

bias =
weights =

# Initialize data structure to hold the accuracy of your model�s prediction
accuracy = np.zeros(500)
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Figure 5.1: Scheme of a single-layer perceptron. Inputs are multiplied with their
corresponding weight and the products are summed up plus the bias. The result
is then entered in the activation function, which generates the output.

Follow the summation and bias function above in Figure 1, fill in the blanks
inside the for loop:

# Calculate the output for the summation and bias function
output = + np.matmul( , )

# Input the output in the activation function,
# the result will be the prediction of this model based on the
# given inputs.
output =

# Denote the prediction as yHat
yHat =

yHat = np.sign(output)/2 +0.5

We just described what is known as a single-layer perceptron. This type of per-
ceptron produces outputs that are linearly separable. This means that there
exists some line that can be drawn between our two output sets. Note that this
is only the case if there are two input dimensions. With three input dimen-
sions, the data “live” in a 3D scatterplot, and it requires a plane to separate the
classes. In more than three dimensions, a hyperplane is necessary. Single-layer
perceptrons can solve simple problems like representing logic operators AND,
OR, and NOT. However, these single-layer perceptrons are incapable of solving
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Figure 5.2: A visual demonstrating the distinction between linearly and non-
linearly separable problems. The left image shows a linearly separable problem
that can be solved with a single line. The right image shows a nonlinear problem
that cannot be solved with a single line.

a more complex problem such as XOR because the outputs cannot be produced
from a linear combination of inputs (the outputs are not linearly separable).

Exercise 5: What is the di�erence between a single layer perceptron and an
MCP neuron?

Exercise 6: Explain how a perceptron functions. Which step contributes most
to the “learning” process?

One of the major shortcomings of the single-layer perceptron is its activation

function. We already mentioned the activation function of the single-layered
perceptron as being a step function:

The main fault of the step function, however, is that it cannot represent small
changes in the weights to reduce error and approach the optimal solution. This
is because the activation function is not di�erentiable. Therefore, if there is
an error in the output, changes made to the weights are constant and are not
dependent on the change in input.

Now consider a multilayer perceptron with a di�erentiable nonlinear activation
function. If the activation function is di�erentiable, then you can make gradual
changes to the weights and bias so as not to overshoot the optimal solution.
Consider an alternative activation function:
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Figure 5.3: Graph of a step function that can only oscillate between 0 and 1.
The function begins at 0 and then at some time theta directly rises to 1.

We call this the sigmoid ac-

tivation function. While the step function has an output of either 0 or 1, the
output of the sigmoid function is continuous between 0 and 1. There also exists
some threshold for decision making in both functions. Another distinction be-
tween sigmoid and the step function is that sigmoid is a smooth curve that is
di�erentiable everywhere. This allows us to be able to make slight adjustments
to our weights. Thus, the process of tuning weights and bias is gradual and
leads to better learning in these networks.

Earlier we explained a single-layer perceptron as having a step function, which is
just one of many possible activation functions. When our output is not linearly
separable, which is the case in most real-world problems, we chain layers of neu-
rons together and use multiple nonlinearities from the various units to solve the
problem–these added layers are known as hidden layers . Each of these hidden
layers–as well as the output layer–will have its own activation function, and will
make a decision based on some input (neural feature). The output of this func-
tion is mapped between 0 and 1 where 0 means the feature is not present and
1 means it is present, given a di�erentiable activation function. Non-linearity
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Figure 5.4: Example of a multilayer network. (Glosser.ca, 2013)

is required as we are attempting to produce a non-linear decision boundary be-
tween two sets (see ??). Furthermore, if we only use linear activation functions,
we can add any number of additional layers to our network and the final output
is simply a linear combination of the initial input data. In other words, if we
had no activation functions and we were to merely pass the weights from layer
to layer, the output would be a linear combination of the inputs.

Exercise 7: Why is it that the activation function produces linear data? Why
is linear data a problem with respect to real-world situations?

