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Abstract 

 

The increased demand of electricity and water consumption for cooling and 

heating processes together with the continuous increase in earth temperature due to 

greenhouse gases emission urged the utilization of sustainable, affordable and clean 

energy resources. Globally, the biggest amount of water is consumed for agricultural 

purposes. Domestically, in Abu Dhabi Emirate, the agriculture sector consumes over 

50% of the supplied water. Part of this consumption is due to the evaporative cooling 

approach that is typically used in cooling greenhouses. This approach utilizes a large 

amount of water and energy to maintain the greenhouse temperature within the desired 

range. Ground Heat-Exchanger is an environmentally-friendly solution used for 

heating or cooling applications. It is based on seasonal temperature difference between 

the ground and the ambient which varies with depth. As depth of ground increases, the 

temperature fluctuation decreases because of the soil high thermal inertia and the time 

lag in temperature fluctuation between the surface and the ground. The aim of this 

thesis is to design a control system using fuzzy logic controller to study the feasibility 

of utilizing weather conditions and soil temperature in cooling or heating processes of 

a special type of greenhouses. The proposed control system takes a decision of either 

utilizing the outside weather conditions or using the soil temperature.  The study is 

conducted on a thermally insulated greenhouse system equipped with ground-to-air 

heat exchanger, actuated windows, fans, and sensors and the proposed controller 

performance is compared to a logical and conventional ON/OFF controllers. Results 

show the proposed control system is capable of maintaining the greenhouse 

temperature within the desired range for most of the day hours in winter utilizing only 

the weather and soil temperatures. However, when the temperature is extremely hot, 

especially in summer, the ground heat exchanger can be only used for pre-cooling with 

a capability of reducing the ambient temperature of about 6ºC on average. In such 

extremely hot periods, an auxiliary cooling unit has to be deployed for further cooling. 

In addition, results reveal that fuzzy controller consumes less power than the logical 

and the ON/OFF controller when operating the system actuators. 

 

Keywords: Ground Heat Exchanger, GHE, Sustainable Energy, Fuzzy Controller, 

Greenhouse. 
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Title and Abstract (in Arabic) 

 

تصميم نظام تحكم مرن يستخدم تغيرات الطقس الخارجية وحرارة باطن الأرض للتحكم 

 في درجة حرارة بيت زراعي معزول حرارياً ومزود بأجهزة استشعار

 الملخص

تعد الزيادة المستمرة في استهلاك الماء والكهرباء وارتفاع درجة حرارة الأرض بسبب 

رئيسي لاستخدام مصادر طاقة بديلة مستدامة ونظيفة.  الاحتباس الحراري والغازات الدفيئة حافز

عالمياً، يعد استهلاك الماء لأغراض زراعية هو الأعلى نسبة مقارنة مع مصادر الاستهلاك 

% من استهلاك الماء في إمارة أبوظبي يذهب للقطاع 50الأخرى. على الصعيد المحلي، أكثر من 

عملية التبريد بالتكثيف للمحافظة على درجة  الزراعي وجزء كبير من هذه المياه تستخدم في

الحرارة المرغوبة للبيوت الزراعية. يعد استخدام درجة حرارة باطن الأرض في عمليات التبريد 

والتدفئة من الحلول البيئية المستدامة والنظيفة حيث أن درجة حرارة سطح الأرض تختلف عن 

عل باطن الأرض مصدراً للتبادل الحراري درجة حرارة باطنه إذا قيست في نفس الوقت مما يج

في معظم أيام السنة. الهدف من هذا البحث هو تصميم نظام تحكم للمحافظة على درجة حرارة 

البيوت الزراعية بالاستفادة من حرارة الجو الخارجية وحرارة باطن الأرض. يعمل نظام التحكم 

ه وإجراء مقارنة بينهما لاتخاذ قرار بأخذ قراءات درجات الحرارة لداخل البيت الزراعي وخارج

إما باستخدام درجة الحرارة الخارجية عن طريق فتح النوافذ أوتوماتيكياً أو باستخدام درجة حرارة 

باطن الأرض أو بتشغيل نظام التبريد الإضافي. أظهرت النتائج أن استخدام حرارة باطن الأرض 

 27رارة البيت الزراعي عند حوالي متر يساعد على المحافظة على درجة ح 2.5على عمق 

درجة مئوية مما يجعل استخدام حرارة باطن الأرض ملائماً للتدفئة في الشتاء وللتبريد الأولي في 

الصيف في مناخ دولة الإمارات. كما أكدت الدراسة على أهمية دراسة مناخ المنطقة وخواص 

قبل تصميم نظام التبادل الحراري التربة ومتطلبات المشروع الذي ستستخدم فيه حرارة الأرض 

 وتحديد العمق المناسب. 

التبادل الحراري مع باطن الأرض، طاقة متجددة، طاقة نظيفة، بيوت  مفاهيم البحث الرئيسية:

 زراعية، نظام تحكم مرن 
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 Chapter 1: Introduction  
 

1.1 Overview 

Greenhouses are used to maintain favorable conditions to plants by controlling 

temperature, relative humidity, water irrigation, fertilizers and other greenhouse 

variables throughout the year. Controlling these variables results in reduction of water 

and power consumption as well as better yield quality. Different approaches have been 

used to control and monitor the greenhouses; some of these approaches are based on 

physical models while others are based on an input-output relationship or data training 

models. This thesis aims to develop a control architecture for an innovative greenhouse 

system. The innovative greenhouse is thermally insulated and equipped with ground-

to-air heat exchanger, fiber optics lighting system, actuated windows, fans, and 

environmental sensors such as temperature, humidity and wind speed sensors. The 

proposed control system is designed to maintain the greenhouse temperature and 

humidity by utilizing the ambient weather conditions through automated windows and 

the ground thermal status through the ground heat exchanger. It is tested in simulation 

over one year by mathematical modeling of the greenhouse room temperature and 

ANFIS modeling of the greenhouse room humidity. This research is a part of the 

following project “Development of a Novel Vegetable Farming Chamber Utilizing 

Zero-Water Cooling and Natural Lighting "Towards a Green Organic Farming" 

/ DUAEU/SQU 01_06_15/12.  

 



2 

 

 
 
 

1.2  Statement of the Problem 

The increased demand of electricity and water consumption for cooling and 

heating processes together with the continuous increase in earth temperature due to 

greenhouse gases emission emerged the utilization of sustainable, affordable and clean 

energy resources. World widely, biggest amount of water is consumed for agricultural 

purposes. Domestically, in Abu Dhabi Emirate, agriculture sector consumes over 50% 

of the supplied water [1]. Part of this consumption is due to the evaporative cooling 

technique that is used in many greenhouses to cool down the system. This technique 

consumes big amount of water and energy especially in hot climate like UAE where 

temperature approaches 50ºC in summer days. In this research a fuzzy based control 

system is proposed and studied to maintain the greenhouse temperature and humidity 

by utilizing weather conditions and a ground source heat exchanger (GSHE) for 

cooling or heating the greenhouse system. To test the proposed control system over 

one complete year, the greenhouse temperature and humidity are modeled using 

different approaches. Since the greenhouse room is thermally insulted, a mathematical 

model is developed to represent the greenhouse temperature. Also, since the humidity 

is affected by many variables and is complex to model mathematically, ANFIS model 

is developed to represent the greenhouse humidity. The work done in this research can 

be implemented in building automation, sustainable buildings design and in systems 

that have more than one actuator controlling the same variable.  The main objectives 

of this research are the following:  

1- Developing a fuzzy-based controller to the newly thermally insulated 

greenhouse system to maintain the greenhouse environment by utilizing 

ground thermal energy and weather conditions. 
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2- Minimizing the fans power consumption used for cooling/heating the 

greenhouse system.   

3- Comparing the performance of controlling the innovative greenhouse system 

between  the conventional ON/OFF controller, the logical controller and the 

fuzzy-based controller.  

The novelty of this theses:  

1- Proposing a control system that can maintain the thermally insulated 

greenhouse with utilizing sustainable energy resources (ambient temperature 

and ground heat)  

2- Developing an algorithm that controls two different actuators that are assigned 

to control the same variable which is the greenhouse temperature.  
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Chapter 2: Relevant Literature  

 

2.1 Ground Heat Exchanger 

As depth of ground increases, the temperature fluctuations at the surface of the 

ground decreases because of the soil high thermal inertia and the time lag in 

temperature fluctuation between the surface and the ground. Many factors affect the 

ground temperature distribution such as the structure and physical properties of the 

ground, the ground surface cover and the climate conditions. The ground temperature 

distribution has three separate zones which are, sequentially listed from surface to 

inner: the surface zone, the shallow zone and the deep zone [2]. In the surface zone, 

the ground temperature is sensitive to short-time weather changes and has a depth of 

1 meter from the surface. However, the temperature in the shallow zone is nearly 

constant and its distribution depends on the seasonal cycle weather conditions. The 

temperature in this zone is close to the average annual air temperature and the zone 

depth depends on the soil type extending from 1 meter to 8 meters for dry light soils 

and can reach up to 20 meters in moist heavy sandy soil. In the deep zone, which is 

below the shallow zone, the temperature is practically constant and rises slowly with 

depth, with an average gradient of around 30ºC/km [3]. Since the temperature is almost 

constant in the shallow and deep zones, the ground temperature is always higher than 

that of the average outside air temperature in winter and is lower in summer.  This 

difference in heat makes the ground heat exchanger an attractive, sustainable, energy-

efficient and environmentally-friendly way for cooling/heating systems especially that 

most of the energy demands in buildings is consumed by these systems.  

The idea of using earth as a heat sink was known in about 3000 B.C. where Iranian 

underground air tunnels were used for passive cooling [4]. However, the concept of a 
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ground source heat exchanger was first known in Switzerland in 1912 and lasted until 

gas and oil replaced it in the 1950s [5]. It consists of circulating medium (water, air or 

antifreeze solution) that passes through pipes buried in the ground to extract heat from 

the environment in summer and dumps it to the ground and vice versa in winter. The 

yield of thermal energy at higher temperature is based on a reverse Carnot 

thermodynamic cycle [3]. Usually a heat pump is coupled to a heat exchanger system 

to increase the thermal transfer efficiency. In fact, the efficiency of a Ground Heat 

Exchanger depends mainly on its type, design, pipe configuration and length, type of 

backfill materials and ground thermal conductivity (sand rock, concrete, etc.). 

 

Main types of Ground Source Heat Exchangers (GSHE or GHE) 

 Different classifications have been done in the literature for the Ground Source 

Heat Exchangers. However, the most common GSHEs are discussed and shown in 

Figure 1. The classification done below considers only the ground, which includes 

underground soil or underground water, as heat sink.  

I. Earth-to-Air Heat Exchangers (EAHE or EAHX)  

 Earth-to-Air Heat Exchangers (shown in Figure 1 (a)) basically consist of pipes 

which are buried in the ground at a depth of about 2 meters, coupled with air as a heat 

transfer medium. The EAHE system forces the outside air through the pipes to be 

cooled or heated and then mixes it with the indoor air of the room [6]. It uses 

underground soil as a heat sink for space heating in winter or space cooling in summer. 

Despite the fact that EAHEs are one of the fastest growing applications of renewable 

energy in the world, with 10% annual increase in installation numbers [4], the 

efficiency of this type is lower than the other types due to the low thermal capacity of 

the circulating medium. Therefore, it is mainly used in pre-heating or pre-cooling 
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processes. In addition, EAHEs often require a large surface area for installation, and 

make use of large diameter tubes to reduce the pressure drop. On the other hand, the 

main advantages of EAHE systems are their simplicity, low operational and 

maintenance costs, the capability of providing fresh air to rooms and the independence 

of the building design. 

  

Figure 1: Types of ground heat exchangers 

 

  Many studies have been conducted to evaluate the EAHE performance and 

efficiency. In [7], a quasi-steady state, three-dimensional model was developed on 

computational fluid dynamics platform CFX 12.0 to evaluate the heating potential of 

EAHE system. In addition, a EAHE was built in central India with polyvinyl chloride 
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pipes buried at 2 meter depth to validate the simulation results. It was observed that 

the rise in air temperature is faster in the initial length of the pipe and then it gradually 

became steady in the remaining length. Around 10ºC drop was measured between the 

inlet and the outlet of the EAHE.  

 In [8], an underground air tunnel system for greenhouse cooling was designed and 

installed in Izmir, Turkey and the exergetic performance characteristics were 

determined. In addition, exergoeconomics was used to determine the design 

parameters of a closed-loop EAHE for greenhouse heating. The results showed that, 

the main resources for exergy destruction in the system are losses in the blower and 

heat exchanger.  

 A study was conducted in Kuwait by Al-Ajmi et al. [9] to evaluate the cooling 

capacity of EAHE in a desert climate. Simulation showed that EAHE can reduce the 

indoor temperature by 2.8ºC during summer peak hours. Also, the results showed that 

EAHE has the potential to reduce the energy demand by 30% in the summer season.  

 Bansal et al. [10] found that integrating an evaporative cooler at the outlet of EAHE 

enhances its performance. Typically, the thermal performance of EAHE systems 

increase with the increase in length and depth of burial pipes while the decline in 

performance is observed with increased pipe diameter and air velocity. In fact, as air 

velocity increases, the convective heat transfer coefficient increases by a factor less 

than the duration in which air remains in contact with the ground making the latter 

effect is dominant [4].  

II. Earth-to-Water Heat Exchangers (EWHE or GCHE) 

Earth-to-Water Heat Exchangers (also known as Ground Coupled Heat 

Exchangers or Ground Coupled Heat Pumps) are known to be closed loop systems 

with a medium circulating (usually water or antifreeze solution) to transfer heat from 
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indoor environment to the sink which is the soil. Small diameter tubes are used with 

water, and an additional heat exchanger (water-air) is then used to transfer heat 

between the air and water. The EWHE general scheme is represented in Figure 1b. 

Normally, less pumping energy is required in these systems because the elevation 

required is less. An energy reduction of 30-40% and 20-40% can be achieved using 

GCHE for cooling and heating respectively [5].  In addition, these systems are thus 

cheaper and easier to install compared to the air-based systems. However, the required 

tube installation length is larger in the EWHE compared to an EAHE, but the tubes are 

much smaller. 

III. Ground Water-to-Water Heat Exchangers  

 Ground Water-to-Water Heat Exchangers (known in many references as 

Ground Water Heat Pump) include the use of ground-water as a heat source or sink as 

shown in Figure 1c. In some applications the GEHP involves supplying water from 

the well to a heat pump or directly to the application. The main advantages of these 

systems are the low initial cost and that less surface area required. However, the 

disadvantages include the dependency on ground-water availability and the high 

maintenance cost due to corrosion in pipes. 

IV. Ground Water-to-Air Heat Exchanger (Figure 1 (d)) 

 Although the air utilization as a heat transfer medium is increasing in Ground-

to-Air Heat Exchanger, there is not much experiments conducted in the Ground-Water-

to-Air Heat Exchangers. This could be due to fact that the ground water is not always 

available near the residential or commercial buildings. Also, digging deep to reach the 

ground water and use it as a sink is quite expensive procedure which requires high 

initial cost and long piping loops.   
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GHE configurations and designs 

I. System configuration  

Generally, there are two configurations of ground heat exchanger systems, open and 

closed loop systems. In open loop systems, ambient air is used as heat transfer medium 

which passes through tubes buried in the ground for preheating or pre-cooling and then 

the air is heated or cooled by a conventional air conditioning unit (if needed) before 

entering the building. However, the process is different when water/coolant is used as 

heat transfer medium and the ground water is utilized as a heat sink/source. In this 

process, the water is pumped from a well through pipes to transfer specific amount of 

heat and then rejected to the well again or to a suitable receptor [3]. This technique is 

usually used in Ground-Water-to-Water Heat Exchangers. However, using 

water/antifreeze solutions in open loop systems is not recommended due to 

environmental concerns such as leakage of chemicals to the ground water. On the other 

hand, the closed system has heat exchangers located underground and a heat carrier 

medium circulating within the heat exchanger. This type of system is cost-effective 

when there is an adequate yard space and the trenchers are easy to dig (i.e. dug prior 

to construction phase) [5]. 

II. Pipes Configuration  

Different pipe configurations were used and studied in the literature, the main 

two types are the vertical and horizontal loops. The horizontal loops are easy to install 

in building construction where typically a 35–60 meter long pipes are needed per kW 

of heating or cooling capacity in closed system [2]. Horizontal loops designs consist 

of either single-pipe, parallel pipes or slinky pipes laid out at 1 meter to 2 meter depth 

[4]. The main advantages of using horizontal pipe configuration are simplicity and low 

capital cost. However, the main disadvantages include the need of big land area to 
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install the loop and that the horizontal loops are affected by ambient temperature 

fluctuation. On the other hand, vertical loops typically consist of U-tubes pipes 

installed at deep depths. Although the vertical pipes require high capital cost, but less 

piping is needed compared to horizontal loops. Deeper boreholes are more efficient in 

heat transfer, however, the construction cost for deep boreholes is more expensive than 

that of shallow ones because the deep digging process is done by specific expensive 

machines. Many applications especially for commercial or residential buildings with 

restricted area preferred the vertical loops systems over the horizontal ones [11]. 

III. Loop length design 

 Many designs and models were built and tested for piping configuration and length 

optimization. The length of the loop depends on many factors including the type of 

loop configuration used, the house heating and air conditioning load, soil conditions 

and local climate. The following results were found from different experiments [12]:  

1- Decreasing the diameter of the pipes increases the cooling/heating efficiency. 

2- Having several pipes of small diameter over which the flow rate is divided is better 

than having one big pipe as efficiency decreases with increasing the flow rate. 

3- Long pipes with a small diameter are efficient in heat transfer but it will increase 

pressure drop in the pipes which will result in high fan/pump energy. 

4- The least pressure loss is found when small flow rate per pipe and a large diameter 

pipes are used. 

5- The Earth-to-Air Heat Exchanger effectiveness rises with longer pipes (checked 

range: 30–70 meters). 

6- For horizontal loops, when pipes are buried in greater depths (3 meters instead of 

1.2 meter), the effectiveness increases.  
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7- When pipe diameter was increased from 100 to 150 millimeters, the heating 

capacity of the system decreased. This is due to the reduction in the convective 

heat transfer coefficient. Also, increasing the pipe surface provides a lower air 

temperature at the pipe outlet which will decrease the heating capacity of the 

system. 

8- 80% is considered to be the optimum value for ground-air heat exchanger 

effectiveness. If higher effectiveness is desired, the tube length or the number of 

tubes should be increased. 

IV.  Backfill material  

 Each rock type has a different thermal conductivity. The thermal conductivity of 

rocks is the ability of a material to conduct heat and it depends on the elements that 

form the rock. For example, rocks that are rich in quartz, like sandstone, have a high 

thermal conductivity, however, low thermal conductivity is found in the rocks that are 

rich in clay or organic material, like shale and coal. Considering the thermal 

conductivity of the backfill material is important for designing optimal and efficient 

ground heat exchangers. 

 

Ground Heat Exchanger Modeling, Optimization and Control 

 Different modeling and optimization techniques have been studied in the literature 

to investigate and evaluate different types of GHEs. In fact, modelling, simulation and 

testing of GHE systems are essential steps for getting the best Coefficient of 

Performance (COP) which is the useful heat supplied by GHE over the work or 

electricity consumed by GHE. In [13], an optimization strategy for the outlet water 

temperature of Earth-to-Water Heat Exchanger was developed to control the variable 

https://en.wikipedia.org/wiki/Heat
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speed pump. The proposed strategy consists of two steps that use a model-based 

approach to simplify the heat exchanger components. The first step is using a rule-

based sequence controller to determine the operating temperature of heat pumps. The 

second step is to determine the optimal combination of outlet water temperature and 

water flow rate that requires minimum energy.   The proposed strategy can save up to 

4.2% of cooling power consumption. A similar work was done in [14], where a closed 

loop of Earth-to-Water Heat Exchanger was used to extract heat from the ground at a 

distance of 1.5 meter and 2.5 meter. An algorithm was developed to find the optimal 

speed pump for the circulating water to extract the desired temperature from the 

ground.  Results showed the system was able to reduce the room temperature between 

3ºC to 4ºC. In [15], the thermal performance of Earth-to-Air Heat Exchangers was 

studied for summer cooling by developing a transient one-dimensional model of the 

heat exchanger.  The Derating Factor, which is the ratio of deterioration in thermal 

performance for transient conditions over the thermal performance for steady state 

conditions, was used to evaluate the performance of the proposed model. It was found 

that, the thermal performance of EAHE in transient conditions is more sensitive to the 

variation of operating duration, pipe diameter and air velocity. Also, Dasare et al. [16] 

developed and validated a numerical model to predict the thermal performance of 

various types of Earth-To-Water Heat Exchangers with water-ethylene glycol used as 

a heat transfer medium. It was found that the soil thermal conductivity and the mass 

flow rate play important role in the amount of heat exchanged. Also, it was concluded 

that the depth of installation has a small effect on its performance. Moreover, three 

types of horizontal pipe configuration were studied which are linear, helical and slinky. 

It was found that the helical geometry is the best configuration for horizontal piping 

heat exchangers. In addition, many studies have been conducted on vertical GHEs. In 
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[17], an optimal design methodology for vertical U-tube ground heat exchangers 

(GHEs) systems was developed using entropy generation minimization and genetic 

algorithms techniques. The proposed optimization methodology decreased the total 

system cost by 5.5%, compared with the original design. Antonio Capozzaa, Michele 

De Carli and Angelo Zarrella concluded that, among the literature models, the 

ASHRAE method is the simplest procedure that could be used to promote the 

application of borehole heat exchangers (BHEs). It is based on the infinite cylindrical 

source (ICS) model, uses the monthly building energy demand and thermal load 

designs as inputs and provide the total length of borehole heat exchanger (BHE) for 

heating and cooling processes [18]. 

  However, in 2016 Kose et al. [19] aimed to find the system identification model 

that best predicts the behavior of the GHE designs. The ARX model, Transfer 

Function model, Process model and the Hammerstein and Wiener Model  were 

numerically compared. According to statistical criteria which includes the best fit, 

parameter estimation, validation of the model and structure of dynamic models, it was 

found that the model with the best performance is the Hammerstein-Wiener model. 

 The conducted research on different types of GHE have highlighted the efficiency 

of the GHEs when the optimum speed is found at which the speed of exchanging the 

temperature allow maximum heat transfer between the ground and the circulating 

medium.  The optimum GHE speed can be found either by trial and error approach or 

by following certain equations and algorithm which differs from one GHE type to 

another. 
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2.2 Greenhouse  

Greenhouse history  

A greenhouse is a metal frame agricultural building used for cultivation and/or 

protection of plants, covered with translucent plastic or glass film which does not allow 

the passage of climatic changes inside. The aim of using greenhouses in agriculture is 

to reproduce the most suitable conditions for the growth and development of crops 

established inside with some independence of the external environment [20]. Despite 

the fact that the exact origin of growing plants in greenhouses is not documented 

historically, the idea of greenhouses was applied early around 30 A.D. to satisfy the 

Roman Emperor’s craving for cucumber. A small greenhouse called specularium was 

built using translucent sheets of mica to grow cucumber all year round [21]. No glass 

or elaborate structures were used to grow plants, instead, plant materials were grown 

in pits covered with sheets of mica and the heat was obtained from decomposing 

manures and hot air flues [21]. The use of glass for protecting the plants was detected 

in France and England in 1385 [22] where tall side walls of glass and opaque roof 

greenhouses were constructed. In the 18th century the glass roofs were constructed, and 

minor improvements were made to greenhouse building. Greenhouse construction in 

the USA started in the early 20th century and flourished until World War II when many 

greenhouse companies turned their business to building construction and infrastructure 

manufacturing. Currently, the North America region started to invest again in this field 

and projected to be of the fastest-growing market for commercial greenhouse during 

the forecast period 2015–2020 [23]. 
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Greenhouse glazing material 

The greenhouse glazing material (or covering material) provides protection for 

the plants from excess cold, hail and rain and significantly affect the amount of sunlight 

reaching a crop and structure heat losses [24]. This material has to be carefully selected 

before structure selection since each glazing material has different characteristics, cost 

and support structure [25]. According to the National Greenhouse Manufacturers 

Association (NGMA), greenhouse glazing materials are classified into three main 

categories; plastic film, rigid plastic and glass.  

I. Plastic Film 

  It is considered as the leading greenhouse glazing material because of its low price 

compared to the glass greenhouses. It includes polyethylene and polyvinyl chloride 

(PVC).  

Polyethylene Film 

 Polyethylene Film material is very cheap compared to other greenhouse glazing 

materials. It is considered as the first choice for farmers around the world. Eighty 

percent of new greenhouses in the United States are made of air-inflated double-

polyethylene film material [24]. Air is blown between the layers for insulation purpose. 

Polyethylene film is very light in weight, has moderate resistance to hail damage, 

moderate susceptibility to flammability and can be easily replaced with minimum 

man-power requirements which overcomes the short life-span drawback of this 

material that varies from one to four years [24].  
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Polyvinyl Chloride (PVC) 

 PVC is barely oxidized, but heat and light break its life-span down to 2 or 3 years. 

Heat loss (especially at night) is less when using the PVC film than the polyethylene 

material because it reduces the transmission of long wavelength infrared radiation. 

II. Rigid Plastics  

 This type of glazing has very good light transmission properties. It is lighter than 

glass and thus requires fewer support bars in greenhouse structures. As plastic ages, it 

turns yellow and light transmission decreases. This material is not easily installed on 

curved roofs. It includes fiberglass-reinforced plastic, polycarbonate and polymethyl 

Mmethacrylate (PMMA) or Acrylic. 

 Fiberglass-reinforced Plastic (FRP) Rigid Panel 

 This type of glazing material has an impact resistance and superior strength that 

makes it useful in building greenhouse end walls. The light transmission through FRP 

is considered very good having 80-90% of clear glass transmission. It has a 10-year 

lifespan.  

Polycarbonate 

 Polycarbonate material has low flammability rates, and very high impact 

resistance. It has higher light transmission than polyethylene film. It usually comes in 

two primary configurations: single layer and multi-layer sheets with the air between 

the sheet layers works as insulator and reduces heat losses. However, the transmitted 

light decreases as the number of sheet layers increases [24].  
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Polymethyl Methacrylate (PMMA) or Acrylic 

  This type of material also comes in two configurations as in the polycarbonate 

material.  It has excellent light transmission, high impact resistance, high susceptibility 

to flammability, textured surface which diffuses light thus preventing condensation 

drip. It has a drawback in that it is not easily installed and requires more components 

than polyethylene film. 

III. Glass  

 Glass is considered as the most expensive glazing material. Therefore, it is used in 

very large compartments in order to lower cost per unit area, improve efficiency and 

reduce heat loss through the greenhouse sidewalls [24]. It is very resistant to 

flammability and has the highest light transmission and clarity which increase the heat 

losses.  Additionally, glass greenhouses tend to have a higher air infiltration rate, which 

leads to lower interior humidity [25]. Glass inherent resistance to ultraviolet radiation 

gives it the longest lifespan of about 30+ years since it does not degrade with time.  

2.3 Greenhouse Climate Control  

 The greenhouse climate-control problem is to create a favorable environment to 

improve the development of the plantations and to minimize the production cost in 

terms of raw materials, water and energy consumption [26]. Controlling the 

greenhouse environment is mainly focused on controlling the water and fertilizers that 

feed the plants in one side, controlling the sunlight, CO2, temperature, relative 

humidity and other environmental conditions that surround the plants on the other side. 

By controlling the greenhouse environment, better productivity of plants is gained, 

electricity and water consumption is reduced as well as human intervention in the 
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system [27]. However, the conventional greenhouse system is considered a nonlinear 

and complex thermal system because of the nature of the used structural material and 

the dependent relationship between the greenhouse system inputs’ variables. Recently, 

greenhouses were fully automated and monitored using different methodologies and 

algorithms. Two main approaches are followed for modeling a typical greenhouse 

system and many controlling techniques are used in each approach. The first approach 

is the mathematical or physical modeling approach which uses the state space model 

and a set of differential equations obtained from the greenhouse system mass and 

energy balance equations. The second approach is a black box model approach that 

tries to approximate and control the behavior of the greenhouse system based on the 

input-output data of the process. However, the innovative greenhouse system used in 

this work is thermally insulated, which makes it different than the conventional types 

in terms of controlling and modeling. Below is a discussion of these approaches 

followed by a summery in Table 1 of the controlling techniques applied on both 

modeling approaches. 

 Blasco et al. [28] designed a controller that aims to minimize the cost and maintain 

the greenhouse temperature and humidity. Their controller consists of two 

fundamental elements, the first element is an accurate non-linear state space model 

that uses Genetic Algorithm (GA) to adjust the model parameters and establish a 

flexible cost index to minimize the energy and water consumption. The second element 

is a model-based predictive control that models the greenhouses processes using mass 

and energy balance where the controlled variables are relative humidity and 

temperature, the manipulated variables are windows opening, heating and fog systems 

and the disturbances are solar radiation, wind speed, outside temperature and outside 



19 

 

 
 
 

humidity. The designed controller required powerful computers to do the calculations 

in each sample; however, the sampling time was long enough (2 minutes) to overcome 

this problem. The controller was implemented in a plastic greenhouse with arch-

shaped roof in the Mediterranean area. It was found that, the proposed controller 

worked the same as the ON/OFF controller with respect to temperature, better with 

respect to humidity and cost. Both the proposed controller and the ON/OFF controller 

were not able to keep the temperature and humidity exactly within the specified range.  

In [29], a study was conducted to explore the suitability of the extended Kalman 

filter for automatic, on-line estimation and adaptation of parameters in physics-based 

greenhouse model. The model was developed by dividing the greenhouse into 

compartments and in each compartment the energy and moisture balance was 

determined from the physical processes. The extended Kalman filter was used to both 

reconstruct the states of the greenhouse model and to estimate the parameters online. 

It was found that the extended Kalman filter is quite robust for major disturbances but 

for minor disturbances like opening the window it was not good in parameters 

prediction. However, the study showed that the online parameter estimation with the 

Kalman filter improves the model fit over a longer time period. 

A different approach for sampling and controlling the greenhouse environment was 

proposed in [30].  An event-based control system was presented where the control 

actions are executed in an asynchronous way. The dynamic evolution of the system 

variable is what decides when the next action will be executed. In other words, a new 

control signal is only generated when a change is detected in the system which 

increases the actuators life and reduces the energy consumed by the control system. 
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On the other hand, many studies proved that the black-box approach simplifies the 

greenhouse control problem and provides a reliable control to the system. Al-Aubidy  

et al. [31] presented fuzzy logic controller rules to control the temperature and 

humidity of a classical greenhouse building made of glass and metal. Their system 

gives the farmer the privilege to access and control certain devices remotely.  The 

temperature and humidity status were divided into three categories, high, normal and 

low and accordingly the actuators were closed, opened or half opened. Lots of motors 

and ventilation units were used to implement this controller which requires high energy 

consumption that makes the controller not feasible from economical point of view.   

Guerbaoui  et al. [32] developed a fuzzy logic controller that regulates only the 

greenhouse temperature which is the most important factor in growing crops. The 

bound of temperature states were defined and triangular form membership functions 

were used. A real-time monitoring of greenhouse system was also implemented using 

fuzzy logic controller with LabVIEW software. Heating system, air supply and 

variable speed fan were installed to regulate the greenhouse temperature. It was found 

that it is not necessary to use mathematical model to control the greenhouse 

temperature since the fuzzy logic controller was able to do so with less complication. 

Additionally, the triangle form membership function used in ventilation and heater 

achieved simplified calculations.  

Only few of the proposed controllers [28-42] studied the power cost of 

maintaining the greenhouse environment. In fact, lots of actuators (including motors 

and ventilation units) were used to implement the proposed controllers which indicates 

high energy consumption. In addition, no study was conducted on the operation hours 

of the greenhouse system actuators. Moreover, the work done in controlling the 
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greenhouse environment considers the conventional approaches for cooling/heating 

the system. Also, a lack of experimental results is obvious in the proposed controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

 

 
 
 

Table 1: Summery of greenhouse climate control approaches    

 

Reference 

number  

Greenhouse 

Controlling approach  

Modeling 

approach 

Findings and Results  

[26] H2 controller Mathematical 

modeling 

- The H2 controller performance is 

slightly better than the conventional 

ON/OFF controller.  

[32] -Mamdani fuzzy logic 

controller  

-ON/OFF controller 

Mathematical 

modeling 

- ON/OFF controller experienced huge 

fluctuations of the actuators 

- The energy consumption of the fuzzy 

controller system is less than the 

ON/OFF one. 

[33] Adaptive Neuro-Fuzzy 

Inference System with 

Genetic Algorithm 

(GA)  

Mathematical 

modeling 

- Less set-point error when compared to 

fuzzy controller and ANFIS controller 

-  Smoother controller signals which 

result in significant increase in 

actuators’ life time. 

[34] Adaptive fuzzy 

controller 

Mathematical 

modeling 

- -temperature and humidity inside the 

greenhouse are well tracked. 