In 1986, Hinton et al published “Learning representations by back-propagating
errors.” This paper introduced two concepts that allow for these non-linear
activation functions to learn more complicated features. The first being the
addition of hidden layers, as mentioned earlier, to the perceptron. These are
nodes representing neurons in the network between the input and output. It is
these hidden layers explicitly that allow for multilayer perceptrons i.e. neural
networks, to learn more complicated features (like XOR). The second of these
concepts is backpropagation, a procedure to repeatedly adjust the weights to
decrease the di�erence between the network output and the desired output.

Backpropagation is performed by calculating the cost of an output neuron. One
example of a cost function is Mean Squared Error, which allows us to calculate
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cost via:

MSE = 1
n

nÿ

i=1
(Yi ≠ Y hati)2

In the cost function, Yi is the output of our activation function and Ŷi is our de-
sired output. We take the output of our cost function and use it to make changes
in our weights with the goal of minimizing cost for the next iteration through
our network. Note that in order for backpropagation to be possible, our activa-
tion function must be di�erentiable between 0 and 1 e.g. the sigmoid function,
but the step function is not. For a detailed explanation of how backpropagation
works, check out this video.
Exercise 8: Explain why backpropagation and hidden layers are necessary for
the perceptron to optimize its learning capabilities.
Exercise 9: Why is the sigmoid function a better alternative than the activa-
tion function for multilayered perceptrons?
Exercise 10: Think back to real neurons. How does a multilayered perceptron
compare to an actual neural network? What strengths does it have, and what
weaknesses?
Code exercise (continued):

Below is the completed for loop following from the previous code snippet. Note
the manner in which we updated the weights.

# Calculate the error between predicted y and your expected Y1
error = (Y1 - yHat)

# Compute delta weights. This step is where the
# model starts to �learn� based on the difference
# between expected output and the actual output.
# Delta weight will be the change of weight. It is
# based on input value and error size.

deltaW = eta * np.matmul(X1.T, error)

# Update weights
weights = weights + deltaW

# Store accuracy for the prediction along iterations
accuracy[i] = len(error[error==0]) / 4

# Plotting
plt.figure()

plt.plot(accuracy)

plt.xlabel(�iterations�)

plt.ylabel(�percent accuracy�)
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5.6 Summary

Neural Networks have come quite far in the last half-century. What was initially
thought to exist exclusively in the brain can now be replicated in an algorithm.
It was not until the creation of the McCulloch-Pitts neuron, followed by the
extension into the perceptron before people were convinced that a machine
could learn. People initially believed that the perceptron is useless as they
could not represent logic as simple as XOR with their single layer. It was not
until Geo�ery Hinton pioneered the creation of the multilayer perceptron that
artificial neural networks were respected as a strong representation of how a
computer can learn. Hinton and his collaborators are responsible for many of
the significant leaps in programming computers to learn. The introduction of
backpropagation and hidden layers to neural networks allowed for substantial
progress to be made in the field of Artificial Intelligence.
Neural networks are perhaps the most hyped topic in the tech world today. As
we journey further into the 21st century, we are constantly bombarded with
headlines and news feeds of self-driving cars, agents teaching themselves to play
hide and seek, and the greatest chess engine the world has seen that taught
itself to play in a few hours. There is no doubt that it is an exciting time to
be a neuroscientist; we are at the forefront of considerable innovation and it all
emerges from the material discussed in this chapter.

Coding Challenge Following the code given in this chapter, try to make a
model for an XOR gate. Does the accuracy change when you do more iterations?
Explain your result. Hint: consider the term “linearly separable”.
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Chapter 6

Decoding

6.1 Vocabulary

• Imaging techniques

– EEG
– MEG
– fMRI
– ECOG

• Multivariate Pattern Analysis (MVPA)
• Decoding
• Classifier

– Correlation classifier
– Distance-based classifier
– Boundary-based classifier

• Curse of dimensionality
• Linear discriminant analysis
• Linear support vector machine (LSVM)
• Cross-validation
• Rank measure

6.2 Introduction

In our previous chapter on reverse correlation, we discussed how we may utilize
spike trains to look back and understand the input necessary to create such a
response in a neuron. We discussed the ability to not only correlate an output
with a specific stimulus but additionally the capability to decode raw brain data

57
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Figure 6.1: Raw output of EEG recording

measured via EEG, MEG, fMRI, and ECOG. In other words, for some given
neuronal signals, what stimulus was provided to that neuron which caused it to
fire? In this chapter, we will introduce several methods of neural decoding. In
particular, we will detail the specifics of several classifiers pertinent to decoding,
as well as their various benefits and constraints.