[35] - Modified Smith 

predictor  

-PID controller tuned 

by genetic algorithms 

Mathematical 

modeling 

- The modified Smith predictor reduced 

settling time and no overshoot which 

improve actuators lifetime. 

[36] A hierarchical control 

approach is proposed 

for optimal operation of 

greenhouse 

Mathematical 

modeling 

- Optimal operation of the existing 

greenhouse control systems by 

incorporating weather forecasts, 

electricity price information, and the 

end-user preferences  
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 Table 1: Summery of greenhouse climate control approaches (Continued)  

 

 

 

Reference 

number  

Greenhouse 

Controlling approach  

Modeling 

approach 

Findings and Results  

[37] Model predictive 

control (MPC) for 

temperature regulation 

Mathematical 

modeling 

Better performance is gained in terms of 

controller stability when compared to PI  

controller 

[38] Multilayer feedforward 

neural network  

Elman neural 

network 

techniques  

- The error of temperature and humidity 

are very high at some points.  

Controller performance could be 

improved if an adaptive neural controller 

or a multiple neural control strategy are 

adopted. 

[39] - Mamdani Fuzzy 

Logic Controller 

- ON/OFF with hysteric  

- Simple on/off 

Mathematical 

modeling  

fuzzy controller had more ability to 

maintain the greenhouse environment as 

compared with other controllers 

[40] -  hybrid neuro-

fuzzy approach 

based on fuzzy 

clustering  

- Artificial Neural Networks can be well 

adapted to model the greenhouse 

nonlinear behavior 

- Fuzzy logic handles well both 

numerical data and linguistic 

information 
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 Table 1: Summery of greenhouse climate control approaches (Continued)  

 

Reference 

number  

Greenhouse 

Controlling approach  

Modeling 

approach 

Findings and Results  

[41] - Mamdani Fuzzy 

Logic controller 

- On/Off controller 

Mathematical 

modeling 

fuzzy Logic Controller is easy to design, 

highly adaptable and quick to perform. 

[42] Fuzzy logic controller 

developed by using the 

inverted fuzzy model. 

Fuzzy model  - Some dynamics are not well presented 

by the fuzzy model  

- The proposed fuzzy controller is 

simpler and better in regulating the 

temperature when compared to a PI 

fuzzy controller 
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Chapter 3: Methods 

 

Utilizing the ground temperature in pre-cooling/pre-heating processes has been 

used in different applications including greenhouses. However, automating the use of 

outside weather conditions to maintain the greenhouse environment is a new 

sustainable goal that needs a flexible controller to achieve it. To this end, a greenhouse 

controller (GHC) is designed based on fuzzy logic and implemented using Matlab 

R2016b fuzzy logic toolbox with a multiple inputs and multiple outputs (MIMO). The 

GHC is connected to a MySQL database via a wired network to extract the system 

inputs recorded by the sensors and provide the needed outputs. Recording the system 

inputs and outputs is important for analyzing the controller performance and stability. 

Also, MySQL database is selected because it is a free and open source database. In 

addition, it can be easily integrated with the Arduino microcontroller. Since the 

dynamic of greenhouse systems is slow, the measurements are recorded every two 

minutes and the controller processes these measurements and decides the outputs 

accordingly. Also, since designing a fuzzy controller requires a deep knowledge of the 

system inputs and actuators capabilities, the meteorological data are studied, and the 

soil temperature is approximated at different depths over one complete year. The 

performance of the GHC is compared to a logical and conventional ON/OFF 

controllers for greenhouse applications. To test the proposed controller for one 

complete year, the greenhouse temperature is modeled using mathematical equations. 

Below is a description of the collected data, soil temperature approximation, 

controllers design and control system architecture, EAHE design, greenhouse design, 

greenhouse temperature modeling and greenhouse humidity modeling. 



26 

 

 
 
 

3.1 Data Collection  

Meteorological data is collected from National Center of Meteorology & 

Seismology in Abu Dhabi to model the soil temperature, study the outside weather 

conditions throughout the year and to set reasonable limits for the proposed controllers. 

In addition, a MySQL database is designed to include the experimental measurements 

collected by the sensors when doing real experiments in the farm. Sequential Query 

Language or SQL is a standard language for making interactive queries and updating 

a database such as Microsoft's SQL Server, and database products. The main reasons 

for choosing MySQL as a database are its scalability, open sourcing, high performance 

with high-speed load utilities, and compatibility with many programming languages 

including C, C++, JAVA and PHP. 

3.1.1 Meteorological Data  

Meteorological data of air temperature (ºC), relative humidity (%RH), wind speed 

(km/h) and sun duration (hours) are collected in hourly basis for one year to model the 

soil temperature at different depths and to determine the fuzzy logic controller input 

variables’ limits. The data are measured at Al Ain Airport which is 31 kilometers far 

from UAEU-AlFoah farm where the experimental part is done. Table 2 shows the 

maximum, the average and the minimum values of the collected data in 2016.  

Table 2: Metrological data collected from Al Ain Airport in 2016  

 

 

Air Temperature 

(ºC) 

Relative Humidity 

(%) 

Wind Speed 

(km/h) 

Sun Duration 

(h) 

Maximum 47.1 100 52 12 

Average 29.8 42.6 14 10 

Minimum 9.8 5 0 4 
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Accordingly, the input variable limits of the fuzzy controller are selected to be from  

0ºC to 55ºC for air temperature, from 0 % to 100% for relative humidity and from 0 to 

55 km/h (0 m/s to 15 m/s) for wind speed. The margins added to the input variable 

limits are based on the fact that the meteorological data are collected in a shadowed 

area and averaged. In addition, the limits are specified to suit the indoor and outdoor 

controller’s inputs. Moreover, the hourly measured meteorological data gives an 

indicator of how the controller should be designed. For example, Figure 2 shows the 

periodic temperature changes every 24 hours approximately at different seasons. Also, 

Figure 3 shows a time lag between the temperature cycle and the relative humidity 

cycle (i.e. when the humidity is maximum the temperature is minimum). 

 

 Figure 2: Hourly temperature changes in different seasons 
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Figure 3: Hourly temperature and humidity changes 

 

3.1.2 Experimental data  

MySQL database is used to record the sensors data and the controller outputs. 

The database is designed with four tables that are indoor measurements table, outdoor 

measurements table, and controller outputs table. The connection between the MySQL 

database and the controllers is done via ethernet. Also, ODBC, which is a standard 

Microsoft Windows interface, is used for communication between the database 

management systems and the proposed controllers.  

3.2 Research Design 

To design the controller’s inputs and outputs, a deep knowledge of the system 

actuators is required. Since different heat sources are utilized (the soil temperature and 
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the weather conditions) to control the greenhouse room temperature, the soil 

temperature has to be studied throughout the year. A soil temperature approximation 

is done below, and the controller design is discussed. Also, the greenhouse room model 

is developed to test the controller performance and compare between the proposed 

fuzzy controller and the typical controllers over one complete year.  

3.2.1 Soil Temperature Approximation  

Designing robust controller requires deep knowledge about the system 

actuators. Since the ground heat is utilized in this research, soil temperature at different 

depths throughout the year is investigated below. This knowledge helps in deciding 

the depth at which the GHE should be buried for the greenhouse application. In 

addition, it helps in deciding when to use the ground heat exchanger and at what 

capacity. The purpose of modeling the soil temperature is to see the relationship 

between the depth and the soil temperature in UAE climate and to decide how to use 

the GHE in different weather conditions. To model the soil temperature, the hourly 

ambient temperature over the year of 2016 is used to model the soil as a function of 

time and depth as the following [43].  

𝑇𝑠𝑜𝑖𝑙(𝑧, 𝑡) = 𝑇𝑚 − 𝑇𝑝𝑒
(−𝑧√

𝜔

2𝛼
)

cos (𝜔(𝑡 − 𝜑) − 𝑧√
𝜔

2𝛼
)  (1) 

where, 

𝑇𝑚 is the annual average temperature of the ambient air which equals to 29.8ºC 

𝑇𝑝 is the annual peak of the monthly average temperature, which equals to 16.8ºC and 

is tuned to 9.8ºC to match the real ambient temperature when the depth is zero.  

𝑧  is the soil depth from the surface, which equals to 2.5 meter.  
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𝜔 is the rate of change of the function argument in units of radians per hour, which 

equals to  
2𝜋

365.242189×24
(

𝑟𝑎𝑑

ℎ
) 

𝛼 is a parameter depends on soil thermal conductivity, soil heat capacity and average 

soil density. It is estimated to be 0.0013 (𝑊 ∗ 𝑚2/𝐽) 

𝜑 is the phase shift in radiant at which the temperature was the minimum and it equals 

to 21 days.  

To ensure a good approximation of the soil temperature, the derived equation in (1) is 

plotted when the depth is zero and compared to the real ambient temperature as shown 

in Figure 4. The temperature fluctuations at zero depth is not represented by equation 

(1) because it is designed to simulate the deep soil temperatures (i.e. it gives the daily 

average of the soil temperature).  

 

Figure 4: Soil temperature at zero depth  

 

In addition, the soil temperature is plotted at different depths as shown in 

Figure 5. It can be seen that at 0.5 meter depth, the soil temperature follows the ambient 
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temperature to some extent. In addition, as depth increases the soil temperature 

amplitude decreases until it becomes almost constant and equals to the yearly average 

ambient temperature. Moreover, since the UAE climate is hot most of the year’s day, 

utilizing the maximum negative soil temperature in the first half of the year can be 

done at 1.5 meter and 2.5 meter depth. Also, to validate the soil temperature 

approximation results, the soil temperature is measured experimentally at 0.5 meter, 

1.5 meter and 2.5 meter depths in UAEU Al-Foah Farm. Figure 6 shows the recorded 

soil temperature data from Mar. 1st, 2018 at 12:00 am to Mar. 18th, 2018 at 2:30 pm. 

The data collected experimentally reveals that the soil temperature at 0.5 m is sensitive 

to the ambient temperature. 

 

Figure 5: Soil temperature model at different depths  
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Figure 6: Experimental soil temperature at different depths 

Figure 7 shows the measured soil temperature and the approximated soil 

temperature at 2.5 meter and 1.5 meter depths where the difference between the 

measured and the simulated values is less than 0.5ºC. The soil temperature at 2.5 meter 

depth shows more stability than at 1.5 meter which will help in designing the controller 

actions. Therefore, the GHE is deployed at 2.5 meter depth.  

Having further investigation, Table 3 shows a comparison between the ambient 

and the soil temperature at 2.5 meter depth. The average soil temperature is 28.9ºC 

with ±2.7ºC fluctuation.  It can be seen that the soil temperature at 2.5 meter depth is 

lower than the ambient temperature in summer and higher in winter. The maximum 

ambient temperature occurs in July with 47.1ºC where the maximum soil temperature 

at the same month is 30.6ºC. However, the maximum soil temperature occurs in 

October with 7.4ºC lower than the maximum ambient temperature at the same month. 

Also, the minimum ambient temperature happens in January with 9.8ºC and the 

minimum soil temperature happens in April with about 10 degrees less than the 

ambient temperature. This observation shows clearly that the soil temperature at 2.5 
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meter depth can be used in cooling/heating or in pre-cooling/preheating processes 

depending on the desired temperature.  

 

Figure 7: Experimental and modeled soil temperature at different depths  

 

Table  3: Comparison between ambient and simulated soil temperature at 2.5m depth 

 

 

 

 

 

 

 

Time of peak temperatures  Ambient Temperature (°C) Soil Temperature (°C) 

Maximum 

July 47.1 30.6 

October 39.9 32.5 

Minimum 

January 9.8 28.9 

April 13.9 27.1 

Yearly Average Temperature  29.8 29.8 
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3.2.2 GHC Architecture and Design 

A fuzzy-based controller is designed, tested and compared to a conventional 

ON/OFF controller. The inputs to each controller are the main environmental variables 

for cultivation which are temperature and humidity for both ambient and inside the 

greenhouse. Also, to ensure a safe operation, the wind speed is recorded to indicate the 

suitability of opening the windows and utilizing the weather conditions. The 

greenhouse temperature and humidity are controlled based on the desired temperature 

and the outside weather conditions. The outputs of the controllers are the 

extension/retraction percentage of the linear actuators which controls the opening of 

the greenhouse windows allowing for a thermal exchange and sunlight transmission. 

In the cases where opening the windows is not convenient, due to undesired ambient 

weather conditions, the fans are used to extract heat using the installed EAHE system.  

The performance of the controllers is tested considering cultivation of lettuce. 

Lettuce has an optimum growing temperature between 21ºC to 25ºC and optimum 

relative humidity between 50% to 70%. These values are advised by agricultural 

experts who consider the UAE hot climate conditions and accordingly denoted as Tmin, 

Tmax, Hmin and Hmax, respectively.  

3.2.2.1  Fuzzy-Based GHC 

Figure 8 shows the proposed fuzzy-based control system architecture. Details 

of each component is presented next. Thorough comparison and discussion of the 

performance of both controllers are presented in Chapter 4.  
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Figure 8: Greenhouse control system architecture 

 

I.  Actuator Selector 

 

The proposed greenhouse system uses mainly two natural energy resources which 

are the soil temperature and the ambient weather conditions to control the greenhouse 

environment. The soil temperature is utilized by running the fans attached to the GHE 

and the ambient weather conditions are utilized by automatically opening and closing 

the windows with varying percentages. To this end, two Sugeno fuzzy controllers are 

developed to control each actuator. The goal is to make the room temperature error 

approaches zero. The control strategy followed to achieve this goal is based on 

calculating the error of room temperature, outside temperature and soil temperature. A 

decision is taken based on the greenhouse’s variables error and the actuators errors. 

This strategy is implemented in the actuator selector function. The actuator selector 
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receives three inputs which are the errors of the soil, ambient and room temperatures 

from the set point of the room temperature and computed as 

𝑒𝑟𝑜𝑜𝑚 = 𝑇𝑠𝑒𝑡−𝑝𝑜𝑖𝑛𝑡 − 𝑇𝑟𝑜𝑜𝑚 (2)  

𝑒𝑎𝑚𝑏 = 𝑇𝑠𝑒𝑡−𝑝𝑜𝑖𝑛𝑡 − 𝑇𝑎𝑚𝑏 (3) 

𝑒𝑠𝑜𝑖𝑙 = 𝑇𝑠𝑒𝑡−𝑝𝑜𝑖𝑛𝑡 − 𝑇𝑠𝑜𝑖𝑙  (4) 

Since the windows are controlled based on the ambient temperature and the GHE 

is controlled based on the soil temperature, the error of weather temperature is input 

to the windows controller and the error of soil temperature is input to the fans 

controller. Also, the error of the greenhouse room temperature is inserted in both 

controllers. Using the error instead of fixed values generalize the designed fuzzy 

controllers to be used with any desired setpoint without the need to change the rules.  

It is important to mention that the temperature control is the most crucial element 

to the plant as all plants are very sensitive to the surrounding temperature. In fact, most 

crops including lettuce can survive in low temperature for some time but cannot 

survive at high temperatures. Therefore, the humidity control is only considered when 

the temperature is tolerable. 