6.3 Imaging Techniques

For decoding problems, there are numerous di�erent types of data that could
be analyzed. The simplest recording of a single neuron will give a spike train
that contains 0s and 1s, or we can average the rate across time bins to generate
a continuous curve to study. Although it might be easier to just focus on one
neuron, usually data are drawn from a population of neurons. In some cases, a
pseudo population of data is constructed from a single-neuron recording in order
to reduce noise or assess group activity. As a type of supervised learning, in
decoding problems, both the input and output are given, but this input can vary
in its appearance. There are multiple types of imaging techniques commonly
employed by researchers to obtain data and recordings from participants. We
will discuss four of the main techniques here: EEG, MEG, fMRI, and ECOG.

6.3.1 EEG

Electroencephalography (EEG) is a method by which the electrical signals pro-
duced by action potentials across a large population of neurons are recorded to
distinguish areas of activation in the brain. In an EEG setup, electrodes are
placed around the scalp in a non-invasive manner to record voltage fluctuations.
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Figure 6.2: Image of a participant in a MEG scanner.

EEGs often record such fluctuation every millisecond, allowing for strong tem-
poral resolution. However, since the electrodes are placed on the outside of the
scalp there is di�culty with the spatial resolution of the recording. The actual
output will be a sequence of voltage values over time from each electrode. This
output can be decoded with multivariate pattern analysis (MVPA) where all
the relationships between time points can be factored in the analysis. MVPA

is able to be utilized for all the imaging techniques discussed in this chapter as a
broad form of decoding that factors in the relationship between variables so they
are not treated as independent variables. Overall, EEG is a cheap, non-invasive
imaging method that is implemented in many laboratories.

6.3.2 MEG

Magnetoencephalography (MEG) is a brain recording technique similar to EEG.
MEG measures the small magnetic fields produced by a population of neurons
being activated together, demonstrating areas of the brain that are being highly
stimulated. For a MEG scan, the machine encompasses the exterior of the
participant’s head and must be completed in a magnetically shielded room as
the magnetic fields produced by the brain are quite small. Similar to EEG, the
output will be a time-series data that is conducive to strong temporal resolution
as data is being recorded every millisecond. In this case, instead of voltage over
time as in EEG, MEG will give a recording of magnetic flux over time. Since
the machine is recording from outside the skull the spatial resolution and only
providing data on the activation at each location the spatial resolution is weaker.
MEG is more expensive than EEG but provides similar, temporally accurate,
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Figure 6.3: Image of an fMRI scan with red sections indicating areas of the
brain that are more active than the control condition.

data on the activation of regions of the brain.

6.3.3 fMRI

Functional magnetic resonance imaging (fMRI) is a system that shows where
oxygenated blood is focused in the brain, indicating which regions of the brain
are most active. Oxygenated and deoxygenated blood have di�erent magnetic
properties allowing researchers to di�erentiate the two in an MRI scanner. Par-
ticipants are placed in a machine that encompasses their head for the procedure
to take place. fMRI scans, while external, are still able to achieve strong spatial
resolution through the use of voxels. Voxels are small three dimensional sections
that the brain is divided up into, and the color assigned to each voxel represents
its level of activation as compared to a standard baseline. All voxels are active
the majority of the time, so the output of the scan is focused on which voxels
are more activated during a specific task of interest compared to this control
activation. The product of an fMRI scan is an image of the participant’s brain
with regions of higher relative activation indicated with color. These colored
regions indicate the presence of more oxygenated blood, as greater activation
requires more oxygenated blood to sustain it. Despite its successes in spatial
resolution, fMRI scans have poor temporal resolution as they take six to ten
seconds for blood-oxygen-level-dependent (BOLD) contrast to show changes af-
ter something happens. fMRI provides descriptive, easily interpretable imaging,
but requires expensive machinery with poor temporal resolution.

6.3.4 ECOG

Electrocorticography (ECOG) is a brain imaging technique that is not utilized
often as it requires electrodes to be placed on the exposed surface of the cortex
of a participant’s brain. The electrodes record electrical activity in the brain,
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Figure 6.4: Image depicting electrodes placed on cortex for ECOG imaging.

similar to EEG. However, due to the proximal location of the electrodes, ECOG
is able to record with both extremely accurate spatial and temporal resolu-
tion. ECOG introduces questions regarding ethics and treatment on humans
as it requires exposing the surface of the brain. Therefore, ECOG is typically
only implemented on participants with epilepsy who require the placement of
electrodes on their brain to record from the region where their seizures are cen-
tralized. Due to its similarity to EEG, the ECOG output would also be tracking
voltage over time from each electrode. ECOG is able to provide critical data
but is a di�cult and extreme procedure.

Features Exercise: What features can be used in decoding di�erent types of
data? Fill in the chart below with corresponding features for each type of data.
The first one has been done for you.

Data.Type Features
Single neurons Firing rate, spike counts
Population of neurons .
EEG signals .
fMRI .
. .

6.4 Introduction to Decoding

With all these data from the various brain imaging techniques in hand, we want
to decode the data–in other words, we want to detect the activity pattern
buried in the random, noisy neural firing data and analyze if di�erent stim-
uli lead to di�erent activity patterns. If by analyzing activity patterns we can
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“predict” the stimulus that causes the activation and if the accuracy of “pre-
diction” is higher than just random guessing, we can say that we successfully
decoded the information in our brain activity recording. The word “prediction”
is in quotation marks because we are not foretelling future events, but instead
checking the answer key to see if our solution is correct.

Depending on the imaging techniques we used in the data acquisition phase,
there are multiple ways to present and analyze data. Popular brain imaging
techniques like EEG, MEG, fMRI, and ECOG all give recordings for a popula-
tion of neurons, and it is the experimenter’s choice to focus more on the group
level or on local variance. It might be the case that whole-brain EEG data
was implemented to analyze event-related brain activation, or it could be that
occipital and frontal electrodes were selected to measure their correlation. An-
other example comes from the field of fMRI, where current interests shifted from
the classical approach that explores the involvement of brain regions in certain
activities to revealing the representational pattern within functional regions.
Depending on the purpose of the study, di�erent classifiers can be selected to
categorize the data. Classifiers are algorithms that make predictions for test
data based on a “learned” pattern from the training set. Here are some types
of classifiers generally used in decoding.

6.5 What is a classifier?

In order to decode brain data, we will need a classifier, which allows us to learn
from labeled data and make predictions on test data from its experience with
the labeled data. We will discuss three types of classifiers which each have their
own strengths and weaknesses. Note that all of the classifiers we will talk about
fall under the category of supervised learning, as they all make decisions based
on labeled training data.

6.5.1 Correlation classifiers

The first classifier we will examine is the simple, yet powerful correlation classi-
fier, which works well for multivariate classifications. In a correlation classifier,
the mean of each class is observed and correlated with each input feature. The
class most correlated with the test item is the classifier’s predicted output.
James Haxby does a great job explaining some of the more intricate details to
be aware of when implementing a correlation classifier. In practice, we consider
each neuron individually as a test point and split the rest into training data.
Next, we find all of the training trials for each class and calculate its respective
mean. We then find the correlation coe�cients between the training data and
our test point and assign our predicted class to be the category with the highest
correlation. We can then determine the accuracy of this classifier by evaluating
the percentage of correctly classified test points.
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6.5.2 Distance-based classifiers