  Using the computed errors, the actuator selector decides on which actuator 

should be used. The actuator receives zero logic value should be set off or completely 

closed.  Figure 9 illustrates all possible scenarios of the room, soil and ambient 

temperatures with respect to the temperature set point and Tmax. Figure 9 also includes 

the appropriate actuator that should be selected for each scenario. It should be noted 

here that the actuator selector always chooses the actuator that can take the room 

temperature faster to the set point. Table 4 summarizes the actuator selection decisions 
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of the 24 scenarios in 10 cases using the computed temperature errors, 𝑒𝑟𝑜𝑜𝑚, 𝑒𝑠𝑜𝑖𝑙 and 

𝑒𝑎𝑚𝑏.  After deciding which energy source is to be utilized, the decision is passed to 

the related fuzzy controllers to activate the relevant actuator that are designed also 

using the errors between the desired set point and the measured variables.  
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Figure 9: All possible scenarios of room, ambient and soil temperatures 
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Table 4: Error scenarios and decision  

 

II. Fan Fuzzy Logic Controller  

a.  Structure  

A Sugeno fuzzy controller is designed for the fan controller with two inputs and 

one output. The main structure of the fan fuzzy controller is shown in Figure 10. The 

controller inputs are 𝑒𝑟𝑜𝑜𝑚 and 𝑒𝑠𝑜𝑖𝑙  and the output is the percentage of the fans flow 

rate. This percentage is then processed to provide the number of fans running which 

Room Error  Actuators Error  Decision  

𝑒𝑟𝑜𝑜𝑚 > 0  

 

 

 

𝑒𝑠𝑜𝑖𝑙 > 𝑒𝑟𝑜𝑜𝑚 , 𝑒𝑎𝑚𝑏 > 𝑒𝑟𝑜𝑜𝑚  None 

𝑒𝑠𝑜𝑖𝑙 > 𝑒𝑟𝑜𝑜𝑚 , 𝑒𝑎𝑚𝑏 < 𝑒𝑟𝑜𝑜𝑚 Weather utilization (amb) 

𝑒𝑠𝑜𝑖𝑙 < 𝑒𝑟𝑜𝑜𝑚 , 𝑒𝑎𝑚𝑏 > 𝑒𝑟𝑜𝑜𝑚 Soil utilization (soil) 

𝑒𝑠𝑜𝑖𝑙 < 𝑒𝑟𝑜𝑜𝑚 , 𝑒𝑎𝑚𝑏 < 𝑒𝑟𝑜𝑜𝑚,

𝑒𝑎𝑚𝑏 < 𝑒𝑠𝑜𝑖𝑙  

Weather utilization (amb) 

𝑒𝑠𝑜𝑖𝑙 < 𝑒𝑟𝑜𝑜𝑚 , 𝑒𝑎𝑚𝑏 < 𝑒𝑟𝑜𝑜𝑚,

𝑒𝑠𝑜𝑖𝑙 < 𝑒𝑎𝑚𝑏  

Soil utilization (soil) 

𝑒𝑟𝑜𝑜𝑚 < 0 

 

𝑒𝑠𝑜𝑖𝑙 < 𝑒𝑟𝑜𝑜𝑚 , 𝑒𝑎𝑚𝑏 < 𝑒𝑟𝑜𝑜𝑚 None 

𝑒𝑠𝑜𝑖𝑙 > 𝑒𝑟𝑜𝑜𝑚 , 𝑒𝑎𝑚𝑏 < 𝑒𝑟𝑜𝑜𝑚 Soil utilization (soil) 

𝑒𝑠𝑜𝑖𝑙 < 𝑒𝑟𝑜𝑜𝑚 , 𝑒𝑎𝑚𝑏 > 𝑒𝑟𝑜𝑜𝑚 Weather utilization (amb) 

𝑒𝑠𝑜𝑖𝑙 > 𝑒𝑟𝑜𝑜𝑚 , 𝑒𝑎𝑚𝑏 > 𝑒𝑟𝑜𝑜𝑚,

𝑒𝑎𝑚𝑏 > 𝑒𝑠𝑜𝑖𝑙 

Weather utilization (amb) 

𝑒𝑠𝑜𝑖𝑙 > 𝑒𝑟𝑜𝑜𝑚 , 𝑒𝑎𝑚𝑏 > 𝑒𝑟𝑜𝑜𝑚,

𝑒𝑠𝑜𝑖𝑙 > 𝑒𝑎𝑚𝑏 

Soil utilization (soil) 
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controls the overall flow rate from the GHE to the greenhouse room in real 

implementation. The processing of the fan controller output value is explained later in 

this section. 

 

Figure 10: Fans fuzzy controller structure 

 

b. Number of membership functions  

Five membership functions are designed for the temperature input control. 

Based on agriculture experts, most crops optimum temperatures lie between 15ºC and 

25ºC which are donated as 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 respectively. Therefore, the temperature in 

the greenhouse can be classified into cold, normal and hot where the temperature 

below the optimum range is cold, within it is normal and above it is hot. However, 

since the ground temperature at 2.5 meter depth is fluctuating between 27.1 and 32.5 

as in Table 2, the use of ground heat exchanger when the greenhouse temperature is 

the same as the soil temperature will just consume power without providing any 

cooling to the system. Hence, the output of the fan fuzzy controller should be 0 in this 

case and an additional membership function is needed to detect this case. Also, to cover 

the temperature range for most of the crop, an extra membership function is added to 

separate between the cold and the very cold temperatures. For example, for the crops 
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that have an optimum temperature of 15ºC, the minimum ambient temperature which 

is 9.8ºC is considered cold but it is considered extremely cold for the crops that has an 

optimum temperature of 25ºC. The membership functions are extremely cold, cold, 

normal, hot and extremely hot. 

 

c.  Limits of membership functions  

Deciding the limits of the input variables is done based on the meteorological 

data presented in section 3.1.1. Also, deciding the limits of each membership function 

is done with the guidance from agricultural experts who consider the crop optimum 

temperature and humidity and the UAE imbalance hot and dry climate. The limits of 

the membership functions are found for each variable as the following:  

 Two ranges have to be considered when designing the membership functions 

which are the total range and the membership functions ranges, as illustrated in Figure 

11. Finding the total range of each input variable is important to avoid having values 

beyond this range which may cause a drop in the controller performance. For example, 

if the total range is set to be between 10 and -10 and an error is found to be -12, the 

controller may crash at this point or make a random decision. The total range design 

has to ensure that all the errors values lie in the range and margins can be added to the 

total range without affecting the fuzzy decision. Since most of crops grow in 

temperatures between 15ºC to 25ºC and the ambient temperature varies between 

47.1ºC to 9.8ºC the total error range for the room temperature error is between 

[(𝑇𝑚𝑖𝑛 − 𝑇𝑚𝑎𝑥,𝑎𝑚𝑏𝑖𝑒𝑛𝑡), (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛,𝑎𝑚𝑏𝑖𝑒𝑛𝑡)] assuming the ambient air 

temperature propagates to the greenhouse room with some attenuation and delay. Also, 

since the soil temperature at 2.5 meter length varies between 32.5ºC to 27.1ºC, the 

error range for the soil temperature is between [(𝑇𝑚𝑖𝑛 − 𝑇𝑚𝑎𝑥,𝑠𝑜𝑖𝑙), (𝑇𝑚𝑎𝑥 −
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𝑇𝑚𝑖𝑛,𝑠𝑜𝑖𝑙)]. Since the soil temperature depends mainly on the GHE design and 

configuration, a margin is added to the soil temperature error which will generalize the 

designed input variable without affecting the controller decision. For the membership 

functions range limits, the crisp input of the greenhouse room temperature error is 

shown in table 5. The range of each membership is found by the plant tolerance of 

each status. For example, most crops have ±2ºC tolerance for optimum temperature 

set-point.  Lettuce has an optimum temperature between 21ºC and 25ºC and therefore 

the set point is selected to be 23 and the ±2ºC is considered in the zero membership 

function range.  

Although some cases may not appear with the current GHE and the temperature 

set-point, the input ranges are designed to cover all the cases even when the set-point 

is changed, or the soil temperature which is affected by the GHE design is changed.  

 

Figure 11: Membership function range and the total range 

 

Total range 
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functions range 
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 Table 5: Crisp input range of greenhouse room and soil temperatures errors  

 

d. Shape of membership functions  

Deciding the shape of the membership functions is important for taking the 

correct decisions. The choice of membership function shape is based on providing 

smooth transition in inputs status which will affect the outputs and the actuators 

operation and maintenance cost as well. Also, the membership function’s shape should 

equally accommodate the range at which the controlled variable is optimum. Figure 

12 shows the most common membership functions of the fuzzy controller and the 

selection criteria for each input variables follows.  

Z-shape membership function is selected to cover the temperatures errors for 

the extremely cold conditions. The slope of this function is found by trial and error 

approach.  

For the middle membership functions, the triangular, gaussian and dsigmoidal 

membership functions are eliminated because they cannot provide an equal weight to 

the acceptable temperature range. The trapezoidal membership function is also 

eliminated because it cannot provide smooth transition in input variables. Gbell, 

Crisp Input Range of 

the error 

Fuzzy Membership Name Temperature physical 

meaning  

<-7 Big Negative (BN) Extremely hot  

-2 to -7 Negative (N) Hot 

-2 to 2  Zero (Z)  Normal  

2 to 7 Positive (P) Cold 

>7 Big Positive (BP) Extremely cold 
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gaussian2 and pi-shape all can be used because they provide an equal weight to the 

temperature range and smooth transition for the input variables. Therefore, the gbel 

membership function is selected with the slope of both sides is determined by trial and 

error method.   

For extremely hot temperature error, the s-shape or sigmoidal membership 

functions can be selected to cover the temperature. The s-shape membership function 

is selected with the slope is found by trial and error approach. Figure 13 shows the 

final design of the greenhouse room temperature error and Figure 14 shows the final 

design of the soil temperature error.  

 

Figure 12: Fuzzy membership functions 

Sigmoidal  
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Figure 13: Greenhouse room temperature error input design  

 

Figure 14: Soil temperature error input design  

 

e.  Fans controller output 

Five membership functions are selected with constant values type and parameters 

of 0, 25, 50, 75 and 100 to represent the fans controller output. The output of the fan 

fuzzy controller is processed in real implementation to provide the number of fans 

running to the system. For example, if the percentage between 0 and 25 one fan is 
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commanded to run and if it is between 25 and 50 two fans are commanded to run and 

so on. Different interpretation can be done of fans fuzzy output depending on the 

hardware implementation and the system set-up. Figure 15 shows the output 

membership functions of the fans fuzzy controller. The defuzzification process is 

explained later in this chapter.  

 

Figure 15: Fans fuzzy controller output membership function  

 

f.  Fuzzy rules 

The fuzzy rules shown in Table 6 are designed based on the following facts 

(based on experts’ inputs):  

1- Considering the UAE hot and imbalanced climate, when the outside 

temperature is cold (winter season) the heat exchanger will be in heating 

mode.   

2- When outside temperature is hot or extremely hot (summer season), the 

heat exchanger will be in pre-cooling mode where an extra auxiliary 

cooling unit may be needed.   

3- Since the temperature has dominant effect on plants growth, more weight 

is given to maintain the inside temperature than the inside humidity as 
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advised by the agricultural experts. The humidity is only looked at when 

the inside temperature is tolerated. 

4- Plant diseases and fungi are expected when the environment is moist.  

5- The speed of the fans for optimum heat exchanging is tested before running 

the system and all the fans are adjusted to run at that speed.  

6- Since the heat removed or pumped is proportional to the air flow rate and 

the temperature differences, if the temperature difference is low, then a 

high airflow speed is required. But if the temperature difference is high, a 

lower airflow speed can be used. If there is no temperature difference, then 

there is no need to run the fans.  

7- In heating mode, the fan effort can be reduced slightly, as colder weather 

is less harmful for plants as compared to the hot weather.  

The highlighted cells in Table 6 show the cases when an auxiliary 

cooling/heating unit should be running. Also, Figure 16 shows the temperature control 

surface of the fans. 

Table 6: Fuzzy rules for temperature control for fans 

 

𝑒(𝑡)𝑟𝑜𝑜𝑚 

 

BN N Z  P BP 

BN 100 0 0 25  25 

N 100 0 0 50 50 

Z 100 100  0 100  75 

P 75 75 0 0  100 

BP    50 50 0 0 0 

𝑒(𝑡) 𝑠𝑜𝑖𝑙 
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 Figure 16: Fuzzy surface of the fans temperature control  

 

III.  Window Fuzzy Logic Controller  

a.  Structure  

A Sugeno fuzzy controller is designed for controlling the greenhouse windows 

to maintain the greenhouse temperature and humidity. The controller has five inputs 

which are 𝑒𝑟𝑜𝑜𝑚, 𝑒𝑎𝑚𝑏𝑖𝑒𝑛𝑡, 𝑒𝑖𝑛𝑠𝑖𝑑𝑒 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦, 𝑒𝑜𝑢𝑡𝑠𝑖𝑑𝑒 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦  and 𝑒𝑤𝑖𝑛𝑑   and one 

output which is the windows linear actuators extraction/retraction. Figure 17 shows 

the main structure of the windows fuzzy controller.  

 

Figure 17: Windows Fuzzy controller structure 
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b. Number of membership functions  

Temperature  

The number of temperature error membership functions follows the same 

selection criteria as described in the fans fuzzy controller. Accordingly, five 

membership functions are selected to represent the temperature error input variables 

in the windows fuzzy controller.    

Humidity 

The crop humidity is only maintained when the temperature is tolerable and is 

classified as wet normal or dry.  For many crops the optimum humidity is within 50% 

to 70%, as advised by agriculture experts. Based on Table 2, the UAE relative humidity 

varies from 5% to 100% with an average of 42.6%. Therefore, the humidity can be 

classified into dry, normal or wet and hence three membership functions are designed 

for humidity control.  

Wind Speed  

Wind speed is only considered when operating the windows and it can be 

classified either strong or acceptable. Therefore, only two membership functions are 

needed to represent the wind speed status.   

c.  Limits of membership functions  

Temperature 

The total limit of the room temperature error input is the same as the one 

found in the fans controller. However, the total limit of the ambient temperature error 

input is [(𝑇𝑚𝑖𝑛 − 𝑇𝑚𝑎𝑥,𝑎𝑚𝑏𝑖𝑒𝑛𝑡), (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛,𝑎𝑚𝑏𝑖𝑒𝑛𝑡)]. The crisp input of the 
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greenhouse room temperature and ambient temperature errors is described in table 5 

where the same range is followed as the room and soil error.  

Humidity 

Humidity control happens through utilizing of weather conditions whenever 

the temperature is tolerable. The inside humidity error is calculated by 

𝑒𝑖𝑛𝑠𝑖𝑑𝑒 ℎ𝑢𝑚𝑑𝑖𝑡𝑦 = 𝐻𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝐻𝑖𝑛𝑠𝑖𝑑𝑒 and the outside humidity error is found by 

𝑒𝑜𝑢𝑡𝑠𝑖𝑑𝑒 ℎ𝑢𝑚𝑑𝑖𝑡𝑦 = 𝐻𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝐻𝑜𝑢𝑡𝑠𝑖𝑑𝑒.  Based on the fact that the UAE humidity 

varies between 0% and 100% and most crops lives in humidity 50% -70%, the 

humidity error range is  [(𝐻𝑚𝑖𝑛 − 𝐻𝑚𝑎𝑥,𝑎𝑚𝑏𝑖𝑒𝑛𝑡), (𝐻𝑚𝑎𝑥 − 𝐻𝑚𝑖𝑛,𝑎𝑚𝑏𝑖𝑒𝑛𝑡)]. Table 7 

shows the crisp input error of the inside and outside humidity.  

Table  7: Crisp input range of humidity error variable 

 

 

 

 

 

Wind Speed 

Wind speed error is calculated by 𝑒𝑊𝑖𝑛𝑑 = 𝑊𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 − 𝑊𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑. If the wind 

speed is greater than or equal to the maximum acceptable wind speed, then the 

windows are closed to ensure safe environment and operations. The wind is considered 

strong at speeds higher than 28 km/h which is classified as Near Gale in Beaufort Wind 

scale [44]. Accordingly, and considering the UAE wind speed which varies between 0 

Crisp Input Range of 

the error 

Fuzzy Membership 

Name 

Humidity physical 

meaning  

<-10 Negative (N) Wet 

-10 to 10  Zero (Z)  Normal  

>10 Positive (P) Dry 
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km/h and 52 km/h, the wind speed error limits varies between -24 and 28 where the 

negative value represents a strong wind status.    

d. Shape of membership functions  

Temperature 

The design criteria of selecting the temperature error of the fans controller is 

followed in the temperature error of the windows controller. Figure 18 shows the final 

design if the ambient temperature error input variable.  

 

Figure 18: Ambient temperature error input variable design 

 

Humidity  

Three ranges are considered for humidity error input variable as shown in Table 

7.  The zero-membership function is the best that can cover the humidity error below 

the minimum range. The slope of this function is found by trial and error approach. 

The middle membership function which represents the normal range is selected to have 

a gbel shape with the same criteria used in selecting the middle temperature 

membership function. The slope is also determined by the trial and error approach. 

Humidity error above the maximum value is represented by s membership functions 
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and the slope is found by trial and error approach. Figure 19 shows the final design of 

the humidity error membership function.  

 

Figure 19: Humidity input variable design 

 

Wind Speed 

The membership functions of the wind speed input are designed so that gradual 

window closure percentage as wind speed approaching the maximum acceptable limit. 

The linear actuator started to decrease gradually and smoothly at speeds higher than 

26 km/h (7.2 m/s) until it fully closes at speed equal or higher to 28 km/h (7.8 m/s). 

The z membership function is used to cover the acceptable range of the wind speed 

error and the s membership function is used to cover the strong range of the wind speed 

error.  The slope of both membership functions is found by trial and error approach. 