The second classifier we will discuss is the distance-based classifier, which bases
its decision making on the distance calculated from the test point to the train-
ing point. One popular example of a distance-based classifier is the k-nearest
neighbors (KNN) algorithm, where k is the number of training points that are
closest to our test point. Each training point yields one vote to decide the class
for each test point. The class with the most votes is then the resulting classifi-
cation of that test point. Note that k is conventionally odd to ensure a majority
class. To perform the algorithm, we first sample each of our training points.
For each of these points, we calculate the distance to the test point. These
distances are then sorted to ensure picking the k-smallest distances i.e. nearest
neighbors. Finally, we take the most frequent class to be the predicted class of
our test point. Before we move on to our next classifier, we must touch on one
of the major pitfalls of distance-based classifiers: the curse of dimensionality.
Distance-based algorithms work great in low dimensions where it is compu-
tationally inexpensive to calculate distances. The curse of dimensionality

pertains to the fact that, as we move up in dimensions, the distances between
all points to one another grow very large and the variability among distances
becomes small. Therefore, your data must grow exponentially as dimensions
are increased in order to sample enough of the space for these dimensions to be
meaningful. It is for this reason that when working with high dimensional data,
a distance-based classifier may not be the best choice.

6.5.3 Boundary-based classifiers

The last of the three primary classifiers we will discuss are boundary-based clas-
sifiers, which produce some line or curve separating classes in two dimensions,
a 2D plane to separate classes in three dimensions, or an abstract boundary
(hyperplane) in higher dimensions. One example of a decision-based classifier
is the Linear Support Vector Machine, which functions similarly to Linear Dis-
criminant Analysis. Linear Discriminant Analysis works by asking what
is the best line/hyperplane we can draw to separate the centroid means of our
classes, whereas a Linear Support Vector Machine (LSVM) instead draws
a boundary between the hard examples in the training set. We mentioned
that distance-based classifiers are not a good choice of a classifier for higher-
dimensional data. Conversely, LSVMs work well with high dimensional data;
instead of calculating large distances between points, we only require a single
hyperplane separating classes. Data points falling on either side of the hyper-
plane can be used to predict test point classes. In an LSVM algorithm, we
aim to maximize the margin between the training points and the hyperplane
via a cost function. Similarly to our neural network weight updating, when our
LSVM misclassifies a data point, the weights determining our hyperplane are
adjusted by this cost function.
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One question you may be asking yourself based on the last chapter, “Wait–what
about neural networks? We just learned that they can make decisions based on
labeled input data!” This is a natural question to ask and the answer is in
fact, yes–neural networks can function as a classification algorithm. However,
when creating a classifier, the setup of a neural network is a significant hassle
in terms of parameter tuning (layer size, layer count, learning rate, etc). When
possible, it makes more sense to work with one of the previously discussed trivial
classifiers, which are more lightweight than a neural network and work “out of
the box.”

6.6 Cross validation

We talked about that decoding means to make predictions on the test set based
on the pattern from the training set. It is worth mentioning that both the
test set and the training set, although all from experimental data, should be
clearly separated during learning and predicting. Otherwise, you will fall into
the circular logical fallacy. Formally this is done by cross-validation, a scheme
that partitions the data set into the test set and the remaining data into the
training set, and then predictions can be made on the test set. The training and
predicting processes repeat several times to obtain a prediction for every data
point. This may sound paradoxical since we mentioned that it is problematic
to use A to predict A, but here since the test and training sets are clearly
separated for every round of prediction, and the predicted results are never

used for training, we are not falling into this logical trap.

Cross-validation is a decoding strategy that includes some subtypes like leave-
one-out cross-validation, which is an extreme case in the cross-validation family.
This method leaves exactly one sample to be the testing set and uses all other
samples as the training set. It is worth noticing that when data are classified
into multiple groups, one sample must be left out for every group. This is to
prevent unbalancing in the training set, as an unbalanced training set may lead
to a biased model. This method, while having the best chance to generalize to
new examples, also requires very high computational power. A less demanding
method is the k-fold cross-validation where k splits are made and (k-1) groups
are assigned to the training set. The remaining group serves as the test set. The
training and predicting repeats k times, and it is generally faster than leave-
one-out-cross-validation in terms of computing power. The e�ectiveness of the
classifier is evaluated by accuracy, which is usually computed as the average
correctness across all samples. Lastly, another method is the rank measure,
which ranks the probability for all labels and measures the distance between the
predicted label and the top. Sometimes it is worth noticing that higher accuracy
does not mean better classification. Assume that based on some brain data we
want to classify patients into two groups: “children who have ADHD” and
“children who do not have ADHD”. It is better to misclassify children without
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Figure 6.5: The Logical Flow of Cross Validation. Notice that the loop continues
until every group of data served as the test group.

ADHD into the ADHD group, compared to classifying children with ADHD to
the control group, as the latter one may be more deleterious.

Case study exercise: A group of researchers is studying object recognition in
the inferior temporal cortex using ECOG and decoding. The neurons are not
all equally responsive because an electrode array was not making full contact
with the participant. What issues might this cause in decoding data? Discuss
how you might fix this problem.
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6.7 Conclusion

When performing neural decoding, we are aiming to determine what informa-
tion about the stimulus is available in the electrical activity of neurons. There
are many areas in which decoding can be applied and used to make predic-
tions about what people are thinking, dreaming, seeing, or hearing. In the
fast-moving field of Computational Neuroscience, we will likely see great strides
made in decoding in all of these areas. It is paramount to our interests as Neuro-
scientists to be mindful of certain ethical questions as this progress is made. In
China, we already see the persecution of both the Uyghur and Hong Kong pop-
ulations through government-sponsored facial recognition. This abuse of facial
recognition technology is a strong indicator that these decoding techniques may
similarly be used in the future by malevolent actors. One potential dystopian
scenario based on these methods might include crime prediction and imprison-
ment solely based on brain activity. It is our responsibility to be mindful of how
this technology is introduced to the field, as well as the world.

Ethics exercise: Some say that decoding could allow scientists to “read minds”.
Here is one article that refers to decoding as “mind-reading”. In light of this,
what might be some ethical issues regarding the various applications of decod-
ing? How could we potentially protect against these issues?

Coding exercise: The code below codes for two separate clusters of data with
means at 0.05 (blue) and 0.95 (red) which is plotted in a scatter plot.

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(10)

m1 = np.array([0.05, 0.05])

m2 = np.array([0.95, 0.95])

sigma = np.eye(2)

data1 = np.random.multivariate_normal(m1, sigma, 100)

data2 = np.random.multivariate_normal(m2, sigma, 100)

plt.figure()

plt.scatter(data1[:,0], data1[:,1], c=�blue�)

plt.scatter(data2[:,0], data2[:,1], c=�red�)
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Based on this scatter plot and the code above, fill in the following code. The
code should generate a test point from either group m1 (the blue scatter plot) or
m2 (the red scatter plot). Then the distance between the generated test points
and the two means should be found using the pdist() function. You can look up
the pdist() function to learn more about it and its arguments. This should be
done in a for loop with 100 steps. The code additionally computes the accuracy
of the decoding. This part is mostly written for you but remember to initialize
the data structure and write the conditional to help determine accuracy.

# Importing pdist function
from scipy.spatial.distance import pdist

# Initiate data structure for accuracy
accuracy = np.zeros( )

mat1 = np.zeros( )

mat2 = np.zeros( )

# Loop to classify which group the test point is in
for i in range( ):

# Conditional to randomly pick a point from m1 or m2
if np.random.rand() :

myMean =
realClass =

else:

myMean =
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realClass =

# Define test point
myPoint = np.random.multivariate_normal( , , )

# Calculate the distance to m1 and m2 (row 0: myPoint; row 1: m1 or m2)
mat1[0,:] =
mat1[1,:] =
mat2[0,:] =
mat2[1,:] =

dist1 = pdist( )

dist2 = pdist( )

# Conditional to assign predicted class to be the class w/ smallest distance
if dist1 dist2:

else:

# Conditional to determine trial accuracy
if :

accuracy[i] = 1

# Calculate mean accuracy
meanAcc = np.sum(accuracy)/100

print(meanAcc)
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Chapter 8

Glossary

• Absolute Refractory Period: The point from the beginning of the action
potential to the peak. In this time frame, it is not physiologically possible
for the neuron to fire a second time. In this time period, the sodium
channels are open and remain open until the peak of the graph. These
channels can not immediately re-open, and due to this, it would not be
possible for the membrane to depolarize a second time.