Figure 20 shows the final design of the wind speed input variable.  
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Figure 20: Wind speed input variable design 

 

e.  Windows controller output  

Five membership functions are selected with constant values type and parameters 

of 0, 25, 50, 75 and 100 to represent the windows opening percentage. The output of 

the fuzzy controller is processed before transmitting it to the actuator in real 

implementation. For example, if the output of the fuzzy controller is 𝑦 and the linear 

actuators need 𝑥 time to fully open (100%), the power flows to the actuator for a time 

equal to 𝑦 ∗ 𝑥 /100 . Also, the previous state of the linear actuator is always considered 

before switching the power circuit. For example, if the windows actuators are 

commanded to open 50% at time 𝑡1 and then commanded to open 60% at 𝑡2, the power 

will flow to actuators for time equals (60 − 50) ∗  𝑥/100.  Figure 21 show the output 

membership function of the windows fuzzy controller.  
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Figure 21: Windows fuzzy controller output membership function  

 

f.  Fuzzy rules 

The fuzzy rules of the ambient temperature control are shown in Table 8 and 

the fuzzy surface if the temperature control is shown in Figure 22.  The highlighted 

cells in Table 8 show the cases at which the temperature is tolerable, and the humidity 

control is allowed.  

Table 8: Fuzzy rules for temperature control for windows 

 

            𝑒(𝑡)𝑟𝑜𝑜𝑚 

 

NB N Z  P PB 

NB 0 0 0 25 50 

N 50 0 0 25 50 

Z 100 100 100 100 100 

P 75 50 0 0 50 

PB   100 75 0 0 0 

𝑒(𝑡)𝑎𝑚𝑏 
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Figure 22: Fuzzy surface of the windows temperature control 

 

To control the humidity, the rulers of the windows actuators are extended to 

include the humidity input variable whenever the outside temperature is tolerable (i.e. 

cold or normal). Table 9 represents the action taken for humidity control assuming the 

wind speed is always acceptable (if it is not, the outside humidity cannot be utilized). 

As described in Table 7, if  inside humidity is negative (wet) and the outside humidity 

is positive (dry) or vice versa, the windows are commanded to open 75% to adjust the 

greenhouse humidity.  Also, if the outside humidity is within the acceptable range, the 

windows are commanded to open 100%.  

Table 9: Fuzzy rules for humidity control    

 

 

 

 

 

                   𝑒(𝑡)𝑖𝑛.ℎ𝑢𝑚. N Z  P 

N 0 0 75 

Z 100 100 100 

P 75 0 0 

𝑒(𝑡)𝑜𝑢𝑡.ℎ𝑢𝑚. 
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IV.  Defuzzification 

The defuzzification is the process of transforming the fuzzy results into a crisp 

output. Many methods are followed in defuzzification process such as Center of Sums 

method, Center of gravity method, center of area, weighted average method and 

maxima methods. For the designed Sugeno fans and windows fuzzy controllers, the 

weighted average, also known as weighted average of all rule outputs (wtaver), method 

is followed to defuzzify the results.  

a.  Weighted average method  

This method is valid for fuzzy sets with symmetrical output membership 

functions and produces results very close to the center of area method. This method is 

less computationally intensive. Each membership function is weighted by its 

maximum membership value where the output is calculated by  

𝐷𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 output =  
∑ 𝜇(𝑥)𝑦

𝜇(𝑥)
 

Where x is the input variable,  μ(x) is the corresponding membership function value 

of the input x and y is the output that is defined by the fuzzy rule.   

b. Illustrative example  

Considering the fans fuzzy controller, if the input value of  𝑒𝑟𝑜𝑜𝑚 is -5, the N 

membership function has a degree of 1 and the Z membership function has 0.01 degree 

as shown in Figure 23. Also, if the input value of 𝑒𝑠𝑜𝑖𝑙 is 7 the degree of BP and P 

membership function is 0.5 as shown in Figure 24.  
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Figure 23: Membership function degree of the room temperature error input 

 

 

Figure 24: Membership function degree of the soil temperature error input 

 

In addition, if the rules that are corresponding to theses input variables are as 

Figure 25 shows, the defuzzied output can be calculated as  

𝐷𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 =  
75(1 + 0.5) + 50(1 + 0.5)

1 + 1 + 0.5 + 0.5
= 62.5 

 

 

Figure 25: Corresponding fuzzy rules 
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Figure 26 illustrates in graphics how the defuzzification of the two input variables is 

done.   

 

Figure 26: Defuzzification of the input variables  

 

3.2.2.2 Logical GHC 

A logical controller is developed with the same rules followed in the proposed 

fuzzy-based controller. The purpose of developing this controller is firstly to see the 

fuzzy-based controller effect on the actuators operations compared to the logical 

controller. Secondly,  to investigate the greenhouse climate control using the logical 

and the fuzzy-based controllers and to study the effect of having smooth inputs 

membership functions and fuzzy outputs on maintaining the greenhouse environment. 

The logical controller consists of the selector, which is discussed in the 

previous section, and a detailed if-then statements conditions for fans and windows 

control but with discrete output values. For example, in the fuzzy-based GHC, the 

percentage opening of the windows could be any value between 0% and 100%, 

however, in the logical GHC the percentages can be either 0%, 25%, 50%, 75% or 
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100% and no values in between can be selected. The conditions used in the logical 

controller are designed based on the fuzzy rules tables discussed before. Table 10 

shows the conditions followed in designing the fans logical controller and Table 11 

shows the conditions followed in designing the windows fuzzy controller.  

Table 10: Logical GHC decision for fans output  

 

Also, as mentioned before, the humidity is considered when the temperature is 

tolerable and the cases at which the humidity is considered are highlighted in yellow 

and shown in Table 11.  

 

 

Conditions  Action 

2 < 𝑒𝑟𝑜𝑜𝑚 < 7 𝑎𝑛𝑑 − 2 < 𝑒soil < 2 Run 100% ( 4 fan)  

 𝑒𝑟𝑜𝑜𝑚 < −7 𝑎𝑛𝑑 − 7 < 𝑒soil < 2 

−7 < 𝑒𝑟𝑜𝑜𝑚 < −2 𝑎𝑛𝑑 − 2 < 𝑒soil < 2 

𝑒𝑟𝑜𝑜𝑚 > 7 𝑎𝑛𝑑 2 < 𝑒soil < 7 

𝑒𝑟𝑜𝑜𝑚 < −2 𝑎𝑛𝑑  2 < 𝑒𝑠𝑜𝑖𝑙 < 7 Run 75% (3 fans) 

𝑒𝑟𝑜𝑜𝑚 > 7 𝑎𝑛𝑑  −2 < 𝑒𝑠𝑜𝑖𝑙 < 2 

𝑒𝑟𝑜𝑜𝑚 < −2 𝑎𝑛𝑑  𝑒𝑠𝑜𝑖𝑙 > 7 Run 50% (2 fans) 

𝑒𝑟𝑜𝑜𝑚 > 2 𝑎𝑛𝑑 − 7 < 𝑒soil < −2 

𝑒𝑟𝑜𝑜𝑚 > 2 𝑎𝑛𝑑  𝑒soil < −7 Run 25 % (1 fans) 

Else  No fan is running 

(0%)  
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Table 11: Logical GHC decision for windows output  

 

3.2.2.3 Conventional ON/OFF GHC  

The ON/OFF controller is a simple feedback controller used typically in many 

temperature control applications. It is chosen for its simplicity in designing and 

implementation especially for the applications at which the process stability is not 

essential [45]. In typical applications, the ON/OFF controller is implemented as a 

thermostat where the sensed temperature is compared to a set value and the thermostat 

outputs either ON or OFF depending on the mode of operation and the measured 

Conditions  Action 

−2 < 𝑒amb < 2  Open 

windows 

100%  𝑒𝑟𝑜𝑜𝑚 < −7 𝑎𝑛𝑑  𝑒amb > 7 

−2 < 𝑒amb < 7 𝑎𝑛𝑑 − 10 < 𝑒out.hum < 10  

𝑒𝑟𝑜𝑜𝑚 < −7 𝑎𝑛𝑑  2 < 𝑒amb < 7 Open 

windows 75% 
−7 < 𝑒𝑟𝑜𝑜𝑚 < −2 𝑎𝑛𝑑  𝑒amb > 7 

−2 < 𝑒amb < 7 𝑎𝑛𝑑 𝑒𝑖𝑛.hum > 10 𝑎𝑛𝑑  𝑒out.hum < −10 

−2 < 𝑒amb < 7 𝑎𝑛𝑑 𝑒𝑖𝑛.hum < −10 𝑎𝑛𝑑  𝑒out.hum > 10 

𝑒𝑟𝑜𝑜𝑚 < −7 𝑎𝑛𝑑  −7 < 𝑒amb < −2 Open 

windows 50% 
−7 < 𝑒𝑟𝑜𝑜𝑚 < −2 𝑎𝑛𝑑  2 < 𝑒amb < 7 

𝑒𝑟𝑜𝑜𝑚 > 7 𝑎𝑛𝑑 𝑒amb < −2 

𝑒𝑟𝑜𝑜𝑚 > 7 𝑎𝑛𝑑  2 < 𝑒amb < 7 

2 < 𝑒𝑟𝑜𝑜𝑚 < 7 𝑎𝑛𝑑  𝑒amb < −2 Open 

windows 25% 

Else  Close 

windows 

(0%) 
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temperature. For example, if the thermostat is used in heating mode, the thermostat 

would output ON whenever the room temperature falls below the set point. On the 

other hand, if the thermostat is set for cooling mode, it outputs ON if the sensed 

temperature exceeds the set point. In any of the modes, the ON signal is simply to 

switch on the related heating or cooling unit. In conventional greenhouses, thermostats 

are the most common devices used for controlling heating and cooling equipment [45]. 

All types of thermostat such as the electrical, mechanical and differential thermostats 

work as a switch that is connected to the actuators power circuit as shown in Figure 

27.  

 

Figure 27: Thermostat working principle 

For the newly developed greenhouse, the main idea is to use the outdoor 

weather conditions and the soil temperature in a favorite way to reduce the cooling 

demand on an AC unit. For plant cultivation, typically there is a recommended range 

of temperature which is denoted as Tmin, Tmax. Since there are two set points for the 

temperature variable and two actuators to be controlled (GHE, Windows), there should 

be no single thermostat but rather a combination of thermostats, temperature sensors 
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and comparators wired in a logic circuit to represent the ON/OFF controller logic as 

shown in Figure 28. It should be noted here that all thermostats used in this controller 

are cooling mode thermostats. The ON/OFF controller assigns the system actuators to 

either fully open or fully close (the control signal is either 0% or 100%) depending on 

the position of the controlled variable relative to the setpoint. Since two 

environmentally friendly heat sources are controlled in the proposed system, the 

controller commands the windows to open whenever the outside temperature is within 

the desired temperature range to allow heat transfer inside the greenhouse system. On 

the other hand, the soil temperature is used when the greenhouse temperature is above 

the maximum temperature and the soil temperature is below the greenhouse 

temperature which is a pre-cooling mode. Also, the soil temperature is used in heating 

mode when the greenhouse temperature is below the minimum desired temperature. 

Fans ON in this system means the GHE is running at full capacity (maximum flow 

rate) with the optimum speed. Running the four fans can be interpreted in other 

systems as having maximum heating/cooling flow rate from the heat exchanger.  

 

Figure 28: ON/OFF controller logic 
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3.2.3 Earth-to-Air Heat Exchanger Design  

An EAHE is used to thermally exchange heat between fresh air and soil to allow a 

reasonable cooling with minimum energy and water consumption. The inlet of the heat 

exchanger is the outside air where a thermal exchange happens in eight PVC pipes 

buried 2.5 meter below the ground surface. The outlet of the heat exchanger is placed 

inside the greenhouse building to cool it down in summer and heat it up in winter.  The 

heat exchanger is constructed with eight PVC pipes of 90 millimeter diameter, 2 

millimeter thickness and 24 meter long. The pipes are laid horizontally and parallel to 

each other with 1 meter separation gap as shown in Figure 29.  

 

Figure 29: Schematic diagram of the proposed EAHE system 

 



63 

 

 
 
 

3.2.4 Greenhouse Design  

An innovative greenhouse structure is built in one of the UAE University farms 

with the dimensions of 6 meter long, 4 meter wide and 2.5 meter high. The proposed 

greenhouse structure is thermally insulated and equipped with an EAHE system, four 

fans to extract heat from the ground, actuated windows, a sunlight collector system, 

and integrated with environmental condition sensors. Furthermore, since the 

greenhouse building is insulated, the plant sunlight exposure can only be allowed 

either through the actuated windows, if the weather permits, or using sunlight collector 

system. The greenhouse prototype and the ground heat exchanger are shown in Figure 

30.  The insulation material used in the greenhouse is Polyurethane foam which has a 

thermal resistance of 4.5 K⋅m2/W at 100 mm and is shown in Figure 31. 

  

Figure 30: The greenhouse porotype system  
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Figure 31: The greenhouse insulation material  

 

3.2.5 Hardware Implementation  

This part includes all the components and sensors that are used to implement the 

proposed controller experimentally in the greenhouse system. A wired sensor network is 

deployed based on agricultural requirements to provide more reliable sensory 

communication with the controller hardware. The measurements are collected by Arduino 

microcontrollers and logged in the MySQL database via a wired local area network (LAN). 

The detailed MySQL tables are included in Appendix A. In this section the hardware 

components are explained in detail with the specifications and the connection to the 

database and control system.   

Sensors  

Different environmental sensors are connected and deployed at different locations inside 

and outside the greenhouse system. The main criteria for selecting the system’s sensors 

are to be weather proof, operates in high temperatures and can be easily integrated with 

the Arduino microcontroller. The sensors are elongated to cover all the greenhouse 

building and the signal integrity of the elongated sensors is tested. Also, four temperature 

sensors of type DS18B20 are deployed at the fans outlet to measure the GHE temperature. 
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The sensors that are used in controlling the greenhouse system are described in this 

section. 

I.  Temperature Sensor 

 

 

Figure 32: DS18B20 waterproof temperature sensor 

Specification: 

• Digital Thermometers provide 9-bit to 12-bit Celsius temperature 

measurements 

• Operates in -55ºC to +125ºC 

• ±0.5ºC Accuracy reading of temperatures from -10ºC to +85ºC 

• Connected to digital input pin 

• Input voltage is 5 V 

• Requires specific library and does not need calibration  

II. Humidity and Temperature Sensor  

 

 

 

Figure 33: DHT11 Digital Humidity and Temperature Sensor 

Specification: 

• Operates in 0 to 50ºC 

• Humidity readings accuracy is 5% accuracy 
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• Temperature readings accuracy is ±2ºC 

• Maximum of 1 Hz sampling rate (once every second) 

• Connected to digital input pin  

• Input voltage is 5 V 

• Requires specific library and does not need calibration  

III. Wind Speed Sensor  

 

 

 

Figure 34: Wind speed sensor 

Specifications: 

• Testing Range: 0.5 m/s to 50 m/s 

• Start wind speed: 0.2 m/s 

• Resolution: 0.1 m/s 

• Accuracy: Worst case 1 m/s 

• Max Wind Speed: 70 m/s 

• The sensor is connected to analog pin for data measurements  

•  Input voltage 7-24 VDC , Output: 0.4 V to 2 V 

• No specific library is needed 

• Calibration: the wind tunnel is used to calibrate the wind sensor where a linear 

relationship between the wind speed and the measured voltage is found as 

shown  in Figure 35. The equation that related the wind speed with the 

measured voltage is in (5)  
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Wind speed = 7.6391 ∗ voltage + 0.4282  (5) 

 

Figure 35: Wind speed sensor calibration 

 

System Actuators  

Two actuators are used in the proposed system which are fans and linear 

actuators. It is important to mention here that the fans selection criteria are related to 

the GHE design which is beyond the thesis scope. In addition, the choice of the linear 

actuator motors is done based on calculations that handles the needed torque and force 

for actuating the windows which is also beyond the thesis scope. However, the power 

of the fans is connected to a 240/110 transformer and controlled by a relay module 

connected to digital pins in the Arduino microcontroller. Moreover, the power of the 

linear actuators is provided by 12 VDC convertor that is controlled by a relay module 

connected to a digital pin in the Arduino microcontroller.  
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I.  Fans  

 

 

Figure 36: Inline fan 

Specification 

• Power: 68W Current: 0.62 A , 60 HZ 

• Noise Level: 49 dB  

• Fan speed: 2500 rpm  

• Safe temperature range for operation: - 104ºF to 149ºF; Safe air-humidity 

range: 5% to 95% RH (Relative Humidity) 

• Input voltage is 110 VAC 

 

II. Linear Actuators 

 

 

Figure 37: Linear actuator  

Specification 

• Draws 9 A (200 lbs); 7.6 A (600 lbs) 

• Stroke 4 - 24 inches 

• Force 200 lbs and 600 lbs 

• Speed 0.39"/sec (600 lbs); 1.60"/sec (200 lbs) 

• Operational Temperature -25ºC~+65ºC 
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• Noise db<45(A) 

• Input voltage is 12 VDC 

The fans installed in the greenhouse building that extract heat from the ground 

and the linear actuators which control the windows are shown in Figure 38.  