• Activation Function: Allows for a neuron to make a decision (produce an
output) along some continuous interval to adjust weights to learn.

• Algorithm: An algorithm is a process to define why the model is appro-
priate and how the logical strategy will be carried out.

• Back Propagation: Correction signals that run backwards from the output
units to the hidden units and then are summed according to the hidden-
to-output weights.

• Bottom-up Processing: Bottom-up organization refers to the reverse pro-
cess, collecting data and then organizing it to create a theory.

• Classifier: A type of supervised learning that learns from training data
and makes predictions on test data. Specific types of classifiers include:

– Distance-based classifier
– Boundary-based classifier

• Coe�cient of Variation: Standard deviation divided by the mean of a set
of data.

• Computational Neuroscience: Computational neuroscience is an interdis-
ciplinary field that applies the principles of mathematics, philosophy, and
computer science to study the inner workings of the brain.
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• Computational Theory: Computational Theory a characterization of the
system’s goal.

• Conductance: Allows the flow of charge.

• Cost: Calculation in Backpropagation using the Mean Squared Error:
MSE = 1

n

qn
i=1(Yi ≠ Y hati)2. Used to change weights with the goal of

minimizing cost at each iteration.

• Cross-validation: A decoding scheme that repeatedly partitions the data
set into a test set and the remaining data into a training set and makes
predictions for every test set until predictions are made for every data
point in the data set.

• Curse of dimensionality: As we move up to in dimensions and start cal-
culating distances in hyperplanes, these operations become exponentially
less e�cient.

• Decoding: Field of neuroscience aimed at using action potential data in
a single neuron or neural networks to identify the stimuli that caused the
neural activity.

• Depolarization: This process of positive ions flowing into the cell.

• Driving Force: The pressure for an ion to move in or out of the cell.

• Emergent Phenomena: An emergent phenomenon is a case in which new
mechanisms arise from the addition of a su�cient number of the same
functional part.

• Equilibrium Potential: The membrane potential at which the flow of elec-
tric current from all types of ions into and out of the cell is balanced,
so there is no net current and the membrane potential is not caused to
change.

• Fano Factor: The fano factor is used to measure the spike variability in a
spike train. It is calculated by the variance of the number of spikes divided
by the mean number of spikes in a given time interval.

• Gating variable: The Fire Model is broken up into three separate conduc-
tance terms, each relating to a di�erent ion channel called the m, h, and
n variables.

• Hardware and Implementation: Hardware implementation is the physical
machinery that realizes the algorithm.

• Hebbian Learning: One of the core levels of organization within the brain
is the synapse. The synapse consists of a pre-synaptic cell, which sends a
message to another neuron, or the post-synaptic cell. When many of these
messages are sent between two cells, the connection between the two of
them is strengthened. This is a theory of “synaptic plasticity” which can
be applied through theoretical models within the field of neuroscience.
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• Hidden Layers: Additional layers used when an output is not linearly
separable (like XOR); these layers of neurons are chained together via
multiple nonlinearities from the various units to solve the problem. Each of
these hidden layers–as well as the output layer–will have its own activation
function.

• Hyperpolarization: To decrease the membrane potential towards a more
negative value through outward electrical current.

• Imaging techniques: There are multiple types of imaging techniques com-
monly employed by researchers to obtain data and recordings from par-
ticipants. The techniques include:

– EEG
– MEG
– fMRI
– ECOG

• Interspike Interval: The time interval between every pair of spikes.