 

 

 

 

 

 

 

 

(a)                                                                 (b) 

 

Figure 38: The greenhouse actuators (a) inline fan (b) linear actuator  

 

Micro-controller design criteria, programming and sampling rate 

An open source, multiple digital and analog inputs pins, and multiple digital 

output pins microcontroller is needed to read the sensors measurements, sample the 

data and perform the controller decision. The Arduino-mega microcontroller is 

selected because of its compatibility with many sensors and its large number of inputs 

and outputs pins. It also can work in temperatures between -40ºC to 85ºC so it is safe 

to be placed inside the greenhouse protection from dust and water droplets. The 

specifications of the Arduino-mega micro controller used are listed below:  

-Operating Voltage: 5 V  

- Input Voltage (recommended): 7-12 V  
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- Input Voltage (limits): 6-20 V  

- Digital I/O Pins: 54 (of which 14 provide PWM output)  

- Analog Input Pins: 16  

- DC Current per I/O Pin: 40 mA 

 - DC Current for 3.3 V Pin: 50 mA  

- Flash Memory: 256 KB of which 8 KB used by bootloader 

 - Clock Speed: 16 MHz  

Because of the slow dynamic of the greenhouse system, the Arduino reads the 

sensors measurements every two minutes. It then sends the data to the database via the 

ethernet shield, reads the controller outputs and sends the signal to two relays 

connected to 110 V and 12 V to control the fans and the linear actuators respectively. 

The code running in both Arduino controllers is shown in Appendix B.  

 

Hardware connection with the database  

MySQL to Arduino Connector is a library used to connect the Arduino with 

the database server. This library implements the MySQL client communication 

protocol where the SQL statements are encoded to insert data and run small queries in 

the MySQL server. The communication method recommended for this technology is 

the Ethernet wired communication which is based on the Wiznet W5100 ethernet chip. 

The Wiznet W5100 provides a network (IP) stack capable of both TCP and UDP. An 

Arduino ethernet shield is used to allow the communication between the database and 

the microcontroller.  
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Hardware Integration 

Figure 39 shows the entire hardware layout where two Arduino 

microcontrollers are used for sensor measurements, sampling and sending control 

signals to the actuators and Figure 40 shows part of the real system connection.  Figure 

39 shows the Arduino mega micro-controller is supplied by 9 V power and the 

temperature and humidity sensors that are distributed inside and outside the 

greenhouse system are supplied with 5 V from the Arduino board. Also, two step-

down power transformers are used in this system to operate the actuators. One to 

convert the 220 VAC socket power to 12 VDC with 30 A maximum current to power 

the wind speed sensor and the linear actuators and the other to convert the 220 VAC 

socket power to 110 VAC  with 3 kW to power the fans. Since the maximum current 

drawn by each linear actuator motor is 9 A, and the two adjacent linear actuators  have 

to operate together to open/close one window, a maximum current of 18 A is drawn 

when opening one window and a maximum 36 A is needed if the two windows are 

opening simultaneously. As we have a 12 VDC, 30 A power supply to the actuators, 

the two windows cannot open simultaneously. Therefore, six relay modules that work 

as single-pole single-throw switches are used to open/close the windows as shown in 

Figure 41. The relay works as  the following, if the windows are commanded to open, 

switches 1,2 and 5 are closed for a specific time and then switch 5 opens and switch 6 

closes to allow the power to flow to the other motors and open the other window. The 

same thing is done when closing the windows but with switch 3 and 4 closed to reverse 

the power direction. On the other hand, the four fans are connected to a 110 V power 

supply and controlled by a four inputs relay modules that also work as single-pole 

single-throw switches. Also, Figure 42 shows the integrated system closed loop flow.  



72 

 

 
 
 

 

Figure 39: System layout 
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Figure 40: System connection 

 

 

Figure 41: Linear actuator connection 
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Figure 42: Integrated system closed loop flow 
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3.2.6 Greenhouse Room Thermal Modeling 

The purpose of modeling the greenhouse room temperature is to test the 

proposed controllers over one complete year and to compare the simulation results 

with the experimental ones. Assuming the heat is perfectly exchanged with the ground 

which means the outlet of the heat exchanger is equal to the soil temperature when 

enough flow rate is considered, the greenhouse room is modeled as the following: 

 

Figure 43: The greenhouse room thermal modeling 

 

�̇�𝑟 =
1

𝐶𝑡ℎ
[𝑞𝑖𝑛(𝑡) − 𝑞𝑜𝑢𝑡(𝑡)]      (6) 

 

𝑞𝑖𝑛(𝑡) is the input heat flow in Watt and 𝑞𝑜𝑢𝑡(𝑡) is the output heat flow in Watt 

where:  

𝑞𝑖𝑛,𝑎𝑚𝑏𝑖𝑒𝑛𝑡(𝑡) =
𝑇𝑎(𝑡)−𝑇𝑟(𝑡)

𝑅𝑡ℎ
      (7) 

 

𝑞𝑖𝑛,𝑓𝑎𝑛(𝑡) = 𝑉𝑎𝑖𝑟(𝑡) × 𝑇𝑓𝑎𝑛(𝑡) × 𝐶𝑝 × 𝜌𝑎𝑖𝑟    (8) 

 

𝑞𝑜𝑢𝑡,𝑣𝑒𝑛𝑡.(𝑡) = 𝑉𝑤𝑖𝑛𝑑(𝑡) × 𝑇𝑎(𝑡) × 𝐶𝑝 × 𝜌𝑎𝑖𝑟   (9) 

 

All the parameters and variables are explained in Table 12.  

Substituting equations 7, 8 and 9 in equation 6 we get:  
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�̇�𝑟 =
1

𝐶𝑡ℎ
(

1

𝑅𝑡ℎ
(𝑇𝑎 −  𝑇𝑟) +  𝐶𝑃𝜌𝑎𝑖𝑟𝑉𝑎𝑖𝑟(𝑇𝑓𝑎𝑛 − 𝑇𝑟) + 𝐶𝑃𝜌𝑎𝑖𝑟𝑉𝑤𝑖𝑛𝑑(𝑇𝑎 − 𝑇𝑟)) (10) 

 

The value of 𝑅𝑡ℎ𝐶𝑡ℎ is found using experimental data by trial and error approach and 

is equal to 10000. This value provides a good representation of the greenhouse room 

model to study the controller performance.  

 

Table 12: Greenhouse room thermal modeling parameters and variables  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter/ 

Variable 

Description  Value  Unit 

𝑅𝑡ℎ Thermal resistance of the greenhouse which 

equals to the thermal resistance at 100 mm 

divided by the greenhouse area at which the 

insulation material is used 

4.5/(6*4+2

*6*2.5+2*

4*2.5) = 

0.06  

 

 K.s/J 

 

𝐶𝑡ℎ Thermal capacity of the greenhouse 

building which equals to  
10000

𝑅𝑡ℎ

 

166666 

 

J/K 

𝐶𝑝 Air specific heat capacitance  1000 J/[kg.K] 

𝜌𝑎𝑖𝑟  Air density at 22ºC  1.225 

 

kg/m3 

𝑞𝑖𝑛,𝑓𝑎𝑛(𝑡) Rate of thermal energy transferred from fan 

to the room 

 J/s 

𝑞𝑜𝑢𝑡,𝑣𝑒𝑛𝑡.(𝑡) Output heat flow due to windows opening  J/s 

𝑞𝑖𝑛,𝑎𝑚𝑏𝑖𝑒𝑛𝑡(𝑡) Input heat flow from the ambient 

temperature 

 J/s 

𝑉𝑎𝑖𝑟(𝑡) Air volume flow rate from the GHE which 

equals to 

number of fans x air speed that exits from 

the fan x cross sectional area of the fan 

outlet right 

 m3 
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Table 12: Greenhouse room thermal modeling parameters and variables (Continued)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.7 Greenhouse Room Thermal Modeling Validation  

To validate the greenhouse room temperature model, the greenhouse 

temperature is recorded experimentally for three consecutive days and plotted against 

the simulation results as shown in Figure 44. The simulation result matches the 

experimental result with small differences which validates the room temperature 

model derived in section 3.2.6. 

Parameter/ 

Variable 

Description  Value  Unit 

𝑉𝑤𝑖𝑛𝑑(𝑡) Air volume flow rate from the windows 

which equals to the cross-sectional area of 

windows opening x wind speed 

 

 m3 

𝑇𝑓𝑎𝑛(𝑡) The GHE outlet temperature which is 

assumed to be equal to the soil temperature 

at 2.5 meter depth  

 K 

𝑇𝑎  Ambient temperature   K 

𝑇𝑟 Room temperature  K 
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Figure 44: Real and simulated greenhouse room temperature 

 

3.2.8 Greenhouse Room ANFIS Humidity Modeling  

Artificial intelligent approaches including neural networks and fuzzy inference 

system have been widely used to model and predict complex systems and outputs. 

Testing the proposed controller in simulation requires a representative model for the 

greenhouse humidity. In literature, there are two ways to predict the greenhouse output 

variables which are the mathematical modeling approach and the black-box approach.  

Using the mathematical modeling for predicting the greenhouse humidity is complex 

because the system’s variables are dependent on each other with different 

undetermined relationships. For example, if the windows are opened 80% and the wind 

speed, inside temperature, outside temperature and outside humidity have certain 

values, then finding the inside humidity is complex if a mathematical approach is 

developed because many dependent variables are involved in this model. Therefore, 
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using ANFIS system provides a good estimation of the inside humidity without the 

need of mathematical equations. To predict the greenhouse humidity, an adaptive 

neuro-fuzzy inference system (ANFIS), which is a fuzzy system that uses neuro-

adaptive learning methods to determine the membership function parameters, is 

developed. Sugeno fuzzy inference system is designed with six inputs which are 

ambient temperature, ambient humidity, wind speed, room temperature, windows 

opening percentage and number of fans running. The predicted output of the ANFIS 

system is the greenhouse humidity. The purpose of using ANFIS in this system is to 

find a relationship between the inside humidity and the  input variables and system 

actuators. All the required data are collected experimentally from the new greenhouse 

building over one month and used to model the inside humidity using the black-box 

approach. The output of the ANFIS system is the greenhouse humidity which is 

affected by the input variables and the actuators.  To train the ANFIS system, about 

seven thousand samples are collected experimentally from the greenhouse system and 

used for training with hybrid optimization method and sub clustering technique. The 

structure of the ANFIS system is shown in Figure 45. The average testing error is 1.5 

with 121 nodes and 8 fuzzy rules.  Also, three thousand samples are used to test the 

ANFIS system. Figure 46 shows the trained ANFIS system with 10 epochs.  
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Figure 45: ANFIS structure for greenhouse humidity prediction 

 

 

 

 

 

 

 

Figure 46: Training results of the ANFIS system 
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Chapter 4: Results and Discussion  

 

This chapter presents simulation and experimental results of the proposed 

fuzzy-based control architecture. The simulation is performed on the temperature and 

humidity control of the greenhouse using the mathematical model and artificial 

intelligence ANFIS model presented in Chapter 3. The performance of the fuzzy 

controller for controlling the greenhouse temperature is compared to the logical and 

conventional ON/OFF controllers. Model parameter evaluation for the GHE and the 

greenhouse as well as the control system performance are discussed thoroughly.    

4.1 Greenhouse Temperature and GHE 

4.1.1 Simulation Results  

The greenhouse model is tested with the GHE set at various capacities to 

examine the capabilities of the GHE. Since the main driving thermal source is the 

ambient temperature, a one-year record of local temperature data is used to simulate 

the greenhouse model response over one year. Figure 47 shows the hourly real ambient 

temperature of 2016, the modeled soil temperature as per equation (1) and the response 

of the greenhouse model. The greenhouse model response is examined for five settings 

of fan operations, i.e. 0 fan, 1 fan, 2 fans, 3 fans and 4 fans running with GHE gain 

equals to 75%. It can be observed that when no fan is running, the greenhouse room 

temperature follows the ambient temperature with some attenuation and delay. 

However, when the GHE is utilized with one fan, the greenhouse temperature starts to 

follow the soil temperature with some fluctuation until it almost becomes the same as 

the soil temperature when four fans are running. In addition, the difference between 

greenhouse room temperature when four fans are running compared to when one fan 
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is running is about 1.5ºC. Moreover, running one fan makes the greenhouse system 

sensitive to the ambient temperature. However, when two, three or four fans are 

running the system is less affected by the ambient temperature. Moreover, the 

difference in temperature when running two, three or four fans is very small and hence 

the decision of the running number of fans depends on the required heating/cooling 

speed in the control system.  

 

 

Figure 47: Simulated room temperature when utilizing the GHE at various capacities 

(a) complete year (b) first 1000 hours of the year 
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4.1.2 Experimental Results 

The performance of the GHE is examined experimentally with 4 fans running. 

First, the ambient and greenhouse temperatures were recorded every two minutes for 

two consecutive days starting from Jan. 23rd, 2018 12:00 am to Jan. 24th, 2018 with no 

fan running. Then, the same temperatures were recorded for two days but with four 

fans running.  Figure 48 shows the results of both tests. Figure 48.a shows the 

greenhouse temperature when the heat exchanger is not utilized (i.e. no fan is running). 

It can be seen that, the experimental greenhouse temperature follows the outside 

temperature with attenuation in amplitude and some delay. Figure 48.b shows that the 

greenhouse temperature remains almost constant at 26ºC when the heat exchanger is 

fully utilized (i.e. 4 fans running). Table 10 shows the maximum and the minimum 

ambient and greenhouse temperatures for the two tests of using the GHE (no fans and 

4 fans).  

Table 13 shows that the proposed GHE is able to increase the greenhouse room 

temperature by about 7ºC when compared to the room temperature without GHE 

utilization. However, comparing between the maximum greenhouse room temperature 

when GHE is not utilized and when it is utilized shows that utilizing the GHE in this 

period of the year (winter season) gives similar temperature value when it is not 

utilized, which means the GHE can work in heating mode in winter but cannot work 

in pre-cooling mode.  
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Figure 48: Real greenhouse room temperature (a) when GHE is not utilized 

(b) when GHE is fully utilized 

 

 

Table 13: Comparison between ambient and greenhouse room temperatures when 

GHE is utilized and when not utilized 

 GHE is not utilized  GHE is utilized  

Minimum Maximum Minimum  Maximum  

Ambient 

Temperature  

First cycle 8.44 38.9 7.5 36.9 

Second cycle 9.113 43.78 8.086 33.56 

Greenhouse 

Temperature  

First cycle 18.5 27.19 25.07 27.98 

Second cycle 19.01 26.18 25.17 27.95 
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Moreover, the simulated room temperature was plotted against the real room 

temperature when the GHE is fully utilized and the results are shown in Figure 49 

where it can be seen that the simulated room temperature when four fans are running 

follows the soil temperature. Also, the measured greenhouse room temperature when 

four fans are running is very close to the simulation results. 

 

Figure 49: Real and simulated greenhouse room temperature when GHE is fully 

utilized 

 

Also, Figure 50 shows the air temperature at the fans outlet, the ambient 

temperature and the wind speed. It can be observed that the fluctuation of wind speed 

has no effect on the ground heat exchanger’s performance. 
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Figure 50: Fans temperature compared to wind speed when GHE is fully utilized 

 

4.2 Fuzzy-Based GHC Results 

The proposed fuzzy controller is simulated in Matlab Simulink 2016 as shown 

in Figure 51 and the detailed block diagram is included in Appendix C.1. The 

simulation time is set or one complete year (8782 hours) with real ambient 

temperature, relative humidity and wind speed data. The simulation results of 

controlling room temperature and humidity using the proposed fuzzy controller over 

one complete year are shown in Figure 52. The simulation reveals that a total energy 

of 496 kWh is consumed by the fans over one complete year as fans run for 7295 hours 

and 68 watt is consumed per hour. Also, the linear actuators are open/close 472 times 

over one year. The average room temperature is 26.8ºC.  
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The simulation results over one year is divided into four seasons and discussed 

individually in this section. A season begins in the first of the month at which the 

equinoxes and solstices happen according to the meteorological definition [46].  

 

Figure 51: Fuzzy controller simulation in Simulink 
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Figure 52: Fuzzy control of temperature simulation results over one year 

 

Winter (from 1st of December to 29th of February): 

The fuzzy controller performance in the winter season is plotted in Figure 53. 

Figure 53 shows that running one fans is sufficient to keep the greenhouse room 

temperature within the acceptable range by utilizing the GHE temperature. In addition, 

the outside weather conditions are utilized more than the GHE in this season. The GHE 

prevents the greenhouse room temperature from rising above the soil temperature 

during day hours. The fans run in this season for 39 hours with 2.7 kWh power 
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consumption. In this season the windows open/close 106 times for ventilation and 

cooling purposes.  The average room temperature is 22.6ºC which is within the 

acceptable range.  

 

Figure 53: Fuzzy controller simulation results in winter season  
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Spring (from 1st of March to 31st of May): 

The fuzzy controller results in the spring season is shown in Figure 54.  

Figure 54 shows that the outside temperature is utilized for cooling the greenhouse 

room temperature in the first half of the season. Also, the GHE is used for pre-

cooling in the second half of the season. In addition, the wind speed range exceeds 

the maximum wind in some hours of this season which stops the controller decision 

in utilizing the outside weather conditions. Moreover, the controller commands are 

fluctuating especially in the second half of the season.  Using the fuzzy controller in 

this season consumes a power of 25.5 kWh with windows open/close 124 times.  

 

Figure 54: Fuzzy controller simulation results in spring season 
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Summer (from 1st of June to 31st of August): 

The fuzzy controller performance in the summer season is plotted in Figure 

55. In this season the GHE is utilized for pre-cooling purpose. Also, the GHE is 

utilized with maximum capacity during day hours. However, during night hours the 

fuzzy controller utilizes less number of fans.  The fans run in this season for 4833 

hours with 328 kWh power consumption and the windows open/close 35 times. The 

controller fluctuation is very small in this season and the pre-cooling load is carried 

by the fans only.  
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Figure 55: Fuzzy controller in summer season 

Fall (1st of September to 30th of November): 

The fuzzy controller results in fall season are shown in Figure 56. In the first 

half of this season the GHE is utilized to pre-cool the greenhouse temperature and the 

ambient temperature is utilized in the second half of the season. Using the fuzzy 
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controller in this season consumes a power of 139 kWh with windows open/close 206 

times. 

  

Figure 56: Fuzzy controller in fall season 
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4.3 Logical GHC Results 

The  proposed logical controller is simulated in Matlab Simulink 2016 as shown 

in Figure 57.  The detailed block diagram is included in Appendix C.2. The simulation 

covers one year (8782 hours) with a real ambient temperature and wind speed records. 

The simulation results of controlling the room temperature using logical controller is 

shown in Figure 58. Simulation shows that a total energy of 727.6 kWh is consumed 

by the fans over one year. Also, the linear actuators are operated 307 times to fully 

open and close the windows over one year. 

 

Figure 57: Simulated logical controller for greenhouse room temperature control 
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Figure 58: Simulation results of the logical controller for one year 

 

Winter (from 1st of December to 29th of February): 

The logical controller performance in the winter season is plotted in Figure 59. 

From Figure 59 it can be observed that the GHE works in heating mode most of the 
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winter days and the outside weather conditions are utilized more than the soil 

temperature for ventilation.  

 

Figure 59: Logical controller in winter season 

 

Also, the wind speed in this season exceeds the maximum speed which blocks 

the controller action of utilizing the outside weather conditions at some hours. In this 

season, the four fans work for 64 hours which consumes 4.4 kWh and the windows 

open and close 94 times.  
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Spring (from 1st of March to 31st of May): 

The logical controller results in spring season are shown in Figure 60. In the 

spring season, the logical controller keeps the greenhouse room temperature within the 

acceptable range by utilizing the weather conditions in the first half of the season  and 

the GHE is used in pre-cooling mode in the second half of the season. The wind speed 

range exceeds the maximum wind in some hours of this season, and hence the 

controller decision in utilizing the outside weather conditions is sometimes interrupted. 

 

Figure 60: Logical controller in spring season 
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In this season, the four fans run for 1240 hours (which equals to 84.3 kWh) and 

the windows open and close 90 times. Moreover, an auxiliary cooling unit has to be 

used to cool the greenhouse temperature for an average amplitude of 1.6ºC. The 

fluctuations of the logical controller commands are also high in this season.   

Summer (from 1st of June to 31st of August): 

The logical controller performance in the summer season is plotted in Figure 

61. In this season the ground temperature utilization is dominant.  The fans operate for 

7332 hours which equals to 498.6 kWh and the windows are commanded to open and 

close 13 times during night hours. By utilizing the GHE the controller is capable of 

keeping the greenhouse room temperature at about 32ºC on average. The fluctuation 

in controller commands is less than the previous two seasons.  
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Figure 61: Logical controller in summer season 
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Fall (1st of September to 30th of November): 

The logical controller results in the fall season are shown in Figure 62. In this 

season, the four fans run for 2064 hours which equals to 140.4 kWh and the windows 

open and close 110 times. An auxiliary cooling unit is needed to cool down the room 

temperature of 3.5ºC amplitude on average. The wind speed in this season exceeds the 

accepted speed and triggers the controller to block the outside weather condition 

utilization in some hours. At the beginning of this season, the GHE is used for pre-

cooling purpose. However, the weather utilization is dominant in the second half of 

the season.  
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Figure 62: Logical controller in fall season 

 

4.4 ON/OFF GHC Results  

The ON/OFF controller is simulated in Matlab Simulink 2016 as shown in 

Figure 63. The detailed block diagram is included in Appendix C.3. The simulation 

covers one year (8782 hours) with a real ambient temperature and wind speed records. 

The simulation results of controlling the room temperature using ON/OFF controller 

is shown in Figure 64. Simulation shows that a total energy of 1553 kWh is consumed 
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by the fans over one year. Also, the linear actuators are operated 1341 times to fully 

open and close the windows over one year. 

 

 

Figure 63: Simulated ON/OFF controller for greenhouse temperature control 
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Figure 64: Simulation results of the ON/OFF controller for one year 

 

Winter (from 1st of December to 29th of February): 

The ON/OFF controller performance in the winter season is plotted in Figure 

65. From Figure 65 it can be observed that the GHE works in heating mode most of 

the winter days. In addition, the outside weather conditions are utilized for ventilation 

purpose by opening side windows. 
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Figure 65: ON/OFF controller in winter season 

 

Also, the wind speed in this season exceeds the maximum speed which blocks 

the controller action of utilizing the outside weather conditions at some hours. In this 

season, the four fans work for 5332 hours which consumes 362.5 kWh and the 

windows open and close 541 times. An auxiliary cooling unit is needed at which the 

room temperature exceeds the desired range and neither the ground temperature nor 
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the weather conditions can be utilized. The average needed auxiliary cooling amplitude 

is 0.4ºC.  The fluctuation in controller commands is high and may affect the actuators 

in the long term.  

Spring (from 1st of March to 31st of May): 

The ON/OFF controller results in spring season are shown in Figure 66. In the 

spring season, the ON/OFF controller keeps the greenhouse room temperature within 

the acceptable range by utilizing the GHE for heating purpose in cold hours. Also, 

when the ambient temperature is within the acceptable range, the windows open and 

the ambient air is used to heat up the greenhouse. However, the GHE is not used in 

pre-cooling mode in spring season because soil temperature is close to the ambient 

temperature. The wind speed range exceeds the maximum wind in some hours of this 

season, and hence the controller decision in utilizing the outside weather conditions is 

sometimes interrupted.  
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Figure 66: ON/OFF controller in spring season 

In this season, the four fans run for 5928 hours (which equals to 403.1 kWh) 

and the windows open and close 427 times. Moreover, an auxiliary cooling unit has to 

be used to cool the greenhouse temperature for an average amplitude of 2.0ºC. The 

GHE is utilized for heating purpose and the outside weather conditions are only 

utilized for ventilation purpose. The fluctuations of the ON/OFF controller commands 

are also high in this season. 
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Summer (from 1st of June to 31st of August): 

The ON/OFF controller performance in the summer season is plotted in Figure 

67. In this season the four fans are operating in pre-cooling mode for 8148 hours which 

equals to 553.8 kWh and the windows are commanded to open and close 17 times 

during night hours. By utilizing the GHE the controller is capable of keeping the 

greenhouse room temperature at about 32ºC on average. The advantage of using the 

GHE is overwhelming in this season. Comparing the greenhouse room temperature 

when the GHE is not used and when the controller is used with the GHE, an auxiliary 

cooling unit is needed for further cooling of about an average amplitude 7ºC. Also, the 

weather conditions are utilized at night hours and the fans are utilized during the day 

hours for pre-cooling purpose. The fluctuation in controller commands is less than the 

previous two seasons. 
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Figure 67: ON/OFF controller in summer season 

 

Fall (1st of September to 30th of November): 

The ON/OFF controller results in the fall season are shown in Figure 68. In 

this season, the four fans run for 3436 hours which equals to 233.6 kWh and the 

windows open and close 356 times. An auxiliary cooling unit is needed to cool down 

the room temperature of 4.5ºC amplitude on average. The wind speed in this season 

exceeds the accepted speed and triggers the controller to block the outside weather 

condition utilization in some hours. At the end of this season, the GHE is used for 
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heating purpose. The controller commands fluctuation at the first 400 hours of this 

season is low, however, it starts to increase after that.  

 

Figure 68: ON/OFF controller in fall season 

4.5 Comparison Between Proposed Controllers 

 A comparison between the proposed fuzzy-based controller and the logical 

and ON/OFF controllers performance in each season is shown in Table 14. The fans 
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operation hours mentioned in the tables counts the number of fans running. For 

example, if it is an ON/OFF controller and the fans operating hours mentioned is 6904 

then the GHE is utilized for 6904/4= 1726 hours where 4 is the number of fans used 

to fully utilize the GHE. Moreover, and to have a better understanding of the GHE 

effect on the greenhouse room temperature, the ON/OFF controller is run without fans 

and allowed to control the window actuators only.  

Table 14 shows that the fans consumption in the ON/OFF controller is much 

higher than the fuzzy controller in all seasons, however, the numbers are close to each 

other in summer season at which the GHE is fully utilized for pre-cooling purpose. 

The biggest difference in fans operation is in winter season where the fuzzy controller 

commands the fans to work for 5908 hours while the ON/OFF controller commands it 

for 661 operation hours. This huge difference is due to the decision taken by the fuzzy  

controller that specifies the needed number of fans for heating/cooling based on how 

far the room temperature from the desired temperature.  

It is important to mention that, in both controllers an AC unit may be needed if 

the renewable energy resources are saturated (i.e. the soil temperature or the weather 

conditions cannot be utilized to maintain the greenhouse temperature). This unit works 

independently if the control system fails to keep the room temperature below the 

maximum allowable value. If the temperature exceeds the maximum allowable value 

an auxiliary unit will switch ON independently until the temperature drops below the 

𝑇𝑚𝑎𝑥. 
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Table 14: Comparison between ON/OFF, logical and fuzzy controllers  

Season Control 

 

Fans 

operating 

hours (h)  

Fans 

power 

(kWh) 

Window 

open/ 

close 

count 

Avg. 

room 

temp. 

(ºC) 

Avg. 

Ambient 

temp. 

(ºC) 

Avg. 

error 

 

Full 

Year 

Fuzzy  7295 496 472 26.8 28.9 -1.8 

Logical 10700 727 307 27.4 28.9 -2.4 

ON/OFF 22844 1553 1341 28.5 28.9 -3.5 

Winter Fuzzy  39 2.7 106 22.6 20.3 0 

Logical 64 4.4 94 22.5 20.3 0 

ON/OFF 5332 362.6 541 25.4 20.3 0.4 

Spring Fuzzy 375 25.5 124 26.2 28.5 -1.2 

Logical 1240 84.3 90 26.6 28.5 -1.6 

ON/OFF 5928 403.1 427 27.0 28.5 -2.0 

Summer Fuzzy 4833 328.6 35 30.4 37.1 -5.4 

Logical 7332 498.6 13 32.0 37.1 -7.0 

ON/OFF 8148 554.1 128 32.0 37.1 -7.0 

Fall Fuzzy 2048 139.3 206 27.9 29.6 -2.9 

Logical 2064 140.4 110 28.5 29.6 -3.5 

ON/OFF 3436 233.6 356 29.5 29.6 -4.5 
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Chapter 5: Conclusion 

 

This research studied the performance of two proposed controllers in 

maintaining the greenhouse environment by utilizing ground temperature and weather 

conditions. A fuzzy based control system is proposed and compared with the logical 

and conventional ON/OFF controllers to maintain the innovative greenhouse 

temperature and humidity. The controllers were simulated and tested in simulation 

using Matlab Simulink R2016b and real meteorological data over one complete year. 

Results showed that the proposed fuzzy-based controller can maintain the greenhouse 

temperature on most days of the year better than the logical and ON/OFF controllers. 

However, in summer all controllers were working in pre-cooling mode and further 

cooling unit is needed to reduce the greenhouse temperature by about 7ºC amplitude 

on average. Also, simulation showed that the ON/OFF controller consumed higher 

power and showed higher fluctuation in room temperature when compared to the 

logical and the fuzzy controllers. However, the actuators’ power consumptions of the 

fuzzy controller and the logical controller are close. As a conclusion, the GHE can be 

used for heating purpose without the need for an auxiliary heating unit. However, it 

can be only used for pre-cooling in summer where it has the capability of maintaining 

the greenhouse temperature at 30.4ºC on average the entire season with the fuzzy-

based controller.  The proposed control system utilized the outside temperature and 

humidity to maintain the greenhouse temperature and humidity at a certain range. 

However, results showed that a fog system is needed to maintain the greenhouse 

humidity as the outside humidity cannot be utilized with the temperature most of the 

time. The proposed control system provides enough cooling for most of the year and 

reduces the cooling load in summer season.   
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Utilizing GHE in UAE climate proved that it can eliminate the need of an 

auxiliary heating unit and reduce the required cooling load. Despite the big variation 

in design and optimization techniques of the GHE, all the conducted experiments in 

different places of the world proved the efficiency of using the geothermal energy in 

cooling/heating processes. However, the ambient temperature, the soil physical 

properties and the application where the GHE is employed need to be taken into 

consideration before designing the GHE.  

Future Work  

The experimental power consumption of the actuators needs to be studied when 

running the ON/OFF controller and the fuzzy controller while having plants inside the 

greenhouse. This study should focus on how much power is saved when utilizing the 

weather conditions and the ground heat exchanger compared to the consumed power 

by the fans and the linear actuators in the long term.  Also, it should focus on the 

actuators lifecycle and performance when each controller is deployed. Another study 

should be done to compare between the amount of water consumed for cooling purpose 

in the conventional greenhouses and the water consumption when the GHE and the 

controllers are used. More research should be conducted on the performance of GHEs 

for a long-term period considering the thermal load imbalance issue and the ground 

thermal recovery cycle. Future work should focus on providing comprehensive 

economic analysis together with COP for different designs of GHEs especially the air-

to-ground heat exchangers which are considered to be affordable in many places 

because they do not require deep ground digging or ground water availability. In 

addition, more studies should be conducted on soil properties at different places and 
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at different times in the UAE to provide a map of best places for deploying ground 

heat exchanger for a certain application. 
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Appendix A 
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Appendix B 

 

Arduino controller coding  

[code] 

#include <Wire.h> 

#include <OneWire.h> 

#include <Adafruit_Sensor.h>//common between light and dht sensors 

#include <Adafruit_TSL2561_U.h> 

#include <DHT.h> 

//#include <DHT_U.h>  

#include <Ethernet.h> 

#include <MySQL_Connection.h> 

#include <MySQL_Cursor.h> 

#include <OneWire.h> 

#include <SHT1x.h> 

byte mac_addr[] = { 0x90, 0xA2, 0xDA, 0x10, 0x2F, 0x7B }; 

IPAddress server_addr(192,168,0,101);  // IP of the MySQL *server* here 

char user[] = "indoorMC";              // MySQL user login username 

char password[] = "";        // MySQL user login passwor 

EthernetClient client; 

//****************MySQL inquireis**************************// 

char INSERT_DATA[] = "INSERT INTO gh.indoor( 

insideTemp,insideHumidity,fan1Temp,fan2Temp,fan3Temp,fan4Temp) VALUES 

(%s,%s,%s,%s,%s,%s)"; 

char query_outputs[] = "SELECT fan FROM gh.outputs ORDER BY Time DESC 

LIMIT 1"; 

char query[128]; 
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//*************************Definitions*******************// 

OneWire  ds(8);  // Fan1 temprature sensor on pin 10 (a 4.7K resistor is necessary) 

OneWire  ds1(9);//  Fan2 temprature sensor on pin 9 (a 4.7K resistor is necessary) 

OneWire  ds2(31); 

OneWire  ds3(32);  // Fan1 temprature sensor on pin 10 (a 4.7K resistor is necessary) 

OneWire  ds4(40);  // INSIDE temprature sensor on pin 10 (a 4.7K resistor is 

necessary) 

#define dataPin  6//expensive weather proof sensor  

#define clockPin 7//expensive weather proof sensor 

SHT1x sht1x(dataPin, clockPin); 

#define fan1     22 

#define fan2     23 

#define fan3     24 

#define fan4     25 

int x_1=0 ; int x_2=0; double y=0; double T; double H; 

double f1T=0; 

double f2T=0;  

double f3T=0;  

double f4T=0;  

double f3H=0; 

double f4H=0 ; int fan1Value, fan2Value,fan3Value,fan4Value; 

double T_old, H_old, f1T_old, f2T_old, f3T_old,f4T_old;  

int  MusurementNumber;  

 

//For light sensors 

Adafruit_TSL2561_Unified tsl = Adafruit_TSL2561_Unified(0x39, 12345); //0x39 

is the default value which should be connected to the SCL and SDA pins 
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Adafruit_TSL2561_Unified ts2 = Adafruit_TSL2561_Unified(0x29, 12346); //0x29 

should be connected in the reference pins 

//For DHT Humidity and Temprature sensor 

#define DHTPIN            3         // Pin which is connected to the DHT sensor. 