• Leak Current: Leak currents are the passive membranes that are depen-
dent on the membrane potential to drive the electrical potentials of the
permeable ions and concentration gradient.

• Linear discriminant analysis: Type of decision-based classifier algorithm
that maximizes that distance between centroid means.

• Linear support vector machine (LSVM): type of decision-based classifier
algorithm that creates a boundary that maximizes the distance between
the hard examples in the training set (known as the support vectors);
LSVM works well with high dimensional data.

• Linearly Separable: Di�erent classes of outputs in space that can be sep-
arated with a single decision surface.

• McCulloch-Pitts (MCP) Neuron: Initial neural network model designed
by McCulloch and Pitts that takes multiple inputs with associated weights
to produce a single output.

• Membrane Potential: The potential di�erence across the cell membrane.

• Multivariate pattern analysis (MVPA): Method utilized for all the imaging
techniques as a broad form of decoding that factors in the relationship
between variables so they are not treated as independent variables.

• Negative Feedback: A process by which an initial change is opposed by a
force caused by the initial change.

• Nernst Potential (Reversal Potential): The membrane potential at which
the flow of a particular ion is in a dynamic equilibrium, meaning the
outflow is precisely matched by the inflow of that ion.
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• Neural Networks: Computing model comprised of basic processing ele-
ments strung together that take an input and give an appropriate output
and can become increasingly layered to conquer more complex concepts
and problems.

• Perceptron: An algorithm for transforming inputs to outputs with the
corresponding weights, bias, and the activation function.

• Peri-Stimulus Time Histogram: Average time-dependent rate of action
potentials (or spike rate) measured during a stimulus over a period of
time.

• Poisson Process: Probabilistic production of events, such as spikes, at any
point in time with equal probability per unit time.

• Positive Feedback: A process by which depolarization of the cell causes
further depolarization. More generally, a positive feedback loop is a pro-
cess that perpetuates itself.

• Rank measure: A type of decoding that ranks the probability for all labels
and measures the distance between the predicted label and the top.

• Reconstructionism: Reconstructionism is similar to reductionism, except
with the added step of reconstructing the reduced parts.

• Reductionism: Reductionism is breaking larger concepts or models down
into smaller parts.

• Reinforcement Learning: Learning shaped through interactions with the
environment through reward and punishment.

• Relative Refractory Period: The point after the absolute refractory period
when a second stimulus, that is above a threshold, can elicit a second
action potential without allowing the membrane to hyperpolarize back to
its resting membrane potential.

• Representation: The representational scheme is the description of the
functional elements that are used in the computation.

• Reverse Correlation: Process which implements the analysis of outputs to
determine the inputs that the neuron will respond to with a spike.

• Sigmoid Activation Function: One type of non-linear activation function
that determines the output, whose function is defined to be f(x) = 1

(1+e≠x)

• Sodium-Potassium Pump: Uses just below 10% of your body’s daily en-
ergy to pump three sodium ions out of the neuron for every two potassium
ions pumped in, thus forming two respective concentration gradients.

• Spike Count Rate: The number of spikes per time interval.
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• Spike Train: A sequence of recorded times at which a neuron fires an
action potential.

• Spike Triggered Average: The average value of the stimulus during some
time interval before a spike occurs.

• Step Function: One type of activation function that takes returns a binary
output of 0 or 1.

• Supervised Learning: Learning situations where inputs and expected out-
puts are given information to predict future solutions.

• Top-down Processing: Top-down organization refers to the idea of design-
ing a machine for an express predisposed class.

• Turing Machine: The Turing Machine is a theory created by Alan Turing
involving an infinite strip of paper with binary cells which can be used to
compute any questions theoretically.

• Unsupervised Learning: Learning that occurs in the absence of a teacher
with expected outputs; a student simply looks at patterns and tries to
maximize correlations or find a basic understanding or pattern.

• White Noise: A random variation where the value at each time point is
independent of all other points and so can be employed in these instances
to provide a receptive field without bias.
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