#define DHT2PIN           2 

#define DHT3PIN           5 

#define DHTTYPE           DHT11     // DHT 11  

#define DHT2TYPE          DHT11 

#define DHT3TYPE          DHT11 

DHT dht(DHTPIN, DHTTYPE); 

DHT dht2(DHT2PIN, DHT2TYPE); 

DHT dht3(DHT3PIN, DHT3TYPE); 

//**********************************************************// 

void setup(void) 

{ 

pinMode(fan1,OUTPUT); //fan1 on pin 22 

pinMode(fan2,OUTPUT); //fan2 on pin 23  

pinMode(fan3,OUTPUT); //fan3 on pin 24 

pinMode(fan4,OUTPUT);//fan4 on pin 25  

digitalWrite(fan1 , 1);  

digitalWrite(fan2 , 1);  

digitalWrite(fan3 , 1); 

digitalWrite(fan4 , 1);   

dht.begin(); 

dht2.begin(); 

dht3.begin(); 

Serial.begin(1000000); 
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MusurementNumber =1;  

sensor_t sensor; 

//***************************************************************// 

} 

void loop(void) 

{ 

 Serial.print("*******************Measurement#"); 

  Serial.print(MusurementNumber); 

 Serial.println("*******************"); 

//*****************fans Temp. Sensors********************// 

//---------------------------------------------------------------// 

  //**DHT Humidity and Temprature sensor**// 

  //---------------------------------------------------------------// 

   float h1 = dht.readHumidity(); 

  // Read temperature as Celsius (the default) 

   

  float t1 = dht.readTemperature(); 

  // Check if any reads failed and exit early (to try again). 

  if (isnan(h1) || isnan(t1) ) 

Serial.println("Failed to read from DHT sensor!"); 

  f3T= t1; 

  f3H= h1;  

  Serial.print("DHT Humidity: "); 

  Serial.print(f3H); 

  Serial.print(" %\t"); 

  Serial.print("DHT Temperature: "); 
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  Serial.print(f3T); 

  Serial.println(" *C "); 

  delay(1000);  

  float h2 = dht2.readHumidity(); 

  float t2 = dht2.readTemperature(); 

  if (isnan(h2) || isnan(t2)) { 

    Serial.println("Failed to read from DHT sensor!"); 

  } 

  Serial.print("DHT Humidity: "); 

  Serial.print(h2); 

  Serial.print(" %\t"); 

  Serial.print("DHT Temperature: "); 

  Serial.print(t2); 

  Serial.println(" *C "); 

   delay(1000);  

double T1= t2;  

double H1= h2; 

   float h3 = dht3.readHumidity(); 

  float t3 = dht3.readTemperature(); 

  if (isnan(h1) || isnan(t1) ) 

  Serial.println("Failed to read from DHT sensor!"); 

double  T2= t3; 

double H2= h3;  

  Serial.print("third DHT Humidity: "); 

  Serial.print(H); 

  Serial.print(" %\t"); 
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  Serial.print(" third DHT Temperature: "); 

  Serial.print(T); 

  Serial.println(" *C "); 

//////////////////// FOR FIRST AND SECOND FANS TEMP. SENSORS//////////////// 

  byte i; 

  byte present = 0; 

  byte type_s; 

  byte data[12]; 

  byte addr[8]; 

  float celsius, fahrenheit; 

  if ( !ds.search(addr)) 

  { 

    ds.reset_search(); 

    delay(250); 

} 

if (OneWire::crc8(addr, 7) != addr[7])  

  { 

      Serial.println("CRC is not valid!"); 

      celsius=0;  

  } 

  Serial.println(); 

  ds.reset(); 

  ds.select(addr); 

  ds.write(0x44, 1);        // start conversion, with parasite power on at the end 

  delay(1000);     // maybe 750ms is enough, maybe not 

  // we might do a ds.depower() here, but the reset will take care of it. 
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  present = ds.reset(); 

  ds.select(addr);     

  ds.write(0xBE);         // Read Scratchpad 

  for ( i = 0; i < 9; i++)  

  {           // we need 9 bytes 

    data[i] = ds.read(); 

  } 

  int16_t raw = (data[1] << 8) | data[0]; 

  if (type_s) 

  { 

    raw = raw << 3; // 9 bit resolution default 

 

 

    if (data[7] == 0x10)  

    { 

      // "count remain" gives full 12 bit resolution 

      raw = (raw & 0xFFF0) + 12 - data[6]; 

    } 

  }  

  else 

  { 

    byte cfg = (data[4] & 0x60); 

    // at lower res, the low bits are undefined, so let's zero them 

    if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms 

    else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms 

    else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms 
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    //// default is 12 bit resolution, 750 ms conversion time 

  } 

  celsius = (float)raw / 16.0; 

  Serial.print("  Temperature = "); 

  Serial.print(celsius); 

  Serial.print(" Celsius, "); 

f1T= celsius;  

 /////////////////////////////////SECOND//////////////////// 

 present = 0; 

  if ( !ds1.search(addr))  

  { 

  ds1.reset_search(); 

    delay(250); 

  } 

  if (OneWire::crc8(addr, 7) != addr[7]) { 

      Serial.println("CRC is not valid!"); 

     celsius=0; 

  } 

  Serial.println(); 

  ds1.reset(); 

  ds1.select(addr); 

  ds1.write(0x44, 1);        // start conversion, with parasite power on at the end 

  delay(1000);     // maybe 750ms is enough, maybe not 

  // we might do a ds.depower() here, but the reset will take care of it. 

  present = ds1.reset(); 

  ds1.select(addr);     
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  ds1.write(0xBE);         // Read Scratchpad 

  for ( i = 0; i < 9; i++) {           // we need 9 bytes 

    data[i] = ds1.read(); 

  } 

raw = (data[1] << 8) | data[0]; 

  if (type_s) { 

    raw = raw << 3; // 9 bit resolution default 

    if (data[7] == 0x10) { 

      // "count remain" gives full 12 bit resolution 

    raw = (raw & 0xFFF0) + 12 - data[6]; 

    } 

  } 

  else  

  { 

    byte cfg = (data[4] & 0x60); 

    // at lower res, the low bits are undefined, so let's zero them 

    if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms 

    else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms 

    else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms 

    //// default is 12 bit resolution, 750 ms conversion time 

  } 

  celsius = (float)raw / 16.0; 

  Serial.print("  Temperature = "); 

  Serial.print(celsius); 

  Serial.println(" Celsius, "); 

f2T= celsius;  
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/////////////////////////////////third///////////////////// 

 present = 0; 

  if ( !ds2.search(addr))  

  { 

    ds2.reset_search(); 

    delay(250); 

  } 

if (OneWire::crc8(addr, 7) != addr[7]) { 

      Serial.println("CRC is not valid!"); 

     celsius=0; 

  } 

  Serial.println(); 

  ds2.reset(); 

  ds2.select(addr); 

  ds2.write(0x44, 1);        // start conversion, with parasite power on at the end 

  delay(1000);     // maybe 750ms is enough, maybe not 

  // we might do a ds.depower() here, but the reset will take care of it. 

  present = ds2.reset(); 

  ds2.select(addr);     

  ds2.write(0xBE);         // Read Scratchpad 

  for ( i = 0; i < 9; i++) {           // we need 9 bytes 

    data[i] = ds2.read(); 

  } 

raw = (data[1] << 8) | data[0]; 

  if (type_s) { 

    raw = raw << 3; // 9 bit resolution default 
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    if (data[7] == 0x10) { 

      // "count remain" gives full 12 bit resolution 

      raw = (raw & 0xFFF0) + 12 - data[6]; 

    } 

  } 

else  

  { 

    byte cfg = (data[4] & 0x60); 

    if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms 

    else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms 

    else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms 

  } 

  celsius = (float)raw / 16.0; 

  Serial.print("  Temperature = "); 

  Serial.print(celsius); 

  Serial.println(" Celsius, "); 

f3T= celsius;  

 /////////////////////////////////fourth///////////////////// 

 present = 0; 

  if ( !ds3.search(addr))  

  { 

    ds3.reset_search(); 

    delay(250); 

  } 

  if (OneWire::crc8(addr, 7) != addr[7]) { 

      Serial.println("CRC is not valid!"); 
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     celsius=0; 

  } 

  Serial.println(); 

ds3.reset(); 

  ds3.select(addr); 

  ds3.write(0x44, 1);        // start conversion, with parasite power on at the end 

  delay(1000);     // maybe 750ms is enough, maybe not 

  // we might do a ds.depower() here, but the reset will take care of it. 

  present = ds3.reset(); 

  ds3.select(addr);     

  ds3.write(0xBE);         // Read Scratchpad 

  for ( i = 0; i < 9; i++) {           // we need 9 bytes 

    data[i] = ds3.read(); 

  } 

raw = (data[1] << 8) | data[0]; 

  if (type_s) { 

    raw = raw << 3; // 9 bit resolution default 

    if (data[7] == 0x10) { 

      // "count remain" gives full 12 bit resolution 

      raw = (raw & 0xFFF0) + 12 - data[6]; 

    } 

  } 

  else  

  { 

    byte cfg = (data[4] & 0x60); 

    // at lower res, the low bits are undefined, so let's zero them 
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    if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms 

    else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms 

    else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms 

  } 

  celsius = (float)raw / 16.0; 

  Serial.print("  Temperature = "); 

  Serial.print(celsius); 

  Serial.println(" Celsius, "); 

f4T= celsius;  

 /////////////////////////////////insideTemp///////////////////// 

 present = 0; 

  if ( !ds4.search(addr))  

  { 

    ds4.reset_search(); 

    delay(250); 

  } 

  if (OneWire::crc8(addr, 7) != addr[7]) { 

      Serial.println("CRC is not valid!"); 

     celsius=0; 

  } 

  Serial.println(); 

  ds4.reset(); 

  ds4.select(addr); 

  ds4.write(0x44, 1);        // start conversion, with parasite power on at the end 

  delay(1000);     // maybe 750ms is enough, maybe not 

    present = ds4.reset(); 
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  ds4.select(addr);     

  ds4.write(0xBE);         // Read Scratchpad 

  for ( i = 0; i < 9; i++) {           // we need 9 bytes 

    data[i] = ds4.read(); 

  } 

raw = (data[1] << 8) | data[0]; 

  if (type_s) { 

    raw = raw << 3; // 9 bit resolution default 

    if (data[7] == 0x10) { 

      // "count remain" gives full 12 bit resolution 

      raw = (raw & 0xFFF0) + 12 - data[6]; 

    } 

  } 

  else  

  { 

    byte cfg = (data[4] & 0x60); 

    // at lower res, the low bits are undefined, so let's zero them 

    if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms 

    else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms 

    else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms 

    //// default is 12 bit resolution, 750 ms conversion time 

  } 

  celsius = (float)raw / 16.0; 

Serial.print("  Temperature = "); 

  Serial.print(celsius); 

  Serial.println(" Celsius, "); 
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double T3 = celsius;  

  /////////////////////////////INSERTING DATA>>>>>>>>>>>>>>>>>>>>> 

MusurementNumber ++;  

char insideTemp[512] ; 

int insideLightIntensity1= x_1; 

int insideLightIntensity2= x_2; 

int avgLightIntensity = (x_1+x_2)/2; 

char insideHumidity[512]; 

char fan1Temp[512]; 

char  fan2Temp[512]; 

char fan3Temp[512]; 

char fan4Temp[512]; 

T= (T1+T2+T3)/3.00; 

H= (H1+H2)/2; 

dtostrf(H,1,4, insideHumidity); 

dtostrf(T,1,4, insideTemp);   

dtostrf(f1T,1,4,fan1Temp);  

dtostrf(f2T,1,4, fan2Temp);  

dtostrf(f3T,1,4, fan3Temp);  

dtostrf(f4T,1,4, fan4Temp);  

MySQL_Connection conn((Client *)&client); 

  while (!Serial); // wait for serial port to connect 

  Ethernet.begin(mac_addr); 

  Serial.println("Connecting..."); 

  if (conn.connect(server_addr, 3306, user, password)) { 
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    delay(1000); 

  } 

  else 

  { 

    Serial.println("Connection failed."); 

    delay(60000); 

    return; //do the measurements again, failed connection 

  } 

MySQL_Cursor *cur_mem = new MySQL_Cursor(&conn); 

sprintf(query, INSERT_DATA, insideTemp ,insideHumidity, fan1Temp, 

fan2Temp,fan3Temp, fan4Temp); 

 cur_mem->execute(query);    // Execute the query 

    delete cur_mem; 

    Serial.println("Data recorded."); 

conn.close(); 

//************************OUTPUTS*****************************// 

 while (!Serial); // wait for serial port to connect 

  Ethernet.begin(mac_addr); 

  Serial.println("Connecting..."); 

if (conn.connect(server_addr, 3306, user, password)) 

  { 

    delay(1000); 

row_values *row = NULL; 

long fanValue; 

MySQL_Cursor *cur_mem1 = new MySQL_Cursor(&conn);  // Initiate the query 

class instance 

 cur_mem1->execute(query_outputs);  // Execute the query 



137 

 

 
 
 

column_names *columns = cur_mem1->get_columns(); // Fetch the columns 

(required) but we don't use them. 

// // Read the row (we are only expecting the one) 

 do { 

    row = cur_mem1->get_next_row(); 

    if (row != NULL) { 

      fanValue = atol(row->values[0]); 

    } 

  } while (row != NULL); 

  // Deleting the cursor also frees up memory used 

  delete cur_mem1;  

if(fanValue>=13) 

{ 

fan1Value= 1; //run only one fan  

if(fanValue>=38) 

fan2Value=1;  

if(fanValue>=63) 

fan3Value=1; 

if(fanValue>=88) 

 fan4Value=1; 

} 

else 

{ 

fan1Value = 0; 

fan2Value = 0; 

fan3Value = 0;  

fan4Value = 0;  
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} 

  // Show the result 

  Serial.println("  fan = "); 

  Serial.println(fanValue); 

    Serial.println("  fan1 = "); 

  Serial.println(fan1Value); 

    Serial.println("  fan2 = "); 

  Serial.println(fan2Value); 

      Serial.println("  fan3 = "); 

  Serial.println(fan3Value); 

    Serial.println("  fan4 = "); 

  Serial.println(fan4Value); 

digitalWrite(fan1,!fan1Value);  

digitalWrite(fan2,!fan2Value);  

digitalWrite(fan3,!fan3Value);  

digitalWrite(fan4,!fan4Value);   

conn.close(); 

//delay(60000); 

} 

 else 

  { 

    Serial.println("Connection failed."); 

    return; //do the measurements again, failed connection 

  } 

} 

 [/code] 
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Appendix C 

 

C.1 Fuzzy Controller in Simulink 
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Fuzzy Controller Block   
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  Soil Error Block  
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Room is cold Block 
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Room is hot Block 

 

Ambient Error Block 
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Subsystem1  
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Subsystem2  
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C.2 Logical controller in Simulink for both actuators  
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For linear actuator control (Windows Block)  
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100% Block  
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75% Block  
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50% Block  
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Fans Block  
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4 fans block  
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3 fans block  

 

2 fans block  
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C.3 ON/OFF controller in Simulink for both actuators  
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For linear actuator control (Linear Actuator Block)  

 

 

 

 

 

 

 

 

 

 

 

ON/OFF controller in Simulink for fan control 
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